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Abstract—Container enables a new way to run applications 

by containerizing the application, which provides kinds of 
services to make them portable, extensible, and easy to be 
transferred between private data centers and public clouds. 
Comparing with virtual machines, containers have several 
advantages in terms of simplicity, low-overhead and light-
weight. However, as the OS kernel and resources are shared by 
all the hosted containers, performance isolation becomes a 
challenging issue for guaranteeing their SLA. 

This paper discusses I/O performance isolation issue in 
container-based clusters. First, we analyze the characteristics of 
I/O performance isolation from the perspective of the SLA. 
Then we conduct the observation experiments using multiple 
containers to obtain the variation trend of the I/O performance 
parameters and observe the impact of the I/O overload 
container on the I/O performance isolation of the system. Finally, 
we propose two algorithms, SLAE and UTE, to improve the I/O 
performance isolation in container-based systems. These 
algorithms contribute to decrease the interference caused by the 
overloaded containers. Experimental results show the feasibility 
and effectiveness of our proposed algorithms. 
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1. INTRODUCTION 

Cloud service provides resources to users through the 
virtual machine [1]. Traditional virtual machine technology is 
based on the host hardware to build a virtualization 
management hypervisor, which allocates resources (CPU, 
memory, etc.) to each virtual machine [9], and each virtual 
machine has its own OS kernel. But this approach adds 
overhead when translates machine instructions from guest to 
host OS [5][14]. 

As the supporting platform that provides the microservice 
architecture for software applications, the container has 
attracted plenty of research attentions in the fields of cloud 
computing and virtualization. Containers, as Docker 
standardizes applications and services, opens another door for 
the operating environment of the application services. 
Compared with the traditional virtual machine, container 
isolates resources and permissions into a sandbox, which 
called a container, and each container is a separate resource 
usage space. Container isolation technology comes from LXC 
[7], it achieves environmental resources isolation by the 
namespaces mechanism and restricts the use of resources by 
the Cgroups mechanism. Namespaces mechanism and 
Cgroups mechanism are provided by the Linux kernel. 

However, because all containers at the same host share one 
OS core and multiple containers running simultaneously, there 
will be inevitably disturbances between containers. To 
improve the performance of container, isolation and safety are 
the key issues that need to be studied and solved.  

The rest of this paper is organized as follows. We 
introduce the background information and analyze the 
characteristics of I/O performance isolation in Chapter 2. 
Chapter 3 shows the variation trends of I/O performance 
parameters and argues the influence of the overload container 
on the I/O performance isolation. Chapter 4 describes a 
prototype system that can dynamically maintains I/O 
performance isolation of the system and illustrates two 
different maintenance algorithms, then verifies the feasibility 
of algorithms. Chapter 5 concludes the paper and discusses 
future works. 

2. BACKGROUND  

2.1 Containers 

The container technology isolates resources and 
permissions into containers. Docker makes isolation for PID, 
UTS, IPC, Network and other environmental resources 
through the NameSpaces mechanism provided by Linux 
kernel, besides, it limits the use of CPU, Memory, I/O and 
other shared resources by leveraging the Cgroups mechanism. 
These constraints can allow containers follow certain rules at 
runtime. 

Docker provides a few commands which use the Blkio in 
Cgroups mechanism to restrict containers' I/O usage. There 
are three groups of I/O configurations available in Docker so 
far. The first group is: --blkio-weight, which can set the I/O 
weight for a container. The second group is: --device-
write/read-bps, which can limit the read/write rate (bytes per 
second) from/to a device. The last group is: --device 
write/read-iops, which can limit read/write rate (I/O per 
second) from/to a device for a container. 

Although Docker provides several ways to restrict the use 
of the container’s I/O. But it requires the admin estimate the 
I/O usage of the container first, and then admin use the above 
methods to restrict the I/O of the container. This kind of 
method is obvious hysteresis and uncertainty, especially when 
I/O competition becomes intense and complex. Current 
container management software such as the popular 
Kubernetes, a tool for scheduling and managing containers [7]. 
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The smallest unit for managing of Kubernetes is a Pod, which 
is a set of containers, Kubernetes is responsible for completing 
their management. The main purpose of the container-based 
cloud management software is to cluster the deployment and 
management of containers. However, there is no specific 
guarantee for the isolation between containers on the host OS. 

Sean McDaniel et al. [3] proposed a two-tiered approach 
to guarantee I/O quality of service in Docker containers. They 
thought that combining the node-level QOS and the cluster-
level QOS together will have better load balancing and higher 
resource utilization. Miguel Xavier et al. [2] found the 
container-based system is not yet mature to ensure 
performance isolation among disk-intensive workloads. To 
address this problem, they [2] proposed to combine different 
types of loads on containers to reduce the interaction. Their 
results suggest the combination of CPU intensive and I/O 
intensive to alleviate the performance impacts, rather than a 
combination of disk-intensive and memory-intensive. 

2.2 Isolation 

2.2.1 I/O Performance Isolation based on SLA 
In general, cloud providers are responsible for guarantee 

the SLA for their users. They will allocate the number of 
containers and the resource cap in order to ensure that the SLA 
requirement of all the containers on the host can be satisfied 
at the same time. But if some users or applications produce 
excessive load, it is possible that the balance is destroyed and 
other containers' performance is influenced.  

Based on the SLA, we can classify the I/O performance 
isolation of container-based system into two categories as 
follows:  

Poor I/O Performance Isolation: When the multi-container 
running on the host, the I/O interference between containers is 
very strong, and the I/O state of the container is easy to change. 
Especially when some containers produce overload I/O 
operations, it will cause other containers’ I/O performance fail 
to reach the SLA requirement, such as I/O wait time and IOPS. 
In this case we believe that the I/O performance isolation of 
the container-based system is poor. 

Excellent I/O performance isolation: When the multi-
container running on the host, the I/O interference between 
containers is very weak, and the I/O state of the container is 
very stable. Even if some containers produce overload I/O 
operations, because the system has a good I/O performance 
isolation, it will still guarantee other containers’ I/O 
performance reach the SLA standard. In this case we believe 
that the I/O performance isolation of the container-based 
system is excellent. 

2.2.2 WorkLoad Model 
We can treat containers as processes that produce I/O, 

since they share one OS kernel, we can assume the I/O queue 
is a shared service queue. So the system can be viewed as the 
M/M/1 model that have single-queue and single-server. 

In the M/M/1 model of single-queue and single-server, we 
know W = S/(1-U) according to Litte's Law and Utilization 
Law [4]. Where W is the job wait time, U is the utilization of 
the system, and S is the actual service time of the job. Based 

on the equation, we can observe that the higher current disk 
device I/O utilization is, the greater the I/O delay will be, and 
when the utilization exceeds a certain threshold or so, the I/O 
wait time will appear rapid growth.  

3. PERFORMANCE TRENDS AND IMPACT ANALYSIS 

3.1 Experimental Setup 

3.1.1 Experimental Environment 
We use a node server as a host, the node has 16 AMD 

Opteron(TM) Processor 6136 CPU and 32GB of Memory 
capacity, and it equipped with CentOS7 and Docker 1.12.5.  

3.1.2 Experimental Content 
We execute the script file in the container to generate the 

I/O request to write the file. The rate of script writing is 
relatively small, so we use the Linux DD command to simulate 
the overload I/O case. It is worth noting that the I/O should 
avoid Buffer for the accuracy of the observation. 

The observation is mainly divided into two parts. The first 
part we open a number of containers on the host while running 
the script file to generate write I/O, the variable is the number 
of growing containers, meanwhile observing the trend of the 
I/O indicators. The second part of the experiment, we run a 
number of normal containers coupled with a container 
generate high I/O load to observe the effect of overload 
container on the I/O performance for other normal containers. 
Since each container has a specific disk device number, so we 
observe the I/O of the corresponding container through the 
disk device. 

3.2 Results And Analysis 

3.2.1 IOPS, write rates show a decreasing trend of power 

function 

 

Figure 1. Variation trend of I/O write operations/s 

We allow each container to achieve the same I/O load. As 
we can see from Figure 1, with the number of containers 
increased from 1 to 20, the average I/O write operations is 
reduced from 328 times per second to 27 times per second. 
The real data trend is a solid line, the whole process fits closely 
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the decline of the power function, rather than fits other 
functions. 

 

Figure 2. Variation trend of I/O write speed  

Similarly, in the above case, we can see from Figure 2, 
the average write speed of each container also shows a similar 
exponential decline trend. On our machine, the write speed 
decreased from 1658Kb/s to 139Kb/s. The real data trend is 
the solid line and the fitting curve is represented by the dotted 
line.  

3.2.2 I/O utilization, the length of wait queue fit 

logarithmic function growth trend 

 
Figure 3. Variation trend of I/O utilization 

From Figure 3 we can see that with the number of 
containers increased from 1 to 20, the average I/O utilization 
of disk device increased from 26.98% to 92%. The variation 
trend of real data is the solid line, we fit the whole process 
very close to the growth of the logarithmic function, rather 
than other functions. 

 

Figure 4. Variation trend of I/O queue size 

Similarly, in the above case, we can see from Figure 4, the 
waiting queue length of containers is also growth as the 
logarithmic function. On our machine, the length of the I/O 
queue increased from 0.268 to 0.94. The real variation trend 
of the data is the solid line and the fitting curve in the graph 
with the dotted line. 

3.2.3 The I/O utilization exceeds a certain threshold, then 

wait time soared 
We increase I/O utilization of the system by increasing the 

number of containers, and observe the relationship between 
the I/O utilization and I/O wait time. 

 

Figure 5. Variation trend of I/O utilization and wait time 

As Figure 5 shows, with the increase of containers, the I/O 
utilization increases from 27% to 92%. And the wait time is 
close to a linear growth before the I/O utilization reaches 70%-
80%. When the I/O Utilization is 71%, the average I/O wait 
time is about 5.9Ms. However, when the I/O utilization 
exceeds 70%-80%, the wait time grows rapidly near the 
exponential function. Soon the wait time is up to 30Ms or 
more, which is far exceeded the upper limit of SLA for a 
normal disk I/O. 

1, 1658

20, 139.7069444

y = 2268.3x-0.886

0

500

1000

1500

2000

2500

0 5 10 15 20 25

I/
O

 W
ri

te
 S

p
ee

d
(K

b
/S

)

The Number Of Containers

real trend linear function

exp function power function

1, 26.9875

20, 92.54138889

y = 21.83ln(x) + 32.621

0

20

40

60

80

100

120

0 5 10 15 20 25

I/
O

 U
ti

li
za

ti
o

n
(%

)

The Number Of Containers

real trend linear function

power function log function

1, 0.26875

20, 0.940027778

y = 0.2273ln(x) + 0.3224

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

I/
O

 Q
u

eu
e 

S
iz

e

The Number Of Containers

real trend linear function

power function log function

71.28333333, 5.946222222

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

I/
O

 W
ai

t 
T

im
e(

M
s)

I/O Utilization(%)



3.2.4 Overloaded container will cause damage to the I/O 

performance isolation of the system 

 

Figure 6. Variation trend of I/O wait time when all normal containers and 

one overloaded container & some normal containers 

Figure 6 describes the impact of a container with a high 
I/O utilization on the performance of other normal containers. 
If the I/O loads of all hosted containers are normal, with the 
increase of containers, we can see the variation trend of I/O 
wait time fits a slow growth of a linear. When running 1-9 
normal containers with an overloaded container, the result 
shows that the overload container resulted in a significant 
increase in the I/O wait time of the normal containers, while 
the change in the overload container is small. 

Here we define ΔW = W_New – W_Pre, which represents 
the change in the I/O wait time of one container. W_New 
indicates the I/O wait time of the container before the overload 
container appears, W_Pre indicates the I/O wait time of the 
container after the overload container appears, it can reflect 
the impact of container’s I/O performance. The large ΔW 
shows big impact, the small ΔW shows small impact. And we 
use ΔSW to indicate the size of I/O performance isolation of 
the system that has m containers when the I/O strength of the 
container n grows. The more containers the system has, the 
more susceptible the system’s I/O isolation is. The smaller 
ΔSW is, the more excellent the system isolation is. 

ΔSW = ∑ ΔWi0≤ 𝑖 ≤ 𝑚
𝑖!=𝑛 

 

When there is only one normal container, the I/O wait time 
is approximately 0.82Ms. After an overloaded container 
appears, the I/O wait time of the normal containers rises 
immediately to 10.4Ms, at this time ΔM = 10.94-0.82 = 
10.1Ms, while the I/O wait time of overload container rises 
from 4.7Ms (running alone) to 6.9Ms, the ΔM is only 2.2Ms. 
With the increase of containers, the ΔM of each container 
changes only a little, while the ΔSM is growing fast because 
of the increase in the number of containers. 

3.3 Summary 

In order to gain a deeper understanding of the trend in the 
I/O performance and the intrinsic relationship between the I/O 

parameters in the container system, we summarized some of 
the above meaningful conclusions as follow. We found that as 
the number of containers grows, IOPS, write rates show a 
decreasing trend of the power function. The reason why they 
are not a linear is due to the presence of I/O kernel scheduling. 
Meanwhile, we found that I/O utilization and the length of 
wait queue present logarithmic function growth trend. Then 
we run normal containers and add an overloaded container at 
the same time. The observation parameter is the I/O wait time 
which is universality, we find that the emergence of overload 
container led to significantly waiting time increasing of other 
containers, the I/O performance isolation of system is 
damaged. As the number of normal containers increases, ΔW 
itself does not change much, but the value of ΔSW is rising. 
At the same time, we found that the ΔW value of the overload 
container is smaller relative to the ΔW value of the normal 
container. We propose that the I/O strength of the overload 
container should be reduced to maintain I/O performance 
isolation of container-based system. And the container with 
the highest I/O utilization and read/write speed should be 
regulated first for both fairness and effect priority. 

4. SYSTEM AND ALGORITHMS DESIGN 

4.1     System Design 

According to the observations, we found that the I/O 
performance isolation of the container-based system is not 
guaranteed, especially when overload containers exist, it may 
cause strong interference to other containers. So we propose a 
system which can dynamically regulates containers’ I/O to 
provide I/O performance isolation and I/O load balancing for 
the container-based system. 

Host OS

Cotainer1 Cotainer2 Cotainer3 Cotainer i

Monitor Module

Algorithm Module

Regulate Overload Container

I/O State

Execution Module

 
Figure 7. I/O dynamic adjustment system framework 

Figure 7 demonstrates the architecture of the system. It is 
built on the host OS and composed of 3 major modules: 
Monitor Module, Algorithm Module, and Execution Module. 

Monitor Module: The module is responsible for collecting 
real-time I/O status of all containers running on the host 
currently, including IOPS, read/write rate, I/O wait time, the 
average length of the request queue, I/O utilization etc. It will 
pass this information to the Algorithm Module. 

Algorithm Module: The module is responsible for policy 
analysis based on the information collected by Monitor 
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Module. Adjustment algorithms determine whether the I/O 
performance isolation of the system will be destroyed. Based 
on the algorithm, this module decides if it is necessary to 
regulate the containers' I/O, and the corresponding results are 
sent to the execution module. 

Execution Module: If the result of the algorithm module is 
that the I/O performance isolation of the current system needs 
to be maintained, then the execution module will perform the 
specific operation accordingly and use Cgroups to restrict the 
I/O intensity of the overload container appropriately so that 
the I/O performance isolation of the container-based system is 
maintained. 

4.2    Algorithms Design 

According to the results of analysis and observations, we 
designed the following two dynamic adjustment algorithms 
for judging the I/O performance isolation. 

4.2.1  SLAE(Service-Level Agreement Ensure) dynamic 

adjustment algorithm 
In the previous section, we discussed the I/O performance 

isolation of container-based system based on the SLA. And 
we have experimentally observed that when an overloaded 
container generates excessive I/O requests, it may cause I/O 
state of other containers fail to meet SLA requirements. 

In the SLAE dynamic adjustment algorithm, we use the 
SLA requirements of the I/O service as the parameter to 
evaluate the isolated damage. Take I/O wait time as an 
example. If the overloaded container has caused the I/O Wait 
Time of other normal containers exceed the SLA requirements, 
we believe that the I/O performance isolation of the current 
container-based system has been disrupted. Hence, we 
decrease the overall I/O utilization of the system by reducing 
the I/O strength of the overload container so that the I/O wait 
Time, as well as other parameters of other containers, can be 
guaranteed, that is, the I/O performance isolation of the system 
is guaranteed. 

4.2.2 UTE(Utilization Threshold Ensure) dynamic 

adjustment algorithm 
Since the multi-container case can be seen as a model of 

single-queue and single-server. And experiments verify that 
when I/O utilization of the system exceeds a threshold, the 
average I/O wait time of the container will be a sharp increase, 
then I/O state will be very unstable, which means I/O 
performance isolation is poor. 

So judging I/O performance isolation of the system can 
also depend on the I/O utilization of the system. We can set a 
threshold to the I/O utilization of the system. And the 
threshold is about 0.7-0.8 according to the observation results. 
We know that when the I/O utilization exceeds the threshold, 
the I/O wait time of all containers becomes high and the rate 
of increase is accelerating, hence the I/O performance 
isolation of system is threatened. At this time, the execution 
module chooses the container with the highest I/O utilization 
in the current running containers and reduces its I/O intensity, 
so that the I/O utilization of the system is reduced, the I/O 
performance isolation and load balancing of the system are 
maintained. 

4.2.3    Algorithms comparison 
When the service provider and the user have signed the 

SLA, the SLAE algorithm should be adopted. If users bought 
the service, then the enterprise should ensure the service 
quality. For users, if the I/O metrics reach the SLA 
requirements, then the I/O service performance is good. 
Therefore, if there is a clear SLA requirement, it is 
recommended to use the SLAE algorithm. 

In the absence of SLA situation, for example, the 
container-based system is used to be the operating 
environment of applications. The operating conditions of 
application are complex and unstable. To ensure I/O load 
balancing, the UTE algorithm should be used. Our 
experiments show that when the I/O utilization exceeds a 
certain threshold, the I/O performance of the applications in 
containers will be unstable and drops rapidly. The UTE 
algorithm can guarantee I/O performance and load balancing 
for container applications in this situation. 

4.3     Regulation of Overload Container 

Linux's Cgroups mechanism can restrict the I/O strength 
of a particular process on a specific device. Each container has 
a main process at the host, all application processes within the 
container are child processes of the main process. Docker has 
assigned a separate disk device for each container, each of disk 
devices has its own disk device number. So we can set the 
Cgroups group by the specific device number and process ID, 
reduce the corresponding container process for their own disk 
device I/O strength to achieve the corresponding restriction of 
the container’s I/O. 

We run three normal I/O containers and a strong overload 
I/O container simultaneously. Then we restricted the I/O of the 
overload container and study the changes of the I/O wait time 
of the three normal containers. 

 

Figure 8. The I/O write speed’s variation of containers 

Figure 8 depicts the variation in I/O write speed of the 
overload container and the normal containers. We can see that 
in the first 10 seconds, the I/O write speed of the overload 
container is 4.5Mb/S or so, then it immediately reduced to 
about 1 MB/s due to our restriction, and the I/O write speed of 
the normal container raised simultaneously. 
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Figure 9. Variation of normal containers’ I/O wait time 

Figure 9 describes the variation of the average I/O waiting 
time. In the first 10 seconds, the average I/O wait time of 
normal containers reached 17.7Ms, and the maximum has 
exceeded 20Ms due to the high I/O write speed and high I/O 
utilization of the overload container. After 10 seconds we 
restrict the I/O write speed of the overload container, the I/O 
utilization of the system is reduced, we can see the average 
I/O wait time of normal containers drops immediately below 
5Ms which is an excellent level. 

4.4    Summary 

In order to improve the I/O performance isolation of the 
container-based system, we propose a system which can 
dynamically maintain the I/O performance isolation. It 
consists of three modules, Monitor Module, Algorithm 
Module and Execution Module. We design two judgment 
algorithms, the SLAE algorithm and the UTE algorithm, and 
we discuss their details as well as usage scenarios. In order to 
verify the feasibility of the algorithms, we did the following 
experiments. We run an overloaded container and three 
normal containers on one host at the same time. We observe 
that the overload container greatly influenced on the I/O 
performance of other normal containers. We use the Cgroups 
mechanism to restrict the I/O intensity of the overload 
container. The results show that, we restrict the overload 
container’s I/O write rate from 4.5Mb/s to 1Mb/s, so the 
average I/O wait time of the normal containers is reduced from 
17.7Ms to below 5Ms. The I/O performance isolation of the 
container-based system is guaranteed, and the feasibility of the 
algorithms is also proved. 

5. CONCLUSION AND FUTURE WORKS 

The performance isolation is an important issue for the 
container-based system. In this paper, we analyzed the 
characteristics of I/O performance isolation from the 
perspective of the SLA. We observed the variation trend of 
containers’ I/O performance parameters under the condition 
that multiple containers running simultaneously, and 
discussed the impact of the I/O overload container on the I/O 
performance isolation of the container-based system. In order 
to improve the I/O performance isolation of container system, 
we proposed a system that can dynamically maintain the I/O 
performance isolation. Besides, we designed two I/O isolation 

maintenance algorithms and discussed their usage scenarios. 
Moreover, we use Cgroups mechanism to restrict the I/O 
strength of the overload container in order to reduce the 
impact on other normal containers, so the I/O performance 
isolation of the container-based system can be guaranteed, and 
the feasibility of the algorithms is also proved. 

Our future research is to achieve dynamic maintenance of 
I/O isolation systems, and design more algorithms to further 
improve the I/O isolation performance. Besides, in order to 
comprehensively enhance the performance isolation of the 
container-based system, we plan to extend the above ideas to 
other shared resources such as CPU and Memory etc. 
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