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Abstract—Academia and industry are increasingly concerned 
with producing general-purpose model composition techniques to 
support many software engineering activities, e.g., evolving UML 
design models or reconciling conflicting models. However, the 
current techniques fail to provide flexible and reusable 
architectures, a comprehensive understanding of the critical 
composition activities, and guidelines about how developers can 
use and extend them. These limitations are one of the main 
reasons why state-of-the-art techniques are often unable to aid 
the development of new composition tools. To overcome these 
shortcomings, this paper, therefore, proposes a flexible, 
component-based architecture for aiding the development of 
composition techniques. Moreover, an intelligible composition 
workflow is proposed to help developers to improve the 
understanding of crucial composition activities and their 
relationships. Our preliminary evaluation indicated that the 
proposed architecture could support composition tools for UML 
class, sequence, and component diagrams.   
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I.  INTRODUCTION 
Researchers and practitioners recognize the importance of 

model composition in many software engineering activities 
[1][2][8], e.g., evolving design models to add new features and 
reconciling multi-view models developed in parallel by 
different software development teams [5][7]. In collaborative 
software development, for example, separate virtual teams may 
concurrently work on a partial model of the overall architecture 
to allow developers to concentrate more effectively on parts of 
the architecture relevant to them. At some point, it is necessary 
to bring these models together to generate a “big picture” view 
of the overall architecture. Unfortunately, this composition task 
is considered as an error-prone, time-consuming task [1][8]. In 
[8], the authors highlight that the model comparison and 
merging task are tedious, time-consuming, and error-prone. In 
[1], Mens reinforces that software merging continues to be “a 
time-consuming, complicated, and error-prone process 
because many interconnected elements are involved and 
merging depends on both the syntax and semantics of these 
elements.” 

For this reason, there has been a significant body of 
research into defining model composition techniques in the 
areas of software modeling [9], synthesis of feature models 

[12], and software product lines [11]. In fact, the high number 
of conventional, general-purpose composition techniques 
created in the last decade attests this importance, e.g., Kompose 
[13], IBM Rational Software Architect (IBM RSA) [4], MATA 
[3] and Epsilon [5]. 

Model composition can be briefly defined as an operation 
where a set of tasks should be performed over two input 
models, MA and MB, in order to produce an output-intended 
model, MAB. While MA represents the base model, MB consists 
of the delta model having all increments that should be inserted 
into MA to transform it into MAB. Existing composition 
techniques usually produce an output composed model (MCM) 
that often does not match the output intended model (MAB), i.e. 
MCM ≠ MAB. Because the elements of the input models usually 
conflict with each other in some way, and these techniques end 
up being unable to deal with all contradicting changes properly.  

The problem is that the general-purpose feature of 
composition techniques hinders coping with a set of particular 
composition cases. Unfortunately, they fail to provide flexible, 
reusable architectures, a comprehensive understanding of the 
chief composition activities, or even provide guidelines about 
how developers can use and extend them. The limitations can 
be explained for two principal reasons as follows: (1) 
composition techniques are not structured with design-for-
change principles upfront, being rigid to support modern 
composition strategies. Typically, developers are commonly 
forced to go through the source code to locate the component 
to-be changed or even create new architectural components to 
implement upcoming features. An incorrect modification of 
such components can jeopardize the implementation of new 
features, and (2) they rely on generic representation, i.e., 
usually graph, rather than on the semantics of constructs of OO 
design modeling languages, e.g., UML [9]. Since the current 
multi-view UML diagrams demand different but 
complementary ways to be integrated, generic approaches tend 
to produce output models with inconsistencies. Consequently, 
they fail to provide a systematic and flexible way to derive 
composition techniques for a particular purpose, or even 
provide guidelines about how developers can evolve them.    

 To overcome these shortcomings, this paper, therefore, 
proposes a flexible, component-based Architecture for aiding 
the development of Model Composition Tools, hereafter called 
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MoCoTo-Arch, and a model composition workflow for helping 
developers to improve the understanding of the crucial 
composition activities and their relationships. Our preliminary 
evaluation indicated that the proposed architecture could 
support the development of composition tools for UML class, 
sequence, and component diagrams.  

The remainder of the paper is organized as follows. Section 
II contrasts this work with the current literature. Section III 
presents the MoCoTo architecture. Section IV describes the 
composition tool developed using the MoCoTo-Arch. Finally, 
Section V presents some concluding remarks and future work. 

II. RELATED WORK 
The last few years, some techniques have been proposed, 

including MATA [3], a tool based on graph transformations for 
composing aspects, IBM RSA [4], a robust software modeling 
and model composition tool, and Epsilon [5], an Eclipse Plugin 
consists of a family of languages for composing models and 
other vast functions. Although some works provide 
programming languages to express composition logic [5], little 
is known about the flexibility and capacity of the current 
techniques to support new composition strategies. This lack 
hinders the understanding about how such techniques can 
evolve to support the composition of new design models, until 
then not supported.  

Many works aim at studying the proactive detection and 
earlier resolution of composition conflicts. In [2], Brun et al. 
proposes Crystal, an approach to help developers identify and 
resolve conflicts early. The authors highlight the ever-present 
occurrence of composition conflicts, more than would be 
expected, e.g. overlapping textual changes and their subsequent 
build and test failures. Likewise, Sarma [6] comes up with 
Palantír, a workspace-aware approach for detecting and 
resolving contradicting changes in early stage. Although these 
two approaches are interesting studies, they neither propose a 
flexible, design-for-change approach nor provide a 
comprehensible workflow to leverage the understanding of the 
inherent model composition activities and its relationships. 
Still, they overlook the challenging considering the synthesis of 
heterogeneous design models, thus not leading to broader 
generalizations of their findings at the modeling level.  

On the other hand, in [7], the authors discuss the problem of 
tolerating conflicts and transforming them in an object of 
enhancement in collaborative software development. The 
purpose is to maintain all the conflicting changes in the 
resulting model. For this, they propose annotations, relating the 
conflicts as well as the developers involved in a further 
resolution. In [8], the authors introduce an approach to find 
similarities between business process models. For this, they 
define metrics to match the input model elements, and use 
typography and synonym dictionary. 

III. MOCOTO ARCHITECTURE 
We present the MoCoTo’s built-in model composition 

process by identifying the phases, the artifacts generated, and 
the main activities required to transform the input models, MA 
and MB, into an intended output composed model, MAB. 
Moreover, it details the most relevant characteristics related to 
design and implementation issues, including feature model 

elicited, components that implement such features, and the 
architectural design.  

A. Model Composition Process 
Figure 2 shows the proposed model composition process. It 

is represented as an intelligible workflow, thus allowing 
developers to understand the inherent activities of a 
composition process in terms of phases, its artifacts, activities 
and the flow among each other.  

1) Analysis Phase: the prime goal is to analyze the input 
models adequately as a basis for assuring the composition of 
compatible input models as well as preventing input models 
with inconsistencies. This phase should attend to the Lifecycle 
Analysis Milestone criteria answering: are the input models of 
the same type? Do the input models have inconsistencies? If 
the input models do not attend to this milestone, the 
composition process can be cancelled or repeated after the 
input models are redesigned to comply with milestone criteria. 

2) Comparison Phase: the chief goal is to systematically 
compare the input models for determining the similarity 
between their elements, thereby mitigating mistaken 
equivalence relationships, including false-positive and false-
negative ones. The MoCoTo architecture supports a range of 
matching strategies (but not limited to), including default, 
partial and complete one [10], to alleviate the more severe risk 
items. The inputs of this phase are: ngram algorithm, synonym 
dictionary, matching strategies, matching rules, and threshold. 
Hence, producing the following outputs: (1) the similarity 
matrix, specifying the degree of equivalence (ranging from 0 to 
1) between the input model elements; (2) the matching 
elements, a description of the elements of MA and MB being 
considered equivalent; (3) the no-matching elements, a 
description of the elements of MA and MB being considered no 
equivalent. Two input elements are considered similar when 

 
 

Figure 1. The proposed model composition process. 



the degree of similarity between them is equal or higher than 
0.8, the threshold used. This threshold is based on previous 
studies [10] on model comparison, which have demonstrated its 
usefulness.  

3) Composition Phase: The master goal is to carefully bring 
together the matching and no-matching elements for producing 
an output intended model, MAB. For this, the proposed 
composition technique takes into account the similarity matrix, 
as well as the description of the matching and no-matching 
elements of the input models. In addition, it uses a range of 
well-established composition strategies (but not limited to), 
including override, merge, and union [15], to accommodate the 
elements from MB into MA, thereby alleviating the more severe 
risk items. The MoCoTo’s built-in composition strategies 
integrate the matching elements while the no matching ones are 
just inserted into the MAB. Thus, MAB represents the matching 
and no-matching elements, all blended systematically.  

4) Evaluation Phase: the master goal is to evaluate if the 
output model produced in the previous phase matches the 
output intended one, i.e. MCM = MAB. If MCM ≠ MAB, then 
MCM needs to be manipulated so that the inconsistencies can be 
resolved. For this, the tool checks if the output model is in 
compliance with well-formedness rules defined in the UML 
metamodel and meets a set of desired features specified by the 
user. If the model has inconsistencies, then some 
transformation rules can be applied to transform MCM into MAB. 
This phase end producing the output intended model. After 
detailing the composition process, the next Section focuses on 
describing the design and implementation issues required to put 
the process in practice. 

B. MoCoTo architecture feature model 
 The MoCoTo architecture was proposed due to several 

reasons and requirements identified in previous works 
[10][14][15]. First, our experience with model composition has 
indicated the increasing need for reusable architecture to 
support and guide the development of new composition tools. 
Second, it is representative of the model composition domain, 
since its design decomposes the key concerns into well-
modularized features. Third, it assures the derivation of 
different products by defining several variability points related 
to heterogeneous strategies related to analyzing, comparing, 
and composing the input models. Lastly, it allows evaluating 
the models generated and persisting the results. Thus, the 
proposed architecture provides a set of pivotal features, 
including analysis of the input models, comparison of the input 

models, composition of the equivalent input model elements, 
persistence of the output model generated, and evaluation of 
the output model. 

Figure 3 shows a simplified view of MoCoTo-Arch’s 
feature model. Thus, to develop composition tools developers 
should firstly implement the mandatory features, including 
analysis, comparison, composition, persistence, and evaluation. 
Besides identifying a set of core functionalities, the mandatory 
features seamlessly specify their dependencies in an easy-to-
understand manner. An ever-present concern throughout the 
MoCoTo architecture was to assure the mandatory features 
comply with the model composition process described in 
Figure 3, for example, the analysis feature implements the first 
phase and the persistence feature provides the functionality 
required to persist the output-composed model generated at the 
end of the model composition process. The optional features 
are the types of file format that the output-composed model can 
be persisted, including UML and UML profile format. The or 
features are represented by the composition strategies, and the 
comparison strategies, the latter are not shown in the feature 
model for space constraints. Thus, one (or more) comparison 
and composition strategy should be selected when a 
composition tool is derived from the MoCoTo-Arch.  

C. MoCoTo architectural components 
Figure 4 shows the components that are responsible for 

implementing the feature model as well as relates them with the 
features depicted in Figure 3. The small squares located on the 
left or bottom sides of the components represent this feature-
component mapping. For instance, the C on the top of the 
Comparison component (Figure 4) indicates that this 
component contributes to the implementation of the 
comparison feature. This design-for-features is supported by 
the component-based development, a systematic feature-
component mapping and aspect-oriented programming. 

This method of decomposing components based on the 
features allows creating autonomous, well-modularized design 
elements within a model composition tool, thereby promoting 
the reuse of previously elicited feature and constructed 
components. Each component was designed to: (1) be a self-
contained module that encapsulates the state and behavior of a 
set of executable elements, which are responsible for the 
implementation of one (or more) feature; (2) present emergent 
behaviors resulting from the interaction of its executable 
elements, i.e., one or more classes that realize the expected 
functionalities of the features; and (3) have well-defined 

 
 

Figure 4. The MoCoTo architectural components. 

 
 

Figure 3. A simplified MoCoTo-Arch feature model. 



interfaces, including the provided and required ones. For 
example, to provide the behavior of matching two input 
models, the Comparison component implements the provided 
interface, ComparisonStrategy. If new components are 
inserted, then they should implement this interface only. 
Moreover, Figure 4 focuses on presenting the components as a 
coherent group of elements implementing one (or more) 
feature.  Each component can be seen as a building block that 
plays a crucial role within the model composition process. 

D. MoCoTo multilayered architecture layers 

The logical, multilayered architecture enables us to support 
a well-modularized design, thereby putting the heterogeneous, 
crosscutting concerns, previously described in Figure 2, in 
shape. The architecture is composed by five layers: (1) 
Presentation layer represents the topmost tier of the application 
gathering the input data required to perform the functionalities 
and putting out the results to the compositions; Application 
layer encompasses MoCoTo's engine and its operators. It is 
responsible for orchestrating, along with its operators, the 
composition process as a whole. As an orchestrator, it plays a 
pivotal role by providing the principal main entry point, 
coordinating incoming composition requests, transforming the 
requests into commands for the operators, and rendering views;  
(3) Variability layer implements the variation points. For this, 
aspectual components weave the behaviors (or advices) from 
design elements (from the business logic layer) to the operators 
(in the application layer). Aspectual components augment the 
operators with additional or alternative behaviors, i.e. strategies 
and their rules; (4) Business Logic layer defines a family of 
algorithms that implement the MoCoTo features. These 
algorithms analyze the input models, seek to find the 
commonalities and differences between the input models, 
integrate the commonalities, and then evaluate the output 
models, and (5) Infrastructure layer accommodates the 
concerns related to handling exception, data access, persistence 
and logging, which are key crosscutting functionalities to put 
the composition process in practice. 

IV. CASE STUDY 
We evaluate this work by implementing a model 

composition tool based on the MoCoTo architecture. The tool, 
so-called MoCoTo, is an Eclipse Plug-in that allows a seamless 
integration with Eclipse Platform. In addition, it makes use of a 
range of Eclipse modeling technologies, including EMF, 
UML2, GEF, UML2 tool, to implement all required activities 
described in the model composition process discussed earlier. 
MoCoTo ties together these technologies in such a way that 
makes it easy to use, even for users with little or no Java or 
XML coding experience. For example, UML2 API reads and 
filters information from the tags of files written in XML and 
transforms it to an abstract data model in which input model 
elements can be manipulated as objects.  

V. CONCLUSIONS AND FUTURE WORK 
This paper introduced a flexible, component-based 

architecture for supporting the development of model 
composition techniques, and an intelligible model composition 
workflow for aiding developers to comprehend the crucial 

composition activities and their relationships more properly. 
We also reported the MoCoTo tools, a composition tools 
defined over the MoCoTo-Arch. The preliminary results have 
indicated that the proposed architecture is able to support the 
development of composition tools for UML models. Although 
MoCoTo-Arch has shown to-be useful, further empirical 
studies are still required, other than case study presented, to 
check their usefulness to compose other models, including 
business process models, and with different developers, 
compared to other composition techniques.  

The future investigations should seek to answer some 
questions such as: (1) do developers invest significantly more 
effort to develop a new composition technique than derive one 
from MoCoTo-Arch? (2) How effective is MoCoTo to 
combine realistic, semantically richer design models? (3) Do 
developers invest more effort to resolve semantic 
inconsistencies than syntactic ones using a strategy-based 
composition technique? (4) How do developers observe the 
benefits of the composition process? Lastly, this work 
represents a first step in a more ambitious agenda on better 
supporting the elaboration of model composition techniques. 
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