
An Ontology-based Knowledge Management
System for Software Testing

Shanmuganathan Vasanthapriyan†, Jing Tian∗, Dongdong Zhao‡,Shengwu Xiong§ and Jianwen Xiang∗
Hubei Key Laboratory of Transportation Internet of Things

School of Computer Science and Technology
Wuhan University of Technology

Wuhan, P.R. China
Email: priyan@appsc.sab.ac.lk , {jtian*,zdd,xiongsw,jwxiang*}@whut.edu.cn

Abstract—Software testing is an important activity in quality
assurance and it generates large amount of knowledge. Soft-
ware testers need to gather domain knowledge to be able to
successfully conduct a software testing activity. Not having a
proper knowledge base within its own context by software testing
environments cause software testers to query limited knowledge
available or consult peer software testers, which would greatly
impact on their decision-making process. Ontologies emerge as
one of the more appropriate knowledge management tools for
supporting knowledge representation, processing, storage and
retrieval. Given great importance to knowledge for software
testing, and the potential benefits of managing software testing
knowledge, using semantic web technologies, ontology based
knowledge management system is developed. A Software testing
knowledge sharing ontology is designed to describe software test-
ing domain knowledge. SPARQL is used as the query language
to retrieve software testing knowledge from the semantic storage.
Both Ontology experts and non-experts evaluated the developed
ontology. We believe our software testing ontology can support
other software organizations to improve the sharing of knowledge
and learning practices.

Keywords—software testing ontology, software testing knowl-
edge, ontology based knowledge management system, knowledge
sharing.

1 2

I. INTRODUCTION

Software testing is a sub area of software engineering which
is also a knowledge intensive and collaborative activity[1][2].
Knowledge can be applied to different testing tasks and
purposes. Since software development is an error prone task, to
achieve quality software products, Validation and Verification
should be carried throughout the development[3]. As software
testers, they would be familiar with the several software testing
methods and considerably aware of the software development
models, need information relevant to their context. For in-
stance, software testers may either need assistance on a test
case design information relevant to a similar project which was
handled previously for testing purposes or to design a test case.
Moreover, this information would also have a greater impact
on their decision-making process. Importantly, during the soft-
ware testing activities a huge amount of knowledge is being
continuously produced and consumed. But, the approaches

1DOI Reference Number: 10.18293/SEKE2017-020
2*Corresponding Authors

are limited and less employed to capture this knowledge and
manage inside the organization to facilitate software testers.
Our previous study results revealed some of the issues such as,
outdated knowledge in the repositories, un structured internal
documents and varied formats, less accessing facilities and
lack of targeted delivery methods. Hence, efficient mechanisms
for capturing, representing, reusing, and sharing the software
testing knowledge involved are sorely needed.

According to Gruber[4], an ontology is an explicit specifi-
cation of a conceptualization. Ontology provides a structured
view of domain knowledge and acts as a repository of concepts
in the domain. Recently, ontologies and Semantic Web tech-
nologies have received more attention and been gradually used
in the knowledge representation[5]. Given great importance
to knowledge for software testing, and the potential benefits
of managing software testing knowledge, using semantic web
technologies, ontology based knowledge management system
is developed.

The context has also been decided to confine the study to
a particular Sri Lankan software development company. The
key reasons are based on the geographical location of the
researcher, practicality and ease of access to those software
development companies and comparability of research data
due to company’s same jurisdiction, same economic and reg-
ulatory regimes governing their operation. Further, we briefly
explain each type of the high-level concepts based on IEEE
829-2008[6], also known as the 829 Standard for Software
and System Test Documentation and ISTQB (International
Software Testing Qualifications Board)[7]. Even though the
standard specifies the procedures of software testing, we have
also included what software company is stipulating in it’s
practice.

The remainder of this paper is organized as follows. Suc-
cinct analysis of related research is presented in the second
section. Section 3 discusses software testing ontology in detail.
Development of knowledge management portal to manage
software testing knowledge is discussed in Section 4. Section
5 discusses the evaluation of the ontology developed under
two points-of-view: domain experts and non-experts. Finally,
Section 6 concludes the paper and presents directions for
future work.



II. RELATED WORK

A number of overviews of work on knowledge management
in software testing have previously been published. The re-
search carried out by Wei and Ying[8] discussed the proposal
of implementing test knowledge management framework in
iDEN phone software system testing and how the knowledge
management approach can benefit the testing team in terms
of cost and productivity. A reusable test case knowledge
management model is proposed by Li and Zhang [9] to support
the knowledge reuse based on the ontology representation of
reusable test cases so that the test engineers can retrieve and
reuse test cases flexibly. Douglas [10] proposed to investigate
an open-standard based approach to the sharing of test results
in the form of digital objects. Such an approach would not
only reduce the needless replication of tests that occurs when
there are no public records of previous tests conducted, but it
would also allow the accumulation of a good deal of evidence
to support certain usability design patterns and guidelines.
Reference Ontology on Software Testing (ROoST) which was
developed managing relevant knowledge to reuse is difficult
and it requires some means to represent and to associate se-
mantics to a large volume of test information[11].Bajnaid[12]
proposed an SQA ontology that represents both domain and
operational knowledge which provides consistent support to
communicate between people and software agents but does
not eliciting anything related to software testing process.

III. DESIGNING OF SOFTWARE TESTING DOMAIN
ONTOLOGY

A. Describing the Software Testing Process

Software testing process contains TestPlanning for plan-
ning tests, TestCaseDesign for test case construction, and
test execution TestExecution for execution of test cases and
producing ActualResult, and TestResultAnalysis for analysis
and evaluate the test results [13]. In addition, our software
testing process includes Test Design Techniques, Test Levels,
Artifacts, TestEnviorment ( includes hardware, software and
Human resources) and Static Testing Techniques.

A TestPlan is produced during the TestPlanning activity.
TestCaseDesign activity targets to design a TestCase. During
the TestCaseDesign, if a Test Design Techniques is used then
the following axiom can be defined for TestCaseDesign to
design any TestCase as follows.

∀ tc:TestCase, tdt:TestDesignTechnique ,
tcd:TestCaseDesign hasDesignAccordingTo(tc,tdt) and
isGeneratesTestCase(tcd,tc)−→ isAdopts (tcd,tdt)

Several Artifacts have been used to derive test cases in
software testing which describes the functionalities, architec-
ture, and design of software. Such Artifacts are used as Test-
CaseDesignInput during the software TestCaseDesign activity
and the output is test cases. Test cases can be documented as
described in the IEEE 829-2008 documentation. The document
that describes the steps to be taken in running a set of tests

(and specifies the executable order of the tests) is called a
test procedure in IEEE 829. Besides, Test case contains a set
of input values (TestCaseInput), execution preconditions, ex-
pected results (Expected Result) and execution post conditions,
developed for a particular objective or test condition, such as
to exercise a particular program path or to verify compliance
with a specific requirement.

That is, a test case targets to test a Code To be Tested .
Code To be Tested can be any programs, modules, and the
whole system code. Furthermore, Test Code is a portion of
code that is to be run for executing a given set of test cases,
contain three subtypes such as Test Script, Driver and Stub.

Test Execution activity executes any Test case. Test
Execution requires as input the Test Code to be run and the
Code To Be Tested. Notably, both Test Code and Code To
Be Tested are needed for Test Execution activity. This can
be illustrated in an axiom as follows.

∀ te:TextExecution, tc:TestCase hasExecutesTest-
Cases(te,tc) −→ ( ∃ tcode:TestCode, CodeTobeTest:
CodeToBeTested) uses (te,tcode)

∧
isContainedOf(tcode,tc)∧

uses (te,CodeTobeTest)
∧

hasCodeTobeTested( tc,tcode)

The output of the Test Execution activity is the Test
Result. Each of the Test Result is particularly related to a
TestCase. Test Result may be related to an Actual Result,
for a particular TestCaseInput and ExpectedResult. Test
Execution also can be elaborated necessary and sufficient
axioms in Protégé 5.1 as follows.

hasExecutesTestCases only (TestCase and
(hasTestCaseExpectedResult some ExpectedResult))

A test execution can run and achieve a result ( Actual
Result ), but it can also fail, and generating a Test Issue .
Thus, a Test Result contains either an Actual Result, or Test
Issue or both. This can be expressed using the following
axiom.

∀ TestR:TestResult −→ (∃ ActResult:ActualResult, Issue:
TestIssue) (ActualResult(ActResult)

∨
(TestIssue(Issue))

∧
isGenarates(ActResult,Issue)

Further, Test Issue Report, could report this event in detail,
which requires investigation. Finally, during a Test Result
Analysis, Test Results are analyzed and a Test Analysis
Report is produced.

B. Ontology Engineering Approach

Ontology engineering approach investigates the principles,
methods and tools for initiating, developing and maintaining
ontologies[14]. In literature, many methodologies have been
proposed until now to build an ontology[15], [16], [17], but
we considered the Grüninger and Fox methodology[18], which
considered a formal approach to design ontology as well as
providing a framework for evaluating the adequacy of the



developed ontology. This methodology focuses on building on-
tology based on first-order logic (FOL) by providing strong se-
mantics. In our scenario, we introduce Description Logic(DL)
which is a decidable fragment of FOL since we are designing
with OWL 2 Web Ontology Language[19] for sematic web.
The widely-used Protégé system (http://protege.stanford.edu)
has recently been extended with support for the additional
constructs provided by OWL2[20].

C. Contextual Information

We describe ”context specific”[21] to the software testers
belonging to a leading software company in Sri Lanka and
the approach which will be used to design the ontology
to provide context-specific information and knowledge to
software testers. To identify software tester’s context clearly,
we have extracted domain specific knowledge of software
testing ontologies from existing literature and interviewed the
software testing experts belonging to a particular company.

D. Competency Questions(CQs)

Competency Questions (CQ) are a set of questions that the
ontology must be capable of answering using its axioms[18].
Thus, these CQs work as requirement’s specification of the
software testing ontology. With a set of CQs at hand, it is
possible to know whether an ontology was created correctly, if
it contains all the necessary and sufficient axioms that correctly
answer the CQs. Some of the CQs used are shown in Table
III.

TABLE I
TESTER’S INFORMATION NEEDS IN CONTEXT (I.E. COMPETENCY

QUESTIONS)

Tester’s Information Needs in Context (i.e. Competency Questions)
List out the human resources available in a testing activity?
Suitable test case design techniques for a given scenario?
What are the Test Levels described in software testing?
To which Test levels a particular TestDesignTechnique could be ap-
plied?
What kind of test automated software tools are available for use in your
testing process?
Which Suitable Hardware Resources available for a given TestPlan?
What is the project name in which particular testing activity occurred?
What are the testing artifacts used in a testing activity?
What are the testing artifacts produced in a testing activity?
What are the testing objects used in a testing activity?

E. Ontology Components

At the first instance, high-level ontology concepts, their
properties and their relationships should be identified. The
basic high level ontology concepts are identified as Test En-
vironment ,Testing Activities, Static Testing Techniques, Test
Design Techniques, Test Objects, Test Level, Testing Artifacts
and Organizational Team. For example, the concept Organi-
zational Team having the properties of TeamID, TeamName,
Team Size and Team Type. Secondly, sub classes of the high-
level ontology concepts, their properties and relationships are
also defined. For example, Test Environment has Human Re-
source, Software Tools and Hardware as it’s sub classes. These

sub classes are related to their superclass by is a relation.
Artifact concept is mapped to disjoint and equivalent in OWL
subclasses. During the modeling of software testing domain
ontology, some special types of axioms such as Instantiation,
Assertion, Subsumption, Domain, Range and Disjointness are
included. The classes have been created in Protégé 5.1 can be
described by necessary and sufficient conditions as illustrated
in Table II.

TABLE II
NECESSARY AND SUFFICIENT CONDITIONS WRITTEN IN PROTÉGÉ 5.1

Testing Activities Axioms written in Protégé 5.1 for Equivalent
Classes

TestCaseDesign (isGeneratesTestCase only TestCase) and (isGen-
eratesTestCase min 1 TestCase)

TestExecution hasExecutesTestCases only (TestCase
and (hasTestCaseExpectedResult some
ExpectedResult))

TestPlanning (hasCreatesTestPlan some TestPlan) and (hasCre-
atesTestPlan only TestPlan)

TestResultAnalysis hasEvaluatesTestCases some (TestCase and
(hasTestActualResult some ActualResult))

IV. DEVELOPMENT OF SOFTWARE TESTING KM PORTAL

As mentioned before, ontologies are powerful mechanism
for representing knowledge presented in semantic web. The
ontology and semantic web technologies provide powerful
reasoning capabilities. In this section, we describe the ontology
based knowledge management system to manage software
testing knowledge, built upon the Java J2EE distributed com-
ponent environment.

Fig. 1. Design of Knowledge Management Portal

Our KM Portal design consists of Experience Sharing,
Ontology, Knowledge Retrieval, Storage and Reasoning Layer
and is shown in Figure 1. The class diagram of Knowledge
Sharing Portal is shown in Figure 2. We have implemented
as a starting point of specifying the Knowledge Management
Portal. Importantly, our presented concepts, properties and



relationships here are identified according to the characteristics
of the particular organization’s software testing environment.

A. Ontology Layer

The ontology layer has our ontology which includes domain
rules, axioms etc. Using the Protégé Ontology Editor 5.1,
these concepts and their relationships were partly described
in section III.

B. Experience Sharing Layer

Through the Experience Sharing layer, software testers can
annotate their testing knowledge with the support of ISTQB
and IEEE 829-2008 terms. Once the knowledge is shared, such
knowledge is transformed by the semantic data generator into
the semantic data in a machine-understandable format of triple
structure.

C. Storage Layer

We used Triple-store, which stores RDF triples and are
queried using SPARQL. Jena TDB[22] has been selected to
use in this study because it is a component of Jena for RDF
storage and query. Importantly, it supports the full range of
Jena APIs and can be used as a high performance of RDF
store on a single machine.

D. Reasoning Layer

The Semantic Web Rule Language (SWRL) is based on
a combination of OWL with the Rule Markup Language
which provides inference capabilities[23] from existing OWL
ontology. Rules in SWRL reason about OWL instances in
terms of OWL classes and properties. Importantly, such rules
express more complex relationships and restrictions between
concepts. Software Testing rules were generated with Protégé
SWRL Editor that is a plugin in Protégé environment and with
the support of the Jess Rule Engine.

E. Knowledge Retrieval Layer

To show how our ontology can be used to share soft-
ware testing knowledge collected from software testers, the
Knowledge Retrieval Layer includes two functionalities that
use Semantic Web technologies: (1) basic search, and (2) Ad-
vanced Search. SPARQL(SPARQL Protocol And RDF Query
Language) has been used as the query language to retrieve
software testing knowledge from the semantic data storage.
The basic search provides a simple triple pattern matching
service, which is one of the most frequently used functions for
searching documents in the Semantic Web. Besides, Advanced
Search Option includes, logical operators (AND or NOT or
OR), so that user can combine different options to retrieve
knowledge.

V. ONTOLOGY EVALUATION

The quality of an ontology should be verified and validated
before it is used in practice to avoid defects[24]. Further,
such validation process will prevent contain ontology with
anomalies or pitfalls, inconsistent incorrect and redundant
information. Our evaluation of the ontology is carried out in

three methods such as internal(using reasoners and OOPS!),
ontology expert method and non-expert methods. Importantly,
Protégé inbuilt reasoners such as FaCT++ 1.6.5 and HermiT
1.3.8.413 were used to check the internal consistency and
inferences. OOPS!( http://oops.linkeddata.es/) is an online
ontology evaluator has been used for our context to detect
potential pitfalls that could lead to modelling errors, before
ontology has been deployed in the end-user application. This
method evaluates human understanding, logical consistency,
modelling issues, ontology language specification, real world
representation and semantic applications from the developed
ontology[24]. Table III summarizes the pitfalls encountered,
along with a brief description and the way each one of
them was handled. There were three levels such as Critical,
Important and Minor. Critical level is very crucial and it must
be corrected in order to avoid ontology inconsistency. To make
ontology nicer both Minor and Important cases were corrected.

TABLE III
PITFALL DESCRIPTION AND SOLUTION PROPOSED

Pitfall Description Solution Proposed
Missing Annota-
tion (256 cases |
Minor)

Ontology terms lack anno-
tation properties that could
improve the understanding
of the ontology

Included the
ontology annotation
properties

Missing domain
or range in
properties ( 7
cases |Important)

Relationships and (or) at-
tributes without domain or
range are included.

Restored missing
domains.

Missing Inverse
Relationships (14
cases| Minor)

When a relation has
non-inverse relationship
defined

Included
Missing inverse
relationships

Defining
wrong inverse
relationships. (6
cases | Critical)

Relationships are defined
as inverse relations when
they are not necessarily in-
verse.

They were removed
to improve the ex-
pressiveness

Expert evaluation activity is performed by two ontology
experts who have a good understanding of software testing.
Even though there were many methods discussed to evalu-
ate ontologies, our ontology experts considered Vocabulary,
Syntax, Structure, Semantics, Representation and Context to
perform evaluation[25]. The main objectives of expert evalu-
ation are (a) whether the software testing ontology meets its
requirements, standards, representation of concepts, relation-
ships among them (b) coverage of the software testing domain
and (c) checking for internal consistencies. The following
suggestions and improvements were highlighted by the ontol-
ogy experts: (a) Need of Annotations, renaming of concepts
to standard methods. (b)Improving the relationship names,
removing redundant relationships, some of the relationship
were not mentioned, adding of association relationships which
were missing. All such suggestions, comments were taken
into consideration and implemented in the software testing
ontology.

To carry out our first industrial application based evalua-
tion from software testing experts, the developed Knowledge
Management Portal was hosted locally inside one software
company in Sri Lanka. A separate questionnaire was designed



SoftwareTestingProcess

+STP_ProjectName:String
+STP_ProjectDescription:String
+STP_ProjectStartDate:Date
+STP_ProjectEndDate

HardwareEnvironment

+HE_Description:String

ToolsForTesting 

+SE_ToolName:String
+SE_ToolType:ToolType
+SE_ToolVersion:String
+SE_ToolDescription:String

hasTestEnvionemnt

hasTestToolSupport

TestCase

+TestCace_ID:String
+TestCase_Name:String
+TestCase_Severity:Severity
+TestCase_Priority:Priority
+TestCase_PreCondition:String
+TestCase_Description
+TestCase_Designed_Date:Date
+TestCase_Executed_Date:Data

hasTestCase

HumanResource

+Human_ID:String
+Human_Name:String
+Human_Role:Role
+Human_TechCompetency:String
+Human_WorkingHours:Integer
+Human_YearsOfExperience:Integer

TestCode

+TestCodeDesc:String
+FileNameDesc:String

CodeTobeTested

+CodeDesc:String
+FileNameDesc:String

isPerformToolSupport

hasImplementsOn

hasTestCaseCreatedBy/
hasTestCaseExecutedBy

TestDesignTechnique

+TestTechniqueType:TestTechnique
+TestTechniqueDesc:String

TestLevel

+TestLevelType:TestLevel
+TestLevelDesc:String

hasCodeToBeTested

isDesignAccordingTo

TestType

+TestType:Type
+TestTypeDesc:String

isAppliedTo

hasTestTypeTestProcedureSpecification

+TPS_Identifier:String
+TPS_Purpose:String
+TPS_SpecialRequirement:String
+TPS_Steps:String

TestCondition 

+TC_Description:String
+TC_Preconditions:String

hasProcedure

hasContainTestCondition

TestExpectedResult

+TestExpectedResult:String

TestIssue

+TI_ID:String
+TI_Name:String
+TI_Desc:String
+TI_Severity:Severity
+TI_Priority:Priority
+TI_Status:CurrentStatus

TestAnalysisReport

+TAR_Name:String
+TAR_Desc:String
+TAR_PreparedDate:Date

TestCaseInput

+inputDesc:String

TestResult

+TestResultDesc:String
+TestResultStatus:ResultStatus

hasTestCaseInput

hasTestCaseExpectedResult

isRelatedTo

isGenerates

isAnalyzedBy

isAnalysisOn

TestActualResult

+TestActualResultDesc:String

hasToolActualResults

0..*

0..1 0..* 0..*
0..*

0..*

0..*

0..*

1

1

1

0..*

1..*

1..*

0..*

0..*

0..*

1..*

0..*

1..*

1..*

1..*

0..*
0..*

0..*

0..*

1..*

1

1..*

0..*

0..*

1..*

1..*

0..*

1..*

1..*
0..*

-memberName

Fig. 2. Class Diagram of Knowledge Management Portal of Software Testing Knowledge

TABLE IV
SUMMARY OF THE SURVEY AND KEY QUESTIONS

Problem Identified from
Survey - in the context of
Software Testers (Begin-
ning of the study)

Feedback from the software testers (After
developing Ontology and Implementing
KM Portal)

Is the knowledge in the
knowledge repositories
precise?

The large majority (66.67%) of the respon-
dents from group A believed (Strongly Agree
or Agree) that the provided content in Web
Portal is precise. Only 44.44% of the respon-
dents from group B believed (Strongly Agree
or Agree) that knowledge in the knowledge
repositories is precise.

To what extend is the soft-
ware testing process incor-
porated?

Results illustrates that responded software
testers have different views about the soft-
ware testing process.

To what extend Internal
documents are categorized
using a standardized clas-
sification?

More than (75%) of software testers partic-
ipated believed that the standards have been
maintained

To what Extend Search
or Retrieval Functionali-
ties of developed KM por-
tal support software test-
ing?

Group A (41.66%) of the respondents be-
lieved (Strongly Agree or Agree) that the
search or retrieval functionalities are ade-
quate while from group B this value is
55.56%.

To what Extend Knowl-
edge Sharing Functionali-
ties of developed KM por-
tal support software test-
ing?

41.66% respondents from group A believed
(Strongly Agree or Agree) that the knowl-
edge sharing functionalities are adequate.
66.67% of the respondents from group B
agreed(Agree) with the existing KM portal.

To what extend do you
think it useful applying
KM Practices in Software
Testing?

Both groups (A- 41.67%, B-55.56%) be-
lieved with such practices and such results
leads to conclude at least the importance
and the need of KM practices for their daily
activities.

Very	
Satisfied Satisfied Neutral Somewhat	

Satisfied
Very	un	
Satisfied

A 25.00 50.00 25.00 0.00 0.00

B 44.44 44.44 11.11 0.00 0.00

0
20
40
60
80

100

Pe
rc

en
ta

ge
(%

)

Recomendation of KM Portal for Knowledge 
Sharing  

A B

Fig. 3. Recommendation to use Ontoloy-based KM Portal

in English with five-point Likert-type scale to capture respon-
dents’ self-reported attitudes where respondents had to make
their level of agreement such as; Strongly Agree, Agree, No
Idea, Disagree and Strongly Disagree. Scores 5, 4, 3, 2, and 1
were assigned respectively for the above-mentioned categories.
The profiles and demographics of the participants (Employed
Group, work experience, job description, and qualification)
were questioned first and continued with questions focused
to check whether developed ontology was able to (a) express
software testing knowledge (b) support software testing knowl-
edge sharing (c) support software testing knowledge retrieval
and (d)User Satisfaction. We limited the time period to ten (10)
days to collect the questionnaire data. This was performed by



two software testing groups working on a similar information
system project for comparison and in depth understanding.
Importantly, a prior training session was conducted through
recorded video to make software testers familiar with the
Knowledge Management Portal.

The results are summarized in Table IV. When asked to
evaluate the content of the KM Portal, Group B believes that
correct contents have been included than the Group A. All
of the software testers participated believed that the standards
have been maintained, but a few have included some extra
comments, such as inclusion of some vocabularies, parameters
in Test Level and Test Types. Moreover, when asked about
their satisfaction on the factors related to user manipulation,
personalization and knowledge community, both groups have
mostly responded neither satisfied nor unsatisfied. Notably,
a very few have been very much satisfied with the user
manipulation or knowledge community of the KM Portal. To
conclude, overall 80.95% (See Figure 3) of the respondents
would like to recommend the use of such KM Portal among
the software testers for knowledge sharing and knowledge
retrieval.

VI. DISCUSSION AND CONCLUSION

This research presents software testing ontology to rep-
resent software testing domain knowledge which includes
software testing concepts, properties and their relationships.
The implemented an ontology-based KMS based on semantic
web technologies provides facilities for software testers to
share their knowledge and experiences. Basic search and
advanced search operations are used to retrieve knowledge.
The implemented ontology was validated and evaluated before
it is used. Ontology experts opinion was received to improve
the ontology. The results from the industrial experimental
investigation show that the proposed ontology-based KM
Portal is adequate to support knowledge sharing and reuse,
allowing: (a) knowledge representation and organization; (b)
distributed knowledge inference and retrieval; (c) management
of organizational knowledge on software testing. Our Portal
addresses the existing key issues such as knowledge is not
reaching the software testers due to its unstructured, incom-
plete, varied formats, and lack of targeted delivery methods.
We believe our software testing ontology can support other
software organizations to improve the sharing of knowledge
and learning practices. In the future work, the reasoning engine
with Query-enhanced Web Rule Language (SQWRL) will be
incorporated into knowledge searching to support more precise
and effective knowledge sharing.

ACKNOWLEDGMENT

The authors would also like to thank the anonymous referees
for their valuable comments and helpful suggestions. This
work was partially supported by the National Natural Science
Foundation of China (Grant No. 61672398), the Key Natural
Science Foundation of Hubei Province of China (Grant No.
2015CFA069), and the Applied Foundamental Research of
Wuhan (Grant No. 20160101010004).

REFERENCES

[1] I. Rus and M. Lindvall, “Knowledge management in software engineer-
ing,” IEEE software, vol. 19, no. 3, pp. 26–35, 2002.

[2] S. Vasanthapriyan, J. Tian, and J. Xiang, “A survey on knowledge
management in software engineering,” in Software Quality, Reliability
and Security-Companion (QRS-C), 2015 IEEE International Conference
on. IEEE, 2015, pp. 237–244.

[3] V. Santos, A. Goldman, and C. R. De Souza, “Fostering effective inter-
team knowledge sharing in Agile software development,” Empirical
Software Engineering, vol. 20, no. 4, pp. 1006–1051, 2015.

[4] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?” International journal of human-computer studies,
vol. 43, no. 5-6, pp. 907–928, 1995.

[5] I. Horrocks, “Ontologies and the semantic web,” Communications of the
ACM, vol. 51, no. 12, pp. 58–67, 2008.

[6] S. S. E. Committee et al., “IEEE standard for software and system
test documentation,” Fredericksburg, VA, USA: IEEE Computer Society,
2008.

[7] D. Graham, E. Van Veenendaal, and I. Evans, Foundations of software
testing: ISTQB certification. Cengage Learning EMEA, 2008.

[8] O. K. Wei and T. M. Ying, “Knowledge management approach in mobile
software system testing,” in Industrial Engineering and Engineering
Management, 2007 IEEE International Conference on. IEEE, 2007,
pp. 2120–2123.

[9] X. Li and W. Zhang, “Ontology-based testing platform for reusing,” in
Internet Computing for Science and Engineering (ICICSE), 2012 Sixth
International Conference on. IEEE, 2012, pp. 86–89.

[10] I. Douglas, “Testing object management (TOM): A prototype for us-
ability knowledge management in global software,” in International
Conference on Usability and Internationalization. Springer, 2007, pp.
297–305.

[11] E. F. Souza, R. Falbo, and N. L. Vijaykumar, “Using ontology patterns
for building a reference software testing ontology,” in Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), 2013 17th
IEEE International. IEEE, 2013, pp. 21–30.

[12] N. Bajnaid, R. Benlamri, A. Pakstas, and S. Salekzamankhani, “Software
quality assurance ontology from development to evaluation (s).” in
SEKE, 2013, pp. 689–694.

[13] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[14] Y. Sure, S. Staab, and R. Studer, “Ontology engineering methodology,”
in Handbook on ontologies. Springer, 2009, pp. 135–152.

[15] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology:
from ontological art towards ontological engineering,” 1997.

[16] Y. Sure, S. Staab, and R. Studer, “On-to-knowledge methodology
(otkm),” in Handbook on ontologies. Springer, 2004, pp. 117–132.

[17] N. F. Noy, D. L. McGuinness et al., “Ontology development 101: A
guide to creating your first ontology,” 2001.

[18] M. Grüninger and M. S. Fox, “Methodology for the design and evalu-
ation of ontologies,” 1995.

[19] W3C OWL Working Group, OWL2 Web Ontology Language: Document
Overview. W3C Recommendation, 2009, available at http://www.w3.
org/TR/owl2-overview/.

[20] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and
U. Sattler, “OWL2: The next step for OWL,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 6, no. 4, pp. 309–322,
2008.

[21] A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4–7, 2001.

[22] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds, “Efficient RDF
storage and retrieval in Jena2,” in Proceedings of the First International
Conference on Semantic Web and Databases. CEUR-WS. org, 2003,
pp. 120–139.

[23] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean et al., “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member submission, vol. 21, p. 79, 2004.

[24] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez,
“Validating ontologies with OOPS!” in International Conference on
Knowledge Engineering and Knowledge Management. Springer, 2012,
pp. 267–281.

[25] D. Vrandečić, “Ontology evaluation,” in Handbook on Ontologies.
Springer, 2009, pp. 293–313.


