
Layered Implementation View of a SOA Based Electronic Health Record

Josimar S. Lima2, Joyce M. S. França1, Jislane S. S. Menezes2, Adicinéia A. Oliveira2 and Michel
S. Soares2

1Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil
2Department of Computing, Federal University of Sergipe, São Cristóvão, Brazil
{osimar.lima2007, joycefranca, jislanesds, adicineia, mics.soares}@gmail.com

Abstract

Interoperability between legacy systems has crucial
importance for integration of many distributed systems.
Within health information systems, the need for interop-
erability between legacy systems is well-known, as these
are heterogeneous systems which have a long lifespan.
An interesting example of health information systems is
the Electronic Health Record (EHR), a virtual record of
every health-related event, including hospital admission,
general practitioner visit, exams, and allergies experienced
by individuals over their lifespan from in uterus to death. A
great challenge for implementing EHR applications is that
these systems often have to integrate large amount of data
gathered from legacy systems into a single application.
This paper describes in detail the implementation view of a
software architecture based on web services for developing
an EHR application in a public hospital. The architecture
has been defined with a layered style for implementation
and on services identified within current legacy systems.
Detailed explanation on the software development, in-
cluding architectural elements and services catalog are
described as well.

Keywords-Interoperability, Service Oriented Architecture,
Layered Implementation, Health Information Systems.

I. Introduction

Health information systems are becoming common in
health institutions not only for management purposes, but
also to improve health care. Complexity of developing

DOI reference number: 10.18293/SEKE2016-064

these software systems is well-known in the literature for
many reasons, including heterogeneity of data and issues
with interoperability between legacy systems [1], and
design and architecture problems [2]. In addition, health
applications are sensitive to important non-functional re-
quirements, such as performance, security and safety of
data [3] [4]. Therefore, developing and managing health
information systems is a hard task. New functionalities
arises constantly due to new ideas or government laws,
and they have to be implemented and integrated to other
legacy systems.

An Electronic Health Record (EHR) is a virtual record
of every health-related event (e.g., hospital admission,
general practitioner visit, exams, allergies) experienced by
individuals over their lifespan from in utero to death [5].
EHR systems can be considered complex health informa-
tion systems because they are used for many purposes,
including recording data for decades and providing infor-
mation gathered from data stored in many legacy software
systems, developed using different technologies, databases,
platforms and programming languages. EHRs normally
have to integrate large amount of data gathered from legacy
systems in a single application.

Benefits of an EHR system are better patient care,
improved and faster communication with other systems,
including external systems (government, health insurance,
banking), improved sharing of data between health profes-
sionals, improved decision making, among others [6] [7].
However, these are complex systems to develop, maintain
and operate. Failures during development or execution of
EHR systems have been documented in the literature.
Among the reasons for failures during development, a
systematic literature review [5] mentioned a number of
issues, including low level of user involvement, the need
of redesigning work practices, and redesign of the record



format.
More specifically, the core subject of this paper is

interoperability between legacy systems to implement a
new EHR system. This problem has been addressed before
in many ways [8], including by means of Enterprise
Application Integration and Service Oriented Architectures
[9]. For instance, the authors of paper [10] presented
a framework with focus on defining services based on
a Model-Driven Architecture approach supported by a
SOA meta-model. In [11], the authors present a solution
to interoperability in healthcare based on a middleware
software architecture used in enterprise solutions. The
general architecture is described, but implementation view
and further development details are not explained. Authors
of paper [12] describe an attempt to use SoaML with the
purpose of modeling a real problem of system interoper-
ability in health information systems. Integration of data in
Electronic Health Information Systems is discussed in [13],
in which, according to the authors, data interoperability
in healthcare is, at present, largely an unreached goal.
Therefore, the authors suggest the adoption of a standard-
ized healthcare terminology, as well as the connection of
legacy systems to the health network as ways of achieving
complete interoperability of Health Information Systems.

Developing an EHR considering interoperability con-
straints between legacy software systems remains an inter-
esting research problem. In this research, the issue of inter-
operability is considered by designing a Service Oriented
Architecture (SOA) in order to integrate legacy systems by
means of web services. An EHR application is developed
as a case study. The layered implementation view of the
architecture is presented, as well as detailed explanation on
the software development, including architectural elements
and services catalogue.

II. Layered Architectural Ambient

Developing complex software systems is considered
easier when a proper software architecture is proposed
to describe major elements, global structure and design
decisions [14]. Architectural environment in this paper is
based on SOA Reference Model (SOA RM) and on SOA
Reference Architecure (SOA RA).

SOA RM defined the vocabulary of SOA elements and
its context relationships. SOA RM is created to seman-
tically establish services definitions, contract description,
service propagation, data model and service contracts
[15]. SOA RM proposes a local basis on which reference
architectures, software structure and implementation can
be developed.

SOA RA is composed of a variety of models and spec-
ifications which define a logical platform for implementa-
tion. SOA RA combines SOA RM concepts with common

IT architectures by using models and visualizations of
common architectural domains.

Some commercial vendors of SOA solutions propose
well-defined reference architecture templates for develop-
ing SOA applications. Our proposal in this research is to
use only open source software. Our reference architecture
has no close connection to any platform. SOA reference
architecture used in this research is the one proposed
by The Open Group [16], a solution often applied to
various projects since 2002. The Open Group reference
architecture provides an instrument to create or evaluate
an architecture in terms of layers, components (building
blocks), and roles to be considered in such a way to assure
return of investment in technology and that the objectives
are achieved.

Fig. 1 depicts the architectural ambient proposed in
this research based on The Open Group SOA RA. The
proposed architecture is composed of five horizontal lay-
ers (functional) and four vertical layers (non-functional).
Functional layers are described as follows.

• Operational Systems provide basic infrastructure to
provide SOA functions. Besides, promotes integration
with legacy systems, data bases, and so on, and allows
services execution.

• Software components which implement the services.
These components connect (bind) the Service Con-
tract with its implementation, and provide loose cou-
pling between consumer and implementation.

• Services work as a Service container in which we can
find all Service Contracts, including Service Tasks,
Entity, Information, and so on.

• Business Process, layer responsible for composition
and orchestration of services. It supports long process,
and executes tasks (sequential or parallel) according
to policies, business rules, and constraints.

• Consumer Interfaces, layer which deals with commu-
nication with users, giving support to different chan-
nels between users and applications. It also provides
communication between applications and loosely cou-
pling between consumer and implementation.

Non-Functional layers are described as follows.
• Integration, which allows mediation, transformation,

routing and transport. Services are exposed only
through this layer, which centralizes business rules
and provides loosely coupling between provider and
consumer. This layer is generally supported by an
ESB-Enterprise Service Bus.

• Quality of Service (QoS), which captures and moni-
tors operational metrics, assuring reliability, availabil-
ity, control, scalability and security.

• Information, including data architecture, data struc-
tures (XML-Schemas) and data protocols.

• Governance, which defines SOA objectives and as-



Fig. 1. Proposed Architectural Environment

sures conformity between policies and processes. It
also defines solution portfolio. Governance is applied
to all layers.

III. Architectural Elements

TABLE I. Architectural Elements
Analysis Design Implementation

Data Relational
Data Base PostgreSQL

Systems
Integration XML Interface Web Services

Web Services
Integration ESB Mule ESB

Distribution
layer

Object-Relational
Mapping Hibernate

Front-End
User
interface
communication

JSF, AJAX,
PrimeFaces

Exception
Handling

Exception
Layer Java

Deploy IDE configuration
for Deploy Apache Maven

Log Log resources
implementation Log4J

This section describes the architectural elements (Table
I) that will compose the architecture, as described in the
architectural ambient.

Architectural elements represent fundamental technical
concepts standardized throughout the solution. They are
refined during project development into three categories:

analysis, design and implementation. These categories re-
flect the state of the architectural element in time.

Each state changes according to successive levels of
detail discovered during requirements refinement. For in-
stance, during initial analysis phases, data to be used in the
EHR application are identified. Then, the correspondent
design element is a relational data base. Further, corre-
spondent implementation elements are tables implemented
in a Relational Data Base, PostgreSQL in this project.

IV. Architecture Implementation View

Proposed architecture in this paper use concepts from
the reference architecture depicted in Fig. 1 and architec-
tural elements presented in Table I.

The Implementation View of the architecture is com-
posed by Mule ESB 3.6 as Enterprise Service Bus, services
catalogue, and flow of services. The view is based on the
layered style, described by a UML Package diagram as
depicted in Fig. 2.

Fig. 2 depicts how packages are organized. Files related
to flow of services generated by mule ESB as well as web
services source code are organized in package App.

Figs. 3 and 4 depict the flow of services responsible by
the bus management.

Input bus is the single entry point of a message from
the services bus. In this initial stage, important tasks, such
as security, input log, auditing, transformation, formatting
and validation are executed. After these functions, the
message flow is routed for the specific service asked by



Fig. 2. ESB Package

the consumer. As depicted in Fig. 3, Mule receives objects
through HTTP and executes all necessary transformations.

Fig. 3. Bus In

Output bus is the single output point in the services
bus, being responsible for routing responses from the flow
of services to the consumers. Some necessary tasks to
finalize the message flow in the service are executed here,
including log registry, data formatting, data transformation,
validations, among others. Output bus implemented in this
application is presented in Fig. 4, which makes it clear that
the output bus does the inverse operation of the input bus.

Fig. 4. Bus Out

Package Java has bus as subpackage, which has bus util
and model as subpackages. Subpackage bus has source
code to manipulate services flow as depicted in Figs. 3
and 4. Package model has source code related to entities
that will be retrieved by client web services. Package util
has source code used to manage services flow. Package

applications is the package to store source code related to
all applications developed based on this implementation
architecture.

V. Case Study

Our proposed architecture has been considered for
development of an EHR application in a public hospital.
Development of the application is based on the MVC
pattern, as depicted in Fig. 5, and the architectural elements
presented in Table I.

Fig. 5. MVC model for application implemen
tation

The developed EHR application involves a number
of legacy systems. Each one provides important patient
information that will be consumed by the EHR. From the
legacy systems which are integrated to design the EHR,
Services are identified and then modeled by using the
SoaML modeling language [17].

TABLE II. Service Catalogue
ID DESCRIPTION PROVIDER
1 Data for Login AGHU
2 Create medical appointment ACONE
3 Validate health card CADWEB
4 Get patient’s data AGHU
5 List of appointments MEDLYNX
6 List of exams MEDLYNX
7 List of medical hospitalization IMHOTEP
8 List of procedures AGHU

Patient registration is performed by ACONE, which
maintains also appointments schedule. CADWEB, a na-
tional health system contains registration of country citi-
zens. Each registered citizen in CADWEB has a unique
health card number, a national identifier that allows free
access to public hospitals, exams, appointments, medicines
and surgeries. AGHU is the hospital’s main legacy system
that contains important information about patients. One
module of AGHU is responsible for maintaining patient
personal data such as name, address, identity documents,



Fig. 6. Application components

and health card number. The other AGHU module controls
patient exams, including storing all exams to which pa-
tients were submitted, exam results and a list of approved
and pending exams. There are yet other modules that are
responsible for maintaining history of attendances, hos-
pitalization, surgery, medicines and medical procedures.
Medlynx is a legacy system used to manage medical
appointments and exams. Imhotep is a legacy system
responsible to manage financial data and all information
about products at the hospital, including medicines and
other health related materials.

After analyzing all legacy systems we obtained a list
of services. Services catalogue is the local where all
identified services are registered. These services (Table II)
can be used by the whole organization in their process
behavior with the purpose of achieving a service oriented
integration.

Java is the programming language used for implemen-
tation, together with frameworks Java Server Faces and
Primefaces. Postgre is the relational database, together with
Hibernate as JPA framework. We have also used Apache
Maven for dependency injection, JBoss as application
server, and Mule ESB as Enterprise Service Bus.

Fig. 6 depicts the organization of the implementation
view applied for development of the EHR application. This
picture details package application, as previously presented

in Fig. 2.

VI. Conclusions

Developing new software systems from scratch is fre-
quently not possible, as there are many legacy systems with
stored data that need to be maintained. With this in mind,
the SOA paradigm is useful to integrate legacy systems
by means of web services. For this reason, considering
that having a well-defined software architecture is crucial
for success of complex systems, this paper proposes and
describes the layered implementation view of a software
architecture to develop EHR systems based on the SOA
paradigm to integrate legacy systems. This view of the
architecture has been used to develop an EHR in a public
hospital.

The complexity of developing health information sys-
tems is well-known in the literature for many reasons,
including heterogeneity of data and issues when defining
the system architecture. In addition, within health informa-
tion systems, the need for interoperability between legacy
systems has been described in the literature, as these
are normally heterogeneous systems which have a long
lifespan.

Complexity of Electronic Health Record (EHR) devel-
opment is addressed in this paper by proposing a layered



style for implementation. The choice for interoperability
in this paper is to identify services from legacy systems,
providing a services catalogue, and then integrating them
into an EHR application. This choice was taken as the SOA
paradigm is useful to integrate legacy systems by means
of web services. Future research will focus on exploring
further other views of the architecture for developing the
EHR application.

Acknowledgment

The authors would like to thank the Brazilian research
agency CNPq (grant 445500/2014-0).

References

[1] T. Greenhalgh, K. Stramer, T. Bratan, E. Byrne, Y. Mohammad, and
J. Russell, “Introduction of Shared Electronic Records: Multi-site
Case Study using Diffusion of Innovation Theory,” BMJ, vol. 337,
no. 7677, pp. 1040–1044, 2008.

[2] P. Carayon, P. Smith, A. S. Hundt, V. Kuruchittham, and Q. Li,
“Implementation of an Electronic Health Records System in a Small
Clinic: the Viewpoint of Clinic Staff,” Behaviour & IT, vol. 28,
no. 1, pp. 5–20, 2009.

[3] T. Greenhalgh, S. Hinder, K. Stramer, T. Bratan, and J. Russell,
“Adoption, Non-adoption, and Abandonment of a Personal Elec-
tronic Health Record: Case Study of HealthSpace,” BMJ, vol. 341,
no. 7782, 2010.

[4] L. Boyer, J. Samuelian, M. Fieschi, and C. Lancon, “Implementing
Electronic Medical Records in a Psychiatric Hospital: a Qualitative
Study,” Int. J. of Psychiatry Clinical Practice, vol. 14, no. 3, pp.
223–227, 2010.

[5] L. Nguyen, E. Bellucci, and L. T. Nguyen, “Electronic Health
Records Implementation: An Evaluation of Information System
Impact and Contingency Factors,” Int. J. of Medical Informatics,
vol. 83, no. 11, pp. 779–796, 2014.

[6] S. Zimeras and A. N. Kastania, “Statistical Models for EHR
Security in Web Healthcare Information Systems,” Certification
and Security in Health-Related Web Applications: Concepts and
Solutions: Concepts and Solutions, p. 146, 2010.

[7] A. Sheikh, A. Jha, K. Cresswell, F. Greaves, and D. W. Bates,
“Adoption of Electronic Health Records in UK Hospitals: Lessons
from the USA,” The Lancet, vol. 384, no. 9937, pp. 8–9, 2014.

[8] L. D. Xu, “Enterprise Systems: State-of-the-Art and Future Trends,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 630–
640, Nov 2011.

[9] M. S. Soares and J. M. S. França, “Characterization of the Applica-
tion of Service-Oriented Design Principles in Practice: A Systematic
Literature Review,” Journal of Software, vol. 11, no. 4, pp. 403–417,
2016.

[10] S. Alahmari, E. Zaluska, and D. D. Roure, “A Service Identification
Framework for Legacy System Migration into SOA,” in IEEE Int.
Conf. on Services Computing, July 2010, pp. 614–617.

[11] A. Ryan and P. W. Eklund, “A Framework for Semantic Inter-
operability in Healthcare: A Service Oriented Architecture based
on Health Informatics Standards,” in Proc. of MIE2008, The XXIst
Int. Congress of the European Federation for Medical Informatics,
2008, pp. 759–764.

[12] F. G. Silva, J. S. S. de Menezes, J. de S. Lima, J. M. S. França,
R. P. C. do Nascimento, and M. S. Soares, “An Experience of
using SoaML for Modeling a Service-Oriented Architecture for
Health Information Systems,” in Proc. of the 17th Intern. Conf.
on Enterprise Information Systems, 2015, pp. 322–327.

[13] O. Iroju, A. Soriyan, I. Gambo, and J. Olaleke, “Interoperability
in Healthcare: Benefits, Challenges and Resolutions,” Int. J. of
Innovation and Applied Studies, vol. 3, no. 1, pp. 262–270, 2013.

[14] G. Booch, “The Economics of Architecture-First,” IEEE Software,
vol. 24, no. 5, pp. 18–20, 2007.

[15] OASIS. (2006) Reference Model for Service Oriented Architecture.
[16] O. Group, “SOA Reference Architecture,” Tech. Rep., 2011.
[17] OMG, “Service Oriented Architecture Modeling Language

(SoaML) Specification,” Tech. Rep., 2012.


