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Abstract

Markov chain usage-based statistical testing has been
around for more than two decades, and proved sound and
effective in providing audit trails of evidence in certifying
software-intensive systems. The system end-to-end relia-
bility is derived analytically in closed form, following an
arc-based Bayesian model. System reliability is represented
by an important statistic called single use reliability, and
defined as the probability of a randomly selected use be-
ing successful. This paper reviews the analytical derivation
of the single use reliability mean, and proposes a simpler,
faster, and more direct way to compute the expected value
that renders an intuitive explanation. The new derivation is
illustrated with two examples.

1 Introduction

Statistical testing based on a Markov chain usage model,
as a rigorous testing method developed by the Univer-
sity of Tennessee Software Quality Research Laboratory
(UTK SQRL), has been around for more than two decades
[6, 5, 10, 8, 11, 14, 16, 15] and successfully applied in a
variety of industry and government projects, ranging from
medical devices to automotive components to scientific in-
strumentation, to name a few [3, 2, 13]. The direct benefit
statistical testing provides is a quantitative analysis of the
system’s quality using empirical data that can be used to
demonstrate, document, and certify that the system is fit for
its intended use.

In statistical testing a Markov chain usage model is first
developed. States of the Markov chain represent states of
system use (such as “Cruise Control Activated,” “Cruise
Control Deactivated,” or “Cruise Control Resumed” in an
automobile cruise control system). Arcs between states rep-

resent possible transitions between states of use (such as
“Activating Cruise Control” when the driver presses a but-
ton on the steering wheel, or “Deactivating Cruise Control”
when the driver engages the brake). Each arc has an associ-
ated probability of making that particular transition, based
on expected usage data in the field. The outgoing arcs from
each state have probabilities that sum to one. Test cases can
be generated from the model by different sampling options.
Pass and fail data are recorded and analyzed for reliability
estimation, coverage analysis, or stopping decisions. This
form of statistical testing [6, 5, 10, 8, 11, 14, 16, 15] sup-
ports quantitative certification of software by a statistical
protocol. A public domain tool supporting statistical test-
ing (JUMBL: J Usage Model Builder Library developed by
UTK SQRL) is freely available [9, 1].

This paper reviews the current reliability analysis for sta-
tistical testing based on a Markov chain usage model, and
specifically how to derive a system end-to-end reliability
estimate based on the testing experience given the usage
model, as established in [10, 12], and proposes a simpler
way to compute the expected value of system reliability, not
via the system failure probability (or unreliability), but di-
rectly. The new derivation results in a simpler closed-form
formula with less steps of computation that also renders an
intuitive explanation. We illustrate it through two examples
and compare the results with those obtained from the old
analysis.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work and compares different relia-
bility models that have been used for statistical testing. Sec-
tion 3 reviews the current analytical derivation of the system
reliability. Section 4 presents our new formula with two il-
lustrating examples. Finally Section 5 concludes the paper
and points out directions for future work.
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2 Related Work: Reliability Analysis

After a sample of test cases are generated from the usage
model and executed, results of testing are recorded. A test
case is considered successful if all the steps (events) consti-
tuting the test case are executed successfully; otherwise, the
steps on which a test case fails are recorded, together with
the information as to whether testing continues or stops after
each failure step. The recorded testing results are empirical
data used to estimate the system reliability.

Several reliability models that have been used for statis-
tical testing are presented and compared in [10, 12]. They
are briefly described below:

- The sampling model [7]. Each executed test case is a
Bernoulli trial. An estimated reliability is computed at
a confidence level, based on the numbers of success-
ful and unsuccessful test cases. Variations among tests
are not taken into account, with long and short tests
equally treated.

- The failure state model [16]. The testing result is
stored as a testing (Markov) chain. It contains states
from the usage model that have been visited during
testing, and additional failure states for observed fail-
ures. The failure states are made absorbing. The upper
bound on system reliability is defined as the probabil-
ity of going from the source to the sink of the testing
chain without being absorbed in a failure state. The
model takes into account the probability mass of each
test case, however, in the absence of failures (no ab-
sorbing states) the estimate of reliability is one.

- The Bayesian model [4]. Miller et al. presented a reli-
ability model based on Bayesian theory. It allows for
the use of prior (testing) information, and assumes a
standard beta distribution for the software failure prob-
ability (or “unreliability,” that is, the probability of a
randomly chosen use failing). An expected value for
system reliability and the associated variance are com-
puted from a posterior beta distribution, based on both
prior and observed successes and failures.

- The arc-based Bayesian model [10, 12]. The Miller
model is applied to individual arcs of a Markov chain
usage model. For each arc the expected value of the
arc failure probability and the associated variance are
computed from a posterior beta distribution. A single
use reliability is defined as “the probability of the soft-
ware executing a randomly selected use without a fail-
ure.” This model takes into account variations among
tests, makes use of prior testing information, yields
a reliability estimate based on the amount of testing
when testing reveals no failures, and provides a vari-
ance estimate.

The arc-based Bayesian approach is appealing because
first, it takes into account variations among tests induced by
the model structure; second, it provides insight into where
lack of testing or unreliability is having a greater impact on
the system level end-to-end reliability, as a failure on one
arc may not have the same impact as a failure on a different
arc; and third, it makes it easier for the tester to estimate
the pre-test reliability for a single arc, which contributes to
a more accurate estimate of the system reliability. For these
reasons the latest version of the JUMBL [1] adopts the arc-
based Bayesian model.

3 Single Use Reliability and Its Derivation

Using the arc-based Bayesian model one could compute
the system end-to-end reliability through the single use re-
liability estimate, either via analytical derivation [10] or
through simulation [12]. Single use reliability is defined as
“the probability of a randomly selected use executing cor-
rectly relative to a specification of correct behavior [6, 10].”
Since the analytical solution in closed form [10] is both
faster and more precise than simulation, it was implemented
in the latest JUMBL tool. We summarize the major steps
and results of the derivation below.

Let P = [pij ] be the n×n transition matrix of a Markov
chain usage model. The (i, j)-th entry pij of P is the con-
ditional probability of the next state being state j given the
current state being state i. State 1 is the source. State n is
the sink and the only absorbing state (assuming a reasonable
error recovery scheme). Given Pn×n, Q(n−1)×n denotes
the submatrix of P omitting the last row, and Q̇(n−1)×(n−1)

denotes the submatrix of P omitting the last row and the last
column. Q̇ is the transition matrix of the Markov chain re-
stricted to the transient states.

Let ri,j be a random variable for “transition reliability,”
that is, the fraction of successful transitions from state i to
state j. Let fi,j be another random variable for “transition
failure probability,” that is, the fraction of unsuccessful tran-
sitions from state i to state j. Notice that fi,j = 1− ri,j .

With the arc-based Bayesian model [12], each arc
(transition) reliability ri,j has a standard beta distribution
B(αi,j , βi,j) with two parameters αi,j (for total successes
on transitions from state i to state j) and βi,j (for to-
tal failures on transitions from state i to state j), where
αi,j = ai,j + si,j and βi,j = bi,j + fi,j with ai,j , si,j ,
bi,j , fi,j representing prior successes, observed successes,
prior failures, and observed failures, respectively, on tran-
sitions from state i to state j. The prior success and fail-
ure counts are estimated from prior testing experience or
knowledge obtained from code analysis, design records,
previous failure data, etc. In case no prior information is
available, ai,j = bi,j = 1. The observed success and fail-
ure counts are collected through testing. Each executed test



case is mapped to the usage model and each executed step is
marked as successful or failing. The observed success and
failure counts are summed for each individual arc in the us-
age model.

From the posterior (beta) distribution B(αi,j , βi,j) for
ri,j we may compute the mean of ri,j :

E[ri,j ] =
αi,j

αi,j+βi,j
=

ai,j+si,j
ai,j+si,j+bi,j+fi,j

.

Given fi,j = 1 − ri,j , we can compute the mean of fi,j
as E[fi,j ] = E[1− ri,j ] = 1− E[ri,j ].

By our assumption state n (the sink) is the only absorb-
ing state of the Markov chain. A test case ends when the
sink is first encountered, therefore, we are only interested in
transitions from any state other than the sink (any transient
state). In the matrices defined below (A, B, S, F , R1, and
F1), i is any integer from 1 to n− 1 inclusive, and j is any
integer from 1 to n inclusive.

Let A = [ai,j ] and B = [bi,j ] be two matrices of size
(n − 1) × n whose entries are prior arc successes and fail-
ures, respectively, obtained from prior testing experience.
Let S = [si,j ] and F = [fi,j ] be two matrices of size
(n − 1) × n whose entries are observed arc successes and
failures, respectively, obtained through testing.

Let R1 = [E[ri,j ]] be an (n − 1) × n matrix whose (i,
j)-th entry is the expected arc reliability of going from state
i to state j, and Ṙ1 denote the submatrix of R1 omitting the
last column.

Similarly we define F1 = [E[fi,j ]] as an (n − 1) × n
matrix whose (i, j)-th entry is the expected arc failure prob-
ability of going from state i to state j.

Given two matrices X and Y of the same size (dimen-
sion), X ⊗ Y denotes the entry-wise (or component-wise)
product of X and Y . X ⊗ Y has the same size as X and Y .

We define two entry-wise products as follows. One is of
size (n − 1) × n: F1 = Q ⊗ F1. The other is a square
matrix of order n− 1: Ṙ1 = Q̇⊗ Ṙ1.

Let I be an (n−1)× (n−1) identity matrix, and U be a
column vector of ones of size n. It is established in [10] that
F ∗ in (1) computes the expected single use failure proba-
bility (or single use unreliability) from any starting state.

F ∗ = (I − Ṙ1)
−1F1U (1)

Observe that F ∗ is a column vector of size n − 1. The
i-th component of F ∗ is the computed probability of failure
(the expected value) for an arbitrary use of the system from
a particular usage state, state i, to the sink (i runs from 1
to n − 1 inclusive; the starting state could be any transient
state).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is one minus the first compo-
nent of F ∗ computed by (1).

For an intuitive understanding of (1), consider all the
paths in the usage model that originate from state i and
have all but the last step successful; the last step on the

path is the only failure step. The probability of taking one
of such paths gives the failure probability from state i, and
is computed in three steps. First, it is shown in [10] that
(I − Ṙ1)

−1 = Ṙ0
1 + Ṙ1

1 + Ṙ2
1 + . . . , hence the (i, j)-

th entry in the inverse matrix computes the probability of
successfully moving from state i to state j in any finite and
arbitrary number of steps (starting from 0 step). State j
must be transient because only the last failure step could
lead to the sink. Second, the inverse matrix is multiplied by
the single-step failure matrix F1 to give the probability of
moving from any transient state to any state in the model
with all but the last step successful. Here the last transition
is made to either a transient state or the sink. And last, the
product is multiplied by the vector of ones of appropriate
size to sum up the probabilities of taking paths with a fixed
starting state, all successful prior steps before encountering
the last failure step, and an arbitrary ending state. The sum
is the failure probability from the particular starting state.

A more complex equation is also given in [10] for com-
puting the variance associated with the single use reliability
from any starting state, which we are not elaborating here
due to the page limits.

To sum up, the following steps are required to compute
the system reliability mean as illustrated in [10]:

1. Determine Q and Q̇ from the usage model.

2. Determine A and B from prior success and failure
counts for each arc in the usage model.

3. Determine S and F from observed success and failure
counts for each arc in the usage model.

4. Compute R1 and F1 from A, B, S, and F .

5. Compute Ṙ1 and F1.

6. Compute F ∗ by (1).

7. The expected value of the single use reliability is one
minus the first component of F ∗.

4 A Simpler and More Direct Derivation of
the Single Use Reliability Mean

We think the derivation of the single use reliability mean
(expected value) could be simplified, and not through the
single use failure probability (or single use unreliability) but
directly, as shown below.

4.1 The New Derivation

We define another entry-wise product of size (n−1)×n:
R1 = Q ⊗ R1. Let W be R1 restricted to the last column.
R1 is a column vector of size n− 1.

We define R∗ as follows:

R∗ = (I − Ṙ1)
−1W (2)



Figure 1. Example 1 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

(2) has an intuitive explanation. As explained above for
(1), the (i, j)-th entry in the inverse matrix computes the
probability of successfully moving from the transient state
i to the transient state j in any finite and arbitrary num-
ber of steps (starting from 0 step). When multiplied by the
single-step success matrix R1 restricted to the last column
(i.e., W ), the last steps are successful steps leading to the
sink, hence R∗ gives the probability of successfully moving
from any transient state to the sink in any finite and arbitrary
number of steps (starting from 0 step).

Observe that R∗ is a column vector of size n − 1. The
i-th component of R∗ is the expected single use reliability
starting from state i (i runs from 1 to n− 1 inclusive).

Therefore, the expected single use reliability of the sys-
tem (starting from the source) is the first component of R∗

computed by (2).
We demonstrate below two examples of computing the

single use reliability mean by the formula in [10] (hereafter
referred to as Stacy and Poore’s formula) as well as by our
new formula. For both examples the new formula gets to
the same result with fewer steps and simplified calculation.

4.2 Examples

Figure 1 illustrates our first example of a Markov chain
usage model. The arcs are annotated with transitional prob-
abilities and arc reliabilities.

By Stacy and Poore’s formula:

P =


0 1

2
1
2

0 1
2

1
2

0 0 0

 Q =

[
0 1

2
1
2

0 1
2

1
2

]
Q̇ =

[
0 1

2

0 1
2

]

R1 =

[
r11 r12 r13
r21 r22 r23

]
Ṙ1 =

[
r11 r12
r21 r22

]
I =

[
1 0
0 1

]

Ṙ1 = Q̇⊗ Ṙ1 =

[
0 r12

2

0 r22
2

]
I − Ṙ1 =

[
1 − r12

2

0 1− r22
2

]

(I − Ṙ1)−1 = 1
1− r22

2

[
1− r22

2
r12
2

0 1

]
=

1
r12
2

1− r22
2

0 1
1− r22

2


F1 = 1−R1 =

[
1− r11 1− r12 1− r13
1− r21 1− r22 1− r23

]
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Figure 2. Example 2 of a Markov chain usage
model. Arcs are annotated with transitional
probabilities and arc reliabilities.

F1 = Q⊗ F1 =

[
0 1−r12

2
1−r13

2

0 1−r22
2

1−r23
2

]
U =

11
1



(I−Ṙ1)−1F1 =

0
1−r12

2
+

r12
4

(1−r22)

1− r22
2

1−r13
2

+
r12
4

(1−r23)

1− r22
2

0
1−r22

2

1− r22
2

1−r23
2

1− r22
2



F ∗ = (I − Ṙ1)−1F1U =


1− r22

2
− r13

2
+

r13r22
4

− r12r23
4

1− r22
2

1− r22
2

− r23
2

1− r22
2



R∗ = 1− F ∗ =


r13
2

− r13r22
4

+
r12r23

4

1− r22
2

r23
2

1− r22
2


By our new formula:

W =

[ r13
2

r23
2

]
R∗ = (I − Ṙ1)−1W =


r13
2

+
r12r23

4

1− r22
2

r23
2

1− r22
2



=


r13
2

− r13r22
4

+
r12r23

4

1− r22
2

r23
2

1− r22
2


We may also compute the single use reliability (SUR)

directly based on its definition given the model structure.
To compute the probability of a randomly chosen use (path)
being successful, we compute the weighted sum of path re-
liabilities, with weights being the path probabilities.

By the definition of single use reliability:

SUR =
∞∑
i=0

( 1
2
· ( 1

2
)i · 1

2
· r12 · ri22 · r23)+

r13
2

= r12r23
4

∞∑
i=0

( r22
2

)i+

r13
2

=
r12r23

4

1− r22
2

+ r13
2

=
r13
2

− r13r22
4

+
r12r23

4

1− r22
2

Figure 2 illustrates our second example of a Markov
chain usage model.

By Stacy and Poore’s formula:

P =

0 1 0
0 p 1− p
0 0 0

 Q =

[
0 1 0
0 p 1− p

]
Q̇ =

[
0 1
0 p

]

R1 =

[
r11 r12 r13
r21 r22 r23

]
Ṙ1 =

[
r11 r12
r21 r22

]
I =

[
1 0
0 1

]
Ṙ1 = Q̇⊗ Ṙ1 =

[
0 r12
0 r22p

]
I − Ṙ1 =

[
1 −r12
0 1− r22p

]



(I − Ṙ1)−1 = 1
1−r22p

[
1− r22p r12

0 1

]
=

[
1 r12

1−r22p

0 1
1−r22p

]

F1 = 1−R1 =

[
1− r11 1− r12 1− r13
1− r21 1− r22 1− r23

]
F1 = Q⊗ F1 =

[
0 1− r12 0
0 p(1− r22) (1− p)(1− r23)

]

(I−Ṙ1)−1F1 =

0 1− r12 +
p(1−r22)r12

1−r22p
(1−p)(1−r23)r12

1−r22p

0
p(1−r22)
1−r22p

(1−p)(1−r23)
1−r22p


U =

11
1

 F ∗ = (I−Ṙ1)−1F1U =

[ 1−r22p−r12r23+r12r23p
1−r22p

1−r22p−r23+r23p
1−r22p

]

R∗ = 1− F ∗ =

[ r12r23−r12r23p
1−r22p

r23−r23p
1−r22p

]
By our new formula:

W =

[
0

(1− p)r23

]
R∗ = (I − Ṙ1)−1W =[

1 r12
1−r22p

0 1
1−r22p

][
0

(1− p)r23

]
=

[ r12r23−r12r23p
1−r22p

r23−r23p
1−r22p

]
By the definition of single use reliability:

SUR =
∞∑
i=0

1 ·pi(1−p) ·r12 ·ri22 ·r23 =
∞∑
i=0

r12r23(1−p)(pr22)i =

r12r23(1−p)
1−pr22

= r12r23−r12r23p
1−r22p

5 Conclusion and Future Work

Statistical testing based on a Markov chain usage model
has been well established in theory and proved sound and
effective in practice [6, 5, 10, 8, 11, 14, 16, 15], with tools
available to support all the stages of testing and to automate
the testing process [1, 9]. This paper presents a simpler
way to compute the system end-to-end reliability mean, not
through the system failure probability (or unreliability) but
directly, following the arc-based Bayesian model [10, 12].
We illustrate it with two examples and compare the results
with those obtained from the old analysis.

Work is under way to implement the new formula in the
supporting tool JUMBL, and to examine the computation of
the single use reliability variance to find an equivalent but
simpler, more direct, and more intuitive derivation as well
(the current one is complex and counter-intuitive).
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