
Visualizing Interactions in AngularJS-based
Single Page Web Applications∗

Gefei Zhang†

Hochschule für Technik und Wirtschaft Berlin
gefei.zhang@htw-berlin.de

Jianjun Zhao
Kyushu University

zhao@ait.kyushu-u.ac.jp

Abstract

AngularJS is a popular framework for single page
web applications. In AngularJS applications, the pro-
gramming logic is implemented in Javascript, while the
layout is defined separately in HTML files. Due to
this separation, data and control flow is usually hard
to track. We propose a method to visualize the data
and control flow in AngularJS-based single page web
applications and separate interactions from each other.
Our method helps to get a better understanding of the
application’s work flow, to realize the boundaries of the
interactions, and to know what is updated in an inter-
action and what is not.

1 Introduction

AngularJS [2] is one of the modern frontend-
frameworks which support the Model-View-ViewModel
architecture (MVVM) [8]: the models provide data to
the application, the views define the graphical presen-
tation of the data, and the view-models (also called
controllers) define the business logic (data and control
flows) of the application. Usually, views are defined in
HTML, models and controllers in Javascript.

AngularJS is widely used in single page web appli-
cations (SPA). In an SPA, the application has only one
HTML page, containing an array of widgets. When
the user gives some input in one widget, the applica-
tion reacts and updates some other widgets. Between
the widgets of the page there may or may not exist data
and control flow, and a widget may or may not be in-
fluenced by another one. Since data and control flow is
defined in the controller, separately from the widgets,
potential interactions may be obscure; understanding
of the program may be hard.

We present a method to visualize data and control
flow of AngularJS-based SPA. We create an Interac-
tion Diagram by translating HTML widgets, as well
as functions and variables in the controller to nodes,

∗DOI reference number 10.18293/SEKE2018-066
†Partially supported by the EU project cAPITs and the Ger-

man BMBF project deep.TEACHING (01IS17056).

and the invocation, reading and writing relationships
between them as edges. The interaction diagram not
only visualizes possible workflows of the application,
but is also a staring point for more static analysis. In
this paper, we show how to calculate “slices” of inter-
actions, that is, to isolate the widgets involved in an
interaction from those that are not.

The rest of this paper is organized as follows: In the
following Sect. 2, we give a brief introduction to Angu-
larJS, and also present our running example. Section 3
introduces interaction diagrams. In Sect. 4 we show
how to analyse workflows of the application and define
test cases using the interaction diagram. Related work
is discussed in Sect. 5. Finally, in Sect. 6, we conclude
and outline some future work.

2 AngularJS

We first give a brief introduction to AngularJS by
means of a simple example, and then define an abstract
syntax for AngularJS applications. Due to space lim-
itation, we focus on a small subset of AngularJS; it is
relatively straight-forward to extend our approach to
cover other features of the framework.

2.1 Running Example
Figure 1 shows an AngularJS application to teach

kids addition. In the upper part an addition problem is
presented, the lower part shows statistics of how many
right and wrong answers the user has given. When a
new problem is shown, the user can enter her answer
in an input field (Fig. 1(a)), the system then shows if
the answer is right or wrong. Meanwhile, a new button
appears. When the user clicks on it, a new problem is
generated (Fig. 1(b)). In the lower part of the browser,
a statistics is shown of how many right and wrong an-
swers the user has given. In Fig. 1(b), the user has
answered four questions in total, where three of the
answers were correct, and one was wrong.

2.2 Data binding
In AngularJS, the program logic is implemented in

a so-called controller in Javascript, and the graphical

(a) The system waiting for the user to enter an
answer

(b) The system gives a verdict, updates statistics,
and shows a button to generate a new problem

Figure 1. Example: Math exercises with statistics

layout of the application is defined in a template in the
HTML syntax, with some special attributes of HTML
tags, which are defined by AngularJS and called direc-
tives. The template of the running example is shown
in Fig. 2,1 where we removed styles of the HTML ele-
ments from the listing for simplicity. The controller is
written in Javascript, and provides data and event han-
dlers for the application. The controller of the running
example is listed in Fig. 3.

The communication between template and con-
troller takes place in the controller’s variable $scope.
Just like every other object in Javascript (cf. [5]), $scope

is also a collection of key-value pairs. In Javascript, the
keys are called properties. The value of a key can be
any object, and in particular, any function. For ex-
ample, in lines 4 and 5, Fig. 3, $scope is extended by
two properties count right and count wrong with initial
value 0. In lines 17, the property may check is assigned
a function. In Javascript, function properties are usu-
ally not changed after initial assignment, while other
properties are often overwritten and used as variables.
We therefore call the latter variable properties.

The Javascript object $scope is the controller’s
interface to the interface: its properties (e.g.,
$scope.count right in line 4 and $scope.check answer defined
in lines 21 to 25) are visible to the template, and may
be bound to HTML elements to provide data or event
handlers. Other top-level functions and variables of the
controller (e.g., c in line 7 and add problem defined in
lines 8 to 15), which are not properties of $scope, are
only for “private” use in the controller and not visible
to the template.

Data flow between template and controller is defined
by data binding : an HTML element in the template
may be bound to a property of the object $scope of the
controller, and gets updated automatically when the
value of the property changes. Data binding is defined
in so-called directives; directives are included in the
template as attributes of HTML elements.

1The whole project is available under https://bitbucket.
org/gefei/angularjs-example

AngularJS supports both one-way and two-way
data binding. The directive ng-bind or double
braces {{}} define one-way data binding, that is, the
HTML element automatically presents the up-to-date
value of the bound property of $scope, whilst changes
of the value presented by the HTML element, if any,
would not be propagated from the GUI back to the
from the controller (the $scope).2 For instance, in
Fig. 2, line 5, {{a}} and {{b}} will be replaced by the
values of the variables $scope.a and $scope.b at runtime,
respectively. The values of the two variables are as-
signed in function add problem of the controller (Fig. 3,
lines 11 and 12). A little more examination of the con-
troller reveals that this function is called to generate a
new addition problem, and $scope.a and $scope.b hold
the values of the two summands.

Other directives defining one-way data binding in-
clude ng-if and ng-disabled. In ng-if, the value of the
bound property is not shown; instead it regulates the
visibility of the HTML element: if and only if the
Javascript expression bound to ng-if is valued to true

is the HTML element visible in the GUI. For exam-
ple, both of the two buttons defined in lines 8 and 9 of
Fig. 2 are guarded with ng-if. The conditions for the
buttons being visible are the variable $scope.right being
true and false, respectively. Figure 3 shows that the
variable is set in line 22, in function $scope.check answer,
and is true iff the value of variable c equals to the value
of $scope.answer parsed as an integer.

Directive ng-disabled is used to set HTML widgets
disabled (i.e., the user cannot enter her input). In line 6
of Fig. 2, the button is disabled when the negation of
the result of function $scope.may check(), which is de-
fined in the lines 17–19 of Fig. 3. The function returns
true iff the input field is not empty (!!$scope.answer) and
$scope.right is still undefined (i.e., the button Check has
not been clicked yet, see Sect. 2.3). When this is the

2There is some subtle difference between the semantics of
ng-bind and double braces, see https://stackoverflow.com/a/
16126174. However, the difference is not relevant for our dis-
cussion. In this paper, we consider ng-bind and double braces as
equivalent.

1 <html>
2 <body ng-app="app">
3 <div ng-controller="controller">
4 <form>
5 {{a}} + {{b}} = <input ng-model="answer">
6 <button ng-disabled="!may_check()"
7 ng-click="check_answer()">Check</button>
8 <button ng-if="right===true">Right</button>
9 <button ng-if="right===false">Wrong</button>

10 <button ng-click="new_problem()">New Problem</button>
11 </form>
12 <hr>
13

14 <table>
15 <tr>
16 <th>Statistics</th>
17 <th>Right</th>
18 <th>Wrong</th>
19 </tr>
20 <tr>
21 <td></td>
22 <td></td>
23 <td></td>
24 </tr>
25 </table>
26 </div>
27 </body>
28 </html>

Figure 2. HTML template

case, the function returns true, ng-disabled receives the
value false, then the button is disabled, and vice versa.

We call the property of $scope that an HTML ele-
ment is bound to the target of the data binding, and
the HTML element the source. While ng-bind and {{}}
show the value of the target in the GUI, ng-if and
ng-disabled do not output the value in the textual form.
It rather influences the appearance of the source by set-
ting its visibility or enabled/disabled status. In both
cases, we say the source of a data binding presents the
value of the target.

The directive ng-model defines two-way data bind-
ing, that is, the widget automatically updates when the
value of its bound property changes, and any change of
the widget’s value will be propagated to the bound vari-
able. Therefore, a bi-directional data flow is defined.
For instance, in line 5 of Fig. 2, the input element has an
attribute ng-model=answer. The input field is therefore
bound to the variable $scope.answer: the value of the in-
put field is hold in $scope.answer, changes are propagated
automatically in both directions. In Fig. 3, the correct
answer of the current problem is stored in variable c

(line 10), and $scope.right is calculated by a comparison
with $scope.answer in line 22.

The target of a one-way data binding may be a vari-
able property or a function property of $scope. If it
is a variable property, the source presents the target’s
value. If it is a function property, the widget presents
the return value of the function. On the other hand,
the target of a two-way data binding must be a vari-
able property, since the target must store the value of
the user input, and only a variable, as opposed to a

1 var app = angular.module(’app’, []);
2

3 app.controller(’controller’, function($scope){
4 $scope.count_right = 0;
5 $scope.count_wrong = 0;
6

7 var c;
8 function add_problem() {
9 var max = 100;

10 c = Math.floor(Math.random() * (max - 1)) + 1;
11 $scope.a = Math.floor(Math.random() * (c - 2)) + 1;
12 $scope.b = c - $scope.a;
13 $scope.answer = undefined;
14 $scope.right = undefined;
15 }
16

17 $scope.may_check = function() {
18 return !!$scope.answer && $scope.right === undefined;
19 }
20

21 $scope.check_answer = function() {
22 $scope.right = c === parseInt($scope.answer);
23 $scope.count_right += ($scope.right) ? 1 : 0;
24 $scope.count_wrong += ($scope.right) ? 0 : 1;
25 };
26

27 $scope.new_problem = function() {
28 add_problem();
29 }
30

31 add_problem();
32 })

Figure 3. Controller

function, can be assigned a value.
The template of the statistics is defined in an HTML

table (lines 14 to 25 in Fig. 2), where two td cells
(lines 22 and 23) present the values of $scope.count right

and $scope.count wrong by one-way data binding.

2.3 Event Handling
HTML elements may also be provided with event

handlers. Upon the given event, the specified function
is executed. For example, in line 7 of Fig. 2, the di-
rective ng-click binds the function $scope.check answer to
the button. Therefore, the function is invoked when the
user clicks the button. The function is defined in Fig. 3,
lines 21 to 25. When invoked, it first (line 22) checks if
c has the same value as $scope.answer (which we know is
the current value of the user input in the text field, see
Sect. 2.2), parsed as an integer, and assigns the result
to $scope.right. Then, depending on if $scope.right is true

or not, the value $scope.count right or $scope.count wrong

is incremented by one. Therefore, the statistics gets
updated when the user clicks the Check button (Fig. 2,
lines 22 and 23).

The button New Problem also has an event handler:
in Fig. 2, line 10, the directive ng-click=“new problem()”

binds the function $scope.new problem to handle the
event of the button being clicked. The function calls
another function add problem to generate a new prob-
lem by updating the values of $scope.a, $scope.b, setting
c, to be undefined to clear the field for the user to in-

put her answer (recall: this field has a two-way data
binding, as defined in line 5 of Fig. 2), setting both
$scope.right and $scope.answer to be undefined. Therefore,
when New Problem is clicked, $scope.may check will re-
turn true, and the button Check will get enabled (Fig. 2,
line 6).

Variable c and function new problem are not defined
as $scope’s properties. Therefore, they are local to the
controller, and not exposed to the template.

2.4 Abstract Syntax
An AngularJS-based SPA is a tuple (T,C,D,E). T

is a template, written in HTML and consisting of a set
of HTML tags (T = {h}) which define HTML widgets,3

C is the definition of a controller, written in Javascript,
D is a set of data bindings, and E is a set of event
handler bindings.

The controller definition C is modeled as a tuple
(V, F, $scope), where V is a set of top-level variables,
F is a set of top-level functions, and $scope ∈ V is
a distinguished element of V . We write V($scope) for
the set of $scope’s variable properties, and F($scope) for
the set of $scope’s function properties. We also define
W = V \ {$scope} to be the set of top-level variables
defined in the controller other than $scope.

D is the set of data binding relations between
HTML tags and variable properties of $scope: D ⊂
{(h,V($scope) ∪ F($scope)}. Given d = (n, o) ∈ D, we
define source(d) = n and target(d) = o. Two-way data
bindings build a subset D′ ⊂ D, and ∀d ∈ D′, it holds
that target(d) ∈ V($scope).

E is the set of event handler bindings between
HTML tags and function properties of $scope: E ⊂
{(h,F($scope))}.

Additionally, for each f ∈ F ∪ F($scope), we define
R(f) ⊆ V ∪ V($scope) and W(f) ⊆ V ∪ V($scope) to
be the set of the variables f reads from and writes
to, respectively. We also define Inv(f) ⊂ F to be the
functions invoked by f .4 In this paper, we take these
sets for granted. Since Javascript is an “extremely dy-
namic” [7] language, this is in general not always the
case. However, in modern software development, read-
ability first is considered best practice, and it is reason-
able to assume that at least reading, writing, and invo-
cation relationships can be obtained by simple analysis.

3 Interaction Diagram
In order to understand the workflow of the applica-

tion, it is necessary to study both its HTML and its

3Precisely, HTML tags may be nested, thus the HTML tem-
plate is a tree. In this paper, we do not consider nesting tags,
and just view the template as a set.

4Although it is also possible for a $scope function to call an-
other $scope function, it is usually not necessary and not a good
idea.

Javascript code, as well as their interactions. We now
present Interaction Diagrams to visualize the overall
behavior, combining the logic defined in HTML and
Javascript. Figure 4 shows the interaction diagram for
our running example.

An Interaction Diagram ID is a directed graph
(N,E). The set of nodes is defined as the union of three
sets: N = NH ∪N$scope ∪Njs, where, using the notations
introduced in Sect.2.4,

• for each (h, v) ∈ D, we generate a node nh, and
NH = {nh | (h, v) ∈ D}. Graphically, we label
nh with the label of h, or, if h does not have a
label, the name of the target of the data binding
(without $scope), extended by the position of the
definition of h in the template;

• for each (h, v) ∈ D, we create a node nv, and
for each (h, e) ∈ E, we create a node ne. N$scope

is then defined as N$scope = {nv | (h, v) ∈ D} ∪
{ne | (h, e) ∈ E}. Graphically, we label each nf ∈
N$scope with the name of the f (with $scope), but
do not include the position of f ’s appearances in
the controller.

• for each v ∈ W , we create a node nv; for each
f ∈ F , we create a node nf , and Njs = {nv | v ∈
W} ∪ {nf | f ∈ F}. Graphically, we label these
nodes with the name of the variable or function.

For example, Fig. 4 shows the interaction diagram
for our running example. The upper compartment
shows NH, which contains a node for each of the text
fields a, b (which show the two summands to the user),
$scope.answer (where the user may enter her answer), the
buttons Check (which the user may click to check if the
answer is correct), the labels Right and Wrong (which
show the result of the check to the user), the labels
count right and count wrong (which show the current suc-
cess statistics of the user), and the button New Problem

(which the user may click to generate a new problem).
The lower compartment models components of the

controller. It contains the elements of N$scope and
Njs. That is, it contains a node for each of the vari-
ables $scope.a, $scope.b (which hold the values of the
summands), $scope.answer (which holds the answer in-
putted by the user), $scope.right (which holds the value
$scope.check answer returns, see below), $scope.count right

and $scope.count wrong (which hold the current number
of right and wrong answers the user has given), and the
functions $scope.check answer (which checks if the answer
inputted by the user is correct), and $scope.new problem

(which generates the summands and key of a new prob-
lem). The lower compartment also contains a node for
c, which holds the key of the new problem.

The edges E of the interaction diagram are used to
model data and control flow. We define E as the union
of six subsets: E = Edata∪E′

data∪Eevent∪EW∪ER∪EInv,
where

c

h: 5
answer

h: 6−−7
Check

h: 23
count_wrong

h: 22
count_right

h: 9
Wrong

h: 8
Right

h: 5
a

h: 5
b

h: 10
New Problem

$scope.answer$scope.b

$scope.may_check()

$scope.check_answer()

$scope.count_right

$scope.count_wrong

$scope.right

$scope.a

add_problem()

$scope.new_problem()

Figure 4. Interaction diagram

• for each d ∈ D, we create an edge ed =
(target(d), source(d)). The set of all data-flow
edges from the controller to HTML widgets is then
modeled as Edata = {ed | d ∈ D}. If d ∈ D′, we ad-
ditionally create an edge e′t = (source(t), target(t))
to model the HTML widget reading value from its
bound variable. The set of all data-flow edges from
HTML widgets to the controller is then modeled
as E′

data = {ed | d ∈ D′}
• for each (h, f) ∈ E, we define an event-handling

edge eh = (nh, nf). The set of all event-handling
control flow is then modeled as Eevent = {eh |
(h, f) ∈ E}
• for each pair (f, v), f ∈ F ∪ F($scope), v ∈ W(f),

we create an edge ef,v. The set of writing relations
is then modeled as EW =

⋃
f∈F∪F($scope){ef,v | v ∈

W(f)}. For each pair (v, f), f ∈ F ∪ F($scope),
v ∈ R(f), we create an edge ev,f . The set
of reading relations is then modeled as ER =⋃

f∈F∪F($scope){ev,f | v ∈ R(f)}
• for each f ∈ F ∪ F($scope) and each v ∈ Inv(f),

we create an edge ef,v. The relations of a func-
tion writing a variable is then modeled by EInv =⋃

f∈F∪F($scope){ev,f | v ∈ Inv(f)}.

Graphically, we use a dashed-line arrow to represent
each e ∈ Edata ∪ E′

data ∪ EW ∪ ER ∪ EInv, and a solid-
line arrow to represent each e ∈ Eevent. Note for event
handling, the exact event is not modeled, and it does
not need to be modeled in an Interaction Diagram.

In our example (see Fig. 4), the elements of Edata

model one-way data binding: ($scope.a, a), ($scope.b,
b), ($scope.count right, count right), ($scope.count wrong,
count wrong), ($scope.right, Right), ($scope.wrong, Wrong),
and ($scope.may check(), Check). E′

data contains the two

edges between $scope.answer and answer, modeling the
only two-way data binding in the example. Eevent con-
tains the two edges (Check, $scope.check answer()) and
(New Problem, $scope.new problem()).

Furthermore, EW contains the four edges
leaving add problem(), and the edges leaving
$scope.check answer(). ER contains the edges from
c to $scope.check answer(), and from $scope.answer

to $scope.may check(). EInv contains the edge from
$scope.new problem() to add problem().

4 Interactions between Widgets
SPAs are interactive: the user makes some input, the

system reacts and makes updates to some widgets, then
the user makes another input, and so on. We define an
interaction to be a round of user giving input, and the
system updating widgets accordingly. An interaction
can be triggered explicitly by the user invoking an event
handler, or implicitly while the user is updating data,
which is bound by ng-model. Starting from interaction
diagrams, it is easy to “slice” interactions, i.e, to find
out the widgets that get updated upon a certain piece
of user input.

A widget t reacts to another widget s iff in the inter-
action diagram t’s representation nt is reachable from
s’s presentation ns, and the only event-handling edge,
if any, on the path from ns to nt event-handling edge is
the very first edge (leaving ns) on the path. This edge
models the interaction being explicitly triggered.

Formally, given a node n ∈ NH, we say a node m ∈
NH reacts to n iff

1. ∃n0, n1, n2, . . . nk ∈ N, n0 = n, nk = m such that
for each 0 ≤ i < k, (ni, ni+1) ∈ E, and

2. ∀np, 1 < p ≤ k and ∀e ∈ E, target(e) = np it holds
that e /∈ Eevent.

We write I(n) for the set of all nodes representing
the widgets that react to n. This set contains the wid-
gets that are automatically updated upon user input,
and thus constitute an interaction. To analyze inter-
actions in the SPA, we calculate for each input widget,
i.e., widget with an edge leaving it in the interaction di-
agram. Based on Fig. 4, we can calculate the following
three interactions for our running example:

• I(answer) = {Check, answer}, which means when
the user is entering her answer, answer (which
is trivial) and Check (enabled) are updated.
Note that updating the answer does not trigger
$scope.check answer(), since this function needs ex-
plicit triggering via Check,
• I(Check) = {Check, Right, Wrong, count right,

count wrong}, which means when the user clicks on
Check, these widgets get an update: the button
itself (disabled), one of Right and Wrong is dis-
played, indicating whether the user-inputted an-
swer is correct, and one of the counts also gets
updated.
• I(New Problem) = {a, b, answer, Check, Right, Wrong},

which means when the user clicks New Problem,
the widgets a, b (showing the summands of the
new problem), answer (emptied), Check (enabled),
as well as Right and Wrong (both made invisible),
are updated.

This analysis shows us the boundary of the inter-
actions. For instance, according to the analysis, when
the user is updating an answer, the label Right or Wrong

is not shown, nor does the statistics get updated. In-
stead, these widgets are only updated when the user
clicks Check.

5 Related Work
Analysis of Javascript programs is a very dynamic

research field. Due to the very dynamic nature of the
language, its analysis is not an easy task, see [7] for
an overview of recent publications. One of the chal-
lenges is the interactions between browser, DOM and
Javascript. In [6, 3], a unified API is given to formalise
the browser behavior. However, large-scale libraries are
still difficult to analyze, and therefore their function-
alities are often modeled manually. Our work is also
along this line in that we also take the semantics of
AngularJS for granted.

For the analysis of such frameworks, it is essential to
understand their interactions [7]. This is exactly where
our work is positioned. Other interesting publications
in this area include [4], which provides a method of
checking name and type consistency between template
and controller, and [1], where the authors present a
hybrid method for change impact analysis, and its fo-
cused on plain Javascript, without frameworks. Com-
pared with these approaches, our focus is on the visu-

alization and analysis of boundaries of interactions in
applications based on a complex framework.

6 Conclusions and Future Work

We presented a method for visualization and ana-
lyzing AngularJS-based single page web applications.
Based on the interaction diagrams, it is easy to calcu-
late the interactions, and to understand which widgets
react to certain user input and which do not. Our
approach is helpful for understanding AngularJS pro-
grams, and thus for more powerful analysis.

In the future, we plan to automate this approach,
to extend the analysis by more AngularJS directives,
and based on this work, to investigate techniques for
automatic test generation for AnguarJS programs.

References

[1] Saba Alimadadi, Ali Mesbah, and Karthik Pat-
tabiraman. Hybrid DOM-Sensitive Change Im-
pact Analysis for JavaScript. In Proc. 29th

Eur. Conf. Object-Oriented Programming (ECOOP
2015), pages 321–345, 2015.

[2] Google. AngularJS. https://angularjs.org/.

[3] Simon Holm Jensen, Magnus Madsen, and Anders
Møller. Modeling the HTML DOM and Browser
API in Static Analysis of JavaScript Web Applica-
tions. In Proc. 19th ACM SIGSOFT Symp. Foun-
dations of Software Engineering and 13th Eur. Soft-
ware Engineering Conf. (FSE/ESEC 2011), pages
59–69, 2011.

[4] Frolin S. Ocariza Jr., Karthik Pattabiraman, and
Ali Mesbah. Detecting Inconsistencies in JavaScript
MVC Applications. In Proc. 37th Int. Conf. Soft-
ware Engineering (ICSE 2015), Volume 1, pages
325–335, 2015.

[5] Mozilla. JavaScript object basics. https:
//developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Basics, 2018.

[6] Changhee Park, Sooncheol Won, Joonho Jin, and
Sukyoung Ryu. Static Analysis of JavaScript Web
Applications in the Wild via Practical DOM Mod-
eling. In Proc. 30th Int. Conf. Automated Software
Engineering (ASE 2015), pages 552–562, 2015.

[7] Kwangwon Sun and Sukyoung Ryu. Analysis of
JavaScript Programs: Challenges and Research
Trends. ACM Comput. Surv., 50(4):59:1–59:34,
2017.

[8] Wikipedia. Model View ViewModel. https:
//en.wikipedia.org/w/index.php?title=
Model_View_ViewModel&oldid=675433955, 2015.

