
Toward an Architecture for
Model Composition Techniques

Kleinner Farias, Lucian José Gonçales,
Murillo Scholl, Maurício Veronez

PIPCA, University of Vale do Rio dos Sinos (Unisinos)
São Leopoldo, RS, Brazil

kleinnerfarias@unisinos.br,
lucianjosegoncales@gmail.com,

murillosholl@hotmail.com, veronez@unisinos.br

Toacy Oliveira
PESC/COPPE, Federal University of Rio de Janeiro

(UFRJ)
Rio de Janeiro, RJ, Brazil

toacy@cos.ufrj.br

Abstract—Academia and industry are increasingly concerned
with producing general-purpose model composition techniques to
support many software engineering activities, e.g., evolving UML
design models or reconciling conflicting models. However, the
current techniques fail to provide flexible and reusable
architectures, a comprehensive understanding of the critical
composition activities, and guidelines about how developers can
use and extend them. These limitations are one of the main
reasons why state-of-the-art techniques are often unable to aid
the development of new composition tools. To overcome these
shortcomings, this paper, therefore, proposes a flexible,
component-based architecture for aiding the development of
composition techniques. Moreover, an intelligible composition
workflow is proposed to help developers to improve the
understanding of crucial composition activities and their
relationships. Our preliminary evaluation indicated that the
proposed architecture could support composition tools for UML
class, sequence, and component diagrams.

Keywords: model composition, architecture, UML

I. INTRODUCTION
Researchers and practitioners recognize the importance of

model composition in many software engineering activities
[1][2][8], e.g., evolving design models to add new features and
reconciling multi-view models developed in parallel by
different software development teams [5][7]. In collaborative
software development, for example, separate virtual teams may
concurrently work on a partial model of the overall architecture
to allow developers to concentrate more effectively on parts of
the architecture relevant to them. At some point, it is necessary
to bring these models together to generate a “big picture” view
of the overall architecture. Unfortunately, this composition task
is considered as an error-prone, time-consuming task [1][8]. In
[8], the authors highlight that the model comparison and
merging task are tedious, time-consuming, and error-prone. In
[1], Mens reinforces that software merging continues to be “a
time-consuming, complicated, and error-prone process
because many interconnected elements are involved and
merging depends on both the syntax and semantics of these
elements.”

For this reason, there has been a significant body of
research into defining model composition techniques in the
areas of software modeling [9], synthesis of feature models

[12], and software product lines [11]. In fact, the high number
of conventional, general-purpose composition techniques
created in the last decade attests this importance, e.g., Kompose
[13], IBM Rational Software Architect (IBM RSA) [4], MATA
[3] and Epsilon [5].

Model composition can be briefly defined as an operation
where a set of tasks should be performed over two input
models, MA and MB, in order to produce an output-intended
model, MAB. While MA represents the base model, MB consists
of the delta model having all increments that should be inserted
into MA to transform it into MAB. Existing composition
techniques usually produce an output composed model (MCM)
that often does not match the output intended model (MAB), i.e.
MCM ≠ MAB. Because the elements of the input models usually
conflict with each other in some way, and these techniques end
up being unable to deal with all contradicting changes properly.

The problem is that the general-purpose feature of
composition techniques hinders coping with a set of particular
composition cases. Unfortunately, they fail to provide flexible,
reusable architectures, a comprehensive understanding of the
chief composition activities, or even provide guidelines about
how developers can use and extend them. The limitations can
be explained for two principal reasons as follows: (1)
composition techniques are not structured with design-for-
change principles upfront, being rigid to support modern
composition strategies. Typically, developers are commonly
forced to go through the source code to locate the component
to-be changed or even create new architectural components to
implement upcoming features. An incorrect modification of
such components can jeopardize the implementation of new
features, and (2) they rely on generic representation, i.e.,
usually graph, rather than on the semantics of constructs of OO
design modeling languages, e.g., UML [9]. Since the current
multi-view UML diagrams demand different but
complementary ways to be integrated, generic approaches tend
to produce output models with inconsistencies. Consequently,
they fail to provide a systematic and flexible way to derive
composition techniques for a particular purpose, or even
provide guidelines about how developers can evolve them.

 To overcome these shortcomings, this paper, therefore,
proposes a flexible, component-based Architecture for aiding
the development of Model Composition Tools, hereafter called

(DOI reference number: 10.18293/SEKE2015-107)

MoCoTo-Arch, and a model composition workflow for helping
developers to improve the understanding of the crucial
composition activities and their relationships. Our preliminary
evaluation indicated that the proposed architecture could
support the development of composition tools for UML class,
sequence, and component diagrams.

The remainder of the paper is organized as follows. Section
II contrasts this work with the current literature. Section III
presents the MoCoTo architecture. Section IV describes the
composition tool developed using the MoCoTo-Arch. Finally,
Section V presents some concluding remarks and future work.

II. RELATED WORK
The last few years, some techniques have been proposed,

including MATA [3], a tool based on graph transformations for
composing aspects, IBM RSA [4], a robust software modeling
and model composition tool, and Epsilon [5], an Eclipse Plugin
consists of a family of languages for composing models and
other vast functions. Although some works provide
programming languages to express composition logic [5], little
is known about the flexibility and capacity of the current
techniques to support new composition strategies. This lack
hinders the understanding about how such techniques can
evolve to support the composition of new design models, until
then not supported.

Many works aim at studying the proactive detection and
earlier resolution of composition conflicts. In [2], Brun et al.
proposes Crystal, an approach to help developers identify and
resolve conflicts early. The authors highlight the ever-present
occurrence of composition conflicts, more than would be
expected, e.g. overlapping textual changes and their subsequent
build and test failures. Likewise, Sarma [6] comes up with
Palantír, a workspace-aware approach for detecting and
resolving contradicting changes in early stage. Although these
two approaches are interesting studies, they neither propose a
flexible, design-for-change approach nor provide a
comprehensible workflow to leverage the understanding of the
inherent model composition activities and its relationships.
Still, they overlook the challenging considering the synthesis of
heterogeneous design models, thus not leading to broader
generalizations of their findings at the modeling level.

On the other hand, in [7], the authors discuss the problem of
tolerating conflicts and transforming them in an object of
enhancement in collaborative software development. The
purpose is to maintain all the conflicting changes in the
resulting model. For this, they propose annotations, relating the
conflicts as well as the developers involved in a further
resolution. In [8], the authors introduce an approach to find
similarities between business process models. For this, they
define metrics to match the input model elements, and use
typography and synonym dictionary.

III. MOCOTO ARCHITECTURE
We present the MoCoTo’s built-in model composition

process by identifying the phases, the artifacts generated, and
the main activities required to transform the input models, MA
and MB, into an intended output composed model, MAB.
Moreover, it details the most relevant characteristics related to
design and implementation issues, including feature model

elicited, components that implement such features, and the
architectural design.

A. Model Composition Process
Figure 2 shows the proposed model composition process. It

is represented as an intelligible workflow, thus allowing
developers to understand the inherent activities of a
composition process in terms of phases, its artifacts, activities
and the flow among each other.

1) Analysis Phase: the prime goal is to analyze the input
models adequately as a basis for assuring the composition of
compatible input models as well as preventing input models
with inconsistencies. This phase should attend to the Lifecycle
Analysis Milestone criteria answering: are the input models of
the same type? Do the input models have inconsistencies? If
the input models do not attend to this milestone, the
composition process can be cancelled or repeated after the
input models are redesigned to comply with milestone criteria.

2) Comparison Phase: the chief goal is to systematically
compare the input models for determining the similarity
between their elements, thereby mitigating mistaken
equivalence relationships, including false-positive and false-
negative ones. The MoCoTo architecture supports a range of
matching strategies (but not limited to), including default,
partial and complete one [10], to alleviate the more severe risk
items. The inputs of this phase are: ngram algorithm, synonym
dictionary, matching strategies, matching rules, and threshold.
Hence, producing the following outputs: (1) the similarity
matrix, specifying the degree of equivalence (ranging from 0 to
1) between the input model elements; (2) the matching
elements, a description of the elements of MA and MB being
considered equivalent; (3) the no-matching elements, a
description of the elements of MA and MB being considered no
equivalent. Two input elements are considered similar when

Figure 1. The proposed model composition process.

the degree of similarity between them is equal or higher than
0.8, the threshold used. This threshold is based on previous
studies [10] on model comparison, which have demonstrated its
usefulness.

3) Composition Phase: The master goal is to carefully bring
together the matching and no-matching elements for producing
an output intended model, MAB. For this, the proposed
composition technique takes into account the similarity matrix,
as well as the description of the matching and no-matching
elements of the input models. In addition, it uses a range of
well-established composition strategies (but not limited to),
including override, merge, and union [15], to accommodate the
elements from MB into MA, thereby alleviating the more severe
risk items. The MoCoTo’s built-in composition strategies
integrate the matching elements while the no matching ones are
just inserted into the MAB. Thus, MAB represents the matching
and no-matching elements, all blended systematically.

4) Evaluation Phase: the master goal is to evaluate if the
output model produced in the previous phase matches the
output intended one, i.e. MCM = MAB. If MCM ≠ MAB, then
MCM needs to be manipulated so that the inconsistencies can be
resolved. For this, the tool checks if the output model is in
compliance with well-formedness rules defined in the UML
metamodel and meets a set of desired features specified by the
user. If the model has inconsistencies, then some
transformation rules can be applied to transform MCM into MAB.
This phase end producing the output intended model. After
detailing the composition process, the next Section focuses on
describing the design and implementation issues required to put
the process in practice.

B. MoCoTo architecture feature model
 The MoCoTo architecture was proposed due to several

reasons and requirements identified in previous works
[10][14][15]. First, our experience with model composition has
indicated the increasing need for reusable architecture to
support and guide the development of new composition tools.
Second, it is representative of the model composition domain,
since its design decomposes the key concerns into well-
modularized features. Third, it assures the derivation of
different products by defining several variability points related
to heterogeneous strategies related to analyzing, comparing,
and composing the input models. Lastly, it allows evaluating
the models generated and persisting the results. Thus, the
proposed architecture provides a set of pivotal features,
including analysis of the input models, comparison of the input

models, composition of the equivalent input model elements,
persistence of the output model generated, and evaluation of
the output model.

Figure 3 shows a simplified view of MoCoTo-Arch’s
feature model. Thus, to develop composition tools developers
should firstly implement the mandatory features, including
analysis, comparison, composition, persistence, and evaluation.
Besides identifying a set of core functionalities, the mandatory
features seamlessly specify their dependencies in an easy-to-
understand manner. An ever-present concern throughout the
MoCoTo architecture was to assure the mandatory features
comply with the model composition process described in
Figure 3, for example, the analysis feature implements the first
phase and the persistence feature provides the functionality
required to persist the output-composed model generated at the
end of the model composition process. The optional features
are the types of file format that the output-composed model can
be persisted, including UML and UML profile format. The or
features are represented by the composition strategies, and the
comparison strategies, the latter are not shown in the feature
model for space constraints. Thus, one (or more) comparison
and composition strategy should be selected when a
composition tool is derived from the MoCoTo-Arch.

C. MoCoTo architectural components
Figure 4 shows the components that are responsible for

implementing the feature model as well as relates them with the
features depicted in Figure 3. The small squares located on the
left or bottom sides of the components represent this feature-
component mapping. For instance, the C on the top of the
Comparison component (Figure 4) indicates that this
component contributes to the implementation of the
comparison feature. This design-for-features is supported by
the component-based development, a systematic feature-
component mapping and aspect-oriented programming.

This method of decomposing components based on the
features allows creating autonomous, well-modularized design
elements within a model composition tool, thereby promoting
the reuse of previously elicited feature and constructed
components. Each component was designed to: (1) be a self-
contained module that encapsulates the state and behavior of a
set of executable elements, which are responsible for the
implementation of one (or more) feature; (2) present emergent
behaviors resulting from the interaction of its executable
elements, i.e., one or more classes that realize the expected
functionalities of the features; and (3) have well-defined

Figure 4. The MoCoTo architectural components.

Figure 3. A simplified MoCoTo-Arch feature model.

interfaces, including the provided and required ones. For
example, to provide the behavior of matching two input
models, the Comparison component implements the provided
interface, ComparisonStrategy. If new components are
inserted, then they should implement this interface only.
Moreover, Figure 4 focuses on presenting the components as a
coherent group of elements implementing one (or more)
feature. Each component can be seen as a building block that
plays a crucial role within the model composition process.

D. MoCoTo multilayered architecture layers

The logical, multilayered architecture enables us to support
a well-modularized design, thereby putting the heterogeneous,
crosscutting concerns, previously described in Figure 2, in
shape. The architecture is composed by five layers: (1)
Presentation layer represents the topmost tier of the application
gathering the input data required to perform the functionalities
and putting out the results to the compositions; Application
layer encompasses MoCoTo's engine and its operators. It is
responsible for orchestrating, along with its operators, the
composition process as a whole. As an orchestrator, it plays a
pivotal role by providing the principal main entry point,
coordinating incoming composition requests, transforming the
requests into commands for the operators, and rendering views;
(3) Variability layer implements the variation points. For this,
aspectual components weave the behaviors (or advices) from
design elements (from the business logic layer) to the operators
(in the application layer). Aspectual components augment the
operators with additional or alternative behaviors, i.e. strategies
and their rules; (4) Business Logic layer defines a family of
algorithms that implement the MoCoTo features. These
algorithms analyze the input models, seek to find the
commonalities and differences between the input models,
integrate the commonalities, and then evaluate the output
models, and (5) Infrastructure layer accommodates the
concerns related to handling exception, data access, persistence
and logging, which are key crosscutting functionalities to put
the composition process in practice.

IV. CASE STUDY
We evaluate this work by implementing a model

composition tool based on the MoCoTo architecture. The tool,
so-called MoCoTo, is an Eclipse Plug-in that allows a seamless
integration with Eclipse Platform. In addition, it makes use of a
range of Eclipse modeling technologies, including EMF,
UML2, GEF, UML2 tool, to implement all required activities
described in the model composition process discussed earlier.
MoCoTo ties together these technologies in such a way that
makes it easy to use, even for users with little or no Java or
XML coding experience. For example, UML2 API reads and
filters information from the tags of files written in XML and
transforms it to an abstract data model in which input model
elements can be manipulated as objects.

V. CONCLUSIONS AND FUTURE WORK
This paper introduced a flexible, component-based

architecture for supporting the development of model
composition techniques, and an intelligible model composition
workflow for aiding developers to comprehend the crucial

composition activities and their relationships more properly.
We also reported the MoCoTo tools, a composition tools
defined over the MoCoTo-Arch. The preliminary results have
indicated that the proposed architecture is able to support the
development of composition tools for UML models. Although
MoCoTo-Arch has shown to-be useful, further empirical
studies are still required, other than case study presented, to
check their usefulness to compose other models, including
business process models, and with different developers,
compared to other composition techniques.

The future investigations should seek to answer some
questions such as: (1) do developers invest significantly more
effort to develop a new composition technique than derive one
from MoCoTo-Arch? (2) How effective is MoCoTo to
combine realistic, semantically richer design models? (3) Do
developers invest more effort to resolve semantic
inconsistencies than syntactic ones using a strategy-based
composition technique? (4) How do developers observe the
benefits of the composition process? Lastly, this work
represents a first step in a more ambitious agenda on better
supporting the elaboration of model composition techniques.

ACKNOWLEDGMENT
This work was funded by Universal project – CNPq (grant

number 480468/2013-3).

REFERENCES
[1] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans.

Softw. Eng. 28(5), 449–562, 2002.
[2] Y. Brun et al., “Proactive Detection of Collaboration Conflicts,” In: 8th

SIGSOFT ESEC/FSE, pp. 168-178, Szeged, Hungary, 2011.
[3] J. Whittle, P. Jayaraman, “Synthesizing hierarchical state machines from

expressive scenario descriptions,” ACM TOSEM, 19(3), 1–45, 2010.
[4] IBM Rational Software Architecture (IBM RSA), http://www.ibm.

com/developerworks/rational/products/rsa/, 2011.
[5] Kolovos et. al., “The Epsilon Book,”

http://eclipse.org/epsilon/doc/book/, 2015.
[6] A. Sarma et al., “Palantír: early detection of development conflicts

arising from parallel code changes,” IEEE TSE, vol. 99, no.6, 2011.
[7] K. Wieland et al., “Turning conflicts into collaboration - concurrent

modeling in the early phases of software development,” CSCW: The
Journal of Collaborative Computing, 22 (2013), 2-3; 181 - 240.

[8] M. La Rosa et al., “Business process model merging: an approach to
business process consolidation,” ACM TOSEM, 22(2): 11, 2013.

[9] OMG, UML: Infrastructure version 2.4, August 2011.
[10] K. Farias et al, “A flexible strategy-based model comparison approach:

bridging the syntactic and semantic gap,” Journal of Universal Computer
Science, 15(11):2225-2253, 2009.

[11] P. Jayaraman, J. Whittle, A. Elkhodary, H. Gomaa, “Model Composition
in Product Lines and Feature Interaction Detection using Critical Pair
Analysis,” MODEL’7, pages 151-165, 2007.

[12] S. She, U. Ryssel, N. Andersen, A. Wasowski, K. Czarnecki, Efficient
synthesis of feature models, Information & Software Technology, 56(9):
1122-1143, 2014.

[13] Fleurey et. al., Kompose : A generic model composition tool,
http://www.kermeta.org/kompose/, 2015.

[14] S Clarke, Composition of Object-Oriented Software Design Models,
Ph.D. Thesis, Dublin City University, January, 2001.

[15] K. Farias, Empirical Evaluation of Effort on Composing Design Models,
PhD thesis, Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil.

