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Abstract— Unit testing plays a crucial role in object-oriented 
software quality assurance. Unfortunately, software testing is 
often conducted under severe pressure due to limited resources 
and tight time constraints. Therefore, testing efforts have to be 
focused, particularly on critical classes. As a consequence, 
testers do not usually cover all software classes. Prioritizing 
unit testing effort is a crucial task. We previously investigated 
a unit testing prioritization approach based on software in-
formation histories. We analyzed different attributes of ten 
open-source Java software systems tested using the JUnit 
framework. We used machine learning classifiers (Multivari-
ate Logistic Regression and Naïve Bayes) to obtain, for each 
system, a set of classes to be tested. The obtained sets of candi-
date classes have been compared to the sets of classes for 
which JUnit test cases have been actually developed by testers. 
The cross system validation (CSV) technique results showed, 
among others, that the sets of candidate classes suggested by 
machine learning classifiers properly reflect the testers’ selec-
tion. In this paper, we extend our previous work by investigat-
ing more classifiers and using leave one system out validation 
(LOSOV) technique. This LOSOV technique uses a combina-
tion of training datasets from different systems. The obtained 
results indicate that: (1) the new classifiers correctly suggest 
classes to be tested, and (2) tested classes are particularly well 
predicted in the case of large-size systems. 

Key words— Tests Prioritization; Unit Tests; Source Code Met-
rics; Machine Learning Classifiers. 

I. INTRODUCTION 
Unit testing is one of the main phases of the testing pro-

cess where each software unit is individually tested using 
dedicated unit test cases. In object-oriented (OO) software 
systems, units are software classes and testers usually write 
a dedicated unit test class for each software class they de-
cided to test. The main goal is to early reveal faults in soft-
ware classes. In the case of large-scale OO software sys-
tems, because of resource limitations and tight time con-
straints, the unit testing efforts are often focused. Testers 
usually select a limited set of software classes for which 
they write dedicated unit tests. Hence, it is important to 
target the most critical and fault-prone ones. However, the 
task is not obvious and requires a deep analysis of software. 
In this paper, we focus on how to automatically target suita-
ble classes, candidates to unit testing. Our approach relies 
on classifiers algorithms trained on different unit tests in-
formation and source code metrics collected from different 
software systems.  

A large number of OO metrics, related to different OO 
internal class attributes, have been proposed in literature [1, 
2]. Some of these metrics have already been used in recent 
years to predict unit testability of classes in OO software 
systems [3-9]. The authors noticed that, for each of the ana-
lyzed systems, unit test cases have been developed only for 
a subset of classes. In our previous work [10], we tried to 
understand and determine, using different source code at-
tributes, which criteria have been considered during the 
classes’ selection. We investigated, using Multivariate Lo-
gistic Regression (MLR) and Naive Bayesian (NB) classifi-
ers, how to automate and improve the selection of classes on 
which unit testing effort has to be focussed using source 
code metrics. In the current study, we considered two more 
well-known classifiers (K-Nearest Neighbors (KNN) and 
Random Forest (RF) algorithms). We also used the Cross 
System Validation (CSV) and the Leave One System Out 
Validation (LOSOV) techniques. The LOSOV technique 
allows, in particular, combining data from various systems 
as training datasets. The goal was to determine, firstly, the 
affinities that may exist between prediction dataset systems 
and training dataset systems according to their characteris-
tics (such as size, type, category, etc.) and, secondly, to 
investigate to what extent the combined datasets could im-
prove or degrade the learners’ prediction levels.  

The rest of the paper is organized as follows. Section 2 
presents some related works. Section 3 presents the OO 
software metrics we used in the study. Section 4 describes 
the data collection procedure. Section 5 presents the empiri-
cal study that we conducted. Section 6 focuses on the main 
threats to validity related to our empirical experimentations. 
Finally, Section 7 concludes the paper, summarizes the con-
tributions of this work and outlines several directions for 
future investigations. 

II. RELATED WORK 
Many researchers have proposed different tests prioriti-

zation techniques in the literature, particularly in the context 
of regression testing. The proposed techniques are based on 
various criteria such as fault detection, coverage rates, soft-
ware history information, and risk analysis. 

In fault detection based techniques, the main goal is to 
run test cases that target the most fault prone components. 
These techniques use different factors of fault exposure as 
proxies, which can be estimated in different ways from the 
software artifacts. These approaches have been proposed, 
among others, by Rothermel et al. [11] and Yu and Lau 
[12]. Results showed that these techniques improve the fault 
detection rates. DOI reference number: 1018293/SEKE2018-146 



 
In coverage based techniques, the main goal is to run test 

suites that cover most modified software artefacts during 
regression testing. The authors [13-15] used Naïve Bayes, 
Genetic Algorithms and different levels of granularity to 
implement their prioritization approaches. Results showed 
that coverage based techniques also lead to fault detection 
rate improvement. Rothermel et al. [11] compared nine test 
case prioritization techniques based on random prioritiza-
tion, coverage prioritization and fault detection prioritiza-
tion. Obtained results provide insights into the trade-offs 
among various techniques for test cases prioritization. 

The history based prioritization uses information from 
previous regression tests of the same software system and 
current modification information in order to prioritize the 
new given test suites. This makes the prioritization tech-
nique unsuitable for the first regression testing of software. 
Kim and Porter [16] used the historical execution data to 
prioritize test cases for regression tests, while Lin et al. [17] 
investigated the weight of used information between two 
versions of history based prioritization techniques. The dif-
ferent results indicated that the history based prioritization 
provides a better fault detection rate. 

Carlson et al. [18] mixed history and coverage based 
techniques using a clustering based prioritization technique. 
They improved the effectiveness of test cases prioritization 
techniques. Elbaum et al. [19] analyzed the conditions under 
which techniques are relevant. The obtained results provide 
insights and conditions into which types of prioritization 
techniques are or are not appropriate under specific testing 
scenarios. 

Some other techniques allow, upstream, the prioritiza-
tion of components to be tested. The goal is to optimize the 
testing efforts distribution by targeting the most fault prone 
components. Boehm and Basili [20] proposed a Pareto dis-
tribution in which 80% of all defects within software are 
found in 20% of the modules. Ray and Mohapatra [21] rely 
on that Pareto distribution to address the question of com-
ponents prioritization. Shihab et al. [22] explored the priori-
tization for unit testing phase in the context of legacy sys-
tems. 

Ray and Mohapatra’ approach [21] ignores the history of 
the software, whereas the approach of Shihab et al. [22] is 
not suitable for new software. Moreover, neither approach 
takes advantage of the large amount of information availa-
ble in the public open source repositories. In [10], we pro-
posed the prioritization of unit test candidate classes for OO 
software systems.  We conjectured that testers generally rely 
on classes’ characteristics captured by source code metrics, 
in order to select the components to test. Thus, we proposed 
an approach that takes advantage of different software test-
ers experiences and software class attributes, in order to 
prioritize classes (candidates) to be tested. With the same 
systems, the same software metrics, more learning algo-
rithms and LOSOV technique, the current study focusses on 
the systems dataset affinities and the effect of merged train-
ing datasets on learner prediction performances. The long-
term objective is to build a collaborative IDE plugin, based 
on tests information history and some specific metrics that 
support the tests prioritization decisions with suitable ma-
chine learning techniques. 

III. SOFTWARE METRICS 
We present, in this section, the OO source code metrics 

we selected for the empirical study. These metrics have 
received considerable attention from researchers and are 

also being increasingly adopted by practitioners as testabil-
ity [3-9,23], maintainability [24-26], and fault proneness 
[26-31] indicators. These metrics have been computed using 
Borland Together IDE (http://www.borland.com). We also 
included the well-known source lines of code metric. 
• Coupling Between Objects: The CBO metric counts for a 

given class, the number of other classes to which it is 
coupled and vice versa. 

• Weighted Methods per Class: The WMC metric gives the 
sum of the complexities of the methods of a given class, 
where each method is weighted by its cyclomatic com-
plexity [27]. Only methods specified in the class are con-
sidered. 

• Lines Of Code per class: The LOC metric counts for a 
given class its number of source lines of code. 

IV. DATA COLLECTION 

A. Data collection procedure  
The selected systems have been developed by different 

teams in Java language and tested using the JUnit frame-
work. JUnit (http://www.junit.org/) is a simple framework 
for writing and running automated unit tests for Java clas-
ses. A typical usage of JUnit is to test each class Cs of the 
software by means of a dedicated test class Ct. To actually 
test a class Cs, we need to execute its test class Ct by calling 
JUnit’s test runner tool. JUnit will report how many of the 
test methods in Ct succeeded, and how many failed. 

We used the prefix/suffix linking approach, as other au-
thors [4, 23, 32-33], to match each software class to its JUn-
it test class (es). Indeed, developers usually name the JUnit 
dedicated test classes by prefixing or suffixing the name of 
software class under the test by “Test” or “TestCase”. We 
assign the modality 1 to the set of tested classes and the 
modality 0 to the remaining classes, referred as untested 
classes. 

B. Selected Systems 
We extracted information from the repositories of 10 

open source OO software systems that were developed in 
Java. For each system, only a subset of classes has been 
tested using the JUnit framework. We present in the follow-
ing the selected systems, from small size to large-size sys-
tems. 
• IO (https://commons.apache.org/proper/commons-io/): 

Commons IO is a library of utilities for developing In-
put/Output functionalities. It is developed by Apache 
Software Foundation (ASF). 

• MATH (http://commons.apache.org/proper/commons-
math/): Commons MATH is a library of lightweight, self-
contained mathematics and statistics. 

• JODA (http://joda-time.sourceforge.net/): JODA-Time is 
the de facto standard library for advanced date and time 
in Java. 

• DBU (http://dbunit.sourceforge.net/): DbUnit is a JUnit 
extension (also usable with Ant) used in database-driven 
projects that, among others, put a database into a known 
state between test runs. 

• LOG4J (http://wiki.apache.org/logging-log4j/): Log4j is a 
fast and flexible framework for logging applications de-
bugging messages. 

• JFC (http://www.jfree.org/jfreechart/): JFreechart is a 
free chart library for Java platform. 



TABLE I: DESCRIPTIVE STATISTICS 
  MATH JFC 

CBO LOC WMC CBO LOC WMC 
Obs. 94 94 94 411 411 411 
Min. 0 2 0 0 4 0 
Max. 18 660 174 101 2041 470 
Sum 306 7779 1824 4861 67481 13428 
µ 3.255 82.755 19.404 11.827 164.187 32.672 
σ 3.716 97.601 25.121 14.066 228.056 46.73 
Cv 1.141 1.179 1.295 1.189 1.389 1.43 

  IO IVY 
CBO LOC WMC CBO LOC WMC 

Obs. 100 100 100 610 610 610 
Min. 0 7 1 0 2 0 
Max. 39 968 250 92 1039 231 
Sum 405 7604 1817 5205 50080 9664 
µ 4.05 76.04 18.17 8.533 82.098 15.843 
σ 5.702 121.565 31.751 11.743 141.801 27.38 
Cv 1.408 1.599 1.747 1.376 1.727 1.728 

  JODA LUCENE 
CBO LOC WMC CBO LOC WMC 

Obs. 201 201 201 615 615 615 
Min. 0 5 1 0 1 0 
Max. 36 1760 176 55 2644 557 
Sum 1596 31339 6269 3793 56108 10803 
µ 7.94 155.915 31.189 6.167 91.233 17.566 
σ 6.443 210.974 30.553 7.243 192.874 35.704 
Cv 0.811 1.353 0.98 1.174 2.114 2.033 

  DBU ANT 
CBO LOC WMC CBO LOC WMC 

Obs. 213 213 213 663 663 663 
Min. 0 4 1 0 1 0 
Max. 24 488 61 41 1252 245 
Sum 1316 12187 1989 4613 63548 12034 
µ 6.178 57.216 9.338 6.958 95.849 18.151 
σ 5.319 60.546 9.451 7.25 132.915 24.168 
Cv 0.861 1.058 1.012 1.042 1.387 1.332 

  LOG4J POI 
CBO LOC WMC CBO LOC WMC 

Obs. 231 231 231 1382 1382 1382 
Min. 0 5 1 0 2 0 
Max. 107 1103 207 168 1686 374 
Sum 1698 20150 3694 9660 130185 23810 
µ 7.351 87.229 15.991 6.99 94.2 17.229 
σ 10.119 130.419 25.7 10.782 154.282 28.319 
Cv 1.377 1.495 1.607 1.543 1.638 1.644 

 
• IVY (http://ant.apache.org/ivy/): IVY is a simple and 

flexible agile dependency manager tightly integrated with 
Apache Ant. 

• LUCENE (http://lucene.apache.org/): LUCENE is a 
high-performance, full-featured text search engine library 
suitable for applications requiring full-text search. 

• ANT (http://www.apache.org/): ANT is a Java library 
and command-line tool that drives processes described in 
build files as target. 

• POI (http://poi.apache.org/): POI is a Java APIs for ma-
nipulating various file formats based upon the Office 
Open XML standards and Microsoft's OLE2. 

C. Descriptive Statistics 
Table I summarizes the statistics of selected metrics of 

all systems. It shows that the considered systems are of dif-
ferent sizes. The number of lines of code varies from 7,600 
lines spread over 100 software classes (IO), to more than 
130,185 lines of code over 1,382 software classes (POI). 
Table I also suggests 4 groups of systems according to their 
size: (1) the small-size systems, about 100 classes (IO and 
MATH), (2) the medium-size systems around 200 classes 
(LOG4J, DBU and JODA), (3) the large-size systems, be-
tween 400 and 600 classes (LUCENE, IVY, ANT and JFC), 
and (4) the very large-size systems over than 1,000 software 
classes (POI). 

The average cyclomatic complexity varies widely be-
tween systems with similar sizes. Indeed, the medium-size 
systems, JODA and DBU, have a quite different average of 
cyclomatic complexity (9.34 vs 31.18). Similar trend is 
observed for LUCENE and JFC systems. In the dataset, 
each row has a binary attribute TESTED taking modalities 1 
or 0 indicating whether it is a tested class or untested class. 

V. EMPIRICAL ANALYSIS 

A. Research questions 

The current study focusses on the systems’ dataset af-
finities and the effect of mixing datasets on classifiers’ per-
formance. We tried to respond to the following research 
questions: 

 

• RQ1- Can other well-known machine learning algo-
rithms correctly predict the testers' selections? 

• RQ2- To what extent can we mix dataset histories of 
different systems to predict testers’ selections for a given 
new system. 

B. Goals 
The goal of our first research question (RQ1) is to vali-

date our previous results using other machine learning algo-
rithms, to compare their prediction performances, and to 
determine whether they depend (or not) on the type or size  



TABLE II:    CROSS SYSTEM VALIDATIONS 
 MATH IO JODA DBU LOG4J JFC IVY LUCENE ANT POI 

MATH 

LR 0.745 0.590 0.338 0.404 0.160 0.414 0.188 0.184 0.193 0.295 
NB 0.723 0.620 0.478 0.521 0.411 0.606 0.400 0.405 0.363 0.418 
KNN 0.734 0.64 0.527 0.563 0.416 0.431 0.53 0.48 0.431 0.446 
RF 0.926 0.58 0.338 0.469 0.32 0.397 0.382 0.358 0.398 0.391 

IO 

LR 0.617 0.740 0.458 0.624 0.329 0.623 0.418 0.403 0.359 0.395 
NB 0.628 0.710 0.413 0.667 0.494 0.652 0.454 0.433 0.403 0.505 
KNN 0.585 0.79 0.418 0.592 0.364 0.275 0.334 0.304 0.275 0.378 
RF 0.649 0.94 0.388 0.493 0.394 0.305 0.301 0.366 0.276 0.373 

JODA 

LR 0.415 0.390 0.711 0.620 0.779 0.620 0.814 0.807 0.796 0.721 
NB 0.457 0.420 0.692 0.620 0.771 0.681 0.799 0.800 0.742 0.721 
KNN 0.468 0.39 0.841 0.446 0.632 0.698 0.692 0.706 0.698 0.633 
RF 0.447 0.43 0.95 0.582 0.684 0.656 0.729 0.62 0.649 0.656 

DBU 

LR 0.457 0.490 0.622 0.671 0.645 0.664 0.743 0.725 0.677 0.681 
NB 0.489 0.600 0.448 0.756 0.589 0.684 0.617 0.571 0.511 0.627 
KNN 0.543 0.57 0.453 0.85 0.563 0.538 0.671 0.558 0.538 0.567 
RF 0.489 0.49 0.453 0.967 0.563 0.561 0.666 0.58 0.555 0.588 

LOG4J 

LR 0.436 0.440 0.647 0.554 0.840 0.577 0.818 0.816 0.804 0.728 
NB 0.468 0.490 0.637 0.629 0.758 0.672 0.783 0.774 0.692 0.744 
KNN 0.394 0.44 0.612 0.577 0.883 0.768 0.803 0.78 0.768 0.719 
RF 0.415 0.47 0.602 0.559 0.961 0.724 0.78 0.735 0.719 0.716 

JFC 

LR 0.511 0.500 0.602 0.601 0.736 0.698 0.766 0.771 0.697 0.724 
NB 0.511 0.530 0.597 0.685 0.701 0.689 0.730 0.736 0.632 0.707 
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69 
RF 0.383 0.37 0.667 0.559 0.749 0.952 0.77 0.766 0.958 0.686 

IVY 

LR 0.383 0.340 0.622 0.596 0.801 0.511 0.822 0.820 0.828 0.726 
NB 0.479 0.480 0.667 0.634 0.749 0.696 0.786 0.772 0.707 0.728 
KNN 0.404 0.4 0.657 0.592 0.775 0.786 0.893 0.784 0.786 0.726 
RF 0.415 0.42 0.642 0.629 0.766 0.736 0.964 0.777 0.741 0.708 

LUCENE 

LR 0.394 0.360 0.657 0.596 0.814 0.533 0.823 0.820 0.706 0.730 
NB 0.468 0.500 0.662 0.615 0.753 0.689 0.784 0.777 0.706 0.736 
KNN 0.394 0.45 0.612 0.592 0.805 0.789 0.803 0.863 0.789 0.711 
RF 0.426 0.42 0.592 0.554 0.753 0.753 0.798 0.964 0.765 0.705 

ANT 

LR 0.404 0.360 0.692 0.596 0.823 0.513 0.820 0.816 0.833 0.728 
NB 0.394 0.390 0.692 0.629 0.779 0.628 0.814 0.813 0.778 0.735 
KNN 0.404 0.38 0.632 0.592 0.775 0.855 0.794 0.782 0.855 0.69 
RF 0.404 0.4 0.647 0.573 0.762 0.964 0.788 0.753 0.965 0.696 

POI 

LR 0.415 0.370 0.682 0.596 0.823 0.582 0.822 0.816 0.837 0.728 
NB 0.511 0.540 0.527 0.709 0.714 0.681 0.725 0.712 0.605 0.718 
KNN 0.489 0.46 0.572 0.568 0.745 0.7 0.78 0.746 0.7 0.846 
RF 0.5 0.49 0.617 0.592 0.736 0.698 0.76 0.756 0.697 0.94 

of considered applications (affinities). In the experiment that 
we conducted to answer RQ1, the training datasets are com-
posed of 1 system tests information history at the time. 
Thus, we could determine potential prediction affinities 
between different systems which could lead to introduce 
more affinity parameters that may be related to the systems 
type, or size, in order to determine the suitable kind of train-
ing dataset for a given new system. To address the second 
research question (RQ2), we conducted an empirical study 
that uses mixed training datasets from different systems, 
builds a classifier and tries to determine whether the datasets 
mixing can improve or degrade the predictions obtained in 
the previous experiment. 

C. Classifiers and cross-system validation 
We used machine learning classifiers trained on a sys-

tem’s test information data to provide a set of classes to be 
tested for other software systems. We added to the MLR and 
NB classifiers previously considered, the well-known K- 
KNN and RF algorithms to build prediction models from the 
datasets. KNN is an intuitive and fast algorithm that classi-
fies observations according to their similarity. KNN is par-
ticularly suitable for pattern recognition. RF behaves well 
when irrelevant features are present or these features have 
skewed distributions. The larger the training dataset the 
more accurate the classifier. It makes RF particularly inter-
esting when the training dataset is a combined information 
of different systems. 

1) Cross System Validation 

In the CSV technique, datasets collected from each of 
the 10 systems are used in turn as training set and the de-
rived classifiers are cross-validated on each of the 9 remain-
ing systems. In such approach, training dataset may be small 
depending on the considered system, hence the usefulness of 
NB classifiers which can perform on small datasets. 

Table II presents the performances of models derived 
from MLR, NB, KNN and RF classifiers. In each table, the 
cell(i,j) shows the accuracy (1-error) of the 4 classifiers built 
from training dataset of the system on row i, and tested on 
the dataset of the system on column j. The diagonal cells (k, 
k) hold the adjustment (1 – optimistic error) of classifiers on 
the dataset of system k. We considered the models with 
accuracy values greater than 0.70 (error < 0.30) as good 
classifiers. In Table II, systems are sorted from the smallest 
one to the largest one in terms of number of classes.  

The results show that the very small-size systems 
(MATH and IO) form bad training datasets and are not well 
predicted. All non-adjustment prediction rates related to 
both of the systems are smaller than 70%. Three reasons 
may explain these results: 
• The small size of the systems. IO (with 100 classes) and 

MATH (with 125 classes) are the smallest systems in our 
datasets. The dataset they form may not be large enough 
to build good classifiers. 

• The use of very specific criteria when selecting classes to 
be tested leading to over-fitting problems. This hypothe-
sis is supported by the optimistic prediction rates ob-
served on both systems’ diagonal cells. 



 
•  The lack of a unit test strategy in small-size systems. 

With limited software classes, the testers could cover a 
higher percent of classes without any strategy. Thus, the 
poor rules selection makes irrelevant the information cap-
tured by software metrics. Candidate classes become un-
predictable. 
The medium-size systems (DBU JODA and LOG4J) re-

sults are mitigated. LR and NB models based on JODA 
training set well predicted all the larger systems except JFC. 
JODA’s testers may use common criteria that are also used 
when testing larger systems, while DBU testers seem to use 
a particular strategy. As a consequence, we obtained the 
same performances as for the small-size systems. The same 
previous reason may explain DBU’s results. LOG4J results 
are similar to large-size systems. 

The LOG4J system, the large-size and the very large-
size systems form good training sets and are well predicted 
by classifiers trained on their datasets. The results may be 
explained by the adoption of an effective tests prioritization 
strategy by testers in order to target the critical classes. In-
deed, in large-size systems, testers may adopt an effective 
strategy to carefully select the software classes to be tested. 
The adopted strategy may suggest large, complex and highly 
coupled classes as unit test candidates. Complexity and 
coupling attributes are captured by the LOC, WMC and 
CBO metrics. This may explain why the associated systems 
are well predicted and form good training datasets. 

JFC, ANT and IVY are of standalone type systems while 
remaining systems are libraries. The results suggest no af-
finity based on the application type. This is supported by the 
fact that many libraries are not well predicted by other li-
braries datasets. The good predictions obtained between 
standalone apps seem to be related to their size affinity.  

The cross-validation results, especially for the medium, 
large and very large-size systems, show that it is possible, 
based on only a combination of metrics, to construct classi-
fier models from existing software datasets that automatical-
ly suggest, for another software system, a set of classes to be 
tested. It also indicates that small systems are unpredictable  
and do not form good training datasets. Furthermore, the 
most obvious affinity between systems is related to their 
size. The larger the systems, the better the training datasets 
and the prediction levels of learners. 

2) Leave One System Out Validation  
In Leave One System Out Validation (LOSOV) tech-

nique, each system will be used in turn as testing dataset to 
validate the classifiers derived from the training dataset 
formed by the 9 remaining systems. This approach uses 
large training datasets and combines different selection cri-
teria if they exist. However, if one of the systems’ testers 
randomly selects classes to be tested, it may impact the 
whole training dataset quality depending on that system 
size. 

Table III presents the accuracy rates of the classifiers for 
LOSOV. The results confirm those obtained using the CSV 
and show that each of medium, large and very large size 
systems are well predicted by classifiers trained on merged 
dataset of 9 remaining systems. The best accuracy rates vary 
from 70.1% to 93.2%. 

Some classifiers failed to correctly predict some sys-
tems: NB on JFC system, KNN on POI system and RF on 
POI system. The POI data test prediction results may be 
explained by its size. Indeed, leaving POI out from training 
datasets during the LOSOV may drastically reduce the train-

ing dataset (POI represents 30.7% of classes and 30.5% of 
tested classes). 

TABLE III:  LEAVE ONE SYSTEM OUT VALIDATIONS 
 LR NB KNN RF 

MATH 0.404 0.457 0.447 0.468 
IO 0.37 0.53 0.5 0.41 
JODA 0.667 0.627 0.567 0.647 
DBU 0.596 0.629 0.573 0.559 
LOG4J 0.818 0.736 0.71 0.701 
JFC 0.834 0.661 0.846 0.92 
IVY 0.84 0.796 0.76 0.747 
LUCENE 0.82 0.746 0.732 0.702 
ANT 0.834 0.661 0.839 0.932 
POI 0.731 0.734 0.681 0.679 

 
The small-size systems are not well predicted since all 

classifiers’ prediction rates are smaller than 70%. This result 
suggests that their testers used very specific criteria or un-
captured (by metrics) criteria, or may be no criteria during 
the selection candidate classes. This result is plausible for 
small systems, since testers could test all classes, they also 
may not need any particular strategy. 

Compared with CSV results, LOSOV slightly improve 
and degrade the prediction levels in several cases. However, 
LOSOV takes advantage of being usable in real conditions, 
in the context of a collaborative tool that supports unit tests 
prioritization when different information history (metrics 
and tests data) are provided by different teams of develop-
ers. 

VI. THREATS TO VALIDITY 
The study we presented in this paper was performed on 

10 open-source systems containing almost a half million 
lines of code (453K). The sample is large enough to allow 
obtaining significant results, but the measuring methods and 
approaches have limitations that can restrict the generaliza-
tion of certain conclusions. 

The external validity threats are mainly related to the 
application domain of considered systems. Indeed, some 
analyzed systems are mathematical algorithms libraries 
(IO), while other systems have more complex architectures 
and involve many OO-technology specific artifacts such as 
inheritance and polymorphism (JFC). Hence, when a learn-
ing algorithm is trained on some types of systems, it could 
be well-adjusted when tested on the datasets of similar do-
main systems and not able to suggest good candidate classes 
for other types and domain systems.  

The data we collected does not provide any information 
on tested classes selection criteria. It may be that, for some 
systems, tested classes were randomly selected particularly 
for the small size systems. 

The main threat of construct validity lies in the tech-
nique we used to match JUnit test classes to software classes 
during the tested classes identification. Indeed, the remain-
ing unpaired software classes that are tested by transitive 
method invocations are ignored by our approach. 

VII. CONCLUSIONS AND FUTURE WORK 
Ten open source (Java) software systems have been ana-

lyzed in this study and totalize more than 4400 software 
classes. The testers of each system developed dedicated unit 
test classes for a subset of classes using the JUnit Frame-
work. In our previous investigations, we explored the possi-
bility of explaining and reusing the selection criteria for 
different systems through three experiments using three 
source code metrics.  

This study extends our previous work by including the 



 
KNN and RF classifiers to the MLR and NB classifiers. In 
addition to the CSV, we used LOSOV validation technique, 
which merges training sets from different systems. The main 
objective was to know to what extents the combined infor-
mation of different systems could be a good training set for 
the learners and to determine if there exist affinities between 
different datasets of systems’ test information history. Re-
sults show that systems with more than a hundred classes 
have their tested classed generally well predicted by classi-
fiers built from medium, large and very large systems train-
ing datasets. Furthermore, the obtained results suggest that 
all obtained classifiers could help to support unit tests priori-
tization with more than 70% of accurate predictions. The 
results of the experiments we conducted become particularly 
interesting knowing that effort prioritization is especially 
useful during large and complex systems testing. It demon-
strates the viability of a unit tests prioritization automation 
technique that uses classifiers trained on merged software 
source code metrics with the unit tests information history. 
Grouping the systems according to their domains could 
improve our results. Since the proposed prioritization tech-
nique suggests a slightly different (30%) tested classes from 
those of the testers, it would be pertinent to analyze and 
compare their actual performance on covering faulty classes. 
This topic will be the next direction of our investigations. 
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