
I/O Performance Isolation Analysis and Optimization

on Linux Containers

Li Zhou1, Yifan Zhang1, Youhuizi Li1, Na Yun1, Lifeng Yu2
1School of Computer Science, Hangzhou Dianzi University, Hangzhou, China

2Hithink RoyalFlush Information Network Co., Ltd.

 huizi@hdu.edu.cn

Abstract—Container enables a new way to run applications

by containerizing the application, which provides kinds of
services to make them portable, extensible, and easy to be
transferred between private data centers and public clouds.
Comparing with virtual machines, containers have several
advantages in terms of simplicity, low-overhead and light-
weight. However, as the OS kernel and resources are shared by
all the hosted containers, performance isolation becomes a
challenging issue for guaranteeing their SLA.

This paper discusses I/O performance isolation issue in
container-based clusters. First, we analyze the characteristics of
I/O performance isolation from the perspective of the SLA.
Then we conduct the observation experiments using multiple
containers to obtain the variation trend of the I/O performance
parameters and observe the impact of the I/O overload
container on the I/O performance isolation of the system. Finally,
we propose two algorithms, SLAE and UTE, to improve the I/O
performance isolation in container-based systems. These
algorithms contribute to decrease the interference caused by the
overloaded containers. Experimental results show the feasibility
and effectiveness of our proposed algorithms.

Keywords-Container-based System; I/O Performance

Isolation; SLA; Docker;

1. INTRODUCTION

Cloud service provides resources to users through the
virtual machine [1]. Traditional virtual machine technology is
based on the host hardware to build a virtualization
management hypervisor, which allocates resources (CPU,
memory, etc.) to each virtual machine [9], and each virtual
machine has its own OS kernel. But this approach adds
overhead when translates machine instructions from guest to
host OS [5][14].

As the supporting platform that provides the microservice
architecture for software applications, the container has
attracted plenty of research attentions in the fields of cloud
computing and virtualization. Containers, as Docker
standardizes applications and services, opens another door for
the operating environment of the application services.
Compared with the traditional virtual machine, container
isolates resources and permissions into a sandbox, which
called a container, and each container is a separate resource
usage space. Container isolation technology comes from LXC
[7], it achieves environmental resources isolation by the
namespaces mechanism and restricts the use of resources by
the Cgroups mechanism. Namespaces mechanism and
Cgroups mechanism are provided by the Linux kernel.

However, because all containers at the same host share one
OS core and multiple containers running simultaneously, there
will be inevitably disturbances between containers. To
improve the performance of container, isolation and safety are
the key issues that need to be studied and solved.

The rest of this paper is organized as follows. We
introduce the background information and analyze the
characteristics of I/O performance isolation in Chapter 2.
Chapter 3 shows the variation trends of I/O performance
parameters and argues the influence of the overload container
on the I/O performance isolation. Chapter 4 describes a
prototype system that can dynamically maintains I/O
performance isolation of the system and illustrates two
different maintenance algorithms, then verifies the feasibility
of algorithms. Chapter 5 concludes the paper and discusses
future works.

2. BACKGROUND

2.1 Containers

The container technology isolates resources and
permissions into containers. Docker makes isolation for PID,
UTS, IPC, Network and other environmental resources
through the NameSpaces mechanism provided by Linux
kernel, besides, it limits the use of CPU, Memory, I/O and
other shared resources by leveraging the Cgroups mechanism.
These constraints can allow containers follow certain rules at
runtime.

Docker provides a few commands which use the Blkio in
Cgroups mechanism to restrict containers' I/O usage. There
are three groups of I/O configurations available in Docker so
far. The first group is: --blkio-weight, which can set the I/O
weight for a container. The second group is: --device-
write/read-bps, which can limit the read/write rate (bytes per
second) from/to a device. The last group is: --device
write/read-iops, which can limit read/write rate (I/O per
second) from/to a device for a container.

Although Docker provides several ways to restrict the use
of the container’s I/O. But it requires the admin estimate the
I/O usage of the container first, and then admin use the above
methods to restrict the I/O of the container. This kind of
method is obvious hysteresis and uncertainty, especially when
I/O competition becomes intense and complex. Current
container management software such as the popular
Kubernetes, a tool for scheduling and managing containers [7].

DOI reference number: 10.18293/SEKE2017-201

The smallest unit for managing of Kubernetes is a Pod, which
is a set of containers, Kubernetes is responsible for completing
their management. The main purpose of the container-based
cloud management software is to cluster the deployment and
management of containers. However, there is no specific
guarantee for the isolation between containers on the host OS.

Sean McDaniel et al. [3] proposed a two-tiered approach
to guarantee I/O quality of service in Docker containers. They
thought that combining the node-level QOS and the cluster-
level QOS together will have better load balancing and higher
resource utilization. Miguel Xavier et al. [2] found the
container-based system is not yet mature to ensure
performance isolation among disk-intensive workloads. To
address this problem, they [2] proposed to combine different
types of loads on containers to reduce the interaction. Their
results suggest the combination of CPU intensive and I/O
intensive to alleviate the performance impacts, rather than a
combination of disk-intensive and memory-intensive.

2.2 Isolation

2.2.1 I/O Performance Isolation based on SLA
In general, cloud providers are responsible for guarantee

the SLA for their users. They will allocate the number of
containers and the resource cap in order to ensure that the SLA
requirement of all the containers on the host can be satisfied
at the same time. But if some users or applications produce
excessive load, it is possible that the balance is destroyed and
other containers' performance is influenced.

Based on the SLA, we can classify the I/O performance
isolation of container-based system into two categories as
follows:

Poor I/O Performance Isolation: When the multi-container
running on the host, the I/O interference between containers is
very strong, and the I/O state of the container is easy to change.
Especially when some containers produce overload I/O
operations, it will cause other containers’ I/O performance fail
to reach the SLA requirement, such as I/O wait time and IOPS.
In this case we believe that the I/O performance isolation of
the container-based system is poor.

Excellent I/O performance isolation: When the multi-
container running on the host, the I/O interference between
containers is very weak, and the I/O state of the container is
very stable. Even if some containers produce overload I/O
operations, because the system has a good I/O performance
isolation, it will still guarantee other containers’ I/O
performance reach the SLA standard. In this case we believe
that the I/O performance isolation of the container-based
system is excellent.

2.2.2 WorkLoad Model
We can treat containers as processes that produce I/O,

since they share one OS kernel, we can assume the I/O queue
is a shared service queue. So the system can be viewed as the
M/M/1 model that have single-queue and single-server.

In the M/M/1 model of single-queue and single-server, we
know W = S/(1-U) according to Litte's Law and Utilization
Law [4]. Where W is the job wait time, U is the utilization of
the system, and S is the actual service time of the job. Based

on the equation, we can observe that the higher current disk
device I/O utilization is, the greater the I/O delay will be, and
when the utilization exceeds a certain threshold or so, the I/O
wait time will appear rapid growth.

3. PERFORMANCE TRENDS AND IMPACT ANALYSIS

3.1 Experimental Setup

3.1.1 Experimental Environment
We use a node server as a host, the node has 16 AMD

Opteron(TM) Processor 6136 CPU and 32GB of Memory
capacity, and it equipped with CentOS7 and Docker 1.12.5.

3.1.2 Experimental Content
We execute the script file in the container to generate the

I/O request to write the file. The rate of script writing is
relatively small, so we use the Linux DD command to simulate
the overload I/O case. It is worth noting that the I/O should
avoid Buffer for the accuracy of the observation.

The observation is mainly divided into two parts. The first
part we open a number of containers on the host while running
the script file to generate write I/O, the variable is the number
of growing containers, meanwhile observing the trend of the
I/O indicators. The second part of the experiment, we run a
number of normal containers coupled with a container
generate high I/O load to observe the effect of overload
container on the I/O performance for other normal containers.
Since each container has a specific disk device number, so we
observe the I/O of the corresponding container through the
disk device.

3.2 Results And Analysis

3.2.1 IOPS, write rates show a decreasing trend of power

function

Figure 1. Variation trend of I/O write operations/s

We allow each container to achieve the same I/O load. As
we can see from Figure 1, with the number of containers
increased from 1 to 20, the average I/O write operations is
reduced from 328 times per second to 27 times per second.
The real data trend is a solid line, the whole process fits closely

1, 328.25

20, 27.09166667

y = 449.84x-0.893

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

I/
O

 W
ri

te
 O

p
er

at
io

n
s/

S

The Number Of Containers

real trend linear function

exp function power function

the decline of the power function, rather than fits other
functions.

Figure 2. Variation trend of I/O write speed

Similarly, in the above case, we can see from Figure 2,
the average write speed of each container also shows a similar
exponential decline trend. On our machine, the write speed
decreased from 1658Kb/s to 139Kb/s. The real data trend is
the solid line and the fitting curve is represented by the dotted
line.

3.2.2 I/O utilization, the length of wait queue fit

logarithmic function growth trend

Figure 3. Variation trend of I/O utilization

From Figure 3 we can see that with the number of
containers increased from 1 to 20, the average I/O utilization
of disk device increased from 26.98% to 92%. The variation
trend of real data is the solid line, we fit the whole process
very close to the growth of the logarithmic function, rather
than other functions.

Figure 4. Variation trend of I/O queue size

Similarly, in the above case, we can see from Figure 4, the
waiting queue length of containers is also growth as the
logarithmic function. On our machine, the length of the I/O
queue increased from 0.268 to 0.94. The real variation trend
of the data is the solid line and the fitting curve in the graph
with the dotted line.

3.2.3 The I/O utilization exceeds a certain threshold, then

wait time soared
We increase I/O utilization of the system by increasing the

number of containers, and observe the relationship between
the I/O utilization and I/O wait time.

Figure 5. Variation trend of I/O utilization and wait time

As Figure 5 shows, with the increase of containers, the I/O
utilization increases from 27% to 92%. And the wait time is
close to a linear growth before the I/O utilization reaches 70%-
80%. When the I/O Utilization is 71%, the average I/O wait
time is about 5.9Ms. However, when the I/O utilization
exceeds 70%-80%, the wait time grows rapidly near the
exponential function. Soon the wait time is up to 30Ms or
more, which is far exceeded the upper limit of SLA for a
normal disk I/O.

1, 1658

20, 139.7069444

y = 2268.3x-0.886

0

500

1000

1500

2000

2500

0 5 10 15 20 25

I/
O

 W
ri

te
 S

p
ee

d
(K

b
/S

)

The Number Of Containers

real trend linear function

exp function power function

1, 26.9875

20, 92.54138889

y = 21.83ln(x) + 32.621

0

20

40

60

80

100

120

0 5 10 15 20 25

I/
O

 U
ti

li
za

ti
o

n
(%

)

The Number Of Containers

real trend linear function

power function log function

1, 0.26875

20, 0.940027778

y = 0.2273ln(x) + 0.3224

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

I/
O

 Q
u

eu
e

S
iz

e

The Number Of Containers

real trend linear function

power function log function

71.28333333, 5.946222222

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

I/
O

 W
ai

t
T

im
e(

M
s)

I/O Utilization(%)

3.2.4 Overloaded container will cause damage to the I/O

performance isolation of the system

Figure 6. Variation trend of I/O wait time when all normal containers and

one overloaded container & some normal containers

Figure 6 describes the impact of a container with a high
I/O utilization on the performance of other normal containers.
If the I/O loads of all hosted containers are normal, with the
increase of containers, we can see the variation trend of I/O
wait time fits a slow growth of a linear. When running 1-9
normal containers with an overloaded container, the result
shows that the overload container resulted in a significant
increase in the I/O wait time of the normal containers, while
the change in the overload container is small.

Here we define ΔW = W_New – W_Pre, which represents
the change in the I/O wait time of one container. W_New
indicates the I/O wait time of the container before the overload
container appears, W_Pre indicates the I/O wait time of the
container after the overload container appears, it can reflect
the impact of container’s I/O performance. The large ΔW
shows big impact, the small ΔW shows small impact. And we
use ΔSW to indicate the size of I/O performance isolation of
the system that has m containers when the I/O strength of the
container n grows. The more containers the system has, the
more susceptible the system’s I/O isolation is. The smaller
ΔSW is, the more excellent the system isolation is.

ΔSW = ∑ ΔWi0≤ 𝑖 ≤ 𝑚
𝑖!=𝑛

When there is only one normal container, the I/O wait time
is approximately 0.82Ms. After an overloaded container
appears, the I/O wait time of the normal containers rises
immediately to 10.4Ms, at this time ΔM = 10.94-0.82 =
10.1Ms, while the I/O wait time of overload container rises
from 4.7Ms (running alone) to 6.9Ms, the ΔM is only 2.2Ms.
With the increase of containers, the ΔM of each container
changes only a little, while the ΔSM is growing fast because
of the increase in the number of containers.

3.3 Summary

In order to gain a deeper understanding of the trend in the
I/O performance and the intrinsic relationship between the I/O

parameters in the container system, we summarized some of
the above meaningful conclusions as follow. We found that as
the number of containers grows, IOPS, write rates show a
decreasing trend of the power function. The reason why they
are not a linear is due to the presence of I/O kernel scheduling.
Meanwhile, we found that I/O utilization and the length of
wait queue present logarithmic function growth trend. Then
we run normal containers and add an overloaded container at
the same time. The observation parameter is the I/O wait time
which is universality, we find that the emergence of overload
container led to significantly waiting time increasing of other
containers, the I/O performance isolation of system is
damaged. As the number of normal containers increases, ΔW
itself does not change much, but the value of ΔSW is rising.
At the same time, we found that the ΔW value of the overload
container is smaller relative to the ΔW value of the normal
container. We propose that the I/O strength of the overload
container should be reduced to maintain I/O performance
isolation of container-based system. And the container with
the highest I/O utilization and read/write speed should be
regulated first for both fairness and effect priority.

4. SYSTEM AND ALGORITHMS DESIGN

4.1 System Design

According to the observations, we found that the I/O
performance isolation of the container-based system is not
guaranteed, especially when overload containers exist, it may
cause strong interference to other containers. So we propose a
system which can dynamically regulates containers’ I/O to
provide I/O performance isolation and I/O load balancing for
the container-based system.

Host OS

Cotainer1 Cotainer2 Cotainer3 Cotainer i

Monitor Module

Algorithm Module

Regulate Overload Container

I/O State

Execution Module

Figure 7. I/O dynamic adjustment system framework

Figure 7 demonstrates the architecture of the system. It is
built on the host OS and composed of 3 major modules:
Monitor Module, Algorithm Module, and Execution Module.

Monitor Module: The module is responsible for collecting
real-time I/O status of all containers running on the host
currently, including IOPS, read/write rate, I/O wait time, the
average length of the request queue, I/O utilization etc. It will
pass this information to the Algorithm Module.

Algorithm Module: The module is responsible for policy
analysis based on the information collected by Monitor

2, 10.4233

1, 0.8275

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

I/
O

 W
ai

t
T

im
e(

M
s)

The Number Of Containers

Normal Containers (Normal&Overload)

Overload Container (Normal&Overload)

Normal Containers (All Normal)

Module. Adjustment algorithms determine whether the I/O
performance isolation of the system will be destroyed. Based
on the algorithm, this module decides if it is necessary to
regulate the containers' I/O, and the corresponding results are
sent to the execution module.

Execution Module: If the result of the algorithm module is
that the I/O performance isolation of the current system needs
to be maintained, then the execution module will perform the
specific operation accordingly and use Cgroups to restrict the
I/O intensity of the overload container appropriately so that
the I/O performance isolation of the container-based system is
maintained.

4.2 Algorithms Design

According to the results of analysis and observations, we
designed the following two dynamic adjustment algorithms
for judging the I/O performance isolation.

4.2.1 SLAE(Service-Level Agreement Ensure) dynamic

adjustment algorithm
In the previous section, we discussed the I/O performance

isolation of container-based system based on the SLA. And
we have experimentally observed that when an overloaded
container generates excessive I/O requests, it may cause I/O
state of other containers fail to meet SLA requirements.

In the SLAE dynamic adjustment algorithm, we use the
SLA requirements of the I/O service as the parameter to
evaluate the isolated damage. Take I/O wait time as an
example. If the overloaded container has caused the I/O Wait
Time of other normal containers exceed the SLA requirements,
we believe that the I/O performance isolation of the current
container-based system has been disrupted. Hence, we
decrease the overall I/O utilization of the system by reducing
the I/O strength of the overload container so that the I/O wait
Time, as well as other parameters of other containers, can be
guaranteed, that is, the I/O performance isolation of the system
is guaranteed.

4.2.2 UTE(Utilization Threshold Ensure) dynamic

adjustment algorithm
Since the multi-container case can be seen as a model of

single-queue and single-server. And experiments verify that
when I/O utilization of the system exceeds a threshold, the
average I/O wait time of the container will be a sharp increase,
then I/O state will be very unstable, which means I/O
performance isolation is poor.

So judging I/O performance isolation of the system can
also depend on the I/O utilization of the system. We can set a
threshold to the I/O utilization of the system. And the
threshold is about 0.7-0.8 according to the observation results.
We know that when the I/O utilization exceeds the threshold,
the I/O wait time of all containers becomes high and the rate
of increase is accelerating, hence the I/O performance
isolation of system is threatened. At this time, the execution
module chooses the container with the highest I/O utilization
in the current running containers and reduces its I/O intensity,
so that the I/O utilization of the system is reduced, the I/O
performance isolation and load balancing of the system are
maintained.

4.2.3 Algorithms comparison
When the service provider and the user have signed the

SLA, the SLAE algorithm should be adopted. If users bought
the service, then the enterprise should ensure the service
quality. For users, if the I/O metrics reach the SLA
requirements, then the I/O service performance is good.
Therefore, if there is a clear SLA requirement, it is
recommended to use the SLAE algorithm.

In the absence of SLA situation, for example, the
container-based system is used to be the operating
environment of applications. The operating conditions of
application are complex and unstable. To ensure I/O load
balancing, the UTE algorithm should be used. Our
experiments show that when the I/O utilization exceeds a
certain threshold, the I/O performance of the applications in
containers will be unstable and drops rapidly. The UTE
algorithm can guarantee I/O performance and load balancing
for container applications in this situation.

4.3 Regulation of Overload Container

Linux's Cgroups mechanism can restrict the I/O strength
of a particular process on a specific device. Each container has
a main process at the host, all application processes within the
container are child processes of the main process. Docker has
assigned a separate disk device for each container, each of disk
devices has its own disk device number. So we can set the
Cgroups group by the specific device number and process ID,
reduce the corresponding container process for their own disk
device I/O strength to achieve the corresponding restriction of
the container’s I/O.

We run three normal I/O containers and a strong overload
I/O container simultaneously. Then we restricted the I/O of the
overload container and study the changes of the I/O wait time
of the three normal containers.

Figure 8. The I/O write speed’s variation of containers

Figure 8 depicts the variation in I/O write speed of the
overload container and the normal containers. We can see that
in the first 10 seconds, the I/O write speed of the overload
container is 4.5Mb/S or so, then it immediately reduced to
about 1 MB/s due to our restriction, and the I/O write speed of
the normal container raised simultaneously.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 1011121314151617181920

I/
O

 W
ri

te
 S

p
ee

d
(K

b
/S

)

Time(S)
Overload Container Normal Containers

Figure 9. Variation of normal containers’ I/O wait time

Figure 9 describes the variation of the average I/O waiting
time. In the first 10 seconds, the average I/O wait time of
normal containers reached 17.7Ms, and the maximum has
exceeded 20Ms due to the high I/O write speed and high I/O
utilization of the overload container. After 10 seconds we
restrict the I/O write speed of the overload container, the I/O
utilization of the system is reduced, we can see the average
I/O wait time of normal containers drops immediately below
5Ms which is an excellent level.

4.4 Summary

In order to improve the I/O performance isolation of the
container-based system, we propose a system which can
dynamically maintain the I/O performance isolation. It
consists of three modules, Monitor Module, Algorithm
Module and Execution Module. We design two judgment
algorithms, the SLAE algorithm and the UTE algorithm, and
we discuss their details as well as usage scenarios. In order to
verify the feasibility of the algorithms, we did the following
experiments. We run an overloaded container and three
normal containers on one host at the same time. We observe
that the overload container greatly influenced on the I/O
performance of other normal containers. We use the Cgroups
mechanism to restrict the I/O intensity of the overload
container. The results show that, we restrict the overload
container’s I/O write rate from 4.5Mb/s to 1Mb/s, so the
average I/O wait time of the normal containers is reduced from
17.7Ms to below 5Ms. The I/O performance isolation of the
container-based system is guaranteed, and the feasibility of the
algorithms is also proved.

5. CONCLUSION AND FUTURE WORKS

The performance isolation is an important issue for the
container-based system. In this paper, we analyzed the
characteristics of I/O performance isolation from the
perspective of the SLA. We observed the variation trend of
containers’ I/O performance parameters under the condition
that multiple containers running simultaneously, and
discussed the impact of the I/O overload container on the I/O
performance isolation of the container-based system. In order
to improve the I/O performance isolation of container system,
we proposed a system that can dynamically maintain the I/O
performance isolation. Besides, we designed two I/O isolation

maintenance algorithms and discussed their usage scenarios.
Moreover, we use Cgroups mechanism to restrict the I/O
strength of the overload container in order to reduce the
impact on other normal containers, so the I/O performance
isolation of the container-based system can be guaranteed, and
the feasibility of the algorithms is also proved.

Our future research is to achieve dynamic maintenance of
I/O isolation systems, and design more algorithms to further
improve the I/O isolation performance. Besides, in order to
comprehensively enhance the performance isolation of the
container-based system, we plan to extend the above ideas to
other shared resources such as CPU and Memory etc.

ACKNOWLEDGMENT

This work is supported by the National Key Technology
R&D Program under Grant (No.2015BAH17F02), the NSF of
China (No. 61572163) and the NSF of China (No. 61602137).

REFERENCES

[1] R. Krebs, C. Momm, and S. Kounev, "Metrics and techniques for
quantifying performance isolation in cloud environments," Science of
Computer Programming, 2012.

[2] M. G. Xavier, I. C. Olivera, F. D. Rossi, and R. D. D. Passos, "A
performance isolation analysis of disk-intensive workloads on
container-based clouds," Euromicro International Conference on
Parallel, 2015, pp. 253-260.

[3] S. Mcdaniel, S. Herbein, and M. Taufer, "A two-tiered approach to I/O
quality of service in docker containers," IEEE International Conference
on Cluster Computing, 2015, pp. 490-491.

[4] P. J. Denning, and J. P. Buzen, "The operational analysis of queueing
network models," Computing Surveys, vol. 10, no. 3, pp. 225-261,
1978.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, "An updated
performance comparison of virtual machines and linux
containers," Lecture Notes in Computer Science, 2014, pp. 438-453.

[6] R. Peinl, F. Holzschuher, and F. Pfitzer. "Docker cluster management
for the cloud - survey results and own solution." Journal of Grid
Computing, vol. 14, no. 2, pp. 1-18, 2016.

[7] D. Bernstein, "Containers and cloud: from LXC to docker to
kubernetes," IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[8] C. Boettiger, "An introduction to docker for reproducible research,"
Acm Sigops Operating Systems Review, vol. 49, no. 1, pp. 71-79, 2015.

[9] A. M. Joy, "Performance comparison between linux containers and
virtual machines," Computer Engineering and Applications IEEE,
2015, pp. 342-346.

[10] D. Merkel, "Docker: lightweight linux containers for consistent
development and deployment," Linux Journal, vol. 2014, no. 239, 2014.

[11] K. T. Seo, H. S. Hwang, I. Y. Moon, O. Y. Kwon, and B. J. Kim,
"Performance comparison analysis of linux container and virtual
machine for building cloud," Networking and Communication, 2014,
pp. 105-111.

[12] J. K. Patel, S. Akhtar, V. K. Agrawal, K. N. Bala, S. Murthy, and A. R.
Manu, “Docker container security via heuristics-based multilateral
security-conceptual and pragmatic study,” IEEE–Iccpct, 2016.

[13] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito,
“Exploring container virtualization in IoT clouds,” IEEE International
Conference on Smart Computing, 2016, pp. 1-6.

[14] R. Dua, A. R. Raja, and D. Kakadia, "Virtualization vs containerization
to support paas," IEEE International Conference on Cloud Engineering,
2014, pp. 610-614.

[15] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” Cloud Computing, 2015, pp. 165-
169.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1011121314151617181920

I/
O

 W
ai

t
T

im
e(

S
)

Time(S)

