
DrawSE2: an application for the visual definition of visual languages using the
local context-based visual language specification

Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella, Vincenzo Raia
Dipartimento di Informatica, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

{gencos, matderosa, vfuccella}@unisa.it

Abstract

We present DrawSE2, a new web application that allows
the definition of visual languages in a more visual way (ac-
cording to the local context-based visual language specifi-
cation). The tool allows the user to create visual language
elements, define their attaching areas (the hotspots through
which language elements can be connected), and define how
they can be linked together to form admissible language
sentences. The tool also allows semantic attributes to be
defined and enables semantic translation (e.g., to a textual
representation). The visual language thus defined can then
be used in a diagram editor that allows to draw visual sen-
tences of the language, check their correctness and get their
semantic translation.

Keywords: visual languages, local contex, webapp.

1. Introduction

Visual languages have been used as part of systems that
use visual representations to facilitate communication. Vi-
sual sentences include diagrams, maps, images, and pic-
tures, which are used to communicate mental concepts that
require spatial settings to be described appropriately. Their
purpose is to make it easier for people to communicate,
since, when done correctly, visual communication is more
direct and instantaneous than spoken or text communica-
tion.

This is why visual languages can be found in a variety
of contexts, from art to engineering. However, if they are
badly designed, they can be difficult to interpret and com-
pose, defeating their purpose. This, for example, may oc-
cur when a language has many syntactic rules that bind el-
ements that can be far apart in a sentence. For example,
in textual programming languages, one might consider the
matching parenthesis in languages such as C or Java.

DOI reference number: 10.18293/DMSVIVA22-014

One way to overcome the problem of syntax dependen-
cies between far language elements is to add shape infor-
mation to each element, like in the Scratch block visual lan-
guage. This reduces the composition of a visual sentence
(a program in this case) to the creation of a puzzle, with a
very simple syntactic rule: “a visual program is syntacti-
cally correct if and only if each block (tile) well interlocks
with its neighbors”. The local shape constraints on each
block in this case guarantee the correctness of the whole vi-
sual program, regardless of how many elements it is made
of.

This is also why block languages are now very popular
for teaching introductory programming to non-experts, as
well as for prototyping and scripting purposes [23].

We have previously shown [5–10] that many well-known
and widely used visual languages (such as unstructured
flowcharts, data flow languages, and entity-relationship di-
agrams) can be syntactically specified mostly using local
constraints, rather than complex grammars. This simplifies
the design of visual programming languages from a syntac-
tic perspective.

Our methodology, known as local context-based visual
language specification, only requires the language designer
to define the local context of each symbol of the language.
The local context of a symbol is the set of attributes that
define the local constraints that need to be considered for
the correct use of the symbol and are the interface that a
symbol exposes to the rest of the sentence.

We also defined a way to do a semantic translation of a
visual language based on the local context. In particular,
we use XPath-like expressions to define the semantic trans-
lation rules for the language. These expressions allow us to
specify rules for each single language element, rather than
defining semantic rules for complete phrases. For a given
node in the abstract syntax graph returned by the syntactic
phase, we can use these expressions to gather values from
its neighbors to be used in the translation. The translation
is then expressed by writing simple source code that prints
these values.



Although defining a visual language using the local
context methodology does not require writing a grammar
(which can be quite complex even for the most experienced
users), defining the language can still be time-consuming
and identifying at first glance the relationships between the
various components of the visual language can be difficult.

For this reason in this paper we propose a new tool, a web
application called DrawSE2, that allows the definition of vi-
sual languages in an almost visual way. The user can cre-
ate the visual elements of the language (symbols and con-
nectors) by putting together predefined shapes, then define
their attaching areas (the hot spots on which symbols and
connectors can be attached). The so prepared language el-
ement can be positioned on a canvas and visually related
by adding placeholders on their attaching areas. This al-
lows the user to define in a simple way and with immediate
visual feedback which symbols can be linked together and
which cannot.

The tool also offers the possibility to specify attributes
such as the number of admissible occurrences of a symbol
or how many times an attaching area can be used through
contextual menus or panels. If a semantic translation is re-
quired (e.g. to a text representation), the tool also offers the
possibility of defining the semantic specification by using a
tabular interface.

The visual language so defined can then be used to in-
stantiate a diagram editor that allows one to draw sentences
of the language, verify their correctness, and get the seman-
tic translation.

The paper is organized as follows: Section 2 describes
previous work in this field; Section 3 describes the local
context-based visual language specification; Sections 4 and
5 describe our design and DrawSE2, respectively. Finally,
Section 6 concludes the paper with a discussion on future
work.

2. Related Work

In the past years significant research has been done re-
garding visual languages and their applications to different
scenarios [4,11–13]. Moreover, several strategies have been
developed to model diagrams as visual languages sentences.
A diagram has been represented either as a set of attributed
symbols with typed attributes representing the “position” of
the symbol in the sentence (attribute-based approach) [17],
or a set of relations on symbols (relation-based approach)
[25]. The two approaches may look different, but both con-
sider a diagram as a set of symbols and relationships be-
tween them, that is, a spatial-relationship graph [2] built by
adding a node for each graphical symbol and an edge for
each spatial relationship between them.

In contrast to the relationship-based approach, where
relationships are explicitly represented, the attribute-based

approach requires the relationships to be derived from the
attribute (equal) values.

Based on these representations, various formalisms have
been proposed to represent the syntax of a visual language,
each associated with custom scanning and parsing tech-
niques, e.g. (Extended) Positional Grammars [16], Re-
served Graph Grammars [30], Constrained Set Grammars
[21], Relational Grammars [27] (for other approaches and
details see [14] and [22]). In general, such visual grammars
are defined by specifying an alphabet of graphical symbols
together with their “visual” appearance, a set of spatial rela-
tionships generally defined on symbol position and attach-
ing points/areas, and a set of grammar rules, usually in a
context-free like format even though their descriptive power
is mostly context sensitive.

A large number of tools exist for prototyping visual lan-
guages. These are based on different types of visual gram-
mar formalisms and include, among others, VLDesk [15],
DiaGen [24], GenGed [1], Penguin [3], VisPro [31], AToM3
[20], VL-Eli [19] and its improvement DEViL [26], and
tools dedicated to 3D visual languages such as [28, 29].
However, our local context-based visual language specifi-
cation [10] goes a step further by completely removing the
grammar specification.

Despite the fact that context-free rules are well known,
it is not easy to define and read visual grammars. This may
explain why these technologies have failed to move from
laboratories to real-world applications. Many visual lan-
guages used today are syntactically simple languages that
focus on basic graphic elements and their expressiveness,
so there is no need to specify complex grammatical rules.

3. Local Context Specification of Visual Lan-
guages

The local context-based visual language specification al-
lows the definition of a visual language both syntactically
and semantically, and also enables the definition of a se-
mantic translation of the visual language sentences (e.g., in
text format). Its main feature is that it does not make use
of grammars in order to allow easier specification of lan-
guages. It has been successfully applied to the definition of
various visual real word languages, showing that often there
is no need for a grammar definition.

A full description of the methodology can be found in
[10]. For reasons of space, it is not possible to describe it
here in detail, so we will only indicate here its main fea-
tures while referring to [10] for a complete definition and
examples.

According to the local context specification, a visual lan-
guage is a set of visual sentences on an alphabet of symbols
and connectors (i.e. language elements). Each of them is
characterized by the following attributes:



• a unique name;
• a graphical appearance;
• the minimum and/or maximum numbers of admissible

occurrences in any sentence of the language;
• one or more attaching areas. Each area is characterized

by a unique name, its shape and location on the sym-
bol or connector, a set of local constraints, such as the
number of possible connections to the area (referred to
as connectNum), and a type used to force legal connec-
tions among symbol and connector attaching areas. In
fact, a connector area can be attached to a symbol area
only if they have the same type.

• a number of symbol level constraints involving more
than one attaching area;

Moreover, in order to allow a meaningful visual lan-
guage translation, textual attaching areas are possible, i.e.
attaching areas that are designed to only contain text. In this
case, the local constraints define instead the set of admissi-
ble values for the text (e.g. through a regular expression).

The syntactic analysis uses this information (local to the
symbol/connector) to check the correctness of the language
and produce a graph called abstract sentence graph. This
contains a node for each symbol/connector and an edge be-
tween all the symbol-connector pairs that are connected.

The Local Context-based Semantic Definition (LCSD)
allows the semantic translation of a visual language. The
LCSD consists of a sequence of semantic rules for each ele-
ment of the language. Each rule either calculates a property
or executes an action. The properties are calculated through
procedures making use of XPath-like expressions and pos-
sibly validated through a post-condition. An action depends
on properties and attributes.

Through the post-conditions, an LCSD may better refine
the syntactic structure of the language sentences; through
the actions, it provides a translation of the sentences. The
semantic analysis algorithm uses a data flow model of exe-
cution in order to run the semantic translation rules specified
for each language element (as opposed to defining seman-
tic rules for complete phrases). In particular, the XPath-
like expressions are exploited to gather values from the ele-
ment neighbors (and use them in the translation). The new
methodology was in part implemented as part of the LoCo-
MoTiVe tool [7]. In contrast to DrawSE2, it is a desktop
application that allows the definition of the visual language
only partially through the GUI. It also does not allow a vi-
sual representation of how language elements can be linked.
In designing DrasSE2, we, therefore, sought to overcome
these limitations.

4. Designing a visual representation of visual
languages

In designing DrawSE2 we had not only the goal of creat-
ing a tool that would allow defining (through the local con-
text technique) a visual language in a simple way, but that
would also make the created definition easy to understand.
To achieve this we decided that the best way was for the
definition to be as much as possible a visual language itself.

To this end, we decided that the visual elements compris-
ing the visual language should simply be placed in the lan-
guage definition (in the x/y position that the author deems
most appropriate). Having shown the language elements,
the next most important thing is how the elements of the lan-
guage can be related to each other in an admissible way. The
local context definition uses types (designer-defined names)
associated with attaching areas to indicate that a connection
is permissible between areas with the same type.

This type of information can be trivially visually dis-
played by a hyperedge (as it connects two or more attack
areas together). In our early designs, we tried some of the
typical ways to visually represent a hyperedge, but we no-
ticed that, for example in Euler-style visualization, as the
number of language elements increases it becomes increas-
ingly visually heavy and difficult to understand (and diffi-
cult for the user to draw). For this reason, we decided to
use numbered placeholders (colored circles with a number
inside them) to indicate that attaching areas with the same
placeholder represent allowable connections, as shown in
Figure 1.

Although it would be easy to show other information in
this type of visualization, such as the number of permissi-
ble occurrences for a language element or the number of
permissible connections for an attaching area (simply by
showing the related text next to the relevant element), we
decided to exclude such information from the immediately
accessible visual representation because it made it too vi-
sually heavy, and decided that such information should be
visible only after selecting a specific language element.

These design decisions were then included in DrawSE2.

5. DrawSE2

DrawSE2 is an application that allows visual language
definition according to the local context specification in a
visual/GUI way, making it easy to define how symbols can
be linked together and minimizing the amount of code to
be written. This is expected to make the definition of a vi-
sual language easier and more understandable even for users
with minimal knowledge of grammars and programming.
DrawSE2 is based on diagrams.net [18], a web application
that allows diagrams to be composed using predefined sym-



Figure 1: DrawSE2 in shape mode.

bols and connectors, but does not include syntactic/seman-
tic analysis capabilities.

DrawSE2 has two modes: the shape mode in which one
can define visual language elements (symbols and connec-
tors, including the composition of predefined elements),
element attributes, and semantic rules; and the constraint
mode in which one can define the attaching areas for the
language elements and the admissible connections between
them. It is also possible to export the created language, i.e.,
to run an instance of an editor (also based on diagrams.net)
in which it is possible to draw diagrams of the newly defined
language and use the syntactic/semantic analysis functions
to check for correctness and obtain the semantic translation
(e.g., into text) of the drawn diagram.

Figure 1 shows a screenshot of DrawSE2 in shape mode.
It is possible to switch to constraint mode and vice versa us-
ing the corresponding switch (highlighted in the red box):
this changes the display of the canvas contents and the
side menu. There are also menus and buttons offering fea-
tures typical of graphic editors (and already included a di-
agrams.net) such as zoom, undo/redo, for changing prop-
erties and styles of graphic elements, etc., which are then
available both in shape mode and in constrain mode. Fi-
nally, it is possible to export the language using the “Export
to TiVe” menu (highlighted in the blue box): this causes the
editor to open in a new browser tab. In the next sections, we
will describe each mode in detail.

Figure 2: Defining the attributes of an element.

5.1. Shape Mode

The Shape mode allows one to define the symbols and
connectors used in the language. For a symbol or connec-
tor to become part of the language, it is sufficient for it to
be placed on the canvas by dragging it from the panel on
the left, which contains a set of predefined symbols and
connectors. One can also create their own custom sym-
bols by putting together several predefined elements. Such



Figure 3: Table for defining semantic rules.

predefined elements also include lines and curves so there
is considerable flexibility, considering also that it is possi-
ble to import graphic elements in png format. This is ac-
complished by selecting individual elements and using the
group function found in the context menu (accessible by
right-clicking).

By selecting a symbol it is also possible to define the
following attributes (from the local context methodology)
thanks to the panel on the right: name; number of permis-
sible occurrences in a language sentence; expanded name
(shown to language users), local constraints involving mul-
tiple attaching areas (more on this in the next section). An
example is shown in Figure 2.

Also in this mode, semantic rules can be defined. To per-
form this action there is a “Define semantic rules” option in
the context menu accessible for each element. In this case,
an editable table will be shown that will allow these rules to
be defined congruently with the local context methodology.

In particular, the table, as shown in Figure 3, allows
defining the list of symbol properties and how these are to
be computed. There is also a text area in which the code to
produce the semantic translation of that language element
can be entered. For convenience, there is the listing of the
textual attaching areas of the symbol, if any (since they are
likely to be referenced in the code that produces the seman-
tic translation, since they may contain user-written text). Fi-
nally, there are buttons to save, close, or remove the table
altogether.

The “Define visit table” button at the top of the GUI al-
lows one to define the visit table, which is used to define
the order in which language elements will be visited during
semantic analysis/translation. In particular, it is possible to
define the order and priority of each element, and the paths
associated with them. Again, there are buttons to save and
close, as shown in Figure 4.

Figure 4: Example of a visit table definition.

Figure 5: Example of using “New Attack Types”.

Figure 6: Defining the properties of an attaching area on a
symbol.



Figure 7: Example of editor created for the tree language. The button highlighted in the red box launches the correctness
check and semantic translation. The semantic translation (a preorder visit) is shown on the right panel.

5.2. Constraint Mode

The Constraint Mode allows one to define the attaching
areas for each symbol or connector in a visual way. When
switching to constraint mode, the language elements remain
visible but become uneditable, and the side panel on the left
instead shows the set of attaching areas (“Attachment” panel
in Figure 5) that one can drag onto the language elements in
the canvas in order to add them.

It is also possible to define how language elements can be
connected to each other. This can be done by creating place-
holders (through the “New Attack Types” button). They are
represented graphically by circles of different colors and
containing numbers. Placeholders with the same number
can be placed on the attaching areas of language elements
in order to indicate that these elements can be connected
together in a valid visual sentence, as shown in Figure 5.

It is also possible to define properties (from the local con-
text methodology) for each attack type, including: name
(optional: useful if one needs to reference it in the semantic
specification); maximum number of elements that can be
attached to it; limits on self-loops (connector leaving and
arriving on the same area), as shown in Figure 6.

5.3. Visual language editor: TiVe

The TiVe editor uses the visual language definition and
is also based on diagrams.net. It differs from it in that it
shows in the left panel only the symbols and connectors that
are part of the language, and that it adds a button that allows
the user to perform the correctness check of what has been

drawn. If successful, the semantic translation (if defined)
or a message confirming correctness will be shown, or an
error message otherwise. Figure 7 shows an example of this
editor.

6. Conclusions and further works

We presented DrawSE2, a new tool for defining visual
languages in a more visual way (according to local context
methodology). The user can create the visual elements of
the language, define their attaching areas, and define how
they may connect with each other by placing placeholders
on their attaching areas. The tool also allows the user to
define the semantic attributes and the semantic translation
through tabular GUI.

Future work will involve empirical evaluation of the soft-
ware by performing user studies involving both experts in
visual languages and users with no experience in the field.
Regarding the latter users, it is planned to involve computer
science students studying compilers (of textual program-
ming languages). After this evaluation, the software will
be further refined according to the received feedback and
by correcting any remaining bugs.

7. Acknowledgment

The authors thank Gerardo Brescia and Vincenzo Ca-
puto for their support in implementing DrawSE’s earlier
versions.



References

[1] R. Bardohl. Genged: a generic graphical editor for visual
languages based on algebraic graph grammars. In Visual
Languages, 1998. Proceedings. 1998 IEEE Symposium on,
pages 48–55, Sep 1998.

[2] R. Bardohl, M. Minas, G. Taentzer, and A. Schürr. Hand-
book of graph grammars and computing by graph transfor-
mation. chapter Application of Graph Transformation to Vi-
sual Languages, pages 105–180. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1999.

[3] S. S. Chok and K. Marriott. Automatic construction of in-
telligent diagram editors. In Proceedings of the 11th Annual
ACM Symposium on User Interface Software and Technol-
ogy, pages 185–194, New York, NY, USA, 1998. ACM.

[4] G. Costagliola, M. De Rosa, A. Fish, V. Fuccella, R. Saleh,
and S. Swartwood. Knotsketch: A tool for knot diagram
sketching, encoding and re-generation. In The 22nd Interna-
tional Conference on Distributed Multimedia Systems, pages
16–25, 2016.

[5] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. Journal of Visual
Languages & Computing, 25(6):955–962, 2014.

[6] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. In The 20th In-
ternational Conference on Distributed Multimedia Systems,
pages 321–328. Knowledge Systems Institute, August 2014.

[7] G. Costagliola, M. De Rosa, and V. Fuccella. Extending
local context-based specifications of visual languages. Jour-
nal of Visual Languages & Computing, 31, Part B:184 – 195,
2015.

[8] G. Costagliola, M. De Rosa, and V. Fuccella. Fast prototyp-
ing of visual languages using local context-based specifica-
tions. In A. Guercio, editor, The 21st International Con-
ference on Distributed Multimedia Systems, pages 14–22.
Knowledge Systems Institute, August 2015.

[9] G. Costagliola, M. De Rosa, and V. Fuccella. Fast prototyp-
ing of visual languages using local context-based specifica-
tions. J. Vis. Lang. Sentient Syst., 1, 2015.

[10] G. Costagliola, M. De Rosa, and V. Fuccella. Using the
local context for the definition and implementation of visual
languages. Comput. Lang. Syst. Struct., 54:20–38, 2018.

[11] G. Costagliola, M. De Rosa, V. Fuccella, and M. Minas.
Visual exploration of visual parser execution. Multimedia
Tools and Applications, 81(1):299–317, 2022.

[12] G. Costagliola, M. De Rosa, V. Fuccella, and S. Perna. Vi-
sual languages: A graphical review. Information Visualiza-
tion, 17(4):335–350, 2018.

[13] G. Costagliola, M. De Rosa, and M. Minas. Visual parsing
and parser visualization. In 2019 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC),
pages 243–247, 2019.

[14] G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM Trans. Softw. Eng.
Methodol., 13(4):431–487, Oct. 2004.

[15] G. Costagliola, V. Deufemia, and G. Polese. Visual lan-
guage implementation through standard compiler–compiler
techniques. Journal of Visual Languages & Computing,
18(2):165 – 226, 2007.

[16] G. Costagliola and G. Polese. Extended positional gram-
mars. In Proceeding 2000 IEEE International Symposium
on Visual Languages, pages 103–110, 2000.

[17] E. J. Golin. Parsing visual languages with picture layout
grammars. J. Vis. Lang. Comput., 2(4):371–393, Dec. 1991.

[18] JGraph Ltd. diagrams.net. https://www.diagrams.net, 2022.
[19] U. Kastens and C. Schmidt. Vl-eli: A generator for vi-

sual languages - system demonstration. Electr. Notes Theor.
Comput. Sci., 65(3):139–143, 2002.

[20] J. d. Lara and H. Vangheluwe. Atom3: A tool for
multi-formalism and meta-modelling. In Fundamental Ap-
proaches to Software Engineering, pages 174–188, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[21] K. Marriott. Parsing visual languages with constraint mul-
tiset grammars. In Programming Languages: Implementa-
tions, Logics and Programs, pages 24–25, Berlin, Heidel-
berg, 1995. Springer Berlin Heidelberg.

[22] K. Marriott and B. Meyer. On the classification of visual
languages by grammar hierarchies. Journal of Visual Lan-
guages & Computing, 8(4):375 – 402, 1997.

[23] Y. Matsuzawa, Y. Tanaka, and S. Sakai. Measuring an im-
pact of block-based language in introductory programming.
In SaITE 2016 - Stakeholders and Information Technology
in Education - IFIP Advances in Information and Commu-
nication Technology, volume 493, pages 16–27. Springer,
Cham, 2016.

[24] M. Minas and G. Viehstaedt. Diagen: A generator for
diagram editors providing direct manipulation and execu-
tion of diagrams. In Proceedings of the 11th International
IEEE Symposium on Visual Languages, VL ’95, pages 203–,
Washington, DC, USA, 1995. IEEE Computer Society.

[25] J. Rekers and A. Schurr. A graph based framework for
the implementation of visual environments. In Visual Lan-
guages, 1996. Proceedings., IEEE Symposium on, pages
148–155, Sep 1996.

[26] C. Schmidt, U. Kastens, and B. Cramer. Using devil for im-
plementation of domain-specific visual languages. In Pro-
ceedings of the Workshop on Domain-Specific Program De-
velopment, page 38, 2006.

[27] L. Weitzman and K. Wittenburg. Relational grammars for
interactive design. In Visual Languages, 1993., Proceedings
1993 IEEE Symposium on, pages 4–11, Aug 1993.

[28] J. Wolter. Devil3d - A generator framework for three-
dimensional visual languages. In Proceedings of the 18th In-
ternational Conference on Distributed Multimedia Systems,
DMS 2012, August 9-11, 2012, Eden Roc Renaissance, Mi-
ami Beach, FL, USA, pages 171–176. Knowledge Systems
Institute, 2012.

[29] J. Wolter. Specifying generic depictions of language con-
structs for 3d visual languages. In 2013 IEEE Symposium
on Visual Languages and Human Centric Computing, pages
139–142, 2013.

[30] D.-Q. Zhang and K. Zhang. Reserved graph grammar:
a specification tool for diagrammatic vpls. In Proceed-
ings. 1997 IEEE Symposium on Visual Languages (Cat.
No.97TB100180), pages 284–291, 1997.

[31] D.-Q. Zhang and K. Zhang. Vispro: a visual language gen-
eration toolset. In Proceedings. 1998 IEEE Symposium on
Visual Languages (Cat. No.98TB100254), pages 195–202,
1998.


