
Prioritizing Unit Testing Effort Using Software
Metrics and Machine Learning Classifiers

Fadel TOURE
Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,
 Trois-Rivières, Québec, Canada.

Fadel.Toure@uqtr.ca

Mourad BADRI
Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,
 Trois-Rivières, Québec, Canada.

Mourad.Badri@uqtr.ca

Abstract— Unit testing plays a crucial role in object-oriented
software quality assurance. Unfortunately, software testing is
often conducted under severe pressure due to limited resources
and tight time constraints. Therefore, testing efforts have to be
focused, particularly on critical classes. As a consequence,
testers do not usually cover all software classes. Prioritizing
unit testing effort is a crucial task. We previously investigated
a unit testing prioritization approach based on software in-
formation histories. We analyzed different attributes of ten
open-source Java software systems tested using the JUnit
framework. We used machine learning classifiers (Multivari-
ate Logistic Regression and Naïve Bayes) to obtain, for each
system, a set of classes to be tested. The obtained sets of candi-
date classes have been compared to the sets of classes for
which JUnit test cases have been actually developed by testers.
The cross system validation (CSV) technique results showed,
among others, that the sets of candidate classes suggested by
machine learning classifiers properly reflect the testers’ selec-
tion. In this paper, we extend our previous work by investigat-
ing more classifiers and using leave one system out validation
(LOSOV) technique. This LOSOV technique uses a combina-
tion of training datasets from different systems. The obtained
results indicate that: (1) the new classifiers correctly suggest
classes to be tested, and (2) tested classes are particularly well
predicted in the case of large-size systems.

Key words— Tests Prioritization; Unit Tests; Source Code Met-
rics; Machine Learning Classifiers.

I. INTRODUCTION
Unit testing is one of the main phases of the testing pro-

cess where each software unit is individually tested using
dedicated unit test cases. In object-oriented (OO) software
systems, units are software classes and testers usually write
a dedicated unit test class for each software class they de-
cided to test. The main goal is to early reveal faults in soft-
ware classes. In the case of large-scale OO software sys-
tems, because of resource limitations and tight time con-
straints, the unit testing efforts are often focused. Testers
usually select a limited set of software classes for which
they write dedicated unit tests. Hence, it is important to
target the most critical and fault-prone ones. However, the
task is not obvious and requires a deep analysis of software.
In this paper, we focus on how to automatically target suita-
ble classes, candidates to unit testing. Our approach relies
on classifiers algorithms trained on different unit tests in-
formation and source code metrics collected from different
software systems.

A large number of OO metrics, related to different OO
internal class attributes, have been proposed in literature [1,
2]. Some of these metrics have already been used in recent
years to predict unit testability of classes in OO software
systems [3-9]. The authors noticed that, for each of the ana-
lyzed systems, unit test cases have been developed only for
a subset of classes. In our previous work [10], we tried to
understand and determine, using different source code at-
tributes, which criteria have been considered during the
classes’ selection. We investigated, using Multivariate Lo-
gistic Regression (MLR) and Naive Bayesian (NB) classifi-
ers, how to automate and improve the selection of classes on
which unit testing effort has to be focussed using source
code metrics. In the current study, we considered two more
well-known classifiers (K-Nearest Neighbors (KNN) and
Random Forest (RF) algorithms). We also used the Cross
System Validation (CSV) and the Leave One System Out
Validation (LOSOV) techniques. The LOSOV technique
allows, in particular, combining data from various systems
as training datasets. The goal was to determine, firstly, the
affinities that may exist between prediction dataset systems
and training dataset systems according to their characteris-
tics (such as size, type, category, etc.) and, secondly, to
investigate to what extent the combined datasets could im-
prove or degrade the learners’ prediction levels.

The rest of the paper is organized as follows. Section 2
presents some related works. Section 3 presents the OO
software metrics we used in the study. Section 4 describes
the data collection procedure. Section 5 presents the empiri-
cal study that we conducted. Section 6 focuses on the main
threats to validity related to our empirical experimentations.
Finally, Section 7 concludes the paper, summarizes the con-
tributions of this work and outlines several directions for
future investigations.

II. RELATED WORK
Many researchers have proposed different tests prioriti-

zation techniques in the literature, particularly in the context
of regression testing. The proposed techniques are based on
various criteria such as fault detection, coverage rates, soft-
ware history information, and risk analysis.

In fault detection based techniques, the main goal is to
run test cases that target the most fault prone components.
These techniques use different factors of fault exposure as
proxies, which can be estimated in different ways from the
software artifacts. These approaches have been proposed,
among others, by Rothermel et al. [11] and Yu and Lau
[12]. Results showed that these techniques improve the fault
detection rates. DOI reference number: 1018293/SEKE2018-146

In coverage based techniques, the main goal is to run test

suites that cover most modified software artefacts during
regression testing. The authors [13-15] used Naïve Bayes,
Genetic Algorithms and different levels of granularity to
implement their prioritization approaches. Results showed
that coverage based techniques also lead to fault detection
rate improvement. Rothermel et al. [11] compared nine test
case prioritization techniques based on random prioritiza-
tion, coverage prioritization and fault detection prioritiza-
tion. Obtained results provide insights into the trade-offs
among various techniques for test cases prioritization.

The history based prioritization uses information from
previous regression tests of the same software system and
current modification information in order to prioritize the
new given test suites. This makes the prioritization tech-
nique unsuitable for the first regression testing of software.
Kim and Porter [16] used the historical execution data to
prioritize test cases for regression tests, while Lin et al. [17]
investigated the weight of used information between two
versions of history based prioritization techniques. The dif-
ferent results indicated that the history based prioritization
provides a better fault detection rate.

Carlson et al. [18] mixed history and coverage based
techniques using a clustering based prioritization technique.
They improved the effectiveness of test cases prioritization
techniques. Elbaum et al. [19] analyzed the conditions under
which techniques are relevant. The obtained results provide
insights and conditions into which types of prioritization
techniques are or are not appropriate under specific testing
scenarios.

Some other techniques allow, upstream, the prioritiza-
tion of components to be tested. The goal is to optimize the
testing efforts distribution by targeting the most fault prone
components. Boehm and Basili [20] proposed a Pareto dis-
tribution in which 80% of all defects within software are
found in 20% of the modules. Ray and Mohapatra [21] rely
on that Pareto distribution to address the question of com-
ponents prioritization. Shihab et al. [22] explored the priori-
tization for unit testing phase in the context of legacy sys-
tems.

Ray and Mohapatra’ approach [21] ignores the history of
the software, whereas the approach of Shihab et al. [22] is
not suitable for new software. Moreover, neither approach
takes advantage of the large amount of information availa-
ble in the public open source repositories. In [10], we pro-
posed the prioritization of unit test candidate classes for OO
software systems. We conjectured that testers generally rely
on classes’ characteristics captured by source code metrics,
in order to select the components to test. Thus, we proposed
an approach that takes advantage of different software test-
ers experiences and software class attributes, in order to
prioritize classes (candidates) to be tested. With the same
systems, the same software metrics, more learning algo-
rithms and LOSOV technique, the current study focusses on
the systems dataset affinities and the effect of merged train-
ing datasets on learner prediction performances. The long-
term objective is to build a collaborative IDE plugin, based
on tests information history and some specific metrics that
support the tests prioritization decisions with suitable ma-
chine learning techniques.

III. SOFTWARE METRICS
We present, in this section, the OO source code metrics

we selected for the empirical study. These metrics have
received considerable attention from researchers and are

also being increasingly adopted by practitioners as testabil-
ity [3-9,23], maintainability [24-26], and fault proneness
[26-31] indicators. These metrics have been computed using
Borland Together IDE (http://www.borland.com). We also
included the well-known source lines of code metric.
• Coupling Between Objects: The CBO metric counts for a

given class, the number of other classes to which it is
coupled and vice versa.

• Weighted Methods per Class: The WMC metric gives the
sum of the complexities of the methods of a given class,
where each method is weighted by its cyclomatic com-
plexity [27]. Only methods specified in the class are con-
sidered.

• Lines Of Code per class: The LOC metric counts for a
given class its number of source lines of code.

IV. DATA COLLECTION

A. Data collection procedure
The selected systems have been developed by different

teams in Java language and tested using the JUnit frame-
work. JUnit (http://www.junit.org/) is a simple framework
for writing and running automated unit tests for Java clas-
ses. A typical usage of JUnit is to test each class Cs of the
software by means of a dedicated test class Ct. To actually
test a class Cs, we need to execute its test class Ct by calling
JUnit’s test runner tool. JUnit will report how many of the
test methods in Ct succeeded, and how many failed.

We used the prefix/suffix linking approach, as other au-
thors [4, 23, 32-33], to match each software class to its JUn-
it test class (es). Indeed, developers usually name the JUnit
dedicated test classes by prefixing or suffixing the name of
software class under the test by “Test” or “TestCase”. We
assign the modality 1 to the set of tested classes and the
modality 0 to the remaining classes, referred as untested
classes.

B. Selected Systems
We extracted information from the repositories of 10

open source OO software systems that were developed in
Java. For each system, only a subset of classes has been
tested using the JUnit framework. We present in the follow-
ing the selected systems, from small size to large-size sys-
tems.
• IO (https://commons.apache.org/proper/commons-io/):

Commons IO is a library of utilities for developing In-
put/Output functionalities. It is developed by Apache
Software Foundation (ASF).

• MATH (http://commons.apache.org/proper/commons-
math/): Commons MATH is a library of lightweight, self-
contained mathematics and statistics.

• JODA (http://joda-time.sourceforge.net/): JODA-Time is
the de facto standard library for advanced date and time
in Java.

• DBU (http://dbunit.sourceforge.net/): DbUnit is a JUnit
extension (also usable with Ant) used in database-driven
projects that, among others, put a database into a known
state between test runs.

• LOG4J (http://wiki.apache.org/logging-log4j/): Log4j is a
fast and flexible framework for logging applications de-
bugging messages.

• JFC (http://www.jfree.org/jfreechart/): JFreechart is a
free chart library for Java platform.

TABLE I: DESCRIPTIVE STATISTICS
 MATH JFC

CBO LOC WMC CBO LOC WMC
Obs. 94 94 94 411 411 411
Min. 0 2 0 0 4 0
Max. 18 660 174 101 2041 470
Sum 306 7779 1824 4861 67481 13428
µ 3.255 82.755 19.404 11.827 164.187 32.672
σ 3.716 97.601 25.121 14.066 228.056 46.73
Cv 1.141 1.179 1.295 1.189 1.389 1.43

 IO IVY
CBO LOC WMC CBO LOC WMC

Obs. 100 100 100 610 610 610
Min. 0 7 1 0 2 0
Max. 39 968 250 92 1039 231
Sum 405 7604 1817 5205 50080 9664
µ 4.05 76.04 18.17 8.533 82.098 15.843
σ 5.702 121.565 31.751 11.743 141.801 27.38
Cv 1.408 1.599 1.747 1.376 1.727 1.728

 JODA LUCENE
CBO LOC WMC CBO LOC WMC

Obs. 201 201 201 615 615 615
Min. 0 5 1 0 1 0
Max. 36 1760 176 55 2644 557
Sum 1596 31339 6269 3793 56108 10803
µ 7.94 155.915 31.189 6.167 91.233 17.566
σ 6.443 210.974 30.553 7.243 192.874 35.704
Cv 0.811 1.353 0.98 1.174 2.114 2.033

 DBU ANT
CBO LOC WMC CBO LOC WMC

Obs. 213 213 213 663 663 663
Min. 0 4 1 0 1 0
Max. 24 488 61 41 1252 245
Sum 1316 12187 1989 4613 63548 12034
µ 6.178 57.216 9.338 6.958 95.849 18.151
σ 5.319 60.546 9.451 7.25 132.915 24.168
Cv 0.861 1.058 1.012 1.042 1.387 1.332

 LOG4J POI
CBO LOC WMC CBO LOC WMC

Obs. 231 231 231 1382 1382 1382
Min. 0 5 1 0 2 0
Max. 107 1103 207 168 1686 374
Sum 1698 20150 3694 9660 130185 23810
µ 7.351 87.229 15.991 6.99 94.2 17.229
σ 10.119 130.419 25.7 10.782 154.282 28.319
Cv 1.377 1.495 1.607 1.543 1.638 1.644

• IVY (http://ant.apache.org/ivy/): IVY is a simple and

flexible agile dependency manager tightly integrated with
Apache Ant.

• LUCENE (http://lucene.apache.org/): LUCENE is a
high-performance, full-featured text search engine library
suitable for applications requiring full-text search.

• ANT (http://www.apache.org/): ANT is a Java library
and command-line tool that drives processes described in
build files as target.

• POI (http://poi.apache.org/): POI is a Java APIs for ma-
nipulating various file formats based upon the Office
Open XML standards and Microsoft's OLE2.

C. Descriptive Statistics
Table I summarizes the statistics of selected metrics of

all systems. It shows that the considered systems are of dif-
ferent sizes. The number of lines of code varies from 7,600
lines spread over 100 software classes (IO), to more than
130,185 lines of code over 1,382 software classes (POI).
Table I also suggests 4 groups of systems according to their
size: (1) the small-size systems, about 100 classes (IO and
MATH), (2) the medium-size systems around 200 classes
(LOG4J, DBU and JODA), (3) the large-size systems, be-
tween 400 and 600 classes (LUCENE, IVY, ANT and JFC),
and (4) the very large-size systems over than 1,000 software
classes (POI).

The average cyclomatic complexity varies widely be-
tween systems with similar sizes. Indeed, the medium-size
systems, JODA and DBU, have a quite different average of
cyclomatic complexity (9.34 vs 31.18). Similar trend is
observed for LUCENE and JFC systems. In the dataset,
each row has a binary attribute TESTED taking modalities 1
or 0 indicating whether it is a tested class or untested class.

V. EMPIRICAL ANALYSIS

A. Research questions

The current study focusses on the systems’ dataset af-
finities and the effect of mixing datasets on classifiers’ per-
formance. We tried to respond to the following research
questions:

• RQ1- Can other well-known machine learning algo-
rithms correctly predict the testers' selections?

• RQ2- To what extent can we mix dataset histories of
different systems to predict testers’ selections for a given
new system.

B. Goals
The goal of our first research question (RQ1) is to vali-

date our previous results using other machine learning algo-
rithms, to compare their prediction performances, and to
determine whether they depend (or not) on the type or size

TABLE II: CROSS SYSTEM VALIDATIONS
 MATH IO JODA DBU LOG4J JFC IVY LUCENE ANT POI

MATH

LR 0.745 0.590 0.338 0.404 0.160 0.414 0.188 0.184 0.193 0.295
NB 0.723 0.620 0.478 0.521 0.411 0.606 0.400 0.405 0.363 0.418
KNN 0.734 0.64 0.527 0.563 0.416 0.431 0.53 0.48 0.431 0.446
RF 0.926 0.58 0.338 0.469 0.32 0.397 0.382 0.358 0.398 0.391

IO

LR 0.617 0.740 0.458 0.624 0.329 0.623 0.418 0.403 0.359 0.395
NB 0.628 0.710 0.413 0.667 0.494 0.652 0.454 0.433 0.403 0.505
KNN 0.585 0.79 0.418 0.592 0.364 0.275 0.334 0.304 0.275 0.378
RF 0.649 0.94 0.388 0.493 0.394 0.305 0.301 0.366 0.276 0.373

JODA

LR 0.415 0.390 0.711 0.620 0.779 0.620 0.814 0.807 0.796 0.721
NB 0.457 0.420 0.692 0.620 0.771 0.681 0.799 0.800 0.742 0.721
KNN 0.468 0.39 0.841 0.446 0.632 0.698 0.692 0.706 0.698 0.633
RF 0.447 0.43 0.95 0.582 0.684 0.656 0.729 0.62 0.649 0.656

DBU

LR 0.457 0.490 0.622 0.671 0.645 0.664 0.743 0.725 0.677 0.681
NB 0.489 0.600 0.448 0.756 0.589 0.684 0.617 0.571 0.511 0.627
KNN 0.543 0.57 0.453 0.85 0.563 0.538 0.671 0.558 0.538 0.567
RF 0.489 0.49 0.453 0.967 0.563 0.561 0.666 0.58 0.555 0.588

LOG4J

LR 0.436 0.440 0.647 0.554 0.840 0.577 0.818 0.816 0.804 0.728
NB 0.468 0.490 0.637 0.629 0.758 0.672 0.783 0.774 0.692 0.744
KNN 0.394 0.44 0.612 0.577 0.883 0.768 0.803 0.78 0.768 0.719
RF 0.415 0.47 0.602 0.559 0.961 0.724 0.78 0.735 0.719 0.716

JFC

LR 0.511 0.500 0.602 0.601 0.736 0.698 0.766 0.771 0.697 0.724
NB 0.511 0.530 0.597 0.685 0.701 0.689 0.730 0.736 0.632 0.707
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69
RF 0.383 0.37 0.667 0.559 0.749 0.952 0.77 0.766 0.958 0.686

IVY

LR 0.383 0.340 0.622 0.596 0.801 0.511 0.822 0.820 0.828 0.726
NB 0.479 0.480 0.667 0.634 0.749 0.696 0.786 0.772 0.707 0.728
KNN 0.404 0.4 0.657 0.592 0.775 0.786 0.893 0.784 0.786 0.726
RF 0.415 0.42 0.642 0.629 0.766 0.736 0.964 0.777 0.741 0.708

LUCENE

LR 0.394 0.360 0.657 0.596 0.814 0.533 0.823 0.820 0.706 0.730
NB 0.468 0.500 0.662 0.615 0.753 0.689 0.784 0.777 0.706 0.736
KNN 0.394 0.45 0.612 0.592 0.805 0.789 0.803 0.863 0.789 0.711
RF 0.426 0.42 0.592 0.554 0.753 0.753 0.798 0.964 0.765 0.705

ANT

LR 0.404 0.360 0.692 0.596 0.823 0.513 0.820 0.816 0.833 0.728
NB 0.394 0.390 0.692 0.629 0.779 0.628 0.814 0.813 0.778 0.735
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69
RF 0.404 0.4 0.647 0.573 0.762 0.964 0.788 0.753 0.965 0.696

POI

LR 0.415 0.370 0.682 0.596 0.823 0.582 0.822 0.816 0.837 0.728
NB 0.511 0.540 0.527 0.709 0.714 0.681 0.725 0.712 0.605 0.718
KNN 0.489 0.46 0.572 0.568 0.745 0.7 0.78 0.746 0.7 0.846
RF 0.5 0.49 0.617 0.592 0.736 0.698 0.76 0.756 0.697 0.94

of considered applications (affinities). In the experiment that
we conducted to answer RQ1, the training datasets are com-
posed of 1 system tests information history at the time.
Thus, we could determine potential prediction affinities
between different systems which could lead to introduce
more affinity parameters that may be related to the systems
type, or size, in order to determine the suitable kind of train-
ing dataset for a given new system. To address the second
research question (RQ2), we conducted an empirical study
that uses mixed training datasets from different systems,
builds a classifier and tries to determine whether the datasets
mixing can improve or degrade the predictions obtained in
the previous experiment.

C. Classifiers and cross-system validation
We used machine learning classifiers trained on a sys-

tem’s test information data to provide a set of classes to be
tested for other software systems. We added to the MLR and
NB classifiers previously considered, the well-known K-
KNN and RF algorithms to build prediction models from the
datasets. KNN is an intuitive and fast algorithm that classi-
fies observations according to their similarity. KNN is par-
ticularly suitable for pattern recognition. RF behaves well
when irrelevant features are present or these features have
skewed distributions. The larger the training dataset the
more accurate the classifier. It makes RF particularly inter-
esting when the training dataset is a combined information
of different systems.

1) Cross System Validation

In the CSV technique, datasets collected from each of
the 10 systems are used in turn as training set and the de-
rived classifiers are cross-validated on each of the 9 remain-
ing systems. In such approach, training dataset may be small
depending on the considered system, hence the usefulness of
NB classifiers which can perform on small datasets.

Table II presents the performances of models derived
from MLR, NB, KNN and RF classifiers. In each table, the
cell(i,j) shows the accuracy (1-error) of the 4 classifiers built
from training dataset of the system on row i, and tested on
the dataset of the system on column j. The diagonal cells (k,
k) hold the adjustment (1 – optimistic error) of classifiers on
the dataset of system k. We considered the models with
accuracy values greater than 0.70 (error < 0.30) as good
classifiers. In Table II, systems are sorted from the smallest
one to the largest one in terms of number of classes.

The results show that the very small-size systems
(MATH and IO) form bad training datasets and are not well
predicted. All non-adjustment prediction rates related to
both of the systems are smaller than 70%. Three reasons
may explain these results:
• The small size of the systems. IO (with 100 classes) and

MATH (with 125 classes) are the smallest systems in our
datasets. The dataset they form may not be large enough
to build good classifiers.

• The use of very specific criteria when selecting classes to
be tested leading to over-fitting problems. This hypothe-
sis is supported by the optimistic prediction rates ob-
served on both systems’ diagonal cells.

• The lack of a unit test strategy in small-size systems.

With limited software classes, the testers could cover a
higher percent of classes without any strategy. Thus, the
poor rules selection makes irrelevant the information cap-
tured by software metrics. Candidate classes become un-
predictable.
The medium-size systems (DBU JODA and LOG4J) re-

sults are mitigated. LR and NB models based on JODA
training set well predicted all the larger systems except JFC.
JODA’s testers may use common criteria that are also used
when testing larger systems, while DBU testers seem to use
a particular strategy. As a consequence, we obtained the
same performances as for the small-size systems. The same
previous reason may explain DBU’s results. LOG4J results
are similar to large-size systems.

The LOG4J system, the large-size and the very large-
size systems form good training sets and are well predicted
by classifiers trained on their datasets. The results may be
explained by the adoption of an effective tests prioritization
strategy by testers in order to target the critical classes. In-
deed, in large-size systems, testers may adopt an effective
strategy to carefully select the software classes to be tested.
The adopted strategy may suggest large, complex and highly
coupled classes as unit test candidates. Complexity and
coupling attributes are captured by the LOC, WMC and
CBO metrics. This may explain why the associated systems
are well predicted and form good training datasets.

JFC, ANT and IVY are of standalone type systems while
remaining systems are libraries. The results suggest no af-
finity based on the application type. This is supported by the
fact that many libraries are not well predicted by other li-
braries datasets. The good predictions obtained between
standalone apps seem to be related to their size affinity.

The cross-validation results, especially for the medium,
large and very large-size systems, show that it is possible,
based on only a combination of metrics, to construct classi-
fier models from existing software datasets that automatical-
ly suggest, for another software system, a set of classes to be
tested. It also indicates that small systems are unpredictable
and do not form good training datasets. Furthermore, the
most obvious affinity between systems is related to their
size. The larger the systems, the better the training datasets
and the prediction levels of learners.

2) Leave One System Out Validation
In Leave One System Out Validation (LOSOV) tech-

nique, each system will be used in turn as testing dataset to
validate the classifiers derived from the training dataset
formed by the 9 remaining systems. This approach uses
large training datasets and combines different selection cri-
teria if they exist. However, if one of the systems’ testers
randomly selects classes to be tested, it may impact the
whole training dataset quality depending on that system
size.

Table III presents the accuracy rates of the classifiers for
LOSOV. The results confirm those obtained using the CSV
and show that each of medium, large and very large size
systems are well predicted by classifiers trained on merged
dataset of 9 remaining systems. The best accuracy rates vary
from 70.1% to 93.2%.

Some classifiers failed to correctly predict some sys-
tems: NB on JFC system, KNN on POI system and RF on
POI system. The POI data test prediction results may be
explained by its size. Indeed, leaving POI out from training
datasets during the LOSOV may drastically reduce the train-

ing dataset (POI represents 30.7% of classes and 30.5% of
tested classes).

TABLE III: LEAVE ONE SYSTEM OUT VALIDATIONS
 LR NB KNN RF

MATH 0.404 0.457 0.447 0.468
IO 0.37 0.53 0.5 0.41
JODA 0.667 0.627 0.567 0.647
DBU 0.596 0.629 0.573 0.559
LOG4J 0.818 0.736 0.71 0.701
JFC 0.834 0.661 0.846 0.92
IVY 0.84 0.796 0.76 0.747
LUCENE 0.82 0.746 0.732 0.702
ANT 0.834 0.661 0.839 0.932
POI 0.731 0.734 0.681 0.679

The small-size systems are not well predicted since all

classifiers’ prediction rates are smaller than 70%. This result
suggests that their testers used very specific criteria or un-
captured (by metrics) criteria, or may be no criteria during
the selection candidate classes. This result is plausible for
small systems, since testers could test all classes, they also
may not need any particular strategy.

Compared with CSV results, LOSOV slightly improve
and degrade the prediction levels in several cases. However,
LOSOV takes advantage of being usable in real conditions,
in the context of a collaborative tool that supports unit tests
prioritization when different information history (metrics
and tests data) are provided by different teams of develop-
ers.

VI. THREATS TO VALIDITY
The study we presented in this paper was performed on

10 open-source systems containing almost a half million
lines of code (453K). The sample is large enough to allow
obtaining significant results, but the measuring methods and
approaches have limitations that can restrict the generaliza-
tion of certain conclusions.

The external validity threats are mainly related to the
application domain of considered systems. Indeed, some
analyzed systems are mathematical algorithms libraries
(IO), while other systems have more complex architectures
and involve many OO-technology specific artifacts such as
inheritance and polymorphism (JFC). Hence, when a learn-
ing algorithm is trained on some types of systems, it could
be well-adjusted when tested on the datasets of similar do-
main systems and not able to suggest good candidate classes
for other types and domain systems.

The data we collected does not provide any information
on tested classes selection criteria. It may be that, for some
systems, tested classes were randomly selected particularly
for the small size systems.

The main threat of construct validity lies in the tech-
nique we used to match JUnit test classes to software classes
during the tested classes identification. Indeed, the remain-
ing unpaired software classes that are tested by transitive
method invocations are ignored by our approach.

VII. CONCLUSIONS AND FUTURE WORK
Ten open source (Java) software systems have been ana-

lyzed in this study and totalize more than 4400 software
classes. The testers of each system developed dedicated unit
test classes for a subset of classes using the JUnit Frame-
work. In our previous investigations, we explored the possi-
bility of explaining and reusing the selection criteria for
different systems through three experiments using three
source code metrics.

This study extends our previous work by including the

KNN and RF classifiers to the MLR and NB classifiers. In
addition to the CSV, we used LOSOV validation technique,
which merges training sets from different systems. The main
objective was to know to what extents the combined infor-
mation of different systems could be a good training set for
the learners and to determine if there exist affinities between
different datasets of systems’ test information history. Re-
sults show that systems with more than a hundred classes
have their tested classed generally well predicted by classi-
fiers built from medium, large and very large systems train-
ing datasets. Furthermore, the obtained results suggest that
all obtained classifiers could help to support unit tests priori-
tization with more than 70% of accurate predictions. The
results of the experiments we conducted become particularly
interesting knowing that effort prioritization is especially
useful during large and complex systems testing. It demon-
strates the viability of a unit tests prioritization automation
technique that uses classifiers trained on merged software
source code metrics with the unit tests information history.
Grouping the systems according to their domains could
improve our results. Since the proposed prioritization tech-
nique suggests a slightly different (30%) tested classes from
those of the testers, it would be pertinent to analyze and
compare their actual performance on covering faulty classes.
This topic will be the next direction of our investigations.

REFERENCES

[1] Chidamber S.R. and Kemerer C.F., 1994. A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493.

[2] Henderson-Sellers B. 1996. Object-Oriented Metrics Measures of
Complexity, Prentice-Hall, Upper Saddle River.

[3] Gupta V., Aggarwal K.K. and Singh Y., 2005, A Fuzzy Approach for
Integrated Measure of Object-Oriented Software Testability, Journal
of Computer Science, Vol. 1, No. 2, pp. 276-282.

[4] Bruntink M. and Van Deursen A. 2006. An Empirical Study into
Class Testability, Journal of Systems and Software, Vol. 79, No. 9,
pp. 1219-1232.

[5] Badri L., Badri M. and Toure F., 2010. Exploring Empirically the
Relationship between Lack of Cohesion and Testability in Object-
Oriented Systems, JSEA Eds., Advances in Software Engineering,
Communications in Computer and Information Science, Vol. 117,
Springer, Berlin.

[6] Badri M. and Toure F., 2011. Empirical analysis for investigating the
effect of control flow dependencies on testability of classes, in Pro-
ceedings of the 23rd International Conference on Software Engineer-
ing and Knowledge Engineering SEKE.

[7] Badri M. and Toure F. 2012. Empirical analysis of object oriented
design metrics for predicting unit testing effort of classes, Journal of
Software Engineering and Applications (JSEA), Vol. 5 No. 7, pp.513-
526.

[8] Toure F., Badri M. and Lamontagne L., 2014. Towards a metrics suite
for JUnit Test Cases. In Proceedings of the 26th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE
Vancouver, Canada. Knowledge Systems Institute Graduate School,
USA pp 115–120.

[9] Toure F., Badri M. and Lamontagne L., 2014. A metrics suite for
JUnit test code: a multiple case study on open source software, Jour-
nal of Software Engineering Research and Development, Springer,
2:14.

[10] Toure F., Badri M. and Lamontagne L., 2017. Investigating the Priori-
tization of Unit Testing Effort Using Software Metrics, In Proceed-
ings of the 12th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE’17) Volume 1: ENASE,
pages 69-80.

[11] Rothermel G., Untch R.H., Chu C. and Harrold M.J., 1999. Test case
prioritization: an empirical study, International Conference on Soft-
ware Maintenance, Oxford, UK, pp. 179–188.

[12] Yu Y. T. and Lau M. F., 2012. Fault-based test suite prioritization for
specification-based testing, Information and Software Technology
Volume 54, Issue 2, Pages 179–202.

[13] Wong W., Horgan J., London S., and Agrawal, H., 1997. A study of
effective regression in practice, Proceedings of the 8th International
Symposium on Software Reliability Engineering, November, p. 230–
238.

[14] Mirarab S. and Tahvildari L., 2007. A prioritization approach for
software test cases on Bayesian networks, In FASE, LNCS 4422-
0276, pages 276–290.

[15] Walcott K.R., Soffa M.L., Kapfhammer G.M. and Roos R.S., 2006.
Time aware test suite prioritization, Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2006). ACM
Press, New York, 1–12.

[16] Kim J. and Porter A., 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments, In
Proceedings of the International Conference on Software Engineering.

[17] Lin C.T., Chen C.D., Tsai C.S. and Kapfhammer G. M., 2013. Histo-
ry-based Test Case Prioritization with Software Version Awareness,
18th International Conference on Engineering of Complex Computer
Systems.

[18] Carlson R., Do H., and Denton A., 2011. A clustering approach to
improving test case prioritization: An industrial case study, Software
Maintenance, 27th IEEE International Conference, ICSM, pp. 382-
391.

[19] Elbaum S., Rothermel G., Kanduri S. and Malishevsky A.G., 2004.
Selecting a cost-effective test case prioritization technique, Software
Quality Control, 12(3):185–210.

[20] Boehm B. and Basili V. R., 2001. Software defect reduction top-10
list, Computer, vol. 34, no. 1, pp. 135–137.

[21] Ray M. and Mohapatra D.P., 2012. Prioritizing Program elements: A
pretesting effort to improve software quality, International Scholarly
Research Network, ISRN Software Engineering.

[22] Shihaby E., Jiangy Z. M., Adamsy B., Ahmed E. Hassany A. and
Bowermanx R., 2010. Prioritizing the Creation of Unit Tests in Lega-
cy Software Systems, Softw. Pract. Exper., 00:1–22.

[23] Bruntink M., and Deursen A.V., 2004. Predicting Class Testability
using Object-Oriented Metrics, 4th Int. Workshop on Source Code
Analysis and Manipulation (SCAM), IEEE.

[24] Li W., and Henry S., 1993. Object-Oriented Metrics that Predict
Maintainability Journal of Systems and Software, vol. 23 no. 2 pp.
111-122.

[25] Dagpinar M., and Jahnke J., 2003. Predicting maintainability with
object-oriented metrics – an empirical comparison, Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), IEEE
Computer Society, pp. 155–164.

[26] Zhou Y., and Leung H., 2007. Predicting object-oriented software
maintainability using multivariate adaptive regression splines, Journal
of Systems and Software, Volume 80, Issue 8, August 2007, Pages
1349-1361, ISSN 0164-1212.

[27] McCabe T. J., 1976. A Complexity Measure, IEEE Transactions on
Software Engineering: 308–320.

[28] Basili V.R., Briand L.C. and Melo W.L., 1996. A Validation of Ob-
ject-Oriented Design Metrics as Quality Indicators, IEEE Transac-
tions on Software Engineering. vol. 22, no. 10, pp. 751-761.

[29] Aggarwal K.K., Singh Y., Kaur A., and Malhotra R., 2009. Empirical
Analysis for Investigating the Effect of Object-Oriented Metrics on
Fault Proneness: A Replicated Case Study, Software Process Im-
provement and Practice, vol. 14, no. 1, pp. 39-62.

[30] Shatnawi R., 2010. A Quantitative Investigation of the Acceptable
Risk Levels of Object-Oriented Metrics in Open-Source Systems,
IEEE Transactions On Software Engineering, Vol. 36, No. 2.

[31] Zhou Y. and Leung H., 2006. Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults, IEEE
Transaction Software Engineering, vol. 32, no. 10, pp. 771-789.

[32] Mockus A., Nagappan N. and Dinh-Trong T. T., 2009. Test coverage
and post-verification defects: a multiple case study, in Proceedings of
the 3rd International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 291– 301.

[33] Rompaey B. V. and Demeyer S., 2009. Establishing traceability links
between unit test cases and units under test, in Proceedings of the
13th European Conference on Software Maintenance and Reengineer-
ing (CSMR ’09), pp. 209–218.

