
SEKE
2012

Program for the Twenty-Fourth
International Conference on
Software Engineering &
Knowledge Engineering

San Francisco Bay
 July 1-3

PB i

PROCEEDINGS

SEKE 2012
The 24th International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
July 1-3, 2012

Hotel Sofitel, Redwood City, San Francisco Bay, USA

Organized by
Knowledge Systems Institute Graduate School

ii iii

Copyright © 2012 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN-10: 1-891706-31-4 (paper)
ISBN-13: 978-1-891706-31-8

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

ii iii

Foreword
This year marks the 24th anniversary for the International Conference on Software Engineering and Knowledge
Engineering (SEKE). For nearly a quarter of century, SEKE has established itself as a major international forum
to foster, among academia, industry, and government agencies, discussion and exchange of ideas, research results
and experience in software engineering and knowledge engineering. The SEKE community has grown to become a
very important and influential source of ideas and innovations on the interplays between software engineering and
knowledge engineering, and its impact on the knowledge economy has been felt worldwide. On behalf of the Program
Committee Co-Chairs and the entire Program Committee, I would like to extend to you the warmest welcome to SEKE
2012.

We received 219 submissions from 30 countries this year. Through a rigorous review process where a majority (86
percent) of the submitted papers received three reviews, and the rest with two reviews, we were able to select 59 full
papers for the general conference (27 percent), 18 full papers for three special tracks (8 percent), and 60 short papers
(27 percent), for presentation in thirty nine sessions during the conference. In addition, the technical program includes
excellent keynote speech and panel discussions, and three special tracks: Software Engineering with Computational
Intelligence and Machine Learning, Petri Nets for SEKE, and Software Testing and Analysis with Intelligent
Technologies.

The high quality of the SEKE 2012 technical program would not have been possible without the tireless effort and hard
work of many individuals. First of all, I would like to express my sincere appreciation to all the authors whose technical
contributions have made the final technical program possible. I am very grateful to all the Program Committee members
whose expertise and dedication made my responsibility that much easier. My gratitude also goes to the keynote speaker
and panelists who graciously agreed to share their insight on important research issues, to the conference organizing
committee members for their superb work, and to the external reviewers for their contribution.

Personally, I owe a debt of gratitude to a number of people whose help and support with the technical program and the
conference organization are unfailing and indispensable. I am deeply indebted to Dr. S. K. Chang, Chair of the Steering
Committee, for his constant guidance and support that are essential to pull off SEKE 2012. My heartfelt appreciation
goes to Dr. Masoud Sadjadi, the Conference Chair, for his help and experience, and to the Program Committee Co-
Chairs, Dr. Marek Reformat of University of Alberta, Canada, Dr. Swapna Gokhale of University of Connecticut, USA,
and Dr. Jose Carlos Maldonado of University of Sao Paulo, Brazil, for their outstanding team work. I am truly grateful
to the special track organizers, Dr. Taghi Khoshgoftaar of Florida Atlantic University, Dr. Marek Reformat of University
of Alberta, Canada, Dr. Dianxiang Xu of Dakota State University, South Dakota, Dr. Haiping Xu of University of
Massachusetts Dartmouth, Dr. Zhenyu Chen of Nanjing University, China, and Dr. Zheng Li of Beijing University of
Chemical Technology, China, for their excellent job in organizing the special sessions. I would like to express my great
appreciation to all the Publicity Co-Chairs, Dr. Xiaoying Bai of Tsinghua University, China, Dr. Raul Garcia Castro
of Universidad Politecnica de Madrid, Spain, Shihong Huang of Florida Atlantic University, and Dr. Haiping Xu of
University of Massachusetts Dartmouth, for their important contributions, to the Asia, Europe, and South America
liaisons, Dr. Hironori Washizaki of Waseda University, Japan, Dr. Raul Garcia Castro of Universidad Politecnica de
Madrid, Spain, and Dr. Jose Carlos Maldonado of University of Sao Paulo, Brazil, for their great efforts in helping
expand the SEKE community, and to the Poster/Demo session Co-Chairs, Dr. Farshad Samimi of Trilliant and Dr.
Ming Zhao of Florida International University, for their work. Last but certainly not the least, I must acknowledge the
important contributions the following KSI staff members have made: David Huang, Rachel Lu, Alice Wang, and Dennis
Chi. Their timely and dependable support and assistance throughout the entire process have been truly remarkable. It
has been a great pleasure to work with all of them.

Finally, I hope you will find your participation in the SEKE 2012 programs rewarding. Enjoy your stay in the San
Francisco Bay area.

Du Zhang
SEKE 2012 Program Chair

iv v

The 24th International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2012)

July 1-3, 2012
Hotel Sofitel, Redwood City, San Francisco Bay, USA

Conference Organization

Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA

Steering Committee
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

Advisory Committee

Jerry Gao, San Jose State University, USA
Natalia Juristo, Madrid Technological University, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada

Conference Chair

S. Masoud Sadjadi, Florida International University, USA

Program Chair

Du Zhang, California State University Sacramento, USA

iv v

Program Co-Chairs
Marek Reformat, University of Alberta, Canada

Du Zhang, California State University Sacramento, USA
Swapna Gokhale, University of Connecticut, USA

Program Committee
Alain Abran, L’ecole de technologie superieure, Canada

Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain
Taiseera Albalushi, Sultan Qaboos University, Oman

Edward Allen, Mississippi State University, USA
Thomas Alspaugh, Georgetown University, USA

Doo-hwan Bae, Korea Advanced Institute of Science and Technology, Korea
Ebrahim Bagheri, National Research Council Canada, Canada

Hamid Bagheri, University of Virginia, USA
Rami Bahsoon, University of Birmingham, United Kingdom

Xiaoying Bai, Tsinghua University, China
Purushotham Bangalore, University of Alabama at Birmingham, USA

Ellen Francine Barbosa, University of Sao Paulo, Brazil
Fevzi Belli, Univ. Paderborn, Germany

Ateet Bhalla, NRI Institute of Information Science and Technology, India
Swapan Bhattacharya, Jadavpur University, India

Alessandro Bianchi, Department of Informatics - University of Bari, Italy
Karun N. Biyani, Michigan State University, USA

Borzoo Bonakdarpour, University of Waterloo, Canada
Ivo Bukovsky, Czech Technical University in Prague, Czech Republic

Kai-yuan Cai, Beijing University of Aeronautics and Astronautics, China
Gerardo Canfora, Universita del Sannio, Italy

Jaelson Castro, Universidade Federal de Pernambuco - UFPE, Brazil
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

Cagatay Catal, Istanbul Kultur University, Turkey
Peggy Cellier, IRISA/INSA of Rennes, France

Christine Chan, University of Regina, Canada
Keith Chan, The Hong Kong Polytechnic University, Hong Kong

Kuang-nan Chang, Eastern Kentucky University, USA
Ned Chapin, InfoSci Inc., USA

Shu-Ching Chen, Florida International University, USA

vi vii

Zhenyu Chen, Nanjing University, China
Stelvio Cimato, The University of Milan, Italy

Peter Clarke, Florida International University, USA
Esteban Clua, Universidade Federal Fluminense, Brasil

Nelly Condori-fernandez, University of Twente, The Netherlands
Fabio M. Costa, Instituto de Informatica, Brasil

Maria Francesca Costabile, University of Bari, Italy
Karl Cox, University of Brighton, United Kingdom
Jose Luis Cuadrado, University of Alcala, Spain

Juan J. Cuadrado-gallego, University of Alcala, Spain
Ernesto Damiani, The University of Milan, Italy

Dilma Da Silva, IBM, USA
Jose Luis De La Vara, Simula Research Laboratory, Norway
Marian Fernandez De Sevilla, University of Alcala, Spain

Scott Dick, University of Alberta, Canada
Massimiliano Di Penta, University of Sannio, Italy

Jing Dong, University of Texas at Dallas, USA
Weichang Du, University of New Brunswick, Canada

Philippe Dugerdil, HEG - Univ. of Applied Sciences, Switzerland
Hector Duran, Centro Universitario de Ciencias Economico Administrativas, Mexico

Christof Ebert, Vector Consulting Services, Germany
Ali Ebnenasir, Michigan Technological University, USA

Raimund Ege, NIU, USA
Magdalini Eirinaki, Computer Engineering Dept, San Jose State University, USA

Faezeh Ensan, University of New Brunswick, Canada
Davide Falessi, University of Rome, TorVergata, Italy

Behrouz Far, University of Calgary, Canada
Scott D. Fleming, Oregon State University, USA

Liana Fong, IBM, USA
Renata Fortes, Instituto de Ciencias Matematicas e de Computacao - USP, Brazil

Fulvio Frati, The University of Milan, Italy
Jerry Gao, San Jose State University, USA

Kehan Gao, Eastern Connecticut State University, USA
Felix Garcia, University of Castilla-La Mancha, Spain

Ignacio Garcia Rodriguez De Guzman, University of Castilla-La Mancha, Spain
Itana Gimenes, Universidade Estadual de Maringa, Brazil

Swapna Gokhale, Univ. of Connecticut, USA

vi vii

Wolfgang Golubski, Zwickau University of Applied Sciences, Germany
Desmond Greer, Queen’s University Belfast, United Kingdom

Eric Gregoire, Universite d’Artois, France
Christiane Gresse Von Wangenheim, UFSC - Federal University of Santa Catarina, Brazil

Katarina Grolinger, University of Western Ontario, Canada
Hao Han, National Institute of Informatics, Japan
Xudong He, Florida International University, USA

Miguel Herranz, University of Alcala, Spain
Mong Fong Horng, National Kaohsiung University of Applied Sciences, Taiwan

Shihong Huang, Florida Atlantic University, USA
Clinton Jeffery, University of Idaho, USA

Jason Jung, Yeungnam University, South Korea
Natalia Juristo, Universidad Politecnica de Madrid, Spain

Selim Kalayci, Florida International University, USA
Eric Kasten, Michigan State University, USA

Taghi Khoshgoftaar, Florida Atlantic University, USA
Jun Kong, North Dakota State University, USA

Nicholas Kraft, The University of Alabama, USA
Anesh Krishna, Curtin University of Technology, Australia

Sandeep Kulkarni, Michigan State University, USA
Vinay Kulkarni, Tata Consultancy Services, India
Gihwon Kwon, Kyonggi University, South Korea

Jeff Lei, University of Texas at Arlington, USA
Bixin Li, School of Computer Science and Engineering, Southeast University, China

Ming Li, Nanjing University, China
Tao Li, Florida International University, USA
Yuan-Fang Li, Monash University, Australia

Qianhui Liang, Singapore Management University, Singapore
Shih-hsi Liu, California State University, Fresno, USA

Xiaodong Liu, Edinburgh Napier University, United Kingdom
Yan Liu, Pacific Northwest National Laboratory, USA

Yi Liu, GCSU, USA
Hakim Lounis, UQAM, Canada

Joan Lu, University of Huddersfield, United Kingdom
Jose Carlos Maldonado, ICMC-USP, Brazil
Antonio Mana, University of Malaga, Spain

Vijay Mann, IBM, India

viii ix

Riccardo Martoglia, University of Modena and Reggio Emilia, Italy
Hong Mei, Peking University, China

Hsing Mei, Fu Jen Catholic Unicersity, Taiwan
Emilia Mendes, University of Auckland, New Zealand

Ali Mili, NJIT, USA
Alok Mishra, Atilim University, Turkey

Ana M. Moreno, Universidad Politecnica de Madrid, Spain
Kia Ng, ICSRiM - University of Leeds, United Kingdom

Ngoc Thanh Nguyen, Wroclaw University of Technology, Poland
Allen Nikora, Jet Propulsion Laboratory, USA

Edson Oliveira Jr., State University of Maringa, Brazil
Kunal Patel, Ingenuity Systems, USA
Xin Peng, Fudan University, China

Antonio Piccinno, University of Bari, Italy
Alfonso Pierantonio, University of L’Aquila, Italy

Antonio Navidad Pineda, University of Alcala, Spain
Rick Rabiser, Johannes Kepler University, Austria

Damith C. Rajapakse, National University of Singapore, Singapore
Rajeev Raje, IUPUI, USA

Jose Angel Ramos, Universidad Politecnica de Madrid, Spain
Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA

Ivan Rodero, The State University of New Jersey, USA
Daniel Rodriguez, Universidad de Alcala, Spain
Samira Sadaoui, University of Regina, Canada

Masoud Sadjadi, Florida International University, USA
Claudio Sant’Anna, Universidade Federal da Bahia, Brazil

Salvatore Alessandro Sarcia, University of Rome “Tor Vergata”, Italy
Douglas Schmidt, Vanderbilt University ISIS, USA

Andreas Schoenberger, Distributed and Mobile Systems Group, University of Bamberg, Germany
Naeem (jim) Seliya, University of Michigan - Dearborn, USA

Tony Shan, Keane Inc, USA
Rajan Shankaran, Macquarie University, Australia

Michael Shin, Computer Science/Texas Tech University, USA
Qinbao Song, Xi’an Jiaotong University, China

George Spanoudakis, City University, United Kingdom
Jing Sun, University of Auckland, New Zealand

viii ix

Yanchun Sun, Peking University, China
Gerson Sunye, Institut de Recherche en Informatique et Systemes Aleatoires, France

Jeff Tian, Southern Methodist University, USA
Genny Tortora, University of Salerno, Italy

Mark Trakhtenbrot, Holon Institute of Technology, Israel
Peter Troeger, Universitat zu Potsdam, Germany

T.h. Tse, The University of Hong Kong, Hong Kong
Giorgio Valle, The University of Milan, Italy

Sylvain Vauttier, Ecole des mines d’Ales, France
Silvia Vergilio, Federal University of Parana (UFPR), Brazil

Akshat Verma, IBM, India
Sergiy Vilkomir, East Carolina University, USA

Arndt Von Staa, PUC-Rio, Brazil
Huanjing Wang, Western Kentucky University, USA

Limin Wang, VMware Inc., USA
Hironori Washizaki, Waseda University, Japan

Victor Winter, University of Nebraska at Omaha, USA
Guido Wirtz, Distributed Systems Group, Bamberg University, Germany

Eric Wong, University of Texas, USA
Franz Wotawa, TU Graz, Austria

Dianxiang Xu, Dakota State University, USA
Haiping Xu, University of Massachusetts Dartmouth, USA

Chi-lu Yang, Taiwan Semiconductor Manufacturing Company Ltd., Taiwan
Hongji Yang, De Montfort University, United Kingdom

Ji-Jian Yang, National TsingHua University, China
Junbeom Yoo, Konkuk University, South Korea

Huiqun Yu, East China University of Science and Technology, China
Cui Zhang, California State University Sacramento, USA

Du Zhang, California State University, USA
Hongyu Zhang, Tsinghua University, China

Yong Zhang, TsingHua University in Beijing, China
Zhenyu Zhang, The University of Hong Kong, Hong Kong

Hong Zhu, Oxford Brookes University, United Kingdom
Xingquan Zhu, Florida Atlantic University, USA

Eugenio Zimeo, University of Sannio, Italy

x xi

Poster/Demo Sessions Co-Chairs

Farshad Samimi, Trilliant, USA
Ming Zhao, Florida Int’l University, USA

Publicity Co-Chairs
Xiaoying Bai, Tsinghua University, China

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Shihong Huang, Florida Atlantic University, USA

Haiping Xu, University of Massachusetts Dartmouth, USA

Asia Liaison
Hironori Washizaki, Waseda University, Japan

South America Liasion
Jose Carlos Maldonado, University of Sao Paulo, Brazil

Proceedings Cover Design
Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Noorjhan Ali, Knowledge Systems Institute Graduate School, USA
Dennis Chi, Knowledge Systems Institute Graduate School, USA

David Huang, Knowledge Systems Institute Graduate School, USA
Rachel Lu, Knowledge Systems Institute Graduate School, USA
Alice Wang, Knowledge Systems Institute Graduate School, USA

x xi

Table of Contents

Foreword .. iii

Conference Organization ... iv

Keynote: On the Naturalness of Software
Prem Devanbu ... xxv

Panel Discussion on Future Trends of Software Engineering and Knowledge
Engineering
Moderator: Du Zhang
Panelists: Masoud Sadjadi, Taghi Khoshgoftaar, Eric Grégoire, Swapna S. Gokhale
and Marek Reformat .. xxvi

Data Mining

Sparse Linear Influence Model for Hot User Selection on Mining a Social Network
Yingze Wang, Guang Xiang and Shi-Kuo Chang .. 1

Mining Call Graph for Change Impact Analysis
Qiandong Zhang, Bixin Li and Xiaobing Sun ... 7

A Mobile Application for Stock Market Prediction Using Sentiment Analysis
Kushal Jangid, Pratik Paul and Magdalini Eirinaki .. 13

Requirement Engineering

Using Semantic Relatedness and Locality for Requirements Elicitation Guidance
Stefan Farfeleder, Thomas Moser and Andreas Krall .. 19

Phases, Activities, and Techniques for a Requirements Conceptualization Process
Alejandro Hossian and Ramón Garcia-Martínez .. 25

Using Empirical Studies to Evaluate the REMO Requirement Elicitation Technique
Sérgio Roberto Costa Vieira, Davi Viana, Rogério do Nascimento and Tayana Conte 33

Consistency Checks of System Properties Using LTL and Büchi Automata
Salamah Salamah, Matthew Engskow and Omar Ochoa ... 39

xii xiii

Evaluating the Cost-Effectiveness of Inspecting the Requirement Documents:
an Empirical Study
Narendar Mandala and Gursimran S. Walia ... 45

Requirement Analysis and Automated Verification: a Semantic Approach (S)
Animesh Dutta, Prajna Devi Upadhyay and Sudipta Acharya ... 51

Risk-Driven Non-Functional Requirement Analysis and Specification (S)
Yi Liu, Zhiyi Ma, Hui Liu and Weizhong Shao ... 55

Eliciting Security Requirements in the Commanded Behavior Frame:
an Ontology Based Approach (S)
Xiaohong Chen and Jing Liu ... 61

An Overview of the RSLingo Approach (S)
David de Almeida Ferreira and Alberto Rodrigues da Silva ... 66

Detecting Emergent Behavior in Distributed Systems Caused by Overgeneralization (S)
Seyedehmehrnaz Mireslami, Mohammad Moshirpour and Behrouz H. Far 70

Special Session: Software Engineering with Comp. Intelligence & Machine
Learning

Stability of Filter-Based Feature Selection Methods for Imbalanced Software Measurement Data
Kehan Gao, Taghi M. Khoshgoftaar and Amri Napolitano .. 74

Semantic Interfaces Discovery Server
Laura Maria Chaves, José Renato Villela Dantas, Bruno de Azevedo Muniz,
Júlio Cesar Campos Neto and Pedro Porfírio Muniz Farias .. 80

Cloud Application Resource Mapping and Scaling Based on Monitoring of QoS Constraints
Xabriel J. Collazo-Mojica, S. Masoud Sadjadi, Jorge Ejarque and Rosa M. Badia 88

An Empirical Study of Software Metric Selection Techniques for Defect Prediction
Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald and Amri Napolitano 94

Progressive Clustering with Learned Seeds: an Event Categorization System for Power Grid
Boyi Xie, Rebecca J. Passonneau, Haimonti Dutta, Jing-Yeu Miaw, Axinia Radeva,
Ashish Tomar and Cynthia Rudin .. 100

xii xiii

Multi-Objective Optimization of Fuzzy Neural Networks for Software Modeling
Kuwen Li, Marek Z. Reformat, Witold Pedrycz and Jinfeng Yu ... 106

Generating Performance Test Scripts and Scenarios Based on Abstract Intermediate Models
Leandro T. Costa, Ricardo M. Czekster, Flávio M. de Oliveira, Elder M. Rodrigues,
Maicon B. da Silveira and Avelino F. Zorzo .. 112

Case Study

A Catalog of Patterns for Concept Lattice Interpretation in Software Reengineering
Muhammad U.Bhatti, Nicolas Anquetil, Marianne Huchard, and Stéphane Ducasse 118

Client-Side Rendering Mechanism: a Double-Edged Sword for Browser-Based
Web Applications
Hao Han, Yinxing Xue and Keizo Oyama ... 124

An Empirical Study on Improving Trust among GSD Teams Using KMR (S)
Mamoona Humayun and Cui Gang .. 131

Modeling and Analysis of Switched Fuzzy Systems (S)
Zuohua Ding and Jiaying Ma .. 135

An Empirical Study on Recommendation Methods for Vertical B2C E-Commerce (S)
Chengfeng Hui, Jia Liu, Zhenyu Chen, Xingzhong Du and Weiyun Ma 139

Automated Approaches to Support Secondary Study Processes: a Systematic Review (S)
Jefferson Seide Molléri and Fabiane Barreto Vavassori Benitti .. 143

Aspect-Oriented SE

Enforcing Contracts for Aspect-Oriented Programs with Annotations, Pointcuts and Advice
Henrique Rebêlo, Ricardo Lima, Alexandre Mota, César Oliveira and Márcio Ribeiro 148

Towards More Generic Aspect-Oriented Programming: Rethinking the AOP Joinpoint
Concept (S)
Jonathan Cook and Amjad Nusayr .. 154

Aspect-Orientation in the Development of Embedded Systems: a Systematic Review (S)
Leonardo Simas Duarte and Elisa Yumi Nakagawa ... 158

xiv xv

Program Understanding

Evaluating Open Source Reverse Engineering Tools for Teaching Software Engineering
Swapna S. Gokhale, Thérèse Smith and Robert McCartney ... 162

Coordination Model to Support Visualization of Aspect-Oriented Programs
Álvaro F. d’Arce, Rogério E. Garcia, Ronaldo C. M. Correia and Danilo M. Eler 168

Improving Program Comprehension in Operating System Kernels with Execution
Trace Information (S)
Elder Vicente, Geycy Dyany, Rivalino Matias Jr. and Marcelo de Almeida Maia 174

Component-based SE

An Approach for Software Component Reusing Based on Ontological Mapping
Shi-Kuo Chang, Francesco Colace, Massimo De Santo, Emilio Zegarra
and YongJun Qie ... 180

Online Anomaly Detection for Components in OSGi-Based Software
Tao Wang, Wenbo Zhang, Jun Wei, Jianhua Zhang and Hua Zhong 188

An Exploratory Study of One-Use and Reusable Software Components (S)
Reghu Anguswamy and William B. Frakes ... 194

Choosing Licenses In Free Open Source Software (S)
Ioannis E. Foukarakis, Georgia M. Kapitsaki and Nikolaos D. Tselikas 200

Software Quality

A Unified Model for Server Usage and Operational Costs Based on User Profiles:
an Industrial Evaluation
Johannes Pelto-Piri, Peter Molin and Richard Torkar ... 205

A Model-Centric Approach for the Integration of Software Analysis Methods
Xiangping Chen, Jiaxi Chen, Zibin Zhao and Lingshuang Shao .. 211

CATESR: Change-Aware Test Suite Reduction Based on Partial Coverage of Test Requirements
Lijiu Zhang, Xiang Chen, Qing Gu, Haigang Zhao, Xiaoyan Shi and Daoxu Chen 217

xiv xv

A Process Model for Human Resources Management Focused on Increasing the Quality
of Software Development
Flávio E. A. Horita, Jacques D. Brancher and Rodolfo M. de Barros ... 225

Verification of Cyber-Physical Systems Based on Differential-Algebraic
Temporal Dynamic Logic (S)
Xiaoxiang Zhai, Bixin Li, Min Zhu, Jiakai Li, Qiaoqiao Chen and Shunhui Ji 231

HybridUML Based Verification of CPS Using Differential Dynamic Logic (S)
Min Zhu, Bixin Li, Jiakai Li, Qiaoqiao Chen, Xiaoxiang Zhai and Shunhui Ji 235

A HybridUML and QdL Based Verification Method for CPS Self-Adaptability (S)
Jiakai Li, Bixin Li, Qiaoqiao Chen, Min Zhu, Shunhui Ji and Xiaoxiang Zhai 239

Agent-based Learning

Disabling Subsumptions in a Logic-Based Component
Éric Grégoire and Sébastien Ramon .. 243

i2Learning: Perpetual Learning through Bias Shifting
Du Zhang ... 249

Evolutionary Learning and Fuzzy Logic Applied to a Load Balancer
Francisco Calaça Xavier, Max Gontijo de Oliveira and Cedric L. de Carvalho 256

Using Social Networks for Learning New Concepts in Multi-Agent Systems
Shimaa M. El-Sherif, Behrouz Far and Armin Eberlein .. 261

Special Session: Software Testing and Analysis with Intelligent Technology

Identifying Coincidental Correctness for Fault Localization by Clustering Test Cases
Yi Miao, Zhenyu Chen, Sihan Li, Zhihong Zhao and Yuming Zhou 267

Regression Testing Prioritization Based on Fuzzy Inference Systems
Pedro Santos Neto, Ricardo Britto, Thiago Soares, Werney Ayala, Jonathas Cruz
and Ricardo Rabelo ... 273

Parallel Path Execution for Software Testing over Automated Test Cloud (S)
Wei Liu, Xiaoqiang Liu, Feng Li, Yulong Gu, Lizhi Cai, Genxing Yang and Zhenyu Liu 279

xvi xvii

An Empirical Study of Execution-Data Classification Based on Machine Learning
Dan Hao, Xingxia Wu and Lu Zhang .. 283

Identification of Design Patterns Using Dependence Analysis (S)
Wentao Ma, Xiaoyu Zhou, Xiaofang Qi, Ju Qian, Lei Xu and Rui Yang 289

Slicing Concurrent Interprocedural Programs Based on Program Reachability Graphs (S)
Xiaofang Qi, Xiaojing Xu and Peng Wang .. 293

Service-Centric SE

A Usage-Based Unified Resource Model
Yves Wautelet, Samedi Heng and Manuel Kolp ... 299

Petri Net Modeling of Application Server Performance for Web Services
M. Rahmani, A. Azadmanesh and H. Siy ... 305

Implementing Web Applications as Social Machines Composition: a Case Study (S)
Kellyton dos Santos Brito, Lenin Ernesto Abadie Otero, Patrícia Fontinele Muniz, Leandro
Marques Nascimento, Vanilson André de Arruda Burégio, Vinicius Cardoso Garcia
and Silvio Romero de Lemos Meira ... 311

Interactive Business Rules Framework for Knowledge Based Service Oriented Architecture (S)
Debasis Chanda, Dwijesh Dutta Majumder and Swapan Bhattacharya 315

Defining RESTful Web Services Test Cases from UML Models (S)
Alexandre Luis Correa, Thiago Silva-de-Souza, Eber Assis Schmitz
and Antonio Juarez Alencar ... 319

A Model Introducing Soas Quality Attributes Decomposition (S)
Riad Belkhatir, Mourad Oussalah and Arnaud Viguier .. 324

Software as a Service: Undo (S)
Hernán Merlino, Oscar Dieste, Patricia Pesado and Ramon García-Martínez 328

Petri Nets for SEKE

A Petri Net Model for Secure and Fault-Tolerant Cloud-Based Information Storage
Daniel F. Fitch and Haiping Xu ... 333

xvi xvii

Decidability of Minimal Supports of S-invariants and the Computation of their Supported
S-Invariants of Petri Nets
Faming Lu, Qingtian Zeng, Hao Zhang, Yunxia Bao and Jiufang An 340

Automated Generation of Concurrent Test Code from Function Nets
Dianxiang Xu and Janghwan Tae .. 346

SAMAT - A Tool for Software Architecture Modeling and Analysis
Su Liu, Reng Zeng, Zhuo Sun and Xudong He .. 352

Singular Formulas for Compound Siphons, Complementary Siphons and Characteristic
Vectors for Deadlock Prevention in Cloud Computing (S)
Gaiyun Liu, D.Y.Chao and Yao-Nan Lien ... 359

Model-Based Metamorphic Testing: A Case Study
Junhua Ding and Dianxiang Xu .. 363

Verifying Aspect-Oriented Activity Diagrams Against Crosscutting Properties
with Petri Net Analyzer
Zhanqi Cui, Linzhang Wang, Xi Liu, Lei Bu, Jianhua Zhao, and Xuandong Li 369

Parametric Verification of TimeWorkflow Nets
Hanifa Boucheneb and Kamel Barkaoui ... 375

Resource Modeling and Analysis for Workflows: a Petri Net Approach
Jiacun Wang and Demin Li .. 381

Security and Privacy

ACADA: Access Control-Driven Architecture with Dynamic Adaptation
Óscar Mortágua Pereira, Rui L. Aguiar and Maribel Yasmina Santos 387

Connectors for Secure Software Architectures
Michael E. Shin, Bhavya Malhotra, Hassan Gomaa and Taeghyun Kang 394

How Social Network APIs Have Ended the Age of Privacy (S)
Derek Doran, Sean Curley and Swapna S. Gokhale ... 400

xviii xix

Computer Forensics: Toward the Construction of Electronic Chain of Custody
on the Semantic Web (S)
Tamer Fares Gayed, Hakim Lounis and Moncef Bari .. 406

Ontologies and Architecture

A Holistic Approach to Software Traceability
Hazeline U. Asuncion and Richard N. Taylor ... 412

Pointcut Design with AODL (S)
Saqib Iqbal and Gary Allen .. 418

Feature modeling and Verification Based on Description Logics (S)
Guohua Shen, Zhiqiu Huang, Changbao Tian, Qiang Ge and Wei Zhang 422

A Context Ontology Model for Pervasive Advertising: a Case Study on Pervasive Displays (S)
Frederico Moreira Bublitz, Hyggo Oliveira de Almeida and Angelo Perkusich 426

Ontology-based Representation of Simulation Models (S)
Katarina Grolinger, Miriam A. M. Capretz, José R. Marti and Krishan D. Srivastava 432

An Ontology-based Approach for Storing XML Data Into Relational Databases (S)
Francisco Tiago Machado de Avelar, Deise de Brum Saccol and Eduardo Kessler Piveta 438

Automatic Generation of Architectural Models From Goals Models (S)
Monique Soares, João Pimentel, Jaelson Castro, Carla Silva, Cleice Talitha,
Gabriela Guedes and Diego Dermeval ... 444

Towards Architectural Evolution through Model Transformations (S)
João Pimentel, Emanuel Santos, Diego Dermeval, Jaelson Castro
and Anthony Finkelstein ... 448

Testing

Using FCA-Based Change Impact Analysis for Regression Testing
Xiaobing Sun, Bixin Li, Chuanqi Tao and Qiandong Zhang ... 452

Forecasting Fault Events in Power Distribution Grids Using Machine Learning
Aldo Dagnino, Karen Smiley and Lakshmi Ramachandran ... 458

xviii xix

Testing Interoperability Security Policies
Mazen EL Maarabani, César Andrés and Ana Cavalli ... 464

A New Approach to Evaluate Path Feasibility and Coverage Ratio of EFSM
Based on Multi-objective Optimization
Rui Yang, Zhenyu Chen, Baowen Xu, Zhiyi Zhang and Wujie Zhou 470

Structural Testing for Multithreaded Programs: an Experimental Evaluation of the Cost,
Strength and Effectiveness (S)
Silvana M. Melo, Simone R. S. Souza and Paulo S. L. Souza .. 476

Programming Languages

Towards a Unified Source Code Measurement Framework Supporting Multiple
Programming Languages (S)
Reisha Humaira, Kazunori Sakamoto, Akira Ohashi, Hironori Washizaki
and Yoshiaki Fukazawa .. 480

A Tiny Specification Metalanguage (S)
Walter Wilson and Yu Lei .. 486

SciprovMiner: Provenance Capture Using the OPM Model (S)
Tatiane O. M. Alves, Wander Gaspar, Regina M. M. Braga, Fernanda Campos, Marco Antonio
Machado and Wagner Arbex .. 491

Engineering Graphical Domain Specific Languages to Develop Embedded Robot Applications (S)
Daniel B. F. Conrado and Valter V. de Camargo ... 495

Patterns and Frameworks

Dynamically Recommending Design Patterns
S. Smith and D. R. Plante ... 499

Towards a Novel Semantic Approach for Process Patterns’ Capitalization and Reuse
Nahla JLAIEL and Mohamed BEN AHMED ... 505

DC2AP: a Dublin Core Application Profile to Analysis Patterns (S)
Lucas Francisco da Matta Vegi, Jugurta Lisboa-Filho, Glauber Luis da Silva Costa,
Alcione de Paiva Oliveira and José Luís Braga .. 511

xx xxi

Modeling

Bridging KDM and ASTM for Model-Driven Software Modernization
Gaëtan Deltombe, Olivier Le Goaer and Franck Barbier ... 517

Modal ZIA, Modal Refinement Relation and Logical Characterization
Zining Cao ... 525

Towards Autonomic Business Process Models
Karolyne Oliveira, Jaelson Castro, Sergio España and Oscar Pastor 531

Iinteroperable EMR Message Generation: a Model-Driven Software Product
Line Approach (S)
Deepa Raka, Shih-Hsi Liu and Marjan Mernik .. 537

A Data Collaboration Model for Collaborative Design Based on C-Net (S)
Xin Gao, Wenhui Hu, Wei Ye, ZHANG Shi-kun and Xuan Sun .. 541

Tools and Environment

Working and Playing with SCRUM
Erick Passos, Danilo Medeiros, Wandresson Araújo and Pedro Santos Neto 545

Follow-the-Sun Software Development: a Controlled Experiment to Evaluate
the Benefits of Adaptive and Prescriptive Approaches
Josiane Kroll, Alan R. Santos, Rafael Prikladnicki, Estevão R. Hess, Rafael A. Glanzner,
Afonso Sales, Jorge L. N. Audy and Paulo H. L. Fernandes .. 551

Software Process Monitoring Using Statistical Process Control Integrated
in Workflow Systems
Marília Aranha Freire, Daniel Alencar da Costa, Eduardo Aranha and Uirá Kulesza 557

AI for SE

Model Transformation for Frameworks Using Logical Planning
Guilherme A. Marchetti and Edson S. Gomi ... 563

Investigating the Use of Bayesian Networks as a Support Tool for Monitoring
Software Projects (S)
Fábio Pittoli, Abraham L. R. de Sousa and Daltro J Nunes ... 570

xx xxi

Reuse of Experiences Applied to Requirements Engineering: an Approach Based on Natural
Language Processing (S)
Adriano Albuquerque, Vládia Pinheiro and Thiago Leite .. 574

Specification of Safety Critical Systems with Intelligent Software Agent Method (S)
Vinitha Hannah Subburaj, Joseph E. Urban and Manan R. Shah .. 578

Human-Computer Interaction

Using the Results from a Systematic Mapping Extension to Define a Usability Inspection
Method for Web Applications
Luis Rivero and Tayana Conte ... 582

Improving a Web Usability Inspection Technique through an Observational Study
Priscila Fernandes, Tayana Conte and Bruno Bonifácio ... 588

Identification Guidelines for the Design of Interfaces in the Context of ECAs and ADHD (S)
Sandra Rodrigues Sarro Boarati and Cecília Sosa Arias Peixoto .. 594

Measuring the Effect Of Usability Mechanisms On User Efficiency, Effectiveness
and Satisfaction (S)
Marianella Aveledo M., Diego M. Curtino, Agustín De la Rosa H. and Ana M. Moreno S 599

Automatic Generation of Web Interfaces from User Interaction Diagrams (S)
Filipe Bianchi Damiani and Patrícia Vilain .. 605

Semantic Web

Semantic Technology Recommendation Based on the Analytic Network Process
Filip Radulovic and Raúl García-Castro ... 611

P2P-Based Publication and Location of Web Ontology for Knowledge Sharing in Virtual
Communities (S)
Huayou Si, Zhong Chen and Yong Deng ... 617

 Software Product Lines

Empirical Validation of Variability-based Complexity Metrics for Software Product
Line Architecture
Edson A. Oliveira Junior, Itana M. S. Gimenes and José C. Maldonado 622

xxii xxiii

A Mapping Study on Software Product Lines Testing Tools
Crescencio Rodrigues Lima Neto, Paulo Anselmo Mota Silveira Neto,
Eduardo Santana de Almeida and Silvio Romero de Lemos Meira .. 628

Optimal Variability Selection in Product Line Engineering
Rafael Pinto Medeiros, Uéverton dos Santos Souza , Fábio Protti
and Leonardo Gresta Paulino Murta ... 635

Synthesizing Evidence on Risk Management: a Narrative Synthesis of Two Mapping
Studies (S)
Luanna Lopes Lobato, Ivan do Carmo Machado, Paulo Anselmo da Mota Silveira Neto,
Eduardo Santana de Almeida and Silvio Romero de Lemos Meira .. 641

PlugSPL: an Automated Environment for Supporting Plugin-Based Software Product Lines (S)
Elder M. Rodrigues, Avelino F. Zorzo, Edson A. Oliveira Junior, Itana M. S. Gimenes,
José C. Maldonado and Anderson R. P. Domingues ... 647

GS2SPL: Goals and Scenarios to Software Product Lines
Gabriela Guedes, Carla Silva, Jaelson Castro, Monique Soares, Diego Dermeval
and Cleice Souza ... 651

A Set of Inspection Techniques on Software Product Line Models
Rafael Cunha, Tayana Conte, Eduardo Santana de Almeida and José Carlos Maldonado 657

Non-Functional Properties in Software Product Lines: a Taxonomy for Classification (S)
Mahdi Noorian, Ebrahim Bagheri and Weichang Du .. 663

A Proposal of Reference Architecture for the Reconfigurable Software Development (S)
Frank José Affonso and Evandro Luis Linhari Rodrigues.. 668

Dependability and Maintenance

A Variability Management Method for Software Configuration Files
Hiroaki Tanizaki, Toshiaki Aoki and Takuya Katayama ... 672

Tool Support for Anomaly Detection in Scientific Sensor Data (S)
Irbis Gallegos and Ann Gates ... 678

Reconfiguration of Robot Applications Using Data Dependency and Impact Analysis (S)
Michael E. Shin, Taeghyun Kang, Sunghoon Kim, Seungwook Jung
and Myungchan Roh .. 684

xxii xxiii

Automated Software Specification

Spacemaker: Practical Formal Synthesis of Tradeoff Spaces for Object-Relational Mapping
Hamid Bagheri, Kevin Sullivan and Sang H. Son .. 688

A Formal Support for Incremental Behavior Specification in Agile Development
Anne-Lise Courbis, Thomas Lambolais, Hong-Viet Luong, Thanh-Liem Phan,
Christelle Urtado and Sylvain Vauttier .. 694

Knowledge Acquisition and Visualization

A Process-Based Approach to Improving Knowledge Sharing in Software Engineering
Sarah B. Lee and Kenneth Steward ... 700

Automatic Acquisition of isA Relationships from Web Tables
Norah Alrayes and Wo-Shun Luk .. 706

A Light Weight Alternative for OLAP
Hugo Cordeiro, Jackson Casimiro and Erick Passos ... 712

A Tool for Visualization of a Knowledge Model (S)
Simon Suigen Guo, Christine W. Chan and Qing Zhou ... 718

UML

Rendering UML Activity Diagrams as a Domain Specific Language— ADL
Charoensak Narkngam and Yachai Limpiyakorn ... 724

umlTUowl - a Both Generic and Vendor-Specific Approach for UML to OWL Transformation
Andreas Grünwald and Thomas Moser ... 730

A Framework for Class Diagram Retrieval Using Genetic Algorithm (S)
Hamza Onoruoiza Salami and Moataz A. Ahmed ... 737

Measurement and Adaptive Systems

Managing Linear Hash in a Closed Space
Satoshi NARATA and Takao MIURA ... 741

CLAT: Collaborative Learning Adaptive Tutor
Alaeddin M.H Alawawdeh, César Andrés and Luis Llana ... 747

xxiv xxv

A proposal for the improvement of the Technique of Earned Value Management Utilizing
the History of Performance Data (S)
Adler Diniz de Souza and Ana Regina Cavalcanti Rocha ... 753

Agents and Mobile Systems

A Goal-Driven Method for Selecting Issues Used in Agent Negotiation (S)
Yen-Chieh Huang and Alan Liu .. 759

Using Cell Phones for Mosquito Vector Surveillance and Control (S)
S. Lozano-Fuentes, S. Ghosh, J. M. Bieman, D. Sadhu, L. Eisen, F. Wedyan,
E. Hernandez-Garcia, J. Garcia-Rejon and D. Tep-Chel .. 763

Proactive Two Way Mobile Advertisement Using a Collaborative Client Server Architecture (S)
Weimin Ding and Xiao Su ... 768

Poster/Demo

The COIN Platform: Supporting the Marine Shipping Industrial Sector (P)
Achilleas P. Achilleos, Georgia M. Kapitsaki, George Sielis, and George A. Papadopoulos A-1

A proposal for the Improvement of the Technique of EVM Utilizing the History
of Performance Data (P)
Adler Diniz de Souza and Ana Regina Cavalcanti Rocha .. A-3

Checking Contracts for AOP Using XPIDRs (P)
Henrique Rebelo, Ricardo Lima, Alexandre Mota, César Oliveira, Márcio Ribeiro A-5

Author’s Index ... A-6

Reviewer’s Index .. A-12

Poster/Demo Presenter’s Index ... A-15

Note: (S) indicates a short paper.
 (P) indicates a poster or demo, which is not a refereed paper.

xxiv xxv

Keynote
On the Naturalness of Software

Professor Prem Devanbu
Department of Computer Science

University of California Davis

Abstract
Natural Language processing (NLP) has been revolutionized by statistical language models, which
capture the high degree of regularity and repetition that exists in most human speech and writing.
These models have revolutionized speech recognition and translation. We have found, surprisingly,
that “natural software”, viz., code written by people is also highly repetitive, and can be modeled
effectively by language models borrowed from NLP. We present data supporting this claim, discuss
some early applications showcasing the value of language models of code, and present a vision for
future research in this area.

About the Speaker
Prem Devanbu received his B.Tech from the Indian Institute of Technology in Chennai, India, before
you were born, and his PhD from Rutgers in 1994. After spending nearly 20 years at Bell Labs and
its various offshoots, he escaped New Jersey to join the CS faculty at UC Davis in late 1997. He has
published over 100 papers, and has won ACM SIGSOFT distinguished paper awards at ICSE 2004,
ICSE 2009, and ASE 2011, and the conference best paper awards at MSR 2010 and ASE 2011. He
has been program chair of ACM SIGSOFT FSE (in 2006) and ICSE (in 2010). He has served on the
Editorial boards of both IEEE Transactions on Software Engineering and the ACM equivalent. He
has worked in several different areas over a 25 year research career, including logic programming,
knowledge representation, software tools, secure information storage in the cloud, and middleware.
For the past years, he has been fascinated by the abundance of possibilities in the veritable ocean of
data that is available from open-source software projects. He is funded by grants from the NSF, the
AFOSR, Microsoft Research, and IBM.

xxvi xxvii

Panel on Future Trends of Software
Engineering and Knowledge Engineering

Du Zhang
California State University, USA

(Moderator)

The International Conference on Software Engineering and Knowledge Engineering (SEKE) is
celebrating its 24th anniversary this year. For nearly a quarter of century, while SEKE has established
itself as a major international forum to promote research and practice in software engineering
and knowledge engineering, the computing fields have undergone profound changes. Today, our
daily lives are intimately intertwined with artifacts that are the results of software engineering
and knowledge engineering. What will the future hold for SEKE as a field of inquiry in the next
ten years? What are the challenges that lie ahead? What can we do as a community to further our
agenda on SEKE? Toward illuminating our path to the future, an excellent panel of experts has
been assembled. Panelists will share their insight on the future trends of software engineering and
knowledge engineering. We hope you will find the panel an inspiring impetus for the continued
growth of SEKE in the years to come.

Software Engineering of Autonomic Clouds
Masoud Sadjadi

Florida International University, USA
(Panelist)

Autonomic or self-managing clouds are becoming prevalent software deployment environments for
applications ranging from commerce (e.g., banking), to education (e.g., virtual labs), to research
(e.g., high-performance computing). Unfortunately, traditional approaches to software engineering
are not applicable to the specific characteristics of autonomic clouds, which are becoming a major
part of every software application’s solution domain. Therefore, there is a desperate need for a
paradigm shift in how software applications are designed, developed, tested, deployed, hosted, and
consumed in the clouds. One example of the specific characteristics of autonomic clouds is the
concept of on-demand services leasing, which has major impacts on the growth of new businesses,
from their inception to booming popularity. To respond to such needs, service providers face
major challenges when trying to keep up with their promise of infinite capacity with unconditional
elasticity.

xxvi xxvii

Big Data in Software Engineering: Challenges and Opportunities
Taghi Khoshgoftaar

Florida Atlantic University, USA
(Panelist)

The field of software engineering has changed drastically in the past 20 years. Although traditional
quality assurance approaches such as unit tests and change tracking remain essential tools, these
approaches can be easily overwhelmed by the sheer volume of modules, bugs, programmers, and
projects managed in large software development firms. To deal with this “Big Data,” a new class of
software engineering tools are needed: those from the fields of data mining and machine learning.
By employing techniques specifically designed to sift through enormous datasets and identify
the elements in need of human attention, data mining tools permit software practitioners to focus
valuable human resources where they are needed most. I will discuss a number of topics concerning
the use of data mining to manage Big Data in the context of software engineering, including software
metric selection, data balance issues, and quality of data.

Knowledge Engineering, Operational Research and AI:
the Time to Meet

Eric Grégoire
Université d′Artois, France

(Panelist)

Although they share many paradigms, the Operational Research and Artificial Intelligence fields
have often evolved separately. This last decade, both domains have come ever closer, through new
insights in constraint solving and SAT-related technologies, allowing problems to be solved that were
long considered out of reach. This opens new perspectives for Knowledge Engineering as well.

Computational Issues in Social Networks
Swapna S. Gokhale

University of Connecticut, USA
(Panelist)

Online social networks (OSNs) have had an enormous impact on the way people communicate and
share information. Today, the population of Facebook exceeds that of the United States and Lady
Gaga has more Twitter followers than the entire population of Australia! OSNs not only provide
social channels for communication, but they also offer critical marketing and customer profiling
tools for businesses. This revolution has precipitated a deep desire to understand the structure of
OSNs, identify the latent patterns that may exist within these networks, and leverage these struc-
tures and patterns to build novel applications and services. While sociologists have researched such
social networks for decades, never before has such a vast quantity of structured social network data

xxviii PB

been available for analysis. Social network analysis is thus a rapidly emerging field that combines
algorithmic, graph theoretical, and data mining techniques to map, measure, and find patterns in the
relationships and communication flows in massive OSN datasets. This talk will summarize the re-
cent, state-of-the-art research in OSN analysis on topics such as topology characterization, informa-
tion and influence diffusion, community detection, inferring relationship strength, microblog analy-
sis, friend and link prediction, data anonymity, workload characterization, and security and privacy,
and outline avenues for further exploration.

Web Intelligence:
Representation and Processing of Knowledge with Uncertainty

Marek Reformat
University of Alberta, Canada

(Panelist)

Uncertainty is an integral component of information and knowledge. Many concepts we deal with
are without precise definitions, or with unknown facts, missing or inaccurate data. Such a situation
is also present on the Internet where many sources of information could be corrupted, or partially
and temporally inaccessible. Our dependence on the Internet is growing with every day. We relay on
it doing research, learning new things, and finding what is happening in the world and in our neigh-
borhood. But, how much imprecision and ambiguity is out there? How many sources of data are
trustworthy? How much we can relay on the web to discover new things? Additionally, uncertainty
is not only associated with data and information stored on the web – the users also bring ambiguity
and imprecision. In many cases, the users’ behavior and decisions depend on current circumstances,
users’ judgments, their understanding of situations, and their needs and requirements – things that
are “equipped” with ambiguity. In order to make the web a user-friendly environment where the
users can easily and quickly find things they are looking for, new web utilization tools have to be
developed. They should be able to deal with numerous alternatives provided by the Internet, as well
as with imprecision. The purpose of this topic is to provoke discussion how critical is to address the
issue of imprecision and what methods, tools and approaches would be possible solutions.

1

Sparse Linear Influence Model for Hot User Selection
on Mining a Social Network

Yingze Wang1, Guang Xiang2 and Shi-Kuo Chang1
1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

{yingzewang,chang}@cs.pitt.edu
and

2School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{guangx}@cs.cmu.edu

Abstract— Social influence analysis is a powerful tool for
extracting useful information from various types of social
media, especially from social networks. How to identify the hub
nodes (the most influential users) in a social network is a
central research topic in social influence analysis. In this paper,
we develop the sparse linear influence model (SLIM) to
automatically identify hub nodes in an implicit network. Our
model is based on the linear influence model with two main
advantages: 1) we don’t need to know the underlying network
topology or structure as prior knowledge (e.g., connections
among users); 2) it can identify a set of hub nodes specific to a
given topic. To solve SLIM, which is a non-smooth
optimization, we adopt the accelerated gradient descent (AGM)
framework. We show that there is a closed-form solution for
the key step at each iteration in AGM. Therefore, the
optimization procedure achieves the optimal convergence and
can be scaled to very large dataset. The SLIM model is
validated on a set of 50 million tweets of 1000 users on twitter.
We show that our SLIM model can efficiently select the most
influential users on different sets of specific topics. We also find
several interesting patterns of these influential users.

Keywords-Sparse learning, Data mining, Social influence
analysis

I. INTRODUCTION
Modeling the diffusion of in formation has been one of

core research areas for analyzing social network data [1], [2],
[3]. A central question in m odeling information diffusion is
how to find hub nodes in t he network. In this paper, we
define "hub nodes" to be the most influential users for a
certain topic. In the past a few years, a great effort has been
devoted to identifying hub n odes [4], [5], [6], [12], [14],
[15]. Most of these algorithms rely on a strong assum ption
that the entire topology of the ne twork is available as prior
knowledge and the inf ormation can only dissem inate over
the given network structure. For example, one of the state-
of-the-art methods [6] ranks users based on the number of
followers and PageRank, which depends on the network
structure. However, in many problems, the network structure
is unavailable or har d defined. Throughout this paper, we
make a basic assumption: the information on multiple topics
spreads through an implicit network but we can only observe
the volume (the num ber of nodes infected) for each topic
over time.

Very recently, linear influence model (LIM) [7] was
proposed to a nalyze the soci al network w ith an unknow n
network structure. LIM models the global influence of each
node through an i mplicit network. In particular, LIM
captures the global tem poral effect by modeling the number
of newly infected nodes as a linear function in all other nodes
infected in the past. Althou gh LIM can roughly model the
influence for each node under our basic assumption, it cannot
tell which nodes are central for an interesting topic.

In this paper, we extend the LIM model so that we can
identify hub nodes (or the most influential users in our
problem) in an implicit information diffusion network. Our
work combines the LIM model with sparse learning method.
In recent years, sparse learning has become a popular tool in
machine learning and statis tics. By jointly minimizing a
smooth convex loss and a spa rsity-inducing regularizer (e.g.
L1-norm), sparse learning methods can select the most
relevant features from high-dimensional data. Utilizing the
sparse learning framework, we introduce a special sparsity-
inducing regularizer, group Lasso penalty [8], in the LIM
model and propose the corresponding SLIM model (Sparse
Linear Influence Model). Our SLIM will automatically set
the influence factors for thos e non-influential nodes to zero
and hence select the remaining nodes as influential ones.

Due to the non-smoothness of the penalty, the
optimization problem for SLIM becomes quite challenging.
To solve this optimization problem, we adopt the accelerated
gradient descent framework (AGM) [9, 13]. We show that
for the proxi mal operator, whic h is the key step in AGM,
there is a closed-form solution. Then, we directly apply fast-
iterative shrinkage-thresholding algorithm (FISTA) to solve
this optimization problem, which ac hieves an optimal
convergence rate in , where is the total number of
iterations.

The proposed SLIM model can be applied to m any
various sources of social media. In this paper, we specifically
apply our SLIM model on the twitter data sets. Twitter has
gained huge popularity since the first day a s it launched and
has drawn increasing interests from research comm unity.
Using the SL IM model, we can efficiently select the most
influential twitter users for different products and brands,
which can provide a lot of us eful information for companies
and potentially make advertisement for effectiveness.

2

The rest of this paper is orga nized as follows. We
present the background of LIM model and sparse learning in
Section II. In Section III, we introduce our SLIM model for
hub nodes selection. An ef ficient and scalable optim ization
technique is given in Section IV. I n the final Section V, we
present the experimental results on real twitter data.

II. BACKGROUND

A. Linear Influence Model (LIM)
We follow the notations in [7]. Assum e there are

nodes (corresponds to users) and contagions diffused
over the network (corresponds to topics). Assuming the
entire time intervals are norm alized into units:

. In the ori ginal paper of LIM, it uses an
indicator function to present whether the node got
infected by the contagion between the time interval
and . Therefore, the value for will be either one or
zero. In this paper, we relax this assum ption by defining

 to be the num ber of ti mes that the node got
infected by contagion in . Furthermore, let
denote the total volum e of contagion between and .
Under the linear influence model:

Where is the maximum lag-length and is the non-
negative influence factor of user at the time-lag and
is the i.i.d. zero-mean Gaussian noise. To m odel the
influence for each user, we need to obtain a ro bust estimator
of . Following LIM, we could organize ,
and in a m atrix form. In particular, we define the
volume vector to be the concatenation of

 where each ; the
user's influence vector to be the concatenation of

 where each . The matrix
, whose ele ments are , is or ganized

so that (1) can be written in a matrix form

Where is the vector of noise. For the details of
constructing , please refer to [7].

Based on (2), we can formulate the problem of predicting
 by a non-negative least square problem:

Where is the vector -norm. From the estimated , we
obtain the pattern of the influence for each user.

B. Sparse Learning
We present the necessary background for sparse learning,

starting with the high- dimensional linear r egression model.
Let denote the input data m atrix and
denote the response vector. Under the linear regression
model,

Where is the regression coefficient to be e stimated
and the noise is distributed as , To select the
most predictive features, Lasso [10] provides a sparse
estimate of by solving the followin g optimization
problem:

Where is the -norm of which
encourages the solutions t o be sparse, and is the
regularization parameter that controls the sparsity-level (the
number of non-zero elements in). For the sparsity-patter n
of , we could obtain a set of important features which
correspond to those non-zero elements in .

When features have a natural group structure, we could
use the group Lasso penalty [8] to shrink each group of
features to zero all-together instead of each individual
feature. In part icular, let denote the set of groups a nd the
corresponding group Lasso problem can be formulated as:

Where is the sub vector of for features in gr oup ;
 is the vector -norm. This group

Lasso penalty achieves the effect of jointly setting all of t he
coefficients within each group to zero or nonzero values.

III. SPARSE INFLUENCE LINEAR MODEL (SLIM)
Utilizing the group Lass o penalty introduced in the

previous section, we propose a new m odel, called SLIM
(sparse linear influence m odel), which can autom atically
select the hub nodes without the prior knowledge of the
network structure. We extend the LIM m odel by introducing
another group lasso penalty on the user influence vector. In
particular, we solve the following optimization problem:

3

Where each is the influence vector
for the -th node. We take the -norm on each so that it
will encourage all the elements in to go to zero together.

With the estimated , we can directly identify those most
influential nodes. Let us denote the set of hub nodes by :

The cardinality of (i.e., the number of hub nodes) is
controlled by the regularization parameter . When ,
then all will become zero and none of the nodes will be
selected as hub node (i.e.,). On the othe r hand, if

, . Put anothe r way, the sm aller is, the
more nodes will be selected as hub nodes. In practice, we
could tune the regularizatio n parameter to achieve the
desirable number of hub nodes.

Although the formulation for SLIM is a co nvex
optimization problem, the n on-smoothness arising from

 and the additional non-negativity constraint make th e
computation quite challenging. In the next section, w e
present an efficient and scalable solver for SLIM which
could be applied to solve web-scale problems.

IV. OPTIMIZATION FOR SLIM
In this sectio n, we present an efficient optimization

algorithm for solving SLIM in (3). We first introduce some
necessary notations. Let be the
smooth part of the objective in (3). The gradient of over
 takes the following form:

In addition, is Lipschitz con tinuous with the
constants , which is the maximum
eigenvalue of . In other word, we have for any ,

With these notations in place, we use the fast accelerated
gradient method framework. In particular, we adopt the fast-
iterative shrinkage-thresholding algorithm (FISTA) [9] as
shown in the next Algorithm.

It is known that this algorithm has the optim al
convergence rate of .

To apply this algorithm, the main difficulty is how to
compute the first step. Firstly, we observe Step 1 can be
written as:

where .

FISTA Algorithm for SLIM
Input: ,

Initialization:

Iterate for , until convergence

 Step 1:

Step 2:

Step 3:

Output:

Since (4) is separable in ter ms of , we solve it by e ach
 independently, i.e.,

The closed form solution of the above minimization
problem can be characterized by the following Theorem.

Theorem 1. The optimal solution for the following
optimization can be represented as following,

Let be indices for the positive values
in and let be the complement of . Then the optimal

 is,

Proof. Firstly, we utilize the fact that the dual norm of
-norm is -norm, so that we could present as

Therefore, (6) can be reformulated as:

Interchange the min and max, we have,

4

Now we assume is given, we first present the optim al
 as a function of using the KKT condition.

In particular, can be
decomposed into each component of :

To derive the optim al solution, we introduce the
Lagrange multiplier for the constraint . The
Lagrange function takes the form

According to stationary condition, we have:

The complementary slackness condition implies that:

If , since , and the
complementary slackness im plies that and hence

. On the other hand, if , we have
 and hence . In sum, we have:

Now we plug the above relation back into (7) and obtain that

where is the indicator function. Let

We present its graphical illustration in Fig. 1.

To maximize (9) over under the constraint ,
we discuss the cases when and separately:

When , we could sim ply set so that
 achieves its maximum value. Then according

to (8), we have

Figure 1. graphical illustration for the function

When , let be the set of
their indices. If , we c ould simply set

 so that achieves its
maximum. According to (8), . On the other
hand, if , we obtain the optim al by
shrinking to the ball , i.e.,

 Then

By summarizing above two cases, we obtain the results in
Theorem 1, which completes our proof.

V. EXPERIMENT
In this section, we evaluate the performance of our model

on the twitter data. Twitter is an online social network used
by millions of people around the world to stay connected to
their friends, family members and co-workers through their
computers and mobile phones. Users can post a tweet (status
update message) to friends and colleagues. One can also
follow other users; and her/ his followers can read he r/his
tweets.

A. Dataset Collection
Twitter offers an API [11] to crawl and collect the data.

We crawl all of tweets of specific 1000 twitter users between
January 2009 and Novem ber 2011. These 1000 users are
people or companies with professions related to IT and high-
tech. We collected the full text, the author, the written time
of each tweet. In a ddition, we collect the profile for each
individual user, including the full name, followers count, the
location, friends_count, a web page, a s hort biography, t he
account created time, the number of tweets. We crawl all the
profiles of these 1000 users. We also identify 50 interesting
topics from a set of most frequent words among these tweets.
Typical examples of the selected topics include popular
social media platforms (e.g., Twitter, LinkedIn, Yahoo, etc),
products (e.g., iphone, blackberry, etc) and companies (e.g.,
Microsoft, Groupon). Based on the selected topics, we count

5

the total times for each use r who m entioned these topics,
then rank all the users by their frequencies and select the top
200 active users out of the total 1000 users. We consider
each active user as a node in an im plicit network for
information diffusion process.

B. Experimental setup
In the experiments, we use K = 50 topics, one day as the

time unit, and set the time lag L = 10 (i.e ., influence of a
node decays to zero after 10 days). We allow each node t o
mention the t opic multiple times during a time unit, i. e.,

 can be more than 1.

We construct the matrix including all of the 50 topics and
apply our sparse linear influence model to select the globa l
hot users. Also we use SLIM model on each individual topic
to select the hot users respectively.

C. Experimental results analysis
1) Hot twitter users for the total 50 topics:

We detect global hot twitter users for all of interesting
topics: we tune the regularization param eter in SLIM to
select the top 35 hot users. After analyzing the selected users,
we have two interesting findings:

a) The most influential users spread throughout the
world:

We plot the locations of the selected 35 hot users as
shown in Fig. 2. We can see that the most influential users
spread all over the world, including E urope, Middle East,
India, Indonesia, New Zealand, South America and North
America. Most of the hot users are located in North Am erica
(16 out of 35), followed by the Europe (10 out of 35). There
is no hot user in Africa, Australia and Antarctica. Since some
countries in Asia like China doesn’t allow people using
twitter and s ome countries like Japan uses a different
language twitter version, thus there are fewer selected hot
users in Asia. Moreover, since the total 1000 twitter users are
people or companies related to IT and high technology,
Africa has no hot users due to its low level technology
development. From this result, we can conclude that, exce pt
for some countries (e.g., China) where the twitter is blocked,
North America and Europe are the world ce nter for IT high
technology development.

b) The followers count for twitter users:
In twitter, user can follow ot hers, thus each user has the

followers count. I n the Fig. 3, we plot the number of
followers for the total 200 active users in an increasing order
with blue points. The red points represent the followers count
for the selected 35 hot users. From this figure, we can se e
that most of hot users have a larger num ber of f ollowers.
This observation indicates that, globally, hot users should be
the most influential users on the social network with more
followers.

2) Hot twitter users for the individual topics:
Among the 50 interesting topics, there are several ones

which can be grouped for analysis. For exam ple, topics
“iphone”, “nokia”, “samsung” and “blackberry” are brands

Figure 2. Location of selected hot users for total 50 topics

Figure 3. Followers count of the active users and the selected hot users

for total 50 topics

of personal cell phone. Topics “twitter”, “linkedin” a nd
“yahoo” are social media platforms. Given a particular
category of topics, we apply SLIM on each topic in this
category to select the top 20 hot users . We compare the
users’ profiles for different topics within the sa me category
and find some interesting patterns.

a) Location distribution of the hot users for personal
cell phone brand topices:
We have topics on different cell phone brands including
“iphone”, “nokia”, “samsung” and “blackberry”. For ea ch
brand, we analyze the selected hot users’ location. The
results are shown in Table I. We find out several interesting
patterns:

TABLE I. LOCATION DISTRIBUTION OF HOT USERS FOR CELL PHONE
BRAND TOPIC

North
America

South
America

Europe Asia South
Africa

iphone 13 2 3 1 1

nokia 6 1 11 2 0

samsung 4 0 11 5 0

blackberry 16 0 4 0 0

“iphone” and “blackberry” have more hot users in
North America than “ nokia” and “sam sung”; while
“nokia” and “samsung” are more popular in Europe.
One reason be hind this phenom enon could be that

6

“iphone” and “blackberry” are m ade in North
American companies, Apple and RIM respectively.
“nokia” is a Finland com pany, so m ore European
people discuss about it.

Hot users in North America for “iphone” topic are
distributed uniformly. But most hot users f or
“blackberry” topic are located in California (7 hot
users) and New York (4 hot users).

Hot users in Europe for “nokia” are distributed
uniformly. But most hot users for “sam sung” topic
are located in Germany (6 hot users) and India (4 hot
users).

b) Friends count of the hot users for various social
media platforms:

The topics r elated social media platforms include
“twitter”, “linkedin” and “yahoo”. For each individual topic,
we analyze these selected hot users’ friends count, which is
the number of friends whom you are following. In Fig. 4, we
draw the boxplot of the friends count f or the selected 20 hot
users in different topics. From this figure, we can see that hot
users for “twitter” have m ore friends count than those for
“linkedin” and “yahoo”. “ linkedin” is the second and
“yahoo” is the third. Twitter is a very large worldwide social
network, so the hot users should have most friends.
“linkedin” is used f or professional networking, thus the hot
users may have less business friends.

Figure 4. Boxplot of friends count of the selected hot users for social

media platform topics

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, based on linear influe nce model, we

develop an eff icient hub nodes selection m ethod SLIM for
implicit information diffusion network. By utilizing the
sparse learning fram ework, we introduce group Lass o
penalty in the LIM m odel and formulate SLIM as a convex
optimization problem. We adopt FISTA al gorithm to solve
this optimization problem by showing there is a closed- form
solution for the key step in FISTA. The optimiza tion
algorithm achieves an optim al convergence rate .
We conduct experiments on a set of 50 million tweets with

1000 twitter users. Our model can efficiently select the most
influential users for particular topics. We also find severa l
interesting patterns on the selected hot use rs for different
categories of topics. Our model can be broadly applicable to
general diffusion process on soci al platform, as they do not
require knowledge of the underlying network topology. The
benefit for selecting hot users is multifold. Firstly, targeting
those influential users of specific product topics will increase
the efficiency of the m arketing strategy. For exam ple, a
smart phone manufacturer can engage those hot use rs to
potentially influence more people. Secondly, we can utiliz e
the influential users for interesting topics to im prove the
quality of opinions gathered. An interesting direction for
future work is to extend our model on the dynamic social
network by considering the evolution property of networks.

REFERENCES
[1] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, “Measuring

user influence in Twi tter: The million follower fallacy”, The
International AAAI Conference on Weblogs and Social Media, 2010.

[2] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the
dynamics of the new cycle”, The 1 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2009.

[3] D. Liben-Nowell and J. Kleinbe rg, “Tracing inform ation flow on a
global scale using Internet chain-letter data”, PNAS, vol. 105, no. 12,
pp 4633-4638, March 25, 2008.

[4] Ilyas, M.U and Radha, H, “Identify ing In uential Nodes in Online
Social Networks Using Principa l Component Centrality”, IEEE
International Conference on Communications (ICC), pp 1-5, 2011.

[5] Hao Ma , Haixuan Yang , Michael R. Lyu , Irwin King, “Mining
Social Networks Using Heat Diffusion Processes for Marketing
Candidates Selection”, Proceedings of the 17th ACM conference on
Information and knowledge management (CIKM '08), New York, pp
233-242, 2008.

[6] Haewoon Kwak, Changhyun Lee, Hosung Park, an d Sue Moon,
“What is Twitter, a social network or a news media?”, Proceedings of
the 19th i nternational conference on World wide web (WWW '10).
New York, pp 591-600, 2010.

[7] Jaewon Yang and Jure Leskovec, “Modeling information diffusion in
implicit network”, IEEE 10th In ternational Conference on Data
Mining (ICDM), pp 599 – 608, 2010.

[8] Ming Yuan and Lin Yi, “Model selection and estimation in regression
with grouped variables”, Journal of the Roy al Statistical Society,
Series B, Volume 68, Part 1, pp. 49–67, 2006.

[9] Amir Beck and Marc Teboulle, “A Fast iterative shrinkage-
thresholding algorithm for linear i nverse problems”, SIAM Journal.
on Imaging Science., Vol. 2, No. 1, pp. 183–202, 2009.

[10] Robert Tibshirani, “Regression Shrinkage and Selection Via the
Lasso”, Journal of the Royal Statistical Society, Series B, Vol. 58, pp.
267-288, 1994.

[11] Twitter Search API. http://apiwiki.twitter.com/Twitter-API-Document.
[12] J. Weng, E.-p. Lim, J.Jiang, and Q. He, “ Twitterrank: finding topic-

sensitive influential twitters”, Proc. of the third AC M international
conference on web search and data mining, 2010.

[13] Xi Chen, Weike Pan, James Kwok, and Jaim e G. Carbonell,
“Accelerated Gradient Method fo r Multi-Task Sparse Learning
Problem”, International Conference on Data Mining (ICDM), 2009.

[14] Masahiro Kimura, Kazumi Saito, Ry ohei Nakano, and Hiroshi
Motoda, “Extracting infl uential nodes on a social network for
information diffusion”, Data Min. Knowl. Discov. Vol. 20, No. 1, pp.
70-97, 2010.

[15] David Kempe and Jon Kleinberg and Éva Tardos, “Influential Nodes
in a Diffusion Model for Social Networks”, IN ICALP, pp. 1127-
1138, 2005

7

Mining Call Graph for Change Impact Analysis∗

Qiandong Zhang, Bixin Li, Xiaobing Sun
School of Computer Science and Engineering, Southeast University, Nanjing, China

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
{zhangqd, bx.li, sundomore }@seu.edu.cn

Abstract

Software change impact analysis (CIA) is a key technique
to identify unpredicted and potential effects caused by soft-
ware changes. Commonly used CIA techniques are to per-
form reachability on the graph representation of the system
to compute the change effects. These CIA techniques often
compute a large set of potentially impacted entities, which
have many false-positives, and thus are difficult for practi-
cal use. In addition, these techniques do not consider the
interference among the proposed changed entities, which in
practice does exist. Faced with these problems, this paper
proposed a new graph based mining CIA technique consid-
ering two factors: providing a stable state of the impact set
to stop the reachability computation on the graph represen-
tation of the system and taking interference among multiple
proposed changes into account to improve the precision of
the impact results. Case study on the real-world program
shows the effectiveness of our technique.

1 Introduction

Software needs to be maintained and changed over time

to cope with new requirements, existing faults and change

requests, etc. Changes made to software will inevitably

have some unpredicted and undesirable effects on other

parts of the software. When changes are made to software,

they will have some unexpected and potential ripple effects,

and may bring inconsistency to other parts of the original

software. Software change impact analysis involves a col-

lection of techniques to identify the potential effects caused

by changes made to software [3]. It plays an important role

∗This work is supported partially by National Natural Science Founda-

tion of China under Grant No. 60973149, partially by the Open Funds of

State Key Laboratory of Computer Science of Chinese Academy of Sci-

ences under Grant No. SYSKF1110, partially by Doctoral Fund of Min-

istry of Education of China under Grant No. 20100092110022, and partial-

ly by the Scientific Research Foundation of Graduate School of Southeast

University under Grant No. YBJJ1102.

in software development, maintenance, and regression test-

ing [3].

CIA starts with a set of changed elements in a software

system, called the change set, and attempts to determine

a possibly larger set of elements, called the impact set,
that requires attention or maintenance effort due to these

changes [3]. CIA contains a collection of techniques for de-

termining the effects on other parts of the software for pro-

posed changes [13, 6]. Commonly used CIA techniques

include these steps: analyzing the dependencies of the pro-

gram, constructing an intermediate representation (e.g., call

graph), and then conducting reachability analysis based on

this representation [15]. The resultant impact set often has

many false-positives, with many of its elements not really

impacted [7, 12]. Thus this impact set they compute is very

large and difficult for practical use [3]. In addition, most

of current CIA techniques computes the impact set based

on computing the union of the impact sets of each changed

entity in the change set. This does not consider the inter-

ference among the changed entities in the change set. But

in practice, some changes are implemented in combination

to finish a change proposal. Hence, there does exist some

relationship between these changed elements.

In this paper, our approach to tackle the two problems is

similar to a phenomenon called ”water wave ripple”. Given

the quiet water, several stones are suddenly thrown into the

water, and initially, they all cause ripples on the water sur-

face, respectively. These ripples will meet as they spread,

and generate a new spreading center to propagate the rip-

ples. Until some time, the spreading of the ripples will

gradually become weaker and ultimately stop. Similar to

this natural process, our CIA includes two steps: identifying

the ”center” of multiple changes ripples and computing the

changes effects of this center. As statistical results of the

CIA techniques in the literature show that most of current

CIA techniques compute the impact set at method level [9],

our focus is also on method-level CIA. Call graph is widely

used to represent call relation among methods and is a very

common used representation to compute the method-level

impact set [3, 7]. Traditional call graph based CIA tech-

8

nique estimate the impact set based on transitive closure on

the call graph [3]. This paper also used the call graph to

represent the system and then computed the impact set on

this representation. But different from traditional call graph

based CIA technique, this paper attempts to compute a more

precise impact set in respect to two factors: setting a stable

state for the impact set computation on the call graph and

considering interference among multiple changed entities

in the change set. The case study on the real-world program

has shown the effectiveness of our approach.

This paper is organized as follows: in the next section,

we introduce our CIA approach. Section 3 gives the experi-

mental evaluation to show the effectiveness of our CIA tech-

nique. In Section 4, some related work of CIA techniques

are presented. Finally, we conclude our CIA technique and

show some future work in Section 5.

2 Our Approach

Given the change set, CIA is employed to estimate the

impact set of the changes made to the software. In this pa-

per, CIA is performed based on mining the call graph.

2.1 Basics for CIA

As proposed above, our approach uses call graph to rep-

resent the system and CIA is performed relying on mining

this call graph. In this section, some definitions and some

operations in call graph are given. First, we introduce the

definition of the call graph [8].

Definition 1 (Call Graph) A call graph is a directed graph
G = (V,E). V is a set of vertices representing methods in
the system, and E ⊆ V × V is a set of edges representing
the call relationship between the caller and callee.

In addition, there are two useful definitions to help min-

ing the call graph: inner-degree and inter-degree of a sub-

graph G
′
. They are defined as follows:

Definition 2 (Inner-degree) Given a subgraph G
′

of the
call graph, inner-degree of G

′
is the total number of the

edges for each vertex in G
′
.

Definition 3 (Inter-degree) Given a subgraph G
′

of the
call graph G, inter-degree of G

′
on G is the total number of

edges adjacent to (connected to) the vertices in G−G
′
.

As discussed in the above phenomenon ”water wave rip-

ple”, there is an important spreading center to propagate

the ripples of the water wave. Similar to this, there is also

a center to propagate the change ripples during the process

of change impact analysis. On the call graph, we call this

center as core, defined as follows:

Definition 4 (Core) Core is a subgraph G′ of the cal-
l graph G,, which satisfies that the ratio of their inner-
degree over the inter-degree is greater than the threshold
ε.

The threshold ε indicates the cohesion of the relationship

among the methods within the subgraph G
′
. The bigger

the ε is, the higher the cohesion of the relationship among

these methods is. In our CIA approach, it is used to take the

interference among the changed methods in the change set

into account. The ε is at least bigger than 1, which shows

the relationship among the methods within the subgraph is

stronger than connecting to its outer methods.

In graph theory, breadth-first-search (BFS) is widely

used in graph search algorithm, defined as follows:

Definition 5 (BFS) BFS begins from the origin node and
explores all the neighboring nodes. Then for each of those
nearest nodes, it searches their unexplored neighbor nodes,
and so on, until it finds the goal.

This search algorithm is also used for change impact

analysis for searching the ripples of the changes. In the next

section, our CIA approach is presented based on these defi-

nitions.

2.2 Change Impact Analysis

In our approach, change set is proposed to be composed

of a set of changed methods, CIA is then performed relying

on mining the call graph, and generates a set of potentially

impacted methods. It includes two steps. First, we identi-

fy the ”center” of multiple changes ripples, which we call

initial impact set. It is expected that the methods in the ini-

tial impact set are less likely to be false-positives. Then, we

compute the changes effects of this center, and obtain the

final impact set. And this set is expected to cover all the

ripples affected by the changes.

As discussed above, most of current CIA techniques

compute the impact set from the individual entities in the

change set, without considering the relationship existed a-

mong them. In practice, multiple changes are performed in

combination to finish a change proposal, hence there exist-

s the relationship among the changed entities in the source

code. Such a relationship is called the interference in this

paper. We take the interference among the entities in the

change set into account to estimate the impact set. First

we attempt to identify the center of these changes, which

includes the most probably impacted entities potentially af-

fected by these multiple changes. These entities are collect-

ed into the initial impact set, which is defined as follows:

Definition 6 (Initial Impact Set (IIS)) Initial impact set
is computed using the BFS algorithm from the methods

9

in the change set. The BFS in call graph stops searching
when the methods in the initial impact set can satisfy the
core condition as defined in Definition 4.

From this definition, we know that the methods in the

IIS are generated from the change set, and satisfy the core
definition as defined above. The methods in the IIS are the

methods most likely impacted by these multiple changes,

that is, the IIS is expected to have few false-positives.

However, it can not meet practical use. On the one hand,

some methods in the IIS are still the noise methods (false-

positives). These methods are expected to be removed. On

the other hand, there are many other methods that are really

impacted but not included in the IIS, i.e., false-negatives.

These methods should be included in the impact set to guar-

antee the consistency of the modification. Therefore, simi-

lar to the propagation of the ripples of the water wave rip-
ple phenomenon, we should expand the IIS to perform the

propagation analysis to get a final impact set (FIS), which

is hoped to cover more false-negatives and remove some

false-positives from the IIS. The definition of FIS is as

follows:

Algorithm 1 FISComputation
Input:

P : Original program
IIS: Initial impact set

Declare:
m: A method
AS: A set of adjacent methods of the method m in call graph
θ: A threshold

Use:
Adjacent(m): it returns a set of adjacent methods of the method m in call
graph.

Output:
Final impact set FIS

1: FIS = IIS
2: while FIS is not stable do
3: for each m in call graph do
4: AS = Adjacent(m)
5: S = AS ∩ FIS
6: if m /∈ FIS ∧ |S|/|AS| � θ then
7: FIS = FIS ∪ {m}
8: end if
9: if m ∈ FIS ∧ |S|/|AS| < θ then

10: FIS = FIS − {m}
11: end if
12: end for
13: end while

14: return FIS

Definition 7 (Final Impact Set (FIS)) Final impact set is
computed based on the propagation analysis from the IIS,
and gets to a termination when the FIS is stable, i.e., no
update occurs in the FIS any more.

The approach to compute the FIS is shown in Algo-

rithm 1. In the algorithm, there is an important threshold

θ indicating the possibility of the methods potentially af-

fected by the IIS. It is used to judge whether a method

should be included in the FIS. The value of this threshold

relies on the quality of the IIS. In other words, the fewer

the false-positives in the IIS is, the bigger the value of the

threshold θ is. The range of this threshold is between 0 and

1. As shown in Line 1 in Algorithm 1, the FIS is comput-

ed from the IIS. Then computation of FIS includes both

finding the false-negatives and removing the false-positives

of the IIS. In the algorithm, Lines 6-8 are used to add

new methods (false-negatives of IIS) into the FIS; Lines

9-11 are used to remove the methods that are probably false-

positives from IIS. Ultimately, there is no update in FIS
and the FIS becomes stable. So far, we have completed the

whole CIA process. The output of the CIA is composed of

the IIS and FIS. In the next section, we give an example

to show the CIA process.

2.3 An Example

In this section, we give an example to show the CIA pro-

cess. We assume that the call graph has been constructed as

shown in Figure 1. Each node on the call graph represents

the method in the program. In Figure 1(a), the red nodes

represent the changed methods in the change set. CIA is

then performed to estimate the ripple effects of the change

set. First, we identify the center of the change set, which

is also the initial impact set. In this step, the value of the

threshold ε is set to be 2. According to Definition 6, we

use the BFS algorithm to search the graph to find the IIS
until a core is generated. Thus, the IIS is generated as the

green nodes as shown in Figure 1(b). Then, we need to use

Algorithm 1 to compute the final impact set from this IIS.

The threshold θ value in this step is set to be 0.4. FIS is

computed from the IIS, and includes both finding the false-

negatives and removing the false-positives of the IIS. For

example, for the node a, its θ value is 1, which is bigger than

0.4, then we should include this method in the FIS. For the

node z, its θ value is 0.3, which is smaller than 0.4, then we

will remove it from the IIS. Based on the similar mech-

anism, other methods are added and removed. Until there

is not update in the FIS, FIS is obtained as the ultimate

result. If we use traditional call graph based CIA technique

[3] to compute the impact set, all the methods in Figure 1

except p and q are collected in the impact set, which may

have more false-positives.

3 Case Study

In this section, we present our case study to evaluate the

effectiveness of our CIA approach.

10

Figure 1. An example to illustrate the process of CIA

3.1 Setup

We use the subject NanoXML1 as our research object.

NanoXML is a small XML parser for Java. We extract-

ed four consecutive versions of NanoXML from its CV S
repository for evaluation. There are about 26 classes, 245

methods, and 7631 lines of code for NanoXML. During the

evolution of these versions, there is a basic version (V 0)

from which to start.

The focus of our evaluation is on the accuracy of the CIA

technique. The accuracy of the CIA is in terms of preci-
sion (P) and recall (R). Precision is an inverse measure of

false-positives while recall is an inverse measure of false-

negatives. They are widely used in an information retrieval

scenario [2], defined as follows:

P = |Actual Impact Set ∩ Estimated Impact Set|
|Estimated Impact Set|

R = |Actual Impact Set ∩ Estimated Impact Set|
|Actual Impact Set|

Here, Actual Impact Set is the set of methods which are

really changed during versions evolution. This is obtained

by comparing the changed methods between consecutive

program versions. Estimated Impact Set is the set of meth-

ods estimated based on the change set using the CIA tech-

nique. As we can not obtain the information that which

changed methods are pre-actively changed to cope with the

change request and which changed methods are reactively

changed to cope with the impacts induced by these changes,

a statistical testing of our CIA technique with a variation of

the percentage of the number of changed methods ranging

from 10% to 50% of the total number of change methods is

performed for each program transaction. In the study, the

average number of the methods in the change set for each

program transaction (i.e., Vi− > Vi+1) is shown in the first

column in Table 1.

3.2 Results

During the process of the evaluation, we should first find

appropriate values for the threshold ε and θ. For space limi-

1http://nanoxml.sourceforge.net/orig

tation, we only provide some results with high quality here.

More details of the preliminary evaluation results are avail-

able online2. Based on the empirical results, the precision

and recall of both IIS and FIS are reasonable and better

with the range of ε = 2, 3, 4, 5, θ = 0.2, 0.3, 0.4, 0.5. So the

experimental results only show the precision and recall of

these threshold ranges, as shown in Table 1. In addition, for

comparison, we also present the precision and recall of the

impact set computed based on traditional call graph based

CIA technique (TCG) [3]. In the following, we discuss the

data collected from the case study.

First, we see whether different threshold values have im-

pact on the accuracy of our CIA. In Table 1, the third col-

umn shows different ε values. The threshold ε indicates the

cohesion of the relationship among the methods and is used

to control the precision of the initial impact set. From this

table, we see that in most cases, with the increase of the ε
values, the recall of both the IIS and FIS is also increased,

but their precision values are decreased. From these result-

s, we see that the FIS relies on the IIS, i.e., if the IIS
is better, the FIS is better. Thus, the ε threshold has im-

pact on both the IIS and FIS generated by our CIA tech-

nique. Then, we see the impact of the θ threshold on our

CIA technique. This threshold relies on the quality of the

IIS, and is used to indicate the possibility of the method-

s potentially affected by the IIS. As Table 1 shows, with

the increase of the θ values, the precision of the FIS is al-

so increased, but the recall is decreased. For example, for

transaction V 0− > V 1, in case of ε = 3, when θ = 0.2, the

precision and recall of FIS is 0.51 and 0.84, respectively.

When θ = 0.3, its precision is increased to 0.57, but its re-

call is decreased to 0.79. With the increase of θ values, the

same phenomenon occurs. So the effectiveness of the CIA

technique is also affected by the θ threshold. In addition,

we see an interesting phenomenon in Table 1, i.e., for dif-

ferent transactions of the versions evolution, the precision

and recall of the impact sets with the same ε and θ threshold

value are different. For example, the precision and recall for

2http://ise.seu.edu.cn/people/XiaobingSun/seke2012.xls

11

Table 1. The precision and recall results of
the empirical study

CS θ ε PIIS RIIS) PFIS RFIS PTCG RTCG
Transaction: V 0− > V 1

2 0.72 0.55 0.51 0.83 0.47 0.93
0.2 3 0.72 0.56 0.51 0.84 0.47 0.93

4 0.69 0.61 0.52 0.84 0.47 0.93
5 0.66 0.63 0.52 0.84 0.47 0.93
2 0.75 0.51 0.59 0.79 0.47 0.93

0.3 3 0.71 0.57 0.57 0.79 0.47 0.93
4 0.71 0.57 0.59 0.77 0.47 0.93
5 0.67 0.64 0.55 0.82 0.47 0.93

20 2 0.79 0.51 0.72 0.65 0.47 0.93
0.4 3 0.70 0.59 0.63 0.72 0.47 0.93

4 0.71 0.59 0.65 0.69 0.47 0.94
5 0.66 0.66 0.58 0.76 0.47 0.93
2 0.75 0.49 0.67 0.56 0.47 0.93

0.5 3 0.75 0.55 0.68 0.62 0.47 0.93
4 0.71 0.60 0.65 0.68 0.47 0.93
5 0.65 0.65 0.58 0.73 0.47 0.93

Transaction: V 1− > V 2

2 0.42 0.59 0.31 0.75 0.25 0.85
0.2 3 0.39 0.65 0.29 0.79 0.25 0.85

4 0.40 0.64 0.29 0.79 0.25 0.85
5 0.37 0.73 0.31 0.81 0.25 0.85
2 0.45 0.58 0.35 0.69 0.25 0.84

0.3 3 0.38 0.59 0.31 0.72 0.25 0.84
4 0.37 0.59 0.31 0.73 0.25 0.85
5 0.36 0.66 0.30 0.75 0.25 0.84

13 2 0.47 0.56 0.41 0.63 0.25 0.84
0.4 3 0.39 0.65 0.33 0.72 0.25 0.84

4 0.38 0.64 0.33 0.73 0.25 0.86
5 0.36 0.64 0.33 0.72 0.25 0.84
2 0.42 0.61 0.40 0.61 0.25 0.85

0.5 3 0.39 0.62 0.34 0.64 0.25 0.84
4 0.38 0.63 0.33 0.65 0.25 0.85
5 0.37 0.66 0.33 0.69 0.25 0.84

Transaction: V 2− > V 3

2 0.85 0.67 0.25 0.93 0.17 0.93
0.2 3 0.80 0.72 0.25 0.94 0.17 0.94

4 0.81 0.77 0.25 0.93 0.17 0.93
5 0.52 0.84 0.25 0.94 0.17 0.94
2 0.82 0.64 0.57 0.91 0.17 0.94

0.3 3 0.84 0.71 0.58 0.90 0.17 0.93
4 0.83 0.78 0.56 0.92 0.17 0.94
5 0.48 0.84 0.37 0.92 0.17 0.93

12 2 0.85 0.66 0.78 0.83 0.17 0.93
0.4 3 0.83 0.72 0.76 0.84 0.17 0.94

4 0.81 0.76 0.73 0.84 0.17 0.93
5 0.47 0.82 0.44 0.88 0.17 0.93
2 0.87 0.66 0.84 0.74 0.17 0.93

0.5 3 0.79 0.72 0.76 0.79 0.17 0.93
4 0.80 0.77 0.77 0.83 0.17 0.93
5 0.51 0.83 0.50 0.88 0.17 0.93

the transaction V 1− > V 2 are bad but they are very good

for transaction V 2− > V 3. As we trace the changes to the

transactions of these two version evolution, we know that,

for V 1− > V 2 transaction, the changes made to the sys-

tem are loosely scattered in different parts, in other words,

these changes are implemented individually with very few

relationships among them. But for V 2− > V 3 transac-

tion, the changes are implemented in only some local parts

of the system and some of them are implemented togeth-

er. This phenomenon shows that interference among the

changes affects the effectiveness of the CIA. Hence, from

the discussion above, we see that selection of different CS,

θ and ε have impact on the CIA technique. The tendency of

their impacts are summarized in Figure 2. From this figure,

we know that when we know more information about the

changes, our CIA is better. And different values of these

two thresholds can control the precision and recall of the

CIA technique.

Then, we see the effectiveness of our CIA technique.

Our CIA computes two impact sets (IIS and FIS). Ta-

ble 1 shows that the precision and recall of the IIS and

Figure 2. Impact of CS, θ and ε on the CIA
technique

FIS are different, to say in detail, in most of the time, the

precision of the IIS is better than that of the FIS while

the recall of the IIS is worse than that of FIS. The results

conform to our expectation and are useful in practice. In

practice, we can first use the IIS to more precisely check

the real change ripples. After this, we use the FIS to check

other change ripples to ensure the integrity of the change.

In addition, Table 1 also presents the precision and recall of

the traditional call graph based CIA technique (TCG) in

the last two columns. As it shows, the precision of our tech-

nique is much higher than that of the TCG. But the recall

is a little worse than the TCG. This indicates that our CIA
technique effectively removes some false-positives from the

TCG technique at the cost of a little recall.

From the data and analysis above, we obtain some pre-

liminary conclusions: (1) the precision and recall of the im-

pact sets are affected by the ε and θ; (2) our CIA technique

is particularly useful to tackle multiple changes which have

some relationships (interference) among them. (3) our CIA

computes the IIS with higher precision and the FIS with

higher recall. Compared with traditional call graph based

CIA technique, our technique can effectively remove some

false-positives, but at the cost of a little recall.

3.3 Threats to Validity

Like any empirical validation, ours has its limitations.

Firstly, we have considered the application of our CIA ap-

proach to only one Java program. Therefore, to allow for

generalization of our results, large-scale experimental eval-

uation on different projects in different object oriented lan-

guages is necessary to address such threats to external valid-

ity. However, the program used here is real and non-trivial

programs, moreover, the subject program is selected from

open projects and widely used for empirical validation [11].

In addition, the change sets are obtained by randomly se-

lecting some differences between consecutive versions. S-

ince there exists random variation, we may not obtain the

same results if we repeat our case study. However, we per-

formed a statistical testing of our CIA technique with a vari-

ation of the percentage of the number of changed methods

in the change set ranging from 10% to 50%. Using this s-

12

trategy, the results should support fairly reliable conclusion.

4 Related Work

Current researches in CIA have varied from relying on

static information [13, 15, 6, 10] to dynamic information

[7, 1] in working out the impact set. Our technique mainly

focuses on static analysis of the program. Static CIA tech-

niques take all possible behaviors and inputs into account,

and they are often performed by analyzing the syntax and

semantic dependence of the program [10]. The static anal-

ysis includes textual analysis, historical analysis and struc-

tural static analysis. Textual analysis is an approach which

extracts some conceptual dependence (conceptual coupling)

based on the analysis of the non-source code (comments).

These coupling measures provide a new perspective to tra-

ditional structural coupling measures. Concept coupling

is based on measuring the degree to which the identifiers

and comments from each other [13, 5]. Historical anal-

ysis is performed by mining the information from multi-

ple evolutionary versions in software historical repositories

[16]. With this technique, some evolutionary dependen-

cies between program entities that can not be distilled by

traditional program analysis technique can be mined from

these repositories. Evolutionary dependencies show that

which entities are (historically) changed together in soft-

ware repositories, these entities may need to change when

one (some) of the entities are changed during future soft-

ware evolution. CIA is then supported based on these evo-

lutionary dependencies. Structural static dependencies be-

tween program entities are very crucial to CIA, i.e., if a

program entity changes, other dependent entities might also

have to change [15, 10]. This paper is proposed based on

the structural static analysis to compute the impact set.

5 Conclusion and Future Work

This paper proposed a novel and effective CIA technique

which is based on call graph mining. Compared with tradi-

tional call graph based CIA technique, our CIA approach

is particularly suitable for tackling multiple changes which

have interference among them, and computes a more pre-

cise impact set with relative small-size set. Though we have

shown the effectiveness of our technique through a real em-

pirical study, it can not indicate its generality for other real

environment. And we will conduct experiments on other

arbitrary programs to evaluate the generality of our tech-

nique. In addition, we would like to prioritize the entities in

the impact set to better facilitate its practical use.

References

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient

and precise dynamic impact analysis using execute after se-

quences. In Proceedings of the International Conference on
Software Engineering, pages 432 – 441, 2005.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Informa-
tion Retrieval. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1999.

[3] S. Bohner and R. Arnold. Software Change Impact Analy-
sis. IEEE Computer Society Press, Los Alamitos, CA,USA,

1996.

[4] M. Gethers and D. Poshyvanyk. Using relational topic mod-

els to capture coupling among classes in object-oriented

software systems. In Proceedings of the 2010 IEEE Inter-
national Conference on Software Maintenance, pages 1–10,

2010.

[5] H. Kagdi, M. Gethers, D. Poshyvanyk, and M.Collard.

Blending conceptual and evolutionary couplings to support

change impact analysis in source code. In Proceedings of the
IEEE Working Conference on Reverse Engineering, pages

119–128, 2010.

[6] J. Law and G. Rothernel. Whole program path-based dy-

namic impact analysis. In Proceedings of the Internation-
al Conference on Software Engineering, pages 308 – 318,

2003.

[7] O. V. Lhotak. Comparing call graphs. In Workshop on Pro-
gram Analysis for Software Tools and Engineering, pages 37

– 42, 2007.

[8] B. Li, X. Sun, H. Leung, and S. Zhang. A survey

of code-based change impact analysis techniques. Jour-
nal of Software Testing, Verification and Reliability, doi:
10.1002/stvr.1475, 2012.

[9] A. Mithun and R. Brian. Practical change impact analysis

based on static program slicing for industrial software sys-

tems. In Proceedings of the 33rd International Conference
on Software Engineering, pages 746–755, 2011.

[10] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and

M. J. Harrold. An empirical comparison of dynamic im-

pact analysis algorithms. In Proceedings of the Internation-
al Conference on Software Engineering, pages 491 – 500,

2004.

[11] A. Orso and M. J. Harrold. Leveraging field data for impact

analysis and regression testing. In Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing, pages 128–137, 2003.

[12] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimothy.

Using information retrieval based coupling measures for im-

pact analysis. Empirical Software Engineering, 14(1):5 – 32,

2009.

[13] X. Sun, B. Li, S. Zhang, C. Tao, X. Chen, and W. Wen.

Using lattice of class and method dependence for change

impact analysis of object oriented programs. In Proceedings
of the Symposium on Applied Computing, pages 1444–1449,

2011.

[14] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl.

Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429 – 445,

2005.

13

A mobile application for stock market prediction using sentiment analysis

Kushal Jangid∗

San Jose State University
Computer Engineering Department

San Jose, CA, USA

Pratik Paul†

San Jose State University
Computer Engineering Department

San Jose, CA, USA

Magdalini Eirinaki
San Jose State University

Computer Engineering Department
San Jose, CA, USA

Abstract

Lately, stock markets have been going through a lot of
volatility. Traditional methods of stock market prediction,
which involved using historical stock prices to predict fu-
ture price have shown to be insufficient under certain cir-
cumstances. In this paper we present a mobile application
that employs a different approach to predicting the stock
price, namely the news related to that company. The pre-
diction algorithm determines whether the overall sentiment
related to the company, as expressed by the news stories, is
good or bad and assigns a sentiment score. The system then
uses machine learning to predict the percentage fluctuation
of the company’s stock based on this score. The algorithm
is integrated in a mobile application that helps users try out
various market strategies based on our prediction engine.
This is achieved by performing simulated trades using vir-
tual money. It also provides real-time stock quotes, and the
latest financial news. In this paper we present the overall
system architecture and design of this application, as well
as details of the prediction process.

1 Introduction

There is a tremendous research going on in the field of

stock market prediction. There are a number of artificial in-

telligence and machine learning techniques that have been

used for analyzing price patterns and predicting stock prices

and index. Among the most commonly used are Neural

Networks, which have the ability to learn non-linear rela-

tionships based on trading information. This allows mod-

∗Author’s current affiliation is E*Trade Financial Corporation
†Author’s current affiliation is Reply.com

eling of non-linear dynamic systems such as stock markets

more precisely. Support Vector Machines (SVM) seem to

be the next most popular approach to stock market pre-

diction. It has been successful in classification task and

regression tasks, especially on time series prediction and

financial-related applications.

There has also been some research on hybrid algorithms

which combine different algorithms to improve the predic-

tion accuracy. One example is the combination of Genetic

Algorithm and Support Vector Machine. The experiments

conducted indicate that the accuracy achieved by combin-

ing the algorithms is better than the results from algorithms

individually [3]. The authors [5] claim that Support Vec-

tor Machine when combined with Boosting provides better

accuracy.

A more recent trend, however, is to depart from using

pure machine learning on the numbers, and instead to also

focus on other input such as the financial news to determine

the stock fluctuation. Most of the people are familiar that

company’s earnings report and good/bad news associated

with the company tend to affect its price. Looking at its im-

portance, people have started combining text mining with a

couple of different algorithms in order to predict the stock

price movement. One example is where some researchers

combined text mining approach with time series algorithm

to map the fluctuation in the stock price [10]. There are

other examples where the text mining algorithm is com-

bined with SVM [7].

Most of the applications for stock market prediction

are web-based, and there are not many available for smart

phones. However, as smart phones become an integral part

of everyday lives and people are using them as portable de-

vices, the need to trade on the go is evident. After interview-

ing a couple of people working on Wall Street, we found

out that having a prediction system available on your phone

14

Figure 1. System Architecture

would be really beneficial to the traders. This will assist

them in making the decision of buying or selling a com-

panys stock. This motivated our work, designing a mobile

client which enables the user to create a watch list of stocks,

get latest stock quotes, and request stock predictions. The

application also enables the user to simulate stock trading

based on the predictions using virtual money but real stock

data.

In a nutshell, our prediction system works as follows:

the user sends the companys ticker symbol whose predic-

tion is needed. The prediction system scans that particular

companys news and generates a sentiment score which tells

whether the sentiment related to that company is good/bad

and also how much percentage fluctuation in price might

occur within three hours. The prediction system is able to

give the percentage fluctuation because it has been trained

to determine the relationship between the sentiment score

and the percentage in stock price change.

The rest of the paper is organized as follows: In Section

2, we provide a review of the related work. We then discuss

in detail the architecture of the mobile application in Section

3. In Section 4 we outline the basic steps of the prediction

algorithm and in Section 5 we present the system prototype.

We conclude with our plans for future work in Section 6.

2 Related Work

One line of research is to use Support Vector Machines

(SVM) for stock market prediction. In [3] a hybrid ma-

chine learning system based on Genetic Algorithm (GA)

and Support Vector Machine (SVM) is proposed. For input,

the authors use the correlation among stock prices of vari-

ous companies as well as various pointers from the area of

technical analysis. Their observation was that, the fusion of

Genetic Algorithm/SVM is better than the individual SVM

System. In [9] the author claims that SVM combined with

boosting gives superior results in stock market prediction.

It also suggests that a particular algorithm might be better

suited to a particular type of stock, say technology stocks,

whereas give lower accuracies while predicting other types

of stocks, say energy stocks. This paper also states that

external unknown factors like election results, rumors, and

other factors should be considered for stock market predic-

tion. In another paper [5] the authors state that non-linear

combination of linear and non-linear methods give better

predictions than using each method separately. This pa-

per combines linear and non-linear regression models with

SVM and use their model to predict opening and closing

price on the Shanghai Stock Exchange.

Another line of research focuses on the use of Neural

Networks (NNs). In [11] various prediction models are

compared and the authors conclude that NNs predict market

directions more accurately than other existing techniques.

In [8] the authors describe how NNs learn with time and

errors when performing three predictions.They check the

results for low errors and high accuracy, and suggest im-

proving the preprocessing or enlarging the training size and

trying again in case of low accuracy and errors.

More recently, the research proposes the use of text min-

ing on financial news in order to predict the stock market

[1, 7, 6] . They state that news contents are one of the es-

sential aspects that control the market. The authors in [1]

discuss various techniques that are applied to study the con-

sequence of financial news on prediction of stock market.

They claim that if the classifier input has both news and

stock prices at the same time, it results in more precise re-

sults. The work of [7] looks at the role of financial news

articles on three textual representations; bag of words, noun

phrases, and named entities and their capacity to predict dis-

crete number stock prices twenty minutes after an article re-

lease. Using an SVM derivative, the writers prove that their

model had a major impact on predicting future stock prices

compared to linear regression. In [6], the authors propose a

text mining-based financial news analysis system to identify

15

the major news events that affect the stock market and also

understand their impact. Most recently, in [2] the authors

analyze the text content of Twitter feeds using two mood

tracking tools, and use a Granger causality analysis and a

Self-Organizing fuzzy Neural Network to predict changes

in the Dow Jones Industrial Average closing values.

Apart from the research papers, there exist two Android

applications which are related to the proposed system. One

of them is Bloomberg Mobile1. It is one of the best available

in the market supporting features like latest financial news

and stock market quotes among others. The unique selling

point of the application is that users will be able to create

personalized views of the news filtered by industry, region,

exclusivity and/or popularity. Another application2 which

is related to our project is about simulation of buying and

selling of stocks. It allows the users to track their progress,

buy and sell at real, up to date stock prices and manage their

portfolio on the go. The unique selling point of the appli-

cation is the presentation of the stock market in a simulated

environment. Our application is unique in that it combines

the best features of other applications, such as providing lat-

est financial news, quotes, and a simulated environment for

trading using virtual money, but also adds new features such

as stock market prediction.

3 System Architecture

A high-level architecture of the proposed system is de-

picted in Figure 1. This is a three-tier architecture, consist-

ing of the Android client, the Internet, providing access to

stock-related news and quotes and enabling the client/server

interaction through the Web Services, and the Server, con-

sisting of the Process, the Prediction, and the Training En-

gines and the system’s database.

3.1 Android Client

The Android client provides several types of function-

ality to the end user: It serves as a stock market interface,

providing information about the latest financial news and

quotes (using the Internet module). It also allows the end

user to create a watch list of stocks and provides a simulated

environment for buying/selling stocks using virtual money.

This can be regarded as a stock market online game, and

the end user can review his/her ranking as compared to other

players who are using the application. Most importantly, the

Android client interacts with the server’s prediction engine

to provide predictions for a company’s stock price. This in-

formation can be used by the end user to add/remove stocks

from his/her watch list and portfolio. All this information

1http://www.bloomberg.com/mobile
2http://www.chickenbrickstudios/games/mmc

is sent to the Android Client by the Server through the Web

Services.

3.2 Server

The Server consists of three Engines (Process, Training,

Prediction), as well as the database, with the Training and

Prediction modules being the core of the proposed system.

Training Engine. The Training Engine uses the Internet

module to retrieve news and quotes. It then employs data

mining algorithms to train the system so that it can then

predict the stock price movement. It saves those rules in

the database, which can then be used by the Prediction En-

gine to provide prediction to the Android Client. The train-

ing consists of a series of actions. Since the data are time-

sensitive, the system needs to be trained frequently so that

the predictions depict the latest market trends. Our architec-

ture enables the administrator to decide how often the train-

ing occurs. The training process is triggered automatically

at the times defined.

The training process can be described as the following

sequence of actions, also depicted in Figure 2: The Training

Engine requests news for a list of companies through Ya-

hoo! Finance3The Training Engine then processes the arti-

cles using sentiment analysis, and assigns a sentiment score

to each company using the sentiment dictionary. A positive

sentiment score means that the stock price is predicted to

go up, whereas a negative sentiment score means that it is

predicted to go down. The sentiment scores are saved in

the database. Next, the stock quotes of those companies are

requested and are also saved in the database. The quotes

of the same companies are requested after n hours (n is a

user-defined parameter). The quotes’ source returns real-

time stock quotes for those companies. The training engine

retrieves from the database the sentiment scores which were

generated for those companies as well as the quotes to check

for accurate predictions made in the stock price movement.

The training engine then uses the sentiment scores of the

accurate predictions, and creates correlations of the scores

to the percentage change in the respective stock quotes us-

ing machine learning techniques (association rules or deci-

sion trees). The results, in the form of rules, are saved in

the database, to be accessed later by the prediction engine

to make predictions on both the trends (stock going up or

down) and the percentage change of the stock.

Prediction Engine. The Prediction Engine is used to send

stock price predictions to the Android Client. This engine

interacts with the database to retrieve and use the training

data. However, its functionality is asynchronous to that of

the Training engine. In fact, the Prediction Engine is called

on-demand, i.e. whenever a user wants a prediction on a

3http://finance.yahoo.com

16

Figure 2. Sequence Diagram of Training Process

specific stock. The sequence of actions of the Prediction

Engine are shown in Figure 3. Whenever a user requests

for prediction, the Android client sends the request to the

Prediciton Engine. The Prediction Engine then gathers the

news of that company and generates the sentiment score

real-time. It then accesses the database to get the trained

rules. Finally, using these rules, the engine predicts how

much percentage change in the stock price will occur for

that sentiment score.

Process Engine. The Process Engine verifies the user login,

and generates a session. It consists of functions to get the

users trading information from the database, and provide

it to the Android Client. It processes the buying/selling of

stocks using virtual money. Finally, it ranks the users based

on the profits made in the simulated trading system.

Database. The users login and trading information is saved

in the server database. Apart from that, the Training Engine

saves the trained values in the database, which will later be

used by the Prediction Engine to predict percentage change

in a companys stock price.

4 Data Mining Algorithms

We now discuss in more detail the two main components

of the prediction process, namely the text mining and senti-

Figure 3. Sequence Diagram of Prediction Process

ment analysis of the news, used to predict the stocks’ trends

(stock going up/down), and the association rules mining on

them, used to predict the percentage of stock change.

Every news story is first pre-processed to remove any

stopwords. Then, each article is assigned a sentiment score.

To do that, we employ the Subjectivity Lexicon4, a senti-

ment dictionary consisting of more than 8000 words. This

file provides us with the word w, its type, and its sentiment

weight sw(w). The sentiment weight takes any of the fol-

lowing values: strongly positive (4), positive (2), negative

(-2), and strongly negative (-4).

When the prediction of a stock price is requested from

Android, the application retrieves the latest news related to

that particular company c and runs the sentiment analysis

algorithm. For each article i , and for each article’s word wj

that is included in the dictionary, it updates the company’s

sentiment score based on this article (ssi(c)) as follows:

ssi(c) =
∑
j

sw(wj)

At the end, we have a sentiment score ssi(c) for each

company-related article. If ssi(c) > 0 then we deduct that

the news article had positive sentiment (si(c) = 1). Simi-

larly, if ssi(c) < 0 it had negative sentiment (si(c) = −1),

4http://www.cs.pitt.edu/mpqa/subj lexicon.html

17

and if ssi(c) = 0 if was neutral (si(c) = 0). Finally, the

prediction for this company’s stock is done as follows:

Pred(c) =

{
up if

∑
i si(c) > 0

down if
∑

i si(c) < 0

The system can use the aforementioned algorithm and

provide the user with predictions on whether specific stocks

will go up or down. However, this data can be also used as

input to predict the percentage change in the stock price.

One approach would be to build a prediction model, us-

ing machine learning techniques such as decision trees or

association rules, that will generate a set of rules linking the

sentiment score of each company with a specific percentage

change (range) in the stock price. To achieve that, a training

process is needed, as described in Figure 2.

The training of the system is performed as follows: for

each company c the system starts by retrieving the lat-

est news and generating a prediction Pred(c) as described

above. This prediction is stored in the database. The system

periodically retrieves the stock quotes for the same compa-

nies and stores the trend (up/down), as well as the percent-

age of stock change. It also classifies the previous predic-

tion as accurate or not. The process is repeated until we

have a statistically significant sample and sufficient predic-

tion accuracy, in which case we can train the system to gen-

erate the rules.

In order to generate rules, we can use appropriate ma-

chine learning techniques such as association rules or de-

cision trees. The input to the algorithm is the company’s

ticker (unique id), its sentiment score, and its prediction and

the output is a set of rules correlating the aforementioned

data with a percentage range that signifies the change of the

stock (note that, in the case of association rules, we should

keep only the rules that comply with this format). The rules

are in turn stored in the database and can subsequently be

used for real-time predictions of percentage changes.

5 System Prototype

Based on the proposed architecture, we built a system

prototype. The Client was built using Android SDK and

ADT plugin for Eclipse. It communicates with the Server

using RESTful WebServices hosted on a cloud. The Predic-

tion Engine and the Training Engine are written in Perl, and

the Process Engine is written in Java. The database used is

MySQL. For more technical details on the prototype’s de-

sign, the reader may refer to [4].

The user interface was implemented especially to ac-

commodate the limitations of a mobile application. The

first time the user uses the application, he/she is asked to

provide some personal data in the registration page. Once

the registration is complete, the user has access to the afore-

Figure 4. Company details for Appliance Recycling Centers

of America (ARCI) stock

mentioned functionality, through 5 menu options: Markets,

MyProfile, News, Prediction, and Search.

The News section allows the user to enter the company

name or the ticker of the company whose news the user

wants to search. If the text box is left empty, all financial

news will appear, ordered by time (newest first).

The Search section allows the user to search for stock

quotes. The user may enter the company’s name or ticker

symbol, or the first letters of any of the above. In the latter

case, the user will be given the option to choose among the

companies that match this description. Once a company is

selected, the system shows the value of the company’s stock

price, change in the stock, percentage change in the stock,

as well as the volume of stocks traded. The user is then

given the option to either buy, add to watch list, check the

company-related news, or get the prediction for that com-

pany’s stock. An example is shown in Figure 4.

The user’s activity can be reviewed from the MyProfile

section. This section provides several options.

The MyPortfolio tab allows the user to see details like

their name, rank, amount of money in cash and equities,

total current worth, as well as the stocks the user owns.

A sample screen is shown in Figure 5. The Watchlist tab

shows the stocks the user has put in his/her watch list. These

18

Figure 5. User portfolio

are stocks that the user wants to monitor before deciding on

buying/selling them. From the History tab, the user may see

the list of the stocks he/she has traded, along with details on

number of stock, total profit/loss, etc.The Ranking tab al-

lows the user to see their ranking w.r.t. all other users using

this application, thus encouraging them to play more (the

ranking is based on the total earnings in the simulated envi-

ronment). Finally, the Markets tab provides real-time data

for the major equity indices like NASDAQ, S&P500, Dow

Jones (current value and change during the day) and the Pro-

file Management tab allows the user to manage his/her pro-

file.

6 Conclusions and Future Work

In this paper we present the architecture and a prototype

of a mobile application which provides users virtual money

to buy/sell stocks using real-time data. It allows access to

latest financial news, and provides an option to search com-

pany specific news. An important component of our system

is the stock prediction, which uses sentiment analysis and

machine learning to predict the trend and percentage move-

ment of a companys stock. We also incorporated ranking of

players based on their performance in order to make the ap-

plication interesting to the users. The application has been

deployed on Android phone and runs smoothly by connect-

ing to the Server using WebServices.

We are currently working on enhancing the application

in several ways. We will improve the sentiment dictionary

by automatic training: if certain words always lead to accu-

rate/inaccurate predictions, their score will be respectively

increased/decreased. We also intend to incorporate social

media (e.g. Twitter) in the application. For example, when

a user searches for a companys stock, along with the quotes,

the application can display the latest tweets related to that

company, whereas the sentiments of these tweets can be

used in the prediction process. Finally, we will include more

news sources as input to the sentiment analysis and update

the user interface to show the news related to that company

which led to that prediction. This way, the user will have a

better idea as to what led to that prediction.

References

[1] S. M. A. Nikfarjam, E. Emadzadeh. Text mining approaches

for stock market prediction. In ICCAE’10, 2010.
[2] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the

stock market. Journal of Computational Science, 2(1):1–8,

March 2011.
[3] R. Choudhry and K. Garg. A hybrid machine learning

system for stock market forecasting. In Proceedings of
World Academy of Science Engineering and Technology,

volume 29. May 2008.
[4] K. Jangid and P. Paul. Stock market prediction and simula-

tion tool (ms thesis). Master’s thesis, Computer Engineering

Dept., San Jose State University, USA, May 2011.
[5] F. Luo, J. Wu, and K. Yan. A novel nonlinear combina-

tion model based on support vector machine for stock mar-

ket prediction. In WCICA ’10, 2010.
[6] A. Mahajan, L. Dey, and S. K. M. Haque. Mining finan-

cial news for major events and their impacts on the market.

In IEEE/WIC/ACM Intl. Conf. on Web Intelligence (WI’08),
2008.

[7] R. P. Schumaker and H. Chen. Textual analysis of stock mar-

ket prediction using breaking financial news: The azfin text

system. ACM Transactions on Information Systems, 27(2),

2009.
[8] A. Senanayake. Automated neural-ware system for stock

market prediction. In IEEE Conference on Cybernetics and
Intelligent Systems, 2004.

[9] V. H. Shah. Machine learning techniques for stock predic-

tion. In Foundations of Machine Learning. 2007.
[10] X. Tang, C. Yang, and J. Zhou. Stock price forecasting

by combining news mining and time series analysis. In

IEEE/WIC/ACM Intl. Conf. on Web Intelligence (WI’09),
2009.

[11] P. Yoo, M. Kim, and T. Jan. Machine learning techniques

and use of event information for stock market prediction:

A survey and evaluation. In Intl. Conf. on Computational
Intelligence for Modelling Control and Automation and Intl.
Conf. on Intelligent Agents Web Technologies and Internet
Commerce, volume 2. IEEE, 2007.

19

Using Semantic Relatedness and Locality for
Requirements Elicitation Guidance

Stefan Farfeleder
Institute of Computer Languages

Vienna University of Technology

Vienna, Austria

stefan.farfeleder@tuwien.ac.at

Thomas Moser
CDL Flex

Vienna University of Technology

Vienna, Austria

thomas.moser@tuwien.ac.at

Andreas Krall
Institute of Computer Languages

Vienna University of Technology

Vienna, Austria

andi@complang.tuwien.ac.at

Abstract—Requirements engineers strive for high-quality re-
quirements which are the basis for successful projects. On-
tologies and semantic technologies have been used successfully
in several areas of requirements engineering, e.g., for analysis
and categorization of requirements. We improve a semantic
guidance system which derives phrases from a domain ontology
by taking two observations into account: a) domain terms that
are semantically related are more likely to be used together in a
requirement; and b) the occurrence of domain terms is usually
not distributed uniformly over the requirements specification.
We define suggestion rankings that make use of these properties
resulting in automatically proposing semantically and spatially
related domain terms to the requirements engineer. We imple-
ment these rankings in our tool and provide an evaluation using
three projects from the embedded systems domain. We achieve
significant suggestion quality improvements over previous work.

Keywords—domain ontology, semantic relatedness, require-
ments specification, requirements elicitation, guidance.

I. INTRODUCTION

Any specification errors that propagate from the require-

ments definition phase into later development phases, such as

design or testing, have high impact and typically are expensive

to fix. Therefore requirements engineers work hard to find

errors in requirements and to have complete, correct and

consistent requirements.

Requirements specified using natural language text have

inherent ambiguities due to different ways to interpret them by

stakeholders. There have been many strategies to reduce the

ambiguity in requirement statements. They include restricting

the allowed grammar to a subset, e.g., Attempto Controlled

English [1], and using predefined vocabularies, e.g., the Lan-

guage Extended Lexicon [2].

Ontologies have been used for requirements engineering in

several ways. Körner and Brumm [3] use domain-independent

ontologies to detect linguistic problems in specifications. Other

works capture knowledge about the problem domain in the

ontology [4][5]. There the ontology acts as a vocabulary of do-

main terms with additional links between the terms that define

their relationships. This enables the analysis of requirement

statements with regards to the domain knowledge represented

in the ontology, e.g., to find missing requirements. The support

for inferring knowledge and reasoning allows automating tasks

that otherwise would have to be done manually.

Additionally to the analysis of already specified require-

ments, [6] showed that a domain ontology can also be used

as a guide during the specification of new requirements.

By directly using ontology information during requirements

definition, this combines the advantages of ontology-based

analysis techniques with a reduction of specification effort.

The idea is specifying requirements correctly the first time

rather than specifying them incorrectly, and then analyzing

and improving them. In this work we build upon this guidance

system and add a method that actively tries to estimate what

the requirements engineer intends to type by taking semantic

information and locality into account. The improved system

prefers suggestions that are semantically related to concepts

already used in the current requirement and that have been

used in nearby requirements. These enhancements aim at

generating context-sensitive suggestions that are really useful

to the requirements engineer.

The remainder of this work is structured as follows. Section

II discusses related work; section III motivates our research

and presents the research questions. Then our proposed ap-

proach is described in section IV, and its evaluation follows

in section V. Finally section VI concludes and lists future

research topics.

II. RELATED WORK

PROPEL [7] is a tool that provides guidance for defining

property specifications which are expressed as finite-state

automata. For the definition of a property the user is guided

by a question tree, a hierarchical sequence of questions. There

are separate question trees for a property’s behavior and its

scope. Based on the answers the tool chooses an appropriate

property template. The tool is used to elicitate requirements in

the medical domain. Compared to our work the tool elicitates

formalized requirements but is less generic, i.e., limited to a

small set of requirements.

Kitamura et al. [4] present a requirements elicitation tool

that improves requirements quality by ontology-based anal-

ysis. The tool analyzes natural language requirements and

maps words to domain ontology concepts. According to these

occurrences and their relations in the ontology, requirements

are analyzed in terms of completeness, correctness, consis-

tency and unambiguity. Compared to this paper’s approach

20

the ontology information is only used after requirements have

been specified and not during the specification.

Recommendation systems filter items from a large set of

data and recommend them to a user based on information

about the user’s preferences. Maalej and Thurimella [8] pro-

vide an overview of possible applications of recommenda-

tion systems to requirements engineering. Additionally to the

requirement statements themselves and vocabularies - both

related to our work - they foresee usage in the area of

recommending quality measures, requirements dependencies,

people, etc.

SRRS [9] is a recommendation system which supports

choosing a requirements elicitation method for security re-

quirements. The requirements engineer needs to assign prior-

ities to ten key characteristics (e.g., unambiguity, traceability,

scalability) according to which the system then suggests the

most appropriate method.

Machado [10] uses semantic web techniques in the field of

requirements engineering to extract semantic information from

requirement documents. The extracted information is used to

track changes between different document versions and for

semantic queries. Martoglia [11] collects semantic information

from a large number of documents about software quality.

Using similarity measures the system supports suggesting

documents that are related to a given natural language query.

Unlike our own approach there is no ontology support to

specify new requirements in these works.

Literature distinguishes between semantic relatedness and

semantic similarity. Similarity is a specific kind of relatedness.

Reusing an example from Resnik [12], a car is similar to a

bicycle - both are a kind of vehicle - but the car is related to

gasoline, because it requires gasoline to drive. Semantic sim-

ilarity only considers subclass-of relations between concepts

while semantic relatedness takes all kinds of relations into

account, e.g., meronymy (part-of) and functional relationships

(require in the example above).

Budanitsky and Hirst [13] compare five measures of lexical

semantic relatedness and similarity that are based upon Word-

Net1. WordNet contains synonymy, hyponymy (is-a, subclass-

of), several kinds of meronymy (part-of) and antonymy

(opposite-of) relations. The measures are compared to human

judgment and in the context of an application to detect

malapropism, the usage of lexically similar but semantically

incorrect words. Unfortunately four out of five measures only

handle similarity.

III. RESEARCH ISSUES

In previous work [6] we presented a semantic guidance

system for requirements elicitation. It proposes phrases derived

from the knowledge contained in a domain ontology. While

the system works well for small ontologies, we found practical

issues when applying it to more requirements and bigger

ontologies due to the large number of generated proposals:

1http://wordnet.princeton.edu/

• The requirements engineer needs to type more charac-

ters until filtering limits the proposals to a manageable

amount.

• A requirements engineer not familiar with the domain

does not benefit from seeing a very long list of proposals,

e.g., when a domain term slipped his mind.

Clearly there must be a better method than showing all

matching proposals in alphabetical order. During the study

of these problems we thought about what constitutes “good”

proposals. We observed the following two properties.

A. Semantic Relatedness Property

While writing a requirement statement it is possible to

use already specified requirement parts, combined with the

ontology knowledge, to predict the remainder of the statement,

at least to a certain degree. Consider a requirement starting

with “The Safing Controller shall be able to”. We can support

the requirements engineer by suggesting concepts that are

semantically related to the concept Safing Controller for the

following parts of the requirement, e.g., SafeAct mode in

Fig. 1.

We identified the following common types of semantic

relations in requirements (this list is intended to be exemplary

and not exhaustive):

• Function: Requirements of the form “subject shall [be

able to] verb object”. Given an ontology link between

subject and object, we can suggest object if the require-

ments already contains subject.
• Restriction: Requirements of the form “if event then

subject shall [...]” or “during state subject shall [...]”.

Given an ontology link between a concept in event/state
and subject, we can suggest subject if the requirements

already contains event/state.

• Architecture: Requirements of the form “system shall

have subsystem”. Given an ontology link between system
and subsystem, we can suggest subsystem if the require-

ments already contains system.

In this work we assume having a suitable domain ontology

containing such links. Ontology extraction techniques (e.g. [5])

can be used to extract domain ontologies from text documents.

B. Locality Property

The occurrences of many domain terms used in a require-

ments specification are not randomly distributed over the entire

set of requirements but are clustered around a certain location

in the document. This is only natural considering that most

requirements specifications are organized into chapters each

describing an individual part of the system.

As a quick check for this observation we measured the

distributions of the requirement indices for concepts that occur

at least twice and computed the standard deviations. For

example, a concept occurring in two subsequent requirements

has a standard deviation of 0.5, one occurring in requirement

1 and in requirement 100 a standard deviation of 49.5. On

average, the standard deviations of those distributions were

11.60, 35.03 and 9.87 for the three requirements sets used in

21

Fig. 1. Domain Ontology, Suggestions, Boilerplates and Requirement

our evaluation. This is considerably lower than for randomly

distributed indices (28.58, 81.69 and 24.82).

We call two concepts that occur in nearby requirements

spatially related.

The idea of this research is to find out whether we can make

use of those properties and whether this actually improves the

guidance system. We have two research questions:

• RQ1: Does the guidance system improve if we preferably

suggest semantically related concepts?

• RQ2: Does the guidance system improve if we preferably

suggest spatially related concepts?

We are optimistic that both questions can be answered posi-

tively and define the following hypotheses:

• H1: Suggesting semantically related concepts improves

the guidance system.

• H2: Suggesting spatially related concepts improves the

guidance system.

IV. GUIDANCE SYSTEM

This section briefly summarizes the existing semantic guid-

ance system and then goes on to introduce the new contribu-

tions, starting with section IV-D.

The goal of the guidance system is assisting the require-

ments engineer with specifying requirements. It does that by

proposing textual phrases which are derived from the ontology

information. Fig. 1 depicts a part of the ontology and how

the guidance is related. The boxes at the top and the arrows

between them are ontology contents while the blue areas

represent the derived phrases (“CRCError is asserted”, “the

Safing Controller” and “enter the SafeAct mode”). Axioms

are labelled with brackets to make the distinguishable from

named relations. A requirement using these suggestions can

be seen at the very bottom.

A. Boilerplate Requirements

Our approach uses boilerplates for requirement statements.

This term was coined by J. Dick [14] and refers to a textual

requirement template. A boilerplate consists of a sequence of

attributes and fixed syntax elements. A common boilerplate

is “〈system〉 shall 〈action〉”. In this boilerplate 〈system〉
and 〈action〉 are attributes and shall is a fixed syntax

element. It is possible to combine several boilerplates by

means of concatenation (Fig. 1: “if 〈event〉,” and “〈system〉

shall 〈action〉”). This allows keeping the number of required

boilerplates low while at the same time having a high flexi-

bility. During instantiation textual values are assigned to the

attributes of the boilerplates; a boilerplate requirement is thus

defined by its boilerplates and its attribute values.

We use boilerplates for our approach due to two reasons:

a) the usage of different attributes allows providing context-

sensitive guidance (section IV-C), i.e., proposing different

suggestions depending on the current attribute, and b) using

boilerplates helps specifying requirements that are syntac-

tically uniform when using a small number of templates

(compared to the number of requirements).

There are numerous other template-based approaches for

requirements specification, most of them being more formal

than boilerplates. Post et al. [15] report on successfully apply-

ing a formal specification pattern system defined by Konrad

and Cheng [16] on automotive requirements. However, the

authors limit themselves to a certain class of requirements,

the behavioral requirements. Our approach aims at covering

all kinds of textual requirements.

B. Domain Ontology

A common definition of the term ontology is that it is a

formal, explicit specification of a shared conceptualization
[17]. A domain ontology focuses on a specific subject, here the

system under construction. For requirements engineering the

aspect of sharing is of particular interest, it means that stake-

holders agree on terminology and term relations. By making

use of this information we lower the risk for requirements

ambiguity.

The following ontology entities are used for the guidance

system:

• Concepts: Ontology concepts are the terms the require-

ments engineer uses in the requirements. This includes

actors, components, events, states, etc. of the system

under construction. In Fig. 1 the concepts are “asserted”,

“CRCError”, “pin”, “Safing Controller”, “SafeAct mode”

and “operating mode”.

• Relations: Relations are links between concepts. We use

two kinds of relations:

– A named relation represents a functional relationship

between a subject concept and an object concept.

The relation name is expected to be a transitive verb.

Named relations are used to derive suggestions.

– Anonymous relations simply indicate that two con-

cepts are related. This is used to prefer semantically

related suggestions.

In Fig. 1 there are two named relations: “is” between con-

cepts “CRCError” and “asserted”, and “enter” between

“Safing Controller” and “SafeAct mode”.

• Axioms: Axioms are relations between concepts with a

special meaning. An equivalence axiom represents the

knowledge that two concepts refer to the same phe-

nomenon in the domain (synonyms). A subclass-of axiom

states that one concept is a subclass of another one.

22

Both kinds of axioms lead to an inheritance of relations

from the equivalent or parent concept. The part-of axiom

imposes a hierarchical structure on the ontology contents

which facilitates navigation.

Additionally the ontology contains links that classify concepts

into one of the boilerplate attributes (the link between “Safing

Controller” and 〈system〉 in Fig. 1).

C. Suggestions

From the ontology knowledge the guidance system infers

three kinds of suggestions:

• Concept: This basic kind of suggestion consists of the

name of an ontology concept, optionally prefixed with

the determiner “the”.

• Verb-Object: From a named ontology relation our system

proposes the relation’s verb in infinitive form followed by

the name of the relation’s destination concept (again op-

tionally prefixed with “the”). This suggestion is intended

to follow “shall” or “shall be able to” formulations often

found in requirements.

• Subject-Verb-Object: From a named ontology relation our

system proposes the relation’s source concept, followed

by the relation’s verb in third person singular form,

and the relation’s destination concept - both concept

names optionally prefixed with “the”. This suggestion is

intended to be used in clauses starting with “if”, “while”

or similar words.

In Fig. 1 an example is provided for each suggestion kind:

“the Safing Controller” for Concept, “enter the SafeAct mode”

for Verb-Object and “CRCError is asserted” for Subject-

Verb-Object. It is not always grammatically correct to add

a determiner before a concept name, e.g., before “asserted”.

Thus our approach checks the part-of-speech (a classification

of a word into one of several types, e.g., noun, verb, adjective)

to determine this.

The three suggestion kinds are used for different boilerplate

attributes. Table I shows the mapping between suggestions and

attributes. For the attributes event and state both Concept sug-

gestions and Subject-Verb-Object are used due to grammatical

reasons, e.g., a noun should be used for during 〈state〉 but

if 〈state〉 requires a clause. The Verb-Object suggestions are

used for the 〈action〉 attribute which generally follows modal

verbs like “shall”; the remaining boilerplate attributes use only

the Concept suggestions.

D. Semantic Relatedness of Suggestions

We mentioned functional, restrictional and architectural

relations in requirements earlier. These relations have in com-

mon that they do not correspond to simple is-a ontology links.

While there exist requirements where is-a links are useful,

e.g., “The system shall have the following states: . . . ”, they

are rare. From this point of view semantic relatedness is

more important to us than semantic similarity. Using the car

example mentioned earlier, a possible requirement is “The
driver shall be able to refuel the car with gasoline.” When

proposing phrases to requirements engineers, we want to make

use of semantic relatedness between concepts, e.g., given a

requirement that already contains car we would rather suggest

gasoline than bicycle.

Unfortunately from the review of related literature it seems

that researchers concentrate more on similarity than on relat-

edness. We were able to find complex functions to compute

semantic similarity using up to six different factors [18]: link

type, node depth, local density, link strength, node attributes

and cluster granularity degree. Most of them only make sense

in an is-a taxonomy and do not apply well to the more generic

graph we are using. We experimented with using different

weights depending on link types but that had no measurable

effect. In the end we decided to go for simplicity: We measure

the relatedness of two concepts simply by using the edge count

of the shortest path between two concepts.

We define C to be the set of concepts, T to be the set of

link types in the ontology, L ⊆ C×C×T to be the set of all

ontology links and the direct distance δl between two concepts

s and d to be

δl(c, c
′) =

{
1 if ∃ t ∈ T : 〈c, c′, t〉 ∈ L ∨ 〈c′, c, t〉 ∈ L,

∞ otherwise.

We use ontology links in an undirected manner to be more

flexible with the order in which concepts are stated in a

requirement, e.g., we can handle “subject shall action if event”
even though the link might be directed from event to subject.
Moreover we do not require instantiating boilerplate attributes

from left to right. Using δl we can compute the shortest path

δp between two concepts. In Fig. 1 the distance between Safing
Controller and SafeAct mode is one, the distance between

operating mode and assert is four.

We define R to be the set of requirements and S to be

the set of suggestions. Further we define cr : R → P(C)
and cs : S → P(C) to map a requirement or, respectively, a

suggestion to the concepts it uses. Next we define the distance

δs between a requirement r and a suggestion s to be

δs(r, s) = max(min
c∈cr(r)

min
c′∈cs(s)

δp(c, c
′), 1).

It is the minimum distance between any concept used in the

requirement and any concept used in the suggestion. We cap it

at one to avoid first proposing suggestions containing concepts

already used in the current requirement.

E. Locality of Suggestions

Requirements documents are often structured into sections

each covering a different aspect of system functionality. Terms

specific to that functionality occur mostly there. In order

to measure the spatial relatedness of two requirements, we

consider the requirements to be a list and define an index

function ind : R → N. Requirements that have similar indices

are spatially related. When specifying a new requirement, the

requirements engineer must indicate the index where the new

requirement should be inserted into the list. This is similar to

choosing a section where the requirement should be added to.

23

We define the locality factor loc of a requirement r and a

suggestion s in the following way:

loc(r, s) = min
r′∈R

{
|ind(r)− ind(r′)| if cr(r′) ∩ cs(s) �= ∅,
∞ otherwise.

It is the index distance to the nearest requirement that shares

at least one concept with the suggestion.

F. Suggestion Algorithm

Based on the previous observations we define four different

suggestion rankings. The first one (alpha) sorts suggestions

alphabetically and serves as a baseline. The second (sem-rel)

and third one (locality) sort using the semantic relatedness

function δs and locality function loc, respectively. The fourth

order (ML) uses a linear combination of both functions. A

machine learning approach is used to obtain good coefficients

for the combination.

Our algorithm for suggestions in a requirement r given

a (possibly empty) word w the requirements engineer is

currently typing for boilerplate attribute a consists of the

following steps:

1) Compute all suggestions and filter out those not starting

with w.

2) Sort remaining suggestions by either

a) Matching boilerplate attribute a (suggestions

marked by “�” in Table I), and then alphabetically,

using δs or loc; or

b) Using the weight computed by ML coefficients

Using these orders we achieve that semantically and spa-

tially related suggestions are ranked and shown before other

suggestions.

For the ML ranking we use linear regression models, one

for each boilerplate attribute. The models are trained using

the following features: suggestion type, matching boilerplate

attribute, value of δs and loc and whether a suggestion is

correct (prediction value 1.0) or not (0.0) in the context

of the other features. A higher value computed by such a

model is considered to be a better match. We use linear

regression models because they are very efficient at computing

the weights of all suggestions.

V. EVALUATION

To test hypotheses H1 and H2 we implemented the en-

hancements in our tool DODT (Domain Ontology Design

Tool). We set up an evaluation with three different industrial

projects: DMS (Doors Management System) which controls

aircraft doors, an airbag controller that decides if an airbag

should be deployed and a power-switch used in the powertrain

domain. For each project a domain ontology was extracted

from domain documents using term and relation extraction

techniques and some manual pruning and refinement. Table

II gives information about the requirements and the domain

ontologies of the projects.

We took the following approach to measure the difference

between the baseline suggestion order (alpha) and the orders

TABLE I
ATTRIBUTE SUGGESTION MAPPING

Attribute Con VO SVO
〈system〉, etc. �
〈action〉 �
〈event〉, 〈state〉 � �

TABLE II
PROJECT MEASURES

Power-
Item DMS Airbag train
Reqs. 99 283 86
Concepts 233 591 267
Relations 164 425 115
Axioms 100 571 163

TABLE III
SUGGESTION RESULTS

alpha sem-rel locality ML
len avg σ avg σ avg σ avg σ

DMS
0 134.9 135.1 81.43 101.4 102.7 124.9 69.39 103.9
1 6.99 14.32 4.02 9.09 5.50 14.09 3.69 7.22
2 1.66 3.00 1.03 2.56 1.34 2.92 0.89 1.95
3 0.98 2.44 0.70 2.29 0.85 2.35 0.61 1.26
4 0.68 1.39 0.48 1.19 0.61 1.32 0.56 1.13
5 0.57 1.33 0.43 1.18 0.53 1.28 0.50 1.16

Airbag
0 353.0 332.7 161.9 228.9 204.7 264.0 100.1 196.5
1 29.00 67.16 13.74 31.79 18.54 55.27 8.53 31.40
2 5.94 28.01 2.77 8.06 3.56 16.76 1.89 7.35
3 3.15 5.40 1.81 4.02 1.79 3.77 1.15 2.96
4 1.18 1.98 0.90 1.79 0.88 1.72 0.61 1.42
5 0.64 1.42 0.49 1.28 0.50 1.23 0.33 0.89

Powertrain
0 224.9 200.7 154.4 175.2 153.8 176.1 107.5 154.8
1 28.95 56.13 19.50 48.31 15.55 38.69 9.42 28.99
2 2.80 6.02 2.03 5.18 2.36 5.48 1.15 2.86
3 1.95 5.27 1.40 4.68 1.65 4.84 0.84 2.27
4 1.74 5.30 1.19 4.62 1.45 4.80 0.86 2.39
5 1.67 5.37 1.15 4.68 1.37 4.81 0.83 2.36

evolving from the research questions RQ1 (sem-rel), RQ2

(locality) and the ML order. First we identified all places where

a requirement phrase p (one or more words of the requirement)

matched one of our suggestions. In case several suggestions

matched at the same position, we used the longest one. Then

we computed the suggestion list our algorithm yielded and

measured at which position in this list the expected phrase p
was ranked. This we repeated for all substrings of p of length

zero to five and for all suggestion orders. This simulates the

behavior when a user types in the first p characters of the

expected phrase and selects a suggestion. The requirements

were added to our guidance system in the same order that

is used in the projects. We argue the average list position is

a good measure for the performance of a suggestion order

as the user starts seeing the first N entries (depending on

the window size) and has to scroll down for further entries.

Fig. 2 shows a screenshot of our tool presenting suggestions.

To avoid overfitting to the evaluation data we used a three-

fold cross-validation for the ML order, i.e., for each project

we trained the model using data from the other two projects.

Table III presents our results. It shows the arithmetic means

and standard deviations of the list positions for all suggestion

orders, projects and lengths. For example: If an Airbag project

user enters the first two letters of a phrase, the expected phrase

will be on average at position 5.94 for the alpha order and at

position 1.89 for the ML order.

All three suggestion orders using semantic relatedness

24

Fig. 2. DODT Screenshot showing Suggestions

and/or locality are an improvement over the baseline order

with regards to the position of the correct suggestion when

comparing means. The ML order generally performs best

except for DMS at lengths 4 and 5 where sem-rel performs

better. We tested statistical significance using a Student’s t-test

with a confidence level of 95% (rejecting the null hypothesis

of identical distributions). The improvements are significant

for ML (DMS: len≤4, Airbag: all, Powertrain: all), for sem-

rel (len≤3, all, len≤2) and for locality (len≤1, all, len≤2).

For greater lengths the improvements are not significant. With

these restrictions in mind, we claim our hypotheses to be true.

We achieve the biggest improvements at length zero (start

of a new phrase) because here the alpha suggestion order

is basically random while our proposed orders rank related

suggestions first. At longer phrases this advantage decreases

because filtering often reduces the suggestions to a small set

of very similar ones which is more difficult to rank in a good

way, especially if there is a long common prefix.

A. Threats to Validity

The experiment was performed in a fully automated way

and is thus repeatable. The quality of the suggestion order

depends on the ontology quality, especially on the links for the

semantic relatedness. The domain ontology creation process

involved selection and validation by a domain expert. While

our evaluation consists of three different domains, ontologies

and requirement sets, the claim of general usefulness of this

approach needs to be tested in a larger study with more

projects.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented two enhancements to a semantic

guidance system. The first one is taking the semantic re-

latedness between concepts in a requirement statement into

account. The second enhancement is taking the locality of

domain terms with regards to their occurrence location in the

requirements document into account. The probability for reuse

of semantically and spatially related concepts is increased. We

defined ranking on suggestions to exploit these properties. An

evaluation using three sets of industrial requirements showed

that both properties lead to an improvement of the suggestion

quality.

More research needs to be done on deriving phrases from

ontology concepts and relations. There are grammatical forms

in our requirements, e.g., gerunds, which could be supported

additionally. However, this needs to be evaluated carefully as

there is a trade-off between convenience for the requirements

engineer and achieving requirements consistency by using the

same phrases in all requirements. Finally we plan to research

specialized ontology extraction methods to extract exactly the

kind of concepts and relations we are interested in.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant agreement

No 100016 and from specific national programs and/or funding

authorities. This work has been supported by the Christian

Doppler Forschungsgesellschaft and the BMWFJ, Austria.

REFERENCES

[1] N. Fuchs, U. Schwertel, and R. Schwitter, “Attempto Controlled English
- not just another logic specification language,” in LOPSTR 1999.
Springer, 1999, pp. 1–20.

[2] J. Leite and A. Franco, “A strategy for conceptual model acquisition,”
in Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on. IEEE, 1993, pp. 243–246.

[3] S. Körner and T. Brumm, “Natural language specification improvement
with ontologies,” International Journal of Semantic Computing (IJSC),
vol. 3, no. 4, pp. 445–470, 2010.

[4] M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki, “A supporting tool
for requirements elicitation using a domain ontology,” in ICSOFT 2009.
Springer, 2009, pp. 128–140.

[5] I. Omoronyia, G. Sindre, T. Stålhane, S. Biffl, T. Moser, and
W. Sunindyo, “A domain ontology building process for guiding require-
ments elicitation,” in REFSQ 2010. Springer, 2010, pp. 188–202.

[6] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, I. Omoronyia, and
H. Zojer, “Ontology-driven guidance for requirements elicitation,” in
ESWC 2011. Springer, 2011, pp. 212–226.

[7] R. Cobleigh, G. Avrunin, and L. Clarke, “User guidance for creating
precise and accessible property specifications,” in 14th International
Symposium on Foundations of Software Engineering. ACM, 2006, pp.
208–218.

[8] W. Maalej and A. Thurimella, “Towards a research agenda for rec-
ommendation systems in requirements engineering,” in 2009 Second
International Workshop on Managing Requirements Knowledge. IEEE
Computer Society, 2009, pp. 32–39.

[9] J. Romero-Mariona, H. Ziv, and D. Richardson, “SRRS: a recom-
mendation system for security requirements,” in Proceedings of the
2008 International Workshop on Recommendation Systems for Software
Engineering. ACM, 2008, pp. 50–52.

[10] B. N. Machado, L. de Oliveira Arantes, and R. de Almeida Falbo, “Using
semantic annotations for supporting requirements evolution,” in Proc.
SEKE. Knowledge Systems Institute, 2011, pp. 185–190.

[11] R. Martoglia, “Facilitate IT-providing SMEs in software development: a
semantic helper for filtering and searching knowledge,” in Proc. SEKE.
Knowledge Systems Institute, 2011, pp. 130–136.

[12] P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” in Proceedings of the 14th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995, pp.
448–453.

[13] A. Budanitsky and G. Hirst, “Evaluating WordNet-based measures of
lexical semantic relatedness,” Computational Linguistics, vol. 32, no. 1,
pp. 13–47, 2006.

[14] E. Hull, K. Jackson, and J. Dick, Requirements engineering. Springer,
2005.

[15] A. Post, I. Menzel, and A. Podelski, “Applying restricted english
grammar on automotive requirements - does it work? a case study,”
in REFSQ 2011. Springer, 2011, pp. 166–180.

[16] S. Konrad and B. Cheng, “Real-time specification patterns,” in Pro-
ceedings of the 27th International Conference on Software Engineering.
ACM, 2005, pp. 372–381.

[17] R. Studer, V. Benjamins, and D. Fensel, “Knowledge engineering:
principles and methods,” Data & knowledge engineering, vol. 25, no.
1-2, pp. 161–197, 1998.

[18] X. Xu, J. Huang, J. Wan, and C. Jiang, “A method for measuring seman-
tic similarity of concepts in the same ontology,” in 2008 International
Multi-symposiums on Computer and Computational Sciences. IEEE,
2008, pp. 207–213.

25

Phases, Activities, and Techniques for a
Requirements Conceptualization Process

Alejandro Hossian
Technological National University at Neuquén

& PhD on Computer Science Program,
National University of La Plata. Buenos Aires, Argentina

alejandrohossian@yahoo.com.ar

Ramón Garcia-Martínez
Information Systems Research Group

National University of Lanus
Remedios de Escalada, Buenos Aires, Argentina

 rgarcia@unla.edu.ar

Abstract—The requirements elicitation process, whose main
objective is to give birth to the requirements, not only is a
technical process to build a particular system but also an
important process of social connotations involving different
people (stakeholders), a circumstance which causes certain
problems arise when carrying out this process of requirement
conceptualization. We propose a process of Requirements
Conceptualization that are structured in two phases: (a)
Problem-Oriented Analysis: aimed at understanding the problem
given by the user in the domain in which this takes place, and (b)
Product-Oriented Analysis: its aim is to obtain the functionalities
that the user intends to obtain from the software product to be
developed, taking into account the relationship of these features
with the reality expressed by the user in his speech. The
techniques for each activity in both phases are introduced.

Keywords - Requirements Conceptualization; Process; Phases;
Activities; Techniques.

I. INTRODUCTION
The requirements elicitation process, whose main objective

is to give b irth to the requirements, not only is a technical
process to build a particular system but also an important
process of social connotations [1] that involves different people
(stakeholders). It is usual that the proces s of requirements
elicitation causes problems when it is been carrying out [2].
Similarly, with regard to the stakeholders it is cle ar that the
term is used in reference to any person or group that is affected
by the system directly or indirectly, between them can be cited
to end users who interact with the system and as well as others
who may be affected by the implementation of it (maintenance
professionals providing other related systems, experts in the
domain of the system, business managers, others).

Now, in light of all the constraints that make mention by
Sommerville, proper of requirements elicitation process is that
there is a need to explore and analyze those features that are
inherent to this process and, as such, contribute to characterize
the process. Characterized the task of requirement elicitation, it
follows that the ax is of it focuses on establishing
communication between the User and the Req uirements
Engineer. When developing their work in elicitation, this must
capture and model a reality that frames a problem, whose
solution must be approached through a software product. Since
this is really an intangible element, usually too complex, it is
also difficult to capture.

These problems, taken from the elicitation process, make it
difficult for the requirements engineer to devel op the
stakeholder universe of discourse, as well as the construction of
adequate conceptual models [3][4], i.e. these problems, which
begin to manifest themselves in the process from requirements
elicitation and communication between the user and the
engineer, probably will be propagated in the acti vity of
construction of conceptual models. These drawbacks
inexorably converge towards obtaining low-quality software.

In this co ntext, the problem is focu sed (Section 2), we
propose a process of requirements conceptualization (Section
3), the techniques proposed for the activities in each phase are a
presented (Section 4), and conclusions and future research
work is outlined (section 7).

II. PROBLEM DESCRIPTION
The open problem identified in this section, is the need to

structure and categorize the information body coming from the
elicitation process. The purpose is facilitating the
understanding of the problem expressed by the user [5][6], in
other words, to conceptualize the requirements. Inadequate
treatment of the complexity contained in the user's discourse
has been highlighted by several authors [7][8][9][10]. These
authors mention the difficulties in building conceptual models
based on the information contained in the elicitation process
and reflected in the user's speech. Also worth noting that these
difficulties give the analysis process to a degree of immaturity
which makes it difficult to perform effectively in this activity,
while difficult to adopt this approach in or ganizations [11].
Accordingly and pursuant to the foregoing, the open prob lem
addressed in t his paper, is a "perce ption gap" [5][7] in the
transition of a process (requirements elicitation) to a nother
process (Conceptual Modeling). Because of this, is clearly a
need to conceptualize the requirements stated by the user in his
speech before going to the c onstruction of conceptual models
in order to reduce complexity and promote understanding
referred to the problem described by the user, contributing to
the achievement of better quality of Conceptual Models.

III. PROPOSAL OF PROCESS OF REQUIREMENTS
CONCEPTUALIZATION

The solution proposed in this work involves the insertion of
an activity of Requirements Conceptualization, which aims to
act as a bridge or "link" between the activities of requirements

26

elicitation and the act ivities conceptual modeling, thereby
facilitating the understanding of the problem expressed by the
user and t herefore obtain higher quality Conceptual models
[2][3][5][10][12].

The process of conceptualizing the pr oposed requirements
is done through the so-cal led Requirements Conceptualization
Process which is de veloped in t wo phases: (a) Problem-
Oriented Analysis, whose goal is to understand the problem
posed by the user in the domain in which this takes place, and
(b) Product-Oriented Analysis, whose goal is to obtain the
functionality that the user intends to obtain from the software
product to be developed, taking into account the relationship of
these features with the reality expressed by the user in his
speech. Figure 3 repres ents the p rocess of Requirements
Conceptualization with focus on interdependence between the
phases, tasks and products.

Figure 1. Process of requirements conceptualization; detailing: stages, tasks and
products

Problem-Oriented Analysis phase is divided into three
tasks: (a) "User Discourse/Speech Segmentation", (b)
"Cognitive Analysis of Text Segments", and (c) "Construction
of Problem Space based on User Scenarios". The "Discourse of
Natural Language User" (which from now on in this paper we
will call user speech) is the in put for the task "User
Discourse/Speech Segmentation" that results in the "Text
Segments". These segments are the i nput to task, "Cogni tive
Analysis of the Text Segments" generating the respective
"Knowledge Types". The "Text Segments" and "Knowledge
Types" are t he inputs for t he task "Construction of Problem
Space based on User Scenarios" that will result i n "Problem
Space based on User Scenarios".

Product-Oriented Analysis phase is divided into three tasks:
(a) "Construction of Users Scenarios", "(b) "Re finement of
User Scenarios", and (c) "Construction of the Unified Map of
User Scenarios". The "Text Seg ments & Knowledge Types
Association" and the "Problem Space based on User Scenarios"
constitute the inputs for the task "Construction of User
Scenario". These scenarios along with the "User Speech"
respectively are the input to task "Refinement of Scen arios

User" that generates the respective "Refined User Scenarios".
These, and "Text Segments" are th e inputs of the task
"Construction of the Unified Map User Scenarios", tha t result
in the "U nified Map User Scenarios". The techniques and
representations of the tasks in the pro blem-oriented analysis
phase are summarized in Figure 4.

Figure 4. Phase, task and products

IV. TECHNIQUES FOR PHASE OF PROBLEM-ORIENTED
ANALYSIS

This section presents techniques for the phase Problem-
Oriented Analysis, which are: Technique for User´s Discourse
Segmentation (TS - DU) used to the implementation of task of
User´s discourse segmentation (SDU) (section IV.A),
Cognitive Techniques to Identificate different types of
Knowledge as: f actual knowledge, Procedural knowledge,
Contextual knowledge and Association knowledge (TCI -
CFPCA) for the implementation of task Cognitive Analysis of
Text Segments (ACST) (section IV.B) and the Technique for
Building the Problem Space Diagram of User´s scenarios (TCD
- EPEU) for the implementation of task Building the Problem
Space of User´s scenarios (CEPEU) (section IV.C).

A. Technique for User´s Discourse Segmentation (TS - DU)
By means of this technique is implemented the first task

that requirement engineer (RE) has to carry in the early stage of
the phase Problem-Oriented Analysis, called Technique for
User´s Discourse Segmentation (TS - DU). For application of

27

TS – DU the RE uses as input the User´s Discourse in plai n
text to segment it sentence by sentence [13], integrating these
sentences in Text Segments (ST) are related with real situations
described by user. Finally the ST associated to user’s scenarios
(EU) are obtained. ST and EU are the output of this technique
which is summarized in table 1.

TABLE I. TECHNIQUE FOR USER´S DISCOURSE SEGMENTATION (TS -
DU)

Technique: User´s Discourse Segmentation (TS -
DU)

Input: User´s Discourse

Output: Text Segments (ST) associated to
user´s scenarios (EU)

Step 1. User´s discourse segmentation (DU)
sentence by sentence
(In this first step is performed a preliminary analysis of DU
looking segmenting in short sentences. This initial
segmentation allows a simpler treatment of DU to meet the
step 2 of this process. Short sentences are the output obtained
for this step)

Step 2. Integration of sentences in Text
Segments (ST)
(In this second step integrates the sentences obtained in step 1
into segments of text (ST) describing a situation of reality.
These ST are formed by sets of short sentences, and are the
output for this step).

Step 3. Association of Text Segments(ST) to
User´s Escenarios (EU)
(In this third step, each segment of text obtained is associated
with a user scenario obtained in step 2. Therefore, as a result
of this process are obtained Text Segments (ST) associated
with User Scenarios (EU), which are the output of this
technique)

B. Cognitive Technique to Identificate Factual, Procedural,

Contextual and Association Knowledge (TCI - CFPCA)
This technique implements the second task the RE should

develop during the problem-oriented analysis called Cognitive
Analysis of Text Segments (ACST). The input of the technique
are the Text Segments (ST) associated with User Spaces (EU)
[14] that were obtained from the ap plication of the technique
for User's Discourse Segmentation (TS - DU) These segments
are processed With The notion of Identifying Different types of
knowledge (TC), Which are present in the "mental model" of
the user based on personal experiences that occur in uncertain
contexts [15][16]. The technique begins by Identifying
Contextual Knowledge in t he text segments (ST), and then
continues with the identification of Factual Knowledge,
Procedural Knowledge, and Knowledge Association. Finally,
the RE I ntegrates Different types of information These with
text segments, seeking to es tablish which kind of knowledge
corresponds to segment text. Knowledge identified in each text
segment (ST) are the output provided by this technique, which
is summarized in Table 2.

TABLE II. COGNITIVE TECHNIQUE TO IDENTIFICATE FACTUAL
KNOWLEDGE, PROCEDURAL KNOWLEDGE, CONTEXTUAL KNOWLEDGE AND

ASSOCIATION KNOWLEDGE (TCI - CFPCA)

Technique: Cognitive Identification of Factual
Knowledge, Procedural Knowledge,
Contextual Knowledge and Association
Knowledge (TCI - CFPCA)

Input: Text Segments (ST) associated to User
Spaces (EU)

Output: Types of Knowledge (TC) identified in
Text Segment (ST) TC

Step 1. Identification of Types of Knowledge
(TC) in Text Segments (ST)
(This step identifies the different types of knowledge:
Contextual, Factual, Procedural and Association in the text
segments (ST)).

 1.1. Contextual Knowledge
Identification in Text Segments
(ST)

1.2. Factual Knowledge
Identification in Text Segments
(ST)

1.3. Procedural Knowledge
Identification in Text Segments
(ST)

1.4. Asociation Knowledge
Identification in Text Segments
(ST)

Step 2. Integration among Text Segments and
Types of Knowledge
(In this second step is necessary to integrate text segments (ST)
with the types of knowledge identified in the respective ST; for
which, drawing up a table indicating the various TC contained
in each of the ST. Table conecting ST with respective
identified TC is the output of this technique)

C. Technique for Building the Problem Space Diagram of

User´s scenarios
By means of this technique is implemented the third task to

carry outby RE in the phase Problem-Oriented Analysis, called
Technique for Building the Problem Space Diagram of User’s
scenarios (CEPEU). For the i mplementation of the TCD -
EPEU, RE uses as input the ST associated to EU obtained from
the application of the technique TS - DU, and the TC identified
in each of the ST obtaine d from the application of the
technique TCI - CFPCA. To begin application of the TCD -
EPEU, the RE proceeds t o make use of the TC identified in
each ST (leaving the association CT for Oriented Analysis
Phase of the Product) to obtain the different elements that make
up the E PEU, which are : Actors, Relationships, Attributes,
Actions and Interactions. The RE then proceeds to identify the
Contextual Framework Base (MCB) in wh ich actors will
unfold in the built E PEU (first diagram for this purpose).
Finally, RE developes the remaining EPEU diagrams reflecting
different realities provided by the respective ST. The EPEU
diagrams are the output of this technique which is summarized
in Table 3.
TABLE III. TECHNIQUE FOR BUILDING THE PROBLEM SPACE DIAGRAM

OF USER´S SCENARIOS (TCD – EPEU)

Technique: Building Problem Space Diagram of
User´s Scenarios (TCD – EPEU)

Input: ST associated to EU and ST-TC Table

Output: EPEU Diagram

Step 1. Use of TC for identifying EPEU elements
(In this first step RE makes use of the respective TC for
identifying the elements of EPEU diagrams for each of the
associated ST. The completion of this step is accomplished
through the following three substeps)

 1.1. Use of Factual TC

28

1.2. Use of Procedural TC
1.3. Use of Contextual TC

Step 2. Building Diagram corrsponding to MCB

(In this second step, the RE comes to build EPEU diagram for the
MCB. For this, the ER analize ST that allows to contextualize the
problem in the area in which occurs the reality described by the
user (Department of marketing, Human Resources, etc). this
diagram represents the central actors (leaving the incorporation of
their attributes and actions for the next step) and relations between
them, identified in substep 1.3. Therefore, for developing this step
is carried out by the two following substeps)

 2.1. Actors incorporation to MCB
Diagram

2.2. Relation incorporation to MCB
Diagram

Step 3. Building remaining EPEU

(In this third step, RE develope the remaining EPEU diagrams
corresponding to the ST which continue to the MCB. For these
diagrams, the RE uses EPEU diagram of the MCB and the various
elements identified in substeps 1.1 and 1.2. Therefore, for each of
the EPEU diagrams is carried out the following four substeps)

 3.1. Incorporation of Actors to Diagram
3.1.1. Incorporation of Actors

atributes to Diagram
3.1.2. Incorporation of Values of

Actors atributes to
Diagram

3.2. Incorporation of Relations to
Diagram

3.3. Incorporation of Actions to
Diagram
3.3.1. Incorporation of action

attributes to Diagram
3.3.2. Incorporation of values of

action attributes to
Diagram

3.4. Incorporation of Interactions to
Diagram
3.4.1. Incorporation of

Interactions Atributes to
Diagram

3.4.2. Incorporation of Values of
Interactions Atributes to
Diagram

V. TECHNIQUES FOR PRODUCT-ORIENTED ANALYSIS

This section presents techniques for Product Oriented-
Analysis, which are: Technique for Construction of User´s
Scenarios Diagram (TCD-EU) to implement the task of User´s
Scenario Development(CEU) (section V.A), Technique for
Refining User´s Scenarios Diagram (TRD-EU) to implement
the task of User´s Scenarios Diagram refinement (REU)
(section V.B) and Tec hnique for Construction of Unified
User´s Scenario Map Diagram (TCD-MUEU) for the
implementation of the construction task Unified User´s
Scenarios Map (CMUEU) (section V.C).

A. Technique for Construction of User´s Scenario Diagram
(TCD-EU)

By means of this technique. RE implements the first task to
be carried out in Product-Oriented Analysis phase ca lled
Construction of User´s Scenario (CEU). For the
implementation of the TCD-EU, RE uses as in put those ST
associated to TC obtained from the application of the technique
TS-DU, and each of the EPEU diagrams obtained from the

application of the technique TCD-EPEU. To begin to apply the
TCD-EU, RE proceeds to m ake use of the ST wi th the
association CT that alows to get t he functionalities of the
problem defined by the user, as w ell as id entification those
EPEU actors that are necessary for the system to perform these
functions. RE develops the b locks for Space Product of User
Scenarios (EPrEU) for these EPEU [5] with these
functionalities and EPEU d iagrams in which the asso ciated
functionalities are ide ntified,. Finally, the RE per forms a
process of association for the purpose of obtaining the linkages
among elements of the blocks of EPrEU and EPEU, thus
obtaining a single diagram for each EU constituted from both
blocks. The d iagrams corresponding to EU is the o utput
product provided by this technique, which is summarized in
Table IV.

TABLE IV. TECHNIQUE FOR CONSTRUCTION OF USER´S SCENARIO
DIAGRAM (TCD-EU)

Tecnique: Construction of User´s Scenario Diagram
(TCD-EU)

Input: ST with association TC (from Table ST-
TC) and EPEU Diagram

Output: EU Diagram

Step 1. Using Association TC

(In this first step, the ER uses the association CT for the construction
of the EU. The completion of this step is performed by means of the
following two substeps)

 1.1. Funcionalities Identification
1.2. Actors Identification needed to

carry out those functionalities
Step 2. Construction of EPrEU diagram for each

EPEU

(In this second step, the ER uses obtained functionalities and EPEU
diagrams which were identified associated functionalities, to build
the Space Product of User´s Scenario Diagram (EPrEU) for these
EPEU. Therefore, the EPrEU diagrams with the respective
functionalities are the output of this step)

Step 3. Linking elements of EPEU and EPrEU
blocks for each EU.

(In this third step, the ER proceeds to establish the "linkage" among
the functionalities that make each of the EPrEU diagrams and actors
of the corresponding EPEU, to perform these functions)

B. Technique for Refinement User´s Scenarios Diagram

(TRD-EU)
Through this technique, RE implements the second task to

carry out the Oriented Analysis Product phase called Refining
User Scenarios (REU). The TRD-EU is applied jointly by the
RE and User. The input products are the original User Speech
(DU) and the Ue o btained in the previous technique. As a
output result are obtained Refined User Scenarios (EUR). The
application substep TRD-EU includes joint review (User and
ER) of the original DU, whic h is carried out based on an
analysis of consistency (to identify inconsistencies), which are
classified into incompleteness and contradictions. These
inconsistencies are solved to have a refined DU. From a refined
DU, User and RE develop the validation and debugging of ST
and CT for t he purpose of purging inconsistencies in elements
of the DU. Then, User and RE validates EU diagrams to obtain
the EUR diagrams. Finally, User and ER develop final review
of the EUR, if both granted pursuant to the obtained EUR the

29

application of the technique finishes, if not, return to step 1 to
begin to apply again. The diagrams corresponding to the EUR
are the o utput product that provides this technique, which is
summarized in Table V.

TABLE V. TECHNIQUE FOR REFINEMENT OF USER´S SCENARIOS
DIAGRAM (TRD-EU)

Technique: Refinement User´s Scenarios Diagram
(TRD – EU)

Input: User Speech (DU) and the UE Diagram

Output: Refined User Scenarios (EUR)

Step 1. Consistency Analysis of DU

(In this first step, User and RE develop consistency analysis of DU
based on the identification of incompleteness and inconsistencies
to obtain a refined DU. This step is performed by m eans of the
following three substeps)

 1.1. Validation and Debuging of DU
Incompleteness

1.2. Validation and Debuging of DU
contradictions

1.3. Validation and Debuging of DU
Step 2. Validation and Debuging of ST and TC

(In this second step, user and RE develop validation and
subsequent debugging of the ST and CT, since the inconsistencies
identified in the DU in the substeps 1.1 and 1.2, are propagated to
the ST and CT. Therefore, the refined ST and TC (STR and TCR)
is the output product of this step).

Step 3. Validation and Debuging of EU

(In this third step, using DUR, STR and TCR, User and RE
develop a validation and subsequent debugging the EU. In this
way, it may be a case of having to add actors, change attributes,
include interactions among actors; obtaining refined EU diagrams
(EUR). Therefore, these EUR diagrams are the output product of
this step).

Step 4. Final Revision of EUR

(In this fourth step, User and RE develop a final review of the
EUR diagrams contrasting with EU diagrams that served as input
to this technique jointly with the original DU. In case User and
RE agree with the obtained EUR, these are the output product of
this technique and the aplication of the technique finish, otherwise
it returns to Step 1 and begin to apply the technique again)

Through this technique, the third and final task to carry out

is implemented of the Product Oriented Analysis phase, called
Construction of User´s Scenarios Unified Map Diagram
(CMUEU). For the development of the TCD-MUEU, RE uses
as input pr oducts each of ST associated to EU and EUR
obtained by the applica tion of the previous technique. As
output result is obtained the User´s Scenarios Unified Map
Diagram (MUEU). The MUE U diagram represents a space-
time sequence about how the user understands the problem to
be solved and the reality that fits the problem. The application
of TCD sub step - MUEU i ncludes a tra nsitional analysis of
User Scenarios (EU) through which it may be i dentified the
triggers of User Scenarios (EU), which allow to identify the
corresponding precedence r elations among EU. From these
triggers the RE s able to establish appropriate links among EU
that lead to MUEU diagram. MUEU diagram is to the output
product provided by this technique.

TABLE VI. TÉCHNIQUE OF CONSTRUCTION OF USER´S SCENARIOS
UNIFIED MAP DIAGRAM (TCD-MUEU)

Technique: Construction of User´s Scenarios
Unified Map Diagram (TCD-MUEU)

Input: Text Segments Associated to EU and EUR
Diagrams

Output: MUEU Diagram

Step 1. Transition Analysis of EU

(The RE identifies EU triggers present in ST associated to EU and
reflected in the EUR. These triggers produce changes in EU occur
in the body of the EU leading precedence relations among EU.
The completion of this step is carried out through the following
three substeps according to EU triggers types identified by RE)

 1.1. Context Change Identification
1.2. Actors State Change Identification
1.3. New Actors Identification

Step 2. Construction of MUEU Diagram

(The RE proceeds to build MUEU diagram using EU wihc
identifies Base Context Framework (Trigger type I). With triggers
type II and III identified in step 1, build the chain of EU which
will then lead to MUEU. MUEU Diagram with their respective
EUR properly linked are the output product of this technique, and
output of the process of requirements conceptualization)

VI. A CONCEPT PROOF OF THE PROPOSED PROCESS

This section presents the example of an Aircraft’s Fuel
Supply System as concept proof of the phase "Problem-
Oriented Analysis". For each task is described inputs and
outputs and the used techniques. There are described: the Task
User Discourse / Speech Segmentation (Figure 5) the T ask
Cognitive Analysis of Text Segments (Figures 6. a, b, c) and
the Task Construction of Problem Space based on User
Scenarios (Figures 7. a, b, c), the Task Construction of Users
Scenarios (Figure 8), the Task Refinement of Users Scenarios
(Figure 9), and the Task Construction of Unified-Map of User
Scenarios (Figure 10).

The results of cognitive techniques that have been applied
to identify factual knowledge, procedural knowledge, and
contextual knowledge and association knowledge with the Text
Segments are shown in Figures 6.a, 6.b and 6.c. The results of
having applied the technique of constr uction of diagram of
problem-space based o n user scenarios from templates of
factual knowledge, procedural knowledge, contextual
knowledge and association knowledge obtained are shown in
Figures 7.a, 7.b and 7.c. I n the Task Construction of Users
Scenarios, shown in Figure 8, the req uirement engineer
proceeds to the building the User Scenario with the building of
the blocks corresponding to the Product Space for those
scenarios in which the functionalities associated to the space
problem are identified. In order to perform this task, the
requirement engineer has as input pr oducts two elements: the
Problem Space of the Users Scenarios and the Text Segments
with Knowledge Types of Association. The result output are
the Users Scenarios which are represented by the diagrams that
have two blocks corresponding to the Problem Space y al
Product Space; which are linked by the arrows between the
element and the functionality.

30

Figure 5. Task: User Discourse / Speech Segmentation

Thus, this representation shows the “existing linkage”

between the required functionalities for the software product
and the el ements of the problem space that are necessary to
process the functionality. In this case, the Text Segment [3] is
the only one identified as knowledge of association. This
knowledge of association allows defining two functionalities
which include all the p roduct space (Registry of the
procurement authorizations accepted by the Tower of Control
in one given day and T otal quantity of mechanical
maintenances performed in all the aircrafts in one given day).

Figure 6.a. Task: Cognitive Analysis of Text Segment 1.

Figure 6.b. Task: Cognitive Analysis of Text Segment 2.

Figure 6.c. Task: Cognitive Analysis of Text Segment 3.

31

Figure 7.a. Task: Construction of Diagram of Problem-Space Based on User
Scenarios (Text Segment 1)

Figure 7.b. Task: Construction of Diagram of Problem-Space Based on User
Scenarios (Text Segment 2)

Figure 7.c. Task: Construction of Diagram of Problem-Space Based on User

Scenarios (Text Segment 3)

Figure 8. Task: Construction of Users Scenarios

In the task Refinement of Users Scenarios, shown in Figure

9, the user an d the requirement engineer interact together in
order to acquire scenarios free of errors and inconsistent. These
“debugged” scenarios are called Refined Users Scenarios.

Figure 9. Task: Refinement of Users Scenarios.

In order to perform this task, the requirement engineer has

as input products two elements: the Users Scenarios and the

32

original User’s Discourse / Speech, getting as output the RUS
complying the user’s requirements. For this study case, it is
reviewed the User’s Discourse / Sp eech and the Users
Scenarios in the paragraph of Text Segment [3]: “that a registry
is updated with all the procurement authorizations accepted by
each Tower of Control in a given day”. that defines the
functionality “Registry of the procurement authorizations
accepted by the Tower of Control in one given day”. A
problem is detected in the User Scenario and it is necessary to
add in each Tower of Control actor the attribute Procurement
Authorization with the value Accepted, because these type of
authorizations are the only one interested to be r egistered by
this functionality. As a result, the User Scenario that is refined
is the third one. In the t ask Construction of Unified-Map of
User Scenarios, shown in Figure 10, the requirement engineer
works on the construction of the Uni fied-Map of User
Scenarios, which allows documenting the “temporal order” in
which the scenarios are performed. For this task, the
requirement engineer has as input products the Text Segments
and the Refined Users Scenarios, getting as a result the UMUS.
The used technique is “Analysis of Transitions of Users
Scenarios”, which allows identifying in the Text Segments the
elements called “scenario dispatchers” from which the
transition is performed. The dispatcher can have three types: 1)
context changes in the user discourse, 2) state change in the
actors of the scenario (modifying the attribute values) and 3)
adding actors to the scenario. In this case, the analysis of Text
Segment [1] indica tes that the US-1 is performed by a
dispatcher type 1), because it is related to a con textual base
frame; the analysis of Text Segment [2] indicates that the US –
2 is performed by a dispatcher type 3) , because the aircraft
actor is added; and finally the analysis of Text Segment [3]
indicates that the US-3 is performed by a dispa tcher type 2),
because a change in the state actor air craft is done when the
location attribute is set from Hangar N°1) to tank supply
location. As a result.

Figure 10. Task: Construction of Unified-Map of User Scenarios.

VII. CONCLUSIONS

The main contribution of this paper is to present a
methodical process called Requirements Conceptualization,
which is divided into two phases, called the Problem Oriented
Analysis and Product -Oriented Analysis, and whose main
objective is to structure and characterize the mass of
information from elicitation activity within the discourse

(speech) of the user. This paper presents two proofs of concept
for a specific case about two phases of this process. The first
phase has as input the text associated to the User´s Speech and
as an output the Dia gram of Problem-Space Based on User
Scenarios. To carry out the tasks it has been ada pted some
techniques and developed another ones; they are: Protocol
Analysis, Cognitive Techniques for Ident ification of Factual
Knowledge, Procedural Knowledge, Contextual Knowledge
and Association Knowledge, and Technique of Construction of
Diagram of Problem-Space Based on User Scenarios. The
structuration of the Phase of Problem Oriented Analysis into
the tasks: U ser Discourse / Speech Segmentation, Cognitive
Analysis of Text Segments and Construction of Problem Space
based on User Scenarios; allows the requirements engineer to
carry out a systematic analysis of user's speech to reach
gradually an integrated representation of the fundamental
elements of it. The nex t research steps are: [a] develop and
execute an experiment to validate empirically the process of
requirements conceptualization introduced and [b] to focus on
implementing of high quality conceptual models.

ACKNOWLEDGMENT

The research results reported in this article have been
partially funded by the Research Project 33A105, Department
of Production and Technology, National University of La nus
(Argentine) and by the grants TIN2008-00555 and HD2008-
0048 of the Spanish Ministry of Science and Innovation.

REFERENCES
[1] Sommerville, I. 2005. Ingeniería de Software, Addison-Wesley.
[2] Chatzoglou P., S oteriou A. 1999. A DEA framework to assess the

efficiency of the software requirements capture and analysis process.
Decision-Sciences. 30(2): 503-31.

[3] Van der Vos, B., Gulla, J., Van de Riet, R., 1995. Verification of
Conceptual Models based n Linguistic Knowledge. NLDB 1995

[4] Loucopoulos, P., Karakostas, V. 1995. System Req uirements
Engineering; McGraw-Hill,

[5] Davis, A. 1993. Software Requirements: Objects, Functions and States;
Prentice-Hall International.

[6] Faulk, S. 1997. Software Requirements: A Tutorial; In Software
Engineering, IEEE Computer Society Press, pp 82-101.

[7] Sutcliffe, A., Maiden, N. 1992. Analysing the Novice Analyst: Cognitive
Models in Software Engineering; Intl. Jl of Man-Machine Studies, 36(5).

[8] Wieringa, R. 1995. Requirements Engineering: Fram eworks for
Understanding; John Wiley.

[9] Jalote, P. 1997. An Integrated Approach to So ftware Engineering;
Springer-Verlag.

[10] Juristo, N., Moreno, A. 20 00. Introductory paper: Reflections on
Conceptual Modeling; Data and Knowledge Engineering, vol 33.

[11] Moreno, A., 1999. Tesis Doctoral Universidad Politécnica de Madrid,
[12] Chen, P. 1990. Entity-relationship Approach to Data Modeling. In

Systemand Software Requirements Engineering, Thayer RH, Dorfman
M (eds). IEEE. Computer Society Press.

[13] García Martínez, R. y Britos, P. 2004. Ingeniería de Sistemas Expertos.
Editorial Nueva Librería. ISBN 987-1104-15-4.

[14] Carroll, J. 1995. Introdu ction: The Scenario Perspective on Sys tem
Development, en "Scenario-Based Design: Envisioning Work and
Technology in System Development", John Wiley & Sons.

[15] Anderson, J. 2006. Cognitive Psychology and Its Implications. Watson
Guptill Publications.

[16] Robertson S. 2002. Project Sociology: Identifying and involving the
stakeholders, ICFAI University Press

33

Using Empirical Studies to evaluate the REMO
Requirement Elicitation Technique

Sérgio Roberto Costa Vieira1,2

1Fundação Centro de Análise, Pesquisa e Inovação
Tecnológica (FUCAPI)

Av. Danilo Areosa, 381 – Distrito Industrial
Manaus-AM, Brasil

sergio.vieira@fucapi.br

Davi Viana, Rogério do Nascimento, Tayana Conte
2Grupo de Pesquisa Usabilidade e Engenharia de Software

(USES) – Universidade Federal do Amazonas (UFAM)
Av. Rodrigo Otávio, 3000 – Coroado I

Manaus-AM, Brasil
{davi.viana,rogerio,tayana}@icomp.ufam.edu.br

Abstract — One of the most common problems regarding
software quality is the software’s incapability of offering effective
and efficient support to business operations. A possible motive
for this lack of support is the inconsistency of the requirements
related to the business needs. In order to avoid this problem, the
use of business process modeling during the requirements
elicitation must be considered. Therefore, this work proposes a
technique to support extracting the requirements from business
process diagrams: the REMO (Requirements Elicitation oriented
by business process MOdeling) technique. Furthermore, we
present the results of two controlled experiments aimed at
measuring the effectiveness and adequacy of the produced
requirements in comparison to a traditional approach. The
results indicated that compared to the traditional approach our
technique was better regarding adequacy indicator, and as good
as regarding the effectiveness indicator.

Keywords requirements elicitation; business process modeling;
empirical study

I. INTRODUCTION

One of the first activities to be executed in software
development is the requirements elicitation activity. This
activity focuses on using mechanisms in order to understand
which needs must be attended by the developed software [11].
According to Monsalve et al. [3], the software development
depends on the quality of the requirements elicitation activities.
Often, the elicitation is criticized by obtaining incomplete and
inconsistent requirements, since the users don’t have a concrete
idea of what they want [1].

According to Martins and Daltrini [11], in order to
understand the users’ needs, it is necessary to understand the
activities these users execute considering their work context.
Martinez et al. [10] state that the focus of business processes
can increase the conformity of the software regarding its users’
needs. This approach must consider the comprehension of the
organizational environment, therefore, focusing on the business
processes to carry out the software development.

The observation of the business processes during the
software development as a relevant factor for the requirements
elicitation, allows to clearly understand the business domain in
which the software will work [5]. According to Cardoso et al.
[4], business process modeling is a mechanism that can
facilitate understanding of how business processes work in a

company. Business process models are instruments to identify
problems and improvement opportunities within a company.
They help to understand the structure and behavior of a
company. Furthermore, these models are very useful for
increasing the comprehension about business environment by
system analysts [8].

The non adoption of business processes modeling, as a
mechanism to elicit software requirements, can end up
generating software with inconsistent and incomplete
requirements regarding the real needs of the business. These
types of requirements can make the developed software
unavailable to meet the business needs for which it is created
[15].

We have developed a requirement elicitation technique that
is oriented by business processes modeling called REMO
(Requirements Elicitation oriented by business process
MOdeling). This technique aims to a id system analysts, who
are responsible for the software development, in identifying the
functional and non-functional requirements and business rules
using business processes diagrams.

The goal of this paper is to describe both the REMO
technique and the results from two empirical studies evaluating
its feasibility. These studies were conducted in o rder to
measure the effectiveness regarding requirements identification
using business processes models, with or without the use of the
technique, compared with a traditional approach [4].
Furthermore, we have also observed the adequacy of the
evaluated requirements by classifying them into: (a)
appropriate requirements, and (b) inappropriate requirements
(“false positives”), regarding the context of the business
processes.

This paper is organized as follows. Section II describes the
related works within the context of the proposed technique In
Section III we present an initial version of the R EMO
technique. Section IV describes how we carried out the first
empirical study and its results. Section V discusses how we
evolved the technique based on the results of this first study.
Section VI presents the second empirical study in order to
evaluate the new version of the technique. Finally, the
conclusions and future steps of this research are presented in
Section VII.

34

II. RELATED WORK

Business processes modeling consists of the formalization
of an organizations’ processes activities, capturing the context
in which these are executed. According to Carvalho et al. [1],
the knowledge and understanding of business processes are
extremely important to ensure that requirements are appropriate
to the real needs of the organization. In order to obtain a
complete comprehension of the business process, it is
recommended to use strategies aiming conformity of the
software requirements with the business needs. These strategies
are known as requirements elicitation approaches oriented by
business processes models. We will now describe the
approaches in which the initial proposal of the technique was
based.

Santander and Castro [12] presented guidelines that allow
the development of use cases from organizational business
models described through the i* framework [16]. These
guidelines are used to identify the scenarios that will be
described by the use cases, by using the organizational
modeling as starting point through the use of the i* framework.

An approach that uses goal oriented analysis to identify use
cases through the i* framework is pr esented in [7]. This
approach identifies use cases from business processes
modeling. Initially, a goal tree must be used to refine the
business model in order to identify the types of goals and their
actors. After that, the approach suggests to start modeling use
cases in UML (Unified Modeling Language).

The approach presented in [6] uses user case diagrams and
domain classes diagrams to t ransform business processes
models into requirements models. This approach is supported
by the RAPIDS (Rules And Process for the Development of
Information Systems) tool. This approach has two stages in
order to generate use cases from business processes models: (a)
transformation of the terms of a determined business into
domain classes; and (b) transformation of processes into use
cases by using heuristics.

The presented approaches extract user cases from business
processes models. However, before modeling use cases, it is
important to produce a document with functional and non-
functional requirements and business rules. Quality models
(e.g. CMMI [13]) point out that it is necessary to specify
requirements before describing components and operational
scenarios (through use cases or other forms of specification).
This scenario has motivated one of our research’s goals: to
define a technique tailored to support extracting requirements
from business process models. In the next section we will
describe the first version of the proposed technique.

III. THE REMO REQUIREMENTS ELICITATION TECHNIQUE

The REMO (Requirements Elicitation oriented by business
process MOdeling) is a requirements elicitation technique that
guides the elicitation process of the developed software by
using business processes modeling.

The REMO technique uses a set of heuristics to extract the
software requirements from the business processes diagrams
modeled in BPMN (Business Process Modeling Notation). Its
main goal is to aid the analysts in the identification of the
system requirements from business processes models. We

based this technique on the set of core elements of the BPMN
notation. This notation allows the identification of: the
activities, the dependencies controls, and the task flows. The
BPMN notation is a pattern to guide process modeling
suggested by the OMG (Object Management Group) [9].

Business process modeling is used as an entrance subsidy
for the technique’s application. The analyst applies the REMO
heuristics in order to obtain the software requirements.
Following the heuristics, the analyst identifies the actions
represented by the elements of the BPMN notation and
transforms them into a software requirement. In the initial
version of the REMO technique, we elaborated 8 h euristics,
divided in heuristics to identify functional requirements and
heuristics to extract non-functional requirements. Fig. 1 shows
an extract from the initial version. A detailed description of the
first version of the REMO technique can be found in [14].

Figure 1. Extract of the first version of the REMO technique.

The heuristics were based in actions contained in processes
diagrams. They aid the identification of requirements from:
processes operations; documents used within the processes
activities; decisions conditions within the processes flow;
dependencies between activities, activities with interruption
flow; activities deriving messages/communications; activities
possessing restrictions; and, activities with quality attributes. In
the next section we present the planning and the execution of
the first empirical study.

IV. FIRST EMPIRICAL STUDY

The first empirical study was carried out in or der to
evaluate the feasibility of the technique. This evaluation was
performed from indicators of effectiveness and adequacy, as
described below:

• Effectiveness: ratio between the number of real identified
requirements and the number of total known requirements
obtained from the business processes models.

• Adequacy: percentage of adequate pointed requirements
regarding the business processes context. After
identifying the requirements using the business models,
we categorized them in real or “false positives”. A

35

requirement was considered “false positive” when it was
wrong (e.g. a misunderstanding about the business
processes) or in the case that it could not have been
extracted through business processes models. This
indicator is considered relevant because it prevents the
specification of requirements that are not in conformity
with the identified needs extracted from the business
processes.

The experiment goal using the GQM (Goal/
Question/Metric) paradigm [2] is presented in Table I.

TABLE I. GOAL OF THE 1ST. EMPIRICAL STUDY

Analyze The REMO technique
For the purpose of Characterizing

With respect to
Effectiveness and adequacy of the
identified requirements using the
business processes

From the point of view Software Engineering Researchers

In the context of
A requirements elicitation from a w eb
based system having as basis business
processes models.

Hypotheses: the study was planned and conducted in order
to test the following hypotheses (null and alternative,
respectively):

H01: There is no difference in t erms of effectiveness in
using the REMO technique to elicit requirements regarding
business processes.

HA1: The REMO technique presented a difference in the
effectiveness indicator, when compared to a traditional
approach.

H02: There is no difference in terms of adequacy of the
identified requirements when using the REMO technique and a
traditional approach.

HA2: The REMO technique presented different results
regarding the adequacy of the identified requirements, when
compared to a traditional approach.

Context: the study was carried out in M ay 2011 with
undergraduate students from senior-level undergraduate
Computer Science and Information System courses. These
students were attending Analysis and Design class at the
Federal University of Amazonas (UFAM). All the subjects had
tutorials about Business Process Modeling and Requirements
Elicitation. As the object study we used the business processes
modeling of part of the processes. This part described the
management activities of the discipline “Final Project”.

Preparation: 30 students played the role of system analysts
and signed a consent form. The subjects also filled in a
characterization questionnaire, with questions regarding their
practical experience. This questionnaire allowed us to identify
that, despite being undergraduate students; many of them had
experience in system analysis in the industry. An ordinal scale
was used to measure their experience: Low, Medium and High.
Three subjects were classified with High experience (having
participated in f ive or more development projects), sixteen
subjects were classified with medium experience, and the
remaining eleven with low experience (with theoretical
knowledge and no previous experience in industrial system
analysis). The categorization results are shown in Table II.

Execution: the subjects received: (a) an execution guide
with tasks, (b) the business context document containing the
BPMN processes modeling, and (c) requirements register
spreadsheet. Furthermore, the group that used the REMO
technique received the additional documentation: the
technique’s heuristics document. The group that did not use the
REMO technique used a traditional approach to identify the
requirements, using the knowledge used in the previous
trainings and the processes modeling, as suggested by [4].

The study was carried out by each group in different days.
The first day Group 1 used the traditional approach and the
second day Group 2 used REMO technique. Each group had
120 minutes to carry out the requirements elicitation based on
the business processes models. We collected 13 and 15
spreadsheets from the traditional approach and the REMO
technique approach respectively. Readers must take note that 2
students did not show up the first day, leaving the groups
unbalanced. We carried out an outlier analysis in order to
balance the groups. After finishing the study, we created a
unique requirements list, in order to discriminate the
requirements. The analyst responsible for the development of a
system for automating final projects control carried out the
discrimination process. The discrimination meeting was carried
out to identify which requirements were considered inadequate
(e.g. misunderstandings about the business processes).

Results and Quantitative Analysis: Table II p resents the
results of the requirements registers per group of subjects.
Readers must take note that we used a total of 29 known
requirements from the processes models, in order to calculate
the effectiveness degree of the requirements.

TABLE II. REQUIREMENS RESULTS PER GROUP OF SUBJECTS

Group 1 (TRADITIONAL) Group 2 (REMO)

E x p S u b I I R F P EI (%) AI (%) E x p S u b I IR\ F P EI (%) AI (%)

H
A09 14 5 31.03 64.29 H R03 21 12 31.03 42.86
A13 21 10 37.93 52.38

M

R04 21 9 41.38 57.14

M

A03 19 8 37.93 57.89 R06 24 9 51.72 62.50
A04 32 17 51.72 46.88 R07 14 4 34.48 71.43
A08 32 19 44.83 40.63 R08 21 11 34.48 47.62
A10 26 13 44.83 50.00 R10 18 5 44.83 72.22
A14 21 6 51.72 71.43 R11 19 8 37.93 57.89
A15 28 10 62.07 64.29 R12 21 8 44.83 61.90

L

A01 28 18 34.48 35.71

L

R02 12 4 27.59 66.67
A05 7 6 3.45 14.29 R05 19 5 48.28 73.68
A07 12 6 20.69 50.00 R09 23 8 51.72 65.22
A11 29 17 41.38 41.38 R13 38 20 62.07 47.37
A12 23 11 41.38 52.17 R14 24 17 24.14 29.17

Legend: H – High; M – Medium; L – Low; Exp – Experience; Sub – Subjects;
IIR –Initially Identified Requirements; FP – False Positives; AI – Adequacy
Indicator; EI –Effectiveness Indicator.

In order to validate these data we used the Mann-Whitney
statistic method, which is supported by the SPSS Sta tistics
v17.0 1 tool, and the boxplots analysis. Fig.2 shows the
distribution of effectiveness per subject, per technique. The
boxplots graph shows only a slight difference between the
subjects who used the technique and those who did not use it.
When we compared the two samples using the Mann-Whitney

1 http://www-01.ibm.com/software/analytics/spss/

36

test, we did not find any significant differences between the
two groups (p=0.857 and = 0.05). This result suggests that
both techniques are s imilar regarding the effectiveness of the
requirements. These results support the null hypothesis H01,
that there are no differences in effectiveness between
techniques.

Figure 2. Boxplots for the Effectiveness indicator of the requirements.

For the indicator “requirements adequacy” we also
performed a statistical analysis through the Mann-Whitney test
and boxplots. Fig. 3 sh ows the boxplot graph regarding the
adequacy of the requirements that were identified by the
approaches.

Figure 3. Boxplots for the Adequacy indicator of the requirements.

A further analysis of Fig. 3 indicates that there is a
significant difference between the two groups. This result was
confirmed by the Mann-Whitney test, which presented a
significance level of p=0.106 regarding the degree of adequate
requirements. These results support the alternative hypothesis
HA2, and, conversely, rejecting the null hypothesis H02.
These results indicate that the REMO technique provides more
adequate requirements and less inadequate requirements (false
positives) than the traditional approach.

V. EVOLVING THE REMO TECHNIQUE

We noticed that the results from the first empirical study
indicated a need for improving the technique. We used data

obtained from follow-up questionnaires to acquire both
perceived difficulties in the application of the technique and
improvement suggestions. We analyzed these data in order to
suggest changes in the first version of the proposed technique.

In the second version of the technique we modified the
adopted approach by changing the order of the activities. First
the analysts identified the set of elements from the BPMN set
and afterwards they applied the heuristics to ob tain the
software requirements. Furthermore, we modified the way in
which the heuristics were presented. We separate the examples
from the heuristics' descriptions. Moreover, we added a
procedure describing the steps for applying the heuristics in
order to minimize the subjects’ effort in understanding and
remembering how to apply the technique.

The REMO technique adopted these modifications in its
second version, which possesses 9 h euristics. Moreover, the
REMO technique involves the following BPMN elements:
task, gateway or decision, message event, conditional event,
time event, intermediate event, data object, notes and
swimlane.

Each heuristic has instructions to be applied in or der to
extract the requirements within the business processes
diagrams. These instructions are classified according to the
type of requirement it expects to identify. Fig. 4 shows an
extract of the second version of the REMO technique. A
detailed description of the second version of the technique is
available in [14].

Figure 4. Extract example of the second version of the REMO technique.

VI. SECOND EMPIRICAL STUDY

We planned and evaluated the second version of the REMO
technique through a new feasibility study in order to achieve
the following goal, presented in Table III using the principals
of the GQM [2] paradigm.

37

TABLE III. GOAL OF THE 2ND. EMPIRICAL STUDY

Analyze The 2nd version of the REMO technique
For the purpose of Characterizing

With respect to

Effectiveness and adequacy of the
identified requirements using the
business processes in the BPMN, when
compared to a traditional approach.

From the point of view Software Engineering Researchers

In the context of
A requirements elicitation carried out by
graduation students and based on
business processes models

Hypotheses: the study was planned and conducted in order
to test the following hypotheses (null and alternative,
respectively) regarding the effectiveness and adequacy
indicators:

H01: There is no difference in t erms of effectiveness in
using the REMO technique to elicit requirements regarding
business processes.

HA1: The REMO technique presented a difference in the
effectiveness indicator, when compared to a traditional
approach.

H02: There is no difference in terms of adequacy of the
identified requirements when using the REMO technique and a
traditional approach.

HA2: The REMO technique presented different results
regarding the adequacy of the identified requirements (not
considering false positives), when compared to a traditional
approach.

Context: We carried out the 2nd empirical study in
November 2011, with others senior-level undergraduate
students from Computer Science course (Federal University of
Amazonas). In this experiment, the students also had tutorials
regarding requirements elicitation and business processes
modeling. The business process model chosen as object of
study was part of the processes from the Academic Secretary of
the University. We selected four academic processes: (a) to do
enrollment adjustment; (b) to request recovery of academic
credits; (c) request grades correction; and (d) monitoring
application.

Subjects: 20 subjects agreed to participate in this study and
played the role of system analysts. These subjects were
classified and divided into two groups of 10 subjects. We
balanced each group regarding the subjects experience with
respect to their experience in software development and
requirements elicitation.

Instrumentation: the main instruments in this study were
the same type used in the first study: (a) an execution guide
with tasks, (b) the business context document containing the
BPMN processes modeling, and (c) requirements register
spreadsheet. Furthermore, the group that used the REMO
technique received the technique’s heuristics document.

Execution: the subjects carried out the study the same day
in different rooms. There was a moderator in each room to
guarantee that there was no communication among the
subjects. The subjects had 180 minutes to carry out the
requirements elicitation. At the end of the study, all subjects
returned the requirements lists and the follow up questionnaire
filled out.

We created a unique requirements list, in order to
discriminate the requirements. A specialist in requirements
elicitation carried out the discrimination process. The
discrimination meeting was carried out to ide ntify which
requirements were considered inadequate (false-positives).

Results and Quantitative Analysis: Table IV shows the
results per group of subjects. We calculated the effectiveness
indicator using 152 known requirements from the business
process models used as object of study.

TABLE IV. QUANTITATIVE RESULTS PER SUBJECTS

Technique
/ Subject Experience IIR FP TRR EI AI

T
R

A
D

IT
IO

N
A

L

01 High 63 21 42 27.63% 66.67%
02 Medium 46 07 39 25.66% 84.78%
03 Medium 59 09 50 32.89% 84.75%
04 Medium 47 03 44 28.95% 93.62%
05 Medium 54 09 45 29.61% 83.33%
06 Low 31 07 24 15.79% 77.42%
07 Low 47 15 32 21.05% 68.09%
08 Low 37 10 27 17.76% 72.97%
09 Low 21 09 12 7.89% 57.14%
10 Low 29 05 24 15.79% 82.76%

R
EM

O

11 High 52 05 47 30.92% 90.38%
12 Medium 48 16 32 21.05% 66.67%
13 Medium 25 10 15 9.87% 60.00%
14 Medium 26 02 24 15.79% 92.31%
15 Medium 26 05 21 13.82% 80.77%
16 Low 32 06 26 17.11% 81.25%
17 Low 43 06 37 24.34% 86.05%
18 Low 45 00 45 29.61% 100.0%
19 Low 48 03 45 29.61% 93.75%
20 Low 41 03 38 25.00% 92.68%

Legend: IIR – Initially Identified Requirements; FP – False Positives; TRR –
Total of Real Requirements; EI – Effectiveness Indicator; AI – Adequacy
Indicator.

In order to validate these data we used the Mann-Whitney
statistic method (supported by the SPSS Statistics v17.0 tool)
and the boxplots analysis. As we can see in Fig. 5, the boxplots
graph shows that the effectiveness indicator was similar among
the subjects who used the technique and those who used the
traditional approach. When we compared the two samples
using the Mann-Whitney test, we did not find any significant
differences between the two groups (p = 0.850 and = 0.05)
therefore, supporting the null hypothesis H01.

Figure 5. Boxplots for the Effectiveness indicator of the requirements.

38

For the indicator “requirements adequacy” we also did a
boxplots graph, which is shown in Fig. 6. A further analysis of
Fig. 6 indicates that there is a significant difference between
the two groups. The Mann-Whitney (p=0.162) also suggests
this conclusion, therefore rejecting the null hypothesis H02 and
supporting the alternative hypothesis HA2. We need to execute
more empirical studies to improve our results.

Figure 6. Boxplots for the Adequacy indicator of the requirements.

These results corroborate the results of the first empirical
study. Both studies showed the REMO technique provides the
same results regarding the effectiveness indicator compared to
a traditional approach. Regarding the adequacy indicator, the
first feasibility study of the technique showed a mean of
58.13%. The second feasibility study showed that the adequacy
indicator increased to 84.39%. This increase indicates that the
changes in the second version of REMO were positive.

VII. CONCLUSIONS

In this paper we motivate, propose and validate a new
technique to aid extracting the requirements from business
process diagrams: the REMO (Requirements Elicitation
oriented by business process MOdeling) technique.
Additionally, we discuss the results of two controlled
experiments aimed at measuring the effectiveness and
adequacy of the produced requirements in comparison to a
traditional approach. These empirical studies allowed us to
evaluate and evolve the technique.

Results showed that REMO had performed better than the
traditional approach regarding the adequacy indicator and was
also as effective as. This indicates that the REMO technique
supports the extraction of requirements from business process
diagrams, minimizing the number of inadequate requirements.
This prevents the specification of requirements that are not in
conformity with the identified needs may be extracted from the
business processes.

We acknowledge that the small number of data points is not
ideal from the statistical point of view. Small sample sizes are a
known problem difficult to o vercome. Even considering the
limitation of the results due to the size of the sample used for
the studies, the results obtained from the empirical studies seem
to indicate the REMO feasibility.

As future work, we plan to (a) improve the technique using
the results from the second study; (b) execute further studies to

obtain more data points and strengthen the conclusion validity;
(c) replicate the experiment involving professionals.

ACKNOWLEDGEMENTS

We would like to thank all students from the UFAM and
members of the USES group who participated in the empirical
studies. Furthermore, we would like to acknowledge the
support granted by CAPES process AEX 4982/12-6. The first
author also thanks FUCAPI for the financial support.

REFERENCES

[1] E. A. Carvalho, T. Escovedo, R. N. Melo, "Using Business Processes in
System Requirements Definition," In: SEW - 33rd Annual IEEE
Software Engineering Workshop, 2009, pp.125-130.

[2] V. Basili, H. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments”, IEEE Transactions on Software
Engineering.,Maryland University,College Park, 1988, v.14 pp. 758-773.

[3] C. Monsalve, A. April, A. Abran. “Requirements Elicitation Using BPM
Notations: Focusing on the Strategic Level Representation”. In: 10th
WSEAS International Conference on Applied Computer and Applied
Computational Science (ACACOS), 2011, Venice, Italy, pp. 235-241.

[4] E. C. S. Cardoso, J. P. A. Almeida, G. Guizzardi, “Requirements
Engineering Based on Business Process Models: A Case Study”,
Enterprise Distributed Object Computing Conference Workshops 13th,
EDOCW/IEEE, Auckland, New Zealand, 2009, pp. 320-327.

[5] O. Demirors, C. Gencel, A. Tarhan, “Utilizing Business Process Models
for Requirements Elicitation”, 29th EUROMICRO Conference, Ankara,
Turkey, 2003, pp. 409-412.

[6] F. Dias, G. Morgado, P. Oscar, D. Silveira, A. J. Alencar, P. Lima, E.
Schmitz, “An Approach for Automatic Transformation of Business
Models into Requirement Models”, Proceedings of the Workshop on
Requirements Engineering (WER’06), Rio de Janeiro-RJ, Brazil, 2006,
pp. 51-60 (In Portuguese).

[7] H. Estrada, A. Martinez, O. Pastor, J. Ortiz, O. Rios, “Automatic
generation of Oo Conseptual Schemes from Workflow Models”,
Proceedings of the Workshop on Requirements Engineering (WER’02),
Valencia, Spain, 2002, pp. 177-193. (In Spanish)

[8] J. L. de la Vara, J. Sánchez, O. Pastor. “Business Process Modelling and
Purpose Analysis for Requirements Analysis of Information Systems”.
In: CAiSE '08 of the 20th international conference on Advanced
Information Systems Engineering. 2008, pp. 213 – 227.

[9] OMG (Object Management Group) – Business Process Model and
Notation (BPMN), version 2.0., Available at:
http://www.omg.org/spec/BPMN/2.0/PDF, 2011.

[10] A. Martinez, J. Castro, O. Pastor, H. Estrada, “Closing the gap between
Organizational Modeling and Information System Modeling”.
Proceedings of the Workshop on Requirements Engineering (WER’03),
Piracicaba, São Paulo-SP, Brazil, 2003, pp. 93-108.

[11] L. E. G. Martins, B. M. Daltrini, “Organizing the Process of
Requirements Elicitation Using the Concept of Activity”. Proceedings of
the Workshop on Requirements Engineering (WER’01), Buenos Aires,
Argetina, 2001, pp. 297-317 (In Portuguese).

[12] V. F. A. Santander, J. F. B. Castro, “Deriving Use Cases from
Organizational Modeling”. In: IEEE Joint International Conference on
Requirements Engineering, Washington, DC, USA, 2002, pp. 32-42.

[13] SEI-Software Engineering Institute. CMMI® for Development, V1.2,
CMU/SEI-2010-TR-033. Carnegie Mellon University, 2010.

[14] S. R. C. Vieira, R. P. C. do Nascimento, T. Conte, “Technical Report:
Heuristics of the REMO Requirements Elicitation Technique”, Report
Number 007, 2011. Available at: http://www.dcc.ufam.edu.br/uses

[15] L. Xavier, F. Alencar, J. Castro, J. Pimentel, “Integrating Non-
Functional Requirements to Business Processes: Integrating BPMN and
NFR”, Proceedings of the Workshop on Requirements Engineering
(WER’10), Cuenca, Ecuador, 2010, pp. 29-40 (In Portuguese).

[16] E. Yu: “Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering”. Proceedings of IEEE International
Symposium on Requirements Engineering - RE97, 1997, pp. 226-235.

39

Consistency Checks of System Properties Using LTL and Büchi Automata

Salamah Salamah, Matthew Engskow
Department of Electrical, Computer, Software, and Systems Engineering

Embry Riddle Aeronautical University, Daytona Beach, Florida, USA
{salamahs, engskowm}@erau.edu

Omar Ochoa
Department of Computer Science
The University of Texas at El Paso

El Paso, Texas, USA
omar@miners.utep.edu

Abstract

Although formal approaches to software assurance such
as model checking and theorem proving improve system de-
pendability, software development professionals have yet to
adopt these approaches. A major reason for the hesitance
is the lack of maturity of tools that can support use of for-
mal specification approaches. These techniques verify sys-
tem correctness against formal specifications. Tools such
as the Specification Pattern System (SPS) and the Property
Specification tool (Prospec) assist users in translating sys-
tem properties (requirements) into formal specifications in
multiple languages such as Linear Temporal Logic (LTL).
The goal of such tools is to aid in the generation of a large
set of formal specifications of systems or subsystems. A ma-
jor advantage of formal specifications is their ability to dis-
cover inconsistencies among the generated properties. This
paper provides an approach to extend the work of the afore-
mentioned Prospec tool to allow for consistency checks of
automatically generated system properties. The work will
allow for the discovery of discrepancies among system re-
quirements at early stages of system development, providing
a return on investment for specifying formal properties us-
ing the Prospec tool.

1 Introduction
Today more than ever, society depends on complex soft-

ware systems to fulfill personal needs and to conduct busi-

ness. Software is an integral part of numerous mission and

safety critical systems. Because of society’s dependence

on computers, it is vital to assure that software systems

behave as intended. It is alarming to consider that soft-

ware errors cost U.S. economy $59.5 billion annually [13].

The same studies also show that a significant amount of re-

sources can be saved if software defects are discovered at

the early stages of development such as requirements and

design, rather than the later stages such as implementation

and testing. Because of that, it is imperative that the soft-

ware industry continue to invest in software assurance ap-

proaches, techniques, and tools, especially ones that ensure

early detection of defects.

The use of formal methods in software engineering can

be of great value to increase the quality of developed sys-

tems. Formal approaches to software assurance require the

description of behavioral properties of the software system,

generation of formal specifications for the identified prop-

erties, validation of the generated specifications, and veri-

fication of system’s adherence to the formal specification.

The effectiveness of the assurance approach depends on the

quality of the formal specifications. A major impediment to

the adoption of formal approaches in software development

remains the difficulty associated with the development of

correct formal specifications (i.e, ones that match the spec-

ifier’s original intent) [6, 7]. It is also important that the

generated formal properties are consistent. A major advan-

tage of using formalism in describing software properties,

is that it becomes easier to discover conflicts between prop-

erties as early as these properties are generated, which is

typically during the requirement and design phases.

Currently, there exist multiple formal specification lan-

guages that can be used in a variety of verification tech-

niques and tools. Linear Temporal Logic (LTL) [10], and

Computational Tree Logic (CTL) [9]are two of these lan-

guages. The aforementioned languages can be used in a

variety of verification techniques and tools. For example,

40

the model checkers SPIN [8] and NuSMV [1] use LTL to

specify properties of software and hardware systems. On

the other hand, the SMV [2] model checker verifies system

behaviors against formal properties in CTL.

In this work we propose an approach and a tool to check

the consistency between system properties specified in LTL

which is a prominent formal specification language in soft-

ware engineering. The importance of the work stems from

the fact that formal properties can be generated early in

the development cycle, and detecting discrepancies among

properties at that early stage can lead to significant savings

in time and resources. The approach to detect inconsisten-

cies makes use of translating LTL specifications into a spe-

cial type of state machines called a Büchi automata and then

checking for the intersection of the state machines for these

specifications. This is the same approach used by model

checkers to check the correctness of models against for-

mal specifications of properties. The developed tool allows

users to examine LTL specifications against other specifica-

tions and report any conflicts. The tool is intended to be part

of the Property Specification (Prospec) tool [11, 12].

The rest of the paper is organized as follows; Section 2

provides the necessary background for the rest of the work

including a description of LTL and Büchi Automata. Sec-

tion 3 provides the motivation for the work. Sections 4 and

5 introduce the new approach for consistency check and a

special tool developed for that purpose respectively. The

paper concludes with a summary and the references.

2 Background
This section discusses the background work necessary

for the rest of the paper. Specifically we describe the LTL

language, the Prospec tool, the notion of Büchi automata,

and the model checking approach for consistency checks.

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a prominent formal

specification language that is highly expressive and widely

used in formal verification tools such as the model checkers

SPIN[8] and NuSMV [1]. LTL is also used in the runtime

verification of Java programs [16].

Formulas in LTL are constructed from elementary propo-

sitions and the usual Boolean operators not, and, or, imply
(neg, ∧, ∨, →, respectively). In addition, LTL allows for

the use of the temporal operators next (X), eventually
(F), always (G), until, (U), weak until (W), and

release (R).
Formulas in LTL assume discrete time, i.e., states s =

0, 1, 2, . . . The meanings of the temporal operators are

straightforward. The formula XP holds at state s if P holds

at the next state s + 1. P U Q is true at state s, if there is a

state s′ ≥ s at which Q is true and, if s′ is such a state, then

P is true at all states si for which s ≤ si < s′. The for-

mula FP is true at state s if P is true at some state s′ ≥ s.

Finally, the formula GP holds at state s if P is true at all

moments of time s′ ≥ s. Detailed description of LTL is

provided by Manna et al. [10].

A major factor for the hesitance in using temporal log-

ics in general is that they are hard to write. In addition,

once specifications are written in LTL or CTL, it is hard to

read and validate the meaning of the generated statement.

For example, it is not immediately obvious that the LTL

specification G(a → F (p ∧ F (¬p ∧ ¬a))) represents the

English requirement “If a train is approaching(a), then it

will be passing(p), and later it will be done passing with

no train approaching”. The proposed tool aims at providing

the means by which developers and users can validate the

meaning of such specifications as the one above.

2.2 Specification Pattern System and
Prospec

Because of the difficulties associated with develop-

ing formal specifications, the Specification Pattern System

(SPS) [3] developed a set of patterns to assist users in

witting formal specifications in multiple formal languages.

Patterns are high-level abstractions that provide descrip-

tions of common properties that hold on a sequence of

conditions or events in a finite state model. SPS pat-

terns are grouped occurrence and order. Occurrence pat-

terns are universality, absence, existence, and bounded
existence. Order patterns are precedence, response,

chain of precedence and chain of response. Chain pat-

terns define a sequencing of events or conditions. Chain-

precedence and chain-response patterns permit specifying a

sequence of events or conditions as a parameter of prece-

dence or response patterns, respectively. SPS allows the

specification of sequences only to precedence and response

patterns.

In SPS, a pattern is bounded by the scope of computa-

tion over which the pattern applies. The beginning and end

of the scope are specified by the conditions or events that

define the left (L) and right (R) boundaries, respectively. A

study by Dwyer et. al. [3] identified the response pattern

as the most commonly used pattern, followed by the univer-

sality and absence patterns. These three patterns accounted

for 80% of the 580 properties sampled in the study.

In many system properties multiple propositions may

be needed to specify pattern or scope parameters. Mon-

dragon et al. [11] introduced Composite Propositions (CPs)

to handle pattern and scope parameters that represent mul-

tiple conditions or events. This was done as part of the

Property Specification (Prospec) tool [12, 5]. The intro-

duction of CPs supports the specification of concurrency,

sequences, and non-consecutive sequential behavior on pat-

terns and scopes. Mondragon proposes a taxonomy with

41

Figure 1: Prospec’s Pattern Screen.

twelve classes of CPs. In this taxonomy, each class defines

a detailed structure for either concurrent or sequential be-

havior based on the types of relations that exist among a set

of propositions. The complete list of CP classes and their

LTL descriptions is available in Mondragon et. al. [11].

Prospec is an automated tool that guides a user in the de-

velopment of formal specifications. It includes patterns and

scopes, and it uses decision trees to assist users in the se-

lection of appropriate patterns and scopes for a given prop-

erty. Prospec extends the capability of SPS by supporting

the specification of CP classes for each parameter of a pat-

tern or scope that is comprised of multiple conditions or

events. By using CPs, a practitioner is directed to clarify re-

quirements, which leads to reduced ambiguity and incom-

pleteness of property specifications.

Prospec uses guided questions to distinguish the types of

scope or relations among multiple conditions or events. By

answering a series of questions, the practitioner is guided to

consider different aspects of the property. A type of scope

or CP class is identified at the end of guidance. The soon

to be completed Prospec 2.0 generates formal specifications

in Future Interval Logic (FIL), Meta-Event Definition Lan-

guage (MEDL), and LTL. The automatic generation of CTL

specification is left as future work. Figures 1 and 2 provide

screen shots of the Prospec tool. More detailed description

of Prospec 2.0 can be found in [5].

2.3 Model Checking and Büchi Automata

Classical LTL model checking is based on a variation

of the classic theory of finite automata [8]. While a fi-

nite automaton accepts only terminating executions, model

checking requires a different type of machines that can han-

dle executions that might not terminate. Such machines

are necessary to model nonterminating systems such as op-

erating systems, traffic lights, or ATMs. One such ma-

chine is a Büchi automaton. A Büchi automaton is a tuple

(Q,
∑

, δ, Q0, F) where Q is a finite set of states, Q0 ⊆ Q is

a set of initial states,
∑

is an alphabet, δ: Q×∑ → 2Q is

a transition function, and F ⊆ Q is set of accepting states.

Figure 2: Prospec’s Composite Proposition Screen

Figure 3: Büchi Automata for “a U b”.

An execution is a sequence s0, s1, . . . , where for all si ∈
Q and for all i ≥ 0, (si, si+1) ∈ δ. A finite execution is

an accepting execution if it terminates in a final state sf ∈
F . An infinite execution, also called an w − execution
or w − run, is accepting if it passes through a state sf ∈
F infinitely often. An empty Büchi Automata (accepts no

words) is one that either terminates in a state that is not an

accepting state or has no accepting state that is reachable

from the initial state and that is visited infinitely often. The

set of executions accepted by a Büchi Automata is called

the language of the Büchi Automata.

Languages of Büchi Automata represent a superset of

those of LTL; every LTL formula can be represented by

a Büchi Automata. When a Büchi Automata is gener-

ated from an LTL formula, the language of the Büchi Au-

tomata represents only the traces accepted by the LTL for-

mula. For example, the Büchi Automata in Figure 3 rep-

resents the language accepted by the LTL formula (aU b).
This formula specifies that b holds in the initial state of

the computation, or a holds until b holds. The language

of the Büchi Automata in Figure 3 accepts the set of traces

{b . . . , ab . . . , aab . . . , . . . , aaab}. Notice that each of these

traces passes through the accepting state Final. This state is

both reachable from the initial state and is visited infinitely

often (by virtue of the self-transition marked 1).

In Automata-Based model checking, the system model

is written in the model checker modeling language (in case

of SPIN the language is Promela [8], and in NuSmv it is the

SMV language [1]. The languages of these model checkers

42

allow for the presentation of system models as Büchi au-

tomata. On the other hand, system properties of interest are

provided as temporal logic formulas (SPIN accepts prop-

erties in LTL, and NuSMV accepts properties in both LTL

and CTL). In the case of LTL formulas, the model checker

translates the negation of LTL specification into a Büchi au-

tomata and checks the intersection of both Büchi automata

for the system model and that of the negated specification.

If the intersection is empty, then the model and the original

(non-negated specification) are deemed consistent. Other-

wise, if the intersection is non-empty (it contains accepted

execution traces) then the model accepts some behavior of

the negated specification which implies an inconsistency

between the model and the specification [2]. In this work,

we use the same approach to check consistency between

LTL specifications. Specifically, we check for emptiness of

the generated Büchi automata that results from “anding” all

LTL formulas for the properties in question.

3 Motivation
The goal of automated formal property generation tools

like Prospec, is to generate formal specification for mul-

tiple system properties. However, Propsec only gener-

ates these properties and does not support any consistency

checks among these properties. Considering that in a typ-

ical software development environment, system properties

are elicited by multiple developers for different parts of the

system under development, it is essential that these prop-

erties are consistent. Lack of overall consistency among

system properties will result in problems that will surface

during system integration. Discovering defects this late in

development will result in significant rework and delays in

production.

While formal specifications, by their nature, are better

suited for formal analysis and consistency checks, they are

hard to manually read or validate and, as such, are difficult

to analyze for consistency by manual means. We provide

a tool that takes as an input, multiple formal specifications

(in LTL) generated by tools such as Prospec, and returns a

verdict on the consistency between the set of formal speci-

fications under questions. Moreover, the LTL Consistency

checker tool, reports on the group of LTL specifications that

cause this inconsistency.

4. Consistency of Formal Properties

Once systems properties are available as LTL formulas

it is desirable to check the consistency among the generated

properties. In this section we provide an approach to test

the consistency of multiple properties written as LTL for-

mulas. In our approach to demonstrate consistency between

two LTL formulas we check for emptiness of the Büchi Au-

tomata of the conjunction of both formulas. Given two LTL

Figure 4: LTL2BA generated BA for (¬(G((l ∧ ¬r) → ((Gp) ∨
(pUr))))) ∧ (G((l ∧ ¬r) → (¬((p ∧ ¬r)U((¬p) ∧ ¬r)))))

Figure 5: LTL2BA generated BA for ((G((l ∧ ¬r) → ((Gp) ∨
(pUr))))) ∧ ¬(G((l ∧ ¬r) → (¬((p ∧ ¬r)U((¬p) ∧ ¬r)))))

formulas LTL1 and LTL2 the two formulas are consistent

if the Büchi Automata for (LTL1∧LTL2) is not empty (i.e,

the combined LTL formula “LTL1 ∧ LTL2” accepts some

behaviors or execution traces).

By definition a Büchi Automata is empty if it does not

contain a reachable accepting state that is visited infinitely

often [2]. The work described here consists of using the

LTL2BA[4] tool to generate the Büchi Automata for the for-

mula (LTL1 ∧ LTL2) and to check for an absence of ac-

ceptance state(s). If acceptance state(s) is/are available then

we check that none of them is within a cycle (i.e., visited

infinitely often).

An example of a consistent formula is shown in Figure

3 above. The figure shows the Büchi Automata for the for-

mula “a U b”. This is clearly not an empty Büchi Automata

as there is a final state (the double circle state called Final),

and this state is within a cycle by virtue of the self loop (i.e,

it is visited infinitely often).

Two examples of empty Büchi Automata are shown in

Figures 4 and 5. Figure 4 shows the BA for the formula

“((¬(G((l ∧ ¬r) → ((Gp) ∨ (pU r))))) ∧ (G((l ∧ ¬r) →
(¬((p ∧ ¬r)U((¬p) ∧ ¬r))))))”. This Büchi Automata is

empty because it contains no acceptance states (no double

circles). The Büchi Automata in Figure 5 is for the LTL

formula “(((G((l∧¬r) → ((Gp)∨ (pU r)))))∧¬(G((l∧
¬r) → (¬((p∧¬r)U((¬p)∧¬r))))))”. Although the Büchi

Automata in Figure 5 contains an accepting state, this state

43

is not contained within a cycle and (it cannot be visited in-

finitely often), as such , this too is an empty automaton.

5 LTL Consistency Check Tool

The LTL Consistency Check Tool1 is designed to ensure

that a given LTL formula is valid and is not contradictory

(accepts some behaviors and is not empty). It may also be

used to check that two separate LTL formulas do not con-

tradict by using the AND operator. In addition, the tool can

be used to prove the equivalence of two formulas. Provided

we have formula’s A and B, checking to see that (A ∧¬ B)

is invalid and that (B ∧¬ A) is invalid will prove that the

formulas are equivalent [14].

While the above examples in Figures 3-5 can be checked

for consistency simply by examining the diagrams (these

are manually drawn diagrams based on the textual output

by LTL2BA) for the generated Büchi Automata, other more

complex Büchi Automata can be hard to visually check for

consistency. For this purpose, we have developed the LTL

Consistency Check tool. The tool allows the user to input

any number of LTL formulas to check for their consistency.

The tool makes use of LTL2BA [4] to construct the resulting

Büchi Automata for the conjunction of these LTL formulas.

The tool interfaces with LTL2BA to pass the “anded” list of

LTL formulas (as one formula) and get back the resulting

Büchi Automata (in text formats). From here, the tool tests

the consistency of the formulas by looking for a reachable

acceptance state that falls within a cycle. This is performed

by first finding all states reachable from every given state,

then by linking these together to form cycles. Should the

tool find a single acceptance cycle, that is, an acceptance

state which can reach itself, the formulas are declared con-

sistent. Otherwise there is an inconsistency among the for-

mulas. This is the same approach used in automata model

checking [2].

In case of inconsistency, the tool will loop through all the

permutations of the input formulas and perform the same

consistency checks on each permutation group. This pro-

cedure will ensure that the user is informed not only of the

presence of an inconsistency, but also which set of specifi-

cations are inconsistent.

Example1 Figure 6 shows a screen shot of the LTL con-

sistency check tool showing no inconsistencies between the

three LTL formulas2:

• G(p → Fq)

• Fq

1The current tool can be requested from salamahs@erau.edu. Also a

demo of the tool will be performed at SEKE 12.
2Note that the consistency check tool makes use of the SPIN syntax for

(Global (G): []), (Future (F): <>), and (Logical OR: ||)

Figure 6: Screen shot for Example 1

Figure 7: Screen shot for Example 2

• Fp

These three formulas are obviously consistent. The first

describes a response formula, where a cause p must be fol-

lowed by a effect q. The second and third formula describe

the behavior that at some future point of execution q will

hold and p will hold respectively.

Example2 Figure 7 shows the screen shot of the LTL con-

sistency tool showing an inconsistency between the follow-

ing three LTL formulas:

• G(p → Fq)

• Fp

• G¬p
These three formulas are obviously inconsistent. The

first formula specifies that every occurrence of p must be

followed by a q, and the second formula specifies that there

will be an occurrence of p. Combining the two formulas

one can conclude that q must happen at some future point.

However the third formula states that q will never hold. As

a result, the three formulas, combined, are inconsistent.

44

Figure 8: Screen shot for Example 3

Example3 Figure 8 shows the screen shot of the LTL con-

sistency tool showing an inconsistency between the follow-

ing four LTL formulas:

• G(p → Fq)

• Fp

• G¬p

• (G¬r) ∨ ((¬r)U q)

This latest example shows that the tool will distinguish

between the inconsistent formulas and others that do not

pose any inconsistency with other formulas. As such, the

tool reports that the first three formulas are inconsistent (as

described in Example 2) while the last formulas has no con-

sistency issues with other formulas and itself is a valid for-

mula (does accept certain execution traces).

6 Summary and Future Work

Formal verification techniques such as model checking

and theorem proving have been shown to increase sys-

tem dependability. These techniques verify system mod-

els against formal specifications. As such, the success of

these techniques depends on the quality of developed sys-

tems properties. Tools that assist in the generation of formal

specifications in LTL are important to the formal verifica-

tion community as they relieve the user from the burden

of writing specifications in a language that is hard to read

and write. Without the help of tools such as Prospec, the

user might create faulty specifications. These tools must

generate specifications that correspond to the intent of the

user. Prospec has demonstrated to provide such support

[15]. However, it is also important that tools like Prospec

generate specifications that are consistent with each other.

Discovering inconsistencies among specifications early in

the requirement or design phases should reduce integration

and testing times significantly.

This work introduced a new approach, complemented

with a tool, to automatically check for consistency among

multiple formal specifications in LTL. The tool will help the

users discover inconsistencies among their specifications at

early stages. While the current tool is a stand-alone tool

that has been developed separately from Prospec, it is our

goal to integrate this tool with the latest release of Prospec

in order to encourage the use of Prospec.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M., “NuSMV:

a new Symbolic Model Verifer” International Conference on Com-

puter Aided Verifcation CAV, July 1999.
[2] Clarke, E., Grumberg, O., and D. Peled. “Model Checking”. MIT

Publishers, 1999.
[3] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C., “Patterns in Prop-

erty Specification for Finite-State Verification,” Proceedings of the

21st Intl. Conference on Software Engineering, Los Angeles, CA,

USA, 1999, 411-420.
[4] Fritz, C., ”Constructing Büchi Automata from Linear Tempo-

ral Logic Using Simulation Relations for Alternating Büuchi Au-

tomata,” Eighth Conference on Implementation and Application of

Automata 2003.
[5] Gallegos, I., Ochoa, O., Gates, A., Roach, S., Salamah, S., and Vela,

C., “A Property Specification Tool for Generating Formal Specifi-

cations: Prospec 2.0”. In the Proceeding of the Conference of Soft-

ware Engineering and Knowledge Engineering (SEKE), Los Ange-

los, CA, July 2008.
[6] Hall, A., ”Seven Myths of Formal Methods,” IEEE Software,

September 1990, pp. 11-19.
[7] Holloway, M., and Butler, R., “Impediments to Industrial Use of

Formal Methods,” IEEE Computer, April 1996, pp. 25-26.
[8] Holzmann, G, J., “The SPIN Model Checker: Primer and Reference

Manual”, Addison-Wesley Professional, Boston, Mass,USA, 2004.
[9] Laroussinie, F. and Ph. Schnoebelen, “Specification in CTL+Past

for verification in CTL,” Information and Computation, 2000, 236-

263.
[10] Manna, Z. and Pnueli, A., “Completing the Temporal Picture,” The-

oretical Computer Science, 83(1), 1991, 97–130.
[11] Mondragon, O. and Gates, A., “Supporting Elicitation and Spec-

ification of Software Properties through Patterns and Composite

Propositions,” Intl. Journal Software Engineering and Knowledge

Engineering, XS 14(1), Feb. 2004.
[12] Mondragon, O., Gates, A., and Roach, S., “Prospec: Support for

Elicitation and Formal Specification of Software Properties,” in Pro-

ceedings of Runtime Verification Workshop, ENTCS, 89(2), 2004.
[13] National Institute of Standards and Technology (NIST), June 02,

http://www.nist.gov/public-affairs/releases/n02-10.htm
[14] Salamah, S., Gates, A., Roach, S., and M. Engskow, ”Towards Sup-

port for Software Model Checking: Improving the Efficiency of For-

mal Specifications,” Advances in Software Engineering, vol. 2011,

Article ID 869182, 13 pages, 2011. doi:10.1155/2011/869182.
[15] Salamah, S., Gates, A., Roach , S., and Mondragon, O., “Verifying

Pattern-Generated LTL Formulas: A Case Study. Proceedings of the

12th SPIN Workshop on Model Checking Software. San Francisco,

California, August, 2005, 200-220
[16] Stolz, V., and Bodden, E., “Temporal Assertions using AspectJ”,

Fifth Workshop on Runtime Verification Jul. 2005.”,

45

Evaluating the Cost-Effectiveness of Inspecting the
Requirement Documents: An Empirical Study

Narendar Mandala, Gursimran S. Walia
Department of Computer Science

North Dakota State University
Fargo, ND

{narendar.mandala, gursimran.walia}@ndsu.edu

Abstract—Inspections and testing are two widely recommended
techniques for improving software quality. While inspections are
effective at finding and fixing the faults early in the lifecycle,
there is a lack of empirical evidence regarding the extent to which
the testing costs are reduced by performing the inspections of
early software documents. This research applied the Kusumoto
cost-metric that analyzed the costs and benefits of inspections
versus testing using the fault data from four real requirement
documents that were inspected twice. Another aspect of our
research evaluated the use of Capture Recapture (CR) method to
estimate the faults remaining post inspection to decide the need
for a re-inspection. Our results provide a detailed analysis of the
ability of the CR method to accurately estimate the cost savings
(within +/- 20% of the actual value) after each inspection cycle.

Keywords-cost-effectiveness; inspections; requirements.

I. INTRODUCTION
Successful software organizations strive to deliver high

quality products on time and within budget. To manage
software quality, researchers and practitioners have devoted
considerable effort to help developers find and fix faults at the
early stages of the lifecycle (i.e., in requirements and design
documents) and reduce its impact in the later stages [1-3]. In
software engineering research, software inspections have been
empirically validated to improve quality by helping developers
find and fix faults early and avoid costly rework [1-3, 6, 11].

Similar to inspections, testing is also widely recommended
technique for improving software quality. While both are
effective fault detection techniques, testing cannot be
conducted until software has been implemented, whereas
inspections can be applied immediately after software
documents have been created. Empirical evidence suggests that
a majority of the development effort is spent during the testing
stage of project [6, 11, 12]. Furthermore, it is estimated that 40-
50% of the testing effort is spent on fixing problems that
should have been fixed during the early stages of the
development [15, 17, 22]. However, there is little empirical
evidence regarding the rework cost-savings that can be
achieved by performing the inspections of early work products.

Therefore, an empirical evaluation of the costs and benefits
of inspections (against the testing cost that would be spent if no
inspections are performed) can help manage the software
quality. To evaluate the costs and benefits of inspections and

testing, this research reports the results from the application of
Kusumoto cost-metric [13] that analyzed the testing costs that
were reduced by performing inspections of software
requirement documents immediately after its development.

Furthermore, the kusumoto metric calculation requires
information regarding the total fault count of the document and
the faults remaining post-inspection. However, inspections only
provide the information about the faults that are found during
an inspection. During software development, project managers
need reliable estimates of the remaining faults after an
inspection to help decide whether to invest in a re-inspection or
to pass the document to the next phase. To that end, our prior
research has shown that, among the different approaches that
are available for estimating the total number of faults in the
artifact (e.g., defect density, subjective assessment, historical
data, capture-recapture, curve-fitting), capture-recapture (CR)
method is the most appropriate and objective approach [19].

Capture-recapture (CR) is a statistical method originally
developed by biologists to estimate the size of wildlife
populations. To use CR, a biologist captures a fixed number of
animals, marks them, and releases them back into the
population. Then another trapping occasion occurs. If an
animal that was ‘marked’ during the first trapping is caught
again, it is said to have been recaptured. The process of
trapping and marking can be repeated multiple times. The size
of the population is then estimated using: 1) the total number of
unique animals captured across all trappings, and 2) the number
of animals that were re-captured [7-8, 22]. Using the same
principle, the CR method can be used during the inspection
process to estimate the number of faults in an artifact. During
an inspection, each inspector finds (or captures) some faults. If
the same fault is found by more than one inspector it has been
re-captured [5, 10, 16, 19]. The total number of faults is
estimated using the same process as in wildlife research, except
that the animals are replaced by faults and the trappings are
replaced by inspectors. The inspection team can use the
estimate of the total fault count along with the number of faults
already detected to estimate the number of faults remaining in
the artifact post inspection.

This paper reports a comprehensive evaluation of Kusumoto
metric in conjunction with the CR method using inspection
data from real artifacts that contain natural faults made during
the development. The artifacts were inspected two times, and
we compared the cost-effectiveness after each inspection cycle

46

using the CR estimates against the actual fault count. We also
analyzed the ability of the CR method to make a cost-effective
decision post-inspection. The rest of the paper is structured as
follows: Section II describes the inspection cost model and
metrics, the basic principles of CR models in software
inspections. Section III describes the literature review used for
the evaluation study. Section IV describes the design of the
evaluation study. Section V reports the results. Section VI
discusses the threats to validity. Section VII summarizes the
results. Section VIII contains the conclusions and future work

II. BACKGROUND
This section provides information regarding the inspection

costs and savings, different cost-metrics, the basic principles of
the use of CR models in inspections, and a summary of the
empirical studies related to cost-effectiveness of inspections.

A. Inspection Cost Model
The traditional software inspection cost model [13] consists

of the following components. The process of calculating these
components after the inspection is discussed as follows:

 Dr - number of unique faults found during the inspection;
is determined by comparing the faults found by all the
inspectors.

 D
total

- total number of faults present in the product; is not
available during the development. In this research, the
overlap in the faults found by multiple inspectors during
the inspection is used to estimate the total fault count using
the CR estimators.

 Cr
– cost spent on an inspection; is measure of the time

taken (in hours) to review the software artifact. In this
research, we only consider the cost invested during the
“individual review/preparation” stage of the inspection
process and is calculated by adding the time taken by each
inspector during the inspection.

 Ct – cost spent to detect remaining faults in testing; is the
cost required to detect the faults remaining post inspection.
If we consider ct as the average cost to detect a fault in the
testing stage, then Ct can be measured as the product of
total number of faults remaining post-inspection (Dtotal –
Dr) and the average cost to detect a fault during testing (ct).
o ct, – Average cost to detect a fault in testing, is not

available after the inspection. Only the average cost to
detect a fault in inspection is available. Therefore, a
cost ratio of 1:6 (i.e., time spent to find a fault during
the testing is six times the time spent to find a fault
during the inspection) was used to calculate the
average cost to detect a fault in testing. This cost ratio
is derived from literature and described in Section III.

 ∆ Ct
– testing cost saved by the inspection. By spending

cost Cr during the inspection, cost ∆Ct is being saved
during the testing. It is calculated as the product of number
of faults found during an inspection (Dr) and the average
cost to detect a fault in testing (ct). That is, ∆Ct = Dr * ct

 Cvt
– Virtual testing cost, (i.e., testing cost expended if no

inspections are performed) is the sum of the testing cost
required to detect the faults remaining post-inspection (Ct)

and the testing cost saved by the inspection (∆Ct). That is,
Cvt = (Ct + ∆Ct).

B. Software Inspection Cost-Metrics
Meyer [15] and Fagan [11] have used a subset of the

components listed in II.A to propose metrics for evaluating the
effectiveness (number of faults) and efficiency (faults per hour)
of inspections. Their research has neglected the cost spent and
cost saved by the inspections. In this paper, only the inspection
metrics that considered cost factors are discussed.

Collofello’s Metric (Mc): Collofello et al., [9] defined a
cost-effectiveness metric as the ratio of the cost saved by
inspections (∆Ct) to the cost consumed by inspections (Cr).
Although Mc considers the cost factors, it does not take into
account the total cost to detect all the faults in the software
work product by inspections and testing. As such, we cannot
compare the Mc values across different projects as shown using
an example: Suppose two projects involve inspections and
testing and that in both projects, if inspections had not been
performed, the cost of testing would be 1000 units. The first
project consumes 10 units for their inspections and saves 100
units. Thus, the total cost for fault detection is 910 units. In the
second project, inspections cost 60 units and save 600 units.
Thus, the total cost for fault detection is 460 units, which is far
smaller than the cost in the first project of 910 units. However,
the value of Mc in both projects is 10, which doesn’t recognize
the benefit of inspections in the second project. The Kusumoto
metric [13] overcame this problem as discussed below.

Kusumoto Metric (Mk): Kusumoto et al., [13] defined the
cost effectiveness of an inspection in terms of the reduction of
cost to detect and remove all faults from the software product.
Mk is calculated as a ratio of the reduction of the total costs to
detect and remove all faults from the software product using
inspections to the virtual testing cost (i.e., testing cost if no
inspection is executed). The Mk normalizes the savings by the
potential fault cost. Hence, it can be compared across different
projects. Mk is intuitive and appropriate for this research as it
can be interpreted in terms of fault rework savings due to
inspections. Formally stated, the testing cost is reduced (by ∆Ct
- Cr) by performing inspections as compared to the testing cost
(Ct + ΔCt) if no inspection is executed. Therefore, the Mk can
be derived as: Mk = (∆Ct - Cr) / (Ct + ∆Ct) (1)

C. Using Capture Recapture (CR) in Software Inspections
As mentioned in Section II.A, this research uses the CR

method to estimate the total fault count, which is then used to
estimate the faults remaining post-inspection. Using these fault
estimates, the Mk value is then computed using (1).

The use of CR method in biology makes certain
assumptions that do not always hold for software inspections.
The assumptions made by CR in biology include: 1) closed
population (i.e. no animal can enter or leave), 2) equal capture
probability (i.e. all animals have an equal chance of being
captured), and 3) marks are not lost (i.e. an animal that has
been captured can be identified) [8, 22]. When using the CR in
inspections, the closed population assumption is met (i.e., all
inspectors review the same artifact independently and it is not
modified) and the assumption that marks are not lost is met (i.e.

47

it can be determined if two people report the same fault).
However, because some faults are easier to find than others and
because inspectors have different fault detection abilities, the
equal capture probability assumption is not met [18].

To accommodate these assumptions, 4 different CR models
are built around the 2 sources of variation: Inspector Capability
and Fault Detection Probability. Table I shows the four CR
models along with their source(s) of variation. Each CR model
in Table I has a set of estimators, which use different statistical
approaches to produce the estimates. The estimators for each
CR model are also shown in Table I. The mathematical details
of CR estimators are beyond the scope of this paper [18, 22].
The input data used by all the CR estimators is organized as a
matrix with rows that represent faults and columns that
represent inspectors. A matrix entry is 1 if the fault is found by
the inspector and 0 otherwise.

CR was introduced to software inspections by Eick, et al.
by applying it to real fault data from AT&T. A major result
from this study was the recommendation that an artifact should
be re-inspected if more than 20% of the total faults remain
undetected [5, 10]. Following this study, various empirical
studies in SE have evaluated the use of CR models to
accurately estimate the total fault count using artifacts with a
known number of seeded defects [18]. In addition, our prior
research evaluated the effect of inspection team size on the
quality of the CR estimates [19]. A common finding across all
the studies is that the estimators underestimate the actual fault
count with small number of inspectors, but improve with more
faults and inspectors. While there is evidence on the ability of
the CR estimators to accurately estimate the total fault count
[16], the CR research has neglected the cost spent and cost
saved by an inspection. This research extends our prior work
by evaluating the cost-effectiveness of software inspections
using the CR estimates on real artifacts. These results will
provide guidance on whether the CR estimators can be used to
evaluate the cost-effectiveness of an inspection process in real
software project where the fault count is unknown beforehand.

III. LITERATURE ON INSPECTION VS. TESTING COST RATIO
As mentioned earlier (section II.A), calculating the cost

saved by the inspection requires a count of faults remaining
post-inspection, and the average cost to detect a fault in the
testing stage. While the CR method can be used to estimate the
remaining faults, the average cost to detect a fault in the testing
stage is not available at the end of inspection cycle. In this
research, the average cost (time spent in hours) to find a fault
during the testing, is calculated as a factor of the average cost
(time spent in hours) to find a fault during the inspection. This
section presents a summary of findings from different software
organizations that reported the data on the cost (staff-hours)
spent to find a fault during the inspections versus testing. This

cost ratio is then used to calculate the cost-savings, the virtual
testing cost, and the Mk value of the inspections using (1).

Major results regarding the cost spent (in staff hours) to
find a fault during inspections versus the cost spent to find a
fault during testing show a cost ratio of 1:6 [2, 4, 12, 17, 22].
These values are based on actual reported data. Also, Briand
[6], based on the published data has provided probability
distribution parameters for the average effort using different
fault detection techniques according to which the most likely
value for design inspections are 1.58 hours per fault and, for
testing are 6 hours per fault. These values were derived from
various studies on the cost of finding faults in design, code
reviews and testing. Different studies in the literature give
different estimates because of the differences in study settings,
software processes, severity of the faults, review techniques
and other factors. In order to find the most appropriate value,
we computed the median of the reported cost ratio values
resulting from precise data collection. We did not consider
approximations, estimates, or data whose origins were unclear.
As a result, the median cost ratio is 1:5.93. Therefore, for this
research, the inspection to testing cost ratio of 1:6 was used to
calculate the cost-effectiveness of the inspection process.

IV. STUDY DESIGN
Prior software engineering research has validated the fault

detection effectiveness of inspections at the early stages of
development [1,11]. However, there is a lack on empirical
research on the benefits of inspections in terms of the extent to
which the testing costs can be reduced by performing the
inspections of early software artifacts. Furthermore, while
inspections are effective; they cannot provide insights into the
remaining faults which are required to calculate the fault
rework savings. On that end, the CR method has been
evaluated to provide a reliable estimate of the faults remaining
post-inspection using artifacts with seeded faults [16].
However, there is a lack of research on the CR estimator’s
ability to provide a reliable estimate of the remaining faults
when the actual fault count of the software artifact in not
known beforehand. Therefore, this paper evaluates the ability
of the CR estimator’s to accurately predict the cost-
effectiveness of the inspection process using the fault data from
4 real software artifacts that contained naturally occurring
faults. In addition, each artifact was inspected twice, which
allowed the analysis of the CR estimator’s ability to accurately
estimate the cost-effectiveness after each inspection cycle.

A. Research Goal
The main goal of this study is to evaluate the ability of CR

estimators to provide an accurate cost-effectiveness value of an
inspection process by comparing the Mk values based on the
CR estimates against the actual Mk value after each inspection.

TABLE I. CAPTURE-RECAPTURE MODELS AND ESTIMATORS [8, 10, 16, 18, 19, 22]

Model Variation Source Estimators Belonging to Each CR Model

Mo
All inspectors have the same ability, and all defects are equally likely of being

detected.
Unconditional Likelihood (Mo-UMLE); Conditional

Likelihood (Mo-CMLE); Estimating Equations (Mo-EE)
Mt Inspectors differ in their abilities, but all defects are equally likely of being found. Mo-UMLE; Mo-CMLE; Mo-EE
Mh Inspectors have the same ability, but defects differ in their probability of being found. Jackknife (Mh-JK); Sample Coverage (Mh-SC); Mh-EE
Mth Inspectors differ in their ability, and defects differ in their probability of being found. Mh-SC; Mh-EE

48

B. Data Set
The data was drawn from earlier inspection studies

conducted at Mississippi State University (MSU). The original
goal of these studies was to investigate how the use of error
information impacted requirements inspections [20]. Only the
information relevant to our research analysis is presented here:

1) Software Artifacts and Software Inspectors: Inspection
data from 4 artifacts used in this study were developed by
senior-level students enrolled in the Software Engineering
Design Course at MSU during two different years. The course
required student teams to interact with real customers to elicit
and document requirements that they would later implement.
So, even though the developers were students, the artifacts are
realistic for a small project. The subjects were divided into 4
teams (with 8, 8, 6, and 6 students respectively) that developed
the requirement documents for their respective systems as
shown in Table II.

2) Software Inspection Process: Each requirement
document was inspected twice by the same subjects who
created it. During the first inspection, the subjects received
training on the use of a fault checklist. Then, each inspector
individually inspected the requirements using the fault
checklist and logged any faults identified. After the first
inspection, the participants were trained on how to abstract
errors from faults, how to classify the errors, and how to use
the errors to re-inspect the requirements document. Then, each
inspector re-inspected the requirements using the errors to find
the additional faults. The artifacts were not modified or
corrected between inspections (i.e., the same document was
re-inspected). Therefore, we collected inspection data from the
first inspection, the second inspection, and the total for each
artifact. Note that the last three columns in Table II show
faults found during the first inspection, during the second
inspection, and total for all the 4 artifacts. Also, we collected
the time spent (in hours) by each subject during the first and
second inspection cycle and the total time for each artifact.

C. Evaluation Procedure
The following costs and savings for each artifact were

computed after the first and second inspection cycle:

 Average cost to detect a fault in inspection (cr): Adding all
the faults found by the inspectors, the average number of
faults found by an inspector is calculated. From the
available values of time taken by each inspector and the
average number of faults found by an inspector, cr is
calculated as: cr = Cr / Dr

o The “Cr - Inspection cost”, is calculated by adding the
time spent by all the inspectors during the inspection.

o The “Dr”, is the total number of unique faults found
by all the inspectors during an inspection cycle.

 Virtual Testing Cost (Cvt): is calculated as the product of
the average cost to defect a fault in testing (i.e., ct) and the
total number of faults present in the product (i.e., Dtotal).
o The “ct - Average cost to detect a fault in testing”, is

calculated as 6 times of average cost to detect a fault
during the inspection (cr).

o The “Dtotal - Total fault count”, is the total number of
faults present in the document.

 Cost saved from inspection (∆Ct): The testing cost saved
from inspection is the product of the number of unique
faults found during the inspection (Dr) and the average
cost to find a fault during the testing (ct). i.e., ∆Ct =Dr *ct.

The difference in the testing cost saved by the inspection
and the cost spent on the inspection provides the reduction of
the total costs. Mk value is then obtained as follows:

Mk = (∆Ct - Cr) / Cvt

This procedure was executed to calculate: (1) Mk using the
actual fault count and (2) Mk using the CR estimates after each
inspection for all the 4 artifacts. After the first inspection, the
actual and estimated Mk values were obtained as follows:

1) Mk based on the actual fault count: Because we do not
know the actual number of faults, the total number of
exclusive faults found after both inspections is assumed to be
the actual fault count for the purposes of this study. Therefore,
for each artifact, the faults found during the first inspection
(column 5 of Table II) by all the inspectors and the actual fault
count (column 7 of Table II) were used to calculate the actual
Mk value of the first inspection cycle.

2) Mk based on the CR estimates: For each artifact, the
faults found during the first inspection by all the inspectors
(column 5) are inserted into a matrix (as described in Section
II.C). The matrix is then fed to the automated tool (CARE-2
[8]) to produce the estimates from all the CR estimators. Using
the estimated fault count and the number of faults found
during the first inspection, the Mk values were calculated.

Because the artifacts were unchanged between inspections,
to calculate the cost-effectiveness after second inspection, we
use the total faults found from both inspections (Column 7).
Since we are calculating the testing cost saved by performing
the inspections, it did not make sense to use only the data from
second inspection. Furthermore, using only the data from

TABLE II. DATA SETS

Data
Set

Artifact Name Description # of
Inspectors

1st
inspection

Faults

2nd
Inspection

Faults

Total
Faults

1 Starkville Theatre System Management of ticket sales and seat assignments for the theatre 8 30 25 55
2 Management of Apartment

and Town properties
Managing apartment and town property, assignment of tenants, rent

collection, and locating property by potential renters
8 41 64 105

3 Conference Management Helping the conference chair to manage paper submission,
notification to authors, and other related responsibilities

6 52 42 94
4 Conference Management 6 64 54 118

49

inspection 2 would have excluded some information that is
otherwise available while producing the CR estimates.
Therefore, for each artifact, the faults found at the first and
second inspection are inserted into a matrix which is then fed
to the automated tool to produce the estimates from all the
estimators. Using the estimated fault count, and the actual
fault count (the number of faults found after both inspections),
the estimated Mk values and the actual Mk value was
calculated after the second inspection respectively.

D. Evaluation Criterion
The CR estimators are evaluated based on the “relative

error (R.E.)” in the estimate of the cost-effectiveness after each
inspection. For each artifact, and for each inspection cycle, the
R.E in the Mk values based on the estimated fault count against
the Mk values based on actual fault count was computed as:

Relative error = (Mk using the estimated fault count – Mk
using the actual fault count) / Mk using the actual fault count

A R.E of zero means absolute accuracy (i.e., Mk value
based on the estimated fault count is same as the Mk value
based on the actual fault count), a positive R.E. means an
underestimation, and a negative R.E means an overestimation
of actual fault count. The accuracy of an estimate is satisfactory
when the R.E. is within +/- 20% of the actual value [5, 10, 18].

V. RESULTS AND ANALYSIS
This section compared the actual and the estimated Mk

values after each inspection cycle for each artifact in order to
analyze whether the CR estimators can be used to make an
objective and cost-effective post-inspection decisions.

To provide an overview of the results from Data Set 1, Fig.
2 compares the Mk values obtained using the actual fault count
(of 55 faults) against the Mk values using the estimates from all
the CR estimators after the first and second inspection. The
results show an increase in the fault rework savings achieved
by performing a re-inspection of software document (i.e., Mk
value of 0.49 after second inspection is higher than Mk value of
0.38 after first inspection). This increase in the cost savings
was consistent across all the four artifacts. These results show
that the cost invested during the inspections of requirement
documents help save costly rework later in the lifecycle.

Additionally, the result also shows a visible difference in
the estimated Mk values and the actual Mk value after the first
inspection. This is because the CR estimators underestimated
the actual fault count after the first inspection which reduces
the true virtual testing cost (i.e., Cvt, the demoniator of
Kusumoto metric formula), and thereby returns a higher Mk
value. After the second inspection, the estimated Mk values are
closer to the actual Mk value because the quality of the CR
estimates improved after the second inspection (i.e., the CR
estimates of the fault count are closer to the actual fault count).

To quantify the results in Fig. 2, we calculated the R.E. in
the Mk values produced by each CR estimator after each
inspection cycle as shown in Fig. 3. The dashed lines in Fig.3
show the region of +/- 20% within which the estimation results
are considered satisfactory. A major observation from Fig. 3 is
that out of all the CR estimators, only the Mth-SC estimator

produced a satisfactory estimate (i.e., Mk value within +/- 20%
R.E. range) after each inspection. Based on the results from
Data set 1, we recommend the Mth-SC for estimating the total
fault count to decide the need for a re-inspection, and for
evaluating the cost-effectiveness of the inspections.

Similar process was replicated to compute the R.E. in the
Mk values from all the CR estimators for Data Sets 2, 3, and 4
as shown in Fig. 4. Similar trends were observed across all the
four data sets and are summarized as follows:
 For each artifact, the actual Mk value after second

inspection is always higher than the actual Mk value after
the first inspection. This confirms that re-inspection of
software artifacts was a cost-effective decision;

 Across all the four data sets, only the Mth-SC estimator
produced an accurate estimate of the Mk value (within +/-
20% of the actual) after each inspection cycle. The Mh-SC
estimator was the second best estimator;

 The JK estimator is not recommended because of its
inability to provide satisfactory estimate for Data Sets 3
and 4. Furthermore, Mth-EE is not recommended because
of its failure to produce an estimate for Data Set 3.

Therefore, based on these results, SC are the best estimators
for evaluating the cost-effectiveness of software inspections.

VI. THREATS TO VALIDITIY
There were some threats to validity that were not

completely addressed. The actual number of faults present in
each document might actually be higher than the assumed fault
count (i.e., the total faults found after two inspections). This
threat is somewhat reduced by the fact that the subjective
opinion of inspectors regarding the remaining faults after each
inspection cycle (which was all that was available during the
original study) supported the recommendation that they had

Figure 3. R.E. in the Estimated Mk Values after Each Inspection Cycle

Figure 2. Estimated vs. Actual Mk Values for Data Set 1

50

located all the faults present in the documents during the
second inspection. So, the inspection process was stopped. A
second threat was the artifacts were developed by students and
may not be representative of the industrial strength documents.

VII. DISCUSSION OF RESULTS
The results show that some of the CR estimators

underestimate the actual fault count, and hence overestimate
the actual Mk value after the first inspection. Only the SC
estimator for Mth model provided an accurate estimate (i.e., +/-
20%) of the total number of faults and hence the remaining
faults after the first and second inspection. Consequently, only
the Mth-SC estimator provide an accurate estimate of the cost-
effectiveness (i.e., +/- 20% of the actual Mk) after each
inspection cycle. Therefore, project managers can use the Mth-
SC estimator to estimate the faults remaining after the
inspection and decide a need for re-inspection. Additionally,
the Mth-SC estimator should be used to analyze if the
significant fault rework savings are being achieved by
performing the inspections to decide when to stop the
inspection process. Project managers can also use these
research results to motivate the use of the inspections of early
software documents in their companies and thereby avoid the
costly rework during the later stages of software development.

VIII. CONCLUSION AND FUTURE WORK
This paper demonstrated that the Kusumoto metric can be

used in conjunction with the CR estimate of the remaining
faults after an inspection to manage the quality of software
product being developed. Our future work in this area will
investigate the effect of other factors (e.g., inspection team size,
time duration etc) to improve the cost-effectiveness of software
inspections. Also, further research will investigate the use of
Kusumoto metric and the CR method using industrial strength
document (other than the requirement documents), that have
been developed and inspected by software professional (as
opposed to the students) in real environment.

REFERENCES
[1] Ackerman, A., Buchwald, L., and Lewski, F., “Software Inspections: An

Effective Verification Process.” IEEE Software, 1989. 6(3): 31-36.
[2] Boehm, B.: Software Engineering Economics. Prentice-Hall, 1981.

[3] Boehm, B. and Basili, V.R., "Software Defect Reduction Top 10 List."
IEEE Computer, 2001. 34(1): 135-13.

[4] Biffl, B. Freimut, O. Laitenberger, “Investigating the Cost-Effectiveness
of Reinspection in Software Development”, Proceedings of the 23rd

International Conference on Software Engineering (2001) 155-164.
[5] Briand, L.C, Emam, K.E, and B.G.Freimut. “A Comparison and

Integration of Capture-Recapture“. International Symposium on
Software Reliability Engineering. 1998. Paderborn, Germany: 32-41.

[6] Briand, L.C, Emam, K.E., Laitenberger, Fussbroich, Using Simulation to
Build Inspection Efficiency Benchmarks for Development Projects,
International Conference on Software Engineering, pp. 340-349, 1998.

[7] Burnham, K.P. and Overtom, W.S., “Estimation of the Size of a Closed
Population When Capture Probabilities Vary Among Animals.”
Biometrica, 1978. 65: 625-633.

[8] Chao, A. and Yeng, H.C., Program CARE-2 (for Capture-Recapture
Part.2), http://chao.stat.nthu.edu.tw, 2003.

[9] Collofello, J.S., Woodfield, S.N., Evaluating the Effectiveness of
Reliability-Assurance Techniques, Journal of Systems and Software.
Vol. 9 (3) (1989) 191-195.

[10] Eick, S., Loader, C., Long, M., Votta, L., and Weil, S.V. “Estimating
Software Fault Content Before Coding”. International Conference on
Software Engineering. 1992. Australia: ACM Press: 59-65

[11] Fagan, M. E., “Advances in Software Inspections,” IEEE Transactions
on Software Engineering, Vol. SE-12, No. 7, July 1986, pp. 744-751.

[12] Gilb, T., Graham, D. Software Inspection, Addison-Wesley, 1993.
[13] Kusumoto, T, Matsumoto, K., Kikuno, T., Torii, K., A New Metrics for

Cost Effectiveness of Software Reviews, IEICE Transactions on
Information and Systems E75-D (5) (1992) 674-680.

[14] Madachy, R., “Process Improvement Analysis of a Corporate Inspection
Program,” Software Engineering Process Group Conference, MA, 1995.

[15] Meyer, G., “A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections”. In Communications of the ACM, 21(9):760-
768, September 1978.

[16] Miller, J., 1999. “Estimating the Number of Remaining Defects after
Inspection”. Software Testing, Verification, Reliability, 9(3), 167-189.

[17] Olson, T., “Piloting Software Inspections to Demonstrate Early ROI,”
Notes from Presentation given at the 1995 SEPG Conference

[18] Petersson, H., Thelin, T., Runeson, P., and Wohlin, C., “Capture-
Recapture in Software Inspections after 10 Years Research - Theory,
Evaluation and Application.” Journal of Systems and Software, 2003.

[19] Walia, G., Carver, J. and Nagappan, N. “The Effect of the Number of
Inspectors on the Defect Estimates Produced by Capture-Recapture
Models.” Proceedings of the 30th International Conference on Software
Engineering. May 10-18, 2008. Leipzig, Germany. p. 331-340

[20] Walia, G., Carver, J. "Using Error Abstraction and Classification to
Improve Requirement Quality: Conclusions from a Family of Four
Empirical Studies." Empirical Software Engineering: An International
Journal. 2012. DOI: 10.1007/s10664-012-9202-32012.

[21] Weller, E. “Lessons from Three Years of Inspection Data”. In IEEE
Software, 10(5):38–45, September 1993.

[22] White, G.C., Anderson, D.R., Burnham, K.p., and Otis, D.l., Capture-
Recapture and Removal Methods for Sampling Closed Populations, Los
Alomos National Laboratory, 1982.

Figure 4. Relative Error in the Estimated Mk Values after the First and Second Inspection for Data Seta 2, 3, and 4

51

Requirement Analysis and Automated Verif cation:
A semantic approach

Animesh Dutta
Department of Information technology

National Institute of Technology
Durgapur

India
Email:animeshrec@gmail.com

Prajna Devi upadhyay
Department of Information technology

National Institute of Technology
Durgapur

India
Email: kirtu26@gmail.com

Sudipta Acharya
Department of Information technology

National Institute of Technology
Durgapur

India
Email: sonaacharya.2009@gmail.com

Abstract—In this paper, we propose an automated software
development methodology. The methodology is conceptualized
with the notion of agents, which are autonomous goal-driven
software entities. Initially, the requirements of the newly proposed
system are captured from stakeholders which are then analyzed
in goal oriented model and represented as goal graph. The
leaf level atomic sub goals of the goal graph are taken as
input to our automated system. These atomic sub goals are
mapped to concepts in Domain Ontology and are verified with
the help of three verification metrics- Completeness, Correctness,
and Conflict. We also develop a software tool for the proposed
automated system.

I. INTRODUCTION

Requirements engineering is an important phase of the
software development methodology. Requiremets should be
documented as the SRS(Software Requirement Specif cation),
which is the input to the design phase. To ensure that the
requirements are in correct form, requirement analysis and
verf cation process should detect incomplete, incorrect and
ambiguous requirements. Nowadays, requirement verf cation
techniques supported by domain knowledge are in use which
check the specif ed requirements against the domain knowl-
edge for inconsistencies and help the system analyst to remove
them. Ontology [1] is the most suitable representation of
domain knowledge because concepts, relationships and their
categorizations in a real world can be represented with them.
It also allows for semantic processing of requirements. The
automation of the requirement verif cation process comple-
ments transformation systems utilised for Agent Oriented
Software Engineering(AOSE) methodologies [2], [3], [4].
Transformation systems generate system architecture from
the specif ed requirements automatically by consulting with
Domain Ontology.

II. RELATED WORK

There have been a signif cant number of contributions in the
area of Ontology based requirement verif cation. In [5], [6],
[7] authors have used Domain Ontology to express domain
knowledge and have used it for the semantic verif cation
of requirements using metrics. The tool development for
the proposed methodologies is not shown. [8] This paper
proposes a novel user-driven requirements elicitation process

UDREP. Based on users individualities and context, support
for users to present requirements is provided, including the
recommendation of domain assets and advice about multi-
user cooperation. It lacks of verif cation metrics to measure
the quality of requirement specif cation. In [9], authors
have proposed AGORA, a method for requirements elicitation
which is an extended version of a goal-oriented method by
attaching preference and contribution attributes to an AND-
OR graph. They have also def ned some metrics to measure the
quality of requirement specif cation. In [10], authors propose
a method called GOORE where a domain ontology is utilized
to support goal decomposition as domain knowledge. A tool
has also been developed to facilitate the same. Some more
tools to facilitate verif cation have been developed in [11],
[12]. These tools are not the part of any automated system.

III. SCOPE OF WORK

There have been a lot of contributions in the area of Ontol-
ogy based requirements verif cation techniques. But, most of
them are a part of traditional software development method-
ologies. Also, very few contributions have elicited require-
ments verif cation approach for automated systems. Although
automated software development methodologies reduce the
gap between requirements specif cation and system design,
there is a need to incorporate a requirements verif cation
module to determine whether user requirements have been
fully expressed or not in such systems. The lack of verif cation
in traditional as well as automated software development
methodologies lead to inconsistent systems which may not
adhere completely to user’s requirements.

This paper presents requirements verif cation approach
for the automated software development methodology using
agents which we proposed in [13]. The proposed method-
ology takes the requirement represented as goal graph, the
domain knowledge represented as Ontology and determines
whether the requirements have been expressed properly. The
verif cation is performed against domain Ontology and the
result is expressed in the form of three metrics-Completeness,
Correctness, and Conf ict. A software tool is also developed to
facilitate automation of the verif cation procedure of the input
requirements.

52

Take basic requirements

from user as main goal

Perform requirement

Graph(Input to system)
it in the form of Goal
analysis and represent

Semantic Mapping

Automated System

Verification Module

Domain Ontology

(Input)

Suggestions to the requirement analyst

Verification Metrics

1. Completeness

2. Correctness

3. Conflict

(Output)

(Output)

Fig. 1: Architecture of the proposed Automated System

IV. PROPOSED METHODOLOGY

Figure 1 represents the architecture of our proposed auto-
mated system. In [13], we have proposed the architecture
of an automated system which generates the system design
from the requirement specif cation by consulting the Domain
Ontology of the system. But, this architecture lacks to verify
input requirements. Designing the architecture of the system
without ensuring that the requirements are in correct form
may lead to the development of inconsistent systems. So,
the verif cation module has also been included to be a part
of our automated system. Thus, the automated system takes
the requirement and the Domain Ontology as input, verif es
these requirements against Domain Ontology, and suggests
the system analyst to change the specif cation accordingly.
In our automated system, we have peformed goal oriented
requirement analysis and represented the requirements in the
form of Goal Graph. The Domain knowledge is represented as
Domain Ontology. The leaf level sub goals are taken as input
to the automated system and mapped to concepts in Domain
Ontology and verif ed against them.

A. Requirements represented by Goal Graph and Domain
Knowledge represented by Ontology

Agents in MAS are goal oriented i.e. all agents perform
collaboratively to achieve some goal. Goals have been used
in Software Engineering to model requirements and non-
functional requirements for a software system. Goal Graph
and Domain Ontology have been def ned in [13].

B. Semantic Mapping from requirements to Ontology

The process by which the basic keywords of the leaf node
sub goal are mapped into concepts in the Ontology is called
Semantic Mapping. In this paper, the aim of semantic mapping
is to f nd out tasks from Domain Ontology, required to be
performed to achieve a sub-goal given as input from the Goal
Graph. Let a user requirment R come to our proposed system.
After goal oriented requirement analysis of requirment R, we
represent it as a goal graph and get a set of leaf level indivisible
subgoals. These leaf level sub goals are represented as:
G0= {G1 , G2,. . . ,Gp }.

Let there be a set denoted as G={g1,g2, . . . ,gq }. Each gi ∈
G is another set which consists of set of goal-concepts which
are associated with a consists-of relationship in ontology. Let
us denote each gi ∈ G as ”concept-set”.

Let Ky be a function that maps a subgoal to its basic
keyword set. The set of keywords for subgoal Gi ∈ G0 can
be represented by Ky(Gi) = {Kyi1,Kyi2 . . .Kyij}. Let f be a
mapping which maps each Ky(Gi) or some Ky(Gi) ∪ Ky(Gj)
∪ . . .∪ Ky(Gk) to a concept-set in ontology, Gi ∈ G0 where
1≤ i ≤ k or {Gi, Gj ,. . . , Gk }⊆ G0.

i.e. f(Ky(Gi)) = gi, gi ∈ G, or there exists a subset of G0,
{G1 , G2, . . . , Gk }⊆G0 such that f(Ky(G1) ∪ Ky(G2) ∪ . . .∪
Ky(Gk)) = gi.

Each subgoal Gi ∈ G0 or some set {Gi, Gj ,. . . , Gk }⊆ G0

is mapped on some concept-set gi ∈ G.

C. Verification metrics of requirement analysis

In this paper we have def ned three metrics for verif cation
of requirment analysis.

• Completeness
• Correctness
• Conf ict
1) Completeness:

• Case 1: Each keyword in the keyword set KY= Ky(G1)
∪ Ky(G2) ∪ . . .∪ Ky(Gp) is mapped into some concept
∈ concept-set gi of ontology. If a keyword ∈ KY can be
mapped to a concept in concept set gi of ontology, then
add the keyword to set S and add the concept set gi to
ST. Thus, ST=ST ∪ gi, where initially ST is the empty
set.
Repeat this step for every keyword in KY. Finally, the
Measure of Completeness, MCOM = |S|/|T|

• Case 2: Let G={g1,. . . , gq }be the set of concept-sets on
which G0 is mapped. Let T i be the set of tasks associated
with gi ∈ G with consists of relation. So, T 0= T 1 ∪ T 2

∪ . . .∪ T q is the set of all tasks that are required to be
performed to achieve the goal set G0.
Let pred(ti) represent the set of tasks that should happen
before ti and succ(ti) represent the set of tasks that
happen after ti. So, for each task ti ∈ T 0, check the
following condition
{pred(ti)⊂ T 0

∧
succ(ti) ⊂ T 0 }= true.

For all ti where the above condition is false , let pred(ti)
∈T’i or succ(ti) ∈T’i. Let T ′

i be associated with g′i ∈
G by the consist of relation. The sub goal formed by the
concept-set gi should be included in the suggestion list.

2) Correctness::

• Case 1: Each keyword in the keyword set KY= Ky(G1)
∪ Ky(G2) ∪ . . .∪ Ky(Gp) should be mapped into some
concept ∈ concept-set gi of ontology. So, total number
of keywords in requirement analysis is m2= | (Ky(Gi)
∪ Ky(Gj) ∪ . . .∪ Ky(Gk))|. If a keyword ∈ KY cannot
be mapped to a concept in concept set gi of ontology,
then add the keyword to set US ,where initially US is the
empty set.

53

Repeat this step for every keyword in KY.
• Case 2: Let Gi ∈ G0 be mapped on concept-set gi,and

to achieve Gi set of tasks T i will be performed.i.e. gi

concept is associated with T i by consists-of relationship.
Let Gi have some happened before relationship with other
subgoals of set G0. Let Gj → Gi → Gk i.e. Gj is
predecessor and Gk is successor of Gi. Then requirement
analysis will be considered as correct if same happened-
before relationship exists between corresponding task sets
in ontology. i.e. there exists T j → T i → T k. If ∃
Gi for which uppper condition is not satisf ed then it
can be considered as redundant subgoal in goal graph
after requirment analysis and can be discarded from goal
graph. In this case, add the keywords of goal Gi to the
set US.

• Case 3: Let there is a goal Gi ∈ G0 which has no
happened before relationshiop with other goals of G0.
Similarly in ontology, its corresponding task set T i also
has no happened-before relationship with other corre-
sponding task set of goals of G0 in ontology. Then
subgoal Gi can be added to the suggestion-list of our
proposed system for requirement analysis stating that it
may be incorrect/irrelevant subgoal in goal graph after re-
quirement analysis. So analyst is recommended to verify
whether this subgoal should be included in requirement
specif cation.
Correctness can be measured by,
n2=total number of keywords in correctly mapped leaf
level subgoals.
m2=total number of keywords in leaf level subgoals in
goal graph.
Mathematically n2=| (Ky(Gi) ∪ Ky(Gj) ∪ . . .∪ Ky(Gk))|
- | US |
m2= | (Ky(Gi) ∪ Ky(Gj) ∪ . . .∪ Ky(Gk))|
So, Measure of Correctness, MCOR = n2/m2

3) Conflict: Let from user side requirement R come to our
proposed system. After requirement analysis of requirement R,
we get a goal graph with a set of leaf level indivisible subgoals
represented as a set G0= {G1 , G2,. . . , Gp }The necessary
condition to occur conf ict is,

For any two Gi, Gj ∈ G0 f(Ky(Gi)) ∩ f(Ky(Gj))
= ∅ where
i
= j.

If necessary condition is true then evaluate
A = f(Ky(Gi)) - f(Ky(Gj)) B = f(Ky(Gj)) - f(Ky(Gi))
• Case 1: If both sets A and B each contain single nu-

merical value then both Gi and Gj are conf icting if
both numerical values are different.i.e. these two subgoals
represent one same fact but by different numerical values.

• Case 2: Now check whether for some (ai, aj) ∈ A× B,
conf ict(ai)=aj or conf ict(aj)=ai. If yes, goal Gi and aj

are in conf ict, i.e. conf ict(Gi, Gj)=true
• Case 3: Let after mapping of subgoals of G0 to the

ontology the set of tasks required to perform to achieve
all subgoals of G0 can be represented by the set T 0 =
{T1 , T 2,. . . , T q }. Now if for any pair (T i, T j) ∈
T 0 X T 0, conf ict(T i)=T or conf ict(T) = T i,then those

 Protege 4.1

OWL Ontology created in

 GUI

OWL Application Programming
Leaf level sub goals of

Goal Graph provided as input

1. Completeness
2. Correctness
3. Conflict

(output)

Interface (OWL API)

Fig. 2: Architecture of the tool for Automated Requirements
System

Fig. 3: Snapshot of the Ontology created in Protege 4.1

two subgoals associated to corrosponding two tasks are
conf icting. Let n3= total number of (Gi, Gj), Gi
=Gj,
Gi, Gj ∈G0 for which conf ict(Gi,Gj)=true.
Let m3= total number of (Gi, Gj), Gi
=Gj, Gi, Gj ∈G0

So, Measure of Conf ict, MCON = n3/m3

V. TOOL DEVELOPMENT

We have shown the architecture of the tool that has been
developed in Figure 2.

A. OWL Ontology of Library Management Systemin Protege
4.1

The ontology for Library Management System(LMS) is
built in Protege 4.1. Protege [15] is an open source tool
to build OWL ontologies. An owl ontology consists of indi-
viduals, Properties and classes. Individuals represent objects
in the domain of interest. Properties are binary relations
on individuals i.e. properties link two individuals together.
OWL classes are interpreted as sets that contain individuals.
They are described formally stating the requirements for the
membership of the class. A snapshot of the ontology for LMS
created in Protege 4.1 is shown in Figure 3.

B. OWL Application Programming Interface(OWL API)

The OWL API [16] is a java Interface and implementation
for the W3C Web Ontology Language(OWL), used to repre-

54

sent Semantic Web Ontologies. It consists of the following
components.

• An API for OWL 2 and an eff cient in-memory reference
implementation.

• RDF/XML parser and writer
• OWL/XML parser and writer
• OWL Functional Syntax parser and writer
• Turtle parser and writer
• KRSS parser
• OBO Flat f le format parser
• Reasoner interfaces for working with reasoners such as

FaCT++, HermiT, Pellet and Racer
We have used the OWL API to connect to the OWL

Ontology that we have created. The requirements gathered
from the system analyst will be verif ed against the ontology
at the back end using this API. It provides a number of pack-
ages to help perform required operations. We have used the
org.semanticweb.owlapi.* package to verify the requirements
against the ontology.

C. Graphical User Interface

To capture the leaf level atomic requirements represented as
sub goals, a Graphical User Interface has been built. It takes
the leaf level sub goals as input and returns to the user whether
these are complete, correct or conf ict free. It specif es upto
what extent the requirements are complete, correct or conf ict
free.

VI. CONCLUSION

In this paper we have proposed a methodology for an
automated system to verify the requirment analysis done by
the system analyst. The requirement analysis is goal oriented
and represented by goal graph.We have considered three
metrics, Completeness, Correctness and Conf ict to verify
the requirement specif cation and express its correctness in
percentage. We have also developed a tool to facilitate the
verif cation procedure. The future prospect of this work is
to propose a methodology to verify the system design. Since
we are concerned with agent and MAS architecture, we have
to develop a verf cation methodology for the same. Thus,
we will develop a tool that will not only generate the MAS
architecture from the requirement specif cation automatically,
but will also verify the requirement specif cation and the
system architecture.

REFERENCES

[1] K. K. Breitman and J. C. S. do Prado Leite, ”Ontology as a Require-
ments Engineering Product”, In 11th IEEE International Requirements
Engineering Conference (RE03),pages 309319, Sep. 2003.

[2] N.R. Jennings, ”On Agent-Based Software Engineering”, Artif cial Intel-
ligence, vol. 177, no. 2, 2000, pp. 277-296.

[3] J. Lind, ”Issues in Agent-Oriented Software Engineering”, In P. Ciancarini
, M. Wooldridge (eds.), Agent-Oriented Software Engineering: First Inter-
national Workshop, AOSE 2000. Lecture Notes in Artif cial Intelligence,
Vol. 1957. Springer-Verlag, Berlin

[4] M. Wooldridge, P. Ciancarini, ”Agent-Oriented Software Engineering:
the State of the Art”, In P. Ciancarini, , M. Wooldridge, (eds.), Agent-
Oriented Software Engineering: First International Workshop, AOSE
2000. Lecture Notes in Artif cial Intelligence, Vol. 1957. Springer-Verlag,
Berlin Heidelberg (2001) 1-28

[5] Haruhiko Kaiya, Motoshi Saeki, ”Using Domain Ontology as Domain
Knowledge for Requirements Elicitation”, 14th IEEE International Re-
quirements Engineering Conference (RE’06)

[6] Haruhiko Kaiya and Motoshi Saeki, ”Ontology Based Requirements
Analysis: Lightweight Semantic Processing Approach”,In Proc. of
QSIC2005, pages 223230, Sep. 2005.

[7] Haibo Hu, Lei Zhang, Chunxiao Ye, ”Semantic-based Requirements Anal-
ysis and Verif cation”, In 2010 International Conference on Electronics
and Information Engineering (ICEIE 2010), 2010

[8] Shu Fengdi,etal. ”User-Driven Requirements Elicitation Method with
the Support of Personalized Domain Knowledge”, Journal of Computer
Research and Development,2007, 44 (6) : pp1044-1052

[9] H. Kaiya, H. Horai, and M. Saeki, ”AGORA: Attributed Goal-Oriented
Requirements Analysis Method”, In IEEE Joint International Require-
ments Engineering Conference,RE02, pages 1322, Sep. 2002.

[10] Masayuki Shibaoka, Haruhiko Kaiya, and Motoshi Saeki, ”GOORE :
Goal-Oriented and Ontology Driven Requirements Elicitation Method”,
J.-L. Hainaut et al. (Eds.): ER Workshops 2007, LNCS 4802, pp. 225234,
2007.

[11] M. Kitamura, R. Hasegawa , H. Kaiya, M. Saeki, ”An Integrated Tool
for Supporting Ontology Driven Requirements Elicitation”, In: ICSOFT
2007. Proc. of 2nd International Conference on Software and Data
Technologies (2007)

[12] Kitamura, M., et al., ”A Supporting Tool for Requirements Elicitation
Using a Domain Ontology”, In Proceedings Software and Data Technolo-
gies (2009)

[13] Prajna Devi Upadhyay, Sudipta Acharya, Animesh Dutta, ”Automated
Software Development Methodology: An agent oriented approach”, In
The 8th International Conference on Computing and Information Tech-
nology, IC2IT 2012, Thailand, 9-10 May, 2012(Accepted for Publication)

[14] P.H.P. Nguyen, D. Corbett, ”A basic mathematical framework for
conceptual graphs”, In IEEE Transactions on Knowledge and Data
Engineering, Volume 18, Issue 2, 2005.

[15] Matthew Horridge, Simon Jupp, Georgina Moulton, Alan Rector, Robert
Stevens, Chris Wroe, ”A Practical Guide To Building OWL Ontologies
Using Protege and CO-ODE Tools”, Edition 1.1, The University Of
Manchester, October 16, 2007.

[16] http://owlapi.sourceforge.net/

55

Risk-driven Non-functional Requirement
Analysis and Specification

Yi Liu1,2, Zhiyi Ma1,2, Hui Liu1,3, Weizhong Shao1,2

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
2 School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

3 Beijing Lab of IntelligentInformation Technology, School of Computer Science and Technology, Beijing Institute of
Technology, Beijing 100081, China

{liuyi07, mzy} @sei.pku.edu.cn, liuhui08@bit.edu.cn, wzshao@pku.edu.cn

Abstract—The complexity and usefulness of software systems are
determined not only by their functionality, but also by non-
functional requirements such as accuracy, security, cost, user-
friendliness and performance. However, even with the growing
interest in dealing with NFRs from early stages of software
development, current technology is not adequate for analyzing
and representationally expressing these requirements. They
mainly focus on refinement of NFRs themselves, neglecting the
analysis of factors or risks in the environment that may have
adverse impacts on these NFRs, which may lead to incomplete
understanding and prevent the effective processing of NFRs. In
this paper, we propose a risk driven approach to analyzing and
specifying NFRs, in which NFRs are considered to address
business risks. We first elaborate the aspects that should be
considered when understanding NFRs. We also propose
constrained case diagram to model the analysis result and their
impacts on target system. This approach provides us an
operating procedure and a complete NFR view. It could
complement with existing approaches to more completely analyze
and refine NFRs.

Keywords-non-functional requirements; risk driven; analysis;
specification; software development

I. INTRODUCTION

The complexity and usefulness of software systems are
determined not only by their functionality, but also by Non -
Functional Requirements (NFRs) such as accuracy, security,
reliability, user-friendliness, performance [1][2]. Due t o the
importance of NFRs, researches have been done on how to
achieve them in software systems. Generally, two main
approaches were defined: curative approach and preventive
approach. A cur ative approach is applied after a software
system has been developed; the software system is tested and
defects associated with NFRs are identified in order to be fixed.
In a preventive approach, the software development tasks (e.g.
constructing architectures and design models) are planned to
prevent defects associated with NFRs, incorporate NFRs into
the design and i mplementation, and finally obtain a sys tem
which satisfies the NFRs [2].

In both approaches, especially the preventive approach, a
concise specification of NFRs is an important premise.
Traditionally, NFRs are just simply and textually denoted in a
distinctly section of the requirement specifications [3], e.g.,

“The system shall be available 24×7, give users a one-second
response time, and process 200 orders per minute”. These
specifications are remote from the job of the software and it
hard to tell that how developers are supposed to react to them
and take wh ich steps to achieve them. Later, goal-oriented
approaches [4][5] have been proposed to fu rther analyze and
operationalized NFRs, in which NFR s are taken as s oftgoals.
Scenario-based approaches [6][7] are also proposed to describe
NFRs using scenarios.

However, these approaches mainly focus on refinement of
NFRs themselves in the scope of software, neglecting the
analysis of the factors/risks in the environment that would have
adverse impacts on them, which may lead to incomplete
understanding and in appropriate solutions of NFRs.
Additionally, corresponding models are just represent NFRs
and their relationships with functionalities, the d erived
requirements which will be directly designed and implemented
to support the NFRs are always ignored or denoted implicitly.
These incomplete models may prevent effective handling of
NFRs.

In this paper, we propose a risk-driven approach to stepwise
analyze and r efine NFRs. Besides breaking down a spec ific
kind of broad non-functional goal into clear requirements that
are as detailed as developer need, we als o identify origins of
NFRs; analyze the external and in ternal challenges for
achieving them; and recommend tactics based on the previous
analysis. A constrained case diagram is also proposed to model
the analysis results, so as to e ffectively deal with them in the
following software development lifecycle.

Main contributions of our approach include: (1) Support the
capture of NFRs based on risks, identify the threats and
challenges, which allows the business and developers to
understand the origins of NFR and d etermine the appropriate
solutions; (2) Provide an op erational guideline to t horoughly
analyze NFRs, follow which we could obtain a more complete
understanding NFR origins, challenges need to be tackled and
other context; (3) Allow the developers to fully capture the
requirements by providing an integrated graphical view about
NFRs, the derived requirements, the functional requirements
affected by them and relationships among them. (4) Moreover,
this approach could complement with existing analysis
approaches to better deal with NFRs.

56

The rest of the paper is organized as follows. Section II
introduces related works and our bas ic ideas. Secti on III
elaborates the risk driven NFR analysis approach and the
proposed constrained cased diagram. Section IV introduces a
case study. Section V discusses the pr oposed approach and
concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Non-Functional Requirements Analysis Approaches
To effectively deal with NFRs in software development,

specifying them in detail and accurately is an important
premise. Since initial d escriptions of NFRs are often roughly
and non-behavioral, they are hard to tell be rea lized like
functional requirements. Therefore, a further analysis to break
down a sp ecific kind of broad non-functional goal into clear
requirements that are as d etailed as developer need, and
accurately record and manage these requirements throughout
the life cycle of systems development is needed.

Goal-oriented methods, such as th e NFR Framework
proposed by Chung et a l [4], the i*/Tropos approach [5], are
typical representatives of these works. NFRs are taken as
softgoals, gradually refined to lower, more-precise level of
detail either by the type or functional topic, and finally refined
to operationalizations. However, these approaches mainly
focus on the refinement of NFR themselves in t he scope of
target software, lack of adequate analysis of the environment
entities. Scenario based approaches are also proposed to deal
with NFRs [6][7][8]. However, most of them focused on the
representation of NFRs not the analysis process. Moreover,
nearly all the approa ches are based on the premise that NFRs
are already identified, lack of the consi derations about the
source and origin of NFRs, which makes it hard to determine
their priorities and may lead to improper solution
recommendations. Thus, besides refining NFRs themselves, a
more thorough analysis about the motivations of NFR and the
factors in the environment that would have adverse impacts on
NFRs are also neede d, in order to effectively dealing with
NFRs in software development lifecycle.

In security engineering [9], risk assessment is an important
task. It is defined as a process of identifying the risks to system
security and determining the probability of occurrence, the
resulting impact and additional safeguards that would mitigate
this impact [10]. This process conducts analysis about security
requirement from various aspects, and provides solutions to
achieve them. It i s also used i n Software Performance
Engineering (SPE) to help analysis of performance [11].
Through analysis in practice and surveying existing literatures,
we found the idea of risk assessment could be also applied for
analyzing other NFRs such as avail ability, reliability. NFRs
could be cons idered as a set of quality statements that th e
system must meet in order to manage the risks exposed to
system stakeholders, where these business risks may originate
from low quality of services under different operating
conditions [12]. For ex ample, the business may be at risk of:
customer retention if the system is running under poor
performance or response times; loss of revenue if the system
does not provide sufficient availability of its services, and to
mitigate these risks, corresponding performance requirement,
availability requirement should put on the ta ble and find

solutions to deal with them. Based on this idea, we could more
fundamentally know much about the NFRs, thus, conducting
more thorough analysis of them.

In this paper, we prop ose a risk driven appr oach to
analyzing and refining NFRs. It draws lessons from the idea of
risk assessment and management [9][10], and will complement
with existing approaches to more adequately analyze NFRs.

B. Specifying and Modeling NFRs
Traditionally, during the requirement phase, NFRs are

collected and documented in some textual format. They are
specified in a separate section of the documentation, as an entry
of the functionality description, or recorded in an artifact called
supplementary specification [3]. W hen use case models
become popular to model functional requirements, approaches
have been proposed to extend them to address NFRs. Armour
and Miller [13] discuss how one may document the ‘non-
behavioral requirements’ using a use case, immediately after
the Alternative Flows and Exception Section. Supakkul and
Chung [8] represent NFRs as softgoals and associate them with
appropriate use case model elements. Abuse case and Misus e
case is proposed which extends the use case to define a security
requirement [6].

However, these approaches mainly focus on NFRs
themselves and th eir constraint relationships with
functionalities. The der ived requirements identified to achieve
or support NFRs ar e often neglected or just implicitly
represented in t he models. Since NFRs are non-behavioral in
nature, corresponding tactics for achieving them should be
identified first in order to make them operational. Thus, just
graphically representing FRs and NFRs together is not enough
and relatively incomplete. In this paper, based on the proposed
risk driven NFR analysis approach, we propose a constrained
case diagram to specify NFRs. Besides associating NFRs with
related use case, it also represents the derived requirements for
achieving the NFRs, and attaches them to affected functional
requirements. This di agram could be considered as a
complement to the use case, and provide an integrated view for
NFRs.

III. THE PROPOSED APPRAOCH

The proposed approach in t his paper for analyzing and
refining NFR is risk-driven which we got inspiration from risk
assessment and management used in security engineering and
the SPE process [9][11]. NFRs are identified based on possible
business risks for potential low quality of service of the target
system. External threats and internal vulnerabilities are then
analyzed to find the possible reasons for low quality of service.
Furthermore, tactics for achieving NFRs are recommended
based on the risks, threats and vulnerabilities. In the following,
we first introduce the aspects that needed to be considered
when analyzing and refining NFRs. Then, based o n these
aspects, the risk driven analysis process is elaborated. Lastly,
we present the constrained case diagram which used to model
the analysis results.

A. Understanding Non-Functional Requirements
For best achievement of an NFR, a concise understanding

of NFR itself and its environment is very important. Basically,

57

we need to find out answers for the following questions in the
analysis process [14]: (1) what e xactly the NFR is ab out; (2)
why need the NFR; and (3) how to achieve it. The first
question could roughly correspond to a basic description of the
NFR, including its category, related business goal
(functionality) and the target value. The answer of the second
question is risk related information since NFRs are proposed to
address business risks. T o achieve NFRs, we should identify
the factors that may have adverse impact on them, and propose
solutions according to the factors. Table I shows the m ain
aspects that should be considered in NFR analysis. It could also
be considered as a template to specify NFRs.

TABLE I. ASPECTS FOR UNDERSTANDING NFR

Aspect Description
what Name Name of the NFR

NFR
Category

Category of the non-f unctional requirement. E.g.,
performance, security, availability, reliability.

Related
business
goals

Which part of the system does this NFR target apply
to? An NFR can apply to a single function, a group
of functions, a single interface, and so on, or it can
apply to everything (all functions).

Target
(NFP value)

The quality target that the system need to deliver. It
might be some quantitative or qualitative m easure.
E.g., System should operate 24 *7

Exceptional
cases

Is the quality target likely to be unachievable in
some cases? E.g., functions that in volve intensive
processing will b e slower, so it' s unfair to judge
them against the same response time goal.

why
Motivation
(risks to be
addressed)

Specify the potential risk and analyze its impact on
system’s business value. It is the re ason for
proposing the NFR. . E.g., the motivation for a fast
download of software by a Web visitor might be so
that they don't give up impatiently halfway through.

Criticality
/Priority

Description of impact if the N FR is not achieved,
and specify the impact grade,such as:high, medium
or low.

How Challenges,
Threats or
Vulnerabilitie
s

Any circumstance or ev ent that can have negative
impacts on end-user experience o f the quality, or a
list of all those pieces relevant to your environment
that have a bearing on the non-functional goal of
your system.

Impact rating/
Likelihood /
Risk rating

Level of the impact resulting from successful
exploitation of a vulnerability; likelihood of the
probability that a potential vu lnerability might be
exploited in the context of the a ssociated threat
environment/ the level of risks to the system.

NFR Tactics
(risk
mitigation
recommendati
ons)

Things to be done to help a chieve this non-
functional goal. They could be any specific features
we want our system to have to he lp to achieve the
goal. They are considered as a set of new derived
requirements. It will be bette r if each o f these
requirements includes a statement estimating the
extent to which it contributes.

Extra
requirements

Explains what sorts of extra requirements should be
considered and in what circumstances. It provides
guidance on what to do beyond simply specifying
the main requirement.E.g.: E.g., Functions for
measuring response times and letting administrators
see them.

Acceptance
criteria

Could be taken as the criteria for verifying that the
NFR has been met (may be used to assist definition
of system test cases).

Among above aspects, the knowledge about threat,
vulnerabilities, NFR tactics and rela tionships among them is
especially important for finally implementing NFRs in the
target system. The threat and vulner abilities explains the

possible reasons why the system may provide poor quality of
service, and the tactics provide countermeasures for the threats
and vulnerabilities, so as to achieve NFRs. Fortunately, these
types of knowledge could be accumulated based on previous
experience, such as the develo pment experience of similar
systems, journal articles and conference papers, technical
reports etc.

B. Risk-driven NFR Analysis Process
Formulating a detailed and accurate analysis of NFRs is not

a straightforward task, because various aspects have t o be
considered. In this subsection, we present a process that guides
the analyst to analyze and refine NFRs. It starts with
characterizing the system and identifying the initial NFRs by
recognizing the associated risk to the system stakeholders.
Then, threats and vulnerabilities that may do harm to the NFR,
and possible tactics to mitigate the risks are identified so as to
achieve NFRs in the target system. This stage is accomplished
through following steps, which need the participation of b oth
the stakeholders and developers.

1) Preparation:characterizing the target software system
In this ste p, the analyst de fined the boundaries of the I T

system, along with the resources that constitute the system, its
connectivity, and any other elements necessary to describe the
system. The aim is to provide a context for NFR analysis.

2) Risk analysis and NFR identification
Analyze potential business risks, assess their impacts; and

neatly specify the concerned non-functional properties for
mitigating the risks, including the category, a brief summary on
the target value and the reasons why stakeholders concern
about them. This step could be assis ted by an existing risk
assessment process.

3) Related functionality identification
Based on system characterization, identify which

functionality is related t o the non-functional requirements or
what does this NFR ap ply to. Is it for a s pecific function, a
collection of functions, all functions for a class of users, or
something else?

4) Threats identification
Towards the identified NFR and sy stem characterization,

draw up a l ist of the external threats or risks r elevant to the
environment that have a bearin g on the non-functional
properties of the system. Record and specify their impacts to
corresponding non-functional properties. This knowledge could
be collected from trusted and proven journal articles,
conference papers, books, software companies’ brochures and
some websites [9][15].

5) Vulnerability idenification
In this step, the analysts developed a list of internal system

vulnerabilities (flaws or weaknesses) that could be exploited by
the potential threat vectors or that would have negative impacts
on the achievement of NFRs. It often needs a deeper analysis of
system characteristics.

6) Risk determination
In this step, the analysts determined the degree of risk to the

system, including the likelihood determination, impact rating

58

and the risk level. Existing assessment methods [9][10] could
be directly used in this step.

7) Exceptional cases identification
Is the non-functional requirement likely to be unachievable

in some cases? For example, functions that involve intensive
processing will be slower, so it’s unfair to judge them against
the same goal.

8) Tactic recommendations
Based on the identified threats and risks, identify the tactics

that could be used to improve any of these threats or risks. It
would be better if each tactic include a statement estimating the
extent to which it contributes. Since tactics for N FRs are
relatively fixed, knowledge about the tactics could be collected
in advance from previous experiences or d ependable
documents [6][15].

9) Extra requirement identification
Besides the tactics recommended mitigating the threats and

vulnerabilities, some additional requirements may be
introduced. For example, functions for measuring response
times and letting administrators see them. In this step, we
identify and explain what sorts of extra requirements should be
considered and in what circumstances.

10) Result documentation
Presented to the stakeholders to check an d confirm the

derived requirements and to t he developers for the following
design and implementation. We could use the template derived
from table II and constrained case diagrams defined i n the
following subsection.

Noticing that this is a n iterative and incremental process,
and not all steps must be performed in a NFR analysis process.
Analyzers and user s could customize above steps and form
more appropriate process.

C. Constrained Case Diagram for NFR Modeling
To provide a precise context to NFR design and

implementation, we propose a constrained case diagram to
graphical model the NFRs, the derived requirements, the
original functional requirements and relationships among them.
This diagram could be roughly considered as a complement to
the use case diagram since we refer to the use cases to specify
the functionality affected by the NFRs.

Figure.1 shows the metamodel of the constrained case
diagram. The gray elements are borrowed from UML
specification [14], and the white elements are whi ch we
proposed to model NFR related elements. This diagram mainly
consists of four types of classifiers and four types of
relationships. The classifiers include: (1) the Constrained Case
which is us ed to represent the refined non-functional
requirement; (2) the constrained artifact that constrained by the
NFRs which refers to specific Use Case; (3) the NFR Tactic
which recommended to deal with the threats and vulnerabilities
so as t o achieve NFR; (4) the Extra Requirement which
identified to support the NFR. The relationships include: (1) the
relationship Constrain which connect NFR and r elated
functionality together; (2) the relationship Satisfy which
connect the NFR tactic to the NFRs ; (3) the relationship
Support which connect the Extra Requirement to the NFR; (4)

the relationship ActUpon which specifies that a d erived
requirement will act upon the constrained artifact.

Figure 1. Metamodel of the Constrained Case diagram

For ConstrainedCase, the attribute refinement denotes the
concrete NFRs refined from the high-level NFR. The attribute
constrainedElement refers to the artifact that constrained by the
NFR. In our metamodel, it mainly refers to use cases. For
example, associating fast response time NFR to Withdraw
Fund use case of an Automated Teller Machine (ATM) system.
Moreover, to specify relationships between the NFRs and the
constrained functionality, we introduce a r elationship
Constraint in this metamodel.

The element NFRTactic in this metamodel represents the
countermeasure adopted to make the NFR satisfied. It might be
a new functionality, new resource, operational constraint, etc. It
will be realized into some software entities and interact with
the constrained functionality. The Extra Requirement
represents the requirement derived to support certain NFR but
not to achieve them, such as monitoring related non-functional
property and letting administrators see them. The r elationship
ActUpon is proposed to specify the relationship between a NFR
derived requirement and the affected use case. Moreover, since
sometimes use case i s further described by interactions,
activities or state machines, we could specify the sp ecific
location that the NFR tactics will act upon. Using the element
affectedPoint. For example, for a use case described by an
activity diagram, the affected point may be one of the actions.

Figure 2. Graphical notation of Constrained Case diagram

<<constrain>>

<<actUpon>>
[affectedPoint2]

<<actUpon>>
[affectedPoint1]

<<satisfy>>

affectedPoint1
affectedPoint2

Usecase1
NFRCategory=...
value =...
Refinement=subNFR
Description = ...

constrainedCaseName

kind = newFunctionality
name =UserAthentication

Tactic2

<<Constraint>>
constraint 1

<<support>>

<<satisfy>>

C

Tactic1
kind =
name=
description=

T
T

Extra RequirementE

ConstrainedCase

affectedPoint

Usecase
Constrain<<constrain>>

NFRTactic <<actUpon>> ActUponAffectedPoint

LEGEND
Constrained Case Diagram

Extra Requirement

TC E

Support
<<support>>

Satisfy<<satisfy>>

59

Figure 2 s hows the grap hical notation of the constrained
case diagram. Using this diagram, the NFRs, the derived
requirements (NFR tactics and extra requirements), the affected
use cases, and relationships among them could be modeled
explicitly in an integrated view, which provides the designers a
precise context for NFR r ealizations and a source of the
transformation from NFRs into architecture.

The constrained case diagram could be considered as a
complement to the functionality-focused use case diagram,
highlighting in each view that designer needs to consider both
the functional and non-functional requirements to present a
complete picture for the following software development stages.
For example, it could be leveraged in the 4+1 view [15],
together with the use case view to assist the software
architecture design; or it could be lever aged by the tester to
validate the requirements. Additionally, it can also be used in
planning project activities, resources, cost and timeframe.

IV. CASE STUDY

In this section, we p resent a case study o n a simplified
Online Shopping System.

A. System Characterization and Identfiied NFRs
Basic functionalities of an online shopping system include

account management which assists customer to maintain their
account information and; allowing customers to bro wse the
product; adding, removing items to shopping carts and to
reviewing their orders; especially, to at tract customer, the
system is required to provide a f lash sale/spike area function,
where in a certain period of time, a pr oduct is sold in an
incredible price. This may result in a big visit amount on the
website. Figure 3 shows the functionality-focused use case
diagram of the system.

Figure 3. The usecase diagram

By analyzing potential risks from users’ perspective, three
types of important NFRs are identified, one is the Security for
account, the other is the Availability of the sho pping, and the
last one is the Performance for flash sale. Table II(a),II(b),II(c)
shows the initially identified NFRs using our template.

TABLE II. INITIALLY IDENTIFIED NFRS DESCRIPTION

Constrained Case: Security constraint

Description: the system shall have high security.
Motivation: Account information is very important for online shopp ing
system, poor security may injure customers’ benefits and affect the customer
retention.
NFR Category: Security

(a) Initially identified Security constraint

Constrained Case: Availability constraint

Description: the system shall be available to users 24 hours every day, every
day of the year, especially the functionality Place Order.
Motivation: most online shopping systems are available 7*24, if the target
system does not provide similar availability, it might lead the ri sk of losing
many customers for the business.
NFR Category: Availability

(b) Initially identified Availability constraint

Constrained Case: Performance constraint

Description: the various f unctionalities shall have an appropriate and
acceptable response time.
Motivation: Under multiple concurrent user load, the system’s response time
may become unacceptable to the en d users which lead to the ri sk of losing
customers.
NFR Category: Performance (Response time)

(c) Initially identified Performance constraint

B. Risk Driven Analysis and Refinement
Towards these high-level NFRs, the next to do is r efining

them, analyzing threats and vulnerabilities, and deriving the
tactics and extra requirements. Table III s hows the an alysis
results guided by our risk driven analysis approach.

TABLE III. REFINED NFRS DESCIPTION

Constrained Case: Security constraint

Related Business Goal: Manage Account, Order payment
Challenges or threats: unauthorized access
Impact Rating: High Likelihood: Medium Risk Rating: Medium
Recommended tactics: Data Encryption, Password Authentication, select the
third-party payment platform

(a) Refined Security constraint

Constrained Case: Availability constraint

Related Business Goal: Place Order, Order payment
Challenges or vulnerabilities: Unreliable network links, hardware failure,
service interruptions of the pay platform

Impact Rating: High Likelihood: Medium Risk Rating: Medium
Recommended tactics: Ping/echo, Replicate Server, Multiple payment
mechanism
Extra Requirement: System unavailable page(when the system is
unavailable to users, any attempt by a user to access the system shall result in
the display of page informing them that it is unavailable),

(b) Refined Availability constraint

Constrained Case: Performance constraint

Related Business Goal: Place Order, Flash sale
Challenges or vulnerabilities: Large amount of concurrent users,

Impact Rating: High Likelihood: Medium Risk Rating: Medium
Exceptional case: at the ti me of flash sale, system load are inevitable high,
allow more response time for flash sale
Recommended tactics: Fixed Scheduling Policy, Cache mechanism,
Temporarily disable functions that cause intensive processing
Extra Requirement: Response time monitoring (Functions for measuring
response times and letting administrators see them)

(c) Refined Performance constraint

C. Model NFRs in Constrained Case Diagrams
To provide a clear graphical input to the following software

development stages, we model the NFRs and their analysis
results using graphical constrained case diagrams as shown in
Figure 4.

From this example, we cou ld see that our risk driven
approach could provide an operational guide to effectively
analyze various aspects of NFRs, and the constrained case

Place
order

Browse
catalog

Manage
Account

Customer

Flash sale

Manage
shopping

cart

Order
payment

60

diagram could give developers an integrated view for NFRs,
derived requirements and related functionalities.

(a) Constrained case diagram of security

(b) Constrained case diagram of availability

(c) Constrained case diagram of performance
Figure 4. Constrained Case diagrams for NFRs

V. DISCUSSIONS AND CONCLUSIONS

Non-functional requirement is important for building user-
satisfied software. However, for its non-behavioral nature, it is
relatively difficult to directly implement them in the target
software systems. A co mplete analysis of its context, source,
related threat and vulnerabilities is very useful and helpful for
identifying the tactics to achieve them. In this paper, we
propose a risk driven approach to analyzing and refining NFRs.
A constrained case di agram is also proposed to provide an
integrated graphical view for modeling the analysis results.

The effectiveness of this approach is dependent on the
strength and validity of the NFR related knowledge, including
the risks, threats, vulnerabilities and corresponding NFR tactics.
A deep understanding of the system characteristics and its
environment are also i mportant for analyzing NFRs. Ano ther
factor is the e xperience of the so ftware engineer. Although
there some NFR related knowledge for reference, it also needs
software engineer to u nderstand the target system and make
decisions during analysis. In addition, for graphical modeling

NFRs, the constrained case views are more appropriate to
represent the NFRs that associated with specific functionality
that denoted by functional use case. For system-wide NFRs,
such as maintainability, and portability that are not normally
associated with a particular functionality, we could use the
template to describe them, and use the constrained case view to
document the policy or tactics that help the project achieve the
softgoal. In the future work, we will entail validation of the
efficacy of the risk driven NFR analysis approach and collect
more specific NFR related knowledge to support the process.

ACKNOWLEDGMENT

The work supported by Beijing Natural Science Foundation
(4122036); the National Basic Research Program of China
under Grant No.2009CB320703; the Scien tific Research
Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry; the National Natural Science Foundation
of China under Grant No.61121063, No.61003065; Specialized
Research Fund for the Doctoral Program of Higher Education
(No.20101101120027); Excellent Young Scholars Research
Fund of Beijing Institute of Technology (No.2010Y0711).

REFERENCES

[1] L Chung, J do Prado Leite, “On Non-Functional Requirements in
Software Engineering”, Conceptual Modeling: Foundations and
Applications, 2009, pp.363-379.

[2] A.Matoussi, R.Laleau, “A Survey of Non-Functional Requirements in
Software Development Process”, Technical report,TR-LACL-2008-7.

[3] IEEE Std 830-1993. IEEE Recommended Practice for Software
Requirements Specifications.

[4] L. Chung, B. A. Nixon, E . Yu, and J. Mylopoulos “Non-Functional
Requirements in Software Engineering”.1st ed. Springer 1999.

[5] Y.Eric,“Towards modeling and reasoning support for early-pahse
requirements engineering”, Proc.Third IEEE Inl.Symposium on
Reqirement Engineering, 1997.

[6] I.Alexander, “Misuse cases help to elicit non- functional requirements”,
Computing & Control Engineering Journal, 2009, pp. 40-45.

[7] Joe Zou, Christopher J.Pavlovski, “Control case approach to record and
model non-functional requirements”, Information Systems and E-
Business Management, 2008, Volume 6, Number 1, p49-67, 2008.

[8] L.Chung, S.Supakkul, “Representing NFRs and FRs: A Goal-Oriented
and Use Case Driven Approach”, SERA 2004, LNCS 3647, pp.29-41.

[9] J.Allen,S.Barnum,R.Ellison,G.McGraw,N.Mead, “Software security
engineering: a guide for project managers”, Addison-Wesley,2008.

[10] Stoneburner G, Goguen A, Feringa A, “Risk management guide for
informaion technology systems”, Natiaonal Institute of Standards and
Technology (NIST), U.S.Department of Commerce, Publication 800-300.

[11] C.U.Smith, L.G.Williams, “Performance Solutions: A practical Guide to
Creating Responsive, Scalable Software”, 1st E, Addison-Wesley, 2011.

[12] M. Glinz, “On Non-functional Requirements”, Proc.5th IEEE
International Conference on Requirements Engineering, 2007, pp.21-26 .

[13] F. Armour and G. Miller, “Advanced Use Case Modelling”, Addison-
Wesley, 2001.

[14] C.Harris,M.Davis,M.Pritchard,M.Rabins,“Engineering Ethics: What?
Why?How? And When?”, Jounal of Engineering Education, April 1996.

[15] M.Barbacci,M.H.klein,T.A.Longstaff,C.B.Weinstock,"Quality
Attruibutes",Technical Report,CMU/SEI-95-TR-021,1995

[16] Malik Hneif, Sai Peck Lee, “Using Guidelines to I mprove Quality in
Software Nonfunctional Attributes”, IEEE Software 28(6), p72-77,2011.

[17] Object Management Group, “Unified modeling language: Superstructure
version2.0”, OMG Document,formal/05-07-04,2005.

[18] P.Kruchten, “Architectural Blueprints – The ‘4+1’ V iew model of
Software Architecture”, IEEE Software, 12(6), 1995, pp42-50.

<<constrain>>

<<actUpon>>
[affectedPoint1]

<<satisfy>>

passwordAuthentication
Kind = NewFunctionality
Description= Auth passwd
before access the account

type = Security
value =high;
refinement = InternalConfidentiality;
Description =?

SecurityConstraint

affectedPoint1 = check
account

Maintain Account

DataEncryption

Kind = NewFunctionality
Description= encrypt the
transferring data

OrderPayment

<<constrain>>

<<satisfy>>

C

T

T

<<actUpon>>

<<actUpon>>

<<constrain>>

<<actUpon>>
<<satisfy>>

OrderPayment

<<constrain>>

<<satisfy>>

C

T
T

<<actUpon>>

<<actUpon>>

PlaceOrder

type= Availability
value =7*24
description = ?

AvailabilityConstraint

Ping/echo
ReplicateServers

Multiple payment
mechanism

T

E System
unavailable page

<<support>>

<<satisfy>>

<<constrain>>

<<actUpon>>
<<satisfy>>

Flashsale

<<constrain>>

<<satisfy>>

C

T
T

<<actUpon>>

<<actUpon>>

PlaceOrder

type = Performance
value =high;
refinement = Response time;
Description =?
…

PerformanceConstraint

Fixed
Scheduling

policy

Cache mechanism

Temporarily disable
functions

T

E Monitoring
response time

<<support>>

<<satisfy>>

61

Eliciting Security Requirements in the Commanded Behavior Frame: An Ontology
based Approach

Xiaohong Chen∗†,Jing Liu∗
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, CHINA

†Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, CHINA

Abstract—The Problem Frames(PF) approach is well known
for analysing and structuring requirement problems in require-
ments engineering. However, currently it lacks of a practical
and effective way to obtain security requirements. To solve this
problem, this paper proposes to elicit security requirements by
constructing an act-effect model which is used to model the
environment effects that react to the users’ commands. The
generation of the act-effect model can be guided by a software
environment ontology which models the software environment.
Finally, a case study is given for illustrating the security
requirements elicitation.

Keywords-requirements engineering; security requirements;
software environment ontology; Problem Frames approach;

I. INTRODUCTION

With the increasing demands for secure softwares, how

to get security requirements becomes an important issue.

Generally speaking, security requirements are included in a

system to ensure [1]:

• unauthorized access to the system and its data is not

allowed (the authority problem);

• the integrity of the system from accidental or malicious

attack (the integrity problem).

Much work has been done in security requirements aiming

at these two problems such as [2][3][4][5][6]. This paper

focuses on the integrity problem. There is a famous approach

for analysing security requirements called abuse frames[1]

which is developed on the basis of the Problem Frames(PF)

approach[7]. Security requirements are viewed in terms

of “Assets” and “Attackers” where attackers behave like

operators to cause state changes in the assets. The security

behavior is quantified as an “anti-requirement” which is a

behavior of an asset under some inputs from an attacker.

However, at present the abuse frames approach still lacks

of a practical and effective way to obtain such security

requirements. In this paper, we propose to use the software

environment ontology for helping elicit security require-

ments from the basic problem frames. There are five basic

problem frames in the PF approach. They are the required

behavior frame, the commanded behavior frame, the infor-

mation display frame, the simple workpieces frame and the

transformation frame, and some variants to them. Aiming

at the commanded behavior frame, this paper first presents

the act-effect model which tries to describe the environment

effects that react to the user commands according to envi-

ronment properties. The environment properties are provided

by a software environment ontology built for modeling the

environment of software [8]. Then the undesirable behaviors

of “Assets”, i.e., security requirements, can be obtained.

The rest of this paper is organized as follows. Section

II introduces the commanded behavior frame in the PF

approach and the software environment ontology. Section III

presents security requirements in the commanded behavior

frame. Section IV gives a small example-secure sluice gate

control problem to show how to capture security require-

ments in the commanded behavior problem. At last, section

VI concludes this paper and indicates the future work.

II. BACKGROUND

A. The Commanded Behavior Frame

In the PF approach, the commanded behavior frame

characterizes problems in which the machine is required

to accept the operator’s commands and impose the control

accordingly. The problem frame diagram is shown in Fig. 1.

Figure 1. The commanded behavior: problem frame diagram [7]

In the figure, the software problem is to specify a control

machine (the solution) to control a controlled domain (the

problem context) in accordance with commands issued by

the operator so that the commanded behavior (the require-

ment) is satisfied. In this frame the general form of a

software development problem has been elaborated only

by more specialised names for the principal parts and by

markings on the connecting lines which indicate:

• The requirement ‘commanded behavior’ is a condition

over phenomena of C3 and E4.

• The control machine CM is the machine to be built.

• The controlled domain CD is its problem domain. CD is

a kind of environment entity, or an asset to be protected.

62

Figure 2. Conceptual model of software environment ontology

• The interface between the control machine CM and

controlled domain CD consists of two kinds of shared

controllable phenomena: C1, controlled by CM, and

C2, controlled by CD. The interface between CM and

the Operator OP consists of event E4 issued by OP.

• The shared phenomena C1, C2, C3 and E4 are interac-

tions between CM and CD, and CM and OP.

Accordingly, a requirement problem can be defined.

Definition 1: A requirement problem is a five-tuple:

P :=< M,ES, PS, IS,RS >

Where

• M is the machine to be built

• ES = {e1, e2, . . . , en} is the entity set

• PS = {ps1, ps2, . . . , psn} is the phenomena set

• IS : M ×ES×PS ∪ES×M ×PS is the interaction

set

• RS = {r1, r2, . . . , rn} is the requirement set

B. Software Environment Ontology

We have developed software environment ontology in [8].

It is built for sharing knowledge about software environment.

Fig. 2 gives its conceptual model which includes the follow-

ing basic concepts:

• The environment of a software system is assumed to

be a set of entities that will interact with the to-be built

software system. So the basic concept is environment
entity. Environment entities can be classified into three

categories: the biddable entity, the lexical entity, and

the causal entity.

• A biddable entity usually consists of people, it is phys-

ical but lacks positive predictable internal causality.

Each biddable entity usually sends events or provides

(or receives) values. Each biddable entity has a set of

attributes. Each attribute has a value.

• A lexical entity is the physical representation of data.

• A causal Entity is one whose properties include pre-

dictable causal relationship among its shared phenom-

ena. Each causal entity has a set of dynamic properties

which can be described by state machines.

• Each state machine has a set of states and transitions.

Each transition sources from a state, and sinks to a

state. A transition can be triggered by an event.
Among these concepts, we’ll give a formal definition of

the state machine of a casual entity for further use.

Definition 2: State machine SM of a casual entity ce
A SM can be defined as a triple:

SM :=< S,E, T >

where

• S={s0, s1, . . . , sn} is the state set of ce
• E={e0, e1, . . . , em} is the event set of ce
• T : S × E → S is the transition set of ce

The above software environment ontology is an upper

ontology. It employs a core glossary that contains basic

terms and associated descriptions of the software environ-

ment as they are used in various, relevant domain sets. The

instantiation of the upper ontology in a specific domain will

result in the domain software environment ontology. It con-

tains the domain specific terms for describing the software

environment. There could be many domain environment

ontologies upon to the upper software environment ontology.

III. SECURITY REQUIREMENTS IN THE COMMANDED

BEHAVIOR FRAME

Some part of the physical world’s behavior is to be con-

trolled in accordance with commands issued by an operator

in the commanded behavior frame. In other words, these

control commands will cause effects to the physical world

which could be state changes of the physical world. As

functional requirements can be viewed as desired effects,

the security requirements can be seen as undesired effects.

To model relations between commands and effects, we

introduce act-effect model.

Definition 3: Act-effect model of (P ,be, ce)

Suppose a problem P = < M,ES, PS, IS,RS >, a

biddable entity be ∈ ES, a casual entity ce ∈ ES. An

act-effect model ae of (P, be, ce) is defined as a triple:

ae :=< S,E, T >

where

• S = {s0, s1, . . . , sn} ⊆ PS is the state set of ce
• E = {e0, e1, . . . , em} ⊆ PS is the event set of be
• T : S × E → S is the transition set

An act-effect model dynamically describes how the com-

mands from a biddable entity finally change the states of

a casual entity. Then our concern turn to how to get an

act-effect model from an existing problem description (i.e.,

a problem diagram) and a domain software environment

ontology. The problem description gives desired effects by

commands of the biddable entities. The domain software

environment ontology provides the effects of casual entities

and the essential reasons for effects by state machines.

63

Combining these together, we can get an algorithm for

generating an act-effect model (see Alg. 1). There are three

main steps in Alg. 1: 1) getting the states of the casual entity;

2) obtaining the events sent by the biddable entity; and 3)

constructing the transitions.

Algorithm 1: Act-effect model generation algorithm

Input: problem description P =< M,ES, PS, IS,RS >,

a biddable entity be ∈ ES, and a casual entity ce ∈ ES,

domain software environment ontology DO
OutPut: act-effect model of (P, be, ce) A2 =< S2, E2, T2 >
begin
1. Search the casual entity ce in DO;

2. Find the state machine A1 =< S1, E1, T1 > of ce through

‘has dynamic’ in DO;

3. Set S2 = S1 ∩ PS;

4. Search the biddable entity be in DEO;

5. Find all the events that be initiated, recording them as E;

6. Set E2 = E ∩ PS;

7. For t1 ∈ T1, t1 =< s1, e1, s
′
1 >, ∀e2 ∈ E2

8. If after e2 happens, the machine will send e1,

9. Construct t2 ∈ T2, t2 =< s1, e2, s
′
1 >

end
However, the generated act-effect model only describes

the desired commands that the biddable entity initiated to

impose effects on the causal entity. Nothing is said about

the undesired commands and its effects. Therefore we define

complete act-effect model for modeling both desired and

undesired effects.

Definition 4: Complete act-effect model

For an act-effect model A =< S,E, T > of a problem

P , ∀e ∈ E, s1 ∈ S, if ∀t ∈ T , ∃s2 ∈ S such that t =<
s1, e, s2 >, then A is a complete act-effect model of P .

The complete act-effect model demands that each state

of a causal entity will react to each command that the

biddable entity initiates. It includes effects both desired

and undesired. The desired effects can be obtained from

Alg. 1. The undesired effects need to be determined by

the requirement providers. Generally speaking, we often

recommend ignoring the commands. According to the above

analysis, the complete act-effect model can be generated by

following Process 1. There are three main steps in Process 1:

1) setting all the states of the casual entity from a general act-

effect model; 2) getting all the events of the biddable entity

from domain environment ontology; and 3) constructing all

the transitions both desired and undesired.

Process 1: Complete act-effect model generation process

Input: Problem description P =< M,ES, PS, IS,RS >,

biddable entity be ∈ ES, casual entity ce ∈ ES, domain

environment ontology DEO, act-effect model of (P, be, ce)
A2 =< S2, E2, T2 >
OutPut: complete act-model of (P, be, ce)A3 =<
S3, T3, E3 >
begin
1. Set S3 = S2;

2. Search the biddable entity be in DEO;

3. Find all the events that be initiated, recording them as E;

4. Set E3 = E;

5. For t1 ∈ T2

6. t1 ∈ T3

7. For e ∈ E2 ∀s ∈ S
8. If ∃s′ ∈ S such that < s, e, s′ >∈ T2;

9. else construct t3 =< s, e, s >∈ T3;

10. For e ∈ E/E2 ∀s ∈ S
11. Construct t3 =< s, e, s >∈ T3;

12. return A3;

end
After getting the complete act-effect model A3, the secu-

rity requirements as undesired effects could be generated by

deleting the desired effects in A2. The detailed process is

shown in Process 2.

Process 2: Security requirements generation process

Input: act-effect model A2 =< S2, E2, T2 >, and complete

act-model of (P, be, ce)A3 =< S3, T3, E3 >
OutPut: security requirements

begin
1. For t ∈ T3/T2, t =< s1, e1, s1 >
2. Output

3. “when ce is in s1, if be initiates e1, then M ignores it”

end

IV. CASE STUDY

We will illustrate our method by developing a secure

sluice gate control problem (adapted from Jackson’s book

[7]). The problem statement is as follows. A small sluice,
with a rising and falling gate, is often used in the irrigation
system. A computer system is needed to raise and lower the
sluice gate in response to the commands of an authorized
operator. The gate is opened and closed by rotating vertical
screws. The screws are driven by a small motor, which can
be controlled by clockw, anti, on and off pulses. There are
sensors at the top and bottom of the gate travel; at the top
it’s fully open, at the bottom it’s fully shut. Sometimes the
state of the sluice gate could be monitored by a monitor.

Before we deal with this problem, a domain software en-

vironment ontology named sluice gate environment ontology

must be built.

A. Sluice Gate Environment Ontology

According to the software environment, at least four steps

are needed for constructing a domain software environment

ontology:

1) extract environment entities and classify them

All the entities related to the sluice gate are possible envi-

ronment entities. The environment entities involved include:

• Operator (Biddable): someone who is in charge of

controlling the sluice gate.

• Monitor(Lexical) : a device for displaying information.

• Sluice Gate(Causal): can be rising and falling.

64

• Sensor(Lexical): at the top and bottom of the gate, can

be used to indicate the state of the gate.

• Screws (Causal): can be rotated to open and close the

door.

• Motor(Causal): can be controlled by clockwise, anti-

clockwise, on and off pulses, used to drive the screws.

2) find the attributes of the lexical entities and the events

sent by the biddable entities

The attributes of the lexical entities are as follows:

• Sensor has an attribute location, which is used to

indicate the location of the sluice gate. It has two

values, top and bottom.

• Monitor has an attribute state, used to describe the state

of the sluice gate. It has two values: Open and Shut.
Events that Operator sends are:

• OpenG: open the door

• ShutG: shut the door

3) construct the state machines for the causal entities

For each causal entity, analyze its state machine. For

instance, sluice gate and motor are causal entities. They

can be modeled as an entity-sluice gate and motor(SM).
Their states are changed from open to shut, shut to open,

respectively after receiving Anti and Clockw pulses. The state

machine is shown in Fig. 3.

Figure 3. State machine of SM entity

B. Secure Sluice Gate Control Problem

The secure sluice gate control system must conform to

the following rough problem statement:

The problem is to build a computer system to obey the
authorized operator’s command to control the sluice gate.

Step 1: fit the sluice gate control problem diagram to the

commanded behavior frame

According to [7], this problem can be fitted to the

commanded behavior frame whose problem frame is shown

in Fig. 4. Where, the sluice controller is the control ma-

chine, the gate & motor is the controlled domain, the

sluice operator is the operator, and the OpenG and ShutG
commands issued by the sluice operator are the phenomena

E4. The required behavior is called open & shut gate. The

general idea is that the sluice operator can position the

gate as desired by issuing OpenG and ShutG commands:

the machine should respond to ShutG by putting the gate &
motor into a shut state, and so on.

Step 2: identify attacks

1) build an act-effect model

In the sluice gate environment ontology, there are two

states of SM, Open and Shut, and two states events issued

Figure 4. Problem diagram of the sluice gate control problem

by OP including OpenG and ShutG. The command OpenG
corresponds to Clockw, and ShutG to Anti. According to

Alg. 1, replace ClockW with OpenG, and Anti with ShutG
in Fig. 3, then an act-effect model of SM can be obtained

as shown in Fig. 5.

Figure 5. Act-effect model of (SC,OP,SM)

2) get a complete act-effect model

According to Process 1, besides the act-effect model in

Figure 5, other state transitions need to be considered. For

example, if SM is Open, the command OpenG should never

work. Likewise, if SM is Shut, the command ShutG should

be ignored. Thus we get a complete act-effect model shown

in Fig. 6.

Figure 6. A complete act-effect model of (SC,OP,SM)

3) generate the security requirements

Security requirements of the sluice gate control problem

can be obtained from complete act-effect model in Fig. 6.

Using Process 2, the security requirements in Fig. 6 can be

expressed as:

• When SM is in the state of Open, if OP initiate a OpenG
command, SC ignores it.

• When SM is in the state of Shut, if OP initiate a ShutG
command, SC ignores it.

V. RELATED WORK

A number of efforts have been done in security require-

ments and engineering. For example, misuse cases [9][2] and

abuse cases [3] have been suggested as tools for threat anal-

ysis. However, these typically represent instances of attacks

that are often described in the language of implementation.

65

Chung [4] treats security requirements as softgoals, that are

identified and refined based on a knowledge catalogue of

decomposition methods, security techniques for satisfying

softgoals, and correlation rules. This approach focuses on the

elicitation process of high level security goals. The i* frame-

work [5] takes an organizational view by modeling trustwor-

thiness as softgoals to be satisfied. Attacks by malicious

users are modeled as negative contributions that obstruct

these softgoals. Above all, i* focuses on analysis of security

threats imposed by internal actors at the organizational level.

Attack trees [10] adopt a goal-oriented approach to refining

a root goal into a goal tree to derive scenarios. But this

approach is best suited to design.

Compared with the above work, our approach is at the

analysis phase which treats the solution domain as a black

box and focus on the domain. It complements the softgoal

view by analysing external threats in software systems

problem domains.

The most relevant works are two supplementary ap-

proaches based on the PF. The first one is defined by Lin

et al. [1]. They define so-called “anti-requirements” and the

corresponding “abuse frames” to use the ideas underlying

problem frames in security. An anti-requirement expresses

the intentions of a malicious user, and an abuse frame

represents a security threat. For a threat to be realised, its

abuse frame must be composed with the base problem frame

in the sense that the asset attacked in the abuse frame must

overlap, or be identified with, a domain of the base problem

frame. The purpose of anti-requirements and abuse frames is

to analyze security threats and derive security requirements.

Hatebur et al. [11][6] take a different approach using

problem frames. Security requirements are expressed using a

threat model. Security problem frames are used to consider

security requirements. The goal is to construct a machine

that fulfills the security requirements. Security problem

frames strictly refer to the problems concerning security.

In our work, the undesirable under-attack behaviors are

actually captured as “anti-requirements”. Following Lin et

al. ’s work, we provide a practicable way to obtain these

anti-requirements.

VI. CONCLUSION

Based on the commanded behavior frame and the abuse

frames, this paper proposes to elicit security requirements by

constructing an act-effect model. This model is generated by

referring to the properties of the environment in software

environment ontology. The security requirements can be

easily obtained from these act-effect models. The case study

shows that our approach is feasible.

An important benefit of our approach is the systematic and

repeatable of the security requirements elicitation. The soft-

ware environment ontology is used to guide the elicitation

process, which greatly reduces the analysts’workload. Our

approach is not a substitute for abuse frames or the other

traditional security engineering techniques. We have found

them to be useful in complementing such techniques when

deployed during requirements analysis. We are currently

examining ways of eliciting security requirements for the

other basic problem frames.

ACKNOWLEDGMENTS

This work was supported by the National Basic Re-

search and Development 973 Program of China (Grant

No.2009CB320702), the National Natural Science Foun-

dation of China (Grant No.61170084,No.90818026), and

Creative Team of NSFC (Grant No.61021004), the Opening

Fund of Top Key Discipline of Computer Software and

Theory in Zhejiang Provincial Colleges at Zhejiang Normal

University, as well as the National 863 High-tech Project of

China (Grant No.2011AA010101).

REFERENCES

[1] L.Lin, B.Nuseibeh, D.Ince, M.Jackson, and J.Moffett, “In-
troducing abuse frames for analyzing security requirements,”
in the 11th IEEE International Requirements Engineering
Conference (RE’03), 2003, pp. 371–372.

[2] I. Alexander, “Misuse cases: use cases with hostile intent,”
IEEE Software, vol. 20, no. 1, pp. 58–66, 2003.

[3] J. McDermott and C. Fox, “Using abuse case models for
security requirements analysis,” in Annual Computer Security
Applications Conference, 1999, pp. 6–10.

[4] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-
functional requirements in software engineering,” in Kluwer,
2000.

[5] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy
requirements analysis within a social setting,” in International
Conference on Requirements Engineering (RE03), 2003, pp.
8–12.

[6] H. Schmidt, D. Hatebur, and M. Heisel, A Pattern-Based
Method to Develop Secure Software. IGI Global, 2011, ch. 3,
pp. 32–74.

[7] M.Jackson, Problem Frames: Analyzing and Structuring soft-
ware development problems. Harlow, England:Addison-
Wesley, 2001.

[8] X.Chen, B. Yin, and Z. Jin, “An approach for capturing
software requirements from interactive scenarios,” Chinese
Jounal of Computer, vol. 34, no. 2, pp. 329–341, 2011, in
Chinese.

[9] G. Sindre and A. Opdahl, “Eliciting security requirements
by misuse cases,” in 37th International Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS-
PACIFIC 2000), 2000.

[10] B. Schneier, Attack Trees. Dr. Dobb’s Journal, 1999.

[11] D. Hatebur, M. Heisel, and H. Schmidt, “Using problem
frames for security engineeing,” Tech. Rep., 2006.

66

An Overview of the RSLingo Approach

David de Almeida Ferreira, Alberto Rodrigues da Silva

INESC-ID, Instituto Superior Técnico (IST), Lisbon, Portugal
{david.ferreira, alberto.silva}@inesc-id.pt

Abstract—In order to carve out from the open space of possi-
bilities the software system that the business stakeholders need
and expect, it is crucial to properly document all observable
and desired characteristics of the software system to be built,
i.e., its requirements. In this paper we present RSLingo, an
information extraction approach based on two domain-specific
languages: RSL-PL and RSL-IL. The former allows the defi-
nition of linguistic patterns to enable the automatic analysis of
requirements specifications written in natural language. While
the latter supports the formal specification of requirements-
-related information that is automatically extracted. Since it
enables further processing on the gathered knowledge, the
RSLingo approach allows one to automatically verify some
quality criteria and generate complementary representations
that assist stakeholders during requirements validation.

Keywords-Requirements Specification Language, Informa-
tion Extraction, Requirements Modeling.

I. INTRODUCTION

Although the body of knowledge provided by literature

in Requirements Engineering (RE) is extensive [1], [2],

RE activities still require a significant human effort. Most

RE techniques are human-centric, thus having a multi-

disciplinary background. Also, these techniques still lack

proper tool support. Several requirements management tools

exist [3], yet most RE techniques are manually applied, such

as when producing documents, tables, and diagrams [4].

The human-intensive labour that these activities entail makes

them time-consuming and error-prone. Thus, despite the RE

field’s best practices being well documented [1], [5], [6], the

quality of these artifacts strongly depends on the experience

and skills of the team members developing them.

It would be helpful if some of the manually performed

tasks, related with requirements text analysis, could be

automated for the following purposes:

• Domain analysis: for identifying all the relevant con-

cepts, their relations, and how the software system

manipulates them to provide the desired capabilities,

while abiding to all stated constraints regarding the

functionality that provides such capabilities to its users;

• Verification: for performing consistency checking on

the extracted domain knowledge, through inference and

ambiguity resolution based on glossaries and other

lexical resources, to prevent delays and extra costs due

to rework arising from belatedly discovered defects [2];

• Transformations: for automatically generating alterna-

tive requirements representations such as diagrams,

tables, reports, or even template-based paraphrases of

requirements statements in a controlled natural lan-

guage, according to specific viewpoints. Also, an initial

draft of the domain model and behavior models (e.g.,

UML class diagrams and UML use case diagrams,

respectively) can be produced and provided as an

input to software development processes that follow the

Model-Driven Engineering paradigm [7].

Recognizing that natural language text is the preferred and

recommended medium for documenting requirements [8],

and that ambiguity is an intrinsic characteristic of natural

language [9], we consider that there are two main approaches

to deal with this necessary nuisance within the field of RE:

(1) following a controlled natural language approach [10],

in which language ambiguity is removed by forcing users to

write according to an unambiguous predefined syntactical

structure and a limited vocabulary; or (2) adopting a more

flexible and extensible information extraction approach [11]

based on linguistic patterns where, despite ambiguity not

being completely eradicated, only the most plausible inter-

pretation is considered for further processing, according to

a best-fit match with the linguistic patterns recognized.
In this paper we overview RSLingo, an Information

Extraction [11] approach for automatically analyze and

formally specify requirements written in natural language.

The novelty of RSLingo arises from its strategy of using two

distinct domain-specific languages: RSL-PL and RSL-IL.

Each of these languages addresses a specific aspect regarding

the concerns that must be taken into consideration while

formally documenting requirements. The former addresses

the definition of common linguistic patterns of textual re-

quirements representations. The latter was designed to for-

mally convey RE-specific information, thus enabling further

processing of this information. Through the mapping process

between RSL-PL and RSL-IL, RSLingo aims to improve the

quality and rigor of requirements specifications written in ad
hoc natural language through complementary representations

that can be used to validate the specified requirements.
The structure of this paper is as follows. Section II in-

troduces the RSLingo approach, namely the main processes,

roles, and the advantages of using a multi-language strategy.

Section III discusses the strengths and limitations of the

RSLingo approach, by comparing it with related work.

Finally, Section IV concludes this paper and lays down some

ideas for future work.

67

II. THE RSLINGO APPROACH

Natural language is the most common form of require-

ments representation [12], [8] used within requirements

documents, requirements repositories (e.g., databases), and

even diagrams1. Thus, we advocate that, in order to further

benefit from the effort in developing requirements specifica-

tions in natural language [5], [6], suitable languages and

supporting toolsets are mandatory to better and properly

support requirements authoring and validation activities [1].

The first step towards the automation of requirements

analysis is treating requirements’ textual representations

according to a “white-box” approach in order to extract and

analyze their meaning. To this end, while not forcing stake-

holders to adopt a new notation, we propose an information

extraction approach based on simplified Natural Language

Processing (NLP) techniques, such as chunk parsing [13].

The aim of chunk parsing is not to enforce grammatical

correction, but to exploit the alignment between the struc-

ture of sentences and their semantics (i.e., the meaning of

requirements). Besides requiring less computational power,

chunk parsing is more flexible and robust while allowing

one to focus on pieces of information (i.e., the chunks) that

carry relevant requirements information. Therefore, despite

being less complex than the traditional full parsing approach,

these techniques still enable us to obtain the required domain

knowledge for a deeper insight on the system to be built.

These simplifications exploit the syntactic–semantic align-

ment imprinted in linguistic patterns [13].

Considering this premise, we named our approach

RSLingo. The name stems from the paronomasia on “RSL”

and “Lingo”. On the one hand, “RSL” (Requirements Speci-

fication Language) emphasizes the purpose of formally spec-

ifying requirements. The language that serves this purpose

is RSL-IL, in which “IL” stands for Intermediate Language.

On the other hand, “Lingo” emphasizes that its design has

roots in natural language, which are encoded in linguistic

patterns used during information extraction from the textual

requirements specification [11]. The language designed for

encoding these RE-specific linguistic patterns is RSL-PL, in

which “PL” stands for Pattern Language.

The RSLingo approach considers two distinct stages: def-

inition at process-level and usage at project-level. Process-

-level, depicted in Figure 1, comprises the definition (or

adaptation) of the linguistic patterns encoded in RSL-PL,

and also establishing the mapping between these linguistic

patterns and the semantically equivalent RSL-IL formal

structures. On the other hand, as illustrated in Figure 2,

project-level consists in applying its languages and using

the RSLingo’s toolset during a specific software project.

1) RSLingo’s Process-Level: as illustrated in Figure 1,

it considers an unusual role, which we named Requirements

1For a matter of simplicity, we henceforth refer to all of these types of
requirements representation media as “requirements specifications”.

Architect. As the adopted name suggests, the person per-

forming this role must have a thorough knowledge and vast

experience in RE, to be able to tailor the RSLingo approach

to the project at hand. Also, the Requirements Architect must

be able to identify common linguistic patterns that frequently

occur in natural language requirements specifications. The

expertise of those playing this role is a crucial factor for the

success of the RSLingo approach. However, after this tacit

knowledge is encoded into the mapping between RSL-PL

linguistic patterns and RSL-IL formal structures (the main

asset to be produced), this knowledge can be reused in

similar projects multiple times.

Figure 1. Overview of the RSLingo approach at process-level.

2) RSLingo’s Project-Level: as illustrated in Figure 2,

the approach is not disruptive with regard to traditional RE

approaches [1]. During the requirements specification activ-

ity, we consider two main roles: the Requirements Engineer
and the Business Stakeholder. RE is social and collaborative

by nature, thus we value the direct contribution of Business

Stakeholders. Those playing the role of Business Stake-

holder must be acquainted with the problem-domain, which

makes them valuable requirements sources and thus crucial

during the requirements validation activity [14]. Therefore,

the RSLingo approach encourages Business Stakeholders to

directly author requirements themselves. Within this col-

laborative environment, the purpose of the Requirements

Engineer role is to facilitate the requirements specification

process and help Business Stakeholders to discover their real
requirements [2].

According to the information flow represented in Fig-

ure 2, both the Requirements Engineer and the Business

Stakeholder roles contribute with textual inputs to the re-

quirements specification (written in natural language), which

are depicted as Requirements Specs with the ad
hoc natural language stereotype. Additionally, these

stakeholders should follow RE’s best practices of maintain-

ing a project-specific Glossary. This sort of structured

dictionary is of paramount importance because it establishes

68

Figure 2. Overview of the RSLingo approach at project-level.

a common vocabulary for key problem-domain terms, which

should be consistently used in a crosswise manner through-

out the project, since they help all stakeholders to reach a

shared understanding of those terms. Finally, the remaining

manually created artifact to be considered by the RSLingo

approach, required as an input to the RSLingo’s toolset,

is the RSL-PL => RSL-IL Mapping defined by the

Requirements Architect at RSLingo’s Process-Level.

Besides the sentence-level syntax–semantic alignment ad-

dressed by chunk parsing techniques, one must also take into

consideration the word-level lexical–semantic alignment.
Thus, to circumvent the lack of world knowledge, and in

addition to the three manually made artifacts previously

mentioned, the RSLingo toolset requires other Lexical
Resources, such as WordNet2 and VerbNet3 lexical

databases. These Lexical Resources are needed be-

cause RSLingo deals with ad hoc natural language. Without

these word-level resources it would be hard to “fully un-

derstand” requirements, namely to support disambiguation

tasks during the automatic extraction process, and provide

additional information on the meaning of terms and their

lexical relationships. However, in order to enable some

flexibility regarding the definition of project-specific terms,

the additional information provided by these Lexical
Resources is overridden by the terms defined in the

previously mentioned Glossary artifact.

In a nutshell, the RSLingo toolset works as follows: when

a best-fit match occurs between a linguistic pattern (defined

in RSL-PL) and a textual requirements representation, the

captures identified during the match provide relevant in-

formation considering the syntactic–semantic alignment of

2http://wordnet.princeton.edu/
3http://verbs.colorado.edu/verb-index/

the recognized linguistic patterns. After yielding a best-fit

match, a translation from each of the match’s captures to

the semantically equivalent RSL-IL formal structures takes

place, as described in Information Extraction literature [11].

III. DISCUSSION

RSLingo clearly contrasts with the common practice of

only dealing with the organization of requirements (e.g.,

document structure and requirements relations) and metadata

(e.g., requirements attributes) in databases or diagrams – the

“black-box” approach –, around which academia and indus-

try seem to have a greater concern. We regard documentation

best practices as being of the utmost importance [6], yet

computers should be able to automatically extract relevant

information pertaining to the applicational domain of the

system to be built, which is captured through the semantics

of words and phrases of their textual representations.

For addressing this matter, an alternative would be using

Controlled Natural Languages (CNL), such as Attempto

Controlled English (ACE) [10]. CNLs are subsets of natural

languages whose grammars and vocabularies have been

engineered in order to reduce or eliminate both ambiguity (to

improve computational processing) and complexity (to im-

prove readability). By completely avoiding ambiguity, CNLs

can be mapped to structures equivalent to First-Order Logic

formulas. CNLs are typically designed for knowledge engi-

neering, thus not addressing behavioral aspects as required

in RE. Additionally, they are easy to read, yet hard to write,

because writing with CNLs resemble programming with a

high-level programming language with strict grammar rules,

hence it is easy for untrained users to become frustrated

while using it. Therefore, CNLs require significant effort and

specialized tools (such as predictive editors) for creating (or

adapting) language-compliant specifications.

69

While recognizing the importance of controlled natural

languages within other fields, the obstacles they pose within

RE’s collaborative work environments are serious impedi-

ments to their adoption by untrained users. These limitations

prevent domain experts from directly contributing with their

own requirements text, which is why we propose a flexible

linguistic approach based on Information Extraction [11].

RSLingo follows an approach similar to the CIRCE

project [15]. CIRCE provides a “lightweight formal

method”, supported by model-checking techniques, to pro-

duce a validation of the requirements specifications written

in natural language, and its toolset provides feedback to

the user with a multi-perspective approach. To this end,

CIRCE uses fuzzy-matching parsing to extract knowledge

from requirements specifications, which is then used to

generate different views to analyze the information captured

from requirements text.

However, the RSLingo approach goes further in the con-

ceptual distinction between the two different concerns to be

considered: defining linguistic patterns and formally speci-

fying requirements knowledge. This separation of concerns

is addressed by two domain-specific languages: RSL-PL

and RSL-IL, respectively. The higher abstraction provided

by these two languages makes them more user-friendly

for those playing the Requirements Architect role. Also,

this separation of concerns allows one to evolve the set of

recognized linguistic patterns in RSL-PL while maintaining

the requirements knowledge already encoded in RSL-IL

specifications. Being a fixed language, RSL-IL provides a

sound and stable knowledge base of requirements specifi-

cations, supporting reuse of specifications independently of

RSL-PL extensions. Overall, these two languages (and the

mapping between them) provide a requirements specification

approach – RSLingo – endowed with extensibility and

reusability mechanisms.

IV. CONCLUSION

In this paper we overview RSLingo, a linguistic approach

to extract and formally specify RE-specific information

from requirements specifications written in natural language.

RSLingo follows a multi-language strategy, since its op-

erationalization relies on two purpose-specific languages,

RSL-PL and RSL-IL, and the mapping between them.

Unlike other requirements specification approaches, which

treat requirements representations as “opaque entities”, the

RSLingo approach allow us to gain a deeper understanding

of the system to build through NLP techniques.

As future work, we plan to conduct laboratory-controlled

case studies to validate the RSLingo approach, because we

still need to evaluate it according to the users’ perspective.

The next step in this research roadmap is to exploit the

potential of RSLingo in producing alternative representa-

tions from requirements specifications formally encoded in

RSL-IL, besides textual requirements paraphrases.

REFERENCES

[1] K. Pohl, Requirements Engineering: Fundamentals, Princi-
ples, and Techniques, 1st ed. Springer, July 2010, ISBN-13:
978-3642125775.

[2] R. Young, The Requirements Engineering Handbook, 1st ed.
Artech Print on Demand, November 2003, ISBN: 978-
1580532662.

[3] INCOSE, “Requirements Management Tools Survey,” Re-
trieved Monday 12th March, 2012 from http://www.incose.
org/ProductsPubs/products/rmsurvey.aspx.

[4] E. Gottesdiener, The Software Requirements Memory Jogger:
A Desktop Guide to Help Software and Business Teams
Develop and Manage Requirements, 1st ed. Goal / QPC,
October 2009, ISBN-13: 978-1576811146.

[5] IEEE Computer Society, “IEEE Recommended Practice for
Software Requirements Specifications,” IEEE Std 830-1998,
August 1998.

[6] B. Kovitz, Practical Software Requirements: Manual of Con-
tent and Style. Manning, July 1998.

[7] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering,” Computer, vol. 39, no. 2, pp. 25–31, February
2006.

[8] H. Foster, A. Krolnik, and D. Lacey, Assertion-based Design.
Springer, 2004, ch. 8 - Specifying Correct Behavior.

[9] D. C. Gause and G. M. Weinberg, Exploring Requirements:
Quality Before Design. Dorset House Publishing Company,
Incorporated, September 1989.

[10] N. Fuchs, U. Schwertel, and R. Schwitter, “Attempto Con-
trolled English – Not Just Another Logic Specification Lan-
guage,” in Logic-Based Program Synthesis and Transforma-
tion, P. Flener, Ed., Eighth International Workshop LOP-
STR’98. Manchester, UK: Springer, June 1999, pp. 1–20.

[11] H. Cunningham, “Information Extraction, Automatic,” in En-
cyclopedia of Language & Linguistics, 2nd ed. Elsevier,
2006, vol. 5, pp. 665–677.

[12] A. Davis, Just Enough Requirements Management: Where
Software Development Meets Marketing, 1st ed. Dorset
House Publishing, May 2005.

[13] S. Bird, E. Klein, and E. Loper, Natural Language Processing
with Python, 1st ed. O’Reilly Media, June 2009, ISBN-13:
978-0596516499.

[14] K. Pohl and C. Rupp, Requirements Engineering Funda-
mentals: A Study Guide for the Certified Professional for
Requirements Engineering Exam – Foundation Level – IREB
compliant, 1st ed. Rocky Nook, April 2011, ISBN-13: 978-
1933952819.

[15] V. Ambriola and V. Gervasi, “On the Systematic Analysis
of Natural Language Requirements with CIRCE,” Automated
Software Eng., vol. 13, no. 1, pp. 107–167, January 2006.

70

DETECTING EMERGENT BEHAVIOR IN
DISTRIBUTED SYSTEMS CAUSED BY

OVERGENERALIZATION

Seyedehmehrnaz Mireslami Mohammad Moshirpour Behrouz H. Far

Department of Electrical and Computer Engineering, University of Calgary, Canada
{smiresla,mmoshirp,far}@ucalgary.ca

Abstract— Distributed system design faces many challenges
due to lack of central control. Emergent behavior is a vital
problem in distributed systems and leads to unexpected
behaviors and major faults. Emergent behaviors are usually
categorized into two groups: emergent behaviors occur due to
scenarios incompleteness and emergent behaviors that are
produced as a result of synthesis of behavior models. In this
paper, the methods for detecting the second group of emergent
behaviors are studied and a technique for synthesis of behavior
models from scenarios is developed to be employed for
detecting emergent behaviors. The proposed technique detects
overgeneralization in the behavior model synthesis.
Overgeneralization happens as the result of behavior model
synthesis and depends on the assumptions of the process. In
addition, the proposed technique addresses the issue of the
existing ad-hoc methodologies by providing an automated
algorithm. This algorithm can be used by a syntax checker to
automatically detect the emergent behaviors in the scenarios.
The proposed algorithm is validated using a case study of a
mine sweeping robot.

Keywords; Distributed systems; Emergent behavior; Message
sequence chart; Overgeneralization.

I. INTRODUCTION
A distributed system is composed of several components

without a central controller [1]. Distributed systems
specification is usually composed of a set of scenarios that
show system components and messages sent between them.
Scenarios are generally shown using Message Sequence
Charts (MSCs) or sequence diagrams [2, 3]. Behavior of the
components can be generated using the scenarios.

A popular approach for analyzing the behavior of system
components, is going from scenarios to state machines, i.e.
synthesis of behavior models [4-6]. Each component is
modeled by a state machine and the messages that are sent
and received determine the states and transitions.

In the process of behavior model synthesis, several
behaviors not originally intended for system may happen
that are called em ergent behaviors [8-10]. They are eith er
unexpected situations that may be caused by incompleteness
of the scenarios or produced as the results of behavior model

synthesis. Detecting emergent behavior in early design
stages reduces the deployment costs significantly [11].

There are two types of emergent behaviors: first group is
detected by comparing the behavior models and scenario
specifications by considering the properties of the system.
The second group is result of overgeneralization [7]. Hence,
it depends on the rules and assumptions of the behavior
model synthesis.

Only a few works have targeted the overgeneralization
problem. In [7], synthesis of state machines from scenarios
is proposed. However, the relationships between scenarios
are rather ambiguously defined. Blending scenarios is
necessary as it provides a comprehensive overview of
system behavior. Two methods are proposed to combine the
scenarios: state identification and scenario composition. In
state identification [5, 6, 12], the components are f irst
modeled with different states in the state machines and
similar component states a re identified and combined to
enable the scenarios to merge. In [2], another approach for
merging scenarios is proposed where scenarios are split to
smaller parts with lower complexity and high-level MSC
graphs are used to blen d the smaller sequence of behavior
since they are simpler to manage.

In [13], a technique to identify the identical states that
may cause emergent behaviors is proposed and a method to
synthesize emergent behaviors by merging identical states is
presented. This leads to detecting emergent behavior due to
presence of identical states. However, although identical
states are the potential causes of emergent behavior, not all
identical states may lead to e mergent behavior. The
shortcomings of this technique are: first, all identical sta tes
are used for merging the state m achines, and
overgeneralization is inevitable; and second, it relies on
designer to decide which states causes emergent behavior.

As ad-hoc methods are unreliable and inefficient, in this
paper, we replace th e ad-hoc methodology in [13] by an
automated method. A technique is devised to distinguish the
identical states that cause emergent behaviors. To have a fair
comparison with [13], the same mine sweeping robot system
used in [13] is considered.

71

The rest of this paper is organized as follows: In Section
II, a case study to compare this work and previous works is
presented. In Sections III and IV, behavioral modeling and
emergent behavior detection are discus sed and ou r new
algorithm is presented. Finally, in Section V, co nclusions
and future work are given.

II. CASE STUDY

To obtain a f air comparison between the proposed
technique and th e technique presented in [13], the same
prototype of mine sweeping robot is used. The robot's
objective is to pass 10km maze-based routes while
identifying and flagging the existing mines. The robot is not
given any map and just takes advantage of the information
received from its sensors. The robot has four sensors: a GPS
sensor that operates to co ntrol the certain distance (about
10km) robot is allowed to pass , an infrared (IR) sensor to
identify mines, a battery sensor that checks if the battery can
provide the power and an ultra-sonic (ULT) sensor which
helps the robot to n avigate the routes by finding the
obstacles. The messages from these sensors are sent to t he
client control to be processed and sent to the server control
in order to take necessary actions.

Battery ULT sensorIR sensorGPS Client control Server control

Send signal (Battery has power)

Rotate

Motors move forward
Send signal (obstacle detected)

Stop

Motors stop
Send signal (mine detected)

Stop

Motors stop

Motors move forward

Stop motors

Stop motors

Flag mine location

Figure 1. MSC m1

Two scenarios that represent the behavior of the robot are
presented. In Figure 1, MSC m1 shows where robot moves
since the battery has power. Later, based on the message
sent from IR sensor, the motor stops due to detection of an
obstacle. Then, ULT sensor sends a message indicating
detection of a mine but the robot has already stopped and so
the mine is just flagged.

In Figure 2, th e robot m oves since the ULT sensor,
infrared and battery sensors do not cause the robot to s top.
As in [13], messages are generalized to represent objective
instead of implementation. For example, there are t hree
messages in Figure 1, which have the same purpose of "send
signal" where the contents of the messages are different.

Server controlClient controlULT sensorIR sensorGPSBattery

Send signal (Battery has power)

Rotate

Motors move
Send signal (no obstacle detected)

Rotate

Motors move
Send signal (no mine detected)

Rotate

Motors move

Motors move forward

Motors move forward

Motors move forward

 Figure 2. MSC m2

III. BEHAVIORAL MODELING

In this paper, the process of converting the scenarios into
the corresponding state machines based on the definitions
given in [13] is perf ormed. These definitions are t hen
applied to the case study to validate their effectiveness.

As proposed in [13], in a message sequence chart MSC,
Finite State Machines (FSMs) are built for any component i.
In Figure 3, the FSMs for the client control component in
MSC m1 (Figure 1) are shown. are the initial
state, the ith state and the final state of the component client
control in MSC m1, respectively.

sm1
0

sm1
f

sm1
6

sm1
1

Send signal (battery has power) Rotate

Send signal(obstacle detected)

stopSend signal(mine detected)

Stop

sm1
2

sm1
5

motors move forward

stop motors

stop motors

sm1
7

sm1
8

sm1
3

sm1
4

 Figure 3. FSM for component client control of MSC m1

Then, a certain value is given to each state of the FSMs
of each component. This technique, is based o n the
definitions initially presented in [7].

Definition 1: If component i needs the result of message
 for doing , then message is a semantical

cause for message and is shown by ,
where represents the jth message interacted by the
component i of MSC m.

The semantic cause is an invariant feature of the system.
As an example, in Figure 3, the message "send signal (mine
detected)" is a semantic cause for performing message
"stop". Each state of a component is defined by considering
the messages that are se mantic causes for messages that
come after it. The semantic cause is resulted from the
domain knowledge and defined as:

72

Definition 2: For a set of MSCs M, the domain theory
Di for each co mponent i is defined as: ,
then the pair is in the domain theory Di.

From Definition 2, (" send signal (mine detected)",
"stop") from Figure 3 is in the domain theory. This is used
in [7] to define a method to quantify the states.

In [6], several variables are defined to differentiate the
states of a component. However, it leads to having different
behaviors when producing various behavior models for a
single component. Choosing between these models is hard
as they cannot be compared. In [13], it is proposed to use the
invariant properties of the system to find a unique way of
calculating the state values as described below:

Definition 3: In the finite state machine shown with
tuple Σ , for the final state the
state value is calculated as: , and for
0 < k < f the state value is defined as follows:

i) , if there exist
some j and l such that j is the maximum index that

.
ii) if case i) does n ot hold

but , for some k < .
iii) , if none of the above cases hold.

The value of is related to message that comes after.
For case i), the semantic cause is .
For case ii), is the only semantic cause. Finally,
there is not any semantic cause for case iii). The Order of
messages is used to achieve state values.

The state v alues that are f ound using Definition 3 are
effective for analyzing the system behaviors. After
constructing the FSMs from various scenarios or a sin gle
scenario, to clearly analyze the system behavior, the FSMs
for each co mponent are blended. Therefore, the concept of
identical states is defined as:

Definition 4: For each component i, two states and
 form the MSCs m and n (m can be eq ual to n) are

identical states if any of following holds:
i) j = k for .
ii) .

1

11

1

V(sm1
1)

V(sm1
1)

V(sm1
1)

Send signal(less than 10 km)

Rotate

Send signal(obstacle detected) Stop

Send signal(mine detected)

StopV(sm1
2)

V(sm1
2)

V(sm1
2)

motors move forward

stop motors

stop motors

Figure 4. Blending FSMs for client control of MSC m1

Following the example in Figure 3, the FSMs are
blended in Figure 4 where states are as signed with
appropriate state values. Initial and final state values are 1.

The presence of identical states in the behavior models
may result in emergent behavior since the component may
be confused when the next message is received. Therefore,
dealing with these issues is an i mportant challenge in
analyzing the behavior models. Once the identical states are
found, the finite state machines are merged by merging the
found identical states. In Figure 3, emergent behavior occurs
for component client control as a result of identical states

and in MSC m1 when the content of "send
signal" messages are not considered. These identical states
are then merged as shown in Figure 5.

f0 f1

ff

ff

Send signal

motors move forward

Stop motors

f2

f3

Rotate

Stop

Figure 5. Merging identical states of FSMs for client control of
MSC m1

IV. DETECTING EMERGENT BEHAVIOR

The method proposed in [13] merges all the identical
states without considering whether they may produce
emergent behaviors or not. This is an important issue since
merging the identical states that do not produce emergent
behaviors results in overgeneralization in th e behavior
models. Furthermore, merging all th e identical states takes
too much unnecessary time and resources.

 In the FSMs of MSC m1 (Figure 3), identical states
leading to e mergent behavior are shown. These states are
identified and merged in Figures 4 and 5 , respectively. In
Figure 6, another example is considered where the FSM for
MSC m2 (presented in Figure 2) is given. Then, states
values are found and the identical states are identified to be

, and . However, these states do n ot lead to
emergent behaviors as the component never gets confused in
performing the messages. Hence, merging is not necessary.

Sm2
1Sm20

Send signal (battry has power) Rotate

Sm2
7 Sm2

5

Send signal(no obstacle detected)

Send signal (no mine detected)

Sm2
f

Rotate

Rotate

Sm2
2

Sm2
4

Sm2
8

motors move forward

motors move forward

motors move forward

Sm2
3

Sm2
6

Figure 6. FSM for component client control of MSC m2

73

Since most of the existing approaches merge all of the
identical states, they result in overgeneralized FSMs. In [7],
some criteria are propos ed to identify identical states that
have emergent behavior. This definition is as follows:
Definition 5: The component i in MSC m has emergent
behavior in state , if there exists MSC n (m and n can be
equal) and a state , such that and are identical
states and one of the following holds:

i) = where l is a c omponent
and represents message with content c sent
from i to l.

ii) = where l is a co mponent
and represents a message with content c
received by i from l. Component l sends a message
with content c to component i such that i
does not receive this message before event of

 in MSC m and by removing this event, still
component l can send .

iii) State is the final state of MSC n and
 is a send message for component i.

iv) Case ii) h olds except th at by removing event of
 in MSC m, component l cannot send

anymore. Then, there exist events e and w for l
such that the event of is syntactical cause for

. Then, states and are identical
and emergent behavior occurs for l.

Only the identical states that result in emergent
behaviors based on Definition 5 s hould be merged and
unnecessary merging for the other states should be avoided.
Behavior Model algorithm (Figure 7), is prop osed to
synthesize behavior models while preventing emergent
behaviors due to overgeneralization.

Algorithm: Behavior Model
Input: Set of message sequence charts (M)
Output: State machines for each component

1. For each component i:
2. Make domain theory Di based on Definition 2.
3. Make state machines and assign state values based on Definition 3.
4. Find identical states based on Definition 4.
5. For each set of identical states:

a. If they lead to emergent behavior based on Definition 5:
Merge the states to one single state.

b. Otherwise, no merging is needed.

Figure 7. Synthesis of emergent behavior preventing
overgeneralization

To show the effectiveness of Definition 5 and the
proposed algorithm, the case study is considered. MSC m1
has emergent behavior since case i) of Definition 5 holds for
it. For th e FSMs of client control in MSC m2 (shown in
Figure 6) the proposed algorithm is applied and the identical
states are f ound to be , and . However, these
states do not lead to e mergent behavior since they do not
hold any of four cases in Definition 5. The reason is that in

cases ii) and i v) of Definition 5, the event that comes after
the identical states should be a receive message while in this
example, the event is a send message. In cases i) and iii) ,
although the event that comes after identical states is
sending message which matches the example, one of the
identical states should be th e final state i n the machine or
the next event should be different for the identical states in
order to produce emergent behavior. Since none of these is
valid for the example, the identical states of MSC m2 do not
lead to emergent behavior and merging them is unnecessary.

V. CONCLUSIONS AND FUTURE WORK

It has been reported that detecting unwanted behavior
during the design phase is 20 times cheaper th an finding
them during the deployment phase [11]. This paper provides
a systematic approach to anal yze system requirements for
defects, while saving on overhead by replacing ad-hoc
methodologies with automated ones. A new algorithm is
developed for behavior model synthesis and emergent
behavior detection while preventing overgeneralization. The
proposed algorithm improves the existing ad-hoc methods
[7, 13]. The future work is implementing the proposed
algorithm as a syntax checker to provide an automated tool
to check and correct the system designs. Moreover this work
can be u tilized as part o f a comprehensive framework to
analyze system requirements and design.

REFERENCES
[1] M. Moshirpour, "Model-Based Detection of Emergent Behavior In

Distributed and Multi-Agent Systems from Component Level
Perspective," in Dept. of Electrical and Computer Engineering.
Master of Science Thesis. University of Calgary, 2011.

[2] "ITU: Message Sequence Charts. Recommendation, International
Telecommunication Union," 1992.

[3] "Recommendation Z.120: Message Sequence Chart," Geneva, 1996.
[4] D. Harel and H. K ugler, "Synthesizing state-based object systems

from lsc specifications," IJFCS, 2002.
[5] I. Kruger, R. G rosu, P. Scholz, and M. Broy, "From mscs to

statecharts," in Franz j. rammig (ed.): Distributed and parallel
embedded systems: Kluwer Academic Publis, 1999.

[6] J. Whittle and J. Schumann, "Generating statecharts designs from
scenarios," in ICSE Limerick, Ireland, 2000.

[7] A. Mousavi, "Inference of Emergent Behaviours of Scenario-Based
Specifications," in Dept. of Electrical and Computer Engineering.,
PhD Thesis: University of Calgary, 2009.

[8] J. Grabowski, "Test Generation and Test Case Specification with
Message Sequence Charts," in Institute for Informatics and Applied
Mathematics: Universitat Bern, 1994.

[9] H. Muccini, "Detecting implied scenarios analyzing nonlocal
branching choices," in FASE 2003 Warsaw, Poland.

[10] S. Uchitel, J. Kramer, and J. Magee, "Negative scenarios for implied
scenario elicitation," in FSE 2002.

[11] R.F. Goldsmith, Discovering Real Business Requirements for
Software Project Success. Norwood MA: Artech House, Inc., 2004.

[12] K. Koskimies, T. Mannisto, T. Systa, and J. Tuonmi, "Automated
support for modeling oo software," IEEE Software, pp. 15(1):87–94,
1998.

[13] M. Moshirpour, A. Mousavi, and B.H. Far, "Detecting Emergent
Behavior in D istributed Systems Using Scenario-Based
Specifications," in Proc. of SEKE, 2010, pp. 349-354.

74

Stability of Filter-Based Feature Selection Methods

for Imbalanced Software Measurement Data

Kehan Gao
Eastern Connecticut State University

Willimantic, Connecticut 06226

gaok@easternct.edu

Taghi M. Khoshgoftaar
Florida Atlantic University

Boca Raton, Florida 33431

khoshgof@fau.edu

Amri Napolitano
Florida Atlantic University

Boca Raton, Florida 33431

amrifau@gmail.com

Abstract—Feature selection (FS) is necessary for software quality
modeling, especially when a large number of software metrics are
available in data repositories. Selecting a subset of features (software
metrics) that best describe the class attribute (module’s quality) can bring
many benefits such as reducing the training time of learners, improving
the comprehensibility of the resulting classifier models, and facilitating
software metrics collection, organization, and management. Another
challenge of software measurement data is the presence of skewed or
imbalanced distributions between the two types of modules (e.g., many
more not-fault-prone modules than fault-prone modules found in those
datasets). In this paper, we use data sampling to deal with this problem.
Previous research usually evaluates FS techniques by comparing the
performance of classifiers before and after the training data is modified.
This study assesses FS techniques from a different perspective: stability.
Stability is important because FS techniques that reliably produce the
same features are more trustworthy. We consider six filter-based feature
selection methods and six data sampling approaches. We also vary the
number of features selected in the feature subsets. We want to examine
the effect of data sampling approaches on the stability of FS when using
the sampled data. The experiments were performed on nine datasets
from a real-world software project. The results demonstrate that different
FS techniques may have quite different stability behaviors. In addition,
other factors, such as the sampling technique used and the number of
attributes retained in the feature subset, may also greatly influence the
stability results.

Index Terms—software defect prediction, software metrics, feature
selection, data sampling, stability

I. INTRODUCTION

Software defect prediction is a process of building a classifier by

using software metrics and fault data collected during the previous

software project and then applying this classifier to predict the quality

of new program modules (e.g., classify the program modules as either

fault-prone (fp) or not-fault-prone (nfp)) [1]. The benefit of such

prediction is that the project resources can be strategically allocated

to the program modules according to the prediction. For instance,

intensive inspection and testing can first be applied to the potentially

problematic modules, thereby improving the quality of the product.

Two problems that often come with the software measurement data

are high-dimensionality and class imbalance. High-dimensionality
refers to the situation where the number of available software metrics

is too large to easily work with. Several problems may arise due to

high-dimensionality, including longer learning time of a classification

algorithm and a decline in prediction performance of a classification

model. Class imbalance occurs when instances of one class in a

dataset appear more frequently than instances of the other class. This

phenomenon is more prevalent in high-assurance and mission-critical

software systems, where the type of nfp modules is always dominant

between the two types (fp and nfp) of modules in a given dataset.

The primary weakness of such imbalanced data is that a traditional

classification algorithm tends to classify fp modules as nfp, resulting

in more customer-discovered faults that have serious consequences

and high repair cost.

Feature selection and data sampling are often employed to deal

with these problems. Feature selection (FS) is a process of choosing

a subset of input variables by eliminating features with little or no

predictive information. Although FS techniques have been studied

in a variety of domains [2], [3] for many years, research working

on improving software defect prediction through metric (feature)

selection just started recently [4], [5]. Data sampling is a common

technique to alter the relative proportion of the different types of

modules, therefore achieving a more balanced dataset. Note that in

this study, the training dataset is sampled to change the relative

proportion of the nfp and fp modules before FS is performed.

To evaluate a FS technique, most previous research focuses on

comparing the performance of classification models before and after

a specific FS technique is performed. In this paper, we use a different

way to assess FS techniques – stability. Stability of a FS technique

usually refers to the sensitivity of the technique to variations in

the training set. Practitioners may prefer a FS algorithm that can

produce consistent results despite such variations. For example, if a

FS technique produces the same or similar results when using the

entire training dataset or only half of it, a practitioner may save the

computation time and use this FS technique on the smaller training

dataset to get the same reliable results.

In this study, we are more interested in investigating the stability

of FS techniques with respect to various data sampling approaches.

The strategy we adopted is that the ranking of features from each

sampled dataset is compared to the ranking from the original dataset

which it came from. Those FS techniques that are able to produce

consistent outputs with respect to the different perturbations (due to

sampling) in the input data are considered stable (robust), or say they

are insensitive to that particular data sampling technique. Since the

purpose of data sampling here is to alter class proportions rather than

changing the size of the training dataset, the consistent outputs for

feature rankings imply that the data sampling technique has less or no

effect on the FS technique. To our knowledge, limited research has

been done on studying the impact of data sampling on the stability

of feature selection.

The case study of this paper is performed on nine datasets from a

real-world software project. We examine six filter-based FS methods,

including five threshold-based techniques (mutual information (MI),

Kolmogorov-Smirnov statistic (KS), geometric mean (GM), area

under the ROC curve (AUC), and area under the precision-recall

curve (PRC)), and the signal-to-noise ratio (S2N) approach. We em-

ploy three data sampling techniques (random undersampling (RUS),

random oversampling (ROS), and synthetic minority oversampling

(SMO)), each combined with two post-sampling class ratios. Besides,

we vary from 2 to 10 the number of features retained in the feature

75

subsets. The empirical results demonstrate that S2N, AUC, and PRC

show higher stability performance than the other filters. Moreover, the

filters with the ROS sampling technique have higer stability behavior

than they do with the other sampling methods. Finally, the stability

of the FS techniques increases as the number of attributes retained

in the feature subset increases.

The remainder of the paper is organized as follows: Section

II discusses related work. Section III outlines the methods and

techniques used in this paper. Section IV describes nine datasets

used in the case study. Section V presents the case study including

design, results, and analysis. Finally, we summarize our conclusions

and provide suggestions for future work in Section VI.

II. RELATED WORK

Feature selection (FS), also known as attribute selection or variable

selection, is a process of selecting some subset of the features which

are useful in building a classifier. FS techniques can be divided into

wrapper and filter categories [3]. Wrappers use a search algorithm to

search through the space of possible features, evaluate each subset

through a learning algorithm, and determine which ones are finally

selected in building a classifier. Filters use a simpler statistical

measure to evaluate each subset or individual feature rather than using

a learning algorithm. Feature selection may also be categorized as

ranking or subset selection [3]. Feature ranking scores the attributes

based on their individual predictive power, while subset selection
selects subset of attributes that collectively have good prediction

capability. In this study, the FS techniques used belong to the filter-
based feature ranking category.

Class imbalance, which appears in various domains, is another

significant problem in data mining. One effective method for allevi-

ating the adverse effect of skewed class distribution is sampling [6],

[7]. While considerable work has been done for feature selection

and data sampling separately, research on investigating both together

started recently. Chen et al. [8] have studied data row pruning (data

sampling) and data column pruning (feature selection) in the context

of software cost/effort estimation. However, the data sampling in their

study was not specifically for the class imbalance problem, and also

the classification models were not for binary problems.

To evaluate FS techniques, most existing research works on com-

paring the classification behaviors of models built with the selected

features to those built with the complete set of features. Instead

of using classification performance, the present work assesses FS

techniques using stability. The stability of a FS algorithm is normally

defined as the degree of consensus between the output of that FS

method as it pertains to randomly-selected subsets of the same input

data. Lustgarten et al. [9] presented an adjusted stability measure

that computes robustness of a FS method with respect to random FS.

Saeys et al. [10] assessed the robustness of FS techniques using the

Spearman rank correlation coefficient and Jaccard index. Abeel et

al. [11] presented a general framework for stability analysis of the

FS techniques. They showed that stability could be improved through

ensemble FS. Alelyani et al. [12] jointly considered both sample sets’

similarity and feature list similarity in stability assessment for FS

algorithms.

III. METHODOLOGY

A. Filter-based feature ranking techniques

The procedure of filter-based feature ranking is to score each

feature (attribute) according to a particular method (metric), allowing

the selection of the best set of features. In this study, we use five

threshold-based feature selection techniques and the signal-to-noise

ratio method.

1) Threshold-based feature selection (TBFS) methods: The TBFS

techniques were proposed by our research team and implemented

within WEKA [2]. The procedure is shown in Algorithm 1. Each

independent attribute works individually with the class attribute, and

that two-attribute dataset is evaluated using different performance

metrics. More specifically, the TBFS procedure includes two steps:

(1) normalizing the attribute values so that they fall between 0 and

1; and (2) treating those values as the posterior probabilities from

which to calculate classifier performance metrics.

Analogous to the procedure for calculating rates in a classification

setting with a posterior probability, the true positive (TPR), true

negative (TNR), false positive (FPR), and false negative (FNR)

rates can be calculated at each threshold t ∈ [0, 1] relative to the

normalized attribute X̂j . Precision PRE(t) is defined as the frac-

tion of the predicted-positive examples which are actually positive.

The feature rankers utilize five metrics: Mutual Information (MI),

Kolmogorov-Smirnov Statistic (KS), Geometric Mean (GM), Area

Under the ROC Curve (AUC), and Area Under the Precision-Recall

Curve (PRC). The value is computed in both directions: first treating

instances above the threshold (t) as positive and below as negative,

then treating instances above the threshold as negative and below as

positive. The better result is used. Five metrics are calculated for

each attribute individually, and attributes with higher values for MI,

KS, GM, AUC, and PRC are determined to better predict the class

attribute. In this manner, the attributes can be ranked from most to

least predictive based on each of the five metrics. For more detailed

information about these five metrics, please reference the work of

Dittman et al. [2].

2) Signal-to-Noise Ratio (S2N) Technique: S2N represents how

well a feature separates two classes. The equation for signal-to-noise

is:

S2N = (μP − μN)/(σP + σN) (1)

where μP and μN are the mean values of that particular attribute

in all of the instances which belong to a specific class, which is

either P or N (the positive and negative classes). σP and σN are

the standard deviations of that particular attribute as it relates to the

class. The larger the S2N ratio, the more relevant a feature is to the

dataset [13].

B. Data Sampling Techniques

We here present three sampling techniques, which stand for the

major paradigms in data sampling: random and intelligent under and

oversampling.

1 Random Sampling Techniques

The two most common data sampling techniques are random

oversampling (ROS) and random undersampling (RUS). Ran-
dom oversampling duplicates instances (selected randomly) of

the minority class. Random undersampling randomly discards

instances from the majority class.

2 Synthetic Minority Oversampling Technique

Chawla et al. proposed an intelligent oversampling method

called Synthetic Minority Oversampling Technique (SMOTE)

[6]. SMOTE (denoted SMO in this work) adds new, artificial

minority examples by extrapolating between preexisting minor-

ity instances rather than simply duplicating original examples.

The newly created instances cause the minority regions of the

feature-space to be fuller and more general.

76

Algorithm 1: Threshold-Based Feature Selection Algorithm

input :
a. Dataset D with features Xj , j = 1, . . . ,m;
b. Each instance x ∈ D is assigned to one of two classes c(x) ∈ {P,N};
c. |P | = |{x ∈ D|c(x) = P}|, |N | = |{x ∈ D|c(x) = N}|;
d. The value of attribute Xj for instance x is denoted Xj(x);
e. Metric ω ∈ {MI, KS, GM, AUC, PRC}.

output: Ranking R = {r1, r2, . . . , rm} where attribute Xj is the rj -th most significant attribute as determined by metric ω.

for Xj , j = 1, . . . ,m do
Normalize Xj �→ X̂j =

Xj−min(Xj)

max(Xj)−min(Xj)
, X̂j ∈ [0, 1];

for t ∈ [0, 1] do
Compute Basic Metrics:
Classification Rule 1: ∀ x ∈ D, ĉt(x) = P ⇐⇒ X̂j(x) > t, otherwise ĉt(x) = N .
TP (t) =

∣∣{x|(ĉt(x) = P) ∩ (c(x) = P)}∣∣ , TN(t) =
∣∣{x|(ĉt(x) = N) ∩ (c(x) = N)}∣∣ ,

FP (t) =
∣
∣{x|(ĉt(x) = P) ∩ (c(x) = N)}∣∣ , FN(t) =

∣
∣{x|(ĉt(x) = N) ∩ (c(x) = P)}∣∣ ,

TPR(t) =
|TP (t)|

|P | , TNR(t) =
|TN(t)|

|N| , FPR(t) = 1 − TNR(t), FNR(t) = 1 − TPR(t),

PRE(t) =
|TP (t)|

|TP (t)|+|FP (t)| , NPV (t) =
|TN(t)|

|TN(t)|+|FN(t)| .

Compute Final Metrics:
Metric ω Calculation

KS1(X̂j) =
max

t∈[0,1] |TPR(t) − FPR(t)|
GM1(X̂j) =

max
t∈[0,1]

√
TPR(t) × TNR(t)

AUC1(X̂j) = Area under the curve generated by (FPR(t), TPR(t)), t ∈ [0, 1]

PRC1(X̂j) = Area under the curve generated by (PRE(t), TPR(t)), t ∈ [0, 1]

MI1(X̂j) =
max

t∈[0,1]

∑
ĉt∈{P,N}

∑
c∈{P,N} p(ĉt, c) log

p(ĉt,c)

p(ĉt)p(c)
where p(ĉt = α, c = β) =

|{x|(ĉt(x)=α)∩(c(x)=β)}|
|P |+|N| ,

p(ĉt = α) =
|{x|ĉt(x)=α}|

|P |+|N| , p(c = α) =
|{x|c(x)=α}|

|P |+|N| , α, β ∈ {P,N}
Compute the same basic metrics and final metrics (denoted as ω2) as listed above, but using:
Classification Rule 2: ∀ x ∈ D, ĉt(x) = N ⇐⇒ X̂j(x) > t, otherwise ĉt(x) = P .

ω(X̂j) = max
(
ω1(x̂j), ω2(x̂j)

)
where ω1 is the original basic metric

Create attribute ranking R using ω(X̂j)∀j

TABLE I
ECLIPSE DATASET SUMMARY

Group Rel. thd #Attri. Inst. nfp fp
% # %

2.0 10 208 377 23 6% 354 94%
1 2.1 5 208 434 34 8% 400 92%

3.0 10 208 661 41 6% 620 94%

2.0 5 208 377 52 14% 325 86%
2 2.1 4 208 434 50 12% 384 88%

3.0 5 208 661 98 15% 563 85%

2.0 3 208 377 101 27% 276 73%
3 2.1 2 208 434 125 29% 309 71%

3.0 3 208 661 157 24% 504 76%

C. Stability Measure

Previous works have employed different similarity measures to

evaluate the stability of feature selection techniques. The measures

used include consistency index [14], Hamming distance [15], and

entropy [16]. Among these similarity measures, consistency index is

the only one which considers bias due to chance. For this reason, we

use consistency index in this study. Assuming that the original dataset

has n features, and Ti and Tj are two subsets of the n features such

that |Ti| = |Tj | = k, where 0 < k < n, the consistency index [14]

is defined as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (2)

where d is the cardinality of the intersection between subsets Ti and

Tj , i.e., d = |Ti ∩ Tj |, and IC (Ti, Tj) ∈ (−1, 1]. The greater the

value of IC , the higher the similarity between the subsets Ti and Tj .

IV. DATA DESCRIPTION

The data is obtained from the publicly available PROMISE soft-

ware project data repository [17]. We study the software measurement

datasets for the Java-based Eclipse project [18]. The software metrics

and defect data are aggregated at the software packages level; hence,

a program module is a Java package in Eclipse. We consider three

releases of the Eclipse system, where the releases are denoted as

2.0, 2.1, and 3.0 [18]. Each system release contains the following

information [18]: name of the package for which the metrics are

collected (name), number of defects reported six months prior to

release (pre-release defects), number of defects reported six months

after release (post-release defects), a set of complexity metrics

computed for classes or methods and aggregated by using average,

maximum, and total at the package level (complexity metrics), and

structure of abstract syntax tree(s) of the package consisting of the

node size, type, and frequency (structure of abstract syntax tree(s)).
A program module’s membership in a given class is determined by

a post-release defects threshold, thd. A program module (package)

with thd or more post-release defects is labeled as fp, while those

with fewer than thd defects are labeled as nfp. In our study, we use

thd={10, 5, 3} for release 2.0 and 3.0, while we use thd={5, 4, 2} for

release 2.1. A different threshold is chosen for release 2.1, because

we want to maintain relatively similar types of class distributions as

those of Releases 2.0 and 3.0. Three groups of datasets are formed,

each maintaining a different ratio between fp and nfp modules as

shown in Table I.

V. A CASE STUDY

The experiment is performed on each individual dataset separately,

but the results are analyzed and summarized over the respective

groups of datasets.

A. Design

As mentioned earlier, the main objective of this study is to

investigate the effects of the data sampling techniques on the stability

of feature selection. In the experiment, we use

77

�������	
�� ����

(a) RUS35

�������	
�� ����

(b) RUS50

�������	
�� ����

(c) ROS35

�������	
�� ����

(d) ROS50

�������	
�� ����

(e) SMO35

�������	
�� ����

(f) SMO50

Fig. 1. Eclipse1: KI Values

• six filter-based feature ranking techniques (MI, KS, GM, AUC,

PRC, and S2N), and

• six different sampling approaches (RUS35, RUS50, ROS35,

ROS50, SMO35, and SMO50), which are made up of three

different data sampling techniques each in conjunction with two

different post-sampling class ratios, where 35 standards for a

35:65 ratio between fp and nfp modules, while 50 represents a

50:50 ratio.

We design the procedure of the experiment as follows. For a given

dataset and a given data sampling technique,

1) Apply the sampling technique to the original dataset, D, and

get a sampled data, Di. To avoid a biased result, repeat the

sampling procedure x times. Therefore, x datasets of same

size (same number of data instances), {D1, D2, ..., Dx}, are

generated; (x = 30 is this study)

2) Apply a particular feature ranking technique to every sampled

data, Di, to obtain the feature subsets, T k
i , i.e.,

∣∣T k
i

∣∣ = k,

where k represents the number of the features retained in each

feature subset; (k = 2, 3, ..., 10 in this study)

3) Apply the same feature ranking technique to that original

dataset to obtain the feature subsets, T k
0 ;

4) For a given k value, calculate the single stability index, KI ,

by the following formula:

KI =
1

x

x∑
i=1

IC
(
T k
0 , T

k
i

)
, (3)

where IC is the consistency index defined in Formula (2). This

KI is the average of consistency index over x pairs of the

feature subsets, each pair selected from the original dataset and

one of the x sampled datasets.

Note that in the feature selection process (on steps 2 and 3), a key

step is to select a subset of features according to their relevance to the

class. In this study, the number of the features retained in each feature

subset varies from 2 to 10, that is, k = {2, 3, 4, 5, 6, 7, 8, 9, 10}. As

we have nine datasets, six data sampling approaches, and six feature

rankers, we repeat this process (steps 1 through 4) 324 times.

B. Results and Analysis

The experiment was performed with the six feature ranking tech-

niques and six data sampling approaches on each of nine Eclipse

datasets. Aggregated results on each group of datasets in terms of the

stability index (KI) are obtained. Due to space limitations, we only

present the results on the first group of datasets as shown in Figure

1. However, the following analysis, findings, and conclusions are

summarized over all groups of data. Figure 1 consists of six charts,

each displaying for a given sampling approach how the average

stability performance (y-axis) of each ranker is affected by the sizes

of nine different feature subsets (x-axis), averaged over the three

datasets. Some points are observed from the graphics.

• Among the six rankers, S2N and AUC showed higher stability

than other rankers for the RUS and ROS sampling techniques,

while for the SMO sampling method, S2N and PRC showed

higher stability performance. MI always presented relatively low

stability compared with others. This is true for all three groups

of datasets.

• The size (number of attributes) of a feature subset affected the

stability of a feature ranking technique. The trends were not

unique and they were dependent on the the specific sampling

technique and the given dataset.

In order to examine the significance level of the performance

differences, we also performed a three-way ANalysis Of VAriance

(ANOVA) F-test on the stability (KI) for each group of the datasets

(Eclipse 1, 2 and 3) separately and also for all nine datasets together.

The underlying assumptions of ANOVA were tested and validated

prior to statistical analysis. The three factors in the test were designed

as follows. Factor A represents the six feature ranking techniques,

Factor B represents the six sampling approaches, and Factor C

represents the number of features retained in the subsets. The null

hypothesis is that all the group population means are the same and the

alternate hypothesis is that at least one pair of means is different. If

the ANOVA results in accepting the alternate hypothesis, a multiple

comparison test should be used to detect which group means are

different from one another. The ANOVA results showed that all p-

values were 0s, meaning the alternative hypothesis was accepted for

each group of testing datasets.

We further performed the multiple comparison (MC) test and

obtained the results as shown in Figure 2. This figure includes the MC

results for each group of datasets (denoted E1, E2, and E3) and all

nine datasets together (E-All). Each chart displays a graph with each

group mean represented by a symbol (◦) and the 95% confidence

78

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

S2N

PRC

AUC

GM

KS

MI

(a) Factor A - ranker (E1)

0.4 0.5 0.6 0.7 0.8 0.9

SMO50

SMO35

ROS50

ROS35

RUS50

RUS35

(b) Factor B - sampler (E1)

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

10

9

8

7

6

5

4

3

2

(c) Factor C - subset (E1)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S2N

PRC

AUC

GM

KS

MI

(d) Factor A - ranker (E2)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SMO50

SMO35

ROS50

ROS35

RUS50

RUS35

(e) Factor B - sampler (E2)

0.7 0.72 0.74 0.76 0.78 0.8 0.82

10

9

8

7

6

5

4

3

2

(f) Factor C - subset (E2)

0.7 0.75 0.8 0.85 0.9 0.95

S2N

PRC

AUC

GM

KS

MI

(g) Factor A - ranker (E3)

0.7 0.75 0.8 0.85 0.9 0.95

SMO50

SMO35

ROS50

ROS35

RUS50

RUS35

(h) Factor B - sampler (E3)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

10

9

8

7

6

5

4

3

2

(i) Factor C - subset (E3)

0.6 0.65 0.7 0.75 0.8 0.85

S2N

PRC

AUC

GM

KS

MI

(j) Factor A - ranker (E-All)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

SMO50

SMO35

ROS50

ROS35

RUS50

RUS35

(k) Factor B - sampler (E-All)

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79

10

9

8

7

6

5

4

3

2

(l) Factor C - subset (E-All)

Fig. 2. Eclipse: Multiple Comparison

interval as a line around the symbol. Two means are significantly

different if their intervals are disjoint, and are not significantly

different if their intervals overlap. The multiple comparison outcomes

illustrate the following points.

• Among the six rankers, S2N, AUC and PRC showed signifi-

cantly higher stability than the other three rankers. Furthermore,

of the three inferior rankers, KS and GM demonstrated higher

stability performance than MI.

• Among the six sampling approaches, ROS35 and ROS50 showed

the highest stability behavior, followed by SMO35, RUS35,

SMO50, and finally RUS50.

• Between two post-sampling class ratios, 35:65 showed sig-

nificantly higher stability than 50:50 for the RUS and SMO

sampling techniques. The reason may be that the 35:65 target

class ratio resulted in fewer changes to the original datasets

(instances added/removed) than the 50:50 target class ratio (for

RUS and SMO). This difference might be enough to reduce the

impact of sampling on the features selected (e.g., increases the

stability).

• The stability was increasing along the increment of the size of

a subset except at the beginning of the point when n = 2 (i.e.,

number of attributes selected is 2). This trend was observed from

Eclipse1 and 2, and all 9 datasets. However, no consistent trend

was found for Eclipse3.

Finally, we summarized the stability of FS (averaged over nine

various feature subsets) affected by the data sampling techniques for

all three groups of datasets (Eclipse1, 2, and 3) as shown in Figure

3. The three curves that represent stability over the three groups of

79

Fig. 3. Stability comparisons over three groups of Eclipse datasets

datasets show the same/similar patterns. It is clearly seen that the FS

methods had highest stability performance on the Eclipse3 datasets,

then on Eclipse2, and finally on Eclipse1. This is especially true when

using the RUS35, RUS50, SMO35, and SMO50 sampling approaches.

VI. CONCLUSION

This paper presents a strategy that uses feature selection (FS) and

data sampling together to cope with the high-dimensionality and

class imbalance problems in the context of software defect predic-

tion. Instead of assessing FS techniques by measuring classification

performance after the training dataset is modified, this study focuses

on another important property of FS – stability, more specifically, the

sensitivity of a FS method when used with a data sampling technique.

More stable FS techniques will reliably give the same features even

after sampling has been used, so practitioners can be more confident

in those features.

We examined six filter-based feature ranking techniques, five

of which are threshold-based feature selection methods (MI, KS,

GR, AUC, and PRC), and the remaining one is the signal-to-noise

ratio (S2N) method. The three sampling techniques adopted are

random undersampling (RUS), random oversampling (ROS), and

synthetic minority oversampling (SMO), each combined with two

post-sampling class ratios (35:65 and 50:50). The experiments were

performed on three groups of datasets from a real-world software

project.

The results demonstrate that 1) S2N, AUC, and PRC had higher

stability performance than other rankers; 2) ROS35 and ROS50

produced higher stability values than other sampling approaches; (3)

post-sampling class ratio between fp and nfp of 35:65 showed higher

stability than the ratio of 50:50 for the RUS and SMO sampling

techniques; (4) the stability performance generally increased along

the increment of the number of the attributes retained in the feature

subset, especially when the dataset is relatively skewed; and (5) the

less imbalanced original datasets (prior to sampling) were more likely

to obtain higher stability performance when data sampling techniques

(such as RUS or SMO) was performed on them.

Future work will include additional case studies with software

measurement datasets of other software systems. In addition, dif-

ferent data sampling and FS techniques will be considered in future

research.

REFERENCES

[1] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, July-August 2008.

[2] D. J. Dittman, T. M. Khoshgoftaar, R. Wald, and J. V. Hulse, Handbook
of Data Intensive Computing. Springer, 2011, ch. Feature Selection
Algorithms for Mining High Dimensional DNA Microarray Data, pp.
685–710.

[3] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth In-
ternational Workshop on Feature Selection in Data Mining, Hyderabad,
India, 2010, pp. 4–13.

[4] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Softw., Pract. Exper., vol. 41, no. 5, pp. 579–606, 2011.

[5] S. Shivaji, J. E. W. Jr., R. Akella, and S. Kim, “Reducing feature to
improve bug prediction,” in ASE ’09 Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, Auck-
land, New Zealand, 2009, pp. 600–604.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[7] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviate class imbalance,” IEEE
Transactions on Systems, Man & Cybernetics: Part A: Systems and
Humans, vol. 40, no. 1, January 2010.

[8] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, no. 22, pp. 38–46, 2005.

[9] J. L. Lustgarten, V. Gopalakrishnan, and S. Visweswaran, “Measuring
stability of feature selection in biomedical datasets,” in AMIA Annu Symp
Proc. 2009, 2009, pp. 406–410.

[10] Y. Saeys, T. Abeel, and Y. Peer, “Robust feature selection using ensemble
feature selection techniques,” in ECML PKDD ’08: Proceedings of the
European conference on Machine Learning and Knowledge Discovery
in Databases - Part II. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
313–325.

[11] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys,
“Robust biomarker identification for cancer diagnosis with ensemble
feature selection methods,” Bioinformatics, vol. 26, no. 3, pp. 392–398,
February 2010.

[12] S. Alelyani, Z. Zhao, and H. Liu, “A dilemma in assessing stability of
feature selection algorithms,” in Proceedings of the 13th International
Conference on High Performance Computing and Communications
(HPCC), Banff, Canada, 2011, pp. 701–707.

[13] X. Chen and M. Wasikowski, “Fast: a roc-based feature selection metric
for small samples and imbalanced data classification problems,” in KDD
’08: Proc. 14th ACM SIGKDD Int’l Conf. Knowldege Discovery and
Data Mining. New York, NY: ACM, 2008, pp. 124–132.

[14] L. I. Kuncheva, “A stability index for feature selection,” in Proceedings
of the 25th conference on Proceedings of the 25th IASTED International
Multi-Conference: artificial intelligence and applications. Anaheim,
CA, USA: ACTA Press, 2007, pp. 390–395.

[15] K. Dunne, P. Cunningham, and F. Azuaje, “Solutions to Instability Prob-
lems with Sequential Wrapper-Based Approaches To Feature Selection,”
Department of Computer Science, Trinity College, Dublin, Ireland, Tech.
Rep. TCD-CD-2002-28, 2002.

[16] P. Křı́žek, J. Kittler, and V. Hlaváč, “Improving stability of feature
selection methods,” in Proceedings of the 12th international conference
on Computer analysis of images and patterns, ser. CAIP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 929–936.

[17] G. Boetticher, T. Menzies, and T. Ostrand. (2007) Promise
repository of empirical software engineering data. [Online]. Available:
http://promisedata.org/

[18] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

80

81

82

83

84

85

86

87

88

Cloud Application Resource Mapping and Scaling
Based on Monitoring of QoS Constraints

Xabriel J. Collazo-Mojica
S. Masoud Sadjadi

School of Computing and Information Sciences

Florida International University

Miami, FL, USA

{xcoll001, sadjadi}@cs.fiu.edu

Jorge Ejarque
Rosa M. Badia

Grid Computing and Clusters Group

Barcelona Supercomputing Center

Barcelona, Spain

{jorge.ejarque, rosa.m.badia}@bsc.es

Abstract—Infrastructure as a Service (IaaS) clouds promise
unlimited raw computing resources on-demand. However, the
performance and granularity of these resources can vary widely
between providers. Cloud computing users, such as Web de-
velopers, can benefit from a service which automatically maps
performance non-functional requirements to these resources. We
propose a SOA API, in which users provide a cloud application
model and get back possible resource allocations in an IaaS
provider. The solution emphasizes the assurance of quality
of service (QoS) metrics embedded in the application model.
An initial mapping is done based on heuristics, and then the
application performance is monitored to provide scaling sugges-
tions. Underneath the API, the solution is designed to accept
different resource usage prediction models and can map QoS
constraints to resources from various IaaS providers. To validate
our approach, we report on a regression-based prediction model
that produces mappings for a CPU-bound cloud application
running on Amazon EC2 resources with an average relative error
of 17.49%.

Index Terms—cloud computing; QoS; resource allocation.

I. INTRODUCTION

Cloud computing presents the illusion of infinite capacity

of computational resources. In the case of Infrastructure as a

Service (IaaS) clouds, these resources are typically offered in

bundles with specific amounts of CPU, Memory, and Network.

Solution developers are thus presented with the problem of

ensuring the performance non-functional requirements of an

application by mapping it to one or more of these bundles, and

to monitor and change this mapping if the workload changes.

We present our work on an autonomic service which monitors

Quality of Service (QoS) metrics of cloud applications and

suggests bundle mappings which would ensure the required

performance.

The problem of resource allocation in the cloud has been

studied before, and various techniques to solve it has been

proposed. Ganapathi et at. [1] utilize statistical machine learn-

ing to predict resource usage of an application in the cloud.

Islam et al. [2] estimate CPU resource usage by simulating a

cloud provider. Previous solutions have monitored low-level

resources for their prediction, i.e., they would monitor CPU

usage. Our solution targets QoS assurance by learning if

the currently allocated resources are delivering the required

QoS constraints. That is, we monitor if the application’s

performance non-functional requirements are being met (e.g.

the response time), and based on this knowledge, we then

adjust the resource allocation.

The key idea of our solution is the use of a Service

Oriented Architecture (SOA) approach in which users provide

a descriptive model of their application and get back mappings

in various IaaS providers. These mappings emphasize the as-

surance of the Quality of Service metrics from the applications

model. An initial mapping is done based on heuristics, and

then we monitor the application’s performance to provide

scaling suggestions via a callback interface. Underneath this

API, the solution accepts different resource usage prediction

models and allows allocation in different IaaS providers.

The main technical challenges of this work were the ex-

perimentation with alternative regression techniques, and the

implementation of a resource usage prediction engine. In this

work, we propose the use of a linear regression model that

provides adequate performance as well as good accuracy.

For the implementation of the engine, we developed a rule-

based system that calculates which IaaS resource bundles can

ensure the applications QoS constraints. The solution then

recommends the bundles with the best fit for various IaaS

providers.

To validate our approach, we present three experiments.

In the first experiment, we test for correct behavior with a

simulation test that sends an application model and monitoring

data to the prototype system. In our second experiment, we run

the same model against a real IaaS environment. We gather the

performance data and then scale the application according to

the solution’s suggestions. Finally, we also present a time and

scalability analysis of the solution. The results show that the

prototype correctly ensures QoS constraints of a CPU-bound

cloud application.

The main contributions of this paper follow. First, we

present the design of an autonomic solution for cloud appli-

cation resource mapping and scaling based on monitoring of

QoS constraints. Second, we provide details on a prototype

implementation and how we dealt with the technical chal-

lenges. Finally, we asses the validity of the idea by presenting

experiments on functionality and scalability.

89

II. BACKGROUND AND METHODOLOGY

A. Background

1) Previous Work: This work is part of our overarching

“Distributed Ensemble of Virtual Appliances” (DEVA) project.

In [3], we discussed the advantage of simplifying the solution

development workflow by presenting the developer with a

model-based visual designer to draft the software dependen-

cies and resource requirements of their cloud application.

In [4], we formally defined our DEVA model approach. This

model is based on the notion of Virtual Appliances, defined by

Sapuntzakis et al. [5], that represent self-configurable software

applications and OS as updatable image files. These appliances

can be instantiated on top of IaaS providers such as Amazon

EC2 [6]. DEVAs represent groups of Virtual Appliances with

QoS constraints between each appliance, and general policies

for the whole ensemble.

2) Problem Definition: Given that we have a model of an

application’s architecture and its desired QoS constraints, we

can think of a model-to-instance transformation to different

IaaS providers. For this transformation to work effectively,

we also need a model representation of the performance of

the application on top of resources from any given provider.

That is, given a DEVA model, known IaaS providers and

its bundles, and potentially known workloads, we want to

transform the model (i.e. map the model) to instances that

would ensure the QoS constraints specified in the model.

B. Methodology

1) Approach: To do this QoS-to-Resources mapping, we

propose the steps illustrated in Figure 1. First, a user designs

the DEVA model in the DEVA-Designer. When ready to

deploy, the user chooses an IaaS provider. This request is

(1) sent to a Transformation Engine, which has no previous

knowledge of the submitted model, and thus delegates the

creation of a preliminary mapping to an API Mapper (2). The

Engine then makes the proper API calls to the specific IaaS

provider (3). The IaaS provider (4, 5) instantiates the model.

Note that the IaaS provider does not know about DEVAs,

and only processes its own API calls. Note further that in

this work we assume that the software provisioning is already

done, i.e., that virtual appliances are available in the provider’s

image repository. Monitoring is done on each appliance to

gather QoS data (6, 7). This data is eventually (8) fed back

to the Transformation Engine. The Engine then (9) decides

whether the currently assigned resources are appropriate for

the QoS specifications in the model. If it is the case that a

change of resource allocation is needed, the engine delegates

the construction of a change request (10), and then sends that

change to the IaaS provider (11). Finally, the provider makes

the necessary changes to the instance to better comply with

the model’s QoS constraints (12).

2) Limitations: Our approach depends on previous moni-

toring data to make good resource mappings. To have good

sample points, we propose the following. As we target cloud

applications, the cloud developer (i.e. the user of our solution)

first deploys their application in a “staging” mode. In this

mode, the cloud developer runs performance tests on his

application using different IaaS bundles. These performance

tests generate data points that are sent to the proposed

Monitoring API, and therefore improve the accuracy of our

solution. As typical IaaS instances are billed by the hour,

the cost of launching an application on different bundles for

performance testing is negligible compared to the eventual

QoS improvement. Although we are working in automatizing

this learning phase, we do not report it as part of this paper.

III. DESIGN AND IMPLEMENTATION

In this section, we report on the main objectives driving the

design of our solution. We also include implementation details

on how we dealt with the technical challenges.

A. Design

We have designed the Transformation Engine as a service.

In designing this service, we had two main Design Objectives:

1) to have a simple interface that can be used by our

research team as well as others, and

2) to create a service that supports various resource map-

ping techniques for experimentation.

Although this work is integrated with the DEVA-portal

project, it can also be used as a stand alone solution. This

is why we chose to interact in terms of Resource Description

Framework (RDF) [7] tuples. That is, the API expects and

returns DEVA models wrapped in this interoperable model

representation framework. Other research teams can use our

mapping service by either using our DEVA modeling ap-

proach, or by first parsing their application representation

to a DEVA using techniques such as OWL’s Web Ontology

Language [8]. This allows us to comply with Design Objective

1.

Table I presents the proposed REST API. We chose the

REST technology because of Design Objective 1. First, a

POST is done as explained in Section II-B1. This request

has to include the DEVA model to be transformed. The API

processes the model and responds with a link to the newly

created resource. A subsequent GET to that link will return

the transformed DEVA with the newly generated mappings.

An API call to delete a mapping is also provided.

Monitoring data is expected as POST requests that include

data points. The data points collected include the amount of

the metric being monitored. A callback API subscribes with a

POST or unsubscribes with a DELETE consumer that want to

monitor model changes. Model mapping changes trigger these

callbacks. Note that this design does not hint at any specific

resource allocation technique, and thus allows us to implement

a solution that complies with Design Objective 2.

B. Implementation

Underneath the API, the transformation engine is imple-

mented as a simple resource usage prediction framework. For

an initial mapping, the solution follows the steps presented in

Figure 2. First, the DEVA model is received by the API. Then,

90

Fig. 1. UML Collaboration Diagram modeling the interaction of the solution with an IaaS provider.

REST HTTP API Description
POST
/deva/mappings

Expects: a DEVA model in RDF format in the body.
Optional: a :callback URL parameter if a callback URL is provided, then it will be subscribed to this mapping.
Returns: a HTTP 201 created status, with a link to the newly created mapping. Note that clients must persist the
:uuid for later recall. Error: An HTTP 400 bad request if the model could not be parsed as a valid DEVA RDF.

GET
/deva/mappings/:uuid

Expects: empty body Returns: an RDF/XML representation of the DEVA model with the mapping done to all
supported IaaS providers. Error: a HTTP 404 not found if mapping does not exist.

DELETE
/deva/mappings/:uuid

Expects: empty body Returns: a HTTP 200 OK.
Error: a HTTP 404 not found if mapping does not exist.

POST
/deva/mappings/:uuid/data point

Expects: performance monitoring data of appliances of the specified mapping. Data Point should specify Appliance
id, Connection id, and data value. (I.e. {appliance = 2, connection = {db-consumer, db-provider}, data value =
500}) Returns: a HTTP 200 OK. Error: a HTTP 404 not found if mapping does not exist.

POST
/deva/mappings/:uuid/subscriptions

Expects: an URL callback address to query when/if the specified mapping changes. Mappings could change in
response to underprovisioned / overprovisioned resources as attested by monitoring data. The URL can be any valid
endpoint. Returns: a HTTP 200 OK. Error: A HTTP 404 not found if mapping does not exist. Error: A HTTP
400 bad request if the callback URL is not provided or malformed.

DELETE
/deva/mappings/:uuid/subscriptions

Expects: A :callback url parameter. Returns: A HTTP 200 OK.
Error: a HTTP 404 not found if mapping does not exist.
Error: A HTTP 400 bad request if the callback parameter is not provided or malformed.

TABLE I
APPLICATION PROGRAMMING INTERFACE FOR THE SOLUTION.

the model is processed by a set of rules that identify the virtual

appliances included. For each one of the virtual appliances, a

check is done on whether the engine has sufficient data to

apply resource usage prediction based on machine learning

techniques. If no sufficient data points have been gathered,

then the solution applies a set of heuristic rules. If sufficient

data is present, then it applies machine learning. In any case,

a transformed model is created which includes IaaS bundles

mappings. In the current prototype, we built an engine that

utilizes rules to accomplish the above steps. Specifically, we

are using the rules inference support that comes with the JENA

2.6.4 semantic web framework [9].

For the machine learning phase, we chose a multivariate

linear regression model. We are experimenting with other

machine learning techniques, but we only report on the

regression-based one in this paper. The machine learning

module receives the data points collected from the Monitoring

API (see Figure 1) and estimates the QoS being achieved

with the current resource allocation. In general, the parameters

estimated are as follows:

targetMetric = A1 ∗ CPU +A2 ∗Memory +

A3 ∗Network +A4 ∗Workload+B

Where the targetMetric would be the metric we are

trying to ensure. Each one of the Ai coefficients describe how

important the estimation of the ith term is.

For example, given enough data points, a CPU-bound ap-

plication will have a large A1 coefficient compared to the

others. The Workload and the targetMetric are known,

but the CPU , Memory and Network parameters are not.

This formula has three degrees of freedom, therefore trying to

optimize the parameters would be expensive and many data

points would be needed.

To avoid this expensive calculation, we apply a key insight:

given that most IaaS providers offer bundles, rather than

arbitrary combinations of CPU , Memory and Network, we

can reduce the complexity of the problem by estimation on

bundled resources instead of trying to guess if an application

91

Amazon [6]
(“Instance type”)

t1.micro: 2.2Ghz (varies), 613MB, “Low” network
m1.small: 1.1GHz, 1.7GB, “Moderate” network
m1.large: 4.4GHz, 7.5GB, “High” network
m1.xlarge: 8.8GHz, 15GB, “Moderate” network

Rackspace [11]
(“Flavor”)

Flavor 1: 256 MB RAM Flavor 2: 512 MB RAM
Flavor 3: 1024 MB RAM Flavor 4: 2048 MB RAM
Flavor 5: 4096 MB RAM Flavor 6: 8192 MB RAM
Flavor 7: 15872 MB RAM

ElasticHost [10]
(No bundles.)

Anything in the following ranges:
2-20Ghz CPU, 1-8GB RAM

TABLE II
EXAMPLE RESOURCE BUNDLES OF THREE IAAS PROVIDERS.

is bound by any specific resource:

targetMetric = A1 ∗Bundle+A2 ∗Workload+B (1)

We further reduce the calculation and estimation errors by

keeping a regression table that includes all available bundles.

This effectively reduces the problem to a simple linear regres-

sion:

Bundle −→ targetMetric = A1 ∗ Load+B (2)

Table II presents a sample of the resource bundles available

from three different IaaS providers. For each provider, we

construct a regression that matches each of their resource

bundles against the application, and then we choose the best

fit (I.e. the cheapest one). Some targetMetrics should be

approached by the left, and others by the right, so we take this

into account for the fit. For example, a “maximum response

time” metric would be fit by the left, while a “minimum

required throughput” metric would be fit by the right.

Note that some IaaS providers, such as ElasticHost [10],

do not provide discrete bundles and instead the customer

can choose exactly the amount of resources needed. In these

cases, we simply quantize the range according to the bundles

available from an arbitrary competitor.

IV. EXPERIMENTS AND ANALYSIS

The following experiments were designed as a proof of

concept for our approach. For each one of them, we describe

the experiment, present results and elaborate a short analysis.

A. Experiment 1 - Simulation

For this experiment, we test our Transformation Engine

with a DEVA model composed of one Virtual Appliance that

simulates the behavior of a CPU-bound Web Framework like

Ruby on Rails. The model includes a maximum response time

constraint. We first train the system with synthetic data points

that cover various IaaS standard bundles as seen in Table

II. After the training, we observe what mappings the system

suggest to comply with different response time targets for

a fixed workload of 3 request per second. Figure 3 shows

the results. On the x-axis, we present response time targets,

while on the y-axis we present the suggested mapping to the

bundles of a particular IaaS provider. Note that this experiment

is a validation of the approach and that the numbers do not

reflect the real performance of the IaaS service from Amazon,

Rackspace or ElasticHost.

Subfigure 3a presents the simulation results for mapping

the model to the bundles of Amazon. As can be seen, for

very strict response times of 100 to 400ms, a mapping to a

“m1.xlarge” bundle is required. As the response time con-

straint relaxes, the solution maps the model to smaller resource

bundles.

Subfigure 3b presents the simulation results for mapping the

model to the bundles of Rackspace. Although the mapping was

gradual on the case of Amazon, in this case we can observe

that for a CPU-bound model and a target response time of

around 600ms, the solution suggest that we switch from a

“flavor 4” bundle to a “flavor 6”, skipping over “flavor 5”.

Subfigure 3c presents the simulation results for mapping the

model to the quantized bundles of ElasticHost. According to

the simulation, a mapping can be achieved for targets above

450ms, yet a response time of 425ms or less can not be

achieved.

B. Experiment 2 - Real Allocation

For this experiment, we train the system in a similar way as

in Experiment 1, but data is gathered from real instances on

Amazon EC2 running a CPU-bound Ruby on Rails applica-

tion. We provision instances for the standard Amazon bundles

as seen in table II and then we generate a positive slope linear

workload on each of the bundles to gather performance data

points. We plot the mapping our solution recommends for

workloads of 3, 6, and 10 requests per second. We also include

two additional baseline mappings for comparison: a mapping

that always over-provisions, and a mapping that always under-

provisions resources.

Figure 4 presents the results. Note that the baseline mapping

that always under-provisions is not able to fulfill the QoS,

while the baseline that always over-provisions can fulfill the

QoS, but utilizes a maximum of resources all the time. We

can observe that our solution suggests bundle mappings that

depend on the target metric, in this case the response time, as

well as in the workload. Further, our solution fulfills the QoS

of the application with a minimum relative error of 5.61%,

maximum of 34.07%, and average of 17.49%.

C. Experiment 3 - Time and Scalability Analysis

For this experiment, we asses the time complexity and

scalability of the solution. We ran these experiments on a

2.8GHz Intel i7 quad core machine with 8GB of available

RAM. Figure 5 presents the results.

For the time analysis, we use the solution’s API to POST a

new model, POST a variable number of performance samples

to the monitoring API, and then GET back the transformed

models with mappings. Note that this is a worst case scenario,

as normally the performance samples will not be gathered

this fast. On subfigure 5a, we plot the response time of our

solution against the number of collected data points from

the monitoring API. The results suggest that the prototype

can respond to GET model requests, which could trigger the

92

Fig. 2. UML Activity Diagram modeling the steps to map a DEVA model to IaaS Resources.

t1.micro

m1.small

m1.large

m1.xlarge

 200 400 600 800 1000

A
m

az
on

's
 "i

ns
ta

nc
e

ty
pe

" (
A

P
I n

am
e)

target response time (ms)

(a) Amazon Mapping.

flavor 3

flavor 4

flavor 6

flavor 7

 200 400 600 800 1000

R
ac

ks
pa

ce
's

 "f
la

vo
r"

 (A
P

I n
am

e)

target response time (ms)

(b) Rackspace Mapping.

1.1Ghz / 0.6GB

1.1Ghz / 1.7GB

4.4Ghz / 7.5GB

 200 400 600 800 1000

E
la

st
ic

ho
st

s'
 "C

P
U

 /
M

em
or

y
se

tti
ng

s"
 (G

hz
,G

B
)

target response time (ms)

(c) ElasticHost Mapping.

Fig. 3. Evaluation of the solution using simulated data points for a fixed workload of 3 request per second.

t1.micro

m1.large

m1.xlarge

c1.xlarge

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

A
m

az
on

's
 "i

ns
ta

nc
e

ty
pe

" (
A

P
I n

am
e)

target response time (ms)

Workload of 3 req/s
Workload of 6 req/s

Workload of 10 req/s

Always overprovision
Always underprovision

Fig. 4. Evaluation of the solution running a CPU-bound application on top
of Amazon EC2. Note that results are discrete data points, but are shown with
lines with points.

machine learning algorithm, in less than a second for up

to 256 gathered data points. For a sample size of 512, we

get a response time of 1116ms. For bigger sample sizes, the

performance starts to quickly degrade in a quadratic manner.

Nonetheless, experiential data suggest that we only need the

performance test data points that we discussed in Subsection

II-B2 and recent workload data points to achieve acceptable

accuracy.

For the scalability analysis, we fix the acquired data points

for a particular model to 64, and plot the response time of our

solution against concurrent GET model requests. Subfigure

5b presents the results. The solution can achieve a subsec-

ond response time for up to 32 concurrent requests. At 64

concurrent requests, the solution can respond in an average of

1170ms. For bigger concurrent requests, the performance starts

to quickly degrade in a quadratic manner, even more so than

in the previous experiment. For practical cases, our solution

can respond to a maximum of 100 concurrent requests with

an average response time of 2000ms.

V. RELATED WORK

In [12], Stewart and Chen presented an implementation

of an offline profile-driven performance model for cluster-

based multi-component online services. Their model includes a

detailed specification of the application. Although our solution

also utilizes a detailed specification of the application, our

work in [3] makes it straightforward for a solution developer

to construct it. Additionally, we do online monitoring of the

application to respond to workload changes. In [13], Sadjadi

et al. proposed a regression model that estimates CPU usage

for long-running scientific applications. In our work, we are

estimating bundles of CPU, Memory, and Network, and the

solution is targeting web cloud application worklaods.

In [2], Islam et al. estimate CPU usage by simulating a

cloud provider. They contrast the use of linear regression

and neural networks. Our work includes both a simulation as

well as a real experiment of the solution on top of Amazon

EC2, although we do not compare different machine learning

models. In [14] Villegas and Sadjadi presented an IaaS solution

that can have as input a model of a cloud application with

non-functional specifications. Our work is complementary, as

our DEVA models could be used for input to their solution.

Also, in our work, we do not assume that the IaaS provider

understands our model, and thus our solution is IaaS-agnostic.

In [1], Ganapathi et al. utilize statistical machine learning to

predict resource usage of an application in the cloud. Their

workload is similar to the workload of [13], that is, batch

processing of long-running jobs. We focus on web cloud

application workloads.

93

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 10 100 1000

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of datapoints POSTed (n)

(a) Response time of the prototype against the number of samples in
regression.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

concurrent requests (n)

(b) Response time of the prototype against concurrent requests with samples
fixed to 64.

Fig. 5. Time and Scalability Analysis of the solution.

Some IaaS clouds like Amazon’s EC2 already provide an

auto-scaling API [6]. These APIs monitor low-level resources

like CPU-usage, instead of our approach of directly monitoring

key QoS metrics like response time. These vendor APIs

focus on resource usage, while our solution’s focus is on

application performance non-functional requirements (i.e. QoS

constraints).

In [15], Ejarque et al. propose the usage of semantics for

enhancing the resource allocation in distributed platforms.

They propose a set of extensions in resource ontologies and

a set of rules for modeling resource allocation policies. A

similar approach has been followed in their subsequent paper

[16]. In these two cases, rules are used to model equiva-

lences and mappings between the different cloud providers

models. Thus, when the system receives a request following

a providers model, it can be automatically transformed to

another provider by applying the mapping rules to the original

request. Our work is complementary, as we apply this rule

mapping approach to a different problem. We map application

descriptions, provided as DEVA models, into IaaS resource

bundles.

VI. CONCLUSION

In this paper, we first presented the design of an autonomic

solution for cloud application resource mapping and scaling

based on monitoring of QoS constraints. We then provided

details on the prototype implementation and how we dealt with

the technical challenges. Finally, we assessed the validity of

the approach by presenting experiments on functionality and

scalability.
For future work, we intend to expand the prototype in two

directions. In the near future, we will introduce other machine

learning algorithms into our resource allocation framework

and produce a comparison to see which techniques work best

for this problem. In the longer term, we intent to expand

our solution to consider not only vertical, but also horizontal

scaling of Virtual Appliances. That is, to dynamically modify

the DEVA model architecture if the QoS requirements are hard

to achieve with the current one.

ACKNOWLEDGMENT

This work was supported in part by a GAANN Fellowship

from the US Department of Education under P200A090061

and in part by the National Science Foundation under Grant

No. OISE-0730065 and IIP-0829576.

REFERENCES

[1] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-
driven workload modeling for the cloud,” in IEEE 26th International
Conference on Data Engineering Workshops, 2010, pp. 87–92.

[2] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” in The International
Journal of Grid Computing and Escience. Natl ICT Australia, Software
Engn Res Grp, Sydney, NSW, Australia, 2012, pp. 155–162.

[3] X. J. Collazo-Mojica, S. M. Sadjadi, F. Kon, and D. D. Silva, “Virtual
environments: Easy modeling of interdependent virtual appliances in the
cloud,” SPLASH 2010 Workshop on Flexible Modeling Tools, Aug 2010.

[4] X. J. Collazo-Mojica and S. M. Sadjadi, “A Metamodel for Distributed
Ensembles of Virtual Appliances,” in International Conference on Soft-
ware Engineering and Knowledge Engineering, May 2011, pp. 560–565.

[5] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M. S.
Lam, and M. Rosenblum, “Virtual appliances for deploying and main-
taining software,” USENIX Large Installation Systems Administration
Conference, pp. 181–194, Aug 2003.

[6] “Amazon Elastic Compute Cloud,” March 2012. [Online]. Available:
http://aws.amazon.com/ec2/

[7] “Resource Description Framework (RDF),” March 2012. [Online].
Available: http://www.w3.org/RDF/

[8] “OWL Web Ontology Language,” March 2012. [Online]. Available:
http://www.w3.org/TR/owl-ref/

[9] “Apache JENA,” March 2012. [Online]. Available: http://incubator.
apache.org/jena/

[10] “ElasticHosts,” March 2012. [Online]. Available: http://www.
elastichosts.com/

[11] “Rackspace Cloud,” March 2012. [Online]. Available: http://www.
rackspace.com/cloud/

[12] C. Stewart and K. Shen, “Performance Modeling and System Man-
agement for Multi-component Online Services,” in 2nd Symposium on
Networked Systems Design & Implementation, May 2005, pp. 71–84.

[13] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado,
H. Duran, and X. Collazo-Mojica, “A modeling approach for estimating
execution time of long-running scientific applications,” in IPDPS, 2008,
pp. 1–8.

[14] D. Villegas and S. M. Sadjadi, “Mapping Non-Functional Requirements
to Cloud Applications,” International Conference on Software Engineer-
ing and Knowledge Engineering, Jun. 2011.

[15] J. Ejarque, R. Sirvent, and R. Badia, “A Multi-agent Approach for
Semantic Resource Allocation,” in Cloud Computing Technology and
Science, 2010, pp. 335–342.

[16] J. Ejarque, J. Alvarez, R. Sirvent, and R. Badia, “A Rule-based Approach
for Infrastructure Providers’ Interoperability,” in Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, 2011, pp. 272–279.

94

An Empirical Study of Software Metric Selection Techniques

for Defect Prediction

Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, and Amri Napolitano

{huanjing.wang@wku.edu, khoshgof@fau.edu, rwald1@fau.edu, amrifau@gmail.com}

Abstract—In software engineering, a common classification problem
is determining the quality of a software component, module, or release.
To aid in this task, software metrics are collected at various states of
a software development cycle, and these metrics can be used to build
a defect prediction model. However, not all metrics are relevant to
defect prediction. One solution to finding the relevant metrics is the data
preprocessing step known as feature selection. We present an empirical
study in which we evaluate the similarity of eighteen different feature
selection techniques and how the feature subsets chosen by each of these
techniques perform in defect prediction. We look at similarity in addition
to classification because many applications seek a diverse set of rankers,
and similarity can be used to find which rankers are too close together
to provide diversity. The classification models are trained using three
commonly-used classifiers. The case study is based on software metrics
and defect data collected from multiple releases of a large real-world
software system. The results show that the features fall into a number
of identifiable clusters in terms of similarity. In addition, the similarity
clusters were somewhat predictive of the clusters based on classification
ranking: rankers within a similarity cluster had similar classification
performance, and thus ended up in the same or adjacent classification
clusters. The reverse was not true, with some classification clusters
containing multiple unrelated similarity clusters. Overall, we found that
the signal-to-noise and ReliefF-W rankers selected good features while
being dissimilar from one another, suggesting they are appropriate for
choosing diverse but high-performance rankers.

I. INTRODUCTION

In the practice of software quality assurance, software metrics

are often collected and associated with modules, which have their

number of pre- and post-release defects recorded. A software defect

prediction model is often built to ensure the quality of future software

products or releases. However, not all software metrics are relevant

for predicting the fault proneness of software modules. Software

metrics selection (or feature selection) prior to training a defect

prediction model can help separate relevant software metrics from

irrelevant or redundant ones.

In this paper, we focus on feature selection of software metrics

for defect prediction. During the past decade, numerous studies have

examined feature selection with respect to classification performance,

but very few studies focus on the similarity of feature selection

techniques. The purpose of studying this similarity is to make it easier

to select a set of diverse rankers, ensuring that none of those chosen

are so similar to the others as to provide no additional diversity

in the collection of rankers. In this study, we perform similarity

analysis on eighteen different feature selection techniques, eleven of

which were recently developed and implemented by our research

group. We evaluate the similarity of two filters on a dataset by

measuring the consistency between the two feature subsets chosen.

We also evaluate the effectiveness of defect predictors that estimate

the quality of program modules, e.g., fault-prone (fp) or not-fault-

prone (nfp). Three different classifiers (learners) are used to build our

prediction models. The empirical validation of the similarity measure

and model performance was implemented through a case study of

four consecutive releases of a very large telecommunications software

system (denoted as LLTS). To our knowledge this is the first study

to examine both similarity and classification performance of feature

rankers in the software engineering domain.

The experimental results show that using both the similarity and

classification performance of the rankers gave different types of

clusters. Similarity produced a number of smaller clusters, with four

or five rankers being about the largest sizes found (and two and one

being common sizes as well). Classification gave a smaller number

of clusters, with the largest cluster (also the best-performing cluster)

having nine members. In both cases, the clusters often contained

feature rankers which would not immediately seem to have much in

common; although this makes sense for classification performance,

it is an intriguing result for the similarity (indicating that the rankers

may be more related than one might expect). We also found that

the similarity groups were generally predictive of the classification

groupings: members within a single similarity group are in the same

or adjacent classification groups. Finally, we noted that signal-to-

noise and ReliefF-W performed very well in terms of classification

while choosing two or fewer features in common.

The rest of the paper is organized as follows. We review relevant

literature on feature selection techniques in Section II. Section III

provides detailed information about the 18 feature selection tech-

niques. Section IV describes the datasets used in the study, presents

similarity results and analysis, and shows model performance results

and analysis. Finally, in Section V, the conclusion is summarized and

suggestions for future work are indicated.

II. RELATED WORK

The main goal of feature selection is to select a subset of

features that minimizes the prediction errors of classifiers. Feature

selection can be broadly classified as feature ranking and feature
subset selection. Feature ranking sorts the attributes according to

their individual predictive power, while feature subset selection finds

subsets of attributes that collectively have good predictive power.

Feature selection can also be categorized as filters and wrappers.

Filters are algorithms in which a feature subset is selected without

involving any learning algorithm. Wrappers are algorithms that use

feedback from a learning algorithm to determine which feature(s) to

include in building a classification model.

A number of papers have studied the use of feature selection

techniques as a data preprocesing step. Guyon and Elisseeff [1]

outline key approaches used for attribute selection, including feature

construction, feature ranking, multivariate feature selection, efficient

search methods, and feature validity assessment methods. A study by

Liu and Yu [2] provides a comprehensive survey of feature selection

algorithms and presents an integrated approach to intelligent feature

selection. Jeffery et al. [3] compare the similarity between gene lists

produced by 10 different feature selection methods. They conclude

that sample size clearly affects the ranked gene lists produced by

different feature selection methods.

95

Feature selection has been applied in many data mining and ma-

chine learning applications. However, its application in the software

quality and reliability engineering domain is limited. Chen et al. [4]

have studied the applications of wrapper-based feature selection in

the context of software cost/effort estimation. They concluded that the

reduced dataset improved the estimation. In a recent study [5] by Gao

et al., a comparative investigation in the context of software quality

estimation is presented for evaluating a proposed hybrid attribute

selection approach, in which feature ranking is first used to reduce

the search space, followed by a feature subset selection.

III. FILTER-BASED FEATURE RANKERS

This work focuses on filter-based feature ranking. Filter-based fea-

ture ranking techniques rank features independently without involving

any learning algorithm. We chose this class of feature selection

algorithm because for large datasets, feature subset evaluation (in-

cluding wrappers) can be computationally prohibitive. In this work,

the feature rankers (filters) chosen can be placed into two categories:

eleven threshold-based feature selection techniques (TBFS) that were

developed by our research team and seven non-TBFS feature selection

techniques including six commonly-used filters and a new filter

technique called signal-to-noise.

A. Non-TBFS Feature Selection Techniques

Seven non-TBFS filter-based feature ranking techniques were used

in this work: chi-squared (CS) [6], information gain (IG) [6], gain

ratio (GR) [6], two versions of ReliefF (ReliefF, RF, and ReliefF-

W, RFW) [7], symmetric uncertainty (SU) [8], and signal-to-noise

(S2N) [9]. All of these feature selection methods, with the exception

of signal-to-noise, are available within the WEKA machine learning

tool [6]. Outside of RFW, WEKA’s default parameter values were

used. RFW is the ReliefF technique with the weight by distance

parameter set to “true”. Since most of these methods are widely

known and for space considerations, the interested reader can consult

with the included references for further details.

Signal-to-noise ratio is a measure used in electrical engineering to

quantify how much a signal has been corrupted by noise. It is defined

as the ratio of the signal’s power to the noise’s power corrupting the

signal. The signal-to-noise (S2N) can also be used as feature ranking

method ([9]). For a binary class problem (such as fp, nfp), the S2N

is defined as the ratio of the difference of class means (μfp −μnfp)

to the sum of standard deviation of each class (σfp + σnfp). If one

attribute’s expression in one class is quite different from its expression

in the other, and there is little variation within the two classes, then

the attribute is predictive. Therefore, S2N favors attributes where

the range of the expression vector is large, but where most of that

variation is due to the class distribution. Because it is rarely used as

a feature ranking technique, we use our own implementation of S2N.

B. Threshold-based Feature Ranking Techniques

Eleven threshold-based feature selection techniques were devel-

oped and implemented by our research group within WEKA [6].

The procedure is shown in Algorithm 1. First each attribute’s values

are normalized between 0 and 1 by mapping F j to F̂ j . The normal-

ized values are treated as posterior probabilities. Each independent

attribute (software predictor variable) is then paired individually

with the class attribute (fault-prone or not-fault-prone label) and

the reduced dataset is evaluated using eleven different classifier

performance metrics based on a set of posterior probabilities. In

standard binary classification, the predicted class is assigned using

the default decision threshold of 0.5. The default decision threshold

Algorithm 1: Threshold-based Feature Selection Algorithm

input :
1. Dataset D with features F j , j = 1, . . . ,m;
2. Each instance x ∈ D is assigned to one of two classes c(x) ∈ {fp, nfp};

3. The value of attribute F j for instance x is denoted F j(x);
4. Threshold-based feature ranking technique ω ∈ {FM, OR, PO, PR, GI, MI,
KS, DV, GM, AUC, PRC};
5. A predefined threshold: number (or percentage) of the features to be selected.
output:
Selected feature subsets.

for F j , j = 1, . . . ,m do
Normalize F j �→ F̂ j =

Fj−min(Fj)

max(Fj)−min(Fj)
;

Calculate metric ω using attribute F̂ j , ωi(F̂
j).

Create feature ranking R using ωi(F̂
j)∀j.

Select features according to feature ranking R and a predefined threshold.

is often not optimal, especially when the relative class distribution is

imbalanced. Therefore, we propose the use of performance metrics

that can be calculated at various points in the distribution of F̂ j . At

each threshold position, the values above the threshold are classified

as positive, and negative otherwise. We then consider swapping the

positive and negative, i.e. values above the threshold are classified as

negative, and positive otherwise. Whichever direction of the positive

and negative labeling produces the more optimal attribute values is

used. In a binary classification problem such as fault-prone (positive)

or not-fault-prone (negative), there are four possible classification

rates: true positive rate (TPR), true negative rate (TNR), false

positive rate (FPR), false negative rate (FNR), as well as one

additional commonly-used performance metric, precision (PRE).

These four classification rates can be calculated at each threshold

t ∈ [0, 1] relative to the normalized attribute F̂ j . The threshold-based

feature ranking technique utilizes the classification rates as described

below.

• F-measure (FM): is a single value metric derived from the

F-measure that originated from the field of information re-

trieval [6]. The maximum F-measure is obtained when varying

the decision threshold value between 0 and 1.

• Odds Ratio (OR): is the ratio of the product of correct (TPR
times TNR) to incorrect (FPR times FNR) predictions. The

maximum value is taken when varying the decision threshold

value between 0 and 1.

• Power (PO): is a measure that avoids common false positive

cases while giving stronger preference for positive cases [10].

Power is defined as:

PO = max
t∈[0,1]

(
(TNR(t))k − (FNR(t))k

)

where k = 5.

• Probability Ratio (PR): is the sample estimate probability of the

feature given the positive class divided by the sample estimate

probability of the feature given the negative class [10]. PR is the

maximum value of the ratio when varying the decision threshold

value between 0 and 1.

• Gini Index (GI): measures the impurity of a dataset. GI for

the attribute is then the minimum Gini index at all decision

thresholds t ∈[0, 1].

• Mutual Information (MI): measures the mutual dependence of

the two random variables. High mutual information indicates

a large reduction in uncertainty, and zero mutual information

between two random variables means the variables are indepen-

dent.

• Kolmogorov-Smirnov (KS): utilizes the Kolmogorov-Smirnov

96

TABLE I
SOFTWARE DATASETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

statistic to measure the maximum difference between the empir-

ical distribution functions of the attribute values of instances in

each class [11]. It is effectively the maximum difference between

the curves generated by the true positive and false positive rates

as the decision threshold changes between 0 and 1.

• Deviance (DV): is the residual sum of squares based on a

threshold t. That is, it measures the sum of the squared errors

from the mean class given a partitioning of the space based on

the threshold t and then the minimum value is chosen.

• Geometric Mean (GM): is a single-value performance measure

which is calculated by finding the maximum geometric mean of

TPR and TNR as the decision threshold is varied between 0

and 1.

• Area Under ROC (Receiver Operating Characteristic) Curve
(AUC): has been widely used to measure classification model

performance [12]. The ROC curve is used to characterize the

trade-off between true positive rate and false positive rate. In

this study, ROC curves are generated by varying the decision

threshold t used to transform the normalized attribute values

into a predicted class.

• Area Under the Precision-Recall Curve (PRC): is a single-value

measure that originated from the area of information retrieval.

The area under the PRC ranges from 0 to 1. The PRC diagram

depicts the trade off between recall and precision.

IV. EXPERIMENTS

A. Dataset

Experiments conducted in this study used software metrics and

defect data collected from a real-world software project, a very large

telecommunications software system (denoted as LLTS) [5]. LLTS

contains data from four consecutive releases, which are labeled as

SP1, SP2, SP3, and SP4. The software measurement datasets consist

of 42 software metrics, including 24 product metrics, 14 process

metrics, and four execution metrics. The dependent variable is the

class of the program module, fault-prone (fp), or not fault-prone (nfp).

A program module with one or more faults is considered fp, and nfp
otherwise. Table I lists the characteristics of the four release datasets

utilized in this work. An important characteristic of these datasets is

that they all suffer from class imbalance, where the proportion of fp
modules is much lower than that of nfp modules.

B. Experimental Design

We first used 18 filter-based rankers to select the subsets of

attributes. We ranked the features and selected the top �log2 n	
features according to their respective scores, where n is the number

of independent features for a given dataset. The reasons why we

select the top �log2 n	 features include (1) related literature does not

provide guidance on the appropriate number of features to select; and

(2) a recent study [13] showed that it was appropriate to use �log2 n	
as the number of features when using WEKA [6] to build Random

Forests learners for binary classification in general and imbalanced

datasets in particular. Although we used different learners here, a

preliminary study showed that �log2 n	 is still appropriate for various

learners. In this study, six (�log2 42	 = 6) features are selected.

The experiments were conducted to discover the similarity of 18

rankers and the impact of rankers and learners on defect prediction.

C. Experiments - Similarity between 18 Rankers

In this study, we examine the similarity between 18 filter-based

feature ranking techniques (rankers). The empirical validation of the

different rankers was implemented through a case study of four

consecutive releases (SP1, SP2, SP3, and SP4), of a very large

telecommunications software system (denoted as LLTS).

Consistency index [14] is used to measure the degree of similarity

between the metric rankings of two feature selection techniques.

In this paper, we use the consistency index because it takes into

consideration bias due to chance. We compute the consistency index

between two feature subsets as follows. Let Ti and Tj be subsets

of features, where |Ti| = |Tj | = k. The consistency index [14] is

obtained as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (1)

where n is the total number of features in the dataset, d is the

cardinality of the intersection between subsets Ti and Tj , and

−1 < IC (Ti, Tj) ≤ +1. The greater the consistency index, the

more similar the subsets are. As noted earlier, k is set to 6 in this

study. If the two rankings are the same, then the consistency index is

1. If there is no overlap between two rankings, then the consistency

index is -0.1667. For grouping rankers, we consider two rankers to

be similar if they share four out of the top six features. Tables II

through V show the experimental results; for convenience, pairs with

4 or more features in common are bolded, while those with one or

zero in common are printed in italics.

1) Seven Non-TBFS Rankers

The experimental results show that among the seven non-

TBFS rankers (CS, IG, GR, RF, RFW, SU, and S2N), RF

and RFW generate very similar feature subsets, in fact the

same feature subsets for the datasets SP2 and SP4; the feature

subsets generated by RF and RFW are dissimilar to the feature

subset generated by the other five ranker groups. In general, we

can group these seven rankers into three groups; {RF, RFW},

{CS, IG, S2N}, and {GR, SU}. The rankers within each group

produce similar feature subsets.

2) 11 Threshold-based Rankers

We can divide the 11 TBFS rankers into five groups, {PRC, DV,

FM, PO}, {AUC, KS}, {PR, OR}, {MI, GM}, and {GI}. The

rankers in each group generate similar feature subsets as defined

above. We also observe that OR, PR, and GI are particularly

dissimilar to the other eight rankers.

3) All 18 Rankers

When we consider all eighteen rankers in two groups (7 non-

TBFS and 11 TBFS), we can observe that CS is similar to FM,

PO, DV, and PRC; IG is similar to PO, DV, PRC; and S2N is

similar to FM, PO, and PRC. We also observe that RF and

RFW are still dissimilar to all other rankers.

D. Experiments - Defect Prediction Model Performance

To evaluate a feature selection technique, similarity of feature

selection may not be enough. We should also consider classification

model performance. Software defect prediction models have been

used to improve the fault prediction and risk assessment process.

Finding faulty components in a software system can lead to a more

reliable final system and reduce development and maintenance costs.

97

TABLE II
SP1, SIMILARITY BETWEEN RANKERS

CS GR IG RF RFW SU FM OR PO PR GI MI KS DV GM AUC PRC S2N

CS 0.2222 0.8056 0.0278 0.0278 0.4167 0.6111 0.4167 0.6111 0.4167 0.4167 0.6111 0.4167 0.6111 0.4167 0.2222 0.6111 0.4167

GR 0.2222 0.0278 0.0278 0.6111 0.2222 0.0278 0.2222 -0.1667 -0.1667 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.0278
IG 0.0278 0.0278 0.4167 0.6111 0.2222 0.6111 0.2222 0.2222 0.6111 0.4167 0.6111 0.4167 0.2222 0.6111 0.4167

RF 0.8056 0.0278 0.0278 -0.1667 0.0278 -0.1667 -0.1667 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.2222

RFW 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.2222

SU 0.4167 0.2222 0.4167 -0.1667 -0.1667 0.4167 0.2222 0.4167 0.2222 0.2222 0.4167 0.2222

FM 0.4167 0.8056 0.2222 0.2222 0.6111 0.8056 0.6111 0.6111 0.4167 1.0000 0.8056
OR 0.4167 0.6111 0.6111 0.0278 0.2222 0.2222 0.0278 -0.1667 0.4167 0.4167

PO 0.2222 0.2222 0.4167 0.6111 0.6111 0.4167 0.4167 0.8056 0.6111
PR 1.0000 0.0278 0.2222 0.2222 0.0278 -0.1667 0.2222 0.2222

GI 0.0278 0.2222 0.2222 0.0278 -0.1667 0.2222 0.2222

MI 0.6111 0.8056 0.6111 0.6111 0.6111 0.4167

KS 0.6111 0.8056 0.6111 0.8056 0.6111
DV 0.4167 0.4167 0.6111 0.4167

GM 0.6111 0.6111 0.4167

AUC 0.4167 0.2222

PRC 0.8056
S2N

TABLE III
SP2, SIMILARITY BETWEEN RANKERS

CS GR IG RF RFW SU FM OR PO PR GI MI KS DV GM AUC PRC S2N

CS -0.1667 0.8056 0.0278 0.0278 0.2222 0.6111 0.2222 0.8056 0.2222 0.2222 0.6111 0.6111 0.8056 0.6111 0.8056 0.8056 0.6111
GR -0.1667 -0.1667 -0.1667 0.4167 -0.1667 0.0278 -0.1667 -0.1667 0.0278 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667
IG 0.0278 0.0278 0.2222 0.4167 0.2222 0.6111 0.2222 0.2222 0.6111 0.6111 0.6111 0.6111 1.0000 0.8056 0.6111
RF 1.0000 -0.1667 0.0278 0.2222 0.0278 0.2222 0.2222 0.0278 -0.1667 0.0278 -0.1667 0.0278 0.0278 0.0278

RFW -0.1667 0.0278 0.2222 0.0278 0.2222 0.2222 0.0278 -0.1667 0.0278 -0.1667 0.0278 0.0278 0.0278
SU 0.2222 0.2222 0.4167 0.0278 0.2222 0.4167 0.4167 0.2222 0.4167 0.2222 0.2222 0.0278
FM 0.0278 0.8056 0.0278 0.0278 0.6111 0.4167 0.6111 0.4167 0.4167 0.6111 0.6111
OR 0.2222 0.6111 0.6111 0.2222 0.0278 0.2222 0.0278 0.2222 0.2222 0.2222

PO 0.2222 0.2222 0.8056 0.6111 0.8056 0.6111 0.6111 0.8056 0.6111
PR 0.8056 0.2222 0.0278 0.2222 0.0278 0.2222 0.2222 0.0278
GI 0.2222 0.0278 0.2222 0.0278 0.2222 0.2222 0.0278
MI 0.8056 0.8056 0.8056 0.6111 0.6111 0.4167

KS 0.6111 1.0000 0.6111 0.4167 0.2222

DV 0.6111 0.6111 0.8056 0.6111
GM 0.6111 0.4167 0.2222

AUC 0.8056 0.6111
PRC 0.8056
S2N

TABLE IV
SP3, SIMILARITY BETWEEN RANKERS

CS GR IG RF RFW SU FM OR PO PR GI MI KS DV GM AUC PRC S2N

CS 0.8056 1.0000 0.2222 0.2222 1.0000 0.6111 -0.1667 0.8056 -0.1667 0.0278 1.0000 0.6111 0.8056 0.6111 0.8056 0.8056 0.8056
GR 0.8056 0.2222 0.2222 0.8056 0.4167 0.0278 0.6111 0.0278 0.0278 0.8056 0.4167 0.6111 0.4167 0.8056 0.6111 0.6111
IG 0.2222 0.2222 1.0000 0.6111 -0.1667 0.8056 -0.1667 0.0278 1.0000 0.6111 0.8056 0.6111 0.8056 0.8056 0.8056
RF 0.8056 0.2222 0.4167 -0.1667 0.2222 -0.1667 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222

RFW 0.2222 0.4167 -0.1667 0.2222 -0.1667 0.2222 0.2222 0.0278 0.2222 0.0278 0.2222 0.2222 0.2222

SU 0.6111 -0.1667 0.8056 -0.1667 0.0278 1.0000 0.6111 0.8056 0.6111 0.8056 0.8056 0.8056
FM -0.1667 0.6111 0.0278 0.2222 0.6111 0.4167 0.8056 0.4167 0.4167 0.8056 0.6111
OR -0.1667 0.8056 0.0278 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667
PO -0.1667 0.0278 0.8056 0.8056 0.8056 0.6111 0.8056 0.8056 0.8056
PR 0.2222 -0.1667 -0.1667 0.0278 -0.1667 -0.1667 0.0278 -0.1667
GI 0.0278 0.0278 0.2222 0.0278 0.0278 0.2222 0.0278
MI 0.6111 0.8056 0.6111 0.8056 0.8056 0.8056
KS 0.6111 0.8056 0.6111 0.6111 0.6111
DV 0.6111 0.6111 1.0000 0.6111
GM 0.4167 0.6111 0.4167

AUC 0.6111 0.8056
PRC 0.6111
S2N

TABLE V
SP4, SIMILARITY BETWEEN RANKERS

CS GR IG RF RFW SU FM OR PO PR GI MI KS DV GM AUC PRC S2N

CS 0.6111 0.4167 0.0278 0.0278 0.6111 0.6111 -0.1667 0.6111 -0.1667 0.0278 0.2222 0.2222 0.6111 0.0278 0.0278 0.6111 0.6111
GR 0.4167 -0.1667 -0.1667 1.0000 0.6111 -0.1667 0.6111 -0.1667 -0.1667 0.2222 0.2222 0.6111 0.0278 0.0278 0.6111 0.4167

IG 0.0278 0.0278 0.4167 0.6111 0.0278 0.6111 0.0278 -0.1667 0.4167 0.2222 0.6111 0.4167 0.4167 0.6111 0.4167

RF 1.0000 -0.1667 0.0278 -0.1667 0.0278 -0.1667 -0.1667 -0.1667 -0.1667 0.0278 -0.1667 0.0278 0.0278 0.2222

RFW -0.1667 0.0278 -0.1667 0.0278 -0.1667 -0.1667 -0.1667 -0.1667 0.0278 -0.1667 0.0278 0.0278 0.2222

SU 0.6111 -0.1667 0.6111 -0.1667 -0.1667 0.2222 0.2222 0.6111 0.0278 0.0278 0.6111 0.4167

FM 0.0278 1.0000 0.0278 -0.1667 0.2222 0.2222 1.0000 0.0278 0.2222 1.0000 0.8056
OR 0.0278 0.8056 0.2222 0.2222 0.0278 0.0278 0.2222 0.2222 0.0278 0.0278
PO 0.0278 -0.1667 0.2222 0.2222 1.0000 0.0278 0.2222 1.0000 0.8056
PR 0.2222 0.0278 0.0278 0.0278 0.2222 0.0278 0.0278 0.0278
GI -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667
MI 0.8056 0.2222 0.6111 0.6111 0.2222 0.2222

KS 0.2222 0.4167 0.6111 0.2222 0.2222

DV 0.0278 0.2222 1.0000 0.8056
GM 0.6111 0.0278 0.0278

AUC 0.2222 0.2222

PRC 0.8056
S2N

98

1) Classifiers: In this study, software defect prediction models are

built with three well-known classification algorithms: naı̈ve Bayes

(NB), multilayer perceptron (MLP), and logistic regression (LR). All

three learners themselves do not have a built-in feature selection ca-

pability and are commonly used in the software engineering and other

data mining applications. All classifiers were implemented in the

WEKA tool with default parameter settings [6] except MLP. Based

on preliminary research, the parameters of MLP were set as follows.

The ‘hiddenLayers’ parameter was set to 3 to define a network with

one hidden layer containing three nodes. The ‘validationSetSize’

parameter was set to 10 to cause the classifier to leave 10% of the

training data aside to be used as a validation set to determine when

to stop the iterative training process.

2) Performance Metric: Because using traditional performance

measures such as classification accuracy can give misleading results

on imbalanced data, we use a performance metric that considers

the ability of a classifier to differentiate between the two classes:

the area under the ROC (Receiver Operating Characteristic) curve

(AUC). A perfect classifier provides an AUC that equals 1. It has

been shown that AUC has lower variance and more reliability than

other performance metrics (such as precision, recall, F-measure) [15].

Note that the metric used to measure the performance of the classifiers

is completely independent from the metric in the TBFS algorithm.

AUC is used both to select the most predictive subset of features in

TBFS and to evaluate the classification models constructed using this

set of features.

3) Experimental Results: During the experiments, ten runs of five-

fold cross-validation were performed. First, we ranked the attributes

using the eighteen rankers separately. Once the attributes are ranked,

the top six attributes are selected to yield the final training data. After

feature selection, we applied the classifier to the training datasets

with the selected features, and then we used AUC to evaluate the

performance of the classification model. In total, 18 rankers × 4

datasets × 10 runs × 5 folds = 3600 combinations of feature ranking

techniques were employed, and correspondingly 3600 × 3 classifiers

= 10800 classification models were built.

All the results are reported in Table VI through Table VIII. Note

that each value presented in the tables is the average over the ten

runs of five-fold cross-validation outcomes. From these tables, we

can observe that although a given ranker might perform best in

combination with one learner, this may not be true when other

learners are used to evaluate models. For example, S2N performed

best on average in terms of AUC when the NB and LR classifiers

are used. However, this is not true when the MLP classifier is used;

in that case, PO performed best. The results also demonstrate that

although no particular ranker dominates the others, we can conclude

that S2N, PO, and PRC are most often the best techniques, while

PR, OR, and GR are rarely optimal. Our recent study [5] shows

that the reduced feature subsets can have better or similar prediction

performance compared to the complete set of attributes (original data

set).

We also conducted a two-way ANalysis Of VAriance (ANOVA)

F test ([16]) to statistically examine the various effects on the

performances of the classification models. The two-way ANOVA test

in this study includes two factors: the first represents 18 rankers, and

the second represents the three learners. In this ANOVA test, the

results from all four datasets were taken into account together. In

this study, we also performed the multiple comparison tests using

Tukey’s honestly significant difference (HSD) criterion [16]. All

tests of statistical significance utilize a significance level α of 5%.

Both ANOVA and multiple comparison tests were implemented in

TABLE VI
CLASSIFICATION PERFORMANCE, NB

SP1 SP2 SP3 SP4 Average

CS 0.7846 0.8108 0.8184 0.7696 0.7958

GR 0.7346 0.7613 0.7808 0.7519 0.7571

IG 0.7831 0.8081 0.8118 0.7794 0.7956

RF 0.7879 0.8053 0.8305 0.7731 0.7992

RFW 0.7882 0.8081 0.8190 0.7735 0.7972

SU 0.7865 0.7729 0.7882 0.7592 0.7767

FM 0.7822 0.8074 0.8176 0.7731 0.7951

OR 0.7405 0.8060 0.7181 0.7558 0.7551

PO 0.7891 0.8071 0.8141 0.8023 0.8031

PR 0.7345 0.7963 0.7179 0.7605 0.7523

GI 0.7341 0.7982 0.7678 0.6997 0.7500

MI 0.7739 0.8010 0.8119 0.7788 0.7914

KS 0.7722 0.7750 0.8125 0.7588 0.7796

DV 0.7820 0.8099 0.8163 0.7874 0.7989

GM 0.7716 0.7740 0.8165 0.7586 0.7802

AUC 0.7685 0.8072 0.7947 0.7683 0.7847

PRC 0.7885 0.8131 0.8120 0.7953 0.8022

S2N 0.7995 0.8142 0.8067 0.8129 0.8083

TABLE VII
CLASSIFICATION PERFORMANCE, MLP

SP1 SP2 SP3 SP4 Average

CS 0.7943 0.8117 0.8126 0.7914 0.8025

GR 0.7475 0.7545 0.7688 0.7464 0.7543

IG 0.7926 0.8099 0.8209 0.8103 0.8084

RF 0.7948 0.8119 0.8191 0.7619 0.7969

RFW 0.7955 0.8139 0.8303 0.7598 0.7999

SU 0.7875 0.7847 0.7843 0.7504 0.7767

FM 0.7917 0.8127 0.8163 0.7924 0.8033

OR 0.7665 0.8058 0.7244 0.7550 0.7630

PO 0.7955 0.8133 0.8261 0.8010 0.8090

PR 0.7666 0.7970 0.7299 0.7576 0.7628

GI 0.7660 0.7963 0.7813 0.7495 0.7733

MI 0.7855 0.7945 0.8249 0.7865 0.7978

KS 0.7836 0.7749 0.8201 0.7607 0.7848

DV 0.7923 0.8095 0.8180 0.7959 0.8039

GM 0.7812 0.7779 0.8150 0.7701 0.7861

AUC 0.7754 0.8099 0.8260 0.7769 0.7970

PRC 0.7977 0.8151 0.8105 0.7908 0.8035

S2N 0.8047 0.8039 0.8108 0.7972 0.8042

TABLE VIII
CLASSIFICATION PERFORMANCE, LR

Ranker SP1 SP2 SP3 SP4 Average

CS 0.8021 0.8229 0.8354 0.8153 0.8189

GR 0.7688 0.7935 0.7805 0.7816 0.7811

IG 0.8014 0.8176 0.8361 0.8216 0.8192

RF 0.8103 0.8221 0.8354 0.8118 0.8199

RFW 0.8091 0.8233 0.8387 0.8142 0.8213

SU 0.7993 0.7909 0.8040 0.7802 0.7936

FM 0.8023 0.8235 0.8298 0.8088 0.8161

OR 0.7816 0.8158 0.7422 0.7768 0.7791

PO 0.8041 0.8255 0.8334 0.8202 0.8208

PR 0.7784 0.8053 0.7467 0.7808 0.7778

GI 0.7787 0.8062 0.7918 0.7780 0.7887

MI 0.7934 0.7983 0.8354 0.7942 0.8053

KS 0.7902 0.7788 0.8338 0.7705 0.7933

DV 0.8020 0.8186 0.8323 0.8164 0.8173

GM 0.7886 0.7755 0.8327 0.7799 0.7942

AUC 0.7845 0.8154 0.8318 0.7882 0.8049

PRC 0.8041 0.8265 0.8282 0.8123 0.8178

S2N 0.8176 0.8279 0.8336 0.8231 0.8256

99

0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83

S2N
PRC
AUC
GM
DV
KS
MI
GI

PR
PO
OR
FM
SU

RFW
RF
IG

GR
CS

(a) Factor A, Filters

0.78 0.785 0.79 0.795 0.8 0.805 0.81 0.815

LR

MLP

NB

(b) Factor B, Learners

Fig. 1. Tukey’s HSD, Classification

MATLAB.

The ANOVA table is omitted due to space restrictions; however,

the p-values for both of the main factors were zero, indicating that

classification performance was not the same for all groups in each of

the main factors. The Tukey’s HSD results are presented in Figure 1,

displaying graphs with each group mean represented by a symbol (◦)

and the 95% confidence interval as a line around the symbol. Two

means are significantly different if their intervals are disjoint, and are

not significantly different if their intervals overlap. The figure shows

the following facts: for the classification models built with LLTS

datasets, we can divide the 18 rankers into four groups, {GR, PR,

OR, GI}, {SU, KS, GM}, {MI, AUC}, and {FM, RF, CS, RFW, DV,

IG, PRC, PO, S2N}, with the clusters ordered by their performances

from worst to best. The rankers from different groups performed

significantly different, while the rankers from same group performed

similarly (were not significantly different from one another). For the

last group, S2N performs best. In addition, in terms of the learners, all

three were significantly different from each other, with LR performing

best and MLP and NB following in that order.

Comparing results in Section IV-C and Section IV-D, we can

make the following observations: the clusters based on similarity are

smaller and more numerous than the ones based on classification.

This makes sense, because while rankers in the same similarity

group are expected to perform similarly (and thus be in the same

classification cluster), rankers sharing a classification cluster may

have nothing in common and therefore be in separate similarity

clusters. In addition, the S2N and RFW rankers both performed well

(in the top-performing classification group) while having very distinct

choices of features (very low similarity), suggesting that these are

appropriate for selecting diverse but high-performing rankers.

V. CONCLUSION

Feature (software metric) selection plays an important role in the

software engineering domain. This work investigates the similarity

of eighteen filter-based feature ranking techniques on a real-world

software project. Generally speaking, RF and RFW are similar to

each other and are dissimilar to all other rankers. We also built

classification models using NB, MLP, and LR on the smaller subsets

of selected attributes. The experimental results demonstrate that the

signal-to-noise and ReliefF-W rankers performed well on average

while being dissimilar enough to maintain diversity. In addition, both

similarity and classification performance can be used to build clusters,

and these can be combined to help select the best feature rankers.

Future work may include experiments using additional datasets

from other software engineering and non-software engineering do-

mains, and experiments with other ranking techniques and classifiers

for building classification models.

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, March 2003.

[2] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[3] I. Jeffery, D. Higgins, and A. Culhane, “Comparison and evaluation
of methods for generating differentially expressed gene lists from
microarray data,” BMC Bioinformatics, vol. 7, no. 1, pp. 359+, July
2006.

[4] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, no. 22, pp. 38–46, 2005.

[5] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience, vol. 41, no. 5, pp. 579–
606, 2011.

[6] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[7] I. Kononenko, “Estimating attributes: Analysis and extensions of RE-
LIEF,” in European Conference on Machine Learning. Springer Verlag,
1994, pp. 171–182.

[8] M. A. Hall and L. A. Smith, “Feature selection for machine learn-
ing: Comparing a correlation-based filter approach to the wrapper,” in
Proceedings of the Twelfth International Florida Artificial Intelligence
Research Society Conference, May 1999, pp. 235–239.

[9] M. Wasikowski and X. wen Chen, “Combating the small sample class
imbalance problem using feature selection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, pp. 1388–1400, 2010.

[10] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305,
2003.

[11] T. M. Khoshgoftaar and N. Seliya, “Fault-prediction modeling for
software quality estimation: Comparing commonly used techniques,”
Empirical Software Engineering Journal, vol. 8, no. 3, pp. 255–283,
2003.

[12] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, June 2006.

[13] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical study
of learning from imbalanced data using random forest,” in Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence, vol. 2, Washington, DC, USA, 2007, pp. 310–317.

[14] L. I. Kuncheva, “A stability index for feature selection,” in Proceedings
of the 25th conference on Proceedings of the 25th IASTED International
Multi-Conference: artificial intelligence and applications. Anaheim,
CA, USA: ACTA Press, 2007, pp. 390–395.

[15] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance analysis in software
fault prediction models,” the 20th IEEE international conference on
software reliability engineering, pp. 99–108, 2009.

[16] M. L. Berenson, M. Goldstein, and D. Levine, Intermediate Statistical
Methods and Applications: A Computer Package Approach, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

100

Progressive Clustering with Learned Seeds: An
Event Categorization System for Power Grid

Boyi Xie†, Rebecca J. Passonneau†, Haimonti Dutta†,
Jing-Yeu Miaw, Axinia Radeva, Ashish Tomar

Center for Computational Learning Systems

Columbia University

New York, USA 10027

Email: †{xie@cs,becky@cs,haimonti@ccls}.columbia.edu

Cynthia Rudin
MIT Sloan School of Management

Massachusetts Institute of Technology

Cambridge, USA 02139

Email: rudin@mit.edu

Abstract—Advances in computational intelligence provide im-
proved solutions to many challenging software engineering
problems. Software has long been deployed for infrastructure
management of utilities, such as the electric power grid. System
intelligence is in increasing demand for system control and
resource allocation. We present a model for electrical event
categorization in a power grid system: Progressive Clustering
with Learned Seeds (PCLS) – a learning method that provides
stable and promising categorization results from a very small
labeled data. It benefits from supervision but maximally allows
patterns be discovered by the data itself. We find it effectively
captures the dynamics of a real world system over time.

I. INTRODUCTION

Advances in computational intelligence provide improved

solutions to many challenging software engineering problems.

Software has long been deployed for infrastructure manage-

ment of utilities, such as the electric power grid or telecommu-

nication systems. System intelligence is in increasing demand

for system control and resource allocation. Our work applies

machine learning to a problem for the low power electrical

grid that directly services customers. Over the past half dozen

years, we have worked closely with Consolidated Edison of

New York, a major utility company in New York City, on a

project to apply machine learning techniques to the secondary

electrical grid. The results have been used to maintain the

reliability of the secondary electrical grid.

The goal of our project is to develop interpretable models

on a year-by-year basis to rank secondary structures (manholes

and service boxes) with respect to their vulnerability to a

serious event, such as fire or explosion. We use a supervised

ranking algorithm, thus have a need for labeled data that

indicates which structures are vulnerable in a given year for

training our models. The main source of data for labeling the

structures consists of Con Edison’s Emergency Control System

(ECS) trouble tickets. They document electrical events, such

as interruptions of service, and engineers’ efforts to redress

any problems. The task we address in this paper is how we

apply machine learning to the trouble tickets in order to sort

them into those that document serious events on structures,

and those that document non-serious events. Serious events

result in positive labels on the implicated structures; non-

serious events are included along with serious events in the

representation of a structure’s past history. Thus the ability

to learn a good ranking model for structures depends on our

ticket classification.

In this paper, we describe our approach, Progressive Cluster-

ing with Learned Seeds (PCLS) – a learning method adapted to

this domain that provides stable and promising categorization

results from a very small labeled data set. PCLS benefits

from supervised learning but maximally allows patterns be

discovered by the data itself. We found that it effectively

captures the dynamics of a time-varied real world system.

In this context, the goal of our event categorization system

is to classify ECS tickets with respect to whether the reported

“trouble” is a) a serious event, b) a low-grade event (a minor

interruption or disruption of service), or c) not relevant. The

semantics of the three-way classification is somewhat subjec-

tive and contingent. Certain events are unequivocally serious,

such as manhole explosions. However, many tickets pertain

to events that can be serious or not, depending on a wide

range of factors. Further, the language in the trouble tickets

changes over time. From a small, expert-labeled sample for a

single region, we initially hand-crafted a set of classification

rules (see section III). We use these to initialize a clustering

approach for the earlier years of data. To initialize clusters for

later years, learned decision trees from the clusters help seed

the clusters.

The issue of gradual shifts in the semantics of document

classes is potentially a very general one, thus our approach

could apply to many problems where results of previous

supervised learning must be adapted to changing contexts.

Section II presents related work, followed by motivation

(section III). We describe the data sets and the general domain

in Section IV. Section V introduces a new semi-supervised

approach, Progressive Clustering with Learned Seeds (PCLS).

Section VI reviews three learning methods and our evaluation

procedure. Section VII presents results of our experiments. At

last, section VIII briefly summarizes our contribution.

II. RELATED WORK

Early work on incremental learning [1], [2] attempted to

build learners that could distinguish between noise and change.

While they deal with concept learning, they address the same

101

general problem we face. Utgoff [2] presents an incremental

decision tree algorithm that restructures the tree as needed

for new instances. Training instances are retained in the tree

to facilitate restructuring, thus constituting meta-knowledge,

meaning knowledge distinct from what is learned, but which

facilitates learning.

There has been much previous work on cluster seeding to

address the limitation that iterative clustering techniques (e.g.

K-Means and Expectation Maximization (EM)) are sensitive

to the choice of initial starting points (seeds). The problem

addressed is how to select seed points in the absence of prior

knowledge. Kaufman and Rousseeuw [3] propose an elaborate

mechanism: the first seed is the instance that is most central in

the data; the rest of the representatives are selected by choosing

instances that promise to be closer to more of the remaining

instances. Pena et al. [4] empirically compare the four ini-

tialization methods for the K-Means algorithm and illustrate

that the random and Kaufman initializations outperform the

other two, since they make K-Means less dependent on the

initial choice of seeds. In K-Means++ [5], the random starting

points are chosen with specific probabilities: that is, a point

p is chosen as a seed with probability proportional to p’s

contribution to the overall potential. Bradley and Fayyad [6]

propose refining the initial seeds by taking into account the

modes of the underlying distribution. This refined initial seed

enables the iterative algorithm to converge to a better local

minimum.

CLustering through decision Tree construction (CLTrees) [7]

is related to ours in their use of decision trees (supervised

learning) for generation of clusters. They partition the data

space into data and empty regions at various levels of details.

Their method is fundamentally different from ours and do not

capture the aspect of incremental learning over time.

III. MOTIVATION

We have been working with Con Edison to develop a

machine learning approach to predict serious events in sec-

ondary structures (manholes and service boxes). Our task is

to produce for each borough, for a given year, a ranked list

of the borough’s structures with respect to their vulnerability

to a serious event in the near future. The prediction problem

is challenging. Only 0.1-5.0% of the tens of thousands of

structures per borough experience a serious event each year,

depending on borough, year and the definition of serious event.

Causes of these rare events, if they can be detected, are often

indirect (insulation breakdown), can depend on a complex of

factors (number of cables per structure), and develop slowly.

Evaluation consists of a blind test of a ranked list against the

serious events that occur in the following year, with emphasis

on the top of the ranked lists, which are used to prioritize Con

Edison repair work.

To label the structures for supervised learning, we rely on

the ticket classes described in the introduction. As described

in [8], we developed a data mining, inference and learning

framework to rank structures. It relies on a supervised bipartite

ranking algorithm that emphasizes the top of a ranked list [9].

For any given year, a structure that is identified as the location

of a problem in a serious event ticket gets a positive label; all

other structures get negative labels. The feature descriptions of

the labeled structures also depend heavily on the ticket classes:

across boroughs, years and modeling methods, at least half the

features in our ranking models represent how many serious or

low-grade events a structure has experienced in the recent or

remote past.

We had no a priori gold standard for classifying tickets.

Based on the intuitions of two domain experts, we initially

used a trouble type assigned to tickets by Con Edison dis-

patchers as the indicator of seriousness. Of the roughly two

and a half dozen trouble types we use (the constituency varies

somewhat across boroughs), two are unequivocally serious

(for explosions and fires), and some are almost never serious

(e.g., flickering lights). However, there is one category in

particular (smoking manholes) that is both very large and

can be serious or not. In previous work [10], we applied

corpus annotation methods to elicit a definition by example

of the three classes: serious event, low-grade event, and

irrelevant. Two experts labeled a carefully designed sample

of 171 tickets. That they achieved only modest interannotator

agreement on the first pass (κ=0.49; [11]) indicates that the

classes are rather subjective. Based on a second pass involving

adjudication among the experts, we developed a rule-based

method to classify tickets. We produced a small fixed set rules,

along with a large fixed set of regular expressions, to capture

generalizations we observed in the hand-labeled data. To test

and refine the rules we applied them to large random samples,

modifying them based on our judgments of their accuracy. As

reported in [10] the rule-based classes improved the ranking

results, particularly at the top of the list for the most vulnerable

structures (one in every five structures was affected).

Development of the hand-crafted rules (HCR) required

approximately 2,500 person hours. While they improved over

the use of the assigned trouble type, our goal in the experi-

ments reported here is to boost the improvement further, and

to adapt the rules over time and regions. In particular, we

need an approach that generalizes over time and space: the

different boroughs have different infrastructure and histories,

slightly different sublanguages (in the sense of [12]), and

we use different subsets of trouble types as data. Rather than

adapting the rules manually, which would be costly, we seek

an automated method.

While the notions of relevant or serious events have some

generality, the specific realization of the three ticket class

changes from borough to borough, and from year to year.

This can be illustrated by comparing the discriminative words

over time. If we take the ticket classes produced by our hand-

crafted rules and compare the list of words that discriminate

the classes from year to year, we find that only about half the

discriminative words overlap. For relevant versus non-relevant

tickets, a comparison of the discriminative vocabulary for each

successive pair of years from 2001 to 2005 shows that the

average overlap in vocabulary is only 56.27% (sdev=0.05).

102

IV. DATA SOURCES

We have been working with Con Edison Emergency Control

System (ECS) tickets from three New York city boroughs:

Manhattan, Brooklyn and Bronx. The experiments reported

here pertain to Manhattan, which is our primary focus. We use

tickets from 1996 through 2006, consisting of 61,730 tickets.

The tickets are textual reports of secondary events, such as

manhole fires, flickering lights in a building, and so on; they

are generated when a customer or city worker calls the ECS

line. The ECS tickets in our dataset range in length from

1 to 550 lines, with a similarly wide range of information

content. ECS tickets can have multiple entries from different

individuals, some of which is free text, some of which is

automatically entered. These tickets exhibit the fragmentary

language, lack of punctuation, acronyms and special symbols

characteristic of trouble tickets from many arenas.
Structures are labeled with respect to a given year, thus

we apply automated ticket classification or clustering on a

year-by-year basis. We first classify tickets into relevant versus

irrelevant events, then classify the tickets in the relevant class

into serious versus low-grade events. The serious versus low-

grade event classes are highly skewed. Of 61,730 tickets for

ten years of Manhattan ECS (relevant trouble types only),

about 43.67% represent relevant events, and only 15.92% of

these are serious.

V. PROGRESSIVE CLUSTERING WITH LEARNED SEEDS

Progressive Clustering with Learned Seeds is a method

adopted after consideration of the tradeoffs of supervised

and unsupervised approaches. We aimed to minimize the

sensitivity of K-Means clustering to the initial seed points by

biasing the initial centroids closer to the optimal ones using

prior knowledge about the document classes.

Procedure 1 Progressive Clustering with Learned Seeds

1: Tree path extraction
2: Path scoring
3: Class contribution calculation
4: Seed points retrieval
5: K-Means clustering using retrieved seeds

Fig. 1. Tree path extraction, which converts a decision tree model
to a collection of paths

A. Tree path extraction
We train a decision tree model on the previous year’s data,

convert it into a set of paths as illustrated in Figure 1, and

extract path attributes.
The following attributes are extracted for each path: (1)

Length - the number of terms it contains; (2) Coverage -

the number of instances addressed; (3) Accuracy - the rate of

correctly classified instances; (4) Label - the class it predicts.

We assign scores for each path using the first three attributes.

B. Path scoring
The scoring process formalizes the intuition that an optimal

rule relies on fewer features, has greater coverage and higher

accuracy. To score a path, we first compute homogeneous

scores for all three attributes, in particular, to make them

uniformly distributed within the range [0,1]. Subsequently, we

use coefficients to weight each attribute and calculate a final

score, also in [0,1].
For path i, we calculate its ScoreLength, ScoreCoverage and

ScoreAccuracy separately using the following formulas:

ScoreLengthi =
lmax − li

lmax − lmin
(1)

where li is the length of the path i, and lmax and lmin are

the lengths of the longest and shortest paths. ScoreLengthi ∈
[0, 1] is a uniform distribution.

ScoreCoveragei =
CoverageNormi

CoverageNormmax
(2)

CoverageNormi = log(ci + 1) (3)

where ci is the coverage of the path i, i.e. the number of

instances related to path i in the training data. Because there is

a big gap in coverage among a set of paths, e.g. from thousands

to only a few, the logarithm function is used to smooth the

data into a uniform distribution. By a further normalization,

ScoreCoveragei ∈ [0, 1].

ScoreAccuracyi =
ai

amax
(4)

where ai is the accuracy of the path i. ScoreAccuracyi ∈
[0, 1].

In summary, paths that are shorter, have more coverage and

are more accurate score higher. After scoring each attribute,

we calculate the final score for path i

Scorei = λl · ScoreLengthi

+ λc · ScoreCoveragei

+ λa · ScoreAccuracyi (5)

where λl + λc + λa = 1; λl, λc and λa are coefficients for

the attribute length, coverage and accuracy respectively. They

are used to weight each path attribute in the scoring function.

Notice that, because each attribute score is normalized, the

final score is also a uniform distribution and Scorei ∈ [0, 1].

103

C. Class contribution calculation

Due to the data skew and the differential role of each class

in the structure ranking problem, we next rank paths on a per

class basis. We assign a quantity to each path representing its

relative contribution to the class it predicts. The class con-

tribution for each path exaggerates the discriminative power

by an exponential function that increase the larger scores and

decreases the smaller ones and is then normalized.

ScoreTransformi = BaseScorei (6)

where Scorei is the score for path i, Base is a base constant

of the exponential function.

ScoreTransformi can be regarded as the raw contribution

of path i. If there are Nc paths belonging to class c, the sum

of the scores
∑Nc

i=1 ScoreTransformi contributes the whole

class. The ratio of ScoreTransformi and the sum can be

regarded as the contribution of path i, and is normalized to

[0,1]. Where c is the index for the class:

Contribution(i,c) =
ScoreTransformi∑Nc
i=1 ScoreTransformi

(7)

Paths are ranked for each class separately by their contribution.

Seed points will be selected according to each class’s path rank

list.

D. Seed points retrieval

For seed points retrieval, we prefer to choose paths with

a higher class contribution, and selects a reasonable number

of data for each class from the decision tree model. Given

a per class ranking of paths, we use the number of decision

tree paths for each class to determine the proportion of seeds

for each class, which reflects the relative importance of the

information we have learned from the decision tree model.

NumOfSeedsc = P ·Ntotal · count(pathi, c)

count(pathi)
(8)

where Ntotal is the total number of instances in the data set

that we want to cluster, P is the percentage of data to be seed

points, count(pathi, c) is the number of paths related to class

c and count(pathi) is the total number of paths extracted from

the decision tree model.

When using a path from the tree trained in the prior year

to retrieve instances in the current year, there may be no

instances, or their may be more than needed. In the latter case,

we randomly select the desired number.

E. Clustering with Learned Seed points

For the initial centroids, we hope to minimize

Θ =

K∑
k=1

‖�cinitk − �coptk‖ (9)

where �cinitk is the initial centroids and �coptk is the optimal

centroids.

Since the classification precision is usually high and stable

(see Section VII), by utilizing the paths selected from the

decision tree we can select the initial centroids to be more

appropriately located in the overall space. Before the K-Means

optimization procedure, we initialize the cluster centroid using

the seed points we retrieved.

�cinitk = �μk =

∑Nk
n=1 �xn

Nk
(10)

where �xn is the nth instance selected by paths that belong to

class k. Nk is the total number of instances that were found

related to class k.

We select initial centroids �μk to seed the clusters, then apply

K-Means.

VI. METHODS

We seek an automated or semi-automated approach that can

classify tickets for the structure ranking task, with adaptation

to each borough and time frame. To reiterate, our goal is to

improve upon the Hand-Crafted Rule (HCR), thus we use their

output as a baseline. Then we compare three learning methods:

(1) C4.5 Decision Tree (DT), (2) K-Means Clustering (KM),

(3) Progressive Clustering with Learned Seeds (PCLS). In this

section, we first introduce our data representation and feature

selection method. Next we briefly contrast the strengths and

weaknesses of DT and KM; PCLS was described in section V.

Then we describe our evaluation method.

A. Data preprocessing

We use bag-of-words document representation, with feature

selection to reduce dimensionality. There are an estimated

7,500 distinct unigrams in each year’s data, not counting mis-

spellings and word fragments; we use about 10% (750 terms)

as features. Previous experiments with spelling normalization

reduced the vocabulary by 40%, but had an inconsistent and

modest impact. In the experiments reported here, we filter out

line separators and other lines with little or no text.

Feature selection was the same for all three classification

approaches and was always performed on data from prior

year(s). We compared the performance of Bi-Normal Sepa-

ration, Chi-Square, F-Measure and Information Gain [13] for

feature selection. Information Gain exhibited the most stable

and consistent performance across different boroughs, years

and data representation formats (Boolean, TFIDF, TF). The

results reported here all rely on Information Gain for feature

selection, and absolute term frequency (TF) as the bag-of-

words vector values.1

B. Baseline: Hand Crafted Rules

The hand-crafted rules rely on three types of information:

other Con Edison databases indicating the voltage; global

properties of the ticket such as length and ticket trouble type;

1Absolute TF performs better than normalized TF, presumably because
it indirectly represents the length of the ticket, a factor in determining
seriousness.

104

meta-data we assign to indicate signs of seriousness or type

of work performed, based on pattern-matching for terms in

the ticket. There is only one set of hand-crafted rules that was

bootstrapped from a small labeled dataset and it is used for

all year’s data.

C. Decision Trees and Clustering

We used the Weka [14] implementation of the C4.5 decision

tree [15] for an interpretable, supervised approach to our clas-

sification tasks. In general, the decision tree models exhibited

good precision, but with poor recall on serious events, which

had a negative effect on structure ranking in that too few

structures were labeled as serious. Decision trees are relatively

interpretable in comparison to other learning methods because

the paths in the tree can be converted to rules for each class

being learned. In contrast, the strengths of K-means clustering

are speed, a lack of dependence on labeled training data, and

high recall. The weaknesses are poor precision, and lack of

robust performance due to the sensitivity to initial centroids.

D. Evaluation

To evaluate the performance of DT, KM and PCLS, we

performed intrinsic and extrinsic evaluations [16]. The intrinsic

evaluation is to compare the predicted event labels with labels

generated by HCR, as measured by recall, precision and F-

measure. In the context of our project, the event labeling is in

the service of the structure ranking problem and has a crucial

impact. We are therefore able to perform an extrinsic evalua-

tion on the structure ranking task. To reiterate, events classified

as serious in the year for training the ranking model determine

which structures are labeled as vulnerable. Consequently, the

extrinsic evaluation provides the most compelling evidence for

the merit of the event categorization. Our extrinsic evaluation

consists in generating a distinct set of structure labels and

features for each event classification method, and comparing

the ranked lists that the ranking model yields when relying on

each event categorization method.

VII. EXPERIMENTAL FRAMEWORK AND RESULTS

Our goal is to bootstrap from the rule-based method at some

point in the past, then to rely solely on the automated methods

from that point forward. We use PCLS, where we cluster the

current year Yi of tickets, seeding the clusters with seed points

selected using the learned trees from the prior year Yi−1, then

in the subsequent year Yi+1, apply the decision tree of Yi for

seeding clusters for year Yi+1.

We report intrinsic and extrinsic evaluation results to com-

pare ticket classes produced by HCR, C4.5 decision trees, KM

and PCLS. Figure 2 schematically represents the experimental

setup: bootstrap automated classification from HCR in 2001,

then evaluate automated methods for ticket classification for

2002-2006. Intrinsic evaluation applies to each year. We report

extrinsic results for two ranked lists, for the years 2006 and

2007: the ranked list trained on 2005 data is given a blind

evaluation against 2006 data, and the ranked list trained on

2006 is evaluated against 2007 data. The ranking models are

trained using ticket classes to label structures for the training

year, and features based on ticket classes for all prior years.

Fig. 2. Experiment setup. We compare Progressive Clustering with Learned
Seeds with hand-crafted rules, C.45 decision tree, and K-Means methods.

A. Intrinsic results

For PCLS, results shown here use 50% of total instances

as seed points to generate initial centroids, the weights of

attributes are λl = 0.1, λc = 0.2 and λa = 0.7 for path

scoring, and Base = 2110 for class contribution. The results

in Table I show that PCLS dramatically improves over K-

means with random seeding for the serious versus low-grade

event classification task; average F-measure for both classes

is always larger for PCLS (significantly better for 4 out of 5

years). Compared with the C4.5 decision tree, PCLS exhibits a

better recall and F-measure on the serious class (each is better

for 4 out of 5 years, and far better for 2005 and 2006) while

maintaining a competitive overall performance (in particular,

better F-measure for 2004-2006). For the classification of

relevant versus irrelevant events, we achieve similar results but

do not present them here due to space limitations. Naive Bayes

(NB) and SVM classifiers are also experimented. NB has

worse performance. SVM achieves similar results but provides

less human interpretable model than DT, such as the criterion

of tree node. Thus, NB and SVM results are not reported here.

B. Extrinsic results

To rank structures, we use a bipartite ranking algorithm that

focuses on the top of a ranked list [9]. For evaluation, we report

AUC (Area Under the receiver operating characteristic Curve),

DCG (Discounted Cumulative Gain, a weighted version of

AUC that favors the top of the list) and PNorm scores, as

recommended in [9]. A blind evaluation assesses how well

the ranked list predicts structures that had particularly serious

events in the year following the training year, where we have

no access to the ECS tickets.

TABLE II
EXTRINSIC EVALUATION BY AUC, DCG AND PNORM MEASURES.

HIGHER SCORE IS PREFERRED FOR AUC AND DCG, AND LOWER SCORE

IS PREFERRED FOR PNORM.

Measure HCR DT KM PCLS
AUC 0.524 0.516 0.540 0.560
DCG 30.789 30.625 31.447 31.834

PNorm 1.24E+09 1.29E+09 1.15E+09 1.06E+09

105

TABLE I
INTRINSIC EVALUATION OF SERIOUS VERSUS LOW-GRADE EVENT CATEGORIZATION. THE RESULTS FOR C4.5 DECISION TREE, K-MEANS CLUSTERING

AND PCLS ARE COMPARED WITH THE LABELS FROM HAND-CRAFTED RULES.

year class
C4.5 Decision Tree (DT) K-Means Clustering (KM) PCLS

Pre Rec F Avg. F Pre Rec F Avg. F Pre Rec F Avg. F

2002
serious event .701 .603 .648

.746
.024 .162 .042

.366
.610 .716 .659 .718

low-grade event .835 .852 .843 .757 .634 .690 .879 .698 .778

2003
serious event .675 .491 .569

.668
.256 .536 .347

.319
.328 .428 .371 .497

low-grade event .813 .725 .767 .908 .174 .292 .792 .514 .623

2004
serious event .633 .376 .472

.599
.251 .577 .350

.429
.688 .414 .517 .606

low-grade event .706 .745 .725 .631 .425 .508 .690 .701 .695

2005
serious event .536 .635 .581

.657
.624 .895 .735

.688
.560 .932 .700 .696

low-grade event .780 .692 .733 .731 .571 .641 .691 .694 .693

2006
serious event .603 .554 .577

.646
.008 .128 .016

.320
.692 .791 .738 .712

low-grade event .708 .722 .715 .547 .726 .624 .710 .664 .686

Fig. 3. Visualized results of extrinsic evaluation. It shows how the structures
that actually have events are captured at the top 5,000 rank list. The vertical
axis is the ranking, and the horizontal axis is a count of the number of
structures. A lower curve is preferred, and the one more stretched to the
right is preferred.

Table II summarizes the results of blind evaluation for

Manhattan; larger scores for AUC and DCG, and lower for

PNorm, correspond to superior performance. PCLS excels

the other methods in all three measures. Figure 3 plots the

vulnerable structures from the blind evaluation year (horizontal

axis) against the top 5000 structures in the ranked lists from

the four methods (vertical axis). As shown, PCLS outperforms

the other methods in terms of all three measures (AUC, DCG,

PNorm). Since the actual performance and scores are not linear

correlated, even though PCLS is literally only 3.7% higher in

AUC and 1.2% higher in DCG, the improvement is actually

quite substantial. From Figure 3, in the top 5000 of the rank

list, PCLS retrieves 51 vulnerable structures and C4.5 DT is

31, which is 64.5% improvement. When compared to KM,

PCLS captures 3 more structures and the positions of these

structures in the list are significantly ranked higher. Moreover,

KM labels many more tickets as serious, as indicated by the

very low precision and relatively high recall for this class

(Table I), leading to much higher computational complexity

of the structure ranking task for KM in contrast to PCLS.

VIII. CONCLUSION

We have presented an electrical event categorization task

on a power grid application system. The characteristics of

the categorization problem require an approach that can adapt

existing knowledge about the data model over time.

We developed a semi-supervised learning method, Progres-

sive Clustering with Learned Seeds, that suited the problem.

Intrinsic evaluation displays the stability and consistency of

knowledge preservation in accordance with a set of very

limited labeled data. Extrinsic evaluation shows the superior

actual performance on a blind test. Our problem engineering

method can also be implemented and adapted to other domains

providing an exemplary approach that uses computational

intelligence technology for industrial applications.

REFERENCES

[1] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Machine Learning, vol. 1, no. 3, pp. 317–354, 1986.

[2] P. E. Utgoff, “Incremental induction of decision trees,” Machine Learn-
ing, vol. 4, no. 2, pp. 161–186, 1989.

[3] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, Canada, 1990.

[4] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical comparison
of four initialization methods for the K-means algorithm,” Pattern
Recognition Letters, vol. 20, pp. 1027 – 1040, 1999.

[5] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, June 2007, pp. 1027 – 1035.

[6] P. S. Bradley and U. M. Fayyad, “Refining initial points for K-means
clustering,” in Proceedings of the 15th International Conference on
Machine Learning (ICML), 1998, pp. 91 – 99.

[7] B. Liu, Y. Xia, and P. S. Yu, “Clustering through decision tree construc-
tion,” in Proceedings of the 9th International Conference on Information
and Knowledge Management (CIKM), McLean, VA, 2000.

[8] C. Rudin, R. J. Passonneau, A. Radeva, H. Dutta, S. Ierome, and
D. Isaac, “A process for predicting manhole events in manhattan,” Mach.
Learn., vol. 80, no. 1, pp. 1–31, Jul. 2010.

[9] C. Rudin, “The P-Norm Push: A simple convex ranking algorithm
that concentrates at the top of the list,” Journal of Machine Learning
Research, vol. 10, pp. 2233–2271, Oct 2009.

[10] R. J. Passonneau, C. Rudin, A. Radeva, and Z. A. Liu, “Reducing noise
in labels and features for a real world dataset: Application of nlp corpus
annotation methods,” in Proceedings of the 10th International Confer-
ence on Computational Linguistics and Intelligent Text Processing, 2009.

[11] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, pp. 37–46, 1960.

[12] R. Kittredge, “Sublanguages,” American Journal of Computational Lin-
guistics, pp. 79–84, 1982.

[13] G. Forman, “An extensive empirical study of feature selection metrics for
text classification,” Machine Learning Research, pp. 1289–1305, 2003.

[14] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann, 2005.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[16] J. R. Galliers and K. Sparck Jones, “Evaluating natural language
processing systems,” Computer Laboratory, University of Cambridge,
Tech. Rep. Technical Report 291, 1993.

106

Multi-Objective Optimization of
Fuzzy Neural Networks for Software Modeling

Kuwen Li, Marek Z. Reformat, Witold Pedrycz
Electrical and Computer Engineering

University of Alberta
Edmonton, AB, Canada

{kuwen, reformat, wpedrycz}@ualberta.ca

Jinfeng Yu

College of Computer Science and Technology
Harbin, Heilongjiang Province

China, 150001

Abstract—Software modeling is used to provide better
understanding of features and attributes describing software
artifacts. This knowledge is applied to improve practices
leading to development of software that is easier to maintain
and reuse.
In the paper we use Fuzzy Neural Networks (FNNs) for
modeling purposes. This type of models allow for extracting
knowledge in the form of if-then rules. The process of
constructing FNN models involves structural as well as
parametric optimization. Additionally, software data
representing different classes of artifacts is often unbalanced
creating difficulties in building models that “cover” all classes
evenly.
We propose an application of Multi-Objective Evolutionary
Computing as a tool for constructing FNN models. We use
combinations of different measures to represent quality of
developed models from the point of view of their classification
capabilities. We extract rules from the constructed models, and
prune them to obtain clear and simple representations of
software artifacts.

I. INTRODUCTION
 Development of models of different objects and artifacts
is one of the most popular approaches that allow us to gain
knowledge about these objects and artifacts , and provide us
with tractable approxim ations to reality. T here is an
abundance of definitions of the w ord ‘model’. A common
definition, expressed in the wo rds of Neelamkavil [1], is
very illustrative: “A model is a sim plified representation of
a system intended to enhance our ability to understand,
predict and possibly control the behavior of the system.”
 Among all different m odels the ones that are of special
interest are white-box models. These models allow us to
“look inside” and find relations that exists between
attributes and features descri bing considered objects and
artifacts. Such an approach is used in software engineering
where software objects are m odeled in order to gain
knowledge about relations between software metrics
describing these objects and their quality attributes.
Development of software object models is challenging due
to imbalance of software data , i.e., uneven distribution of
different classes of software objects. This means that
developed models are not able to model classes of objects

that are poorly represented in the available data. This also
affects extraction of knowledge, i.e., the knowledge about
these classes is incomplete and unreliable.

In this paper we address the problem of building
software models based on imbalanced data via combining a
number of methods and approaches: Fuzzy Neural Networks
(FNNs) as data models w ith abstraction and knowledge
extraction capabilities, Evolutionary Computing (EC) as an
optimization tool w ith easiness of introduction of different
objectives, Pareto approach as a m ulti-objective
optimization method with the ab ility to “generate” a set of
results satisfying different objectives, and different
measures as representations of m odel quality: accuracy,
specificity, sensitivity(recall), and precision.

II. FUZZY NEURAL NETWORK MODEL
The fuzzy OR/AND neurons [2] are the fundamental

parts of our Fuzzy Neur al Network model. The OR/ AND
neuron arranges AND and OR neurons in the way illustrated
in Figure 1.

OR

AND

OR
x

y

z1

z2

OR/AND

w

u

v

Figure 1. Architecture of OR/AND neuron

In essence, the outputs of two “input neurons” are

aggregated (weighted) using the OR neuron located in the
output layer:

z1 = AND(x; w); z2 = OR(x; u); y = OR(z; v).

The evident advantage of the OR/AND neurons resides
with their significant interpreta bility capabilities. N ote that
if v1 = 1 and v 2 = 0 we end up with a “pure” and-wise
aggregation. The combination of v 1 = 0 and v 2 = 1 leads to
the “pure” or-wise aggregation of the inputs. A whole
spectrum of situations in-between the pure and and or

107

aggregations is captured by the interm ediate values of the
connections of the OR neuron in the output layer.

We use the OR/AND neuron as the fundamental part of
the fuzzy neural network model. However, we add
connections from OR and AND neur ons from the first layer
of OR/AND neurons to OR neurons of the second layer of
the OR/AND neurons. As the result we combi ne several
OR/AND neurons to form a uni ted model. In this model,
each neuron in the first layer of each OR/ AND neuron is
connected to all OR neurons of the second layer.
A single OR/AND neuron represents one out put of a
modeled system. The final output of the model is
determined via comparing the outputs of all OR/AND
neurons. In the case of classification – this comparison
identifies the “w inning” class. The FNN structure dealing
with 3 outputs – classes – is shown in Figure 2.

There are tw o ways to im plement the class selection
function. One is using Maximum Output, and another uses
Threshold Value. For the Maximum Output we compare the
output values of all OR neurons. The one with the maximum
value is selected, and the output of the model is generated
according to the index of this output. For the Threshold
Value, a threshold value t is defined. The output values of
each OR neuron is compared with t. If there is one and only
one output with its value greater than or equal to t, the
output of the model is the class represented by this OR
neuron. Otherwise, the output of the model is not
determined.

Output for class 1 (O1)

Output for class N (On)

Class
selection

Final output: class #

Figure 2. General structure of FNN

The most widely used algorithm to construct a FNN is
the back propagation [3]. The objective used during that
process is focused on minimization of the sum of squared
errors between predicted and original outputs. The main
advantage of this approach is its simplicity.

An interesting and important approach to construct
FNNs has emerged with the introduction of evolutionary
computing [4, 5]. Different evolutionary algorithms are
applied for optimization-based learning of FNNs [6, 7].
They allow us to focus not only on param etric but also on
structural optimization of the FNNs [8].

III. MULTI-OBJECTIVE OPTIMIZATION
A multi-objective optimization problem is an

optimization problem involving several criteria or model
design objectives. M any real-world problem s involve
simultaneous optimization of several incommensurable and
often competing requirements. While in a single-objective

optimization the optimal solution is usually clearly defined,
this does not hold for multi -objective optimization
problems. If the objectives are opposing, then the problem is
to find the best possible design or model that satisfies
multiple objectives. In this case, instead of a single solution
a set of alternative solutions is obtained.

Given a set of solutions to the problem , their partial
ordering can be determined using the principle of
dominance: a solution is clearly better than (dom inating)
another solution, if it is better or equal in all objectives, but
at least better in one objective. U sing this principle, the set
of best solutions is found by removing all solutions that are
dominated by at least one other solution. This set of
indifferent solutions is referred to as a Pareto set.

Generally speaking, solving m ulti-objective problems is
difficult. In an attem pt to solve these problems in an
acceptable timeframe, specific multi-objective evolutionary
algorithms [9, 10, 11] have been developed.

IV. FNN CONSTRUCTION

A. Construction of Models with Skewed Data

The evolutionary-based optimization offers a great
flexibility in exploiting different objective functions. T his
allows for building FN Ns that satisfy very com plex
objective functions addressing different features of the
network, as well as dealing w ith imbalanced data sets. T he
traditional techniques for constructing networks lead to the
development of models that ar e “good” for biggest classes,
but “ignore” smallest classes.

B. FNN and MOO: Concept

In order to construct models based on data sets with
uneven distribution of classes, as well as to extract rules
identifying relationships among data attributes representing
these classes, a novel approach for model development is
proposed.

In a nutshell, the m ain idea of the approach is to replace
construction of a single FNN with development of a number
of FNNs where each of them takes care of a single class.
This process leads to finding the best m odel for each class.
These single-class models are used to extract if-then rules
describing the relationships among data attributes for each
class. These rules are then combined and pruned to create a
model that gives good classification ra te and “treats all
classes in an uniform way”.

The development of FNNs for different classes is done
simultaneously using an evolutionary -based technique –
Pareto multi-objective evolutionary strategy. This multi-
objective optimization targets all class at the sam e time.
This leads to developm ent of a num ber of different m odels.
A subset of these m odels constitutes a Pareto surface. Each
model that belongs to this subset is non -dominated – it
means that none of the models from the whole set has better
performance across all classes.

An additional advantage of application of an
evolutionary-based optimization method is flexibility in
selection of objectives that control a construct ion process of
FNNs. In such case, the proposed approach allows for

108

building FNNs that satisfy different requirements regarding
classification rates.

C. FNN and MOO: Optimization Process

A multi-objective optimization process is used here in
such a way that a classification rate for a single class is a
single optimization objective. Therefore, a number of
objectives is equal to the num ber of classes. As the result of
such an optimization process, a set of solutions – data
models – is obtained. T hese models constitute a Pareto
surface.
Representation of Network Structures: An important aspect
of application of evolutionary-based optimization to
construct FNNs is to m ap a structure of an FNN to a
chromosome string. Two asp ects are important here: a
selection of attributes th at constitute inputs to AND/OR
nodes, and an adjustment of c onnection weights. Therefore,
a chromosome is built out of two segments:

- the segment that is “responsible” for selection of
attributes that become inputs to the neurons, let’s call it a
variable indexes part;

- the segment that determ ines connection w eights – let’s
call it a connection weights part.

Each position of the variable indexes part is an integer that
identifies the attributes’ index. T he values of these integers
are in the range from 0 to n-1 (for n-dimensional data). The
length of this segm ent is determined by the number of
classes c (equal to the number of OR/ AND nodes) i n the
dataset, and the maximum number of inputs to a single
OR/AND node – i. The overall length of the segment
variable indexes part is c*i. The connection weights part is
a string of floating point numbers. Each number represents a
single connection weight and can be in the range from 0 to
1. The number of connection weights for FNN is
(2*i+2*c)*c.

As it can be seen, the structure of the FN N is partially
fixed – i t contains so many OR/ AND nodes as di fferent
classes. It means each output of the FNN is associated with
a single class.
Optimization Objective Functions: The objective of the
optimization process is to construct FNNs that provide the
best classification rates for a single class. This m eans that
selection of the objective function that governs the
optimization process is important.

For any two-category classifi cation process, a confusion
or error matrix can be built, Table I. This matrix summarizes
classification capabilities of a m odel: values a (true
positives) and d (true negatives) represent proper
classifications, while b (false positive) and c (false negative)
misclassifications.
Based on this matrix a number of different measures can be
calculated. The measures that are used in our fitness
functions are:

accuracy =
a+ d

a+ b+ c+ d

that defines the ratio of all corr ectly classified data points to
all data points,

sensitivity (recall) =
a

a+ c

that represents the percent of actual positive data points
classified as positive data points,

specificity =
d

b+ d

that represents the percent of actual negative data points
classified as negative data points, and

precision =
a

a+ b

that is the ratio of actual positive data points classified as
positive to all data point classified as positive . It can be said
that sensitivity and specificity are somehow reciprocal to
each other. The sensitivity is for positive data points, w hile
specificity is its equivalent for negative data points. Another
observation is related to sensitivity (called also recall) and
precision. Higher sensitivity means that alm ost all of the
positive data points w ill be included in the classification
results. However, at the sam e time, some negative data
points can be predicted as positive ones, w hat leads to low
values of precision.

Table I. Confusion matrix
 actual

predicted

POSITIVE NEGATIVE

POSITIVE a b

NEGATIVE c d

Of course, accuracy is a very important measure – it
means that the classifier is able to properly classify positive
and negative data points. However, in the case of large
imbalance in a number of data points that belong to each
class, accuracy measure is not able to assure a high
classification rate for each class. If 90 per cent of data points
belong to the class negative and only 10 per cent to the class
positive, then high accuracy can be achieved by correct
classification of the class negative only. At the same time,
this can lead to large misclassification (large b and c) for the
class positive. Therefore, there is a need to use som e other
measures that “take care” of large b and c.

As the result of these investigations, fitness functions
used here are constructed based on accuracy, sensitivity,
specificity and precision. Two fitness functions are defined:
- one that uses a product of sensitivity, specificity and

accuracy (FFSSA)

FSSA = Sensitivity*Specificity*Accuracy

- one that uses a product of accuracy, recall and precision
– (FFAPR)

FAPR = Accuracy*Recall * Precision

Each of the fitness functions represents different way of
suppressing b (false positives): FSSA does it in the reference

109

to d (true negatives), w hile FAPR in the reference to a (true
negatives).

The presented above fitness functions are defined fo r a
binary (two-category) classi fication problem. In order to
focus on a single class, a speci al processing of confusion
matrix is performed during evaluation of models. This
processing means collapsing a multi-class confusion matrix
into a tw o-class matrix. In such a case, the multi-class
matrix is being trans formed into a num ber (equal to the
number of classes) of matrixes. Each of these matrixes is
related to two classes: a class of interest – let say a class A ,
and the other class – let say a class non-A – obtained by
fusion of all other classes. Using these two classes, all
classification rates (accuracy , sensitivity, specificity and
precision) are calculated.

As it has been explain earlier, each m odel is evaluated
by a set of objectives – a set of fitness functions where each
of them is related to a single class. E ach model is
“measured” by a set of fitness function:

 or

The proposed m ethod is used to construct FNNs therefore
there is one more thing that need to be explained – how the
classification is determine based on the fuzzy output. In
order to cope w ith that, a m ethod with a Threshold Value
(Section II) is used here. If the output of model associated
with one of the classes is above the threshold then it
indicates that a given data point belongs to this class. It if
happens that two outputs are above the threshold – the
model indicates that the point should belong to both classes.
This result is seen as misclassification.

D. FNN and MOO: Pruning and Merging Processes

The Pareto-based optimization process generates a
number of models that form a Pareto surface. Such an
optimization process is repeated w ith different fitness
functions and more models are generated. A ll these models
are used in a process of knowledge – rules – extraction.
Before the rules extraction takes place, a pruning process of
models is performed. Its purpose is to reduce com plexity of
the models by decreasing a number of input variables to
AND/OR neurons.

Model pruning is carried out by changing the thresholds
for OR and AND neurons. For an AND neuron, the input
variable has significant influe nce on the final output when
the weight for this variable to the neuron is close to 0. For
an OR neuron, the input has st ronger effect on the output if
the weight is closer to 1. So, for an AND neuron, the inputs
with weight values close to 1 will not contribute much to the
output. The same happens on an OR neuron if the weights
values are close to 0. If we change the threshold values to
close to1 for AND neurons, and close to 0 for OR neurons,
we could find inputs that are not very useful. By changing
threshold values, we could cut off some non-significant
inputs and simply model, possibly with little change to the
accuracy of the model. In our experiments, we change the

threshold for AND and OR neur ons separately, while
ensuring the output accuracy will not drop more than 5%.

After we trim models for each class, we extract rules,
select some of them, and combine the selected rules together
into a single m odel for classification of all classes. In the
selection process, we compare outputs of all rule sets
(models1) constructed for each class . The rule set that
provides the best classificatio n rate for a single class is
considered as the part of the final model . The process is
performed for each class.

V. DATA DESCRIPTION
An experiment has been perform ed to generate software

data required for illustration of the proposed approach to
construct FNN models. In the experiment, objects of the
system EvIdent [12] have been independently analyzed by
three software architects and r anked according to their
quality attributes: complexity, maintainability and usability.
Quantitative software measures of these objects have been
compiled.

A. Software System Description

 EvIdent is a user-friendly, algorithm -rich, graphical
environment for the detection, investigation, and
visualization of novelty and/or change in a set of images as
they evolve in tim e or frequency. It is w ritten in Java and
C++ and based on VIStA, an application-programming
interface (API) developed at the National Resea rch Council.
The VIStA API is written in Java and offers a generalized
data model, an extensible al gorithm framework, and a suite
of graphical user interface constructs.

B. Data Set

Only Java-based EvIdent/VIStA objects have been used
here. For each of the 366 software objects, three
programmers, named ‘A’, ‘D’ and ‘V’, w ere asked to
independently rank objects’ maintainability, complexity and
usability from 1 (very poor) to 5 (very good). At the sam e
time, a set of 64 softw are metrics was calculated for each
object. As the result, the collected data set consists of 366
data points represented by a set of 64 software metrics and
the values assigned to each point by three programmers.

For the purpose of the experiments presented in the
paper, we have combined rankings (objects) 1 and 2 into the
class1, have renamed rank (objects) 3 into the class2, and
have combined rankings (objects) 3 and 4 into the class3.
Despite this, the objects are very unevenly distributed
among the three classes. All three programmers have
identified most of the objects as belonging to the class3.
Using the “standard” approach to construct m odels – best
overall classification rate – the m odels would “concentrate”
on the class3 ignoring the class1 and class2. However, in
the case of software engineer ing applications the most
important are class1 and class2, and rules generated for
them. Objects of these classes need to recognized and better
understood.

1 In the case of an FNN the terms “rule set” and “model” are exchangeable.
The FNN is de facto a set of rules.

110

VI. EXPERIMENTAL RESULTS
The presented experim ents are perform ed for a data set
“generated” by the program mer V evaluating usability of
objects. Among 366 objects the programmer V identified 30
objects as of low usability (class1), 74 objects as of medium
usability (class2), and 262 objects as of high usability
(class3). The continuous attributes of the original data set
are fuzzified into three fuzzy sets (Low -Medium-High), and
the discrete attributes ar e modified using 1-out-of-n
technique. Constructed FNNs have: c=3, and i=5.

A. Model Construction

Before we start the description of experiments conducted
according to the proposed approach, we show the confusion
matrix obtained when only the a ccuracy criterion is used as
the fitness function, Table II. The table includes the num ber
of classifications for each class averaged over 10 splits w ith
5 experiments per split for the testing subset. T he average
number of samples for each class is: 12.0 for the class1,
28.9 for the class2, and 105.1 for the class3. It is easily
observed that a single objec tive optimization does not
provide decent results – all 50 models are doing well for the
class3, but other two classes are not being classified at all.
The multi-objective optimization is presented below.

Firstly, we present results of the experim ents with SSA
measures used for three obj ectives – one to maximizing
classification capabilities for the class1 (see the end of
Section III.C for detailed explanation), another for the
class2, and another for the class3, Table III. A sample
Pareto surface for the optimization with SSA measures is
shown in Figure 3. It can be observed that the models (each
mark represents a single mode l) are relatively uniform ly
spread over the obtained Pareto surface.

Secondly, we have performed the experiments with APR
measures, also for three objectives – classification of class1,
classification of class2, and classification of class3. The
obtained results are sim ilar to the ones obtained with SSA.
Due to space lim itations we do not presented them here. A
sample Pareto surface for the optimization with A PR
measures is shown in Figure 4.
Table II. Average values of correct classification for each class; the models

have been constructed using accuracy as a single objective

 Actual

Predicted

Class1 Class2 Class3

Class1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Class2 0.00 ± 0.00 0.02 ± 0.14 0.00 ± 0.00

Class3 10.50 ± 2.63 25.12 ± 4.40 99.22 ± 7.79

B. Knowledge Extraction

Models for each objective (classification rate for each
individual class) are used as sources of knowledge
expressed in the form of if-then rules. Before extraction of
rules we performed pruning process (Section IV.D). The
pruning thresholds have been set up in a way that accuracy
of obtained models does not degrade more than 5% . It has

resulted in the threshold values 0.65 for AND nodes, and
0.15 for OR nodes.
Table III. Average values of correct predictions for each class of data; the

models have been constructed using SSA measures.

Results when model optimized for predicting Class1

 Actual

Predicted

Class1 Class2 Class3

Class1 6.70 ± 1.82 6.22 ± 2.96 4.96 ± 2.38

Class2 0.40 ± 0.61 1.70 ± 2.64 5.62 ± 6.93

Class3 0.62 ± 0.73 2.50 ± 2.35 40.16 ± 25.09

Results when model optimized for predicting Class2

Class1 0.08 ± 0.27 0.30 ± 0.93 1.06 ± 4.37

Class2 6.98 ± 2.85 15.22 ± 3.49 17.58 ± 5.70

Class3 0.30 ± 0.61 1.56 ± 1.69 31.36 ± 25.99

Results when model optimized for predicting Class3

Class1 1.18 ± 1.91 1.04 ± 1.73 1.12 ± 2.18

Class2 2.20 ± 3.23 3.86 ± 4.50 2.10 ± 2.28

Class3 1.60 ± 1.07 8.40 ± 2.32 84.44 ± 5.87

Figure 3. The Pareto 3D scatter plot for SSA objectives

Figure 4. The Pareto 3D scatter plot for APR objectives

The rules obtained from the models generated with SSA
measures are presented below (in similar way the models
obtained with APR can be processed).

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

Class 1Class 2

C
la

ss
 3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
0

0.2

0.4

0.6

0.8

1

Class 1Class 2

C
la

ss
 3

111

if {LOC2 is Low}0.239 and {MNL4 is High}0.049 and {MAXP is 1}0.332 and
{CONS is 3}0.159 (0.450)

or {TYPE is 1}0.300 or {LOC is Low}0.996 or {MAXP is 1}0.552 or
{CONS is 3}0.225 (0.404)

or {WDC is Medium}0.209 and {MIC is 2}0.447 and {MIC is 4}0.633 and
{OPER is Medium}0.169 and {OPER is High}0.407 (0.979)

or {MIC is 2}0.187 or {MIC is 4}0.570 or {OPER is High}0.658 (0.846)
then USABILITY is Low

In the rule shown above, t he subscript values represent
weights associated with pr edicates and indicate their
importance in the rule. The value in the (normal) brackets at
the end of each antecedent represents importance of this
antecedent and its contribution to the activation of the rule.
This also applies to the rules for Medium and High usability.

if {CBO is Medium}0.784 or {MNL1 is Low}0.854 or
 {HLOR is High} 0.923 or {MAXL is 4}0.462 or
 {PROM is Medium}0.607 (0.466)
or {MIC is 3}0.592 and {MEMB is High}0.614 and {OVRM is 3}0.102 (0.777)
or {ADEC is 5}0.827 or {MIC is 3}0.867 or {CONS is 3}0.590 or

{MEMB is High}0.915 (0.551)
then USABILITY is Medium

if {LOC is Low}0.889 or {MAXL is 5}0.703 or {MAXP is 10}0.890 or
 {MEMB is Low}0.923 or {WMC2 is Medium}0.440 (0.981)
or {HLPL is Low}0.672 or {HLOR is High}0.788 or {MIC is 1}0.514 or

{OVRM is 15}0.462 or {DEMV is High}0.917 (0.379)
then USABILITY is High

C. Merged Models

So far, we have showed the classification results for rule
sets (models) obtained using the multi-objective
optimization with SSA and A PR measures. The
performance of these models is generally good, but our
experiments with the combined models have shown that the
classification rates are better when the sets of rules (m odels)
“specialized” in a single class are put together.

In this section, we present results of models that have
been put together with the sets of trimmed rules representing
models created for single clas ses. A number of different
combinations have been investigated. Each merged model
has been “built” using three sets of rules: one set f rom a
model optimized for class1, one from a model optimized for
class2, and one from a m odel optimized for class3. Each of
these models can be selected from any optimization
experiment using APR and SSA measures. Am ong all
possible combinations the best prediction results have been
obtained for tw o merged models built w ith the follow ing
rules: for class3 – rules obtained using SSA measures, for
class2 – rules obtained using APR measures, for the class1
– rules obtained with APR (one option), and SSA (another
option) measures, Table IV. The com parison with Table I
shows a noteworthy improvement.

2 Due to space constrains only some acronyms are explained: LOC–lines of
code, MNL4–median length of method name, MAXL–max no of levels,
CONS–no of constructors, TYPE–1=GUI, WDC–weighted no of decision
based on nesting level, MIC–method invocation coupling, OPER–no of
operations, CBO–coupling between objects, MNL1–max length of method
name, MAXP–max no of parameters, HLOR–Halstead no of operators,
PROM–% of protected members, MEMB–no of members, ADEC–mean no
of decisions/method, OVRM–no of overridden methods.

VI. CONCLUSIONS
In this paper we propose a new approach for the

development of rule-based fuzzy classification system s in
the presence of imbalanced datasets. The approach is
focused on classification performance, as well as extraction
of knowledge. Based on the experimental results with
software engineering datasets, we have found that Pareto-
based multi-objective (a single objective for each class)
optimization approach is m ore effective than the traditional
approach based on overall accuracy of classification. The
method can be used for datasets w ith several classes . We
can also conclude that com bining models developed based
on multiple classification m easures (sensitivity, specificity,
precision and accuracy) can offer better performance results
than combining models developed for a single measure.

Table IV. Confusions matrixes for merged models.

Merged models: APR for class1, APR for clas2, SSA for class 3

 Actual

Predicted

Class1 Class2 Class3

Class1 7 9 6

Class2 5 19 29

Class3 2 6 63

Merged models: SSA for class1, APR for clas2, SSA for class 3

Class1 9 10 7

Class2 4 18 29

Class3 1 6 62

REFERENCES:
[1] F. Neelamkavil, Computer Simulation and Modeling, John W iley &

Sons Inc, 1987.
[2] K. Hirota, and W. Pedrycz, “OR/AND neuron in modeling fuzzy set

connectives”, IEEE Trans. on Fuzzy Systems, 2, 1994, pp. 151-161.
[3] W. Pedrycz, and F. Gomide, An Introduction to Fuzzy Sets; Analysis

and Design, MIT Press, 1998.
[4] D.E. Goldberg, Genetic Algorithms in Search, Optimization&

Machine Learning, Addison-Wesley, Reading, MA, 1989.
[5] Z. Michalewicz, Genetic Algorithms+ Data Structures =Evolution

Programs, Springer, Berlin, 1994.
[6] A. Blanco, M. Delgado, and M. C. Pegalajar, “A real-coded genetic

algorithm for training recurrent neural networks”, Neural Networks,
14, 2001, pp. 93-105.

[7] R.P. Paiva, and A. Dourado, “Interpretability and learning in neuro-
fuzzy systems”, Fuzzy Sets and Systems, 147, 2004, pp. 17-38.

[8] W. Pedrycz, and M. Reformat, “Genetically Optimized Logic
Models”, Fuzzy Sets and Systems, 50(2), 2005, pp. 351-371.

[9] C. A. Coello, “A Comprehensive Survey of Evolutionary -Based
Multiobjective Optimization Techniques”, Knowledge and
Information Systems, 1(3), 1999, pp. 269-308.

[10] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective
Evolutionary Algorithms: Analyzing the State-of-the-Art”,
Evolutionary Computation, 8(2), 2000, pp. 125-147.

[11] E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. Grunert
da Fonseca, “Performance Assessment of Multiobjective Optimizers:
An Analysis and Review”, IEEE Transactions on Evolutionary
Computation, 7(2), 2003, pp. 117-132.

[12] N.J. Pizzi, R.A. Vivanco, and R.L. Samorjai, “EvIdent: a functional
magnetic resonance image analysis system”, Artificial Intelligence in
Medicine, 21, 2001, pp. 263-269.

112

Generating Performance Test Scripts and
Scenarios Based on Abstract Intermediate Models

Leandro T. Costa, Ricardo M. Czekster, Flávio M. de Oliveira,

Elder M. Rodrigues, Maicon B. da Silveira, Avelino F. Zorzo
Faculty of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre – RS – Brasil

Email: leandro.teodoro@acad.pucrs.br, ricardo.czekster@pucrs.br, flavio.oliveira@pucrs.br,

elder.rodrigues@pucrs.br, bernardino@acm.org, avelino.zorzo@pucrs.br

Abstract—Performance testing involves knowledge not only
about the application to be tested, its usage, and the execution
infrastructure; it also requires understanding of the performance
test automation tools employed – scripting, monitoring and
configuration details. Performance script generation is highly
technology-dependent, with great variations from one test engine
(the workload generator) to another. The scenarios, however,
should not depend on that. In this paper, we present a technology-
independent format for test scenarios and test cases, henceforth
denominated abstract intermediate models, and the process for
deriving specific test scripts from them. Hence, we can easily
reuse test scenarios with different workload generators, allow
the performance engineers to edit the scenarios before the
script generation, and abstract details related to configuration
of workload generators and monitors. 1 2

I. INTRODUCTION

Performance testing is a highly specialized task. It involves

knowledge about the application to be tested, its usage profile,

and the infrastructure where it will operate. Furthermore,

because it involves intensive test automation, performance

testing requires understanding of the performance test automa-

tion tools that will be used. Hence, there is a bottleneck in

productivity of performance engineering teams, due to the

increasing complexity of the performance testing tools and

the workload to generate the test case/scripts.

An approach that could be used to automatically gene-

rate performance test cases/scripts is Model-based Testing

(MBT) [8]. MBT can be used not only to automatically

derive performance test scenarios from the System Under Test

(SUT) models, but also to automate the test execution. The

SUT could be modelled under a wide range of modeling

languages, such as state machine diagrams [9], Specification

and Description Language (SDL) [12] and Unified Modeling

Language (UML) [3]. Probably, the most widely used mode-

ling language in the industry is UML. The UML provides

a notation for modeling some important characteristics of

applications, allowing the development of automatic tools for

model verification, analysis and code generation. Performance

is one of these characteristics; it is the object of the UML

1Study developed by the Research Group of the PDTI 001/2012, financed
by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

2The order of the authors is merely alphabetical.

Performance Profile [10], which defines a standard way to

represent performance information in a UML model.

In previous works [5] [15], we described our technique

for deriving the test scenarios and the corresponding scripts

from UML diagrams. During experiments, we learned that

script generation is highly technology-dependent, with great

variations from one test engine (called workload generator) to

another. The scenarios, however, should not depend on that,

because they should be reused to generate scripts for several

workload generators. Thus, it would be wise to separate tech-

nology details from the process of generating test scenarios.

Information Technology (IT) companies, specially global

companies, frequently use different workload generators, due

to costs, marketing and/or different target execution platforms.

The reuse of the scenarios, combined with automatic script

generation, reduces overall testing effort. In addition to con-

tribute to a technology migration, the test scenarios could

have test information in a clear format and common to many

technologies. Therefore, this information could be easily used

to generate scripts to a wide range of performance tools, e.g.

LoadRunner [11] and Visual Studio [13].

In this paper, we describe our approach to generate test

scenarios and test cases, which could be used to derive scripts

to a wide range of workload generator. In order to accomplish

that, we defined a technology-independent format for test

scenarios, which we call abstract intermediate models, and

the process for deriving specific test scripts from them. Then,

we can easily reuse test scenarios with different workload

generators, also allowing the performance engineers to edit

the scenarios before the script generation and abstract details

related to configuration of workload generators and monitors.

The structure of this paper is organized as follows. Section II

discusses related background. Section III explains the conver-

sion from UML diagrams to test scenarios, discussing major

trade-offs and advantages. Section IV provides an example

demonstrating the abstract test scenarios that were derived

automatically from the UML diagrams.

II. BACKGROUND

Performance is a fundamental quality of software systems,

affecting all underlying layers of systems. Therefore, in order

113

to improve the software quality of applications, Software

Performance Engineering (SPE) is used to describe and pro-

vide means to improve the performance through two distinct

approaches: early cycles studies based on predictive models

and late cycles inspections based on measurements [18]. One

SPE activity is performance testing, responsible to perform

tests for part or for the entire system, under normal load

and/or stress load. Nowadays, there are some techniques, e.g.,

Record/Playback [14] and Model-based Testing, that are used

by some tools to automate the performance test case generation

and results analysis.

MBT [4] [8] [17] is a technique to test systems in which mo-

dels are designed to create testing models suitable mapping a

given reality a model is a useful way for into analyzing quality

properties and performance attributes as it eases understanding

and promotes divide-and-conquer rationale [1]. Thus, a SUT

model can be constructed anticipating problems that may

or may not arise in early design. However, the main usage

of MBT has been directed to the test of functional aspects

(defects) of software and only lately researchers are applying

some of its techniques towards non-functional testing.

Therefore, lately, an increasing number of works [2] [5]

[6] [15] discuss how to apply MBT and UML models to

automatic generate performance test cases and scripts. Most of

them apply MBT in conjunction with MARTE Profile [10], an

extension of UML for modeling performance requirements. Its

purpose is to provide modeling patterns with clear semantics,

allowing automated performance model analysis. Based on

the UML models, one can extract information for the tests

and then analyse the performance counters (e.g. throughput,

transactions per second and response time). Such informa-

tion is distributed throughout several UML diagrams, e.g.,

use cases (UC), activity (AD) and sequence diagrams. An

approach that depicts how this diagrams are used to represent

the information of performance testing is presented by [6],

in which a model designed in MARTE and composed by

UML diagrams was tagged with specific properties such as

probabilities on the incidence of use cases, response times for

each activity, resource availability, etc.

III. UML DIAGRAMS AND TEST SCENARIOS

The common first step adopted by the industry when testing

applications for non-functional properties is to choose a given

load engine among the various available tools. The decision on

which tool to best test an application involves several factors

such as familiarity (has been used before), pricing or target

software platform.

However, every workload manager has its own peculiarities,

configurations and tweaks as well as common operations to

be performed when mimicking user behavior within the SUT.

Thus, the test scenarios and scripts generated for some tool

can not be reused to another.

Figure 1 shows our approach, in which the main idea is to

convert high-level UML diagrams to an abstract intermediate

model suitable for the derivation of abstract test scenarios and

scripts to different workload manager. The main difference

between our approach and classic MBT abstract test suites is

the fact that we are interested in creating intermediate models

to use for performance testing rather than functional testing.

Another contribution is that we apply MBT to construct a

performance abstract test scenario. Based on that, can be

generated test scenarios and scripts for a wide range of

workload manager.

Studio

HP
LoadRunner

− overall load
− path choices

Model
Abstract

− parameters
− qualitative data

A
nn

ot
at

io
ns

UML Diagrams
Use Cases
Activity Diagram

c)a) b)

Other Workload
Generators

MS Visual

Fig. 1. Model transformation engine

A. Abstract Intermediate Models

Our focus in this paper is generate a technology-independent

testing description from a MBT approach. Thus, we reuse

the applications models to generate an abstract intermediate

model that is a description of the test scenarios. It contains

information needed to instantiate the performance scripts, such

as loads, ramp-up time, total execution time etc., which can be

derived from the model, while abstracting script details such

as machine locations, API calls etc. An important issue when

using MBT to generate performance test scenarios and scripts

is define which UML diagram and which UML profile will be

used to annotate the needed information.

B. Transformation Methodology

This section describes how to convert UML models (mostly

UC and AD) into general purpose abstract intermediate mo-

dels. Before describing the overall methodology, we discuss

the UML annotation provided by other parties. Our approach

relies on the assumption that the UML models are carefully

annotated with high-quality information. We are trusting that

all stakeholders are interested in the process of discovering

the application’s problems and bottlenecks and also that all

involved personnel is committed to create comprehensive test

scenarios, allowing further reliable analysis.

The process of generating test scenarios from annotated

UML models must encompass a set of operations that must

be performed prior to the test execution. Our methodology

involves basically three steps:
1) UML Annotations Verification (Figure 1-a): We fo-

cus our attention to two broadly used diagrams present in

UML: Use Cases (UC) and Activity Diagrams (AD). This

step entails the evaluation if the models were annotated

with information that can be used to the generation of the

abstract model in the next step. Thus, to annotate these

information on the UML models we defined some UML tags

based on the UML profile to Schedulability Performance and

Time (SPT) [18]: a) <<TDtime>>: limits the performance

114

test duration(s) for the scenario(s); b) <<TDpopulation>>:

maps the number of virtual users that populates the system;

c) <<TDhost>>: describes the name of the host to connect

to; d) <<TDaction>>: specifies an action that must be taken,

e.g., the execution of a script; e) <<TDparameters>>:

represents two information: name and value, that must be

filled out to proceed, e.g., a login screen, or a search form;

f) <<TDprob>>: indicates the probability to decide the next

activity to be executed. It is used in the decision element model

within the ADs or annotated in the association element model

between actor and use case within the use cases diagram;

g) <<TDthinkTime>>: defines the amount of time units

each virtual user waits before taking another action. This tag

is used by a large set of workload generators to mimic user

behavior.

After this step, the UML models should satisfy the following

conditions: a) every UC have at least one or several ADs

counterparts; b) the AD is well-formed, i.e., contains an initial

and an end state; c) test plan with information regarding the

test itself, e.g., the type of test, the number of virtual users;

d) every activity is annotated with context information, i.e.,

user form and query string parameters and user think time

information.

2) Intermediate Model Generation (Figure 1-b): Our

abstract intermediate model is designed to be extensible and

modular, using hierarchical textual structures to represent

activities readily available in UML diagrams or other similar

representations of business processes (e.g. Business Process

Model Notation (BPMN) [7]). In fact, it is straightforward

to take any high-level business process representation and

directly transform it to a test scenario, however, the test must

be instantiated having a specific workload generator in mind.

This step is split in two abstract models: abstract test

scenarios and abstract test cases. Each abstract models is a

hierarchical structure that is used to map the AD to a textual

abstract representation retaining the order of events and the

parallel activities that must take place. This structure uses

a sequential numbering convention with appended activities,

e.g., 1, 1.1, 2.1 and so forth. Each activity is mapped to a

number, here defined as an activity number. The numbered

mapping is a visual aid to inspect sequential and parallel

relations within the abstract intermediate model.

Note that for the abstract model to function according

to our specification, it should contain only the fundamental

information to instantiate different test scenarios. The abstract

format suggested here is extensible and could be enhanced to

contain more information regarding performance tests for a

more complex test suite.

3) Workload Generator Instantiation (Figure 1-c): This

step is tool-oriented because it generates specific test scenarios

that must be created for each abstract intermediate model. We

explain how this is performed in the following sections. Our

approach shifts the concern on the performance test execution

itself to the description of an abstract model that captures the

needed test information looking up only to high-level (UML

models). Next, we present how to apply our approach to

generate scripts to two workload generators.

IV. EXAMPLE OF USE: GENERATING SCRIPTS BASED ON

ABSTRACT TEST SCENARIOS

This section describes an application scenario which our

approach is applied to generate abstract models. For this

purpose, we used the TPC-W benchmark [16] as an application

example and develop a tool to generate automatically the

abstract scenarios and then generate scripts for MS Visual

Studio and LoadRunner. The TPC-W is a transactional web

service benchmark that implements a benchmark and an e-

commerce application that is used by the benchmark (or by

any other workload generator).

To support the generation of scripts to test the TPC-W

application, we developed an application to parse the infor-

mation annoted in the UML models and generate the abstract

models (following the guidelines described in Section III).

This application is derived from the Software Product Line

called PLeTs [5] [15].

A. TPC-W UML Diagrams

The first step to apply our approach (Section III) to test

the TPC-W application is to annotate the TPC-W models. For

this task, we have created several UML based tags to represent

the performance information needed to generate the abstract

intermediate models. As a starting point we have annotated

three different use cases (shown in Figure 2): a) Browser: the

users performs browsing interactions; b) Registration:

the user fulfill a registration form; and c) Shop: the users

performs purchase interactions.

Fig. 2. TPC-W Use Case Diagram

Each actor present in the UC diagram contains information

for a specific test scenario. Thus, we define two different

test scenarios interactions for actors Customer and New
Customer. The test scenario for New Customer is a set

of interactions that will be performed over the set of use

case elements (Browser, Registration and Shop). It

is important to notice that each UC is related to a specific AD,

e.g., the AD present in the Figure 3 is related to the shop use

case (Figure 2). Basically, each AD represents the sequence

of activities performed by an actor over the application.

As depicted in Figure 3, the first activity is Home Page,

which is the TPC-W home page. After that, the user could

115

Fig. 3. TPC-W Activity Diagram

perform the following actions: selects a specific book category

(New Products) or performs a search for a particular book

(Search Request and Search Results). The activity

Search Request shows as a result a list of books to the

user. Hence, when selecting a book from this list (Search
Results), several information of the selected book are

displayed to the user (Product Detail). After that, the

user must perform one of the following activities: finish his

access to the application or continue on the website and make

a purchase (Shopping Cart). If the user decided for the

latter option, the next step is related to the registration of

customer (Customer Registration) in the application.

Then, the user fills some information of purchase such as

financial information (e.g. credit card number) and delivery

date (Buy Request). The last step checks if all information

is correct, then the purchase is confirmed (Buy Confirm)

and finishes the access to the application. This diagram has

also two decision elements in its flow, that represent the

probability of executing different paths in the system, e.g.,

the tag @homePage.searchRequest.prob between ac-

tivities Home Page and Search Request in the Figure 3.

As described in Section III, the UML diagrams can be

initially annotated with seven tags in our approach. The UC

shown in Figure 2, has four tags: TDpopulation,

TDhost, TDtime and TDprob. Each one has its

respective parameter, @customer.population,

@customer.host, @customer.time and

@newCustomer.BrowsingMix.prob. In relation to

our AD we have also included four different tags and their

respective parameter (see Figure 3).

B. Abstract Test Scenarios Generation

Once all the UML diagrams (see Figures 2 and 3) were an-

notated with performance informations, we apply our approach

to generate abstract test scenarios for the TPC-W application.

The creation of abstract test scenarios allows a later definition

of a workload manager and its test script templates.

Basically, an abstract test scenario defines the amount of

users that will interact with the SUT and also specifies the

users behavior. The abstract test case contains the information

regarding the necessary tasks to be performed by the user.

Figure 4 shows an example of an abstract test scenario

generated for the actor Customer. The amount of abstract

test scenarios generated based on a UC diagram is directly

related to the amount of actors modeled in the UC model, e.g.,

for the TPC-W example there are two abstract test scenarios.

Abstract Test Scenario: Customer
Test Setting
Virtual Users : <<TDpopulation: @customer.population>>
Host of SUT : <<TDhost: @customer.host>>
Test Duration : <<TDtime: @customer.time>>
Test Cases Distribution:
<<TDprob: @customer.Shop.prob>>
1. Shop
1.1. Shop 1
1.2. Shop 2
1.3. Shop 3
1.4. Shop 4
<<TDprob: @customer.Browser.prob>>
2. Browser...
<<TDprob: @customer.Registration.prob>>
3. Registration
3.1. Registration 1...
3.4. Registration 4

Fig. 4. Abstract test scenario of the actor Customer

As presented in Section III, the abstract test scenario has

the information related to the test context and the definition of

the abstract test cases that must be instantiated, including the

distribution of the number of virtual users for each abstract test

case. Thus, our annotation approach is divided in two groups:

1) Test Setting – describes the general characteristics that are

applied to the test context as a whole (extracted from the UC);

2) Test Cases Distribution – represents information specific to

the abstract test cases generated from each AD. In order to

accomplish that, each test case represent a user path in the

SUT. It is important to notice that the header of each abstract

test case contains probability information (see Figure 4) .

As show in Figure 5, the abstract test cases are built in a

hierarchical approach, in which activities are listed and orga-

nized according to the dependency between the AD activities

(represented by activity number). Figure 5 shows the abstract

test case based on one test sequence derived from the AD

(Figure 3). Furthermore, in the description of abstract test

cases there is a variation of parameters added to each activity,

116

which are composed by the name and the value of each tag,

showing the flexibility of the configuration models. A parame-

ter is the concatenation of two pieces of information: activity

name and tag name, preceded by the delimiter @. Although, the

tag TDprob has three pieces of information. The first of these

information is the tag name preceded by the name of two UML

elements. An example of that is presented in Figure 3 where

the tag TDprob @homePage.searchRequest.prob is

tagged in the UML association element between the UML

decision node and the target activity (Search Request).

The same notation is applied in the UC diagrams, where

the tag is applied between the UC Shop and the actor new
Customer.

#Abstract Test Case: Shop 3
1. Home Page

<<TDmethod : @HomePage.method>>
<<TDaction : @HomePage.action>>
<<TDparameters : @HomePage.parameters>>
<<TDthinkTime : @HomePage.thinkTime>>

2. New Products...
3. Product Detail...
4. Shopping Cart...
5. Customer Registration...
6. Buy Request...
7. Buy Confirm

<<TDmethod : @BuyConfirm.method>>
<<TDaction : @BuyConfirm.action>>
<<TDparameters : @BuyConfirm.parameters>>
<<TDthinkTime : @BuyConfirm.thinkTime>>

Fig. 5. Example of abstract test case generated from the Shop use case

It is important to notice that each tag parameter refers to

a data file (Figure 6), that is automatically generated. Thus,

when abstract test scenario and scripts are instantiated to

a concrete test scenario and scripts for a specific workload

generator, the tag parameter is replaced by a value extract

from a file.

@BuyConfirm.method:"POST"
@BuyConfirm.action:"http://localhost/tpcw/buy_confirm"
@BuyConfirm.parameters:[$ADDRESS.CITY, $ADDRESS.STATE]
@BuyConfirm.thinkTime:5

Fig. 6. Example of data file containing some parameters

C. Test Scenarios and Scripts Instantiation

Based on the abstract test scenarios and test cases presented

in Section IV-B, the next step is to generate concrete instances

(scripts and scenarios). This is a technology dependent step,

because the concrete scenarios and test cases are strongly

related to a specific workload generator that will directly

execute the test cases.

This is an important step on the automation of the per-

formance testing, because it allows the flexibility of choice

a workload generator or technology only in the execution

stage of the test cases. However, it is necessary an advanced

tool knowledgement to create scripts and scenarios. There-

fore, to demonstrate how our approach could be valuable

to a performance testing team, we presents how to generate

test scenarios and scripts for two workload manager: Visual

Studio (VS) and LoadRunner (LR). Basically, the VS and

the LR structure its test scenarios and scripts in two files.

One of them is a scenario file that is used to store the

test configuration, workload profile distribution among test

scripts and the performance counters that will be monitored

by the tool. The other file is a script configuration file

that is used to store the information about users’ interaction

with the application, including HTTP requests, as well as its

parameters and transactions defined between requests. Figure

7 shows the VS scenarios file that was generated to test

TPC-W. In this case, the MaxUser property corresponds to

the parameter @customer.population. Another tag that

has changed was the RunConfiguration with attribute

RunDuration that is related to the tag @customer.time.

The process to instrument a test scenario is based on a

template. Hence, the further information within the scenario,

that are not from the abstract test scenario are those standard

information present in any test scenario generated by the

workload generator.

<LoadTes t . . .>
<S c e n a r i o s>

<S c e n a r i o Name=” Customer ” . . .>
<T h i n k P r o f i l e Value=” 0 ” P a t t e r n =”On” />
<L o a d P r o f i l e P a t t e r n =” S tep ” I n i t i a l U s e r s =” 0 ”

MaxUsers=” 50 ” S t e p U s e r s =” 10 ” S t e p D u r a t i o n =” 0 ”
StepRampTime=” 60 ” />

<BrowserMix> . . .</ BrowserMix><TestMix> . . .</ TestMix>
<NetworkMix> . . .</ NetworkMix>

</ S c e n a r i o>
</ S c e n a r i o s>
<C o u n t e r S e t s> . . .</ C o u n t e r S e t s>
<R u n C o n f i g u r a t i o n s>

<R u n C o n f i g u r a t i o n RunDura t ion =” 7200 ” WarmupTime=” 300 ”
T e s t I t e r a t i o n s =” 100 ” . . .> . . .</ R u n C o n f i g u r a t i o n>

</ R u n C o n f i g u r a t i o n s>
</ LoadTes t>

Fig. 7. XML of test scenario generated for the Visual Studio (*.LoadTest)

Figure 8 presents a snippet of VS test scripts that was

generated to test TPC-W. In turn, Figure 9 shows a snippet

for LR. These test scripts were instantiated based on abstract

test case presented in Figure 5. Basically, the test scripts

are a set of several HTTP requests. Among the features

correlated in the set of test artifacts, we highlight the

following example: 1) Tag Request - in the VS the

attribute Url and the attribute web_submit_data
in the LoadRunner are related to the parameter

@BuyConfirm.action; the VS attribute ThinkTime and

the parameter lr_think_time LoadRunner are correlated

to the parameter @BuyConfirm.thinkTime; 2) Tag
QueryStringParameter - the VS and LoadRunner

attributes Name and Value are related to the parameter

@BuyConfirm.parameters.

V. FINAL CONSIDERATIONS

The present work proposed a common format to define

abstract intermediate models suitable for the instantiation of

117

<WebTest Name=” Shop 3 ” . . .>
<I t e m s>
<T r a n s a c t i o n T i m e r> . . .</ T r a n s a c t i o n T i m e r>
<T r a n s a c t i o n T i m e r Name=”Buy Confirm ”>
<I t e m s>
<Reques t Ur l =” h t t p : / / l o c a l h o s t : 8 0 8 0 / tpcw /

TPCW buy conf i rm serv le t ” ThinkTime=” 5 ” . . .>
<Q u e r y S t r i n g P a r a m e t e r s>

<Q u e r y S t r i n g P a r a m e t e r Value=”{{$ADDRESS . CITY}}”
Name=”CITY” . . . />

<Q u e r y S t r i n g P a r a m e t e r Value=”{{$ADDRESS . STATE}}”
Name=”STATE” . . . /> . . .

</ Q u e r y S t r i n g P a r a m e t e r s>
</ Reques t>

</ I t e m s>
</ T r a n s a c t i o n T i m e r>

</ I t e m s>
<V a l i d a t i o n R u l e s> . . .</ V a l i d a t i o n R u l e s>

</ WebTest>

Fig. 8. Test script generated for the Visual Studio

A c t i o n ()
{

. . .
l r t h i n k t i m e (5) ;
web submi t da t a (” buy conf i rm . j s p ” ,
” A c t io n = h t t p : / / l o c a l h o s t : 8 0 8 0 / tpcw / TPCW buy conf i rm serv le t

” ,
” Method=POST” ,
” RecContentType = t e x t / h tml ” ,
” R e f e r e r =” ,
”Mode=HTML” ,
ITEMDATA,

”Name=CITY” , ” Value={{$ADDRESS . CITY}}” , ENDITEM,
”Name=STATE” , ” Value={{$ADDRESS . STATE}}” , ENDITEM,

LAST) ;
. . .

}

Fig. 9. Test script generated for the LoadRunner

test scenarios for different workload managers. Throughout the

paper we have discussed some important aspects on how to

use annotated UML models to derive an intermediate textual

format having the most important primitives that are needed

to construct comprehensive test scenarios. We also show how

to transform the abstract test scenarios in test script for two

workload manager.

Our technique provides an indication that generating

abstract models is a powerful means to derive effective

technology-independent test scenarios. It is important to high-

light that the creation of an abstract model for later definition

of a test script and scenario using a chosen workload manager

needs only to annotate a few selected data in the UML models.

Translating UML models to this representation is also more

comprehensible for end-users when they are tracking bugs or

trying to understand the flow of operations for a functionality.

We envision several future works to consider following

the present proposition. One could, for example, seamlessly

translate a different UML model (e.g. Sequence Diagram)

using our abstract model to generate scripts to some tool that

is based on a different testing technique, e.g, structural testing.

Another concern that has come to our attention is directed to

the description of an abstract model to relate more architectural

information in terms of the underline infrastructure of the

SUT, for instance, the use of virtualized environments or cloud

computing.

Acknowledgments. We thank CNPq/Brazil, CAPES/Brazil,

INCT-SEC, and DELL for the support in the development of

this work.

REFERENCES

[1] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-Based
Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30:295–310, May 2004.

[2] C. Barna, M. Litoiu, and H. Ghanbari. Model-based performance testing
(nier track). In Proceedings of the 33rd International Conference on
Software Engineering, pages 872–875, New York, NY, USA, 2011.
ACM.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide (2nd Edition). Addison-Wesley Professional,
2005.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 21st International Conference on Software engineering,
pages 285–294, New York, NY, USA, 1999. ACM.

[5] E. de M. Rodrigues, L. D. Viccari, and A. F. Zorzo. Plets-test
automation using software product lines and model based testing. In
22th International Conference on Software Engineering and Knowledge
Engineering (SEKE), pages 483–488, 2010.

[6] S. Demathieu, F. Thomas, C. Andre, S. Gerard, and F. Terrier. First
experiments using the uml profile for marte. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, pages 50–57, may 2008.

[7] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis
of business process models in BPMN. Information and Software
Technology, 50(12):1281–1294, 2008.

[8] I. K. El-Far and J. A. Whittaker. Model-based Software Testing. Wiley,
New York, 2001.

[9] R. Ferreira, J. Faria, and A. Paiva. Test Coverage Analysis of UML
State Machines. In Proceedings of the 3rd International Conference
on Software Testing, Verification, and Validation Workshops, pages 284
–289, april 2010.

[10] O. M. Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE). MARTE specification version 1.0.
OMG, 2009. OMG document number formal/2009-11-02., 2009.

[11] Hewlett Packard - HP. Software HP LoadRunner, Sep. 2010. URL:
https://h10078.www1.hp.com/cda/hpms/display/main/hpms\ content.
jsp?zn=bto&cp=1-11-126-17\ˆ8\ 4000\ 100.

[12] A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from sdl
specifications. In Proceedings of the 6th SDL Forum, pages 135–152,
1999.

[13] J. Levinson. Software Testing With Visual Studio 2010. Pearson
Education, 2011.

[14] G. Meszaros. Agile regression testing using record & playback. In
Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
353–360, New York, NY, USA, 2003. ACM.

[15] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, L. T. Costa, H. V. Vieira,
and F. M. Oliveira. Generation of Scripts for Performance Testing
Based on UML Models. In 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE), pages 1–6, 2011.

[16] TPC-W Org. Benchmark TPC-W, Feb. 2012. URL: http://http://www.
tpc.org/tpcw.

[17] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, San Francisco, 2006.

[18] C. Woodside and D. Petriu. Capabilities of the UML Profile for
Schedulability Performance and Time (SPT). In Workshop SIVOES-SPT
RTAS’2004, 2004.

118

A Catalog of Patterns for Concept Lattice
Interpretation in Software Reengineering

Muhammad U.Bhatti∗, Nicolas Anquetil∗, Marianne Huchard†, and Stéphane Ducasse∗
∗RMoD Project-Team INRIA - Lille Nord Europe USTL - CNRS UMR 8022, Lille, France

Email: {firstname.lastname}@inria.fr
†LIRMM, CNRS and Université de Montpellier-2, Montpellier, cedex 5, France

huchard@lirmm.fr

Abstract—Formal Concept Analysis (FCA) provides an im-
portant approach in software reengineering for software under-
standing, design anomalies detection and correction. However,
FCA-based approaches have two problems: (i) they produce
lattices that must be interpreted by the user according to his/her
understanding of the technique and different elements of the
graph; and, (ii) the lattice can rapidly become so big that one
is overwhelmed by the mass of information and possibilities.
In this paper, we present a catalogue of important patterns in
concept lattices, which can allow automating the task of lattice
interpretation. The approach helps the reengineer to concen-
trate on the task of reengineering rather than understanding
a complex lattice. We provide interpretation of these patterns
in a generalized manner and illustrate them on various contexts
constructed from program information of different open-source
systems. We also present a tool that allows automated extraction
of the patterns from concept lattices.

I. INTRODUCTION

Formal Concept Analysis (FCA) is a mathematical tech-

nique to discover significant groupings of objects having

similar attributes [14]. FCA can be applied to program entities,

which helps in generating high-level views of a program for

program understanding and identifying and correcting some

anomalies in software systems. For example, FCA is used to

identify objects in procedural code by looking at functions

accessing global variables [26], [9]. Equally, it is applied

to object-oriented systems by analyzing software components

(e.g.,, classes, attributes or methods) and their relationships

(e.g.,, belongs-to, uses or defines). Some studies aim at

understanding object-oriented systems [3], [8], [23], others

use program information for reengineering classes [28], [29],

[5]. The extracted program information is used to construct

concept lattices that are presented to the reengineers for

analysis. The reengineer then explores a lattice to uncover

important information.
The problem with the FCA techniques is that they produce

concept lattices that are not readily comprehensible for devel-

opers who need to spend a good amount of effort to interpret

these lattices. A possible solution is to break the information

being fed into FCA into small chunks [5]. However, the

approach is not scalable as the chunks need to be individually

analyzed, which requires generating several lattices. Another

issue is that concept lattices extract many more concepts than

the number of objects they are given as input [1], thus adding

complexity over the semantic complexity of the lattice.

The objective of the paper is to reduce concept lattices to

a few interesting node and subgraph patterns such that the

user does not have to interpret each node and its relationships

nor to analyze the entire lattice in detail. We don’t pretend

that all useful findings are captured by these patterns, but

they simplify the task of lattice analysis by proposing some

accepted semantics. We look for the lattice patterns in an

automated way, which could open the path for semi-automated

reengineering actions.

In this paper, we define the patterns that proved to be useful

in many cases of FCA applied to software engineering domain.

We provide an interpretation in a generalized way, explaining

their interest. Later, we exemplify them using different infor-

mation from various open-source systems. These patterns are

implemented in a prototype and we give some figures on the

reduction in information to process for a concrete example.

This paper is organized as follows: Section II presents

existing work that uses FCA in software reengineering and

motivates our approach. Section III presents nodes and sub-

graphs patterns. Section IV proposes a validation on open-

source systems and Section V describes the prototype for

pattern identification. Section VI concludes the paper.

II. MOTIVATING A GENERIC INTERPRETATION TOOL FOR

CONCEPT LATTICES

In this section, we present different studies that have been

performed to understand and restructure software systems

through FCA. Then we provide motivation for our proposed

approach.

A. Existing work

a) Module and Object Identification with FCA: Sahraoui

et al. [26] present a method that extracts objects from pro-

cedural code using FCA. Important concepts are looked for

in the resultant lattices using heuristics. Another approach

compares the object identification capability of clustering and

FCA techniques [9]. A few heuristics are described to interpret

the concepts of the lattice. An approach to transform a COBOL

legacy system to a distributed component system is proposed

by Canfora et al. [6]. Siff and Reps explore the relationship

between program variables and procedures through FCA for

restructuring of C programs [27].

119

b) Object-Oriented Reengineering and FCA: Godin et
al. [15] proposed in 1993 to analyze classes by their member

methods to evaluate and refactor OO class hierarchies using

FCA. Dicky et al. [10] define an incremental algorithm and

study the method specialization in the FCA framework. Falleri

et al. [13] compare several FCA configurations [7]. Leblanc et
al. [17] apply FCA to extract Java interface hierarchies from

Java classes.
Snelting and Tip [28] present a framework for detecting and

remediating design problems in a class hierarchy; it is used in

[29] for refactoring Java class hierarchies. Arévalo, Ducasse

and Nierstrasz [3] use FCA to understand how methods and

classes in an object-oriented inheritance hierarchy are coupled

by means of the inheritance and interfaces relationships. Lien-

hard, Ducasse and Arévalo [21] use FCA to identify traits in

inheritance hierarchies. Dekel and Gil [8] use FCA to visualize

the structure of Java classes and to select an effective order

for reading the methods. In [5] a tool-assisted technique is

presented to identify useful abstractions and class hierarchies

in procedural object-oriented code.
FCA is used to detect the presence of bad smells and design

patterns [2], and to suggest appropriate refactorings to correct

certain design defects [24]. FCA is also used to understand

a system’s source code for relevant concepts of interest [23]

and to cluster words for feature location [25].
FCA is also used to examine information generated from

program execution to reconstruct control flow graphs [4] and

feature location [12]. FCA is used in aspect mining [20],

detection of design-level class attributes from code [30], and

searching for code patterns and their violations [22].
c) FCA Filtering: Some studies, applying FCA to soft-

ware reengineering, have suggested concept filtering tech-

niques to resolve the problem of lattice complexity. The notion

of concept partitions is used to filter the concepts that are

not interesting for creating modules [27]. Mens et al. filter

concepts according to some properties1 of the concepts in

the lattices constructed by their approach [23]. Arévalo et al.
describe a few heuristics to reduce the search for concepts that

describe important class hierarchy schemas [2]. Joshi and Joshi

[19] provide a few patterns that may emerge when context is

based upon methods and attributes of a class.
There is a plethora of FCA-based techniques that aim to

analyze software systems for reengineering purposes. The

diversity of these approaches shows the interest in FCA as

a tool to certain kinds of software analysis. Some approaches

apply context-specific heuristics for filtering non-interesting

concepts. However, these heuristics remain tied to a specific

context and cannot be generalized. Therefore, there is a need

to define a unifying framework for lattice interpretation. This

paper goes in that direction by describing a few patterns of

nodes and subgraphs in concept lattices.

B. Synthetic view of FCA in Software Reengineering
One of the strengths of FCA for program comprehension

and software reengineering is the wide range of contexts that

1size of the concept’s “intent” and “extent”.

can be used. For each different context, the method provides

different insights into reengineering opportunities.

OO systems consist of different entities such as packages,

classes, methods, attributes, or variables. In Table I we sum-

marized the main entities and relationships that could be used

as context (other ones could be invented). In the table, rows

are formal objects, and columns formal attributes. In each

cell of the upper half, a blank means there is no possible

relationship (we found no interesting relationship to link a

method formal object to packages formal attributes), U stands

for use (a method uses another method by calling it, or a

class uses another class through inheritance), and C stands for

contains (or declare, a class contains an identifier, a method

contains a variable). The relationships in boldface (upper half)

denote contexts that we found already studied in the literature.

In that case, a representative reference is given in the lower

half of the table. The “×”s in the lower half denote possible

contexts that we identified and for which we know of no prior

published research. They represent unexplored areas of FCA

and software reengineering research.

TABLE I
MAIN POSSIBLE CONTEXTS FOR FCA; FORMAL OBJECTS ARE IN ROWS,
FORMAL ATTRIBUTES ARE IN COLUMNS, RELATIONSHIPS ARE USE AND

CONTAIN; IN LOWER HALF, REFERENCES INDICATE THE CONTEXTS THAT

WERE ALREADY STUDIED (ALSO IN BOLD FACE IN UPPER HALF) AND

“×”S MARK POSSIBLE CONTEXTS THAT HAVE NOT BEEN EXPLORED YET

Formal attributes
pckg class meth. att. var.

pckg C,U C,U C,U C,U C,U
class U C,U C,U C,U C,U
meth. U U U C,U
att. U
var. U U U U

F
o
rm

al
o
b
je

ct
s

pckg × × × × ×
class × [5], [32]

[21], [15]
[13] ×[18]

meth. × [3], [5] [3], [8] ×
[22] [30]

att. ×
var. × [28] [28] ×

Table I considers only the main formal objects and for-

mal attributes in software reengineering for OO systems. A

comprehensive survey of the contexts studied in software

engineering is provided by Tilley et al. [31].

C. Concept lattice interpretation

FCA is a flexible technique that may be used on a wide

range of contexts. The number of unexplored contexts, even

for the simple enumeration of possibilities proposed in the

Section II-B, gives an idea of its potential. However before it

gains larger use, we believe two problems need to be solved.

First most of the existing approaches, leave the analysis

work to the user. Concept lattices are complex abstract con-

structs that may prove difficult to interpret. Sahraoui et al. [26]

recognized this problem and proposed a tool to help analyzing

the lattices.

Another issue with FCA is the size of the lattices they

produce [1]. This again points toward the need to provide an

120

assisted solution for lattice analysis. Some filtering techniques

exist in the literature to remove unwanted concepts from

lattices. However, these techniques are dependent upon their

contexts because these are geared towards unrevealing specific

code patterns. The solution of decomposing a context into

smaller chunks requires a lot of effort to generate lattices

representing each chunk. A natural solution lies in automating

the interpretation of lattices. This automation will be more

useful if it can be applied indifferently to lattices built on any

formal context. The user would not be required to analyze each

node in the lattice; he will search for patterns in the lattices

and useful nodes will be identified without spending too much

time on the lattice. Moreover, an automated technique can

extract these patterns without requiring the user to understand

the complexities of FCA. We hope to define a dictionary of

such patterns that along with a definition of the meaning of a

concept for each possible context, could propose to users an

interpretation for any lattice built from a known context.

In the next section, we present a catalogue of patterns

that represent interesting constructs in concept lattices from

the software engineer point of view. These patterns help the

user in two ways. First, they help to reduce the work of

understanding a complex lattice for interpreting a few node and

graph patterns. Hence, the work is reduced to look for these

patterns and understand their interpretation. Second, because

we consider generic subgraph patterns, a tool can be built

to extract these patterns from the lattices, which will greatly

simplify the work of analyzing these lattices.

III. PATTERNS IN CONCEPT LATTICES

In this section, we present concept lattice patterns intended

to help software engineers analyze the result of FCA. These

patterns are sufficiently generic to be applied to a large set of

possible contexts.

A. Nodes in Concept Lattices

The patterns we will present depend on typical arrangements

of nodes and vertices, but also on the specific nodes that

concept lattices may/should contain. Therefore, before going

to the patterns, we will take a look at the four types of nodes

that a concept lattice may contain. In the following, we borrow

from the Conexp tool the way these nodes are displayed. The

tool displays each node as a circle. A black lower semi-circle

in the node indicates the presence of formal objects introduced

by the node (i.e., that no sub-concept has). A grey upper semi-

circle in the node indicates the presence of formal attributes

introduced by the node (i.e., that no super-concept has). Four

types of nodes are possible :

• Full (black and grey): The node introduces formal

attributes that its super-concepts don’t have and has

formal objects that its sub-concepts don’t have.

• Grey: The node introduces formal attributes that its

super-concepts don’t have, but all its formal objects (if it

has any) appear in a sub-concept. Such node must have

more than one direct sub-concept.

• Black: The node has formal objects of its own (that no

sub-concept has), but “inherits” all its formal attributes

(if it has any) from its super-concepts. Such node must

have more than one direct super-concept.

• Empty: The node has no formal attribute or object of

its own. It must have more than one direct super-concept

and more than one direct sub-concept.

B. A Catalogue of Patterns

We now describe some subgraph patterns that we identified

as useful to help analyze a concept lattice. The criteria that

we used to choose these patterns are:

• They have a clear meaning that can be interpreted for any

formal context; Hence, the patterns are generic enough

to extract meaningful information;

• They represent important groups of formal objects and

formal attributes, useful for the user;

• They produce very few false positives: If the patterns

identify too many false-positives in the results, the user is

required to look at the lattice to filter the false-positives.

Hence, the effectiveness of the patterns would be lost.

One can rely on the patterns and not analyze the lattice.

We prefer limiting the false positives at the expense of

having many false negatives.

The patterns are defined as specific topology of nodes and

edges, sometimes accompanied by a specific type of node for

one or more of the members of the pattern. Some of these

patterns are illustrated in Figure 1 to help the reader visualize

them.

(a) (b) (c)

Fig. 1. Some of the patterns in concept lattices

1) Top node (�): We identified two cases of interest for

the top node:

Top-black The pattern reveals the fact that the formal objects

attached to the top node don’t have relationship to any of the

formal attributes present in the context. It indicates formal

objects that are not relevant to the context being studied.

Top-grey or Top-full The existence of a grey or full node

at the top of a lattice marks a set of formal attributes (the

grey part) that are in relationship to all the formal objects

contained in the context. The pattern represents an important

set of formal attributes that form the very basis of the context.

2) Bottom node (⊥): We may identify two cases:

Bottom-grey The pattern reveals the fact that the formal

attributes attached to the node are not in relationship with

any of the formal objects present in the context. Likewise, the

121

pattern is important as it depicts attributes that are not relevant

to the context being studied.

Bottom-black or Bottom-full The existence of the black or

full node at the bottom of a lattice illustrates a set of formal

objects that are related to all the formal attributes present in

the formal context.

3) Horizontal Decomposition: Horizontal decomposition

(see Figure 1(a)) is a pattern that appears when one can

identify disjoint subgraphs when removing the top and bottom

of the lattice. In the illustrating figure, there are three disjoint

subgraphs. Horizontal decomposition points to the presence

of disjoint sets of relationships between formal objects and

formal attributes. This is somehow similar to having sev-

eral disjoint contexts. The different subgraphs may actually

have formal attributes or formal objects in common in the

case of Top-grey/Top-full and Bottom-black/Bottom-full, but

assuming we ignore these (see discussion above), then each

subgraph may be considered independently from all the others.

Snelting and Tip mention horizontal decomposition in [28].

A less constrained pattern would be to find a horizontal

decomposition, with non trivial subgraphs, between two nodes

that are not the top or the bottom of the lattice. This is

also related to the Module pattern that will be discussed

immediately.

4) Module: In partially ordered set theory, a module rep-

resents a group of nodes that are connected to the rest of

the graph through a unique top node and a unique bottom

node [16]. The supremum and infimum of the module are part

of it. Figure 1(b) illustrates a simple example of module in

a concept lattice. A module represents an important pattern

because it can be considered as a sublattice inside a concept

lattice. One could imagine collapsing the entire module into

one “composite node” without changing the semantics of

the lattice (just make it a bit more abstract). Also, all the

patterns applicable to the concept lattice can also be applied

to the module. The module in itself can be seen as a smaller

individual lattice that can be analyzed independently of the

rest.

5) Irreducible specialization: Specializations are the basis

of a lattice and one finds them everywhere: Every arc in a

concept lattice marks a specialization relationship. Yet the

pattern is interesting when the specialization occurs between a

black (or full) super-concept and a grey (or full) sub-concept

(illustrated in Figure 1(c)). Irreducible specialization patterns

depicts two nodes that should not be merged. The upper node

(in Figure 1(c)) needs to exist because it has its own formal

object(s) and the lower node needs to exist because it has its

own formal attribute(s). That is to the say specialization pattern

represents two entities in a system that are relevant in the

system they belong to. When the super-concept (sub-concept)

in the specialization pattern is the top node (resp. bottom

node), we further require that it is a full node, to ensure that it

represents a complete concept with formal objects and formal

attributes. When we are not dealing with the top or bottom

nodes in the lattice, we don’t need this restriction because

the nodes in the pattern can inherit formal attributes (formal

objects) from their super-concepts (resp. sub concepts).

IV. CONCRETE EXAMPLES

In this section, we present a validation of these patterns to

evaluate that the patterns do appear in the concept lattices,

and these reveal important information about the underlying

program. For the examples, we experiment with various for-

mal contexts from different program entities of open-source

systems. These contexts are similar to existing contexts of

the literature. The contexts will be presented as triplet: O-

R-A that is to say: formal Object, Relation, and formal

Attribute. Program information for the lattices is extracted

through FCAParser2.

A. Member use

This formal context is based on the following information:

• O = All methods within a class except getters and setters

• A = Attributes of the class

• R = The method accesses an attribute directly or through

a getter method

The concepts resulting from this context represent different

features that a class may implement, assuming that each

feature will be composed of methods accessing a particular

set of attributes. The example used will be the class Main
of JMemorize3. Figure 2 shows the lattice resulting from this

example. We may identify the following patterns in the concept

lattice:

• Top black: The two methods in the top-black node do

not access any attribute of the class. Code analysis shows

that copyFile is a utility method whereas onProgramEnd is

an empty method in the class.

• Horizontal Decomposition: Removing the top and bot-

tom nodes of the lattice, we are left with 6 independent

subgraphs: (i) a set of three disjoint subgraphs on the far

right having methods main, run, and startStats, (ii) the bulk

of the nodes in the centre, (iii) one node with methods

exit, rmPrgObs and addPrgsObs on the lower left, and (iv)

two nodes with methods clrThrw, logThrw. The subgraphs

identify independent concerns of the class (convertible

to traits). For example, the log (on the far left) or the

handling of observers when the program ends (lower left).

• Irreducible specialization: There is one instance of this

pattern on the left of the lattice. As explained, it indicates

that we have here two features that could not be easily

merged.

• Module: The same two nodes on the far left illustrate

a case of the simplest possible module. The two nodes

could be grouped in one to simplify the lattice. This

is not incompatible with them being an irreducible spe-

cialization, as this merging into one composite node is

only a proposition to simplify the lattice itself, and not

something that should impact the underlying source code.

2http://fcaparser.googlecode.com/
3http://jmemorize.sourceforge.net/

122

The complete lattice of the class shows that the class

implements several concerns: observers, logging, and appli-

cation startup. The application startup concern is illustrated

by the presence of main, run, and startStats methods. In the

code, main calls run to start the application, which in turn

calls startStats to collect program statistics during program

execution. The bulk of the nodes in the center shows that

these nodes implement some coherent functionality, which is

revealed by their interconnections. The disjoint branches of

the lattice propose to decompose the class to encapsulate each

concern into a separate class.

On a single class with few members, the FCA technique and

the patterns we propose may seem like an overkill, but one

must understand that, in practice, such tools would be used for

all the classes (thousands) of a system and a user would not

have the possibility to analyze each one independently. The

patterns would be a help to point out the classes that offer the

best opportunities for design improvement.

B. Class Coupling

Class coupling explores the relationship amongst different

classes, by the way each one uses the members of the

other classes. Similarly to attribute uses (Section IV-A) for

classes, concepts resulting from this context represent high

level features in packages by identifying common access to

other class members.

• O = Classes;

• A = Class members (attributes and methods);

• R = The class Uses a member of another class.

The example will use the classes of package

org.jhotdraw.geom of JHotDraw. The resulting lattice is

presented in Figure 3. We may find the following patterns:

Fig. 3. Class Coupling lattice for org.jhotdraw.geom package in
JHotDraw

• Top black: The pattern in this context shows the exis-

tence of nine classes in the package that do not access

members of any of the classes in the package. In this

specific case, the lack of communication is due to the fact

that this package is an intermediary layer between java

2D graphics (java.awt.geom) and the rest of the JHotDraw

framework.

• Irreducible specialization: There is a case of irreducible

specialization that is similar to the one observed in

Section IV-A.

• Module: There are two simple modules in this lattice.

The first one consists of the lattice itself minus its top

node. It gives us all the classes that interact together. The

second one, two nodes on the left, for which we can draw

the same conclusions that in example Section IV-A. Of

course in such a small case, the simplifications that node

aggregation would bring are not really needed.

• Horizontal decomposition: If we focus on the largest

non-trivial module (whole lattice without the top black

node), we can detect the presence of a horizontal de-

composition pattern with two independent branches. They

suggest two features: one that works with BezierPath s

as containers (isEmpty(), add()) and the other one that

sees them as graphical elements (moveTo(), isClosed(),
. . .). This shows that the class BezierPath implements

two different concerns and requires refactoring different

concerns in separate classes.

V. PROTOTYPE FOR PATTERN IDENTIFICATION

We have provided concrete examples that show that the

catalogue of patterns does reveal some important spots in

concept lattices. We developed a tool in Moose [11] to

automate the task of pattern identification in concept lattices.

The tool supports the identification of all the patterns. We used

the tool to extract the patterns from the lattice constructed from

all classes in OpenBravo4 using the following formal context:

• O =All classes;

• A = Method names;

• R = The class locally defines the method name

Table II provides a summary of the results produced by the

tool. The resultant concept lattice is composed of 1053 nodes

and 2260 connections. Of those nodes and connections, the

user needs to study 154 nodes and 150 connections, if (s)he

wants to explore all the patterns. This represents a reduction

of 85% in the number of nodes to analyze and 93% in the

number of connections.

TABLE II
PATTERNS IN OPENBRAVO

of formal objects 756
of formal attributes 6658

of nodes 1053
of node connections 2260

Top Top Black (1 node, 0 connections)
Bottom -

Irreducible specializations 45 (90 nodes, 45 connections)
Horizontal decomposition 28 (28 nodes, 56 connections)

Modules 14 (49 nodes, 49 connections)

Total Nodes and connections in Patterns 154 nodes, 150 connections

The patterns in the lattice reveal: classes without methods

or empty classes (Top black); hierarchies of classes having

similar methods (Irreducible specialization); classes that do

not have common methods with other classes (Horizontal

decomposition). Modules in the lattice represent different

methods that are common (duplicated) amongst the classes of

4http://www.openbravo.com/

123

Fig. 2. Lattice for Main in JMemorize

the system. Hence, the modules nodes can be used to refactor

these classes toward a better design.

VI. CONCLUSION

An inconvenience of using FCA is that lattices are complex

and one needs to be knowledgeable about FCA to extract

useful information. The paper presents patterns in concept

lattices that can ease the task of lattice interpretation. We

demonstrate that: The patterns reveal important information

for the underlying context; The patterns identify pertinent

results regardless of the context used for creating the formal

concept; All mined patterns in the examples are pertinent, thus

false-positive results are absent. A prototype is presented that

searches for the patterns in lattices. In software reengineering,

such a tool could support automated identification of problem

areas. For our future work, we are interested in expanding

the catalogue of patterns and mix our approach with filtering

techniques.

REFERENCES

[1] N. Anquetil. A comparison of graphs of concept for reverse engineering.
IWPC, 2000.

[2] G. Arévalo, S. Ducasse, S. Gordillo, and O. Nierstrasz. Generating
a catalog of unanticipated schemas in class hierarchies using formal
concept analysis. Inf. Softw. Technol., 52:1167–1187, November 2010.

[3] G. Arévalo, S. Ducasse, and O. Nierstrasz. Understanding classes using
X-Ray views. In MASPEGHI 2003 (ASE 2003), pages 9–18, Oct. 2003.

[4] T. Ball. The concept of dynamic analysis. In ESEC/FSC’99, number
1687 in LNCS, pages 216–234, Heidelberg, sep 1999. Springer Verlag.

[5] M. U. Bhatti, S. Ducasse, and M. Huchard. Reconsidering classes in
procedural object-oriented code. In WCRE, 2008.

[6] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca. A Case
Study of Applying an Eclectic Approach to Identify Objects in Code.
In Proceedings of IWPC ’99, pages 136–143. IEEE, May 1999.

[7] M. Dao, M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev. Im-
proving generalization level in uml models iterative cross generalization
in practice. In K. E. Wolff, H. D. Pfeiffer, and H. S. Delugach, editors,
ICCS, volume 3127 of Lecture Notes in Computer Science, pages 346–
360. Springer, 2004.

[8] U. Dekel and Y. Gil. Revealing class structure with concept lattices. In
WCRE, pages 353–362. IEEE Press, Nov. 2003.

[9] A. Deursen and T. Kuipers. Identifying objects using cluster and concept
analysis. In Proceedings of ICSE ’99, pages 246–255. ACM Press, 1999.

[10] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class
insertion with overloading. In OOPSLA, pages 251–267, 1996.

[11] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile reengineering
environment. In Proceedings of ESEC/FSE 2005, pages 99–102, Sept.
2005. Tool demo.

[12] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Computer, 29(3):210–224, Mar. 2003.

[13] J.-R. Falleri, M. Huchard, and C. Nebut. A generic approach for class
model normalization. In ASE, pages 431–434. IEEE, 2008.

[14] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer Verlag, 1999.

[15] R. Godin and H. Mili. Building and Maintaining Analysis-Level
Class Hierarchies using Galois Lattices. In Proceedings OOPSLA ’93,
volume 28, pages 394–410, Oct. 1993.

[16] M. Habib, M. Huchard, and J. Spinrad. A linear algorithm to decompose
inheritance graphs into modules. Algorithmica, 13(6):573–591, 1995.

[17] M. Huchard and H. Leblanc. Computing Interfaces in JAVA. In
Proceedings of ASE ’2000, pages 317–320, 2000.

[18] M. Huchard and H. Leblanc. Computing interfaces in java. In ASE,
pages 317–320, 2000.

[19] P. Joshi and R. K. Joshi. Concept analysis for class cohesion. In
Proceedings CSMR 2009, pages 237–240.

[20] A. Kellens, K. Mens, and P. Tonella. A survey of automated code-level
aspect mining techniques. Transactions on Aspect-Oriented Software
Development, 4(4640):143–162, 2007.

[21] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal
concept analysis. In ASE’05, pages 66–75, Nov. 2005.

[22] C. Lindig. Mining patterns and violations using concept analysis.
Technical report, Saarland University, Germany, 2007.

[23] K. Mens and T. Tourwé. Delving source code with formal concept
analysis. Comput. Lang. Syst. Struct., 31:183–197, October 2005.

[24] N. Moha, A. M. R. Hacene, P. Valtchev, and Y.-G. Guéhéneuc. Refac-
torings of design defects using relational concept analysis. ICFCA’08,
pages 289–304. Springer-Verlag, 2008.

[25] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with
information retrieval for concept location in source code. In ICPC ’07,
pages 37–48, Washington, DC, USA, 2007. IEEE Computer Society.

[26] H. A. Sahraoui, H. Lounis, W. Melo, and H. Mili. A concept formation
based approach to object identification in procedural code. Automated
Software Engineering Journal, 6(4):387–410, 1999.

[27] M. Siff and T. Reps. Identifying modules via concept analysis.
Transactions on Software Engineering, 25(6):749–768, Nov. 1999.

[28] G. Snelting and F. Tip. Understanding Class Hierarchies Using Concept
Analysis. ACM TOPLAS, pages 540–582, May 2000.

[29] M. Streckenbach and G. Snelting. Refactoring class hierarchies with
KABA. In OOPSLA ’04, pages 315–330, New York, NY, USA, 2004.

[30] A. Sutton and J. Maletic. Recovering uml class models from c++: A
detailed explanation. Inf. Softw. Technol., pages 212–229, March 2007.

[31] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept
analysis support for software engineering activities. In G. Stumme,
editor, Proceedings of ICFCA ’03. Springer-Verlag, Feb. 2003.

[32] P. Tonella and G. Antoniol. Object oriented design pattern inference.
In Proceedings of ICSM ’99, pages 230–238. IEEE Computer Society
Press, Oct. 1999.

124

Client-Side Rendering Mechanism: A Double-Edged
Sword for Browser-Based Web Applications

Hao Han∗, Yinxing Xue† and Keizo Oyama∗‡
∗National Institute of Informatics, Japan

{han,oyama}@nii.ac.jp
†National University of Singapore, Singapore

yinxing@comp.nus.edu.sg
‡The Graduate University for Advanced Studies (SOKENDAI), Japan

Abstract—Rendering mechanism plays an indispensable role
in browser-based Web application. It generates active webpages
dynamically and provides human-readable layout of information.
Client-side rendering system brings various flexibilities but also
new problems. In this paper, we give a comprehensive analysis
of possible advantages and disadvantages brought by client-side
rendering mechanism in viewpoints of both developers and users
based on practice and experience.

Index Terms—Rendering Mechanism, Template Engine, Web
Application, Web UI, Practice and Experience

I. INTRODUCTION

Browser-based Web application is one of often used com-
puter software applications designed for information interac-
tivity on the Web. It is reliant on a common Web browser
to render the application executable, and usually coded in
browser-rendered/supported languages such as HTML (Hy-
perText Markup Language) and JavaScript. At server side,
rendering mechanism is indispensable for human-readable pre-
sentation and generates webpages based on template engine.
Figure 1 describes the basic architecture of a typical server-
side rendering system. In general, rendering system processes
templates and content to generate the output Web documents.
A template engine specif es a template and f lls in the template
with the assigned values to obtain the output page. Templates
are frequently used to separate the webpage presentation
from the underlying business logic and data computations
in the context of Web application development. In the case
of Web application development, this means that “no logic
computation in HTML and no HTML in logic computation”
roughly. Server responses may be determined by requests
sent from client side such as data in a posted HTML form,
parameters in the URL, or the type of Web browser being used.
Server-side scripting (program running on the server) is used to
change the web content on various webpages. Such webpages
are often created with the help of server-side languages such
as ASP, Perl, and PHP.

Web applications become more and more complicated with
the advancement of diverse Web technologies in order to
realize the demands of new techniques for the different kinds
of users. The users prefer the Web applications containing
the user-friendly interfaces and easy operations. For example,
Ajax (Asynchronous JavaScript and XML) dynamically inter-

Fig. 1. Server-side rendering system

changes content which sends a request to the server for data.
The server returns the requested data subsequently formatted
by a client side script, which reduces server load time because
the client does not request the entire webpage regenerated by
the server-side rendering. This trend accelerates the develop-
ment of interactive and animated websites. Many websites use
the DHTML (Dynamic HTML) or DOM scripting technology
to create the interactive Web pages. It contains HTML, client-
side scripts (such as JavaScript), DOM (Document Object
Model), etc. The scripts change variables programmatically
in an HTML document, and affect the look and function of
static content.

Client-side rendering mechanism is one of proposed ap-
proaches responding to this trend. Instead of a fully rendered
HTML page, client-side rendering system produces skeletal
segments, which are combined and transformed into an HTML
page at client-side Web browser. XML (Extensible Markup
Language), XSLT (XML Stylesheet Language Transforma-
tions [26]), JSON (JavaScript Object Notation) and JavaScript
are usually used to generate or update the dynamic content
(interactive and animated parts) at client side. Each segment

125

presents an individual topic or functional region of webpage
and only the segment that subject to changes is transmitted.
These interactive webpages bring the users various visual
effects and consume fewer resources on the server.

As a developing technology always has its faults, client-side
rendering mechanism also has both merits and drawbacks. In
this paper, we propose a developing framework as a simple
implementation of client-side rendering mechanism, and give
a comprehensive analysis of possible advantages and disadvan-
tages in different viewpoints such as accessibility, caching, per-
sonalization and speed. Our analysis emphasizes on issues like
performance, practice and experience at client side rather than
the business/processing logic at server side, and the specif c
Web browser plug-ins are not discussed. Some experimental
evaluations about rendering cost and development time are
also discussed.

The organization of the rest of this paper is as follows.
In Section II, we present a developing client-side rendering
framework and introduce some related approaches/systems.
From Section III we give analysis of performance/functionality
at client-side and application development based on various
viewpoints. Finally, the conclusion and the future work are
given in Section IX.

II. AN EXAMPLE OF CLIENT-SIDE RENDERING SYSTEM

There is no uniform and mature structure of client-side ren-
dering system widely accepted by general Web applications.
In order to provide an intuitive and visible image of client-side
rendering for the further analysis and explanation, we present
an example based on XML and XSLT technology, which is
generally employed as a stylesheet processor used to transform
XML data into HTML or XHTML documents.

We are developing an XML-based framework for generating
f exible and extensible Web applications based on client-
side rendering mechanism as shown in Figure 2. Here, each
webpage is divided as a set of static segments and dynamic
segments. Static segment always comprises and displays the
same information in response to all requests from all users
and in all contexts. (e.g. navigation bar and site information
placed in page footer). Dynamic segment presents dynamically
generated content that can change in response to different
contexts or conditions. There are two ways to create this kind
of effect/change. Generally, server-side program is used to
change the page source determined by requests from client
side. At the client, client-side scripting is used to change
interface behaviors within a specif c webpage in response to
mouse or keyboard actions or specif ed timing events. In this
case the dynamic behavior occurs within the page presentation.
Figure 2 describes the workf ow and data f ow of framework
as follows.

1) The server responds to the request of client with the
segment container f le. A container is a layout page
that surrounds or references static segments, XML data,
XSLT f les, or external f les like JavaScript and CSS
(Cascading Style Sheets) f les in its page body. The
XML data is encapsulated into a single XML document

in order to reduce the connection time before it is
sent to client side. The container f le also contains
the mapping information, which ref ects the one-to-one
mapping between the XML data and XSLT f le.

2) The dynamic segment is generated at client-side browser.
The XSLT processor transforms the corresponding XML
data into HTML or XHTML document based on the
one-to-one mapping. The static segments and generated
dynamic segments comprise the main source of an entire
client-side webpage.

3) When the end-users trigger the mouse/keyboard events
def ned in XSLT processors of dynamic segments, the
variables in corresponding XML data are changed by
JavaScript functions, and the XSLT processors retrans-
form the updated XML data into the new HTML seg-
ments.

Fig. 2. An example of client-side rendering system

A more detailed description of this system can be found in
[9].

As a widely used technology, the open source community
has created a huge number of client-side templating solutions.
Logic-less templating technologies follow the strict model-
view separation rule that there should be little or no logic in
templates. They usually provide a clean separation between
presentation and logic without sacrif cing ease of use, and
are particularly well-suited for asynchronous and streaming
applications. Twitter 1 uses Mustache [16] and JSON to move
signif cant pieces of functionality to the browser, and Google
plus 2 employs Java-friendly Closure [1]. Linkedln 3 moves
from server-side templates to client-side JavaScript templates
powered by dust.js [3].

Besides these logic-less templates, there are embedded
templating options, which allow developers to embed regular

1https://twitter.com/
2https://plus.google.com/
3http://www.linkedin.com/

126

JavaScript code directly within the template. Underscore.js
[24] is based on microtemplating and provides a lot of the
functional programming support usually expected in Proto-
type.js [20]. jQuery [13] simplif es HTML document travers-
ing, event handling, animating, and Ajax interactions for rapid
Web development. Jade [11] is inf uenced by Haml [8] syntax
and implemented with JavaScript for node.js [17].

Many related studies have given the discussion about “ren-
dering mechanism and rich application” with “component-
based” (Fiz [6]), “data-centric” (Hilda [27]), “strict model-
view separation” ([19]), “f exible model-view separation”
([7]), “skeletal script” (FlyingTemplate [22]), “interactive be-
haviors learning” ([18]), “accessibility evaluation” ([5]) and
others described in following sections.

III. ACCESSIBILITY

RIAs (Rich Internet Applications or we call them rich client
applications) and supporting technology ref ect an implemen-
tation of rendering mechanism in the user agent or in the
browser at the client side. They provide more dynamic Web
content and more attractive and interactive websites. However,
not all end-users benef t from this interactivity. For example,
users with weak or disabled eyesight access the Web using
assistive technologies, such as a screen reader (e.g. IBM Home
Page Reader 4) that delivers audio content. If a client-side
rendering/programming technique is used by a webpage, the
screen reader cannot read the page-based operation (page mod-
if cation), which is particularly problematic for the keyboard
navigation essential to accessibility. With the meta data or
HTML5 [10], interface developers should be able to adapt
interfaces to meet specif c needs partially. However, meta data
is recommended but not necessary in HTML page, and until
now most of developers do not use HTML5 tags widely.

Rich def ned XML is better for screen reader, not only in
reading but also page-based operation [15]. Figure 3 shows
an example of XML document employed in Figure 2. It adds
semantics to webpage components and content so that assistive
technologies can interpret their operation. Regional landmark
roles provide a navigable structure within a webpage, and
node names and attributes present a guarantee of accessibility
of controls. For example, “writable” represents the dynamic
content-update notif cations: update, remove, and add (0: can-
not, 1: can).

IV. DATA CACHING

A Web data caching is a mechanism for the temporary
storage of Web documents, such as HTML pages, to reduce
bandwidth usage, server load, and perceived lag. For Web ap-
plications distributed by HTTP (Hypertext Transfer Protocol),
freshness, validation, and invalidation mechanisms are used
for controlling caches. Dynamic webpages are often cached
when there are few or no changes expected and the page
is anticipated to receive considerable amount of Web traff c
that would create slow load time for the server if it had to

4http://www-03.ibm.com/able/

<contact role="contact list">
<personal role="personal contact">
<person role="main contact">
<name writable="000">Nakata</name>
<address writable="100">Yokohama, Japan</address>
<mainemail writable="100">nakata@example1.com
</mainemail>
<otheremail writable="111">nakata@example2.com
</otheremail>
<tel writable="101">81-3-1234-5678</tel>
... ...

</person>
</personal>
<business>
... ...

</business>
<others>
... ...

</others>
</contact>

Fig. 3. Names and attributes (embedded in XML) add semantics to webpage

generate the pages on the f y for each request. Despite the
popularization of broadband networks, page or page segment
is still a most basic and often used data transfer unit for Web
applications. So, it would lease the load of server if we reduce
the data transfer of page.

Page segment and client-side rendering mechanism bring
more eff cient caching functionality at server side and client-
side Web browser. Compared with the traditional page-based
caching system, static segments would be widely cached and
independent of changeable dynamic segments. Moreover, the
XSLT templates of dynamic segments could be reused or
cached at client Web browsers and the layout at client side
does not affect the cache. This reuse/caching could reduce the
data transfer between the server and client. As a experimental
example, we reconstructed the response Web page (search
result page) of Google Search into XML and XSLT data. The
experimental results show that the transferred data size is much
reduced as shown in Table I if page is rendered at client side.

TABLE I
RESPONSE DATA SIZE COMPARISON

Structure Data Format Size (bytes)
Server-side rendering HTML 20,916
Client XSLT caching XML 6,794

For the Web browsing at mobile devices, the page seg-
ments can be simplif ed for better presentation at mobile Web
browsers. Android developers also recommend upgrading the
Web UI to an XML layout [25]. Moreover, mobile devices
could partially share the XML data in server side caching

127

system with the general desktop Web browsing like XML-
based message exchange between different platforms.

V. LAYOUT CUSTOMIZATION

A conf gurable page is a webpage designed with built-in
layout personalization and content selection capabilities. Each
piece of content, also referred to as a resource displayed within
a cell of a layout region, can be rearranged, hidden or shown.
Client-side XSLT customization is more f exible and powerful
than CSS personalization, which is often used in blog pages.
For example, it is easy to rearrange the layout or control the
visibility by changing the attribute values of nodes.
• Layout arrangement (Figure 4): End-users can move

segments by dragging and dropping operations
to adjust the locations (e.g. object.style.left =
event.clientX - event.offsetX + document.body.scrollLeft;
object.style.top = event.clientY - event.offsetY +
document.body.scrollTop;), which is more compact or
suitable for user browsing habits than the default layout
arrangement of segments.

Fig. 4. Layout rearrangement

• Visibility control (Figure 5): End-users can
hide/undisplay the undesired segments by setting
the property “display” of attribute “style” to “none”
(object.style.display = “none”;). If the hidden segments
are deleted, the original execution environment of
JavaScript would be broken and the JavaScript could not
run normally if the hidden segments (XML data) are
used/updated in JavaScript programmatically.

VI. SPEED AND DELAY

If server-side load is reduced and rendering tasks are moved
to client-side, tasks of client-side are unavoidably increased.
Client-side rendering and rich client applications usually bring
users a “image” that they are executed heavily and high

Fig. 5. Hide segment(s)

CPU/memory-consuming, which leads to delay of page load-
ing or refreshing at client Web browser. Actually, this delay
is caused by large data streaming and plug-in such as JSON
text stream in map applications, Flash player and Silverlight,
or JavaScript loading. Client-side rendering itself is not a
high CPU-consuming process. We (OS: Windows 7, Browser:
Internet Explorer 9, CPU: Intel Core i7 2.93GHz, RAM: 4.00
GB) captured performance data of examples given in Section
IV by Windows Performance Analyzer Tools 5. As shown
in Figure 6 and 7, there are not many differences in CPU
usage percentage (e.g. maximum and average value) between
presenting different types of webpages. A similar statistical
result of main memory usage is also learned.

As clients become increasingly sophisticated, there is more
for a browser to do. For websites that rely heavily on client-
side rendering, it is essential to include this delay. Too much
JavaScript on the client side makes the browser slow unless
the user has a powerful computer. Many large websites use
one common set of JavaScript f les and one common set of
CSS f les in every template and webpage. Those f les change
over time and often contain elements that are no longer used
on the webpage or anywhere on the website. We need to keep
track of what elements are being loaded on each webpage.
client side uses JavaScript libraries that often contain massive
amounts of functions, but only a handful of those functions
are used actually. If we want to speed up presenting webpage,
we should remove any JavaScript or CSS that are not being
used on the webpage.

Moving JavaScript to the bottom of webpage also enables
all other requests to be processed quickly, which would make
webpage appear to load more quickly. The browser can begin
rendering faster and do not wait for all of JavaScript to load
at the top of webpage. However, not all JavaScript can be
moved to the bottom of a webpage. If the JavaScript is a

5http://msdn.microsoft.com/en-us/performance

128

Fig. 6. CPU usage percentage of presenting a webpage rendered at server side

Fig. 7. CPU usage percentage of presenting a webpage rendered at client side

library required for other components on the page to render,
it must be loaded early in the page lifecycle.

More discussions about bridging the gap between the
browser view of a UI and its JavaScript implementation are
given in [14].

VII. DEVELOPMENT AND REUSE

We have to consider development eff ciency and program-
ming skill requirements if we employ client-side rendering
mechanism. It is based on the separation of topic and func-
tionality region of webpage. We implement not only the
model-view separation in template but also the static-dynamic
separation in segment. In the model-view separation, XSLT
serves as client-side template and offers a great expressiveness,
allowing a translator to produce complex HTML documents
from XML data. This separation leads to the division of labor.
The webpage designer can adjust the presentation or layout
without having to change the program logic, which is always
much riskier. However, XSLT f les development requires mas-
tering a quite different language compared with JSP/ASP/PHP
and high prof ciency with JavaScript frameworks/libraries (e.g.
jQuery [13] and Prototype.js [20]). Therefore, this XSLT-XML
separation methodology and client-side rendering mechanism
are not suitable for small personal webpages. It would waste
the time by analyzing and has no big effect.

Here, we give two experiments to prove the abovementioned
opinions and compare development time cost.

1) Experiment 1: Developers are not prof cient in XSLT
and write original JavaScript functions for rendering. We
developed a CIM (Customer Information Management)
system, which provides the add, search, show, update,
and delete functions mainly. By the traditional method,
it needs f ve basic functionality pages (and other pages

such as listing page): add a new customer (input the
customer information), search for a customer (input
the search keyword), show the customer information
(detailed information such as name, address, telephone,
and statistic of purchase history), update a customer
information (e.g. change the address, add a new contact),
and delete a customer. By using dynamic page, the show
page and update page are merged into a show+update
page. The users can update the information in show
page by clicking the corresponding value area (trigger
Onclick event) without the page jumping/transition. The
updated information includes changed user information
and calculated new purchase statistic (e.g. sum, average
price, and graphic statistic). Compared with the two
standalone pages show and update, the show+update
page needed much more time in programming and test
as shown in Table II (same developing engineers and
quality/test engineers). The developing engineers had
to write large quantities of JavaScript to deal with the
DOM and hidden values programmatically, and face up
to the fact that XML syntax is far more restrictive than
HTML. Moreover, browsers’ debugging support is still
very poor compared with server-side debugging support.
Therefore, although the sum of pages is reduced, the cost
of programming and test becomes higher.

TABLE II
DEVELOPMENT TIME COST COMPARISON

Page (Function) Programming (hours) Testing (hours)
show 6 8
update 12 16
show+update 40 64

2) Experiment 2: Developers are prof cient in XSLT and

129

JavaScript library. We upgrade a Web UI (User Inter-
face) system, which is an online information process-
ing system and has two versions. The UI generator
of old one is developed by JSP (JavaServer Pages)
and the new one is developed by XSLT. In a version
upgrade, a new functionality needs to be added for
personalizing webpage layout based on user access
authorization. A developing engineer did the code up-
date for two versions. Table III shows that the XML-
XSLT architecture is more eff cient. The programming
job could be analyzed and divided according to the
abilities or prof ciencies of developing engineers. One
engineer does not need to write an entire template f le
of a webpage, and the webpage development can be
subdivided into functionality-oriented development. For
the dynamic segment, the JavaScript library is used to
access or update client XML data. Compared with the
traditional dynamically updating client HTML source,
the XML data access/update/transformation process is
independent of the layout of webpage, and avoids using
the HTML tags and HTML-oriented functions such as
innerHTML or innerText, which are lack of the possibil-
ity of code reuse. XML-oriented JavaScript functions are
customized more easily than HTML parsing functions.

TABLE III
UPGRADE TIME COST COMPARISON

Version Language Time (hours)
Old JSP 184
New XSLT 80

VIII. DISCUSSION

The design philosophy behind our approach/opinion aims
at achieving the following goals.

1) To extricate the server side from the overloaded ren-
dering work requested simultaneously by multiple client
ends.

2) To further separate the concerns of the Web application
and distinguish the handling of various types of data.

3) To facilitate the personalization and customization of the
displayed output webpages for the different users and
types of client ends.

For the goal 1, in the client-server model, there is one
common controversy about the choice of the thin-client archi-
tecture or the thin-server (full-client [12]) architecture. Yang et
al. [28] found that thin-client systems can perform well on Web
and multimedia applications in LAN (Local Area Network)
environments. This shows that the rendering mechanism of the
traditional Web application worked f ne when it was usually
at the server side. However, nowadays with the better and
better graphical quality displayed by Web applications and
more various requirements from users, the rendering tasks
become more and more computationally costly. Thus, keeping
the rendering mechanism still at server side becomes an
obsolete design. Now there is a trend that TSA (Thin Server

Architecture) is advocated recently [4][23]. Note that in our
approach, we are not at the extreme to have most functions of
Web applications exclusively limited at the server side or at the
client side. The idea of our approach is not to use server-side
templates to create and transmit the webpage, but to separate
concerns using protocol between client and server and to get a
much more eff cient and less costly development model. Using
TSA leads to following three potential advantages.
• The server side can only focus on the business logics.
• The client side can focus on the presentations.
• The communications between server and clients just

exchange the raw data such as XML.
As shown in Table I, the exchanged data between server

and client is reduced in our approach, which improves the
usage of data caching. Besides, moving the rendering from
server to client also facilitates the concurrency of presentation.
The XSLT used in our approach, as a functional programming
language, can easily enable concurrency, since the order of
execution of side-effect free functions in functional program-
ming is not important. Thus, the client can run the multiple
same XSLT threads simultaneously to speed up the data
presentation.

For the goal 2, after separation of presentation and content,
for the ease of reusability, maintainability and extensibility, it
is desired to further separate the concerns of the Web applica-
tion on multiple dimensions [21]. The accessibility is one of
the dimensions we try to separate concerns on. By adopting
the RIAs or rich def ned XML, the client side can provide
navigable structure and guarantee of accessibility of controls
(see Section III). Another dimension of concern important to
the performance is the different types of content. For example,
the static and dynamic content in the different segments in
the output webpages should be differentiated. In the original
server-side rendering mechanism, the data exchanged between
server and client is usually webpages. In our approach, with
the skeletal segments generated by XML, XSLT, JSON and
JavaScript, the exchanged data between server and client can
be narrowed down to the segment level. And distinguishing
the static and dynamic segments also improves the eff ciency
of data caching (see Section IV). Except the different handling
for static and dynamic content, the similar idea can be applied
to yet some other types of content.

For the goal 3, as the user-adaptive and context-aware
characteristic is the trend for the future Web applications [2],
Web application should have the different rendering strate-
gies for the different types of client ends and the various
user requirements. Layout arrangement and visibility control
(see Section V) is just one type of user customization and
personalization. In some more sophisticated client ends like
smart-phone, the gesture control in response to the users’
operations on the screen is better to be handled by the client
end, otherwise waiting for the rendering results from server-
side will cause the extra delay.

Certainly, the above merits of client-side rendering do not
come without any compromise. As shown in Table II and Table
III, using our approach together with the involved techniques

130

may introduce the extra learning curve and initial investment
for the early separations than the commonly used server-side
rendering mechanism (taking almost more than double time,
see Table II). However, in the long term, the developers will
benef t from this in the evolution and extension of the Web
applications.

IX. CONCLUSION

We gave a comprehensive analysis of advantages and
disadvantages of client-side rendering mechanism in differ-
ent viewpoints of practice and experience. The experimental
evaluations proved a proposed example framework supports
the demands of users well and could bring the diverse new
opportunities about the extensible reuse of Web applications.

There is still a lot of work to be done before it becomes
a more mature technology since it currently cannot arrive
at a solution satisfactory to both users and developers. The
dynamic visual effects are realized by client script functions,
which bring the f exible operation but increase the devel-
opment cost for some developers or development scenarios.
Therefore, as shown in Figure 8, the developers need to make
a proper balance between the opinions and options of users
and themselves usually.

Fig. 8. Balance between Web application users and developers

As future work, we will explore further the problems of
system security, scalability, and server-side database update
of client-side rendering mechanism. Additionally, besides the
currently developing JavaScript libraries and frameworks, we
will develop more various supporting technologies for eff cient
client rendering in future.

X. ACKNOWLEDGEMENT

We gratefully acknowledge the advice and experiment
support from Bo Liu (Fuji Xerox, Japan). This work was
supported by a Grant-in-Aid for Scientif c Research A
(No.22240007) from the Japan Society for the Promotion of
Science (JSPS).

REFERENCES

[1] Closure. http://code.google.com/closure/.
[2] Peter Dolog. Designing adaptive Web applications. In The Proceedings

of the 34th Conference on Current Trends in Theory and Practice of
Computer Science, pages 23–33, 2008.

[3] Dust. http://akdubya.github.com/dustjs/.
[4] Extreme Scale: Thin Server Achitecture.

http://www.slideshare.net/spacemonkeylabs/thin-server-architecture.
[5] Nadia Fernandes, Daniel Costa, Sergio Neves, Carlos Duarte, and Luis

Carrico. Evaluating the accessibility of rich internet applications. In The
Proceedings of the 9th International Cross-Disciplinary Conference on
Web Accessibility, number 13, 2012.

[6] Fiz. http://f z.stanford.edu/home/home.
[7] Francisco J. Garcia, Raul Izquierdo Castanedo, and Aquilino A. Juan

Fuente. A double-model approach to achieve effective model-view
separation in template based Web applications. In The Proceedings of
the 7th International Conference on Web Engineering, pages 442–456,
2007.

[8] Haml. http://haml-lang.com/.
[9] Hao Han and Bo Liu. Problems, solutions and new opportunities: Using

pagelet-based templates in development of f exible and extensible Web
applications. In The Proceedings of 12th International Conference on
Information Integration and Web-based Applications and Services, pages
677–680, 2010.

[10] HTML5. http://www.w3.org/TR/html5/.
[11] Jade. http://jade-lang.com/.
[12] Jin Jing, Abdelsalam Sumi Helal, and Ahmed Elmagarmid. Client-

server computing in mobile environments. ACM Computing Surveys,
31(2):117–157, 1999.

[13] jQuery. http://jquery.com/.
[14] Peng Li and Eric Wohlstadter. Script InSight: Using models to explore

JavaScript code from the browser view. In The Proceedings of the 9th
International Conference on Web Engineering, pages 260–274, 2009.

[15] Lourdes Moreno, Paloma Martinez, Belen Ruiz, and Ana Iglesias.
Toward an equal opportunity web: Applications, standards, and tools
that increase accessibility. Computer, 44(5):18–26, 2011.

[16] Mustache. http://mustache.github.com.
[17] node.js. http://nodejs.org/.
[18] Stephen Oney and Brad Myers. Firecrystal: Understanding interactive

behaviors in dynamic Web pages. In The Proceedings of the 2009 IEEE
Symposium on Visual Languages and Human-Centric Computing, pages
105–108, 2009.

[19] Terence John Parr. Enforcing strict model-view separation in template
engines. In The Proceedings of the 13th International Conference on
World Wide Web, pages 224–233, 2004.

[20] Prototype. http://www.prototypejs.org/.
[21] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.

N degrees of separation: multi-dimensional separation of concerns. In
The Proceedings of the 21st International Conference on Software
Engineering, pages 107–119, 1999.

[22] Michiaki Tatsubori and Toyotaro Suzumura. HTML templates that f y: a
template engine approach to automated off oading from server to client.
In The Proceedings of the 18th International Conference on World Wide
Web, pages 951–960, 2009.

[23] Thin Server Achitecture. http://www.thinserverarchitecture.com/.
[24] underscore.js. http://documentcloud.github.com/underscore/.
[25] Upgrade the UI to an XML Layout.

http://developer.android.com/guide/tutorials/hello-world.html.
[26] XSL Transformations. http://www.w3.org/TR/xslt20/.
[27] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes

Gehrke, and Jayavel Shanmugasundaram. A unif ed platform for data
driven Web applications with automatic client-server partitioning. In
The Proceedings of the 16th International Conference on World Wide
Web, pages 341–350, 2007.

[28] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The perfor-
mance of remote display mechanisms for thin-client computing. In The
Proceedings of the General Track of the Annual Conference on USENIX
Annual Technical Conference, pages 131–146, 2002.

131

An Empirical Study on Improving Trust among GSD Teams Using KMR

Mamoona Humayun
Department of computer Science and Technology

Harbin Institute of Technology,Harbin, China
mamoona@hit.edu.cn

Cui Gang
Department of computer Science and Technology

Harbin Institute of Technology,Harbin, China
cg@hit.edu.cn

Abstract—Trust is one of the key factors in successful software
development. However, achieving and maintaining trust in global
software development (GSD) projects is really hard because of the
inherent challenges in global software development; these challenges
include cultural diversity, inadequate communication, temporal
difference and knowledge management (KM). Many studies have
explored the role that trust plays in knowledge seeking and
acceptance, but very few have explored the role knowledge
management plays in building trust. In order to minimize the problem
of trust, we propose the use of Knowledge Management Repository
(KMR) that helps in building trusting working relationships among
GSD team members. This paper reports the results of a controlled
experiment that was conducted in an academic setting with two groups
of students to test the impact of KMR on trust. The results indicate that
applying KMR in GSD projects positively affects the trusting working
relationship among GSD teams. Study findings provide a substantial
understanding of trust, and the role KMR plays in building and
maintaining trust. In this paper, we discuss these findings and their
implications in GSD organizations.

Keywords-Global software Development, Knowledge management,
Knowledge Management Repository, Trust

I. INTRODUCTION

Global software developm ent is becom ing a norm in
software industry and orga nizations are now rapidly shifting
from a traditional form of c ollocated development to global
software development [1, 2] . There are a number of bene fits
and business reasons that motivate companies to shift from in-
house development to GSD; these reasons include the late st
technologies, availability of resources and m ethodologies,
being closer to em erging markets, low cost, etc [3]. However
these benefits come with associated costs and c hallenges that
result in poor communication, lack of trust and coordination [4,
5, 6, 7, 8, 9, 10, 11].

Trust is defined as the ‘‘the willingness of a party to be
vulnerable to the actions of another party based on the
expectation that the other will perform a particular a ction
important to the trustor, irrespective of the ability to monitor or
control that other party” [28]. Trust is considered as one of the
most important factors in successful software development and
is essential within an orga nization for improving performance,
efficiency, productivity, creativity and the overall results
achieved. I n GSD, working in a trust ori ented environment
facilitates collaboration and co operation and encourages the
team members to work with a comm on purpose a nd shared
goals and thus achieve the desired results [4, 5, 6, 9, 10, 12].

Improving communication and trust in GS D is im portant
and KM is considered as the be st means towards this end as
KM holds a central role in th e success of GSD projects [6, 14].
Trust has a direct relationship with knowledge and c ould not

occur without it [6, 13, 15, 16]. There is a need to use the latest
information and com munication technologies of kn owledge
sharing for building trust [9, 16, 17, 18]. Sometimes a sm all
amount of m issing knowledge causes a delay and even the
failure of the software project [6].

Therefore, keeping in view the importance of KM and Trust
for GSD based organizations; in this pape r we will study the
impact of KM R on building trust. KM R is an information
technology tool that prom otes knowledge sharing am ong GSD
teams and it is one of the comm only used practices of K M as
discussed in literature [17, 18, 19, 20, 21, 22, 23, 24].

In the next section, we define the relation between
knowledge management and trust in the light of literature, and
we elaborate on the im portance of KM and trust in GSD
projects. In s ections III and IV the project overview and
research methodology are described. In section V, we present
the findings and assess ments of our data.Section VI
summarizes the main lessons learned from this research and
finally we conclude with suggestions for future research.

II. BACKGROUND AND RELATED WORK

GSD team members are unlikely to meet face-to-face due to
the nature of collaboration in a multinational organization and
cost saving strategies. Estab lishing and m aintaining trust in
GSD teams improve their effectiveness because tea m members
are generally not a ble to s pend much time in cr oss checking
and monitoring others.Positive interpersonal relationships and
shared experience help in building trust [4, 13, 16].

Knowledge management holds a central place in t he
development of trust am ong GSD team members. To develop
trust in GSD, there is a need to prom ote affective
communication, adopting knowledge sharing practices,
developing strong leadership and knowing and building
relationships between individuals [10, 16, 25, 26]. Missing trust
sometimes leads to the term ination of further co-operation and
relationships[25].

A survey was performed by NUS in 2007 in which more
than 30 nations were involved and the results obtained fro m
this survey point to an opportunity for governments from
developing nations to use KM as a key driver towards
increasing public sector pr oductivity and building tr ust in
government [14].

Information and communication technologies ar e
considered as the best m eans for im proving communication
and building trust am ong GSD teams [9]. A n intra-
organizational tool nam ed “trusty” is suggested for the
development and improvement of trust am ong GSD team s in

132

[9] but no validation is provided in this study. The study claims
that this tool facilitates communication and cooperation among
GSD team members by pr oviding them with a knowledge
exchange platform.

GSD teams require intensive communication and collaboration
for the development of trust. KMR is an easy way of managing
and sharing knowledge across the organization an d allowing
stakeholders to know when, how or by whom knowledge is
done. KMR thus help in i mproving the coordination and
trusting working relationship among team members[23, 26].

III. RESEARCH METHODOLOGY

Research question addressed in this study is

Q:How KMR helps in bui lding and maintaining trus t
among GSD team members?

In order to study the impact of KMR in building trust, we
have carried out a controlled experiment. The selected co ntext
of our experiment was an academ ic environment. We
conducted our study with two groups of students each
consisting of six members, these students belong to two
different universities located in Pakistan and China. The reason
for choosing the students from these two universities is due to
the fact that this was the firs t experiment that we carried out,
and the authors work at these universities. So, it was easy to
carry out experiment with these two universities inste ad of
others, due to regulations and difficulties involved in obtaining
permission. Moreover the variables of this choice were suitable
for our expe riment as we n eed two GSD tea ms where the
cultural, linguistic and tem poral difference is involved. E ach
group consists of three Pa kistani and three Chinese students.
Both groups had to complete the similar project of evaluating
and redesigning a website and the duration of the project was
three months for each group. All the students who participated
in this experiment were the student of BS computer science, so
the age and experience of the participants was almost same.

Existing wiki software was used as KMR after making few
modifications into it. The infor mation that students consider to
be important with respect to their remote colleagues were
added into this KMR so that th ey may know about their
colleagues. This KM repository provides a space to collaborate
and share projects, documents, messages, schedules, tasks and
contacts within the group and many other features that help in
project management and coordination.

However the access of this KMR was given to only one
group of students and not the other so that the im pact of KMR
in building trust may be studied. We use the nam e Group A
(just for ease of use) for the team who was using KMR and
Group B for the team who was not using KMR.

In order to m easure trust four indicator/measures of tr ust
were used ba sed on prior deconstruction of team trust in
literature [27]. We describe each measure briefly in turn

A. Propensity to trust
It is the willin gness of one or more person in a group to

trust others. Propensity to trust is affected by many factors like
team culture, lifestyle, experience, education etc. it’s a general
personality attribute that leads towards the general expectations

about the credibility and trustworthiness of other person which
remains stable across many situations. [28].

B. Perceived trustworthiness
It refers to the extent to w hich an individual expect others

to behave according to their commitments. It exists when the
team members behave according to the expectations of t heir
colleagues; they are loyal and honest with their tea m members
and no body takes advantage of the other [28].

C. Cooperative behaviors
It refers to the environm ent in which team members work

with collaboration, help others in difficult situations and share
their experiences and know ledge. A team with coope rative
behavior works efficiently towards a common goal.

D. Monitoring behavior
It refers to the extent to which team members monitor and

check the actions of their tea m mates. Literature argues that
monitoring is associated w ith lack of tr ust. This behavior
decrease the efficiency and perf ormance of the team so it
should be a voided especially in GSD team s where a huge
geographical distance is involved and m onitoring affects not
only trust and perform ance of GSD teams but it also causes
budget overrun[28].

Based on the above four m easures, literature was studied
and 28 ite ms were selected that were related to these four
measures of trust. These ite ms were checked by two
independent subject matter experts. These experts evaluated
these items according to the criteria of understandability, length
and redundancy. Few ite ms were discarded because of the
redundancy and some more items were added, so finally after
evaluation 21 items were selected. From these 21 ite ms; 6
items were related to the propensity to trust, 6 ite ms were
related to the perceived trustworthiness, 6 items were rela ted to
the cooperative beha vior and 3 items were related to the
monitoring behaviors. From these four measures, the first three
measures propensity to trust, perceived trustworthiness and
cooperative behaviorwhich have a positive impact on trust
while the monitoring behaviorwhich have a negative impact on
trust. Using these 21 item s a questionna ire was prepa red.
Responses on the trust scales were given on a 5-point scaling
ranging from 5= “strongly agree” to 1= “strongly disagree”.

As trust takes time in building and as it changes with the
passage of tim e, so during the three months duration of the
project, Group A and Group B team members were asked to
fill in the questionnaire three ti mes each after the gap of one
month based on their m utual understanding about their tea m
mates. However, the strict c onfidentiality of their responses
was ensured before giving them a questionnaire. The six
Chinese students (three from Group A and three fr om Group
B) filled the questionnaire i n the presence offirst researc her
while the students in Pakistani University were asked to emai l
the questionnaire to the researcher.

IV. DATA COLLECTION AND RESULTS

After the completion of first questionnaire filling exercise,
12 questionnaires were received, six from each group A and B
respectively. An a ggregated questionnaire was prepared in
which against each question the total was calculated (where

133

total= number of participants who are strongly agree or
agree with the state ment of the questionnaire). Then these
scores were again aggregated on the basis of four m easures of
trust and the results obtained are shown in Table1.
TABLE 1: AGGREGATE LEVEL OF TRUST FOR BOTH GROUP A AND
GROUP B AT FIRST STAGE (WHRE PK :PAKSTANI STUDENTS AND

CN: CHINESE STUDENTS)

The same procedure was applied for com bining the results
of exercise two and three. T he overall results in allthree stages
of this experiment were obtained and are shown in Table2

Table2 shows that the values of the first three measures namely
propensity to trust, perceived trustworthiness and cooperative
behavior are com paratively high in G roup A as co mpared to
Group B while the monitoring behavior in Group A is low as
compared to Group B. This indicates tha t the level of trust
among team members ofGroup A is c omparatively high as
compared to Group B.

Figure1-4 shows us the val ues of four measures of trus t
during three stages of the projects A a nd B. In these figures
three questionnaire filling exercises are s hown along X-axis
from one to three and the value of trust indicator is shown
along Y-axis. As the total students in eac h group were six
therefore maximum value of Y can be 30 in case if all the
students are strongly agree about some questionnaire statement
and minimum value can be 5 if all the students are disagree on
a point. T herefore the scale range is from 5 to 30 for each
measure of trust.

TABLE 2: OVERALL RESULTS OBTAINED FROM BOTH GROUP A
AND GROUP B (WHERE SA: STRONGLY AGREE, A: AGREE, PK:
PAKISTANI STUDENTS, CN: CHINESE STUDENT & GRP: GROUP)

Measurement
Factors

Propensity
to trust

Perceived
trustwort
hiness

Cooperat
ive
behavior

Monitorin
g
behavior

Agreemen
t %age of
Trust

(SA+A)

Stage 1

GRP

A

PK 13 13 14 5
CN 14 15 15 5

GRP

B

PK 11 12 10 7
CN 12 12 12 6

Agreemen
t %age of
Trust

(SA+A)

Stage 2

GRP

A

PK 14 15 16 5
CN 15 16 15 4

GRP

B

PK 12 13 12 6
CN 12 14 13 6

Agreemen
t %age of
Trust

(SA+A)

Stage 3

GRP

A

PK 16 16 17 4
CN 17 16 16 3

GRP

B

PK 13 14 14 6
CN 14 12 13 5

Results displayed in Fig.1-4 reflect the positive impact of
KMR in building trust among GSD team members. We further
validated our r esults by conduc ting an open ende d discussion
with both Groups after the end of the project. Team members
from Group A were asked that how m uch this KMR was
helpful for them. Reply of alm ost 67% students waspositive. A
student from Group A said that “ KMR provide us a platform
through which we can discuss everything and even when we
use this KMR it doesn’t seem to us that a huge geographical
distance is involved between our team mates”. Moreover, when
these team mates were asked about the role of KMR in building
trust the answer of almost every participant was positive.

Measurement
Factors

Agreement percentage (strongly agree+ agree)
Group A Group B

PK CN PK CN
Propensity to trust 13 14 11 12

Perceived
trustworthiness

13 15 12 12

Cooperative behavior 14 15 10 12

Monitoring behavior 5 5 7 6

Figure 1: Results o f Propensity to trust for Group A an d Group B du ring
three stages of the projects

Figure 2: Results of Perceived trustworthiness for Group A and
Group B during three stages of the project

Figure 3: Results of Cooperative be havior for Group A and Group B
during three stages of the project

Figure 4: Results of Monitoring Behavior for Group A and Group B
during three stages of the project

10

20

30

40

1 2 3

Group A

Group B
10

20

30

40

1 2 3

Group A

Group B

10

30

1 2 3

Group A

Group B
0

10

20

1 2 3

Group A

Group B

134

One of the st udents from Group B told us that although
there exist many communication software but we cannot
monitor and control our projects through them, there must be
some common software which provides us a platform for every
kind of form al and informal communication. Further he said
that change in management and project tracking in a globally
distributed team environment is especially difficult to m anage
without the presence of such a platform.

V. CONCLUSION AND FUTURE WORK

To conclude, trust is one of the im portant factors in the
success of GSD projects. The 21- item measures indicated in
this study provides an insigh t into the organization about the
level of trust existing a mong the teams. Moreover, the m ajor
result of the study shows us that there must be knowle dge
management and a shar ing mechanism like the KMR in this
experiment. This KM R helps the team s in building and
maintaining trust by providing them with a platform for
communication and discussion. The KMR if implemented and
used properly helps the team m embers in resolving conflicts,
propagating the changes among teams and m aintaining
informal communication. As a results of all these, trusting
working relationship among team members increase and the
projects are completed successfully.

It was a controlled experim ent performed with two Groups
of students. In the future, there is a need to implement this
KMR in a real GSD or ganization to study the impact of this
KMR on trust by using the same 21-items measures of trust.

ACKNOWLEDGEMENETS

We would like to thank all the students who participated in
our experiment and made this experiment successful.

REFERENCES

[1] Herbsleb. James. Global software engineering: the future of soci o-
technical coordination. Future of Software Engineering. 2007, pp.23-25.

[2] Eoin. Conchuir, Helena. Holm strom, Par. Agerfalk and Brian.
Fitzgerland. Exploring the Assu med Benefits of Global Software
Development. ICGSE’06. 2006, pp. 159-168.

[3] Damian. D,and Moitra. D. Global Software Development: How Far
Have We Come? IEEE software.2006, 23(5), pp. 17-19.

[4] Ani, Al. Ban, Wilensky. H, Redmiles. D,Simmons. E. An Understanding
of the Role of Trust in Knowledge Seeking and Accept ance Practices in
Distributed Development Teams. . ICGSE’11. 2011, pp. 25-34.

[5] Sami. Haq. Mushtaq. Raza, As raf. Zia and Ah med. Khan. Issues in
Global Software Development: A Critical Review,J. Software
Engineering & Applications, 2011, 4, pp. 590-595.

[6] Paivi. Parviainen, Maarit. Tihinen. Knowledge-related challenges and
solutions in GSD. Expert Systems a Journal of Knowledge Engineering.
2011.

[7] Emam, hossain, Paul. Bannerm an and D. Jaffery. Scrum Practices in
Global Software Development: A Research Framework, D. C aivano et
al. (Eds.): PROFES 2011, LNCS 6759, pp. 88–102.

[8] Ángel. García-Crespo, Ricardo. Colomo-Palacios, Pedro. Soto-Acosta
and Marcos. Ruano-Mayoral . Qu alitative Study of Hard Decision
Making in Managing Global Software Development Teams, Information
Systems Management.2010, 27:3, pp. 247-252.

[9] Gabriela. Aranda, Aurora. Vizc aíno, José. Luís-Hernández, Ra món.
Palacio and Alberto. Morán. Trusty: A Tool to Improve Communication
and Collaboration in DSD. A.S. Vivacqua, C. Gutwin, and M.R.S.
Borges (Eds.): CRIWG 2011, LNCS 6969, pp. 224–231.

[10] Casey. Valentine. Developing Trust in Virtual Software Development
Teams. Journal of Theoretical and applied commerce Research.2010,
5(2), pp.41-58.

[11] John. Noll, S aarah. Beecham and Ita. Richardson. Global Software
Development and Collaboration: B arriers and Solutions. 201 0. ACM
Inroads, pp.66-78.

[12] Samireh. Jalali, Cigdem. Gencel and Darja. Sm ite. Trust Dynamics in
Global Software Engineering. ESEM’10, September 2010, pp. 16-17
Bolzano-Bozen, Italy.

[13] Nils. Brede and Darja. S mite. Understanding a Lack o f Trust in Global
Software Teams: A Multiple -case Study. 2008. Software Process
Improvement and Practice. 2008, 13(3), pp. 217–231

[14] Yuen, Hui. Yum. Overview of the knowledge management in the public
sector. 7th Global Forum on Reinventing Government: Building Trust in
Government Workshop on managing Knowledge to Build Trust in
Government.2008.

[15] Fares. Anwar, Rozilawati. Razali and Ahmad. Kamsuriah. Achieving
Effective Communication during requirements Elicitation - A
Conceptual Framework. ICSECS .2011. Part III, CCIS 181, pp. 600–610.

[16] Julia. Kotlarsky, Paul c. van Fenemaand Lesle P. willcocks. Developing
a knowledge-based perspective on coordination: The case of global
software projects. Information & Management 45.2008, pp. 96–108.

[17] Muneera. Bano&Naveed. Ikram. KM-SORE: Knowledge Managem ent
for Service Oriented Requirem ents Engineering. Copyright (c) IARIA,
2011.

[18] V.Clerc. Towards Architectural Knowledge Management Practices for
Global Software Development. Third ICSE Workshop on Sharing and
Reusing architectural Knowledge (SHARK’08), Leipzig, Germany.2008,
pp. 23-28.

[19] Daniela. Damian and Didar. Zo wghi. Requirements Engineering
challenges in multi-site software development organizations.
Requirements Engineering Journal, 8.2003, pp. 149-160.

[20] Christof. Ebert and Philip. DeNeve. Surviving Global Software
Development. IEEE Software, 18(2) .2001, pp. 62-69.

[21] Clerc. Viktor, Lago. Patricia and Vliet. Hans. The Usefulness of
Architectural Knowledge Management Pra ctices in G SD. Fourth IEEE
International Conference on Global Software Engineering.2009, pp. 73-
82.

[22] Nguyen. Tracey, Smyth. Robert & Gable. Guy. Knowledge
Management Issues and Practices: A Case Study of a Professional
services Firm. Fifteenth Australian conference on inform ation system.
2004.

[23] Nour. Ali, Sarah. Beechmanand Mistrik. Ivan. Architectural Knowledge
Management in Global Software Development: A Review. International
Conference on Global Software Engineering .2010, pp.347-352.

[24] Sarah. Beechman, John. Noll, Ita. Richardson and Nour. Ali. C rafting a
Global Teaming Model for Architectural Knowledge. International
Conference on Global Software Engineering .2010, pp.55-63.

[25] Darja. Smite, Nils Brede. Moe and Richard Torkard. Pitfalls in Remote
Team Coordination: Lessons Learned fro m a Case Stu dy. Lecture Note
in computer Science,2008, volume 5089/2008, pp. 345–359.

[26] Wei. Xiao and Qing-qi. Wei. A Study on Virtual Team Trust Mechanism
and Its Construction Strategies. International Conference on Information
Management, Innovation Management and Industrial Engineering.2008,
pp. 315-319.

[27] Ana Cristina. Co sta and Neil. An derson. Measuring trust in team s:
Development and validation of a multifaceted measure of formative and
reflective indicators of tea m trust. European Journal of W ork and
Organizational Psychology. 20(1). 2001, pp. 119-154.

[28] Roger C. Mayer and Ja mes H. Davis and David. Schoor man. An
integrative model of o rganizational trust. Academy of Management
Review, 20(3). 1995, pp. 709–734.

135

Modeling and Analysis of Switched Fuzzy Systems

Zuohua Ding, Jiaying Ma
Lab of Scientific Computing and Software Engineering

Zhejiang Sci-Tech University
Hangzhou, Zhejiang 310018, P.R. China

Abstract

Switched fuzzy systems can be used to describe the hy-
brid systems with fuzziness. However, the languages to de-
scribe the switching logic and the fuzzy subsystems are in
general different, and this difference makes the system anal-
ysis hard. In this paper we use Differential Petri Net (DPN)
as a unified model to represent both the discrete logic and
fuzzy dynamic processes. We then apply model checking
technique to DPN to check the correctness of the require-
ments.

1 Introduction

Switched systems have been widely used in a variety

of industrial processes. If a system is too complex or ill-

defined, i.e. the system contains fuzzyness, switched fuzzy

system has been adopted to model such systems[1].

Compared with conventional switched system model-

ing, switched fuzzy system modeling is essentially a multi-

model approach in which simple sub-models (typically lin-

ear models) are fuzzily combined to describe the global be-

havior of a nonlinear system. A typical sub-model is Takagi

and Sugeno (T-S) fuzzy model, which consists of a set of

If-Then rules and a set of ordinary differential equations[5].

This model raises some issues in the software engineer-

ing. For example, in the T-S fuzzy model, the languages to

describe the switching logic and the fuzzy subsystems are in

general different, and this difference makes the system anal-

ysis and implementation hard. So far, the efforts to address

this issue are only for the deterministic switched systems.

It is our attempt to solve this issue for switched fuzzy

systems. We use Differential Petri net defined by Demon-

godin and Koussoulas[2] as a unified behavior model to rep-

resent switched fuzzy systems. We then use model check-

ing tool HyTech to check the DPN, and use an enhanced

version of the tool Visual Object Net++ to simulate DPN.

We employ the the Differential-Drive Two-Wheeled Mobile

Robots as the running example to illustrate our method.

2 Switched Fuzzy Systems

A Switched Fuzzy System (SFS) consists of a family

of T-S fuzzy models and a set of rules that orchestrates

the switching among them. Assume that the Switched

Fuzzy System has m subsystems, each is described by a

Takagi-Sugeno fuzzy model[5], and σ : R+ → M =
{1, 2, . . . ,m} is a piecewise constant function that repre-

sents the switching signal.

2.1 Takagi-Sugeno Fuzzy Model

Let Nσ(t) be the number of inference rules. Then the T-S

fuzzy model is described as follows:

[Local Plant Rule]

Rl
σ(t) : if ξ1 is M l

σ(t)1 ∧ · · · ∧ ξp is M l
σ(t)p,

thenx′(t) = Aσ(t)lx(t) +Bσ(t)luσ(t)(t),

l = 1, 2, . . . , Nσ(t).

In this model, Rl
σ(t) denotes the lth inference

rule, uσ(t) is the input variable, vector x(t) =
[x1(t), x2(t), . . . , xn(t)]

T ∈ Rn represents the state

variables, vector ξ = [ξ1, ξ2, . . . , ξp] represents the vector

of rule antecedents (premises) variables, and matrices

Aσ(t)l ∈ Rn×n and Bσ(t)l ∈ Rn×p.

Hence, the ith subsystem can be represented as follows:

subsystem i :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1
i : if ξ1 is M1

i1 ∧ · · · ∧ ξp is M1
ip

then x′(t) = Ai1x(t) +Bi1ui(t)
R2

i : if ξ1 is M2
i1 ∧ · · · ∧ ξp is M2

ip

then x′(t) = Ai2x(t) +Bi2ui(t)
...

RNi
i : if ξ1 is MNi

i1 ∧ · · · ∧ ξp is MNi
ip

then x′(t) = AiNix(t) +BiNiui(t)

By using the center of gravity method for defuzzification,

the global model of the ith fuzzy subsystem can be de-

136

scribed by the equation:

x′(t) =
Ni∑
l=1

ηil(ξ(t))(Ailx(t) +Bilui(t)),

where

ηil(t) =

∏n
ρ=1 μM l

ρ(t)∑Ni

l=1

∏n
ρ=1 μM l

ρ(t)

, 0 ≤ ηil ≤ 1,

Ni∑
l=1

ηil(t) = 1,

and μM l
ρ(t)

denotes the membership function of the fuzzy

state variable xρ that belongs to the fuzzy set M l
ρ.

2.2 Switching Logic For σ(t)

Let X be the universe of discourse. Assume that X
is partitioned to m parts, i.e. there are Xi ∈ R1×n, i =
1, 2, . . . ,m such that X = X1 ∪X2 ∪ · · · ∪Xm. We also

assume that Xi is associated with subsystem i. The switch-

ing is based on the Region Rule, which is defined as the

following:

[Region Rule]

If ξ1 is Ωi1 and ξ2 is Ωi2 and . . . and ξp is Ωip

Then [Local Plant Rule]

where Ωij are crisp sets, Xi = Ωi1 × Ωi2 × · · · × Ωip, and

Ωij(ξj) =

{
1, ξj ∈ Ωij ;
0, otherwise.

Thus at time t, if the state variable x has value x(t) =
(x1(t), x2(t), . . . , xp(t), . . . , xn(t)) such that x1(t) ∈ Ωi1

and x2(t) ∈ Ωi2 and . . . and xp(t) ∈ Ωip, then σ(t) = i.
If we regard that x(∈ Xi) as a state, then our switching

is actually a Finite State Machine (FSM) based switching.

2.3 A Running Example

We employ the the differential-drive two-wheeled mo-

bile robots (TWMR) as the example to illustrate our

method. Based on the design control, TWMR can move

on a reference trajectory. Figure 1 pictures the movement.

In the figure, variable y represents hight of the rear axle and

the variable θ specifies the angle of the robot orientation in

a reference frame. Both are the functions of time t.
In order to simply and effectively control the nonlinear

dynamics, the authors in paper[4] introduced the switched

T-S fuzzy model. Based on the values d of the premise vari-

able, the premise variable space are partitioned into three

regions. In each region, the local nonlinear dynamic is rep-

resented by a T-S fuzzy model. The switched T-S fuzzy

model is described as follows:

[Region Rule 1]: If d < θ(t) ≤ 3.131, then

y

O
t

θ

y0

Figure 1. The model for TWMR.

Local Plant Rule 1 : If θ(t) is h11(θ(t)) ,

thenx′(t) = A11x(t) +B11u(t);

Local Plant Rule 2 : If θ(t) is h12(θ(t)) ,

thenx′(t) = A12x(t) +B12u(t).

[Region Rule 2]: If −d ≤ θ(t) ≤ d, then

Local Plant Rule 1 : If θ(t) is h21(θ(t)) ,

thenx′(t) = A21x(t) +B21u(t);

Local Plant Rule 2 : If θ(t) is h22(θ(t)) ,

thenx′(t) = A22x(t) +B22u(t).

[Region Rule 3]: If −3.131 ≤ θ(t) < −d, then

Local Plant Rule 1 : If θ(t) is h31(θ(t)) ,

thenx′(t) = A31x(t) +B31u(t);

Local Plant Rule 2 : If θ(t) is h32(θ(t)) ,

thenx′(t) = A32x(t) +B32u(t).

3 Mapping From SFS To Petri net

Without specifying, the basic symbols used for the Petri

net construction come from Reisig[3]. We will map SFS to

Differential Petri Net (DPN) defined by Demongodin and

Koussoulas[2]. Through the introduction of the differen-

tial place, the differential transition, and suitable evolution

rules, DPN is possible to model concurrently discrete-event

processes and continuous-time dynamic processes, repre-

sented by systems of linear ordinary differential equations.

Full development of the DPN model can be found in [2].

3.1 Mapping Rules For Linear Systems

Without loss of generality, we assume that the linear sys-

tems are x′(t) = Ax(t) +Bu(t), where

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
,

and u(t) is the input to the system.

The Petri net design of the system is shown in Figure 2.

There are two parts in the net: The first part is for the con-

137

tinuous part(left) and the second part is the input part(right).

a11 a12

a21 a22

(vvar

1
|h) (vvar

2
|h)

dp1 dp2

p0

(vin

1
|h) (vin

2
|h)

p01
p02

tvar

1 tvar

2
tin
1

tin
2

t0 (t01|h)

Figure 2. The Petri net of x′(t) = Ax(t)+Bu(t).

In the figure, places dp1 and dp2 are two differential

places that represent the state variables x1 and x2, respec-

tively. Transitions tvar1 and tvar2 are two differential transi-

tions, both are associated with a delay h through a discrete

transition that connected to it. The firing speeds of differen-

tial transitions tvar1 and tvar2 depend on the values of x1 and

x2 and can be represented as the follows:

vvar1 (t) = a11x1(t) + a12x2(t),

v2(t)
var = a21x1(t) + a22x2(t).

3.2 Mapping Rules For The Switching Logic

Without activity coordination, a Petri net is the same as a

finite state machine. Thus the finite state machine can be re-

garded as a special case of Petri net. Accordingly, the map-

ping rules from finite state machine to Petri net are straight-

forward, and the mapping rules are listed in the Figure 3.

In the figure, the second column displays the structures of

the FSM and the third column display the structures of the

corresponding Petri net structures.

3.3 Petri Net Representation of TWMR

Based on the above rules, we build the DPN for TWMR.

The net is built by an enhanced version of the tool Visual

Object Net++1, which is shown in Figure 4. In the figure,

the state variables y and θ are represented by places dp1 and

1http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

RULES FSM Structures Petri Nets

Rule 1

Rule 2

Rule 3

Rule 4

Figure 3. From FSM to Petri nets.

dp2 respectively. Three regions Region 1, Region 2 and Re-

gion 3 are represented by places p1, p2 and p3, respectively.

Transition t1 has condition d < θ(t) ≤ 3.131, transition t2
has condition −d ≤ θ(t) ≤ d, and transition t3 has condi-

tion −3.131 ≤ θ(t) < −d.

Figure 4. DPN for two-wheeled mobile robots.

For the simulation, we choose three different initial val-

ues for variable x, x(0) = (y0, θ0), and they are (y0, θ0) =
(1, π

52) which is located in Region 2, (y0, θ0) = (1, π
2)

which is located in Region 1, (y0, θ0) = (1,−3) which

is located in Region 3. The simulation shows that in each

case, we have that limt→∞ y(t) = 0 and limt→∞ θ(t) = 0,

which indicate that the control purpose is reached.

138

4 Model Checking DPN

We use HyTech2 to check the DPN model. HyTech is a

symbolic model checker for linear hybrid automata.

4.1 From DPN To Hybrid Automata

In order to perform model checking with HyTech, we

need to transform the Differential Petri net to a Hybrid Au-

tomaton (HA). The transformation rules are omitted here.

After transformation, the Hybrid Automaton of DPN of

TWMR, which is nonlinear, is shown in Figure 5.

d < θ < 3.131
y

′

= sinθ(0.325y + 0.238θ)

−d <= θ <= d −3.131 < θ < −dθ > d θ < −d

y = y0

θ = d θ = −dθ
′

= −0.1747y + 0.2383θ

y
′

= 0.5θ

θ
′

= 0.1506y + 0.4767θ

y
′

= −sinθ(0.325y + 0.238θ)

θ
′

= −0.1747y + 0.2383θ

θ = θ0

Figure 5. Nonlinear hybrid automaton of
TWMR.

4.2 Linearizing Nonlinear Hybrid Automata

We need to linearize nonlinear hybrid automata to lin-

ear hybrid automata (LHA). In this paper, we adopt lin-
ear phase portrait approximation replacing nonlinear pred-

icates by more relaxed linear predicates. For the automaton

of TWMR, we split each space of state variable into smaller

intervals in which the time derivatives are bounded, and the

resulting LHA model is shown in Figure 6.

(plus+, far)

d < θ < 3.131

z
′

= 1 ∧ z
′

1
= 1

(middle, near)

−d <= θ <= d

z
′

= 1 ∧ z
′

6
= 1

(minus+, near)

−3.131 < θ < −d

z
′

= 1 ∧ z
′

5
= 1

y = y0 ∧ θ = θ0 ∧ z = 0 ∧ zi = 0

∧θ
′

∈ [−0.045, 0.242]
∧y

′

∈ [0.664, 1.137]
∧θ

′

∈ [−0.030, 0.011]

∧y
′

∈ [−0.031, 0.031]

∧θ
′

∈ [−1.238,−0.027]
∧y

′

∈ [−0.233, 1.39]

θ > d θ = −d

(plus−, far)

d < θ < 3.131

z
′

= 1 ∧ z
′

2
= 1

(middle, far)

−d <= θ <= d

z
′

= 1 ∧ z
′

3
= 1

(minus−, near)

−3.131 < θ < −d

z
′

= 1 ∧ z
′

4
= 1

θ = d

θ ≤ −1.163(minθ)

∧θ
′

∈ [−0.858,−0.0028]
∧y

′

∈ [0.05, 2.66]

∧θ
′

∈ [1.03, 1.09]

∧y
′

∈ [−0.031, 0.031]

∧θ
′

∈ [1.508,−0.961]
∧y

′

∈ [0.06, 1.39]

θ ≥ 1.75(maxθ)

θ = −d

Figure 6. Linear hybrid automaton of TWMR.

4.3 Requirement Specification

Reachable requirement can be specified by state asser-

tion reach. If a system fails to satisfy a correctness require-

2http://embedded.eecs.berkeley.edu/research/hytech/

ment, then HyTech generates an error trajectory, which il-

lustrates a time-stamped sequence of events that leads to a

violation of the requirement.

One of the specification requirements of TWMR is spec-

ified as: TWMR can arrive at the position y = 0, θ = 0.

The output of the execution of Hytech is displayed in the

follows:

Number of iterations required for reachability: 5
Location: s6
100y+7>=0 & 2500x<=157 & 2500x+157>=0 & 100y<=7

Location: s5
100y>=7 & 1000x+1163>=0 & 2500x+157<=0 & 2y<=11

Location: s4
20y<=121 & 1000x+1163>=0 & 2500x+157<=0 & 2y>=11

Location: s3
2500x<=157 & 2500x+157>=0 & 20y=121

Location: s2
y = 3 & 2x = 3

can reach

From the output, we see that the trajectory of the TWMR is

s2 → s3 → s4 → s5 → s6, and the last line is ’can reach’.

Thus the required specification is satisfied.

5 Conclusion

In this paper Differential Petri Net has been used to

model switched fuzzy systems. This model combines fuzzy

dynamic and discrete logic events in a single net. Thus we

can use tool Visual Object Net++ to simulate the switched

fuzzy system, and use tool HyTech to model check the cor-

rectness of the system requirements. In the future, we will

consider to represent a hybrid system with a unified model

and apply model checking technique to the unified model.

References

[1] J. B. Coulaud, G. Campion, G. Bastin, and M. De Wan,

Stability Analysis of a Vision-Based Control Design for

an Autonomous Mobile Robot, IEEE Transactions on
Robotics, vol.22, no.5, pp.1062-1069, 2006.

[2] I. Demongodin and N. T. Koussoulas, Differential Petri

nets: Representing continuous systems in a discrete-

event world, IEEE Transactions on Automatic Control,
vol.43, no.4, pp.573-579, 1998.

[3] W. Reisig, Petri Nets, Springer-Verlag, 1985.

[4] K. Tanaka, M. Iwasaki, H. O. Wang, Stable switching

fuzzy control and its aplication to a hovercrsft type ve-

hicle, Proceedings of 9th International Conference on
Fuzzy Systems, vol.2, pp.804-809, 2000.

[5] T. Takagi, M. Sugeno, Fuzzy identification of systems

and its applycations to modeling and control, IEEE
Transactions on System Man and Cybernetics, vol.15,

no.1, pp.116-132, 1985.

139

An Empirical Study on Recommendation Methods for Vertical B2C E-commerce

Chengfeng Hui, Jia Liu∗, Zhenyu Chen, Xingzhong Du, Weiyun Ma
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Software Insititute, Nanjing University, Nanjing, China
∗liujia@software.nju.edu.cn

Abstract

Recommender systems have been already performing
well in large comprehensive E-commerce sites. Another
trend emerging in E-commerce area is vertical B2C sites.
The vertical B2C sites sell only one or a few of categories
of goods to end users, and most of the users are new users.
There may be not sufficient history data to generate high-
quality recommendation because the traffic of these sites are
low. To analyze the feasibility and usability of popular rec-
ommendation methods (e.g. collaborative filtering, content-
based, etc.) in vertical B2C sites, we have been working in
collaboration with an E-commerce site to gather real data
from an actually running vertical B2C site. In this paper,
we evaluate the performance of different recommendation
methods over half a year period from December 2010 to
June 2011. We analyze both the performance and cost of
these recommendation methods, and experimental results
show that we should apply suitable methods based on the
available data.

Keywords: Vertical E-commerce, Collaborative Fil-
tering, Content-based Recommendation, Recommender
System

1. Introduction

E-commerce [6] has been widely used to perform busi-

ness transactions. One fast growing subcategory of E-

commerce is vertical B2C, and it is becoming more and

more attractive to end users. Unlike mass online mer-

chants (e.g. Amazon, Walmart), vertical B2C sites focus

on one single or a small number of categories of prod-

ucts (e.g. Newegg sells computers/electronics, Netflix sells

Books/Music/Movies), they can provide more various and

comprehensive choices in a particular field.

Vertical B2C E-commerce sites are becoming very pop-

ular, but there is little, if any publication directly evaluating

the feasibility of popular recommendation algorithms on

vertical B2C sites, so we want to analyze the performance

of different recommendation methods in such systems. For-

tunately we have the opportunity to collaborate with an E-

commerce site to gather real data from currently running

site and conduct our case study.Vertical B2C E-commerce

sites do have some features that will limit the application

of popular recommendation methods. For content-based

method, the most obvious limitation is items must be ca-

pable of being described as features, if there is no or limited

feature information about items, it is hard for content-based

techniques to get a good performance. For collaborative

filtering, one precondition is there are sufficient ratings to

items given by users or something equivalent. But unlike

data sets (e.g. Movielens, Eachmovie, etc.) which we usu-

ally evaluate collaborative filtering on, it is very likely that

there are no rating information on vertical B2C sites. An-

other problem is most users of vertical B2C E-commerce

sites are new users, which will lead to the lack of sufficient

history behavior data of one user to generate his or her pro-

file.

2. Recommender System

The origin of recommender systems can be traced back

to approximation theory, information retrieval and fore-

casting theories [1]. The appearance of first papers about

collaborative filtering in the mid-1990s [3] make recom-

mender systems become an popular research direction.

And recent explosively development of Internet further in-

creases the interest in this domain both in the industry and

academia. The most famous recommender system applied

in industry is probably the book recommender system of

Amazon (www.amazon.com). This system records users’

purchase, explore, comment and rating data to recognize

users’ preference and then recommends products to users.

The biggest news in academia is maybe in 2009 Netflix

(www.netflix.com) which is a large DVD rental service

company announced to award 1 million dollar prize to a

team that could increase the accuracy of rating prediction by

10%.The BellKor’s Pragmatic Chaos team eventually won

the prize with their BigChaos solution [8].

140

Recommender systems are usually classified into two

categories. The first category is content-based recommen-

dations [2], and the second category is collaborative fil-

tering recommendations [7]. Content-based methods uti-

lize the content information of items to generate recom-

mendations. Content information means the intrinsic fea-

tures of items. In movie recommendation scenario, the con-

tent information of a movie is mainly its title, director, ac-

tors, genre, plot summary, keywords etc. The first step

of content-based methods is to figure out the commonal-

ities among the movies user has given high rating. Then

the system will generate the user’s preference with these

commonalities, and the recommended movies will be ap-

parently those ones similar to the user’s preference. Collab-

orative filtering methods utilize users’ rating information to

generate recommendation. According to the way of using

the rating information, collaborative filtering methods can

be classified into two categories: Memory-based CF and

Model-based CF. Memory-based CF directly makes use of

entire or part of rating information to generate recommen-

dation. Model-based CF do not directly use rating informa-

tion to generate recommendation, these methods first use

rating information to train a model, which is then used to

make recommendation.

3. Experimental Method

The E-commerce site used in this paper has been one of

the most popular online bag retailers, and most of its cus-

tomers are from North America. We collaborate with the

site for over half a year to gather real data from its site.

3.1. Data Set

The data was gathered during January 2011 to June

2011. This data set contains more than 363000 times visits

from over 63000 users.We get bag features from the site’s

database directly, these features to describe bags are color,

size, price, discount, type, brand, etc. The feature database

contains about 1300 bags. About 70 percent of the users

are new user, and they come to visit our site for the first

time and on average every user visits only about 5 product

pages.

3.2. Evaluated Algorithm

We explore four categories of recommendation methods.

The first category is content-based method [2]. And the

second category is collaborative filtering method, this cat-

egory contains two methods. One is item-to-item collabo-

rative filtering method [5], and the other is traditional user-

based collaborative filtering method [4]. The third category

is method based on simple statistical result, here we use the

simplest most popular visited N products. The last category

is about some normal business sense, we select the cheapest

and newest products to recommend to users.

Content-based: Content-based recommendation system

tries to find the products that are similar to the items which

user liked in the past. We recommend the products most

similar to current visited product. Similarity between prod-

uct a and b is calculated as follow:

similaritya,b =
|Fa ∩ Fb|
|Fa ∪ Fb| (1)

where Fa is the feature set of product a, and Fb is the

feature set of product b. |Fa ∩ Fb| denotes number of fea-

tures product a and b both have, and |Fa ∪ Fb| denotes the

entire number of features product a and b have.

Item-to-item-CF: Item-to-item collaborative filtering

method defines similarity between items by the tendency

of users often visit or purchase these items together. We

apply the method similar to the algorithm proposed in [5].

Similarity between product a and b is calculated as follow:

similaritya,b =
CV (a, b)

V (a) + V (b)
(2)

where CV(a,b) denotes times of products a and b are co-

visited, V(a) is the times of product a has been visited and

V(b) is the times of product b has been visited.

User-based-CF: User-based-CF method first figure out

similar users of the target user. And then generate rec-

ommendation result to target user according to her simi-

lar users’ historical preference. Generally, we recommend

products visited most often by target user’s similar users.

Because we have no rating information in the site, we re-

place rating by times of visit to products in user vectors.

The similarity between two user vectors can be measured

by Pearson correlation.

Most-popular: Most-popular method may be the most

widely used strategy to recommend products without per-

sonalization. We recommend most popular visited products

to users. This method does not need complex computation

and get a relatively good performance at a very low cost.

Cheapest: Cheapest method is simple, we choose the

cheapest products to recommend. One important feature of

E-commerce is online shops can reduce fees compared to

bricks-and-mortar stores so that they can provide a lower

price. The performance of cheapest method will tell us

whether low price is one incentive for users to shop online.

Newest: Just as simple as Cheapest method, we recom-

mend the newest products to users. New products will ar-

rive on shelves at online shop earlier than that in bricks-and-

mortar store, so this method will detect whether a significant

percent of consumers shop online for this reason.

141

3.3. Evaluation Method

We use top-N precision to evaluate the performance of

algorithms in recommendation task. In order to measure

precision, we first separate the original gathered data set

which is mentioned in section 3.1 into two parts. The

training set contains 80 percent of data, and the testing set

20 percent. To satisfy the different recommendation algo-

rithms mentioned above, we apply two methods to separate

the data set. For content-based, item-to-item-CF and user-

based-CF, we cannot do any recommendation when the user

comes to visit our site for the first time. So when we ran-

domly select 20 percent of the data from the original gath-

ered data set, we exclude those records of the products user

visits when they come to our site at first. For the last three

algorithms, the recommendation is based on the overall data

and not specific to each user. So we select the 20 percent

testing data completely randomly.

The computation of precision proceeds as follows. For

any single test, if the test product is one of the recommended

N products it is a hit case. Then the overall precision can be

defined by follow formula:

precision(N) =
hit − times

N ∗ |UT | (3)

where hit-times is in all test cases the times of recom-

mended N products contain test product, T is the test set

and |UT | is the number of users T contains.

Except for precision, we also evaluate the cost of each

recommendation method according to following five criteri-

ons:1. require item feature;2. require rating information;3.

require user behavior history data;4. require statistical in-

formation of the data set;5. require relatively complex cal-

culation; Each criterion adds 1 point to the total cost.

4. Result and Discussion

4.1. Experimental Result

In this section, we present the experimental results of

the recommender algorithms mentioned in above section on

our data set.We apply the evaluation method described in

section 3.3 to evaluate six recommender algorithms.

Figure 1 shows that item-to-item-CF gets the best per-

formance with precision of 19.50%, it outperforms other

methods quite a lot, and its 3 points cost is relatively high

but not the highest. The most-popular as benchmark method

gets precision of 8.86% which is the second best perfor-

mance, and its 2 points cost is relatively low compared

with other methods with similar performance. It shows that

most-popular has really high cost performance. Content-

based with a 6.85% precision and user-based-CF getting a

7.39% precision do not outperform most-popular which we

Figure 1. Top-5 precision and cost of methods

select as the benchmark. Also, these two methods have the

highest 4 points cost. This does not indicate that these two

main recommendation methods are not effective, but maybe

they have some limitations under vertical B2C E-commerce

cased. Cheapest and newest have not brought us any sur-

prise. Although their cost is really low with 1 point, but

the performances of cheapest with a 6.12% precision and

newest with a 3.23% precision are not acceptable.

4.2. Discussion

Content-based: Content-based do not outperform the

benchmark in our experiment, and we think two main rea-

sons are the low quality of product feature information and

lack of item ratings to detect users’ preference. The low

quality feature information of bags mainly comes from two

reasons, one is some suppliers do not give all feature in-

formation and the other is different suppliers use different

words as features. To preprocess the feature information

from different suppliers, we need to fill in some missing

features and unify different words which express the same

meaning. In our experiments, we assume all visited items

are of the same interest to user. But if we know the degree

of users’ interest in each item, we can weight most preferred

items’ features more.

Item-to-item-CF: Item-to-item-CF gets the best perfor-

mance, this is an algorithm successfully applied in Ama-

zon’s recommender system. In this algorithm, the main

cost is that we need to count all item pairs’ co-visited or

co-purchased times. Although the average number of items

visited by one single user is only about 5, we have suffi-

cient visiting history of different users to one single item,

and it is exactly what this algorithm needs to figure out sim-

ilar items from the item perspective. Also this method do

not need item feature information, it is one advantage to

142

Figure 2. Top-5 precision of different time pe-
riod

Content-based method.

User-based-CF: user-based-CF performs much worse

than item-to-item-CF mainly because the key point of this

algorithm is accurately computation of the user similarity.

As mentioned in Data Set section, on average every user

visits only 5 products in the site, so it is severely lack of

co-visited products of users to compute user similarity. An-

other factor of user-based-CF’s bad performance is the same

as content-based method, we have no ratings to know users’

preference to items. To get rating information needs users’

extra effort. Because the number of user is much large

than that of item, computing user similarity costs more than

computing item similarity, that is why User-based-CF costs

more than Item-to-item-CF.

Most-popular: This simple benchmark does a good job

in our experiment because of its high cost performance.

This method needs not much information such as item fea-

ture information, user rating and calculation cost is also low.

It only needs the statical information of users’ visiting or

purchasing information.

Cheapest&Newest: These two methods derived from

common business sense do not surprise us, but we still rec-

ommend to have a try on these simplest methods because

sometimes simple does not mean ineffective. To make the

recommendation process complex and obscure is not the

objective of recommendation.

What we also want to discuss is the time value of the

data. We choose item-to-item-CF and most popular which

get relatively better performance to test how time factor af-

fect results. Figure 2 shows the result of these two methods

in different time period.

We can figure out data from different time period will

affect result a lot, and also the effect to different methods

is different. Most-popular perform better in a short period

such as one week and gradually deteriorate as statistical

period goes long, this may indicate that users’ preference

varies fast, the most popular products this week will be dif-

ferent from those of next week. Item-to-item-CF performs

better when time goes by because it really needs some time

to collect users’ visiting or purchasing data for computing

item similarity.

5. Acknowledgment

The work described in this article was partially sup-

ported by the Humanities and Social Sciences Founda-

tion of Ministry of Education of China (10YJC870020,

10YJC630283), the National Natural Science Foundation

of China(11171148, 61003024). The authors would like to

thank the industrial partner for sharing data.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next gen-

eration of recommender systems: A survey of the state-

of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng., 17(6):734–749, 2005.

[2] M. Balabanovic and Y. Shoham. Fab: Content-

based, collaborative recommendation. Commun. ACM,

40(3):66–72, November 1997.

[3] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Rec-

ommending and evaluating choices in a virtual commu-

nity of use. CHI ’95, pages 194–201, New York, NY,

USA, 1995.

[4] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,

and L. R. G. J. Riedl. Grouplens: Applying collabora-

tive filtering to usenet news. Commun. ACM, 40(3):77–

87, 1997.

[5] G. Linden, B. Smith, and J. York. Amazon.com recom-

mendations: Item-to-item collaborative filtering. IEEE
INTERNET COMPUTING, 7(1):76–80, 2003.

[6] E. Ngai, L. Xiu, and D. Chau. Application of data

mining techniques in customer relationship manage-

ment: A literature review and classification. Expert
Syst. Appl., 36(2):2592–2602, 2009.

[7] X. Su and T. M. Khoshgoftaar. A survey of collabora-

tive filtering techniques. Adv. in Artif. Intell., January

2009.

[8] A. Toscher and M. Jahrer. The bigchaos solution to the

netflix grand prize. 2001.

143

•

•

•

•

•

•

•

•

144

•

•

•

•

•

•

•

•

•

•

•

•

•

145

146

147

148

Enforcing Contracts for Aspect-oriented programs
with Annotations, Pointcuts and Advice

Henrique Rebêlo Ricardo Lima Alexandre Mota César Oliveira Márcio Ribeiro

Federal University of Pernambuco, PE, Brazil
{hemr, rmf , acm, calo, mmr3}@cin.ufpe.br

Abstract

Over the last years, several proposals have advocated
that a notion of interface between the base code and as-
pect code is necessary for reasoning about aspect-oriented
programming (AOP), and for overcoming pointcut fragility.
However, existing work that are AOP based, have not shown
how one can specify these interfaces to facilitate modu-
lar reasoning and specify control effects, such when ad-
vice does not proceed. The main contribution of this work
is a new form of interface for AOP that we call cross-
cut programming interface with design rules, or XPIDR.
XPIDRs extend the notion of crosscut programming inter-
faces (XPIs) with expressive design rules that allow modu-
lar understanding and enforcement of control flow effects.
We also show that since our approach with XPIDRs do not
require any new AOP construct, they can be adopted in a
straightforward manner by the AOP community.

1 Introduction

Aspect-oriented programming (AOP) [5] is a well-
known technique that explicitly supports the modularization
of crosscutting concerns. With the emergence of AOP, in
the literature, we have cookbooks that guide the “aspecti-
zation” of specif c crosscutting concerns, such as contract
enforcement [12, 13], and so forth. Thus, through modu-
larization of such crosscutting concerns, one might increase
code modularity and reusability.

However, there is some consensus in the aspect-oriented
community that AOP constructs aimed to support cross-
cutting modularity can, in fact, compromise class modu-
larity. A typical approach employs a notion of interface
between classes and aspects. These interfaces, also ref-
ereed as design rules, have been discussed and well re-
searched [4, 9, 1]. The research question behind this work

is how effective plain AOP techniques, like those present in
languages such as AspectJ, can be used to enforce contracts
for classes and aspects.

1.1 The Problems

The recognition that the Design by Contract (DbC) [8]
technique can be implemented and better modularized us-
ing AOP is not new. There are several related works
that implement such dynamic contract checking using as-
pects [14, 11, 12]. In addition, DbC as aspects have been
also explored to AOP itself [4, 14]. However, the behavioral
contracts, such as pre- and postconditions, used to specify
advice methods in AOP are used as black box. Such black
boxes hide the internal control f ow states from the base
code and other aspects.

Figure 1 illustrates the classical f gure editor [6] that uses
contracts expressed by crosscutting interfaces (XPIs) [4].
XPIs provide a design rule between the base code (classes)
and aspects. For example, the XPI Changed specif es the
pointcut jp (lines 10−11), which is exposed (implemented)
by class Point (lines 2−8) and advised by aspect Update
(lines 9−15). The behavioral contracts of XPI are used to-
gether with the behavioral interface specif cation language
JML [7]. Thus, the behavioral contracts are written with
requires clauses (preconditions) and ensures clauses (post-
conditions). Hence the XPI Changed states that any advice,
which uses the pointcut jp (lines 10−11), must guarantee
that the exposed target object fe is non-null either before
and after advice’s execution. Moreover, we use a ensures
clause in the method setX of class Point (base code) stating
that after method’s execution the this .x must be equal to the
value passed to the parameter x.

So, to illustrate the problems of the black box approach,
we draw on the same problems discussed in the literature
[9, 1]. Consider the classical f gure editor example depicted
in Figure 1 [6], which uses XPIs [4].

149

1 c l a s s Fig {}

2 c l a s s P o i n t extends Fig{
3 i n t x ; i n t y ;
4 //@ ensures this.x == x;
5 vo id s e tX (i n t x){
6 t h i s . x = x ;
7 }

8 }

9 a s p e c t Changed{
10 p o i n t c u t j p (F ig f e) :
11 c a l l (vo id Fig + . s e t ∗ (. .))
12 && t a r g e t (f e) ;
13 //@ requires fe!= null;

14 //@ ensures fe!= null;
15 }

16 a s p e c t Update{
17 vo id around (F ig f e) :
18 Changed . j p (f e){
19 proceed (f e) ;
20 D i s p l a y . u p d a t e () ;
21 }

22 }

Figure 1. A behavioral contract for aspect interfaces using Crosscutting Interfaces (XPI) [4].

1 dr Changed {

2 c l a s s Fig {}

3 c l a s s P o i n t extends Fig {

4 vo id s e tX (i n t x){
5 set(int Point.x);
6 }

7 }

8 a s p e c t Update {

9 p o i n t c u t j p :
10 c a l l (vo id Fig + . s e t ∗ (. .))
11 && t a r g e t (f e) ;
12 vo id around (F ig f e) : j p (f e){
13 proceed (f e) ;
14 xcall(void Display.update());
15 }

16 }

Figure 2. Design rules for aspect interfaces in LSD [9].

The f rst problem [1] with the use of behavioral contracts
to AOP is that they are insuff cient to guarantee internal con-
trol f ow effects. For instance, if the call to proceed method
(line 19) is for any reason missed, the contract in lines 13−14
is not enough to alert the programmer about this mistake.
By missing the proceed method, the original call to the join
point setX is skipped. Hence, the expression this .x = x is
not evaluated. We have the same problem even if we pro-
vide behavioral contracts for the base code stating that after
method setX’s execution, we must have the f eld this .x as-
signed to x (as depicted in Figure 1 with the use of ensures
clause in line 4). Since the enforcement of these contracts
are attached to the execution of the method setX, they are
also skipped when proceed is missing.

The second problem [1] by using behavioral contracts
is that the reasoning about the control effects of an advice
to other advice seems diff cult. Consider we have another
concern such as a Logging aspect, which logs any change to
the f eld this .x by setX method calls. Assuming we have
the call to proceed method (line 19 in Figure 1) missed (as
discussed), we can have different results when composing
the system with both Update and Logging concerns. Possible
results comprehends the skipped execution of the Logging
concern or even its normal execution. The former happens
when the Update concern is executed f rst, whereas the latter
happens when the Logging is considered f rstly instead. This
scenario can be even worst with the applicability of other
concerns with their respective advising code.

The third problem with the conventional use of the be-
havioral contracts [9] is that they are not suff cient for spec-
ifying components behavior such as required method calls
and f eld access or change. For example, by using such be-
havioral contracts, we cannot guarantee that the around ad-

vice of aspect Update has a call to Display .update () method.
This mandatory call is needed to enforce the realization of
the concern Update. In the same manner, we cannot ensure
that the method setX of class Point really assign the value
of parameter x to f eld this .x. Again, this is mandatory to
ensure the realization of the Update concern.

1.2 Previous Work on These Problems

As discussed, design by contract (DbC) methodologies
for AOP have been considered [4, 14] in the literature. How-
ever, none of these works can handle the mentioned prob-
lems because they rely on black box behavioral contracts.
Black box approach deals with only the relationship be-
tween its inputs and outputs. In other words, all available in-
formation deals with what is before and after a method’s ex-
ecution [3]. No information is known about what happens-
in-between. Therefore, the contracts for AOP expressed, for
example, by XPIs [4] are not expressive enough to mitigate
the problems we described. XPIs represents contracts for
AOP using aspects constructs.

A previous work on these problems showed how to mit-
igate them by using the Language for Specifying Design
Rules (LSD) [9]. This language is another concept of an
interface used to decouple classes and aspects. It is used
for improving modularity and maximizing independent de-
velopment opportunities. LSD provides behavioral rules to
specify internal control f ow effects. Table 1 presents the
six design rules adopted by LSD. As an example of a de-
tailed design such as mandatory method calls or f eld state
change, the line 5 of the Figure 2 presents a set behavioral
rule which states that the method setX of class Point must
have a f eld state change denoted by this .x = x. In the as-

150

Table 1. Behavioral Rules in LSD [9].
Rule Description

call(method) It must have a method call within the def ned
scope.

xcall(method) It must have a method call exclusively within
the def ned scope.

get(field) It must have a field state access within the
def ned scope.

xget(field) It must have a field state access exclusively
within the def ned scope.

set(field) It must have a field state change within the
def ned scope.

xset(field) It must have a field state change exclusively
within the def ned scope.

pect code, we can observe the xcall behavioral rule in line
14. Such a rule states that the around advice of aspect Update
must have a call to Display .update () method. Also, since the
xcall rule starts with an ‘x’, the method Display .update ()
cannot be called in other place inside the scope of the de-
sign rule interface Changed.

Since a specif er using LSD can decide what to hide and
reveal, in relation to specif c internal control f ow effects,
we would say that LSD is also a grey box approach [3].
However, LSD does not support behavioral contracts such
as preconditions. This can be mitigated by incorporating
JML features to LSD design rule language. It is important
to note that LSD is not a standard AspectJ program. It is a
good proposal to be implemented in the current AspectJ lan-
guage. Therefore, currently, the authors of LSD are working
towards a release for AO developers [9].

Another work on these problems uses the notion of
translucid contracts [1]. A translucid contract describes in
a detailed way the behavior of aspects when applied to the
AO interfaces. With translucid contracts, the specif er de-
cide to hide some details, while revealing others. Translucid
contracts are based on grey box specif cation approach [3].
Translucid contracts are similar to XPIs (Figure 1), but
instead of AspectJ, translucid contract is implemented in
Ptolemy with its quantif ed typed events [10].

Finally, the AO community has a plenty of techniques to
reason about their programs [14, 4, 9, 1]. But the existing
behavioral contracts for AO interfaces, which are AspectJ-
based [4, 14], are insuff ciently to advert developers about
inconsistencies in AO program designs and implementa-
tions. Therefore, the AO community is lacking for an ap-
proach to def ne expressive contracts for AO programs us-
ing aspect constructs.

1.3 Contributions to the State-of-the-art

Then main contribution of this work is the use of stan-
dard AO constructs like those of AspectJ to enforce con-
trol f ow effects. We extend the XPI approach [4] to add
more expressive contract checking properties for AO pro-
grams. Likewise XPI [4], we employ aspects to enforce AO

contracts combined with grey box specif cation based ap-
proach [3] taken from LSD [9] and translucid contracts [1].
To provide the grey box specif cation approach, we draw on
the work of LSD. Hence, we demonstrate how to apply be-
havioral rules, such as xcall , using plain aspect constructs.

In this paper we focus on three mechanisms to enforce
contracts for AOP: (i) metadata annotations, (ii) pointcuts
and (iii) advice [6]. Our goal is understand how the com-
bination of these approaches can provide a more expressive
way to check contracts for aspects than those already re-
searched [14, 4]. We discuss some benef ts of the use of
annotations as a part of our solution to promote contracts
for AO programs.

2 XPIs with Design Rules

The key idea behind our design methodology is to intro-
duce a design phase for each crosscutting concern. Hence,
a designer establishes a crosscutting design rule interface to
decouple the base and the aspect design. Such a crosscut-
ting design rule is based on a previous work by Griswold
et al. [4], the well known crosscut programming interfaces
(XPIs). The main difference is that we extend XPIs with
the notion of behavioral rules [9]. Hence with such behav-
ioral rules, we enhance XPIs with a grey box specif cation
capability [3]. We call our enhanced XPI as crosscut pro-
gramming interface with design rule, or XPIDR.

We implement XPIDRs as syntactic constructs in As-
pectJ. A XPIDR is composed of the following elements: (i)
a name; (ii) a set of one or more abstract join points; (iii)
a scope in which the abstract join points are def ned; (iv)
during the system’s concern specif cation, the specif er can
expose or hide specif c join points, and (v) all the exposed
join points should also present their specif cations using be-
havioral rules and contracts.

All of these elements are declared by using standard As-
pectJ constructs. Such elements enable one to provide an
expressive interface to be respected by the base and cross-
cutting concern implementation of the system.

2.1 The Figure Editor with XPIDRs

Figure 3 illustrates the use of XPIDR, written in AspectJ,
for the f gure editor example (lines 1−16). By convention,
aspects that specify XPIDRs begin with an “XDR” to distin-
guish them from non-interface aspects. Hence, the XPIDR
XDRUpdate declared in Figure 3 is the same aspect illus-
trated previously in Figures 1 and 2 named Changed.

XPIDR comprehends simple pointcut declarations in
which aspects can provide the advising code without need-
ing to refer directly to the underlying source code (lines
2−3). In addition, we can also specify properties of the un-
derlying pointcuts in a grey box style. Thus, the specif er

151

1 p u b l i c a s p e c t XDRUpdate {

2 p u b l i c p o i n t c u t j p (F ig f e) : t a r g e t (f e)
3 && (c a l l (vo id Fig + . s e t ∗ (. .))) && @ anno ta t ion (UpdateConcern) ;
4 p u b l i c p o i n t c u t bcs cope () : with in (F ig +) ;
5 p u b l i c p o i n t c u t a c s c o p e () : with in (∗ Update ∗) ;
6 p u b l i c p o i n t c u t x p i d r s c o p e () : bc s cope () | | a c s c o p e () ;
7 /∗ Grey box s p e c i f i c a t i o n o f t h e Update concer n bas e code ∗ /

8 d e c l a r e @method : vo id P o i n t . s e tX (i n t) : @UpdateConcern(Method.POINT SETX);

9 d e c l a r e @method : vo id P o i n t . s e tX (i n t) : @Set(”int Point.x”);
10 /∗ Grey box s p e c i f i c a t i o n o f t h e Update c r o s s c u t t i n g concer n code ∗ /

11 d e c l a r e @method : vo id D i s p l a y . u p d a t e () : @UpdateConcern(Method.DISPLAY UPDATE);

12 d e c l a r e @method : vo id Update . aroundAdvBody (Fig) : @UpdateConcern(Method.UPDATE AROUND);

13 d e c l a r e @method : vo id Update . aroundAdvBody (Fig) : @Requires(”fe != null”);

14 d e c l a r e @method : vo id Update . aroundAdvBody (Fig) : @XCall(”public static void Display.update()”);

15 d e c l a r e @method : vo id Update . aroundAdvBody (Fig) : @Ensures(”fe != null”);
16 }

Figure 3. An example of the XPIDR for the update concern of the figure editor.

can choose whether or not reveal specif c details of code to
be advised. For example, lines 8−9 explicitly present de-
tails of the base code. So, developers referring this XPIDR
know that the based code specif cally contains a Point .setX
method. Besides that, we can observe that such a method
contains two attached annotation properties.

The former (line 8) is an annotation which can be de-
clared anywhere. It refers to the update concern that the
system realizes. Furthermore, it provides an enumeration
property (Method.POINT SETX) which specif cally identi-
f es which particular element of the Update concern it be-
longs to (the method Point .setX in this case). We use a
enumeration property because we can mark several meth-
ods and advice of a particular concern.

The latter denotes the set behavioral rule [9]. Hence,
we can exactly specify what f elds must be set within the
method Point . setX. In this case, the design rule on line 9
states that the method Point .setX must have an a assign-
ment (f eld state change) to the f eld Point .x. We also rep-
resent behavioral rules as metadata annotations. Thus, the
set design rule is denoted by @Set, which is attached to
the Point .setX method. With XPIDR we can also employ
f ve more design (behavioral) rules. Table 1 presents the
six design rules we draw from LSD [9] and that we made
available by XPIDR. Note that since AspectJ 5, we can at-
tach (mark) methods using the AspectJ supplying annota-
tion feature such as declare @method (lines 8−15).

The syntactic part of the XPIDR also exposes other
two methods: (i) the method Display .update in line 11,
and (ii) the method void Update.aroundAdvBody(Fig) in lines
12−15. Both are related to the crosscutting concern code.
The second one (Update.aroundAdvBody) denotes a separate
method to represent an advice since AspectJ does not sup-
port supplying annotations for advice yet. The method
Update.aroundAdvBody is composed by the behavioral rule

@XCall to denote that the advice must have a call to method
Display .update. This mandatory call is also exclusive in the
scope of the XPIDR for the Update concern (since the nota-
tion starts with an ‘x’).

Considering the behavioral contracts, pre- and postcon-
dition are specif ed in lines 13 and 15 (see Figure 3), re-
spectively. These conditions state that the target object
(denoted by fe) must be non-null before and after method
Update.aroudAdvBody’s execution. We refer to fe which is
the exposed target Fig object by the pointcut jp. We also
represent behavioral contracts as metadata annotations. We
adopted the work by Boysen [2] in our XPIDR, which al-
ready provide Java 5 annotations for JML [7]. These JML
behavioral contracts as metadata annotations can be also at-
tached to the base code.

Note that we use simple Java methods to refer to As-
pectJ advice since advice declarations in AspectJ are un-
named. We cannot explicitly refer them in our XPIDR to
attach annotations with design rules. With such a limitation
we rely on simple methods that are supposed to encapsu-
late the advice behaviors. For example, to implement the
update concern, we should have an aspect named Update
and according to our XPIDR it must declare the method
Update.aroundAdvBody. Such a method is called from within
an around advice declared in the same aspect Update.

Figure 4 presents a Update aspect (lines 1−14) using our
XPIDR provided in Figure 3. The aspect now depends only
on the abstract public pointcut signatures of XDRUpdate, not
on implementation details of the Fig and Point classes. As
mentioned, we cannot supply annotations for AspectJ ad-
vice. Hence, we also specify the advice declared in the
Update aspect. In line 6 we mark the around advice with
a custom metadata annotation (@AroundAdvice
UpdateConcern). In addition, the around advice (lines
10−13) is specif ed with two behavioral rules. The former

152

1 p u b l i c p r i v i l e g e d a s p e c t Update {

2 vo id aroundAdvBody (F ig f e) {

3 D i s p l a y . u p d a t e () ;
4 }

5
6 @AroundAdviceUpdateConcern
7 @XCall ("void aspects.update.Update.
8 aroundAdvBody(classes.Fig)")
9 @Call ("proceed(fe)")

10 vo id around (F ig f e) : XDRUpdate . j p (f e){
11 proceed (f e) ;
12 aroundAdvBody (f e) ;
13 }

14 }

Figure 4. The Update aspect implementation.

stating that such an advice must have a exclusive call (line
7) to the method Update.aroundAdvBody. The latter stating
that it must call the proceed method (line 9).

3 Contract Enforcement Implementation

In this section we describe how to implement the con-
tract enforcement of the XPIDRs previously discussed.
Due to the lack of space, secondary implementation de-
tails are discussed in our technical report available at
http://www.cin.ufpe.br/˜hemr/seke12. The
main points of our strategy are covered in this section.

3.1 Checking Structural rules

Structural rules [9] are design rules that describe con-
straints about classes and aspects members. Its realiza-
tion is similar to Java interfaces, but additional constraints
(beyond required public methods) such as required f elds
or expected AspectJ inter-type declarations. By using our
XPIDRs, we can force a developer to implement the re-
quired types, methods and f elds we declare. For example,
in Figure 3 in line 8, we expose the method Point .setX. Un-
til the class Point is declared we got a warning message say-
ing that “no match for this type name”. Once the required
type is declared, we got a compile-time error saying that the
method “void Point .setX(int) does not exist”. In this case
the developer is forced to implement the exposed member
by the XPIDR. This is an interesting feature described by
LSD design rule language [9] that we can support using the
AspectJ declare @<member> syntax (also known as sup-
plying annotation syntax). In summary, as with LSD [9],
XPIDRs enforce structural rules at compile-time.

3.2 Checking Behavioral Rules and Contracts

As discussed, a XPIDR interface adopts mechanisms
such as behavioral rules and contracts to provide a detailed
design specif cation in a grey box style [3] for program

1 /∗ C o l l e c t i o n i n t e r n a l c o n t r o l f l o w j o i n p o i n t s
2 ∗ o f t h e @UpdateConcern ∗ /
3 before (UpdateConcern upc) : upcWC (upc)
4 && XDRUpdate . s t a t i c x p i d r s c o p e (){
5 U t i l . addT race (t h i s J o i n P o i n t) ;
6 }

7 /∗ C o l l e c t i o n i n t e r n a l c o n t r o l f l o w j o i n p o i n t s
8 ∗ o f t h e @AroundAdviceUpdateConcern ∗ /
9 before () : aroundAdvWC () {

10 U t i l . addT race (t h i s J o i n P o i n t) ;
11 }

Figure 5. Aspect code for tracing control flow
join points.

modules like classes and aspects. Before checking such de-
sign rules and contracts of the Update concern, we gather
information (using a trace-based mechanism) about all the
control f ow join points related to the Update concern.

Figure 5 presents the two before advice (lines 1−11) used
to trace all control f ow join points of the update concern.
The f rst one (lines 3−6) traces all the join points that occurs
within any join point marked with the Update concern anno-
tation. The second before advice (lines 9−11) traces all the
join points within the around advice, which is marked with
a specif c annotation, of the aspect Update. As observed, we
store each monitored join point (lines 5 and 10) by using the
method Util .addTrace. Such a method is available as a part
of the XPIDR API.

4 Discussion

We showed that AOP can be used to provide expressive
contract checking of aspect-oriented code. The main moti-
vation of our approach is that it does not requires any new
AOP-like construct to provide contract checking of AOP
code. Instead of new constructs, we reuse and combine
existing features like metadata annotations, pointcuts and
advice.

With the grey box specif cation approach, the specif er
can decide the degree in which the details are revealed.
Hence, our XPIDR illustrated in Figure 3 exposes that we
must have a class Point and a method setX. Also, the @Set
design rule states that the method Point . setX must have a
f eld state change to f eld Point .x. Suppose now that the
specif er decided to keep details more hidden and still obey-
ing the @Set design rule:
d e c l a r e @method : ∗ Fig + . s e t ∗ (. .) : @Set ("* Fig+.*") ;

This syntax abstracts the previous one by making details
more hidden. However, the @Set design rule still guarantee
properties of these set methods. Now, we just known that
any set method declared in any type Fig must have a f eld
state change to any f eld declared in type Fig.

153

The use of metadata annotations brings two additional
benef ts for the XPIDR interface specif cation and verif -
cation. The f rst one guarantees that the specif c elements
exposed by the XPIDR (using the AspectJ supplying anno-
tation syntax) must be declared by the base and aspect code.
The second one is that unlike XPIs, we can now check spe-
cif c properties of a particular AspectJ advice. We match a
specif c advice based on its annotation type.

In relation to the use of design rules, we can minimize
the impact of the well known problem of pointcut fragility.
For example, if a developer changes the base code, by re-
moving a join point shadow (a method call), can lead the
aspect code to behave in a different way from what is ex-
pected. Hence, our XPIDR checks the method call occur-
rence and if it is not found, the developer is warned about
the missing join point.

4.1 Feature Request

Some problems we had during XPIDR specif cation
could be avoided if we could add a supply clause for ad-
vice. Therefore, we submitted a feature request to the As-
pectJ team, which they hope to consider for a future version
of AspectJ. We suggested the support of a new construct
that marks an advice with an annotation. For example, it
could be used as in the following:
d e c l a r e @advice : u p d a t e . a round (. .) : @UpdateConcern ;

This declaration would avoid the extra annotations added
directly in the advice declaration, such as the one used to
say that an around advice must proceed.

5 Summary

Metadata annotations, pointcuts and advice are use-
ful techniques commonly used for separating concerns in
source code. We have combined these three AO techniques
towards a design by contract methodology for AOP. Each of
these AO mechanisms makes a different kind of task: anno-
tations mark join points related to the base and aspect code;
pointcuts bindings sets of join points marked with annota-
tions, and advice provide the checking code implementation
to sets of join points denoted by pointcuts.

We have combined the notion of crosscut programming
interfaces (XPIs) [4] with more expressive design rules
adopted by LSD [9]. Such design rules are specif ed and
checked using the three AO mechanisms we focus in this
paper. We call our enhanced XPIs as crosscut programming
interfaces with design rules, or XPIDRs.

Our main contribution is that we have devised a practical
alternative way to a enable an expressive design by contract
methodology for AOP using existing AOP constructs like
those of AspectJ. In addition, our approach, called XPIDRs,

is a grey box specif cation based approach, which provides
means to detailed specify control f ow effects for both base
and aspect code. In a grey box specif cation, the designer
decides whether or not to expose control f ow effects. As a
result, only interesting control f ow effects are exposed.

Finally, and most importantly, using XPIDRs a devel-
oper does not require new AO constructs, which in turns
makes the adoption by the AO community more easier. We
argued that the design rules of XPIDRs showed to be more
expressive than the existing AO based techniques [4, 14].

References

[1] M. Bagherzadeh et al. Translucid contracts: expressive spec-
if cation and modular verif cation for aspect-oriented inter-
faces. In Proceedings of AOSD’11, 2011.

[2] K. P. Boysen. A specif cation language design for jml using
Java 5 annotations. Technical report, Iowa State University,
2008.

[3] M. Büchi and W. Weck. The greybox approach: When
blackbox specif cation hide too much. Technical report,
Aug. 06 1999.

[4] W. G. Griswold et al. Modular software design with cross-
cutting interfaces. IEEE Softw., 23:51–60, January 2006.

[5] G. Kiczales et al. Aspect-oriented programming. In ECOOP
97, 1997.

[6] G. Kiczales et al. Getting Started with AspectJ. Commun.
ACM, 44(10):59–65, 2001.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specif cation language for
Java. ACM SIGSOFT Software Engineering Notes, 31(3):1–
38, Mar. 2006.

[8] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[9] A. C. Neto et al. A design rule language for aspect-oriented
programming. In SBLP ’09, 2009.

[10] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantif ed, typed events. In ECOOP 2008.

[11] H. Rebêlo et al. Implementing java modeling language con-
tracts with aspectj. In Proc. of the 2008 ACM SAC, 2008.

[12] H. Rebêlo et al. The contract enforcement aspect pattern. In
Proceedings of the 8th SugarLoafPlop, pages 99–114, 2010.

[13] H. Rebêlo et al. Assessing the impact of aspects on design
by contract effort: A quantitative study. In SEKE, pages
450–455, 2011.

[14] T. Skotiniotis and D. H. Lorenz. Cona: aspects for con-
tracts and contracts for aspects. ACM SIGPLAN Notices,
39(10):196–197, Oct. 2004.

A. Online Appendix

We invite researchers to replicate, analyze, and compare
our XPIDR implementation of the f gure editor against its
counterpart in XPI. The implementations are available at:
http://www.cin.ufpe.br/˜hemr/seke12.

154

Towards More Generic Aspect-Oriented Programming:
Rethinking the AOP Joinpoint Concept

Jonathan Cook Amjad Nusayr

New Mexico State University University of Houston – Victoria
Las Cruces, NM 88003 USA Victoria, TX 77901 USA

E-mail: joncook@nmsu.edu

Abstract

In aspect oriented programming, the concepts of join-
point and pointcut have always been central and have, as
their names imply, been centered around the idea of a point

in a program’s execution. Furthermore, in practical terms
this has often been synonymous with points in the static rep-
resentation of the program where invocation of advice can
be inserted. We present here ideas for rethinking both of
these, most significantly presenting the idea of redefining a
joinpoint to be an interval of program execution. This re-
definition cleans up some concepts in AOP and opens the
door to new ideas and mechanisms for future AOP research
to consider.

1. Introduction

In aspect-oriented programming (AOP), the joinpoint
model and the advice mechanisms are important concepts

in order to understand the capabilities for a particular AOP

framework. These two essentially capture the weaving ca-

pability of the AOP framework, determining where in a

computation advice can be applied (joinpoints), how advice

will be applied to the underlying program (advice mecha-

nisms), and how abstract the specification of this weaving

can be (in the pointcut expression language).

Existing notions of joinpoints and their respective join-

point models have suffered from a restrictive foundational

definition that has hampered the expansion of AOP ideas

into the full range of capabilities that it could encompass.

This restrictive foundational definition is:

A joinpoint is a well-defined point in the execution
of a program where advice can be applied.

This basic definition can be found in essentially equivalent

wording in many references e.g., [11], although other re-

searchers have also noted its insufficiency [3, 5, 12].

The problem with this definition is with the focus on the

word point (which reifies in the term pointcut). We claim

that this word has stymied the development of ideas that

can expand where and how AOP ideas can be applied. In

fact, joinpoints should not be thought of as points in the

program execution but should be a much more abstract con-

cept, which then impacts how they should be specified.

Another issue is that the joinpoint model has not tra-

ditionally been well-separated from the advice execution
model. The joinpoint model is typically reified into the

pointcut expression language, but the way a pointcut ex-

pression is specified usually intertwines it with specifying

how the advice will be executed, with the traditional mech-

anisms being before, after, or around the joinpoint.

Just as AOP embraces the notion of separation of con-

cerns, in turn the concept of the joinpoint model should be

separated from the concept of the advice execution model.

In this paper we present a rethinking of the notions of the

joinpoint model and advice execution model, and show how

this new thinking can expand and enhance the future appli-

cation of AOP. Our own interests are focused on using AOP

to support the broad needs of runtime monitoring instru-

mentation, and the ideas presented in this paper will help

fulfill those needs.

2. A New Approach to Joinpoints

We believe that the foundational ideas and definitions

of joinpoints early on in the development of AOP have

hindered the potential application of AOP ideas into new

realms. In viewing the body of AOP work we see that for

the most part joinpoints have largely corresponded to loca-
tions in the source code where a weaving compiler could

insert the advice code so that program and advice execu-

tion was very efficient. Even joinpoint designators such as

object field access, which appear data related and not code

related, are translated into advice weaving at code locations

where the field is accessed. Dynamic weaving, where run-

155

time conditions could influence the execution of advice, still

often uses underlying mechanisms that involve identifying

a set of code locations which might execute the advice and

then either performing static weaving augmented with dy-

namic checks (residues), or applying dynamic weaving on

these locations as needed.

While Java supports efficient object field access join-

points because it is easy to identify the bytecode instruc-

tions that access them, in less memory-safe languages such

as C++ an object field access joinpoint designator could not

be reduced to a small set of locations in the source code,

but would rather likely need mapped to many pointer ac-

cesses, even with the application of sophisticated points-to

analyses. Because of this, AOP frameworks targeting such

languages have not attempted to provide these non-code-

centric joinpoint designators.

In moving away from a code-centric view in our appli-

cation of AOP to runtime monitoring, we identified other

dimensions of joinpoint designators that cannot be mapped

to the code-centric weaving model but nevertheless are use-

ful. One is the data dimension that the above example

demonstrates; two other dimensions are time and probabil-

ity. We defined temporal joinpoint designators that define a

joinpoint at an absolute wall-clock time or relative interval-

based times. For example, a joinpoint could be at 1:00am

each night to run advice that would check consistency in

server data structures, or might be every hour of runtime to

run advice that would dump out usage statistics. These join-

points are equally “points in the execution of a program” but

cannot be related to specific locations in the code. The prob-

ability dimension enables advice execution sampling, not

selecting points in program executions directly but rather

influencing the advice execution model using criteria that

are not related to the program itself, another diversion away

from thinking of joinpoints as program-centric entities.

Our work thus brought new ways of thinking about how

“a well-defined point in the program execution” might be

defined, but as we thought of these and how to execute ad-

vice at these points, we started to formulate another notion

that expanded the idea of a joinpoint.

This second and more important idea that changes the

definition of joinpoint is to abandon the thinking of join-

points as points in the execution. Rather, they should be

thought of as abstract intervals of program execution whose

endpoints are defined as abstract execution conditions. An

interval might be reducible to a point but does not neces-

sarily need to be. Indeed we think this extension actually

captures the existing notions better, and the main reason for

this extension is to separate the understanding of the advice
execution model from the joinpoint model, which currently

is intertwined together in the pointcut language.

Pointcut expressions are supposed to be abstract speci-

fications of sets of joinpoints, but they actually also define

the advice execution mechanism as well—typically using

the well-known before, after, and around mechanisms. If

joinpoints are points in a program execution, the keywords

representing these mechanisms actually make no sense. A

point in Euclidean space is a dimensionless, infinitely small

location. Mapping this idea to program execution, a point

is a location between two execution steps that change the

program state. In this sense, the ideas of before and after
collapse into the same thing, both being between the two

execution steps surrounding the point, and around is mean-

ingless since there is nothing there to envelope.

Only in thinking of a joinpoint as an interval of execution

steps do these advice execution mechanisms make sense,

and take on their traditional meanings. Before is before the

interval begins, after is after it ends, and around is around

the entire execution interval. Thus applying advice execu-

tion around a method call defines the joinpoint as the inter-

val from the invocation of the method to the return of the

method to its caller.

It is true that one can view the combination of the ad-

vice execution mechanism and the pointcut expression as

signifying a point in the execution (e.g., before and method-
call signify the point before the call), but this we think is

confounding two separate “concerns” that should indeed be

separate, and it means that the pointcut expression does not

by itself determine points in the program execution.

Another violation of the view of a joinpoint as a point

is in the treatment of threads by most AOP frameworks. In

typical AOP frameworks like AspectJ, advice execution in

AspectJ will occur in one thread, and other program threads

will continue to execute; this means that the advice does
not execute at a point in the program but rather during an

interval of program execution, where other threads are ad-

vancing the program execution and state while the advice

is executing. In reality, current joinpoint models define a

joinpoint as a point in a thread’s execution, not a point in a

program’s execution, despite the general usage of the latter.

We think our notion of a joinpoint being a program inter-

val solves these issues. It separates the idea of a joinpoint

from the advice execution mechanisms, and it can cleanly

handle issues of parallelism. We think it ought to be reified

into the joinpoint model, and consequently in the pointcut

expression language, and will be pursuing that end in our

research. Rather than always implicitly defining intervals

as current pointcut languages do, the ability to abstractly

specify the execution conditions for the start of the interval

and separately the execution conditions for the end of the

interval, will allow new and novel applications of AOP for

software engineering.

Masuhara et al. [14] raised a similar issue but concluded

that joinpoints should be points, and devised an event-based

understanding of joinpoints and weaving. Although seem-

ingly opposite of our emphasis on intervals, in reality inter-

156

vals must be denoted by some notion of event at their end-

points, and so our approaches have some similarity. Rec-

ognizing the interval explicitly, however, will better support

some of the issues in concurrency such as relaxing the point

in time when advice might actually execute.

3. Extending the Advice Execution Model
With a new understanding of what a joinpoint is (an in-

terval of program execution), we will pursue an expansion

of the notions of what it means to weave and execute ad-

vice. Existing notions are obviously successful and useful,

and map to this new understanding easily: before means to

execute advice before the interval, after means to execute

the advice after the interval, and around means to execute

some part of the advice before the interval, some part after,

and controlling the execution of the interval.

However, we can also imagine and define new ideas for

advice execution, in particular dealing concretely with no-

tions of concurrency. At least two notions of concurrency

can be dealt with, both of which have been so far only been

treated sporadically, without devising an encompassing ab-

straction [2, 9].

The first is with program concurrency within a mul-

tithreaded or distributed program. Advice execution has

traditionally been applied to a single thread—whichever

thread reached the (thread-specific) joinpoint. However, if

advice needs to inspect and reason over one particular pro-

gram state, all threads should be stopped during advice ex-

ecution. We encountered this issue when creating time do-

main joinpoint designators (e.g., invoke advice at a partic-

ular wall-clock time). When the joinpoint occurs it is not

particular to any single thread, so in our initial experimen-

tation we chose to suspend all application threads. But the

general issue applies even to existing joinpoint designators

that are “triggered” by one thread but may need to inspect

shared data before any other threads change the data.

This idea is extensible to particular thread groups, the

generality being that advice execution should be defined not

in relation to simply one thread but to a set of threads. This

leads the joinpoint model to need joinpoint definitions over

sets of threads rather than a single thread. For example,

defining a joinpoint condition as when all threads reach a

synchronization point is a condition over a set of threads

rather than just over one. In our research we will be devising

new specification methods to deal with these issues.

The second notion in concurrency is that of how advice

is executed. The traditional “weaving” idea is that advice

is executed in the program thread that reached the join-

point, but there is no inherent reason this needs to be the

case. Advice could be executed in its own thread while the

application thread(s) continue to execute This will allow

computationally intensive advice to execute without stop-

ping the application, provided that the advice does not need

a single application state snapshot. Even here, with sep-

arate conditions specifying the endpoint for the joinpoint

interval, novel combinations could be made—for exam-

ple, advice could execute in its own thread and application

threads could continue until any application thread attempts

to make a change in some important data structure the ad-

vice is inspecting; here the endpoint of the joinpoint interval

would be a modification to the data structure.

Concurrent advice execution will enable weaving ideas

such as during, meaning advice is executed somewhere

within the joinpoint interval; if any threads reached a con-

dition that cause them to leave the interval, they would sus-

pend until the advice is finished. In the minimal case where

the interval is defined to be a point, this captures the idea

of “stop all threads” while the advice executes. Other ideas

could capture soft- or hard-realtime conditions, such as ex-

ecuting the advice “as soon as possible” after the beginning

condition of the joinpoint, or “within 10 milliseconds” of

the beginning condition.

4. Related Work

There is much recent activity and novel ideas for extend-

ing AOP in a variety of manners, and several approaches to

understanding the fundamental ideas in AOP that relate to

the ideas we present here.

Masuhara et al. [14] raised the similar issue of whether

joinpoints should be intervals or points, and they and oth-

ers have continued work relating to their view of joinpoints

as events [3, 13]. Others have modeled and investigated a

variety of views on how AOP should work [1, 4]. Kojarski

and Lorenz [12] define an elegant model to understand the

pieces of AOP and how different understandings of AOP

can be formally modeled; we can build on such approaches

for our work. Very recently Binder et al. [5] have reiter-

ated the need for AOP to be expanded for supporting the

many issues in runtime monitoring and dynamic analysis.

Dyer and Rajan [10] investigated new AOP infrastructure

ideas, explicitly working on arguing for more extensive join

point models (thus allowing more pointcut designators) and

embodying those in an intermediate language and virtual

machine support for weaving.

A very nice formal framework for Monitor-Oriented
Programming was detailed in [8]. This work describes the

monitoring task in high-level formal notations, and demon-

strates how AOP can be used to provide a rigorous frame-

work for building runtime verification analyses. The lan-

guage used to describe the monitoring task may provide

a good foundation for thinking about more general AOP

pointcut expressions.

Much of the notion of joinpoints being intervals comes

from thinking about concurrency. Even though the notion

of thread and advice interaction has been touched on in

157

some previous work [2, 7], this work did not propose a con-

crete model for advice execution in threads. Most popular

AOP languages effectively ignore concurrency; in AspectJ

the thread that reaches a joinpoint will execute the advice,

and nothing is specified beyond that. Ansaloni and Binder

[2] introduced a framework that enables asynchronous ad-

vice execution by collecting advice invocations in a buffer

and executing the advices in a separate thread. Douence

et al. [9] created Concurrent Event-based AOP (CEAOP)

which defines concurrent AOP using labeled transition sys-

tems, and overcomes some of the limitations of synchro-

nization and thread communications. CEAOP supports con-

currency in the underlying program, and concurrent execu-

tion of advice with the base program by allowing the advice

body executions in parallel.

5. Conclusion

Fundamental to AOP is the notion of a joinpoint, which

has traditionally been thought of as a point in the program

execution that can practically be mapped to points in the

program itself. We argued here that the notion of a join-

point really should be a defined interval of program execu-

tion whose defining conditions may or may not be related

to loci in the program itself. This change better captures

existing usage of AOP, in particular with the around advice

application and the treatment of threads, and it allows think-

ing about new and novel directions for AOP. We also argue

here that this change in joinpoint thinking also helps to bet-

ter separate advice execution from pointcut definition, and

allows the imagination of new types of advice execution that

have wide applicability in the software engineering field.

In this paper we are only presenting ideas of how the ab-

stractions in AOP might be generalized and expanded. We

are not attempting to claim that it is straightforward to put

these ideas into practice. Indeed the existing ideas within

AOP are arguably there because it was somewhat obvious

how to implement them efficiently. Other ideas have fol-

lowed similar paths. The idea of tracematches as joinpoint

designators was introduced first, then followed by work in

optimizing their detection [6].

Working out other details as well, such as how to create

a usable advice language that embodies these ideas with-

out overwhelming the user, may be problematic. Certainly

some of the success of AOP, as with other technologies,

is found in the combination of power and simplicity. Yet

the continuing research in AOP should consider breaking

away from ideas that limit what can be imagined and im-

plemented, and should explore radical new and novel ap-

proaches to AOP.

References

[1] M. Achenbach and K. Ostermann. A Meta-Aspect Protocol

for Developing Dynamic Analyses. In Proc. 1st Int’l Conf.
on Runtime Verification, pages 153–167, Berlin, Heidelberg,

2010. Springer-Verlag.
[2] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Parallel

Dynamic Analysis on Multicores with Aspect-Oriented Pro-

gramming. In 2010 Conference on Aspect-Oriented Software
Development (AOSD), pages 1–12, 2010.

[3] T. Aotani and H. Masuhara. SCoPE: an AspectJ Compiler for

Supporting User-Defined Analysis-Based Pointcuts. In Proc.
6th Int’l Conf. on Aspect-Oriented Software Development,
pages 161–172, New York, 2007. ACM.

[4] P. Avgustinov, T. Ekman, and J. Tibble. Modularity First:

A Case for Mixing AOP and Attribute Grammars. In Proc.
7th Int’l Conf. on Aspect-Oriented Software Development,
AOSD ’08, pages 25–35, New York, 2008. ACM.

[5] W. Binder, P. Moret, D. Ansaloni, A. Sarimbekov,

A. Yokokawa, and E. Tanter. Towards a Domain-Specific

Aspect Language for Dynamic Program Analysis: Position

Paper. In Proc. 6th Workshop on Domain-Specific Aspect
Languages, pages 9–11, New York, 2011. ACM.

[6] E. Bodden, L. Hendren, and O. Lhoták. A Staged Static

Program Analysis to Improve the Performance of Runtime

Monitoring. In ECOOP, pages 525–549, 2007.
[7] W. Cazzola, A. Cicchetti, and A. Pierantonio. Towards a

Model-Driven Join Point Model. In Proceedings of the 2006
ACM Symposium on Applied Computing, SAC ’06, pages

1306–1307, New York, 2006. ACM.
[8] F. Chen and G. Roşu. MOP: an Efficient and Generic Run-

time Verification Framework. In OOPSLA ’07: Proc. 22nd
ACM SIGPLAN Conf. on Object Oriented Programming,
Systems, and Applications, pages 569–588, New York, NY,

USA, 2007. ACM.
[9] R. Douence, D. Le Botlan, J. Noyé, and M. Südholt. Concur-

rent Aspects. In Proceedings of the 5th International Con-
ference on Generative Programming and Component Engi-
neering, GPCE ’06, pages 79–88, New York, 2006. ACM.

[10] R. Dyer and H. Rajan. Nu: a Dynamic Aspect-Oriented In-

termediate Language Model and Virtual Machine for Flexi-

ble Runtime Adaptation. In Proc. 7th Int’l Conf. on Aspect-
Oriented Software Devel., pages 191–202. ACM, 2008.

[11] G. Kiczales and M. Mezini. Aspect-Oriented Programming

and Modular Reasoning. In Proceedings of the 27th Interna-
tional Conference on Software Engineering, ICSE ’05, pages

49–58, New York, 2005. ACM.
[12] S. Kojarski and D. H. Lorenz. Modeling Aspect Mecha-

nisms: a Top-Down Approach. In Proc. 28th International
Conference on Software Engineering, pages 212–221, New

York, 2006. ACM.
[13] E. Marques, L. Veiga, and P. Ferreira. An Extensible Frame-

work for Middleware Design Based on Concurrent Event-

Based AOP. In Proc. 9th Int’l Workshop on Adaptive and
Reflective Middleware, pages 26–31, New York, 2010. ACM.

[14] H. Masuhara, Y. Endoh, and A. Yonezawa. A Fine-Grained

Join Point Model for More Reusable Aspects. In Proc.
Fourth ASIAN Symposium on Programming Languages and
Systems, (LNCS 4279), pages 131–147, Nov. 2006.

158

Aspect-Orientation in the Development of Embedded Systems: A Systematic Review

Leonardo Simas Duarte and Elisa Yumi Nakagawa

Department of Computer Systems, University of São Paulo - USP
PO Box 668, 13560-970, São Carlos, SP, Brazil

{ldu, elisa}@icmc.usp.br

Abstract—Currently, a diversity of embedded systems has
been produced, from systems for consumer electronics to
critical environments, causing a considerable impact to the
society. In another perspective, aspect-orientation approach has
arisen, intending to contribute to the development of reusable,
maintainable, and evolvable software systems. Considering its
relevance, this approach has been also applied to the develop-
ment of embedded systems. However, there is not a complete
panorama about how aspect-orientation has been explored
in the development of such systems. Thus, this paper aims
at exploring, organizing, and summarizing the contributions
about the use of aspect-orientation in the development of
embedded systems. For this, we conducted a systematic review
that is a technique that provides an overview of a research
area to assess the quantify of evidences existing on a topic of
interest. As main result, we have observed that in the last years
considerable knowledge related to the aspect-orientation in the
embedded system development has been accumulated; however,
more studies must be conducted yet. Furthermore, this work
intends to contribute to the identification of interesting and
important open research areas.

Keywords-Embedded system; aspect-orientation; systematic
review.

I. INTRODUCTION

Embedded systems refer to computing systems designed

to dedicated features, sometimes as part of a complete

device[14]. Currently, a considerable number of embedded

systems has been developed, such as for automobiles, air-

crafts, PDAs (Personal Digital Assistants), digital decoders,

and mobile devices. Furthermore, these systems must con-

sider the constant growing of processing power, data storage

and graphic capacity, platform convergence and value-added

features, such as location-based and interactive multimedia

services.

In another perspective, Aspect-Oriented Programming

(AOP) has arisen as a new technology to support a better

SoC (Separation of Concerns) and more adequately reflects

the way developers think about the system [7], [8]. Essen-

tially, AOP introduces a unit of modular implementation —

the aspect — which has been typically used to encapsulate

crosscutting concerns in software systems (i.e., concerns

that are spread across or tangled with other concerns).

Modularity, maintainability, and facility to write software

can be achieved with AOP [10].

Considering the relevance of AOP, initiatives to the de-

velopment of embedded systems using AOP have more and

more emerged. Different studies can be found, such as com-

parisons of AOP and OOP (Object-Oriented Programming)

to develop such systems [12]. However, there is a lack of

a detailed panorama about why and how AOP has been

adopted to the development of embedded systems. Thus,

the main objective of this paper is to explore, organize,

and summarize the contributions about the use of AOP in

embedded systems.

This paper is organized as follows. In Section II we

present the conducted systematic review. In Section III we

discuss about achieved results and summarize our contribu-

tions.

II. CONDUCTED SYSTEMATIC REVIEW

Our systematic review was conducted on a hybrid domain

involving Aspect-Orientation and Embedded Systems, aim-

ing at identifying possibly all primary studies (i.e., a case

study or an experimental study divulged in a publication)

that explore the use of AOP in the embedded system

development. This systematic review was carried out by

three people (one researcher in software engineering, one

specialist in systematic review, and one graduate student). In

order to conduct our systematic review, we have followed the

process proposed by Kitchenham [9], illustrated in Figure 1.

Following, we detail each step:

Figure 1. Systematic Review Process (Adapted from [9])

A. Step 1: Systematic Review Planning

In this step, we established the systematic review plan. For

this, we specified: (i) research questions; (ii) search strategy;

(iii) inclusion and exclusion criteria; (iv) data extraction and

synthesis methods.

Research Questions: These questions are structured corre-

sponding to the objective that is intended with the systematic

review and drive the review for further steps. Aiming at

discovering all primary studies to understand and summa-

rize about AOP in the embedded system development, the

159

following research questions (RQ) were established: (i) RQ
1: What is the current state of the adoption of AOP in the

development of embedded systems? (ii) RQ 2: How AOP

has been used in the embedded system development? (iii)

RQ 3: What are the benefits and limitations by using AOP

in embedded systems?

Search Strategy: In order to establish the search strategy,

we identified then initially specific keywords for the two

research fields: AOP and Embedded System. Thus, for AOP

field, we identified the terms “AOP”, “AO”, “crosscutting

concern”, and “cross-cutting concern”. Following, we found

synonyms for these keywords: “aspect oriented program-

ming”, “aspect oriented software”, “aspect oriented appli-

cation”, “aspect oriented app”, “aspect oriented program”,

“aspect orientation”, and “aspect-based”. According to the

systematic review specialist, a technological term “AspectJ”

was included. Furthermore, for Embedded Systems field, the

following keywords were used: “reactive system”, “real-time

system”, “embedded”, “cyber-physical system”, “pervasive

system”, “ubiquitous system”, “wearable computer”, and

“consumer electronic”. In addition to the search string, we

selected larger publications databases as sources of primary

studies: IEEE Xplore1, ACM Digital Library2, Springer

Link3, Scirus4, ScienceDirect5, and SCOPUS6.

Inclusion and Exclusion Criteria: Two basic parameters

that play an important role at the systematic review planning

is to define the Inclusion Criteria (IC) and Exclusion Criteria

(EC): (i) IC 1: The primary study explore the use of AOP in

the embedded system development; (ii) IC 2: The primary

study presents how AOP has been used in the embedded

system development; and (iii) IC 3: The primary study

presents benefits and limitations provided by the use of

AOP in embedded systems; (iv) EC 1: The primary study

does not address AOP in embedded system development;

(v) EC 2: The primary study presents an abstract and/or an

introductory section that seem related to AOP in embedded

system development; however, the rest of the text is not in

fact related to; and (vi) EC 3: The primary study does not

present any abstract or it is not available for further reading.

Data Extraction and Synthesis Method: To extract data,

we use control tables to each research question. These

tables summarize results aiming at facilitating to obtain

conclusions. The data of each primary study will be indepen-

dently extracted by two reviewers. If disagreement occurs,

discussion will be conducted.

1http://www.ieeexplore.ieee.org
2http://www.portal.acm.org
3http://www.springer.com/lncs
4http://www.scirus.com/
5http://www.sciencedirect.com
6http://www.scopus.com

B. Step 2: Systematic Review Conduction

The search by primary studies was conducted according

to previously established planning. This identification was

made by looking for all primary studies that match with

the search string on the selected databases. As result, a

total of 297 studies were identified, all studies were con-

sidered primary even in the event of repetition between the

databases, in order to identify the relevance of each database,

as shown in Table I. Following, through reading of abstracts

and application of the inclusion and exclusion criteria, 104

studies were then selected to be fully read. At the end, 25

studies, summarized in Table II, were considered as relevant

to our systematic review. Following, a more detailed analysis

was conducted on the 25 primary studies included in our

systematic review and data were extracted.

Table I
DATABASE RELEVANCE

Database Obtained Included Percentage Index

IEEE 44 10 22.7%

ACM 77 6 7.8%

Scopus 79 5 6.3%

Springerlink 17 1 5.9%

ISI Web 11 1 9.0%

Scirus 69 2 2.9%

C. Step 3: Systematic Review Reporting

The systematic review provides us a perspective of how

AOP has been explored in embedded system development.

Through primary studies included in our systematic review,

we have identified six research areas: OOP versus AOP

when used in embedded system development (S2, S8, S10,

S23 and S24), AOP used at distributed embedded systems

(S1, S2, S5, S6, S9, S12, S22, S23, S24 and S25), AOP

used in consumer electronics (S8, S10, S24 and [11] by

specialist recommendation), AOP used in software devel-

opment process for embedded systems (S1, S9 and S23),

SoC used in the architectures of embedded systems (S1, S5,

S11, S18, S24 and S25), and AOP for real-time embedded

systems (S2, S4, S5, S6, S9, S10, S11, S12, S15, S17, S20,

S22 and S23). We have also examined the maturity of the

ideas and concepts, as well as the status of their applications

by looking into the research methods used in each study’s

validation. It is also observed that the primary studies related

to AOP in the context of embedded systems are concentrated

in the last years. Figure 2 shows the number of primary

studies distributed through the years.

The research area which aggregates the most number of

studies is the use of AOP on real-time embedded systems;

two main studies present different initiatives to apply AOP:

[1] and [4]. The work of Beuche et. al [1] show the

use of AOP on the operational system layer, exploring

customization and reuse. The usage of aspects imprints the

160

Table II
SELECTED PRIMARY STUDIES

Authors/Title Year
S1 Aoyama, M. and Yoshino, A., Aspect-Oriented Requirements Engineering Methodology for Automotive Software Product

Lines.
2008

S2 Beuche, D., Spinczyk, O., and Schröder-Preikschat, W., Finegrain application specific customization for embedded software. 2002
S3 Beuche, D., Guerrout, A., Papajewski, H., Schröder-Preikschat, W., Spinczyk, O., and Spinczyk, U., The pure family of

object-oriented operating systems for deeply embedded systems.
1999

S4 Pericles, L. and Papadopoulos, G., Using aspect-oriented software development in real-time systems software: A review of
scheduling, resource allocation and synchronization.

2006

S5 Deng, G., Schmidt, D. C., and Gokhale, A., Addressing crosscutting deployment and configuration concerns of distributed
realtime and embedded systems via aspect-oriented & model-driven software development.

2006

S6 Freitas, E., Wehrmeister, M., Pereira, C., Wagner, F., Silva, E., and Carvalho, F., Using aspect-oriented concepts in the
requirements analysis of distributed real-time embedded systems.

2007

S7 Haupt, M. and M., M., Virtual Machine Support for Aspects with Advice Instance Tables. 2005
S8 Hundt, C.; Glesner, S., Optimizing aspectual execution mechanisms for embedded. 2009
S9 Jingyong, L., Yong, Z., Lichen, Z., and Yong, C., Aspect-oriented middleware-based real-time and embedded systems software

process.
2009

S10 KARTAL, Y. and SCHMIDT, E., An evaluation of aspect oriented programming for embedded real-time systems. 2007
S11 Zhang, L. and Liu, R., Aspect-oriented real-time system modeling method based on UML. 2005
S12 Mouavi, M., Russello, G., Chaudron, M., Reniers, M., Basten, T., Corsaro, A., Shukla, S., Gupta, R., and Schmidt, D., Using

aspect-gamma in the design of embedded systems.
2002

S13 Machta, N., Benani, T., and Benahmed, S., Weaving real-time constraints on behavioral and structural application model. 2009
S14 Stankovic, J. A., Nagaraddi, P., Yu, Z., and He, Z., Exploiting prescriptive aspects: a design time capability. 2004
S15 Noda, N. and Kishi, T., Aspect-oriented modeling for embedded software design. 2007
S16 Noro, M., Sawada, A., Hachisu, Y., and Banno, M., E-AoSAS++ and its software development environment. 2007
S17 Roychoudhury, S., Bunse, C., and Höpfner, H., Applying state-of-the-art techniques for embedded software adaptation. 2009
S18 Schimdt, P., Milstein, J., and Alvarado, S., Architectural assessment of embedded systems using aspect-oriented programming

principles.
2005

S19 Spinczyk, O. and Lohmann, D., The design and implementation of aspectc++. 2007
S20 Tsang, S., Clarke, S., and Baniassad, E., An evaluation of aspect-oriented programming for Java-based real-time systems

development.
2004

S21 Tuohimaa, S. and Leppänen, V., A compact aspect-based security monitor for J2ME applications. 2007
S22 Wehrmeister, M., Freitas, E., Pereira, C., and Wagner, F., An aspect-oriented approach for dealing with non-functional

requirements in a model-driven development of distributed embedded real-time systems.
2007

S23 Wehrmeister, M., Freitas, E., Orfanus, D., Pereira, C., and Rammig, F., Evaluating aspect and object-oriented concepts to
model distributed embedded real-time systems using rt-uml.

2008

S24 Fanjiang, Y., Kuo, J., Ma, S., and Huang, W., An aspect-oriented approach for mobile embedded software modeling. 2010
S25 Lohmann, D., and Spinczyk, O., Ciao: An aspect-oriented operating-system family for resource-constrained embedded

systems.
2009

Figure 2. Distribution of the primary studies

crosscutting properties to be concentrated in the aspect,

allowing easier derivation of future applications, like the use

of AOP for treatment of threads, exceptions, and process

scheduling, which are primary features, given the resource

constraints of embedded systems. Another study [4] presents

the development of the main features of a virtual machine7

with the use of aspects to agglutinate instance tables for Java

language. This work explored execution runtime, library

consulting, and component constructions. This research was

distinguished from the others, because it used for the first

time aspect-orientation approach on a user layer level in

embedded systems, bringing future investigations of this

scenario.

Primary studies present also comparative results between

OOP and AOP when used in the context of embedded

systems. At the study of [6], it is presented an experimental

evaluation of both paradigms for real-time embedded sys-

tems, applying qualitative and quantitative metrics. Positive

results using AOP were achieved, where used on the oper-

ational system layer. In another work [3], AOP was used at

the requirement analysis, eliciting and storing knowledge of

the specific components to be hold as crosscutting concerns.

7Software implementation of a machine (i.e., a computer) that executes
programs like a physical machine.

161

In another perspective, [2], [5], [6] and [11] explored

AOP in the development of embedded systems for consumer

electronics, such as mobiles. These works are mainly related

to consumer’s needs, resources constraints, software product

line, and usability. In particular, Kartal and Schmidt [6]

conducted an investigated involving a platform of real-time

embedded systems for consumer electronics, specifically the

use of AOP at the application layer of such systems.

At the end, it becomes clear by the results of our sys-

tematic review that, although there are various studies that

explore the use of AOP in the development of embedded

systems, there is a lack of synergy between both topics

(AOP and embedded systems), in compliance with the

fragmentation of the studies and their multidisciplinary. This

can be observed in [13] and [3]. For the lack of space, a

discussion about other areas are not presented herein.

III. CONCLUSION

In the last years, embedded system development has

been an increasing, important concern, bringing consider-

able challenges to both academy and industry. Advances

in technology, for instance, increase in processing power,

together with new requirements and needs of users, as well

as shorter time-to-market and better quality, have contributed

to difficult this development. New development approaches

must be then investigated, such as the use of AOP. Thus,

main contribution of this paper was to present a detailed

panorama about how AOP has been explored in the de-

velopment of embedded systems. This review identified 25

primary studies that have explored the use of AOP in the

embedded system context. Furthermore, they are classified

into six main research areas, what can show the variability

of research that has been conducted. In spite of different

initiatives in that direction, we have observed that there is

a need of more studies that consolidate the advantages and

limitations of AOP in embedded systems.

Regarding research questions established for our system-

atic review, it is observed that all of them were answered.

This suggests that, the general, knowledge about AOP in

the embedded system development has been mapped. We

believe that results presented in this work are representative

of the whole software engineering domain, since systematic

review has provided mechanism to achieve it.

Considering knowledge arisen from this work, it is pos-

sible to identify interesting and new research lines, such as

(i) to explore the use of AOP in specific types of embedded

systems, such as critical or safety-critical systems; and

(ii) to conduct comparative studies using aspect-orientation

approach in different layers of the architecture of embedded

systems. For the future work, we intend to conduct again this

systematic review in order to update results of this work.

Acknowledgment: The authors would like to thank the

Brazilian funding agencies CNPQ, FAPESP, and FAPEAM.

REFERENCES

[1] D. Beuche, A. Guerrout, H. Papajewski, W. Schröder-
Preikschat, O. Spinczyk, and U. Spinczyk. The pure family
of object-oriented operating systems for deeply embedded
systems. In ISORC’1999, pages 45–53, Saint Malo, France,
1999.

[2] Y. Fanjiang, J. Kuo, S. Ma, and W. Huang. An aspect-
oriented approach for mobile embedded software modeling.
In ICCSA’10, pages 257–272, Fukuoka, Japan, 2010.

[3] E. Freitas, M. Wehrmeister, C. Pereira, F. Wagner, E. Silva,
and F. Carvalho. Using aspect-oriented concepts in the
requirements analysis of distributed real-time embedded sys-
tems. In A. Rettberg, M. Zanella, R. Dömer, A. Gerstlauer,
and F. Rammig, editors, Embedded System Design: Topics,
Techniques and Trends, volume 231 of IFIP, pages 221–230.
2007.

[4] M. Haupt and M. Mezini. Virtual Machine Support for
Aspects with Advice Instance Tables. Phd thesis, Technical
University of Darmstadt, Germany, 2005.

[5] C. Hundt and S. Glesner. Optimizing aspectual execution
mechanisms for embedded. In Journal Electronic Notes
in Theoretical Computer Science, number 2, pages 35–45,
Berlin, Germany, 2009. Elsevier.

[6] Y. B. Kartal and E. G. Schmidt. An evaluation of aspect
oriented programming for embedded real-time systems. In
ISCIS’2007, pages 1–6, Ankara, Turkey, 2007.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with AspectJ. Commu-
nications of the ACM, 44(10):59–65, 2001.

[8] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes,
C. Maeda, and A. Menhdhekar. Aspect-oriented program-
ming. In ECOOP’1997, pages 220–242, Jyväskylä, Finland,
1997.

[9] B. Kitchenham. Procedures for performing systematic re-
views. Technical Report TR/SE-0401, Keele University, UK,
2004.

[10] R. Laddad. Aspect-oriented programming will improve qual-
ity. IEEE Software, 20(6):90–91, 2003.

[11] D. Saraiva, L. Pereira, T. Batista, F. C. Delicato, and P. F.
Pires. Architecting a model-driven aspect-oriented product
line for a digital tv middleware: a refactoring experience. In
ECSA’2010, pages 166–181, Kopenhagen, Dinamark, 2010.

[12] M. A. Wehrmeister, E. Freitas, D. Orfanus, C. E. Pereira, and
F. Rammig. Evaluating aspect and object-oriented concepts to
model distributed embedded real-time systems using rt-uml.
In IFAC’2008, pages 44–54, Seoul, Korea, 2008.

[13] M.A. Wehrmeister, E. Freitas, C.E. Pereira, and F. Wagner.
An aspect-oriented approach for dealing with non-functional
requirements in a model-driven development of distributed
embedded real-time systems. In ISORC’2007, pages 428–
432, Vienna, Austria, 2007.

[14] W. H. Wolf. Computers as components: principles of embed-
ded computing system design. Morgan Kaufmann, 2001.

162

Evaluating Open Source Reverse Engineering Tools

for Teaching Software Engineering

Swapna S. Gokhale, Thérèse Smith, and Robert McCartney

Department of Computer Science & Engineering

University of Connecticut, Storrs, CT 06269-2155

E-mail: {ssg,tms08012,robert}@engr.uconn.edu

Abstract

This paper reports our experiences and lessons
in the evaluation of open source, reverse engineer-
ing tools to teach Software Engineering (SE). The
chosen tools were expected to meet a dual objective,
namely: (i) teach students software comprehension,
maintenance and evolutions skills; and (ii) train
them in modern SE tools. A majority of the tools
were disappointing because they did not deliver their
promised functionality. Moreover, the tool that was
ultimately selected because it appeared to function as
stated, posed unexpected problems. We summarize our
lessons, which we hope will inform others who wish to
undertake a similar exercise.

Keywords

Software Engineering Education, Tools, Reverse En-
gineering

1 Introduction and Motivation

The software industry has witnessed phenomenal
growth over the past two decades. Starting from its
humble beginnings in the 1950s [17], today it is worth
more than $233 billion with a projected annual growth
rate of 17% [23]. This dramatic explosion has created
an extensive need for skilled and talented software en-
gineers. To respond to this need, most educational
institutions now include Software Engineering (SE) as
a mandatory course in their computing curriculum.

The two key realities of today’s software develop-
ment environment include: (a) multiple implementa-
tion technologies; and (b) the need for maintenance
over extended lifetimes [28]. As a result, students hop-
ing to work as software engineers can expect to main-
tain and evolve large, complex legacy software. There-

fore, one of the primary objectives of the SE course
should be to teach students how to comprehend and
evolve existing code. Development of several subsidiary
supporting competencies is implied. For example, the
students should be able to: (i) extract design decisions
and rationale from the code in a top-down, organized
manner using abstractions and tools; (ii) distinguish
between well- and poorly-specified requirements, and
especially identify those that will be difficult to imple-
ment given the structure and organization of the exist-
ing code base; and (iii) produce documentation of good
quality explaining the design rationale.

The software industry commonly uses various tools
to perform software development activities. Some of
these tools improve efficiency and quality of man-
agement and housekeeping tasks; for example, defect
tracking and cost estimation tools [13]. Some tools,
on the other hand, support core design, implementa-
tion and testing functions; for example, configuration
and version control, test case generation and reverse
engineering tools [13]. Increasingly advanced tools
continue to be developed, however, software engineers
show tremendous resistance to their adoption. This
resistance, in part, could be attributed to the sharp
learning curve associated with these tools [9]. Alle-
viating this resistance can encourage the adoption of
these tools, and ultimately increase the efficiency and
reduce the costs associated with software development
and maintenance. A possible way to mitigate this re-
sistance may be to expose and train students in the
different types of SE tools during their school projects.

Our SE course thus has a two-fold objective, namely,
to teach students maintenance and evolution skills,
while training them in modern SE tools. To meet this
dual objective, we sought to evaluate contemporary,
open source tools that would reverse engineer UML di-
agrams from the source code. What we expected to be
relatively straightforward, given the plethora of open
source UML tools, turned out to be rather cumbersome

163

and tedious. Specifically, we observed that many tools
disappointed in delivering their promised functionality.
Moreover, the tool that was ultimately chosen because
it performed smoothly during evaluation, posed unex-
pected problems during actual laboratory assignments.
We disseminate our experiences and lessons through
this paper, hoping to inform others who may wish to
undertake a similar evaluation.

The paper is organized as follows: Section 2 outlines
the selection criteria. Section 3 presents tool selection
and evaluation. Section 4 shares our experiences and
students’ reactions. Section 5 summarizes the lessons
learned. Section 6 surveys contemporary tools. Sec-
tion 7 concludes and offers future directions.

2 Selection Criteria

Various types of tools may be used in SE depending
on its emphasis, which in turn depends on when the
course appears in the curriculum. SE may be offered
according to two broad models, namely, “SE early”
and “SE late”. In the early model, SE is offered to
sophomores and juniors, and most often represents the
students’ first opportunity to get acquainted with the
tools used in the construction of software systems. In
the late model, SE is offered to seniors and may even
be merged with the capstone project. SE late students
may have had opportunities to acquire experience in
the processes and tools necessary to build software.

The tools in the SE early approach may cater to-
wards foundational software development skills, includ-
ing requirements analysis, design, testing, and config-
uration management. On the other hand, the late SE
course may introduce students to specialized, sophis-
ticated tools such as those used for debugging, defect
tracking, cost estimation, automatic code generation
and project management. Our approach is SE early
and we sought to expose our students to configuration
management and reverse engineering tools. To shortlist
these two types of tools for further experimentation, we
defined the following criteria:

1. Integrated Environment: Integrated devel-
opment environments (IDEs) are recommended in
the industry [10] because such environments, where
a collection of tools interoperate [24], can support
cross-process improvements [10]. Studies also show
that practicing software engineers prefer integrated
tools [18]. Finally, academics report that teaching with
integrated tools can be less distracting from the course
objectives [19]. Thus, we choose to teach SE using an
Integrated Development Environment (IDE).

Our choice of IDE is Eclipse because students have
used it in a previous course, thus we prefer tools that
integrate with Eclipse. Even though we may pick tools
from multiple sources, our first criterion is that the
impression of an integrated workstation for interaction
with the code must be maintained through Eclipse and
its plug-ins. Moreover, the plug-ins should work with
Java, which is the language of the course projects, since
it is the only one commonly known to the students.

2. Open Source: To teach students code compre-
hension, maintenance and evolution, a supply of code
which represents legacy software is necessary. Aspects
of this representative software include that it is written
by someone else, preferably a team, has perhaps only
moderately good documentation and design, and does
not follow a uniform style. A certain level of complex-
ity is desirable, as is appeal to the students. The course
projects are based on open source software because it
offers a rich volume of code that exhibits these charac-
teristics. Therefore, a significant criterion is that the
tools themselves are open source.

3. Unified Process (UML): The course exercises a
software process, similar to IBM Rational Unified Pro-
cess [34], because of UML’s industrial and academic
popularity [16, 29, 33]. The students are expected to
learn class and sequence diagrams. Thus, the chosen
tools should be capable of drawing, and wherever ap-
propriate, extracting these diagrams from the code,
which we refer to as “reverse engineering”. Static class
diagrams can be extracted without executing the code,
whereas, dynamic sequence diagrams can be extracted
only by executing the code.

3 Tool selection and evaluation

We short listed several configuration management
and reverse engineering tools for further exploration.
This section summarizes these tools and their evalua-
tion results, subject to the criteria defined in Section 2.

CVS, SVN and Git were the candidate configration
management tools. We included CVS [5] because it
was available in Eclipse as installed in the lab, and
SVN [27] because it was familiar to the course staff.
Although Git [14] was neither installed nor familiar, we
included it because it was comparatively more modern.
Finally, we chose Git and Eclipse plug-in EGit because
of their distrbuted design, scalability, and support from
a worldwide community [14]. This distributed design
would allow students to update from one another, in-
dependently of any central repository.

164

Table 1. Candidate reverse engineering tools
Tool Reason for elimination

Amateras [2] Extracts class diagrams
ArgoUML [3] Standalone
ATL [4] Not specialized to UML
BoUML [6] Not free
Diver [8] Extracts sequence diagrams
UML2
Tools [31]

Incompatible with Eclipse Indigo

Fujaba [11] Different interpretation
Green
UML [15]

Promising, but crashed

Open Model
Sphere [20]

Standalone

Papyrus [21] Extracts class diagrams
StarUML [26] Standalone
Umbrello
UML Mod-
eller [30]

Not windows-based

Violet [32] Exemplar, no reverse engineering

Preliminarily, we discovered many reverse engineer-
ing tools; some of these were created for educational
purposes, while others were intended for a different au-
dience. An examination of this set led to a short list
of candidate reverse engineering tools, summarized in
Table 1. Our further investigation eliminated most of
these tools because they failed to meet one or more of
the selection criteria, and these reasons are also sum-
marized in the table. Violet represents a large class
of tools that does not offer reverse engineering capa-
bilities. BoUML had been free, but was no longer so
when we actually experimented with it. ArgoUML and
OpenSphere were standalone and not Eclipse plug-ins.
StarUML used a different interpretation of reverse en-
gineering from ours; it simply involved generating a
message on to a sequence diagram by clicking on a
method call. Fujaba’s documentation was out of date,
and it had limited capabilities when integrated into
Eclipse. ATL was not specialized for UML diagrams,
rather it was a model transformation tool. UML2Tools
was too old, and not compatible with Eclipse Indigo.
Umbrello was eliminated because it was not Microsoft
Windows-based. Finally, GreenUML appeared promis-
ing, however, it crashed with one of the course projects.

Our exploration did not lead to a single Eclipse plug-
in that could extract both static class and dynamic
sequence diagrams. Amateras was selected to extract
class diagrams. Papyrus was an option to substitute
for Amateras. The only free, Eclipse plug-in that actu-
ally extracted dynamic sequence diagrams was Diver.

Diver’s documentation was decent and it had been run-
ner up for an Eclipse community award, so it seemed
more than adequate. It also worked in conjunction
with all the course projects. All these tools integrated
with Eclipse, and offered an added advantage of being
intended for industrial use.

4. Experiences and Reactions

This section reports experiences and difficulties in
using the chosen tools. It also summarizes the students’
reactions as they experimented with these tools.

4.1 Experiences and Difficulties

In this section, we describe the challenges involved
in set up, installation, and use of the tools. We also dis-
cuss the approaches taken to resolve these challenges.

Integrated Development Environment We
chose Eclipse as the IDE because of student familiar-
ity, but the thought of mandating it had not occurred.
Several student teams chose to use NetBeans instead
of Eclipse. Thus, they used Eclipse to complete their
assignments as the reverse engineering tools were
reached through Eclipse, and ended up in using two
different development environments.

Configuration Management Tools The pre-
semester setup of Git and EGit with Eclipse was com-
plicated by the multiple components of the tool set.
Data was conveyed easily across each individual inter-
face, but representations of data to be entered on one
end of the tool chain and consumed at an end farther
away than the next immediate tool were not always
easy to deduce. Installation of this tool chain had to
be worked out through a combination of Internet search
and extensive trial and error.

Git and EGit provided the students with a seamless
integration with Eclipse. Prepared keystroke/click by
keystroke/click instructions showed them how to use
it. Once again, the use of Git and Egit was not incen-
tivized, i.e., no contribution to the final grade encour-
aged them to use these tools. Thus, the students chose
whatever they found to be the easiest way to collab-
orate, which included emailing each other the project
code, and storing it informally.

Reverse Engineering Tools The first reverse engi-
neering assignment was to extract static class diagrams
using either Amateras or Papyrus. Using these tools
was a simple matter of opening the project from the

165

repository to view the Java classes, then dragging and
dropping these classes onto a diagram canvas. Most
students chose Amateras because they found it ex-
tremely easy. This is not surprising, as dragging from a
list onto a canvas produces the class, and the tool au-
tomatically provides associations such as inheritance.
The diagram produced by the tool was visually ap-
pealing. This experience suggests that the assignment
should ask more than an intelligently arranged display
of classes. For example, the students may be asked to
comment upon class containment and specialization hi-
erarchies, or to search for implementations of patterns
such as the model-view-controller [12].

The next reverse engineering assignment involved
drawing sequence diagrams for specifying require-
ments. The students were expected to describe how
a planned modification of their software would be im-
plemented with communicating classes. Both Papyrus
and Amateras provided the ability to draw sequence
diagrams from dragging classes and manually entering
messages. The set up for Amateras is simple. One
places the jar files in a directory within the structure
for Eclipse, starts Eclipse, and finds the capability in
place. Papyrus was even easier to install, following the
normal Eclipse procedure to install new software.

The last assignment involved extracting dynamic se-
quence diagrams from the code. Diver, the chosen tool,
posed several problems, although it was tested on two
operating systems (Windows/XP SP3 and Vista) and
on all twenty course projects. Moreover, the test of
the installation on laboratory computers, which were
Windows 7, had proceeded far enough to watch the
collection of events. This testing, however, was not
sufficient and a failure mode surfaced where the events
were collected but not being saved. Availability of the
source code was helpful in debugging, and we discov-
ered where the files were being saved from two working
installations. We first conjectured that a needed write-
privilege was absent, however, that was not the case.

We then contacted the developers at University of
Victoria, who were very helpful. Simultaneously, we in-
vestigated the problem in house, in coordination with
the course staff and the staff responsible for maintain-
ing laboratory computers; the latter finally resolved the
issue. Most students could now generate and record
sequence diagrams. On a subset of the projects, a sec-
ond difficulty manifested where the ability to restrict
the tracing events to modules did not seem to work,
though this might be due to a lack of understanding
about what is required for this function. For this subset
of projects, students collected events that were generic
to the Java libraries. They did not see sequences of
calls between top-level objects in their projects.

4.2 Students’ Reactions

The students were exposed to one configuration
management and three reverse engineering tools. They
successfully reverse engineered their projects using
these tools, though with different degrees of support.
They became able, during the course, to express them-
selves at this level of abstraction.

The students were delighted to learn the value of
sequence diagrams in understanding their code, and
reported that they wished they had learned about dy-
namic analysis earlier. The initial resistance, showed
by some students, dissipated quickly, after they had the
opportunity to study the sequence diagrams produced
by the tool. Some students found the notation (object
instance, timeline, lifeline) in sequence diagrams suf-
ficiently unintuitive to recognize it right away. Thus,
each student team was given a brief tutorial to the se-
quence diagram drawing tool. The tutorial also demon-
strated how constructors or how object construction
appeared on the diagram. Overall, the students en-
joyed sequence diagrams more than class diagrams,
probably because they had not seen this diagram be-
fore, and they became involved with annotating the
messages with the note tool. By comparison, the class
diagrams gave them almost no creative activity.

Retrospectively, we felt that the students would have
better appreciated the value of sequence diagrams if
they had extracted these before drawing one for their
planned enhancement. This extraction may have pro-
duced a detailed understanding of the code, and led to
more meaningful and interesting enhancements. Al-
though the assignments were handed in this order,
the time consuming difficulties encountered with Diver
forced us to flip their series of completion.

5 Lessons Learned

In this section, we summarize the lessons learned
from the exercise of selecting, evaluating and experi-
menting with open source tools to teach SE.

• Installation and set up: It took excessive time
to install the set of tools that ultimately worked to-
gether to provide a laboratory environment. Tool
chains, where each tool complies with the inter-
faces of its neighbors, may lack documentation
about data transformations, and hence, may re-
quire cumbersome trial and error.

• Functions and capabilities: The definitions of
terms may not be consistent and uniform. Thus,
although a given tool promises a particular func-
tion, its specific implementation may be different.

166

Some tools may perform the needed functions, but
only in versions incompatible with the laboratory
set up. Thus, sufficient time must be allocated to
experiment and ensure each tool’s capabilities.

• Debugging: Subtle bugs can exist, such that the
tool works fine in one environment, but not the
needed environment. Open source tools may be
beneficial, should the need to debug arise.

• Incentivization: Students’ preferences for devel-
opment environments and collaborative styles may
be different than those planned for the course.
It is recommended to provide an incentive (grade
points) for the use of tools that are strongly pre-
ferred, perhaps from the need to enforce consis-
tency and uniformity, or for the sake of efficiency.
Without incentivization, students can wander off
in unanticipated directions, giving them less of
the planned valuable experience and resulting in
a marginally satisfactory outcome.

• Exploratory assignments: The assignments
should expect students to go beyond what can
be easily and routinely accomplished by the tool.
Such creative assignments will teach them how to
explore and learn a tool, and gain insights into the
value of the abstraction implemented by the tool.

6 Contemporary Tools

This section surveys the approaches taken to select
tools to teach SE. Some institutions select tools that
are designed for the industry. An Internet examination
of the syllabi of SE courses suggests that many open
source, industrially relevant tools exist, and have been
found useful in instruction. These tools, each address-
ing an important and interesting facet of SE, are so
numerous that one could imagine using a different one
each week of the semester, for example [22, 25]. In-
novative use of these tools occurs as well, for example
de Marcos et al. [7] report a combined informatics and
philosophy course using StarUML.

A completely different approach is to abjure tools
suitable for the industry because they take too long to
learn, or misdirect students’ focus, and instead develop
a lightweight tool set that supports the software devel-
opment process, and in doing so, help novices develop
an understanding and awareness of the principles and
practices as they work [1]. Yelmo et al. [35] adopt this
approach and use a tailored, lightweight version of the
IBM Rational Unified Process. They also develop a
web-based tool to adapt RUP to a specific project.

Our approach can be considered to be a hybrid of
the above two strategies. Because we lacked the re-
sources to develop a custom, lightweight tool set, we
sought to evaluate existing tools. Our search was nar-
rowed to open source tools, not only because it was the
theme of the course, but also because the availability
of the source code offered the potential to customize
the tools to meet our objectives. Finally, although
industrial relevance was not a significant selection or
evaluation criteria, the chosen tools were intended to
be used in the industry. This industrial relevance was
a plus because it can conceivably help students when
they seek employment as software engineers.

7. Conclusions and Future Directions

We reported our experiences and lessons in evalu-
ating open source tools to teach SE. Despite the myr-
iad of tools, this evaluation was cumbersome because
many tools did not deliver their promised functionality.
Moreover, those tools that do appear to work, can be
unpredictable when called upon. Thus, such evaluation
can require significant trial and error and preparedness
to tackle unexpected, subtle issues.

We want more for reverse engineering of sequence
diagrams, in particular the ability to restrict the se-
quence diagrams to specific classes. For this purpose,
we might investigate the code of Diver, as well as con-
tinue searching for more tools. Ultimately, we envision
a set of tools connected through Eclipse, allowing stu-
dents to learn, measure, and develop abstractions, so
that the software not only remains useful but can bet-
ter evolve with new requirements.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grants DUE-1044061 and CNS-
0643971. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect those of
the National Science Foundation.

References

[1] K. Alfert, J. Pleumann, and J. Schroder. Soft-
ware engineering education needs adequate mod-
eling tools. In Proc. of 17th Conf. on Software
Engineering Education and Training, pages 72–77,
Mar. 2004.

[2] http://amateras.sourceforge.jp/cgi-

bin/fswiki_en/wiki.cgi?page=AmaterasUML.

167

[3] http://argouml.tigris.org/.

[4] http://www.eclipse.org/atl/.

[5] B. Berliner and N. B. Ruparelia. Early days of
CVS. SIGSOFT Softw. Eng. Notes, 35:5–6, Oct.
2010.

[6] http://www.bouml.fr/.

[7] L. de Marcos, F. Flores, and J.-J. Martínez. Mod-
eling with Plato: The Unified Modeling Language
in a cultural context. In Proc. of the 15th Annual
Conf. on Innovation and Technology in Computer
Science Education, pages 249–253, 2010.

[8] http://marketplace.eclipse.org/content/

diver-dynamic-interactive-views-reverse-

engineering.

[9] J. Feller, B. Fitzgerald, S. A. Hissam, and K. R.
Lakhani, editors. Perspectives on Free and Open
Software. Cambridge, MA: The MIT Press, 2005.

[10] http://www.forrester.com/rb/Research/

building_it_strategy_for_it_tooling/q/id/

59686/t/2.

[11] http://www2.cs.uni-paderborn.de/cs/ag-

schaefer/Lehre/PG/FUJABA/.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fun-
damentals of Software Engineering. Prentice Hall,
1991.

[14] http://git-scm.com/.

[15] http://green.sourceforge.net/.

[16] R. Kerbs. Student teamwork: A capstone course
in game programming. In Proc. of 37th Annual
Frontiers In Education Conference, pages F4D–15
–F4D–19, Oct. 2007.

[17] E. C. Kubie. Recollections of the first software
company. IEEE Annals of the History of Comput-
ing, 16(2):65–71, 1994.

[18] T. C. Lethbridge and J. Singer. Understand-
ing software maintenance tools: Some empirical
research. In Proc. of Workshop on Empirical
Studiess of Software Maintenance, pages 157–162,
1997.

[19] A. Meneely and L. Williams. On preparing stu-
dents for distributed software development with a
synchronous, collaborative development platform.
SIGCSE Bull., 41:529–533, Mar. 2009.

[20] http://judebert.com/progress/archives/

358-Rating-UML-Editors-Open-ModelSphere.

html.

[21] http://www.papyrusuml.org/scripts/home/

publigen/content/templates/show.asp?L=

EN&P=55&vTicker=alleza&ITEMID=3. http:

//www.eclipse.org/modeling/mdt/papyrus/.

[22] http://assassin.cs.rpi.edu/~hollingd/

sdd/.

[23] Software Engineering Facts and Figures.
http://www.bsa.org/country/Public%

20Policy/~/media/Files/Policy/Security/

General/sw_factsfigures.ashx, May 2010.

[24] J. Singer, T. Lethbridge, N. Vinson, and N. An-
quetil. An examination of software engineering
work practices. In Proc. of CASCON First Decade
High Impact Papers, pages 174–188, 2010.

[25] http://www.stanford.edu/class/cs295/.

[26] http://staruml.sourceforge.net/en/.

[27] http://subversion.apache.org/.

[28] http://www.uml.org/Visual_Modeling.pdf.

[29] http://homepages.inf.ed.ac.uk/perdita/

Book/.

[30] http://uml.sourceforge.net/.

[31] http://wiki.eclipse.org/MDT.

[32] http://sourceforge.net/projects/violet/.

[33] www.uml.org/Visual_Modeling.pdf.

[34] X. Wu and C. Ge. The research on necessity and
plan for using extreme programming in rational
unified process. In Proc. of Intl. Conf. on Com-
putational Intelligence and Software Engineering,
pages 1–3, Dec. 2010.

[35] J.C. Yelmo and J. Fernandez-Corugedo. An expe-
rience of educational innovation for the collabora-
tive learning in software engineering. In Proc. of
Global Engineering Education Conference, pages
567–574, Apr. 2011.

168

Coordination Model to Support Visualization of Aspect-Oriented Programs

Álvaro F. d’Arce, Rogério E. Garcia, Ronaldo C. M. Correia, Danilo M. Eler
Departamento de Matemática, Estatı́stica e Computação

Faculdade de Ciências e Tecnologia – Universidade Estadual Paulista “Júlio de Mesquita Filho”
Rua Roberto Simonsen, 305 – CEP 19060-900 – Presidente Prudente - SP, Brazil

alvaro@darce.com, {rogerio,ronaldo,danilo}@fct.unesp.br

Abstract

Program Comprehension tasks represent a strategic role
in Software Engineering activities, demanding time and
effort, representing a considerable cost in maintenance.
Aspect-Oriented Programming has specific elements to
compose program behavior (e.g., aspects, pointcuts, join
points and advices). The cognitive process can be im-
proved by employing visual techniques to support source
code analysis of its structure and behavior. A Software
Visualization tool must be able to provide suitable visual
representations for the program. Particularly, visual explo-
ration of Aspect-Oriented programs requires some features
to map how aspects crosscut some program structures. In
this paper we propose a tool and an architecture to improve
Aspect-Oriented program understanding supported by three
coordinated visualization techniques.

Keywords: Program Understanding, Aspect-Oriented

Program, Software Visualization, Software Engineering.

1 Introduction

Program Comprehension involves individual program-

mers understanding about what a program does and how

it does it, in order to make functional changes and exten-

sions, for example, without introducing defects [6]. Kara-

hasanovic and his partners argue that Program Comprehen-

sion remains incomplete, requiring a deeper understanding

of employed strategies, and before any modification (e.g.,

maintenance tasks), understanding the underlying mecha-

nisms might improve the comprehension [13]. Acquiring

knowledge about large programs may delay Program Com-

prehension tasks, which motivate the use of Software Visu-

alization as an alternative approach to improve the cognitive

process.

However, Aspect-Oriented programs comprehension can

become more complex to be done, because separated units

of code interfere in the behavior of other units. Aspect-

Oriented Programming (AOP) supports crosscut concerns

modularization, by structures that add behavior to selected

elements of the programming language semantics [14].

Thus, AOP isolates implementation that otherwise would

be spread and tangled throughout the base code. This new

feature increases the program structural complexity, making

harder to achieve the understanding of its architecture and

structure, bringing up challenges to Aspect-Oriented Pro-

gram Comprehension.

Based on that, Software Visualization can be an alter-

native approach to help software engineers to cope with

structural complexity – due to fragmentation and the need

to compose fragments – since the visual representations are

able to work with an Aspect-Oriented program effectively,

having specific visual mappings for Aspect-Oriented pro-

grams and mechanisms to gather and to organize data rep-

resenting AOP features.

Visualization techniques, some extensions and tools

have been proposed to support software visualization:

TreeMaps [12, 2, 18], Polymetric Views [15, 3] to visual-

ize hierarchical structures; Hyperbolic Trees [17] to visual-

ize large hierarchical structures; Bars and Stripes for inter-

relational structures visualization [1]; UML 3D to visual-

ize packages, classes and methods [10]; and Dependence
Graphs for inter-dependency level visualization [19]. These

visualization techniques can be used to build visual repre-

sentations to support comprehension tasks, but when ap-

plied to an Aspect-Oriented program as artifact, they are

able to represent only the aspects before the weaving pro-

cess – its fragmented code – and not the resulting code after

the weaver – its tangled and spread code.

In this paper we propose a tool and an architecture

supported by coordinated visual mappings which tackle

Aspect-Oriented programs. The proposed approach is ca-

pable of analyzing a source code after the weaving process,

enabling a visual exploration of the software structure (i.e.,

methods, aspects, advices and pointcuts) and how it all is

related. Furthermore, our tool is able to visually show all

structures involved in structural tests’ results.

169

The remainder of this paper is organized as follow. Sec-

tion 2 presents some considerations about Aspect-Oriented

programs and also some related works. Section 3 presents

some considerations about the developed tool to apply the

proposed visual mapping and its architecture. Section 4

presents some applications of the proposed approach. Fi-

nally, the final remarks and future works are presented in

Conclusions section.

2 Background

Kiczales et al. [14] argue that Object-Oriented Program-

ming (OOP) is a technology that can aid Software Engi-

neering, because the underlying object model provides a

better fit to real domain problems. But they pointed out

programming problems. For instance, OOP techniques are

not sufficient to clearly capture important design decisions

about different concerns implemented in a software system

– some requirements (usually non-functional) cannot be

clearly mapped to isolated units of implementation. Mecha-

nisms to persist objects in relational data bases and security

issues are examples of those concerns, usually named cross-

cutting concerns, because they tend to cut across multiple

units of implementation [8].

Aspect-Oriented Programming (AOP) tackles the cross-

cutting concerns problem supporting the definition of im-

plementation units (aspects) that cut across the system units

(base code), composing the expected behavior [14]. An

AOP language must define elements in order to combine

functional and non-functional code (aspects and base code).

Such elements establish a model to define points in the base

code where additional behavior may be defined (pointcuts);

a mechanism to identify these points (join points); encap-

sulation units for these points specifications and behavior

enhancements (aspects); and a process to combine aspects
with the base code (weaver) [8].

Functional requirements (like business rules) are coded

inside a component language (e.g., Java) and non-functional

requirements (e.g., logging, persistence, connection and

transaction routines) are coded inside aspects. The weaver
process joins the component language code with the aspects
code, resulting in a runnable program. The language em-

ployed as case study in this paper is the AspectJ, which is

an extension of Java language to support AOP.

An Aspect-Oriented program was used for this paper

to generate views. It was designed and coded using As-
pectJ [16] and represents an on-line music store simulation,

in which a billing service observes song-play events to bill

the customer. An aspect implementation of the Observer
design pattern [11] was used to add billing and statistics.

Additionally, aspects track plays and lyric-shows events

were coded to charge the customer appropriately and to up-

date a list of the most frequently played songs.

One may observe the statical relations among aspects
and classes, but it is not possible to conclude how As-
pects crosscut a base code. Their relationships are im-

portant elements to Program Comprehension and should

be mapped into visual structures to improve the cognitive

process, which motivated extending Software Visualization

techniques to deal with such elements.

After weaving and compilation processes of an AspectJ

program, specific structures of an Aspect-Oriented program

are tangled and spread in the bytecode. However, compilers

use marks about aspects and their advices that can be re-

trieved by analyzing their signatures. The AspectJ compiler

stores its components’ signatures with specific markups,

making it possible to obtain and to organize data about a

compiled AspectJ program to a visual exploration.

2.1 Related Works

In Aspect Programs some interesting program elements

can be highlighted by a Software Visualization tool in cer-

tain visual scenarios, such as, aspects, advices and point-
cuts. It allows viewing how an aspect crosscuts one or more

program structures, how much a program structure is modi-

fied by one or more aspects, the resulting tangled and spread

code after the weaving process.

A TreeMap extension was proposed to show advised re-

lations of Aspect-Oriented programs [18], but it consists in

an user-based mining task by searching regular expressions

representing aspects and classes elements. Another tool,

AspectJ Development Toolkit (an Eclipse toolkit for AOP),

has the AJDT Visualizer [5] – a Bars and Stripes visual rep-

resentation of classes and aspects, highlighting its affected

lines by aspects – but no visualization about how an as-
pect produces specified behavior in a class or other aspect.
SourceMiner [4] can be used to enhance concern modular-

ization analysis, but the concerns (focusing in AOP) need to

be manually mapped. Another visualization tool, named

AspectMap [9], shows implicit invocations in the source

code. It allows visualizing join points shadows where as-
pects are specified to execute, showing the advice type and

specified precedence information for a given join point.
In the next section we describe the coordination model

proposed, the software visualization tool that implements

such a model and its architecture, and how the visual map-

ping is performed.

3 The Software Visualization Tool

In this paper we propose a software visualization tool,

called SoftV izOAH , which employs a coordinated mul-

tiple views (CMV) approach to visualize Aspect-Oriented

programs. The CMV schema is depicted in Figure 1. In

170

this CMV approach we employee three visual representa-

tions and one content list. The Structural Presentation aims

to show how the source code is hierarchically organized in

packages, classes, methods, aspects and advices. The Inter-
Units Presentation aims to show aspects crosscutting be-

tween methods and advices. The Intra-Method Presenta-
tion aims to show the intra-method behavior after the weav-
ing process. The Methods/Advices List aims to show the

methods and advices of classes or aspects selected in visual

exploration. These visualizations are coordinated – the co-

ordination is represented by the arrows – to allow exploring

distinct levels of view.

Intra-Method Presentation
(Control Flow Graph View)

Inter-Units Presentation
(Hyperbolic View)

Structural Presentation
(TreeMap View)

Methods/Advices
List

AOP Visualization

Figure 1. Visual mapping presentations
schema

For the Structural Presentation, we have chosen the

TreeMap technique (Figure 3(b)) to represent the program’s

hierarchical structure including AOP elements (aspects and

advices). For the Inter-Units Presentation, we have cho-

sen an hyperbolic view (Figure 3(a)) to represent classes’

dependencies coupled with aspects crosscuts. For the

Intra-Method Presentation, we have chosen a Control Flow
Graph (CFG), Figure 4(b), to visualize the advised source

code representing a piece of code behavior, showing advices
over the code after the weaving process.

About the color mapping, each program element (i.e.,

the whole program, classes, methods, aspects and advices)

has its own predefined color on visual mapping. All vi-

sual presentations use the same color mapping. When a test

case is applied, a gradient from green to red (Gradient Test
Case) is used to color the methods and advices represented

or involved in the visual representation, according to their

structural tests’ results. The more the method or advice has

failed in the test, the redder it is colored. The more the

method or advice has succeeded, the greener it is colored.

If the method or advice is not covered by the test case, it

is colored using their predefined color. Such color mapping

allows highlighting some AOP elements and viewing how

succeeded (or failed) a test case covered the source code

and how much of the whole source code is covered by a test

case.

3.1 SoftV izOAH architecture

SoftV izOAH is a standalone desktop Software Visual-

ization tool organized in three layers, Dataset, Control and

Visualization, as illustrated in Figure 2. It uses program

bytecodes as input and applies the proposed coordinated vi-

sual mapping to visualize Java and AspectJ programs struc-

ture and behavior as well as provides test case results visu-

alization – test cases created with JUnit.

Hyperbolic
View

Treemap
View

Graph
View

Integration
Module

Reading Module

JUnit

DataSource

Data
se

t la
ye

r

Con
tro

l la
ye

r

Visu
ali

za
tio

n l
ay

er

Static
Analysis

Dynamic Analysis

Bytecode

Structural Test

Result

Figure 2. SoftV izOAH architecture

The Dataset layer performes static and dynamic analy-

ses, creating necessary data sets to generate the visual repre-

sentations. The Reading Module performes the Static Anal-
ysis, that reads a program’s bytecode and analyzes its struc-

ture (packages, classes, methods, aspects, advices and test

cases), execution sequence and its aspects crosscuts. Dur-

ing the bytecode reading, each unit data flow stream is an-

alyzed and put into a Control Flow Graph data structure.

An instrumentation technique is performed, inserting new

instructions in each unit code containing calls from meth-

ods and advices, providing feedback to allow monitoring

test cases by Dynamic Analysis). A list with all classes, as-
pects and their information obtained by the instrumentation

is built. From this list, a hierarchical structure is built to be

used to generate the TreeMap visual presentation and also

a node table and an edge table, grouping informations like

superclass references, variable types, methods’ parameters

and returns. By the interpretation of these tables and the

organization of the links among the nodes, a Dependence
Graph is constructed to be used to generate the Hyperbolic
visual representation. When the Structural Test is in exe-

cution, the Dynamic Analysis makes an execution path by

monitoring test cases and registers each visited portion of

code of each code unit. The coverage criteria are then ver-

171

ified from this path to determine the test’s Result, in which

each criterion has its own standard to verify whether the test

has been completely or partially met. The instrumentation

sends to the tool, during a test execution, information about

each visited portion of code. This information is stored to

be used in each visual representation. By these two analysis

steps (static and dynamic analyses), the tool gathers data to

generate visual representations [7].

At Control layer, the data obtained from Reading Mod-
ule (to generate visual presentations – all presentations are

generated at the same time) are organized by the Integra-
tion Module, which provides mechanisms to coordinate the

visualizations. These mechanisms capture user interactions

in visual presentations to reflect the related events into an-

other view. From each captured event, caused by an user in-

teraction in a specific visualization, the Integration Module
obtains data about the selected program unit (class, method,

aspect or advice). An event is then sent to the Visualization

layer, informing the new visual representation state (i.e.,

highlighted items), performing, this way, the coordination,

using the data structures stored in the Dataset layer (i.e., the

list containing information provided by the instrumentation,

the hierarchical structure, the node and edge tables and the

graph data structure).

The Visualization layer is responsible for providing

CFG, TreeMap and Hyperbolic visual presentations, high-

lighting AOP features (i.e., aspects and its crosscuts) de-

pending on the visualization in question. This layer receives

data from the Control layer (i.e., events captured from user

interactions and data obtained from the Dataset layer) to

generate and update each visual representation.

From the working together of these three layers, the de-

veloped Software Visualization tool uses the proposed coor-

dinated visual mapping to visualize Java and AspectJ com-

piled programs. The next section presents an application

and descriptions of the coordinated multiple views from

SoftV izOAH .

4 Applications

In this section we show an application of SoftV izOAH :

we performed a visual exploration of the Aspect-Oriented

program of an on-line music store simulation, coded in As-
pectJ by Lesiecki [16].

Figure 4(b) shows a Control Flow Graph visual repre-

sentation used to present methods, advices or test case ex-

ecutions. In this visual representation, basic code blocks

are represented by rectangles outlined by a continuous line;

code blocks advised by aspects (advices) are represented by

rectangles outlined by a dashed line; the respective point-
cuts are represented by the advice sequence in the graph;

and method returns are represented by rectangles outlined

by a double line. Inside each rectangle a number indi-

(a) Hyperbolic projection

(b) Treemap visualization

(c) List of Methods/Advices

Figure 3. Coordination from Hyperbolic to
TreeMap view and Methods/Advices List

cates the code block execution sequence. Normal code se-

quences are represented by continuous lines, and automatic

generated code sequence (as exceptions) are represented by

dashed lines. When a test case is applied, each rectangle is

172

colored according to the Gradient Test Case, as shown in

Figure 4. Otherwise, a predefined color is used. The global

view of the Control Flow Graph View represents the tangled

and spread code. In the example depicted in Figure 4(b), the

code is tangled (advices among the code) and the aspect is

thinly spread (advices are close to each other).

We employed the TreeMap visual representation to

present hierarchical structures in nested rectangles, as

shown in Figure 4(a). Rectangles represent program struc-

tures (e.g., the whole program, packages, classes, meth-

ods, aspects and advices). The rectangle size represents the

number of calls of a represented method or advice inside

a specified context – the whole program, classes, methods,

aspects, advices and test cases. When a test case is applied,

the Gradient Test Case is used to color all program methods

and advices in the test case scope, as illustrated in classes

Song and Playlist shown in Figure 4. The TreeMap rep-

resentation provides a global view of the whole program

hierarchical structure with highlighted aspects.

In the Hyperbolic visual presentation, depicted in Fig-

ure 3(a), nodes represent program classes and aspects; and

edges represent dependency between each class or aspect,
i.e. method calls and aspect crosscuts. Classes and as-
pects are colored employing different colors. When a test

case is applied, the Gradient Test Case is used to color the

edges, considering the methods and advices belonging to

the two classes or aspects connected by the edge in the test

case scope. Otherwise, edges are colored using a prede-

fined color. The global view of the Hyperbolic View rep-

resents the classes dependences and (highlighted) aspects
crosscuts.

All three visual representations and the content list are

coordinated: an user interaction event in which one re-

flects in others to represent the same state in all visualiza-

tions. The coordination schema is shown Figure 1. Fig-

ure 3 depicts the coordination from Hyperbolic to TreeMap
view and Methods/Advices List. In the Hyperbolic view is

selected the aspect ObserverBillingPolicy, which is high-

lighted in the TreeMap view. Additionally, the advices of

the selected aspect are shown in Methods/Advices List 3(c).

By this coordination, one may observe classes and aspects
dependences, its hierarchical structures and the respective

methods and advices involved in each class and aspect de-

pendence (i.e. methods call and advices crosscuts).

In Figure 4 the Control Flow Graph shows an intra-

method behavior after the weaving process. The block color

is based on the test case performed. In this view is selected

the advice ObserverProtocl.after1, which is highlighted in

TreeMap View. By this coordination, one may observe the

weaved code flow structure – code behavior – and the re-

lated methods and advices involved in each code sequence.

The software visualization tool (SoftV izOAH) pro-

posed in this paper is able to asses the visual mapping and

(a) Treemap visualization

(b) Control Flow Graph visualization

Figure 4. Coordination from TreeMap view to
Control Flow Graph visual presentation

improve the understanding of Aspect Oriented Program-

ming. By interacting with those coordinated visual presen-

tations, in hierarchical structure, classes’ dependence, as-
pects crosscuts, fragmented, tangled and spread code, one

may observe how aspects crosscut classes.

173

5 Final Remarks and Further Works

Most software artifacts are abstract, having no physical

representation. Focusing on source code, obtaining insights

can be difficult, especially because of the amount of lines

in software systems and its structure. Our motivation came

from analyzing the associated AOP source code, since the

new AOP features and consequences – fragmented, tangled

and spread code – must be externalized by a visual map-

ping. There are some tools that provide visual represen-

tations. Some of them support Aspect-Oriented programs,

some have the necessity of manually mapping concerns, and

some provide no aspect identification. But most of them do

not provide a more broad aid to entire program understand-

ing.

So, a coordinated visual mapping was proposed to

present Aspect-Oriented programs’ features using three vi-

sual presentations and a content list which aim to exter-

nalize structural organization, the relations among classes

and aspects, and the advised code. The proposed coordina-

tion schema makes it possible to highlight selected elements

on different detail levels, allowing the user to gather infor-

mation about aspect and its spreading to the source code

– how aspects crosscut the program structures, composing

program behavior.

We also developed a tool (SoftV izOAH) to assess the

visual coordination model proposed. And both Object Ori-

ented and AOP source code has been used on assessing the

coordinated visual mapping. Also, SoftV izOAH is able

to show test cases’ results along with the visual represen-

tations, that allows analyzing how the test cases go through

source code and their coverage. Hitherto, our evaluation has

shown that such feature is helpful in locating defects (where

the defect is).

Also according to preliminary evaluation, the tool’s

functionalities are useful to support Aspect-Oriented pro-

gram understanding. However, to assess the effectiveness

and efficiency of the visual proposed mapping in a more re-

alistic manner, a controlled experiment has been planned,

and will be conducted using an experimentation process,

aimed to locate defects previously inserted into AOP source

codes.

References

[1] J. Baldwin, D. Myers, M. Storey, and Y. Coady. Assembly

code visualization and analysis: An old dog can learn new

tricks! PLATEAU ’09 Workshop at Onward!, 2009.
[2] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Or-

dered and quantum treemaps: Making effective use of 2d

space to display hierarchies. ACM Transactions on Graph-
ics (TOG), 4(21):833–854, October 2002.

[3] G. Carneiro, R. Magnavita, and M. Mendonça. Combining

software visualization paradigms to support software com-

prehension activities. In 4th ACM symposium on Software
visualization (SoftVis’08), pages 201–202, NY, USA, 2008.

[4] G. Carneiro, C. Sant’Anna, A. Garcia, C. Chavez, and

M. Mendonça. On the use of software visualization to sup-

port concern modularization analysis. ACoM 2009, Colo-
cated with OOPSLA, 2009.

[5] A. Clement, S. Colyer, and M. Kersten. Aspect-oriented pro-

graming with ajdt. AAOS 2003: Analysis of Aspect-Oriented
Software workshop at ECOOP 2003, 2003.

[6] C. L. Corritore and S. Wiedenbeck. An exploratory study of

program comprehension strategies of procedural and object-

oriented programmers. International Journal of Human-
Computer Studies, (54), 2001.

[7] A. F. D’Arce, R. E. Garcia, and R. C. M. Correia. Coor-

dinated visualization of aspect oriented programs. I Work-
shop Brasileiro de Visualização de Software (WBVS 2011),
II Congresso Brasileiro de Software: Teoria e Prática (CB-
Soft 2011)., 2011.

[8] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented pro-

gramming – introduction. Communications of the ACM,

10(44):29–32, 2001.
[9] J. Fabry, A. Kellens, S. Denier, and S. Ducasse. Aspectmaps:

A scalable visualization of join point shadows. International
Conference on Program Comprehension (ICPC), 2011.

[10] H. Gall and M. Lanza. Software analysis visualization. 28th
International Conference on Software Engineering (ICSE
Shangai 2006), 2006.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 2000.

[12] B. Johnson and B. Shneiderman. Tree-maps: a space-filling

approach to the visualization of hierarchical information

structures. In Proceedings of the 2nd conference on Visu-
alization ’91, VIS ’91, pages 284–291, Los Alamitos, CA,

USA, 1991. IEEE Computer Society Press.
[13] A. Karahasanovic’, A. K. Levine, and R. Thomas. Com-

prehension strategies and diffculties in maintaining object-

oriented systems: An explorative study. Journal of System
and Software, 7(80):1541–1559, 2007.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An overview of aspectj. ECOOP
2001 – Object Oriented Programming, 2072(2001):327–

354, 2001.
[15] M. Lanza. Codecrawler - polymetric views in action. In 19th

International Conference on Automated Software Engineer-
ings, pages 394–395, september 2004.

[16] N. Lesiecki. Aop@work: Enhance design patterns with as-

pectj. IBM developerWorks, 2005. Accessed on Nov/2011.
[17] T. Munzner. Exploring large graphs in 3d hyperbolic space.

IEEE Computer Graphics and Applications, 18(4):18–23,

July/August 1998.
[18] J. Pfeifer and J. Gurd. Visualization-based tool support for

the development of aspect-oriented programs. Proceedings
of 5th International Conference on Aspect-Oriented Soft-
ware Development, 2006.

[19] T. Würthinger, C. Wimmer, and H. Mössenböck. Visualiza-

tion of program dependence graphs. Compiler Construction,
17th International Conference, Springer, vol. 4959, Lecture
Notes in Computer Science, pages 193–196, 2008.

174

Improving Program Comprehension in Operating
System Kernels with Execution Trace Information

Elder Vicente1, Geycy Dyany1, Rivalino Matias Jr., Marcelo de Almeida Maia
Faculty of Computing

Federal University of Uberlândia
Uberlândia, MG - Brasil
marcmaia@facom.ufu.br

Abstract—Operating systems are one of the most complex kinds
of software systems ever built. Their complexity results from
many factors, in special, the huge size and low-level issues. As
consequence, there are many programming challenges to be
considered at either the in-the-large level or in-the-small level.
Program comprehension is a crucial problem for developers who
need to contribute or reuse the code base in some way. One of the
most important challenges in this scenario is to find the functions
in the source code that are responsible for a specific feature of the
system. Previous work has shown the benefits of using execution
trace information to improve the comprehension process of
features that can have their execution adequately reproduced.
However, the use of execution traces in the comprehension of
operating system kernel features is poorly studied. In this work,
we show that execution traces can effectively improve program
comprehension of kernel features when adequate filters are
provided to the instrumentation tools.

Keywords – program understanding, execution traces,
operating systems

I. INTRODUCTION
Linux is a robust operating system that can be used either in

desktops or in corporate servers of large companies, supporting
several plataforms (ARM, x86, MIPS, SPARC, etc). Statistics
presented in [1], [2] show that the kernel source code is under
active development, and consequently the evolution of the base
code comes together with this development: a n ew release is
created each 60-80 days. Developers worldwide participate in
the development of the kernel. For instance, the release 2.6.35
accounted the collaboration of approximately 1145 developers,
including the participation of large companies, such as,
RedHat, Novell, IBM and others. Moreover, the number of
lines of code also grows with the evolution of the kernel. For
instance, release 2.6.10 had almost 6 million lines of code and
release 2.6.27 had more than 8.5 million lines of code. In this
scenario, the task of feature location [3], i.e., the task of finding
source code pieces related to user point-of-view software
features, is an extremely challenging task because features may
not be intuitively located in the code, and even if that was the
case, there are so many number of modules and functions to be
navigated that the task is still challenging. This situation is
even more dramatic for newbie developers working on the
kernel.

In order to alleviate this challenge, the source is distributed
together with a folder that contains the kernel documentation.
There are still some other sources of information that explains
the kernel source code [6], Erro! Fonte de referência não
encontrada.. However, the available documentation is still not
sufficient to reference and explain all source code files or all
functions that are used to implement the feature of interest. In
this way, the documentation only offers a general view of a
feature, and not necessarily all features that a developer may be
interested are described in the documentation. Moreover, some
books had already published on the kernel [7], [9], but still
there is n o guarantee that the text included in the book will
remain updated, considering the kernel evolution throughout
the time.

Fortunately, many solutions to the program comprehension
problems had already been proposed. The solutions are based
on a variety of techniques: static techniques which usually
construct graphs from the source code using compiling
techniques and perform some kind of query or browsing on that
graph; dynamic techniques which usually extract information
from the execution of the desired feature to drive the location
of the piece of interest; information retrieval techniques which
consider the terms written by the programmers to associate
with feature terms and enable queries by similarity; and hybrid
techniques, which seems to be the most successful ones, that
combine the above techniques to enhance the precision and
recall of the returned information.

However, program comprehension using dynamic
information has not been studied with operating system kernels
as the target software [3], [4]. One possible reason is that, if the
analysis of dynamic information from the execution still
imposes important challenges for systems implemented in
high-level languages, such as Java, where the events captured
during the execution are typically function entry and exit,
consider the situation where important events to be considered
in operating system execution traces could be associated with
low-level interfaces, such as, interrupt handling. Moreover, the
number of different kinds of events to be considered by the
instrumentation tool could also be an issue.

Despite this negative scenario for using information of
execution traces in the problem of program comprehension for
operating systems kernel, we raise the hypothesis that

1This work was partially supported by the Brazilian agency CAPES.

175

developing appropriated filters into the instrumentation tool
may provide useful and feasible information for developers.

The goal of this work is to develop a method for producing
filters for low-level events that could accurately extract
dynamic information of instrumented programs, without
incurring in the problem of flooding the developer with
unnecessary trace information. The more filters are precise, the
more developer’s work is simplified. The suitable filters should
enable the use of execution trace information for program
comprehension problems in operating systems, especially those
related to locating pieces of code related to some specific
functionality.

In the next section, the tools used in this study will be
reviewed. In Section III, we present the study setting. In
Section IV the results of the study are presented and in Section
V these results are discussed. Finally, Section VI presents our
final remarks.

II. BACKGROUND TOOLS

A. Ftrace
The ftrace is a tool used to trace kernel functions [12], [13]. It
is a si mple tracer of kprobes, but faster and more precise in
terms of time analysis [11]. Ftrace does n ot require any
specific application in the user-space and all co nfigurations
steps are carried out using the debugfs file system. Ftrace can
be used in late ncy analysis or in d ebugging performance
problems. The ftrace infrastructure allows other types of
tracing, such as, irqsoff plugin, which traces source code areas
that disable interrupts. T his plugin allows to measure the
interval times in which interrupts are disab led in the kernel.
Ftrace was used in this work to co llect traces of the subject
program proposed in the experiment.

B. SystemTap
SystemTap provides a scripting environment to analyze the

tasks of a Linux system at runtime [10]. The dynamic
information can be collected at real -time, which is a f lexible
way to trace t he kernel execution. SystemTap provides
mechanisms to e xtract, filter and s ummarize in order to
simplify the analysis and diag nosis of the desired prope rties.
One positive point is that SystemTap does n ot require to
recompile, to reinstall and to reinitialize the kernel in order to
obtain the target data [11].

SystemTap uses an internal scripting language similar to the
AWK programming language. An internal analyzer checks the
script for syntactic errors an d converts it to a C prog ram,
which is load ed as a k ernel module, as s hown in Figure 1.
SystemTap also allows creating modules for other versions of
the kernel, other than the version of its respective running
kernel. It is possible to co py the module to the target system
and execute it with the program staprun.

Figure 1. SystemTap operation.

The primary use of SystemTap in this work is to trace
Linux kernel events occurring during a pre-specified period of
time. SystemTap will be used to f ind the mean time used by
the clock tick handler and also to f ind how many clock ticks
had occurred during the execution of a subject program in the
proposed experiment to validate the quality of the experiment
result.

C. Hardware interface
In this work, the target architecture will be based on SMP

(Symmetric multiprocessing) used in several models of Intel
x86 processors. In this architecture, the APIC system
(Advanced Programmable Interrupt Controller) is responsible
for generate and manage several kinds of hardware interrupts
[15]. Figure 2 sh ows a t ypical APIC system, basically
consisting of an I/O A PIC module respon sible to rec eive
interrupt requests from I/O devices (keyboard, network, disks,
etc.) and f orward them to th e Local APIC module (LAPIC),
which is integrated into the processor. Each LAPIC contains a
set of APIC registers and associated hardware that control the
feeding of interrupts to the processor core.

The main source of interrupts are: 1) I/O devices locally
connected, i.e., interrupts generated by I/O devices connected
directedly to the connectors of local interrupts of the processor
(LINT0 and LINT1); 2) I/O devices connected externally, i.e.,
interrupts generated by I/O devices co nnected to th e module
I/O APIC; 3) inter-processor interrupt (IPIs), i.e., a proces sor
can use the IPI mechanism to interrupt other processor or a
group of processors; 4) in terrupts generated by the timer
APIC, i.e., th e local APIC timer that can be prog rammed to
send periodical in terrupts i.e., clock ticks; 5) in terrupts
generated by the temperature sensor; 6) in ternal error A PIC
interrupt signaled when an internal error of the APIC is
detected.

In this work, the studied problem will require disabling and
enabling timer interrupts (4), to avoid that tasks do n ot be
periodically interrupted.

176

Figure 2. LAPIC and I/O APIC schema.

III. THE STUDY SETTING
In this section, we will present the experiment designed to

evaluate the feasibility of using execution traces for program
comprehension of operating system kernels.

The experiment design was defined using several
components:
1. A problem that required some program comprehension

activity in the target operating system kernel;
2. The solution/contribution to the problem cited in the

previous item;
3. The method used to support and evaluate the construction

of the solution cited in the previous item.
The problem used in the design of the experiment of this

study was the OS Jitter that is one of the main factors that can
introduce delays when processing applications in high
performance computing environments – HPC. OS Jitter can be
considered any interference that an application process or
thread experiences because of the execution of internal tasks
the operating system. In this study, the Linux kernel was
chosen because of the availability of its source code and
because it is being used in 91.4% of top 500 supercomputer
systems [14]. Among the several types of interferences of the
operating system during user application execution, especially
for HPC applications, we can highlight: the execution of
administrative process (daemons) and periodical kernel
routines, such as, the clock tick.

In this study, the chosen contribution is to understand where
OS jitter caused by clock ticks is im plemented in th e kernel.
The proposed solution to reduce OS jitter is based on tickless
processors, where the CPU is assigned to user application and
it will not be interrupted by periodic kernel tasks (clock ticks).
Currently, the Linux kernel already supports a similar approach
–tickless kernel – to reduce energy consumption. So, the
maintenance task is to reuse the current implementation of
tickless kernel of Linux to introduce the feature of executing
CPU-bound process without clock interrupts. In this study, the
user application that will be executed as a CPU-bound process
is a matrix multiplication program.

 The method used to support and evaluate the quality of the
comprehension process of where clock ticks are handled in the
Linux kernel consists of: the general strategy to filter execution
traces to find the desired feature in the source code and the
validation of the filtering process.

A. Trace Filtering
The filtering strategy needs to isolate the execution of user

application (matrix multiplication) to only one CPU, in such
way that the events captured in traces are on ly related to th e
respective user process. The user program must be
instrumented in the following way:

1. Configure the system to run the process only in CPU 1

(sched_setaffinity system call).
2. Turn off the trace capture of ftrace; configure ftrace to

capture the trace of CPU 1 only; cleans the log file of
ftrace.

3. Configure the system to r un all other tasks, threads,
daemons in CPU 0.

4. Move all ti mers – scheduled tasks (workqueues,
callouts, etc.) from CPU 1 to CPU 0.

5. Move all interrupts (network, keyboard, mouse, etc) to
CPU 0, except timer interrupt.

6. Activate ftrace trace collector.
7. Capture the initial time (clock_gettime)
8. Allocate dynamically a matrix 1024x1024.
9. Perform the core application (matrix multiplication)
10. Capture the final time (clock_gettime).
11. Deactivate ftrace trace collector.
12. Get the time used in the user application.

This strategy should guarantee that the trace collected by
ftrace contains events (function calls) related to th e user
application and to the timer interrupt handler.

It is expected that function(s) related to timer interrupt
handler should be recog nized in a reasonable way using the
generated trace.

B. Validation of the result of the filter output
In order to validate the quality of the generated trace, the

instrumented user program described previously in the Trace
Filtering subsection was modified to in clude a s ystem call
between steps 5 and 6 to disable clock tick handling.

Figure 3 shows the system call that should be u sed with
parameter 1 to disable clock ticks. Figures 4 and 5 contain the
code to effectively perform the disabling process.

1
2
3
4
5
6

int sys_confapic(struct pt_regs *regs) { // ID=337
 int pparameter = regs->bx;
 if (pparameter == 1)
 lapic_suspend(NULL);
 if (pparameter == 2)
 lapic_resume(NULL);
 }

Figure 3. Function sys_confapic

177

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

static int lapic_suspend(struct sys_device *dev) {
 unsigned long flags;
 int maxlvt;
 if (!apic_pm_state.active)
 return 0;
 maxlvt = lapic_get_maxlvt();
 apic_pm_state.apic_id = apic_read(APIC_ID);
 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
 if (maxlvt >= 4)
 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
 #ifdef CONFIG_X86_THERMAL_VECTOR
 if (maxlvt >= 5)
 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
 #endif
 local_irq_save(flags);
 disable_local_APIC();
 if (intr_remapping_enabled)
 disable_intr_remapping();
 local_irq_restore(flags);
 return 0; }

Figure 4. Lapic suspend

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void disable_local_APIC(void) {
 unsigned int value;
 if (!x2apic_mode && !apic_phys)
 return;
 clear_local_APIC();
 value = apic_read(APIC_SPIV);
 value &= ~APIC_SPIV_APIC_ENABLED;
 apic_write(APIC_SPIV, value);
 #ifdef CONFIG_X86_32
 if (enabled_via_apicbase) {
 unsigned int l, h;
 rdmsr(MSR_IA32_APICBASE, l, h);
 l &= ~MSR_IA32_APICBASE_ENABLE;
 wrmsr(MSR_IA32_APICBASE, l, h); }
 #endif }

Figure 5. Disable Local APIC

It is also n ecessary to include a system call between steps
10 and 11 to enable clock interrupts again on the chosen CPU;
otherwise it would become inaccessible to oth er processes
after the execution of the experiment. Figure 6 shows the
necessary code to re-enable clock ticks.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

static int lapic_resume(struct sys_device *dev) {
 unsigned int l, h;
 unsigned long flags;
 int maxlvt;
 int ret = 0;
 struct IO_APIC_route_entry **ioapic_entries = NULL;
 if (!apic_pm_state.active)
 return 0;
 local_irq_save(flags);
 if (intr_remapping_enabled) {
 ioapic_entries = alloc_ioapic_entries();
 if (!ioapic_entries) {
 WARN(1, "Alloc ioapiclapic resume failed.");
 ret = -ENOMEM;
 goto restore; }
 ret = save_IO_APIC_setup(ioapic_entries);
 if (ret) {

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

 WARN(1, "Saving IO-APIC state failed: %d\n", ret);
 free_ioapic_entries(ioapic_entries);
 goto restore; }
 mask_IO_APIC_setup(ioapic_entries);
 mask_8259A();
 }
 if (x2apic_mode)
 enable_x2apic();
 else {
 rdmsr(MSR_IA32_APICBASE, l, h);
 l &= ~MSR_IA32_APICBASE_BASE;
 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
 wrmsr(MSR_IA32_APICBASE, l, h); }
 maxlvt = lapic_get_maxlvt();
 apic_write(APIC_ID, apic_pm_state.apic_id);
 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
...
 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
 apic_write(APIC_ESR, 0);
 apic_read(APIC_ESR);
 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
 apic_write(APIC_ESR, 0);
 apic_read(APIC_ESR);
 if (intr_remapping_enabled) {
 reenable_intr_remapping(x2apic_mode);
 unmask_8259A();
 restore_IO_APIC_setup(ioapic_entries);
 free_ioapic_entries(ioapic_entries); }

restore:
 local_irq_restore(flags);
 return ret;
}

Figure 6. Fragment of lapic_resume

The resulted trace af ter running the instrumented system

with clock tick disabling should be compared with the trace
where clock ticks were not disabled, in order to see if the
filtering process th at selected the considered function(s) to
implement clock tick handling was correct. In order to confirm
the correction, that function(s) should not be present in the
new trace.

Another adopted validation step was to verifying the
number of calls to the function(s) that are supposed to be the
one(s) that handle clock ticks using the SystemTap script
shown in Figure 7. A complementary SystemTap script shown
in Figure 8 calculates the duration of the execution of these
respective functions that can indicate some measure of the OS
jitter.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

global var1
probe begin {
 var1[0]=0; var1[1]=0; var1[2]=0; var1[3]=0; }

probe kernel.function("<name of the supposed function>").call {
 j=cpu();
 var1[j]=var1[j]+1;
}

probe end {
 printf("ID: %d Count: %d\n",0, var1[0]);
 printf("ID: %d Count: %d\n",1, var1[1]);
 printf("ID: %d Count: %d\n",2, var1[2]);
 printf("ID: %d Count: %d\n",3, var1[3]);
}

Figure 7. Script to verify the number of clock tick handling

178

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

global i
global j
global var1

probe begin { i=0; }

probe kernel.function("<name of the supposed function>").call {
 if (cpu()== $1) { var1[$1]=gettimeofday_ns() }
}

probe kernel.function("<name of the supposed function>").return
{
 if (cpu()== $1) {
 j=gettimeofday_ns()
 printf("%d\n",j - var1[$1])
 i++
 if (i==310) exit()
 } }

Figure 8. Script to analyze the duration of clock tick handling

IV. RESULTS
This section present the results obtained after running the

method proposed in the previous section.

A. Trace Filtering Result
The result of trace filtering is shown in Figure 9. The trace

consists of function calls with their respective nesting, which
can be co nsidered as a call t ree. Approximately, 90% of the
trace consists of calls to smp_apic_timer_interrupt and th eir
corresponding nested calls. A straightforward analysis of this
particular function has shown that this is the function that
should be responsible for handling clock ticks.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

….
smp_apic_timer_interrupt() {
 native_apic_mem_write();
 irq_enter() {
 rcu_irq_enter();
 idle_cpu();
 }
 hrtimer_interrupt() {
 ktime_get();
 _spin_lock();
 __run_hrtimer() {
 __remove_hrtimer();
 tick_sched_timer() {
 ktime_get();
 tick_do_update_jiffies64() {
 _spin_lock();
 do_timer() {
 update_wall_time() {
 update_xtime_cache();
 }
 calc_global_load();
 }
 }
….

Figure 9. Trace fragment with clock tick handling

B. Validation Results
The execution of the instrumented user program disabling

clock tick handling before the core program (matrix
multiplication) produced the trace sh own in Figure 9. This
trace is much smaller than the one shown in Figure 8. It also
could be observ ed that there was no call to
smp_apic_timer_interrupt.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

…
sys_clock_gettime() {
 posix_ktime_get_ts() {
 ktime_get_ts() {
 set_normalized_timespec();
 }
 }
 copy_to_user() {
 __copy_to_user_ll();
 }
}

sys_clock_gettime() {
 posix_ktime_get_ts() {
 ktime_get_ts() {
 set_normalized_timespec();
 }
 }
 copy_to_user() {
 __copy_to_user_ll();
 }
}
…

Figure 10. Trace fragment without clock ticks

Using the scripts s hown in Figure 7 and 8 in the
instrumented program that handle clock ticks, we encountered
that the time to handle each clock tick is approximately 5652
nanoseconds (mean time from 310 replication s) and the
number of clock ticks that occurs during a 5 m inutes interval
is approximately 32234 (mean number from 35 replications).

Using the scripts s hown in Figure 7 in the instrumented
program that do not handle clock ticks, we encountered that
still 4 clo ck ticks were handled. Indeed, 4 is a v ery small
number compared to 32234 that would not invalidate the
interpretation that the smp_apic_timer_interrup is indeed the
function responsible for clock tick handling. These 4 clock
tick handling occurrences may have occurred during the time
necessary to initiate the script and the user program execution
which are not exactly simultaneous.

V. DISCUSSION
Other approaches to a nalyze execution traces have been

extensively used in the program comprehension [4, 1 6].
However, there is no study whose target system is an
operating system kernel. The seminal work in the application
of execution trace to prog ram comprehension is the Software
Reconnaissance approach that also compares code executed in
traces with and without the features [5]. This is an interesting
approach but depending on the size of trace, t he excess of
information may hinder the approach with useless information.
In [17], the authors proposed an enhancement in the trace
differentiation providing more contextualized differentiation
with trace alignment algorithm and also had to propose a trace
summarization algorithm in order to dramatically reduce the
size of trace, and consequently produce a feasible approach. In
this work, we had the same challenge of reducing effectively
the size of trace in order to grasp adequately the trace f ile to
extract the desired i nformation of clock tick handling. We
proved that our approach was effective because the desired
function was readily found. It is i mportant to note that if a
newbie kernel developer had to lo ok for this function in a
traditional way, browsing the source code from the main

179

function until he could find the method, this would be a ver y
hard task that could take several days or even weeks of work.

In [18], another approach to summ arize traces was
designed using fan-in and fan-out metrics, which is completely
different from the specialized filtering approach used in this
work. In their approach, the functions are ranked considering
their relative importance based on graph metrics which do not
consider any semantic information of the respective function.
The approach of program comprehension presented in this
work guides the developer in a much more precise manner,
because it is the developer itself that have the tacit knowledge
of what he really needs and thus, he writes the proper f ilters
considering this kn owledge. Consequently, this strategy
improved dramatically the quality of the information available
in the trace. However, it is important to note that our approach
requires a more specialized preparation of the trace f iltering.
Although, the developer can reuse th e generic parts of our
filtering framework, he stills needs to grasp a filtering solution
that will provide a precise “fishing” of the desired functions.

Some authors [19, 20] suggest the integrated use of static
and dynamic views of the software system in program
comprehension activities. The dynamic views are obtained by
profiling the most used features in the system. Nonetheless,
the primary goal is to obtain the system architecture to reduce
the effort of comprehension of the system. In our approach, we
have not focused on the most used features for comprehending
the system in an overall manner. We have focused on a well
chosen feature in order to prov ide direct information
customized for the process o f program comprehension. This
requires less effort to m ake further needed changes in the
source code. Nonetheless, we could still improve our process
of writing adequate filters and even o f browsing the resulted
traces with static information. For in stance, the use of
information retrieval techniques could also be in corporated
[21, 22, 23], because we could see th at the function names
used in kernel are very representative and similar to the
developer terms in high-level communication.

VI. FINAL REMARKS
This paper has presented an innovative study in the program

comprehension area because it u sed execution trace
information to isolate desired functions in the Linux operating
system kernel. Previous studies in this area did not handled OS
kernels.

Our findings have shown that despite the huge a mount of
events that an instrumentation tool can generate, especially in
the case of OS kernel which has to cope with much more kinds
of different low-level events than a high-level application, the
use of proper filtering mechanisms in the instrumentation tool
can reduce dramatically the complexity of the execution trace
information. This scenario reduces the developer effort during
maintenance tasks when he needs to find specific functions in
the source code. Future work includes reproducing the
subjacent methodology designed in this work in a large scale
experiment to produ ce stronger evidences on our findings.
Also, introducing hybrid static techniques in a co hesive
methodology is an important step.

REFERENCES
[1] M. Florian. Linux Kernel Statistics. [Online]. Available at:

http://www.schoenitzer.de/lks/lks_en.html. A ccessed in 2011,
December.

[2] Kernel development statistics for 2.6.35. [Online]. Available at:
http://lwn.net/Articles/395961/. Accessed in 2011, December.

[3] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk. “Feature location in
source code: a taxonomy and survey”. Journal of Software Maintenance
and Evolution: Research and Practice. In press. Published online. 2011.

[4] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke,
“A Systematic Survey of Program Comprehension Through Dynamic
Analysis,” in IEEE Transactions on Software Engineering,Vol.35, 2009,
pp. 684–702.

[5] N. Wilde, M. Scully “Software Reconnaissance: mapping program
features to code”. Software Maintenance: Research and Practice, vol. 7,
n. 1, pp. 49-62, 1995.

[6] The Linux Documentation Project. [Online]. Disponível: http://tldp.org/.
Accessed in 2011, December.

[7] I. T. Bowman, R. Holt, N. Brewster: Linux as a Case Study: Its
Extracted Software Architecture. In Proc. of ICSE, pp. 555-563, 1999.

[8] D. P. Bovet and M. Cesati, “Understanding The Linux Kernel,” 3th ed.
O’Reilly, 2005.

[9] R. Love, “Linux Kernel Development Second Edition”, Pearson
Education, 2th ed. 2005.

[10] SystemTap. [Online]. Available at: http://sourceware.org/systemtap/.
Accessed in 2011, December.

[11] R. Matias, I. Becker, B. Leitão, P.R. Maciel “Measuring Software Aging
Effects Through OS Kernel Instrumentation,” in IEEE Second
International Workshop on Software Aging and Rejuvenation, San Jose,
CA, 2010, pp. 1-6.

[12] S. Rostedt, “Finding Origins of Latencies Using Ftrace,” in Proc. of
the11th Real Time Linux Workshop, 2009.

[13] Documentation Ftrace. [Online]. Available at: http://www.mjmwired.
net/kernel/Documentation/trace/ftrace.txt. Accessado in 2011,
November.

[14] Operating System Family Share. November, 2011. [Online]. Available
at: http://www.top500.org/charts/list/38/osfam

[15] Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, March 2010.

[16] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. DiscoTect:
A System for Discovering Architectures from Running Systems. In Proc.
of ICSE, pp. 470-479, 2004.

[17] L. Silva and K. Paixão and S. Amo and M. Maia, "On the Use
of Execution Trace Alignment for Driving Perfective Changes”, In the
15th European Conference on Software Maintenance and Reengineering,
pp. 221-230, 2011.

[18] A. Hamou-Lhadj and T. Lethbridge, "Summarizing the Content of Large
Traces to F acilitate the U nderstanding o f the Be haviour o f a
Software System”, In Proceedings of the 14th IEEE International
Conference on Program Comprehension, IEEE Computer Society, pp.
181-190, 2006.

[19] M. Mit and M. Ernst. Static and Dynamic Analysis: Synergy and
Duality. In Proc. of ICSE, pp 24-27, 2003.

[20] K. Sartipi, and N. Dezhkam. An Almalgamated Dynamic and Static
Architecture Reconstruction Framework to Control Component
Interactions. In Proc. of WCRE, pp 259-268, 2007.

[21] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using
latent Dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972 – 990, 2010.

[22] J. Maletic and A. Marcus, “Support for software m aintenance
using latent semantic analysis,” in Proc. 4th Annual IASTED
International C onference on Software Engineering and
Applications (SEA’00), Las Vegas, 2000, pp. 250–255.

[23] A. Marcus and J. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of
the 25th Intl. Conf. on Software Engineering, 2003, pp. 125 – 135.

180

An Approach for Software Component Reusing based on Ontological Mapping

Shi-Kuo Chang1, Francesco Colace2, Massimo De Santo2, Emilio Zegarra1, YongJun Qie1

1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
2Department of Electronic and Information Engineering, University of Salerno, 84084 Fisciano, Italy

{chang, ezegarra}@cs.pitt.edu, yongjun@pitt.edu,{fcolace, desanto}@unisa.it

Abstract

The ontological formalism is an effective way for enabling
interoperability across heterogeneous systems, services
and users. In this scenario, a very challenging problem is
the learning process of a shared ontology: humans
usually represent a same domain by the use of different
ontologies, semantically similar, that can differ in their
structure, concepts, relations and attributes. An effective
solution to this problem is the introduction of
methodologies for recognizing semantic similarities
among the various views of the domain expressed by the
ontologies. This paper shows how an effective ontological
mapping approach can improve and support complex
processes as software component reusing. First, an
approach to the ontology mapping will be described and
tested by the use of standards datasets. Its application to
the software component reuse will be introduced in the
second section of this paper. In particular, a case study
and the obtained results will be discussed.

1. Introduction

Many aspects of our daily lives are managed through the
adoption of complex and heterogeneous systems.
Therefore, their users can experiment some difficulties
sharing and developing services and resources. In t his
scenario, an effective solution is the a doption of the
ontology formalism [1]. Ontology represents the main
components of a knowledge domain according to the
views that the various actors of this domain have about it.
A common problem is the use o f different ways for
representing the s ame knowledge domain by each actor.
Therefore, they create different ontologies, which differ in
structure, concepts, attributes and relati onships from the
other ones, for representing the same domain [2]. In this
way, ontology could lose it s main feature: allowing the
semantic interoperability among actors working on the
same knowledge domain [12]. In lit erature, a solution to
this problem is the introduction of methodologies for
finding syntactical similarities among the various
ontologies in order to obtain a shared and unique ontology
[14]. A promising approach is k nown as ontology
mapping and aims to r ecognize and find common
components in the various ontologies. There are three
main approaches to the ontology mapping: the lexical, the
semantic and the structural approach. Each approach

shows good performance under certain operative
conditions, while exhibiting weaknesses in oth ers. The
main idea of this paper is the introduction of an ontology
mapping methodology, which combines the previous
approaches. So the obtained results are an o riginal
approach to t he ontology mapping that is the starting
point for a methodology for component reuse. In Section
2, the p roposed ontology mapping approach will be
described. In Section 3 the experi mental results obtained
by the use of the proposed approach on standard datasets
and a co mparison with other approaches will be
discussed. In Section 4, we explore the application of
ontology mapping to the software component reuse,
which is an important issue in so ftware engineering and
some experimental results will be presented.

2. The Proposed Approach

What is ontology? This question seems trivial, but the
answer is still not c lear. An ontology formal definition
could be the following: O={C, HC, HR, A, I}, where

C is the set of concepts in a domain
HC is the set of the hierarchical relations among
concepts
HR is the set of generic relations among concepts
A is the set of axioms
I is the set of concepts’ instances

Ontology mapping can be described as follows: given two
ontologies OA={CA, HAC, HAR, AA, IA} and OB={CB, HBC,
HBR, AB, IB} the mapping operation is a function MAP:
OxO -> O that gives an ontology OC={CC, HCC, HCR, AC,
IC} where each set (S means one of the component of
ontology) is obtained in the following way: SC = {sci = saj

= sbk) where sim(saj, sbk) > ThresholdC Aaj Ss and

Bbk Ss and sim is a function that measures the
likelihood among saj and sbk. In this paper, a methodology
for ontology mapping based on the com bination of
various approaches that work at lexical, semantic and
structural level to find equivalence among the various
components of the ontologies is proposed. This approach
can be so described:

// create mapping groups
for (

NOOc ,...,1
)do

181

 if (type(c)=”class”) then
 add c to groups

cls

 else if (type(c)=”property”) then
add c to groups

props

 end if
 end if
end for
classify (groups

cls
)

classify (groups
props

)

The generic classif ication phase classify(groupsin) is the
following:

//classify(group
in
)

if(size(group
in
)>1) then

 remove concept c
r
 from group

in

for (
ingroupc) do

 if (jiwithOcandOc jir ___)then

 if(type(c
r
) = “class” and type(c)=”class”)then

 index = calculateIndexSimilarityClasses(c
r
, c)

 else
 if(type(cr) = “property” and type(c)=”property”) then
 index = calculateIndexSimilarityProperties(c

r
, c)

 end if
 if(index>threshold) then
 add mapping found between c

r
 and c

 end if
 end if
end for
 classify(group

in
)

end if

According to the proposed approach, the mapping process
is a cl assification problem: it classifies the similarities
among the classes, the properties and the relationships
and then creates a new on tology that is a common layer
representing a shared view of the various ontologies. As
previously said, various approaches are in literature ([3]-
[11]) in order to find the semantically similar components
in the ontologies. The a dopted functions are the
following:

Editing Distance (ED): This function is so defined:

]1,0[)
),min(

),(),min(
,0max(1),(

yx
yxedyx

yxsimed

It aims to calculate the li kelihood among words that
labelling concepts in t he ontology. In particular it
compares the syntactical structure of the words and counts
the characters that are in the same position in the words x
and y by the use of the “ed” function. The value 1 means
that the two words are similar.

Trigram Function (TF): This function aims to measure
the number of similar trigrams that are in the words that
label the concepts in the ontologies.

]1,0[
)()(*2)()(1

1),(
ytrixtriytrixtri

yxTF

The function tri(x) gives the set of trigrams that are in the
in the word x. The value 1 means that the two words are
similar.

Semantic similarity index (SS): This index is so defined

]1,0[
),(

1),(
21

21 wwsim
wwSS

jc

where

simjc(w1, w2) = 2* log P[LSuper(c1, c2)]-[log P(c1)+ log P(c2)]

This index aims to compare from a semantic point of view
two words measuring their distance in t he taxonomy
defined in Wordnet [16]. The value 1 means that the two
words are similar.

Granularity (GR): This i ndex measures the mutual
position of the words representing the concepts of the
ontology in the W ordNet taxonomy. This index is so
defined:

]1,0[
)],(*)(),,(*)(max[
)],(*)(),,(*)(min[),(

2211

2211
21 pcpathcdenspcpathcdens

pcpathcdenspcpathcdensccGR

where dens(c) is the function representing the density of
the concept c. This function is defined as E(c)/E where E
is the ratio between the number’s arc of the concept and
the numbers of its parents while E(c) is the number of the
sibling of the concept c. Th e function path(c1, p) is the
shortest path from c1 to p that is the first parent common
to c2.

Attribute Index: This index aims to measure the
numbers of similar attributes between two nodes. In
particular, it is so defined:

]1,0[
)),(1(),(

X
Yyx

Y
XyxYX

YX
simatt

with]1,0[is a parameter and X and Y are the number
of attributes related to the two compared nodes. If this
function gives value 1 it means that the words X and Y
are similar.

Synonym Index (SI): This index aims to verify if in
Wordnet there are synonyms of the word related to th e
concept in an ontology that label a concept in another
ontology. This index can assume value 0 (no synonym) or
1 (synonym).

Derived Index (DE): This index aims to find in WordNet
an adjective, representing a node of ontology, derived
from the label of a concept that is in the other ontology.
This index can assume value 0 (not derived) or 1
(derived).

Property Similarity Index (ISP): This index has the aim
to verify the equality between the nodes evaluating their

182

properties. In particular, the following indexes are
introduced

Equality Indexes among superclasses (ISC): this
index verifies if the superclasses of the
comparing classes are similar. This index can
assume value 0 (no equality) or 1(equality).

Equality indexes among equivalent classes
(IEC): this index compares all the classes that are
equivalent to the comparing classes. This ind ex
assumes value 1 if all the classes are equivalent
and 0 otherwise.

Equivalent Indexes of inherited classes (IIC):
this index assumes value 1 if all the inher ited
classes of the comparing nodes are similar. Also,
in this case this index assumes value 1 if all the
inherited classes are equivalent and 0 otherwise.

Equivalent Indexes of disjoint classes (IDC): this
index evaluates the similarity among the disjoint
classes of the comparing nodes. Th is index
assumes values 1 if all the disjoint nodes are
similar and 0 otherwise.

The full similarity index (ISP) is obtained by the
following formula:

ISP = ISC*IEC*IIC*IDC

This index can assume value 0 or 1.

Similarity Index for entities (ISI): This index
evaluates if the entities derived from the comparing nodes
are equal. The comparison evaluated both the number of
entities and their typology. This index can assume value 0
or 1.

Acronym (AC): This index aims to verify if in the two
comparing nodes one word is the acronym of the other. If
it is true this index is 1, otherwise it is 0.

Fingerprint Index (IM): This index verifies if the word
that describes a co mparing node is in the other word that
describes the other nodes. If the word is contained in the
other one this index is 1, otherwise it is 0.

Abbreviation (AB): This index measures if a word that
describes a node is an ab breviation of the other that
describes the other comparing node. If the word is an
abbreviation of the other one this index is 1, otherwise it
is 0.

Label (LA): This index measures if the two labels of the
comparing nodes ar e equal. Also, in th is case the index

assumes value 1 if the nodes have the same label, and 0
otherwise.

There are some approaches in literature for the regroup of
these indexes [13]. In this paper we propose the following
gruping:

Syntactic indexes (IndSin): These indexes aim to detect
the syntactical similarities among the various components
of the ontology. The f ollowing indexes are syntacti c
indexes:

Editing Distance (ED)
Trigram Function (TF)
Acronym (AC)
Fingerprint (IM)
Abbreviation (AB)
Label (LA)
Attributes (ATT)

Semantic indexes (IndSem): These indexes aim to
compare the ontologies from a semantic point of view
using the WordNet taxonomy. The set of semantic
indexes includes:

Semantic Similarity (SS)
Granularity (GR)
Synonym Index (SI)
Derived (DE)
Label (LA)

Structural indexes (IndStr): These indexes compare the
ontologies from a structural point of view. The indexes of
this set are:

Attributes (ATT)
Similarity Index for properties (ISP)
Similarity Index for Entities (ISI)

The three sets of indexes are combined in order to map
the ontologies:

Mapping(X,Y) = *IndSin(X,Y) + *IndSem(X,Y) + *IndStr(X,Y)

where: + + = 1 In particular:

IndSin(X,Y) / [IndSin(X,Y)+IndSem(X,Y)+IndStr(X,Y)]

IndSem(X,Y)/[IndSin(X,Y)+IndSem(X,Y)+IndStr(X,Y)]

IndStr(X,Y)/[IndSin(X,Y)+IndSem(X,Y)+IndStr(X,Y)]

and

IndSin(X,Y) = 0.5*(ED + TF)+ 0.5*[max(AC, IM, AB)] where
ED / (ED+TF) and TF / (ED+TF)

IndSem(X,Y) = 0.5*(SS + GR)+ 0.5*[max(SI, DE, LA)] where

183

SS / (SS+GR) and GR / (SS+GR)

IndStr(X,Y) = 0.5*(ATT) + 0.5*[max(ISI, ISP)]

After this first step, the mapping among the various nodes
that are in the ontologies is obtained. The second step is
the mapping among the relations. So the following index
is introduced:

IndRel(x,y) = min[Mapping(A,C), Mapping(B,D), RO(x,y)]

where x and y are the comparing relations while A and B
are their domains and C and D are their co-domains. In
particular,

RO(R1, R2) = sqrt{CM[d(R1), d(R2)]* CM[r(R1), r(R2)]} and

),(),(
),(),(

),(
2211

2211
21 HCUCHCUC

HCUCHCUC
CCCM

In this case H1 is the taxonomy related to the concept C1
while H2 is the tax onomy related to the concept C2. The
function UC (Upward Cotopy), where the H f unction
considers three levels in the up and down direction, is so
defined:

)},(|{),(jiji CCHCCHCUC

The last step i s the mapping among the attributes. This
task is accomplished by the introduction of this index:

))),(),,(min(),,(max(),(
yx rangerange typetypeequalCAMappingyxIndSinyxIndAtt

After this phase, the mapping process is ended. I

3. Experiment Setup and Results

The experimental evaluation of the proposed approach
has been obtained by the use of standard datasets. In
particular, the experimental approach adopted was the
same one sug gested by the SEALS project [21]. The
SEALS Project has developed a reference infrastructure,
the SEALS Platform, for supporting the formal evaluation
of semantic methodologies as t he ontological mapping.
This allows both large-scale evaluations to be run as well
as ad-hoc evaluations by individuals or organizations. The
SEALS evaluation setup aims at e valuating the
competence of matching systems with respect to different
evaluation criteria and focuses on demonstrating the
feasibility and benefits of automating matching approach.
The evaluation setup contains three different experimental
scenarios:

Scenario 1:
a. Dataset: Benchmark - the goal of this

dataset is the identification of the areas
in which each matching algorithm is
strong or weak. The test is based on a
particular ontology dedicated to a ver y
narrow domain of bibliography and a
number of alternative ontologies on the
same domain for which alignments are
provided.

b. Criteria: conformance with expected
results

Scenario 2:
a. Dataset: Anatomy - the an atomy real

world case is about matching the Adult
Mouse Anatomy (2744 classes) and the
NCI Thesaurus (3304 classes)
describing the human anatomy.

b. Criteria: conformance with expected
results

Scenario 3:
a. Test data: Conference - co llection of

conference organization ontologies.
This effort was expected to materialize
in alignments as wel l as in interesting
individual correspondences ('nuggets'),
aggregated statistical observations
and/or implicit design patterns.

b. Criteria: conformance with expected
results and alignment coherence

So in order to evaluate the performance of the proposed
approach the following indexes, suggested by the SEALS
project, have been adopted:

mappingswrongmappingscorrect
mappingscorrectprecision

##
_#

mappingsmissedmappingscorrect
mappingscorrectrecall

##
_#

)*(
]**)1[(

2

2

recallprecisionb
recallprecisionbFMeasure

The FMeasure has been evaluated with the parameter b set at
the value 1. The results obtained by the use of the
proposed approach have been compared with the same
ones obtained by other methodologies developed in the
literature and reported in t he SEALS project w eb page.
The experimental results are shown in Figure 1.

Benchmark Dataset

184

Conference Dataset

Anatomy Dataset

Figure 1. Experimental results of the proposed approach.

In figure 2 the average FMeasure value has been reported
(Figure 2).

Figure 2. The average F-measure.

The proposed approach shows good results for each
dataset and the best value of average FMeasure. It means that
the proposed approach is very general and can manage the
ontology mapping problem in various cases with good
results. In the next section the application of the proposed
ontology mapping approach to the component reuse
problem.

4. Component Reuse based upon
Ontology Mapping

Ontology mapping, which is an i mportant part of
ontology integration, can promote sharing a nd
communication among different ontologies. The
incorporation of ontology into so ftware engineering can
improve the reuse of software assets effectively [18]. In
recent years, it has become less likely to develop
complete new software systems from scratch. It becomes
very important to develop software by adapting or
combining existing reusable components [17]. We
observe that requirement specification can provide a data
source for ontology model and the vital link for the
combination of software engineering and o ntology [19].
With this insight, a software component reuse app roach
based on ontology mapping is formulated in Figure 3. The
main idea is to process customer requirements and
reusable components using ontology mapping techniques,
and then construct the mapping between ontology nodes

185

and reusable components. This approach can promote the
reuse of software components. We can construct the
target ontology model by analyzing requirement
specification and then calculate the s imilarity between
target ontology and source ontology using ontology
mapping techniques. Therefore, we can identify the
matched source ontology nodes and the c orresponding
sets of reusable components and then construct the
mapping between the target ontology nodes and t he
reusable components. We assume that the mapping
between source ontology nodes and reusable components
has been realized, so every source ontology node has
matched several reusable components. After the ontology
mapping, the target ontology nodes also have matched the
reusable components through the “ bridge” of the source
ontology nodes.

Figure 3. Software component reuse approach based on ontology
mapping.

CROM Algorithm: Through the above analysis, we find
that the mapping between ontology nodes and reusable
components is the key to realize the CROM (Component
Reuse through Ontology Mapping) algorithm. We can
construct the mapping by using requirement engineering.
With requirement engineering, we will decompose
requirement specification into several fragments and
every fragment of requirement contains several functional
points. Each functional point contains the input and
output, which are designed to match the requirement. The
requirement and the corresponding input/output are the
basis for the design and i mplementation of software
components. Each node of ontology model is related to
each fragment of requirement specification, and each
fragment is related to several functional points so th at
each node of ontology model is al so related to several
functional points. This unique approach to construct the
mapping between ontology node and reusable
components by the functional point is th e heart o f the
CROM algorithm. In gen eral, the mapping operation is
illustrated in Figure 4.

Ontology nodes and reusable components have N:N
relationship. Every ontology node may correspond to
several reusable components, and every reusable
component may correspond to several ontology nodes.

Even though function description of customer
requirement is the same, the attributes are often different,
so it is difficult for each software component to
completely meet different requirements of different
ontology node. We need to calculate the matching degree
between software component and ontology node. We
consider the matching degree betw een a concept of the
ontology node C and a reusable software component S to
be a number P(C, S) between 0 and 1, with 0 representing
unmatched and 1 rep resenting completely matched. The
formula is: P(C, S) = f (S) / f (C), with f (S) representing
the matched functional points nu mber of the curr ent
reusable software component, and f (C) representing the
total functional points number of the current ontology
node.

Figure 4. The mapping between ontology node and reusable
components.

Experimental Design: The experiment is divided into
two parts. The first part is to construct t he application
domain ontology model and th e mapping between the
application domain ontology nodes and the reusabl e
software components. The dat a source is th e application
domain requirement specification and several sets o f
reusable software components. In order to make the
experiment data more reasonable, we choose three groups
ontology model, which are from very similar to th e
general ontology to very dissimilar. Firstly, we n eed to
construct the application domain ontology model. We
adopt the ontological concept to divide the ap plication
domain requirement specification into different
application fragments. For exa mple, the general
equipment application may contain four fragments:
equipment, purchase, storage and organization. Every
fragment of the requirement contains the co mpletely
functional points and input/output and then w e will
construct the ontology on th e application domain by
processing different fragments describing the application
domain and by mining them into common vocabularies as
domain-specific concepts. Therefore, every application
domain ontology node has several corresponding
functional points an d input/output. For exa mple,

186

equipment maintenance node may contain new, updating
and delete three functional points. Secondly, we construct
the mapping between application domain ontology nodes
and reusable software components based on the functional
points. We will match the functional points and
input/output between every node and t he reusable
components by traversing the application domain
ontology and then calculating P(C, S). If the number P(C,
S) is greater than 0, the reusable component satisfies
matching conditions. Because the reusable components
are limited, we ca nnot guarantee all of the application
domain ontology nodes hav e corresponding components
that can be matched. Those nodes will be matched later
during the software development and then we can put
those components into the reusable components libraries.
The second part is to realize the reuse of the software
components based o n the o ntology mapping technology
and the result of the first part. Firstly, we need t o
manually calculate the rate of component reuse for three
groups’ ontology model. As previously said, the number
P(C, S) represent the matching degree between a concept
of the ontology node and a reusable software component.
If the number P(C, S) is 1 with the same component and
the different ontology model, we can consider that this
component is reusable. Apparently, the rate of component
reuse is much higher for the similar ontologies. The
results are shown in Figure 5.

Figure 5. Contrast component reuse rate.

Secondly, we need to improve the rate of component
reuse by using ontology mapping technology. We choose
the similar ontology model for example, application
domain ontology and sub-application domain ontology.
We need to realize the mapping between sub-application
domain ontology and application domain ontology. We
can calculate the mapping index according to the
proposed approach. The result shows that 45 nodes are
equal, 9 no des are similar and 3 no des are not similar.
According to the software components reuse ap proach
based on the ontology mapping, it is highly likely that the
reusable components that match the 45 application
domain ontology nodes also match the 45 sub-application
domain ontology nodes one by one.
Finally, we will check the mapping result between the
sub-application domain ontology nodes and t he reusable
software components by the functional points. We can
calculate the number P(C, S) between sub-application

domain ontology nodes and th e reusable components
according to the second step of the first part, and then
calculate r1, defined as the ratio of reused components
over total number of components, to measure the rate of
component reuse for the sub-application domain. For
those components that are not directly reusable because of
different attributes, but with high P(C, S) value, we can
adjust the P(C, S) value according to results of the
previous step, which was calculated by using th e
proposed approach to map the attribute concepts. Then we
can calculate r2, the revised rate of component reuse for
the sub-application domain. We have developed a
software tool to calculate r2. This tool can adjust the
number P(C, S) by analyzing the ontology mapping result
and component attributes, and then calculate r2. This tool
also can compare r1 and r2, and then draw the chart. The
results are shown in Figure 6.

Figure 6. Improvement in component reuse rate.

Through this experiment, we conclude that we can
increase the percentage of the co mponents reuse by
matching attribute names through ontology mapping. In
other words, we can systematically change the na me of
variables in a program so that it can be reused in another
sub-application domain. We also hav e developed two
different components to realize com ponent reuse
algorithm and then select better component by using the
Slow Intelligence System (SIS) framework [20]. The
experiment is divided into three steps. The first step is to
implement the super-component that can analyze the
ontology mapping result. The super- component includes
two components, namely BySAX and ByDOM. T he
BySAX component is to parse ontology mapping XML
document by SAX (Simple API for XML), which is an
event-based sequential access pars er API developed for
XML documents. The ByDOM component is to parse
ontology mapping XML document by JDOM API, which
is a Java-based document object model for XML. In the
future, other ontology mapping algorithms can be added
to this super-component. The second step is to modify
several SIS core java files and config files, so as to
support component reuse algorithms. The final step is to
run the super-component based on the SIS framework and
then obtain the analysis result. The result shows that
ByDOM is the better algorithm, whose runtime is 18.54
seconds on a PC. The process is shown in Figure 7.

187

Figure 7. Component selection by using SIS approach.

The OMR (O ntology Matching Result) is sent to
component extractor by OMR Sender, so that
corresponding components can be extracted from
components library, which P(C,S) is less than 1.Then the
Enumerator invokes the super-component that creates
various reuse analysis algorithms. The Tester collects and
presents the test results. The Time Controller restarts the
reuse analysis cycle with a d ifferent super component.
The Eliminator eliminates the inferior algorithms, and
finally the Con centrator selects the best algorithms with
the optimal parameters.

5. Conclusion

This paper pr esented a novel approach for ontology
mapping. It uses many existing and/or improved indexes
and a no vel way to combine them. Experimental results
demonstrate the effectiveness of the ap proach approach.
Future research topics include the continuous
improvement of the various indexes and the definition of
a merging approach. As a pr actical application of this
methodology, the so ftware component reuse approach
based on ontology mapping emphasizes the application of
the ontology mapping technology and the reuse of
software components. In software engineering, ontology
and ontology mapping technology can be very useful to
promote the sharing and reuse of the domain knowledge.
Through the mapping between the ontology nodes and
reusable software components, we can achieve the reuse
of the software assets from the ontology model to the
software components. Further research topics include
the refinement of mapping techniques between the
ontology nodes and software components.

References

[1] Thomas C. Jepsen, "Just What Is An Ontology, Anyway?," It
Professional, Vol. 11, No. 5, P p. 22-27, Sep./Oct. 2009,
Doi:10.1109/Mitp.2009.105
[2] M. Shamsfard, “The State Of The Art In Ontology Learning
: A Framework For Comparison,” Computer Engineering, 2007,
Pp. 1-28

[3] L. Zhou, “Ontology Learning: State Of The Art And Open
Issues,” Information Technology And Management, Vol. 8 ,
Mar. 2007, Pp. 241-252.
[4] H. Bao, H. Liu, J. Yu, And H. Xu, “An Ontology-Based
Semantic Integration For Digital,” Architecture, 2005, Pp. 626 –
631
[5] G. Li, Z. Luo, And J. Shao, “Multi-Mapping Based Ontology
Merging System Design,” Framework, 2010, Pp. 5-11.
[6] M. Mao, Y. Peng, And M. Spring, “Ontology Mapping: As
A Binary Classification Problem,” 2008 F ourth International
Conference On Semantics, Knowledge And Grid, Dec. 2008,
Pp. 20-25.
[7] C. Zheng, Y.-Ping Shen, And L.I.N. Mei, “Ontology
Mapping Based On Structures And Instances,” Machine
Learning, 2010, Pp. 11-14.
[8] L. Guan-Yu And L. Shu-Peng, “Formal Concept Analysis
Based Ontology Merging Method 2 3,” Science And
Technology, 2010, Pp. 279-282.
[9] S. Li, H. Fan, Y. Wang, And L. Hong, “A Model And
Approach For Heterogeneous Ontology Automatic Merging,”
2009 International Joint Conference On Computational Sciences
And Optimization, Apr. 2009, Pp. 214-217.
[10] H. Xia, Z. Li, H. Wang, And Y. Gu, “A Lightweight
Method Of Web Service Ontology Merging Based On Concept
Lattice,” The 2nd IEEE Asia-Pacific Service Computing
Conference (Apscc 2007), Dec. 2007, Pp. 304-311.
[11] Studer R, Benjamins Vr, F ensel D, “Knowledge
Engineering: Principles And Methods”, IEEE Transactions On
Data And Knowledge Engineering, 25(1-2): 161- 199, 1998
[12] Wu Ya-Juan Lang Ji-Sheng Shang Fu-Hua, “A Similarity-
Based Approach For Ontology Mapping”, Proceedings Of 2009
4th International Conference On Computer Science & Education
[13] P. Shvaik o, J. Euzenat, “Ontology Matching”, Springer,
2007
[14] P. Shvaiko, J. Euzenat, “Ontology matching: state of the art
and future challenges”, IEEE Transactions on Knowledge and
Data Engineering, 2012
[15] Nie Zhao-Hui, Wang Yin–Ling, “Research On Attribute
Mapping Between Similarity Ontology”, Computer Simulation.
2006
[16] Wordnet: http://wordnet.princeton.edu/
[17] Motoshi Saeki, "Ontology-Based Software Development
Techniques", ERCIM News No.58, 2004
[18] Waralak V. Siricharoen, “Ontologies and object models in
object oriented software engineering”, International Journal of
Computer Science,33(1):1–6, 2007
[19] Haruhiko Kaiya, Motoshi Saeki, “Ontology Based
Requirements Analysis: Lightweight Semantic Processing
Approach”, Pp.1-8, 2005
[20] S.K. Chang, "A General Framework for Slow Intelligence
Systems", International Journal of S oftware Engineering and
Knowledge Engineering, Volume 20, Number 1, February 2010,
1-16.
[21] http://www.seals-project.eu/

188

Online Anomaly Detection for Components in
OSGi-based Software

Tao Wang
Institute of Software, Chinese Academy of Sciences

Beijing 100190, P.R. China
Graduate University, Chinese Academy of Sciences

Beijing 100049, P.R. China
wangtao08@otcaix.iscas.ac.cn

Wenbo Zhang, Jun Wei, Jianhua Zhang, Hua Zhong
Institute of Software, Chinese Academy of Sciences

Beijing 100190, P.R. China
{zhangwenbo, wj, zhangjianhua07,

zhongh}@otcaix.iscas.ac.cn

Abstract—OSGi has become one of the most promising
frameworks for managing component-based software. The OSGi-
based components delivered by different vendors are usually
black-box program units which lack source code and design
documents. Thus it is difficult to evaluate their quality by static
code analysis. However, defective components may lead to the
failure of the whole system eventually. In this paper, we propose
an online method for detecting anomalous components in OSGi-
based software. A thread-tracing method is presented to monitor
the CPU utilization of components. The method considers both
the dynamic service invocation and static method invocation.
Furthermore, based on the monitored data, we detect anomalous
components by control charts, which can detect the anomalous
trend of CPU utilization without prior knowledge. The
experimental results show that our method is of high accuracy
for monitoring CPU utilization in component perspective without
significant overhead, and can detect anomalous components
effectively.

Keywords- Anomaly Detection; Component Monitoring; OSGi;
CPU Utilization; Control Chart

I. INTRODUCTION

The component-based software engineering greatly
improves the efficiency and quality of software development;
organizations always adopt it for developing large-scale
complex software [1]. In recent year, OSGi (Open Service
Gateway initiative) has become one of the most promising
frameworks for building and managing component-based
software. The OSGi framework, which provides a component
model and a service registry, is an execution environment for
dynamically loadable components [2]. OSGi technology is
attracting growing interest, and a l arge number of large-scale
projects have released new versions with OSGi, such as JEE
application server Websphere, IDE eclipse and the BMW
automobile control system. The services based on OSGi are
always implemented as components, and the COTS
(Commercial Off-The Shelf) market around OSGi is emerging
[3], where the number of third party components is increasing.
However, a d efective component may affect all the related
components and lead to the failure of the whole system
eventually. Thus it is a critical issue for COTS to ensure the
quality of components [4].

However, since the COTS components are usually black-
box program units which lack source code and design
documents, it is di fficult to understand the characteristics of
components, and evaluate their quality by static code analysis.
Furthermore, some runtime factors, e.g. access sequences,
concurrency number and resource usage, may cause contextual
anomalies [21], which are difficult to be eliminated through
testing [5]. Therefore, detecting anomalous components online
is essential for improving the reliability of OSGi-based
software.

This paper proposes an online method of detecting
anomalous components in OSGi-based software. A thread-
tracing method is proposed to m onitor CPU utilization of
components. It is an online method, which neither modifies
software nor introduces significant overhead. Furthermore, the
control charts for CPU utilization are introduced to detect
anomalous components. They can detect the anomalous trends
of CPU utilization without prior knowledge. The experimental
results demonstrate that our method can mo nitor resource
utilization in a high accuracy without significant overhead,
and detect the anomalous components effectively.

The rest of this paper is organized as follows. Section II
presents a thread-tracing method for monitoring components.
Section III introduces control charts to detect anomalous
components. Section IV provides experimental results to
validate the method in accuracy, overhead and effectiveness.
Section V discusses the limitations and our future work.
Section VI reviews the related works, followed by conclusion
in section VII.

II. MONITORING CPU UTILIZATION OF COMPONENTS

An OSGi service platform is composed of service providers,
service requesters and a service registry. A service provider
registers services to publish, and a service requester discovers
services from the service registry to invoke. The service
described as a Java interface is always packaged as a standard
JAR file – “bundle”, in which service implementation, related
resource files and manifest files are included. Bundles interact
with each other as service invocation. Since bundles are basic
management units in OSGi, we take them as monitored targets.
We analyze component-based software from CPU utilization
which is an important property for evaluating a component [6].

189

A thread is the basic unit to which the operating system
allocates processor time. Thus the CPU utilization of a bundle
is the sum of the CPU time consumed by different threads,
which execute within the bundle. We have two monitoring
perspectives that are bundle and thread. From the bundle
perspective, threads are grouped into different bundles, and
each thread belongs to a specific bundle. Thus we add the CPU
time of every thread in the bundle. From the thread perspective,
a thread execution is divided into some stages, each of which
belongs to a specific bundle. Thus we add the CPU time of
every stage in the bundle. Because of the frequent interactions
between bundles by service invocation, the relations between
bundles and threads vary dynamically. If we follow the first
perspective, the thread schedule model should be modified, and
significant overhead will be introduced as presented in [8].
Therefore, we adopt the second choice through tracing thread
transfer between bundles.

It is easy to calculate CPU time utilized by a thread during
a period using the JVMTI [22] provided by the JVM (Java
Virtual Machine). Thus, how to divide the CPU time of a
thread into different bundles becomes an essential question.

A. Monitoring Dynamic Service Invocation

Algorithm 1 describes the method of monitoring bundle
CPU utilization. Every thread is tagged with a bundle ID, when
a thread is created. OSGi invokes start () method in the
Activator class to start the bundle, when a bundle is initialized.
We set the bundle ID of the thread as the started bundle
through labeling the thread before and after the start method in
the OSGi platform (line 1-3). When a new thread is created, we
set the bundle ID of the thread as that of its parent thread (line
4-8). A thread in bundles is traced to decide whether the thread
transfer happens. When a service is invoked, if the service
provider and the service consumer are in different bundles,
thread transfer happens (line 9-12).

Service proxy is generated and used to provide services.
We use an event-driven mechanism to trace service invocation
through listening to the events in the service registry. To avoid
affecting the execution code in t he original bundle and deal
with the arriving services during execution, we create a proxy
object for every required service (line 13-16). Figure 4
describes the event-driven monitoring method. A proxy class is
generated when a service is registered. The proxy class is
instantiated when the service is invoked. We also modify the
service registry to redirect service requests to the service proxy.
Thus the proxy object instead of the original service provides

service for a service consumer transparently. In every proxy
class, the monitoring point is ins erted before and after the
service invocation to label the changed bundle ID of a thread.

The CPU time of every bundle is calculated. If the bundle
ID of a thread varies after entering the invoked service, the
CPU time is calculated and added to the original bundle, and
the time stamp is updated (line 17-21). After exiting from the
service, the CPU time is calculated and added to the invoked
bundle (line 22-28). Finally, the monitor calculates the CPU
utilization for every bundle in period (line 29-31).

Algorithm 1 Bundle CPU monitoring
Input: OSGi-based software
Output: u1,u2,…,un, where n is the number of bundles
1. LISTEN (bundle b is initialized)
2. SET the bundle ID of thread t as b ;
3. SET time stamp for t ;
4. LISTEN (thread ts is initialized)
5. GET current thread tp; //tp is the parent of ts
6. GET bundle ID of tp as bp;
7. CREATE new thread ts;
8. SET bundleID of ts as bp;
9. LISTEN (service si invoke service sj)
10. GET the bundle ID of si as bi ;
11. GET the bundle ID of sj as bj ;
12. IF (bi != bj)
13. GET proxy of sj as pj ;
14. IF (pj = NULL)
15. CREATE pj for sj;
16. ENDIF
17. GET bundle_infoi of bi ;
18. GET current thread t;
19. bundle_infoi.CPUTime += t.Calculate_CPU();
20. SET time stamp for t ;
21. SET bundle ID of thread t as bj;
22. EXECUTE p ;
23. GET bundle_infoj of bj ;
24. bundle_Infoj.CPUTime += t.Calculate_CPU() ;
25. SET time stamp for t ;
26. SET bundle ID of t as bi;
27. EXIT p ;
28. ENDIF
29. FOR (i=1;i<= n; i++)
30. ui = bundle_infoi.CPUTime ;
31. ENDFOR

Figure 1 Proxy Generation

190

B. Monitoring Static Method Invocation

Although the OSGi specification recommends developers
to implement the interactions between components with service
invocation, some developers are used to invoke the functions
from other components with the traditional static method
invocation. Thus we propose an AOP based method to trace the
thread transfer between components. OSGi framework
analyzes the metadata file recording the exported packages
automatically, when a bundle is loaded dynamically. We
extend the original OSGi framework, so that it reports the
exported methods to our monitoring tool when the analysis is
finished. Our tool decides whether the classes being loaded are
exported by the bundle according to t he report. Then, we use
AOP to insert the monitoring points into the beginning and the
ending of the public method in the class which exports methods.

We note that some exported packages are not invoked by
other components. The thread transfer does not happen, when
the invoking method and the invoked method in the same
bundle. However, the redundant monitoring points introduce
unnecessary overhead. Therefore, we use a static code analysis
method to reduce the number of monitoring points before
weaving class. Method invocations usually take the form of
"targetObj.methodName(parameters)"; the key to analyzing the
calling relationship is to know the possible types of the objects
which the targetObj may point to. We use the class hierarchy
analysis method [25] to gain this knowledge. All the subtypes
of targetObj's type are among the possible types, and we can
get all the possible target methods denoted by the methodName.
With the knowledge of the target methods in every invocation
statement, we can easily acquire the calling relationship
between methods, classes, and packages. If two packages in
two different bundles have calling relationship in OSGi, the
corresponding imported and exported packages should be
specified in the metadata files of the two bundles. Thus we do
not weave the methods invoked in the same bundle to reduce
monitoring overhead.

The object of our AOP based method is to trace the thread
transfer between components, when a component invokes the
others with the static method invocation. The other steps of
monitoring bundle CPU utilization are similar with the method
introduced in subsection A.

III. ANOMALY DETECTION WITH CONTROL CHARTS

Based on the results of monitoring CPU utilization of
components, we can further detect anomalous components. The
metrics of CPU utilization help developers to evaluate
components, and find underlying problems, for example CPU
exhaustion caused by an endless loop. A control chart is a
statistical tool used to distinguish between variation resulting
from common causes and variation resulting from special
causes [9] in a process. Thus we use control charts to detect the
symptoms of CPU utilization.

Control charts monitor component resource utilization, and
raise an alarm if the metrics are not in stability. The stability is
defined as a state in which the resource utilization has
displayed a certain degree of consistency in the past, and is
expected to do so in the future. For example, in an application

server, the CPU utilization of a web container should be kept
within a r easonable range under stable workload. When a
problem happens, e.g. a spin lock fault, the CPU utilization of
the web container shows anomalous trends. Then control charts
will detect the gradually increasing trend in CPU utilization of
the component, even if it is still within a reasonable range.

We make use of the XmR (Individual X and Moving Range)
control charts, in which the individual (X) chart displays
individual measurement, and the moving range (MR) chart
shows variability between one data point and the next. Two
XmR charts are employed to represent CPU utilization for
every component to d etect anomalies, respectively. Collect
CPU utilization xi of every component in period. Thus we can
get the control charts as follows.

1 2(...)nx x xx n
+ + += ,

1i i imR x x+= − ,

1 2(...)nmR mR mRmR n
+ + += ,

xUCL x mR= + α ,

xLCL x mR= − α ,

mRUCL mR= β ,

mRLCL None= .

According to the statistics theory, we use constant α and β
which are specified as 2.66 and 3.268, respectively [9]. Thus
we can get XmR control charts, and any point out of the normal
scale, which is between the LCL and UCL, will be detected as
an anomaly.

Figure 2 gives an example of anomaly detection with the

control charts. The x-axis represents sampling period, and the
y-axis represents CPU utilization and mR. The scale between
the LCL and UCL is regarded as the normal area, while the
other scales are regarded as the anomalous areas. The system is
detected in an anomaly status when the monitored points occur
in the anomalous area. For example, the first, second and fourth
points are in the normal area, while the third and fifth points
are in the anomalous area.

Figure 2 Example of Control Chart

191

IV. EVALUATION

A. Monitoring Accuracy

Since there is no standard benchmark for evaluating the
accuracy of our CPU monitoring method, we implemented a
simulation to get a better understanding of the accuracy. The
simulation consists of eleven bundles including a service
consumer bundle and ten service provider bundles, as is shown
in Figure 3. Each of these service provider bundles implements
a service whose function is to loop for a fixed period, and the
service consumer bundle invokes these services and counts the
time spent on each service. These bundles are deployed on the
OSGi platform, in which their services are registered. The
service consumer bundle invokes the service provider bundles
for several loops in random order. The service is assigned a
quantitative execution time from 5 milliseconds till 50
milliseconds, respectively, as is described in the x-axis of
Figure 4. The service consumer bundle invokes services for 10,
30, 50, 70, 90 and 110 loops in six experiments. The expected
CPU time is the product of service time and the number of
loops in each experiment, and then we compare the expected
CPU time with the monitored measurement.

The accuracy of monitoring CPU time in terms of relative
error is shown in Figure 4, in which the curves indicate the
results of different experiments. It is seen that the relative error
decreases with the service time increases. This is explained that
the longer the effective service time, the smaller the proportion
of overhead brought from tracing thread is. Furthermore, we
observe that the relative error of the curve indicating 15 loops
is higher than that of the curves indicating 70, 90 and 110 loops,
and the curves indicating 70, 90 and 110 loops are consistent.
When the service loops for more times, the error rate falls to
about 1%. So our method has relatively high accuracy when the
system runs for a longer time, because the stochastic error is
canceled out.

B. Performance and Resource Overhead

In this part, we apply our method in a real application
server - OnceAS [7], which has been transformed to the OSGi
framework [10]. The overhead introduced by our method is
evaluated in this subsection. The overhead is considered from
two perspectives that are performance metrics including
average response time and throughput, and the resource
utilization including CPU time and heap memory.

In our experiments, we use a testbed of a standard three-tier
e-commerce application, and simulate the operations of an
online bookstore, according to TPC-W specification [11]. The
client's access to the web site occurs as a session consisting of a
sequence of consecutive individual requests. Users log in to the
website, browse the products, add several books into the
shopping cart, check out the order and log out of the website.

We simulate 25 to 3 50 concurrent browsers with di fferent
threads. The performance metrics evaluated for this scenario
are the throughput that is the number of completed transactions
per second and average response time that is the time taken to
complete a transaction. As i s shown in Figure 5, from the
comparison of performance metrics, we can see that the
performance of OnceAS with and without monitoring is
considered equivalent. When the number of concurrent users is
less than 175, the system is not saturated, so its throughput
increases and response time keeps about 3.2 seconds as the
number of users grows. After that point, the system becomes
saturated, so its throughput does not increase anymore and the
response time increases.

The performance overhead is less than 3.2 percent when the
number of browsers does not exceed 175, and less than 10.3
percent after that point, so t he performance overhead brought
from monitoring is not significant.

This is explained by the low resource overhead. The CPU
utilization of the system with monitoring is about 8 percent
more than that of the system without monitoring. The overhead
is caused by tagging threads and objects, and tracing threads
with the JVMTI. At the same time, the memory utilization of
the system with monitoring is about 9M bytes more than that of
the system without monitoring. The overhead is caused by
additional service proxy objects. From the above results, we
can see our method without significant overhead is applicable
in the real deployment environment.

C. Effectiveness of Detecting Anomalous Components

To validate our method for detecting anomalous
components, we inject one typical fault in the HTTP service

Figure 4. CPU Monitoring Accuracy

Figure 5. Performance Overhead

Figure 3 Accuracy Evaluation Environment

192

bundle which is responsible for parsing HTTP requests in
OnceAS. Since injecting faults is a difficult issue which is out
of our scope, we choose one typical real fault as analyzed in
[12], and inject them with the method used in [18][19].

In the experiment, we also use the testbed mentioned in
subsection B. We simulate 300 concurrent users from 1st to 8th

minute, and 400 concurrent users from 9th to 15th minute. Each
experiment lasts 15 minutes, the injected faults are triggered in
the HTTP service in the 12.5 minute through timing
automatically, and we monitor system status every minute. As
is shown in Figure 6, the x-axis represents sampling time, the
y-axis in (a)X-chart represents resource utilization per-
interaction, and the y-axis in (b)mR-chart represents the
moving range. The results show that individual measurements
and moving ranges are in the normal scales before the fault is
injected. Nevertheless, some anomalies are detected after the
fault is injected.

The CPU intensive loop fault results from circular wait or
endless loop in program such as spin lock fault. We inject it by
inserting the additional computation operation which is a loop
for 5ms. In each interaction with the injected service, these
operations are triggered to consume additional CPU time. As is
shown in Figure 6 which describes the XmR control charts of
CPU utilization, after injecting this fault, the individual
measurements and moving ranges are both higher than UCL
from the 13th minute. Thus we detect that some anomalies
occur in the HTTP service, and they are related to CPU
processor.

V. DISCUSSION AND FUTURE WORK

The accuracy is an important factor for any monitoring tool.
We use JVMTI, which is a naïve code based method, to
calculate the CPU utilization of every thread. The native agent
probes CPU for the calculation of cycles by sampling. The
accuracy of our method is subject to the CPU resolution time of
the operation system. It is impossible for us to im prove the
absolute precision defined by the CPU resolution time. For
example, that of the Windows XP is 15. 625 milliseconds, so
our method cannot exceed that if our monitoring tool is
deployed on the Windows XP. In the future work, we plan to
use a statistical method such as Kalman filter to correct the
monitored data. Furthermore, we can also use some platform-
specific tools to improve the precision.

The overhead is an obstacle for the application of a
monitoring tool. Tagging object introduces a major significant
overhead in our method. If threads are created and destroyed,
or components interact with each other frequently, lots of

thread objects ought to be tagged. There will be lots of calls to
the monitoring agent function, and these calls of the naïve
codes are much slower than the Java method calls, so a great
overhead is introduced. In the future work, we plan to use a
dynamic map to r ecord the relationship between Bundle IDs
and Thread IDs for reducing the traps in the naïve code to a
minimum.

Although our method can detect anomalous components
effectively, we cannot locate the root cause of a fault in a line
of code, and operators ought to follow many other anomalous
metrics to narrow down the possible causes. In the future work,
we plan to extend our method to collect other metrics for fine-
grain fault location. Furthermore, since OSGi provides a hot
plug-and-play mechanism for components, we will implement
a framework to rejuvenate the component through re-installing
it or replace it with another one automatically, when an
anomalous component is detected

VI. RELATED WORK

A. Java Application Resource Monitoring

Prevailing methods to measure CPU consumption in Java
applications mainly rely on native code libraries, which probe
CPU for calculating cycles by sampling. For example, Magpie
[13] uses Event Tracing with the processor cycle counter in
Windows operating system. Similar methods on ot her
operating systems include the Linux Trace Toolkit [14] and
Solaris DTrace [15], etc. Binder et al. [16] proposed a portable
CPU-management framework for Java, which tracked the
number of the JVM bytecode instructions, and transformed
them to the CPU consumption. These methods all aim at the
whole JVM instead of components. We transform the resource
perspective to component level in the OSGi framework.

The most related work to ours was conducted by Miettinen
et al. [8], which created a unique ThreadGroup object for every
bundle deployed on OSGi. The task executed by one thread in
the original software is executed by different threads belonging
to different ThreadGroups sequentially. However, this method
modifies the thread schedule model. Moreover, complex thread
scheduling mechanism, frequent thread switching operations
and maintenance of a large number of threads bring significant
overhead. Therefore, as discussed in [8], this OSGi-based
monitoring method is only suitable for off-line simulation test,
but not applicable in the real deployment environment.

B. Anomaly Detection

System operators usually employ management system like
IBM Tivoli [23] and HP OpenView [24] to collect a large
volume of monitoring data and set rules to trigger alerts.
Current methods use specific analytic forms (e.g. linear
regression [17], Auto Regressive models with e Xogenous
inputs [18], Gaussian Mixture Models [19]) to model
correlations between metrics, and the anomalies are detected
when the correlations are broken. These methods take the
whole application as target, so it is not applicable for locating
specific anomalous components in the OSGi-based software.
Gama et al. [20] presented a self-healing sandbox for the
execution of third party components in OSGi. In the sandbox,

Figure 6. Control Chart for CPU Intensive Loop

193

no faults are propagated to the trusted parts of the application.
The protocol between the trusted platform and the sandbox
platform brings considerable performance overhead, and the
correct functioning is based on a set of assumptions which may
not apply to some real applications as discussed in their own
work.

VII. CONCLUSION

The OSGi framework provides support for the management
of component-based software. It is important for improving the
reliability of OSGi-based software to detect anomalies in the
granularity of component. This paper proposed a thread-tracing
method for monitoring components running in OSGi from the
perspectives of CPU utilization. Furthermore, control charts are
also employed to detect anomalous components online. The
experimental results demonstrate that our method is able to
monitor the CPU utilization in a high accuracy without
significant overhead, and can detect the anomalous components
effectively.

ACKNOWLEDGMENT

This work is supported by the National Grand Fundamental
Research 973 Program of China under Grant No.
2009CB320704, the National High Technology Research and
Development Program of China under Grant No.
2012AA011204, the National Natural Science Foundation of
China under Grant No.61173004 and the National Science and
Technology Major Project of China under Grant
No.2011ZX03002-002-01.

REFERENCES
[1] G. Heineman, B. Councill, et al., "Component-based software

engineering and the issue of trust," in Proceedings of the 22nd
international conference on Software engineering, Limerick, Ireland,
2000, pp.661-664.

[2] OSGi Alliance. Available: http://www.osgi.org/.
[3] OSGi Alliance. About the OSGi Service Platform. Revision 4.1.

http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf,
2007.

[4] R. Pressman, D. Ince, Software engineering: a practitioner's approach:
McGraw-Hill New York, 2005.

[5] S. G. Swapna, “Architecture-Based Software Reliability Analysis:
Overview and Limitations,” IEEE Transactions on Dependable and
Secure Computing , vol. 4, no. 1, pp. 32-40, 2007.

[6] K. Heiko, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp. 634-658,
2010.

[7] W. Zhang, B. Yang, B. Jin, et al., “Performance Tuning for Application
Server OnceAS", in Proceedings of the Second international conference
on Parallel and Distributed Processing and Applications, vol. 3358, Eds.,
ed: Springer Berlin / Heidelberg, 2005, pp. 451-462.

[8] T. Miettinen, D. Pakkala,M. Hongisto, “A Method for the Resource
Monitoring of OSGi-based Software Components,” in Proceedings of
the 34th Euromicro Conference on Software Engineering and Advanced
Applications, Parma,Italy, 2008, pp. 100-107.

[9] G. A. Barnard, “Control Charts and Stochastic Processes,” Journal of the
Royal Statistical Society, vol. 21, no. 2, pp. 239-271, 1959.

[10] T.Wang, X. Zhou, J. Wei,W. Zhang, “Towards Runtime Plug-and-Play
Software,” in Proceedings of t he 10th International Conference on
Quality Software, Zhangjiajie, China, 2010, pp. 365-368.

[11] D. A. Menasce, “TPC-W: a benchmark for e-commerce,” IEEE Internet
Computing, IEEE, vol. 6, no. 3, pp. 83-87, 2002.

[12] S. Pertet, P. Narasimhan, “Causes of failure in web applications,”
Parallel Data L aboratory, Carnegie Mellon University, CMU-PDL-05-
109, 2005.

[13] P. Barham, A. Donnelly, R. Isaacs, et al., “Using magpie for request
extraction and workload modelling,” in Proceedings of t he 6th
conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, San Francisco, CA, 2004, pp. 18-31.

[14] K. Yaghmour, M. R. Dagenais, “Measuring and characterizing system
behavior using kernel-level event logging,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, San Diego,
California, 2000, pp. 2-15.

[15] B. M. Cantrill, M. W. Shapiro, A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, Boston, MA,
2004, pp. 2-2.

[16] J. Hulaas, W. Binder, “Program transformations for portable CPU
accounting and control in Java,” in Proceedings of the ACM SIGPLAN
symposium on Partial evaluation and semantics-based program
manipulation, Verona, Italy, 2004, pp. 169-177.

[17] M. A. Munawar, P. A. S. Ward, “A comparative study of pairwise
regression techniques for problem determination,” in Proceedings of the
international conference of the center for advanced studies on
collaborative research. NY, USA, ACM, 2007, pp.152-166.

[18] G. Jiang, H. Chen, Y. Kenji, “Modeling and Tracking of Transaction
Flow Dynamics for Fault Detection in Complex Systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 3, no. 4, 2006,
pp. 312-326.

[19] Z. Guo, G. Jiang, H. Chen, et al., “Tracking Probabilistic Correlation of
Monitoring Data for Fault Detection in Complex Systems,” in
Proceedings of the 36th international conference on Dependable Systems
and Networks. Philadelphia, PA, IEEE, 2006. pp. 259-268.

[20] K. Gama, D. Donsez, "A Self-healing Component Sandbox for
Untrustworthy Third Party Code Execution", In Proceedings of the 13th
International Symposium on Component-Based Software Engineering.
Springer-Verlag, Berlin, Heidelberg, 2010. pp. 130-149.

[21] V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection: A
survey," ACM Comput. Surv., vol. 41, pp. 1-58, 2009.

[22] JVMTI, http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.
[23] IBM Tivoli, http://www.cdwg.com/content/brands/ibm/tivoli.aspx.
[24] HP OpenView, http://www.osalt.com/openview-network-node-manager.
[25] J. Dean, D. Grove and C. Chambers, "Optimization of object-oriented

programs using static class hierarchy analysis," the 9th European
Conference on Object-Oriented Programming. Aarhus, Denmark, 7–11
August, 1995. Springer. pp. 77-101.

194

An Exploratory Study of One-Use and Reusable
Software Components

Reghu Anguswamy
Software Reuse Lab

Computer Science, Virginia Tech.
Falls Church, Virginia, USA

reghu@vt.edu

William B. Frakes
Software Reuse Lab

Computer Science, Virginia Tech.
Falls Church, Virginia, USA

frakes@cs.vt.edu

Abstract— One hundred and seven implementations of a one-use
stemmer component and the equivalent reusable programs were
analyzed in this exploratory study. Subjects were given a list of
19 reuse design principles and asked to indicate which ones they
used. A ranking of the design principles by frequency of use is
reported. One-use and the equivalent reusable components were
analyzed using measures of the pairs in terms of size in SLOC
(source lines of code), effort in hours, number of parameters, and
productivity as measured by SLOC/hours to develop. Reusable
components were significantly larger than their equivalent one-
use components and had significantly more parameters. The
effort required for the reusable components was higher than for
one-use components. The productivity of the developers was
significantly lower for the reusable components compared to the
one-use components.

Keywords: Software reuse, software engineering, empirical
study, reusable component, reuse design principles

I. INTRODUCTION

Many reuse design principles have been proposed [1-4] but
there has been little empirical analysis of their use. The
software reuse literature often refers to a one-use component
and its reusable equivalent, but there has been little study of
this concept. In this study, we examined the reuse design
principles used by one-hundred and one subjects in converting
a one-use s-stemmer component to mak e it reusable. Our
purpose was to conduct an exploratory analysis to identify the
most commonly chosen reuse design principles used to develop
the components and to quantify the differences in size, number
of parameters used and effort between one-use and reusable
components.

Software reuse, the use of existing software artifacts or
knowledge to build new systems, is pursued to realize benefits
such as improved software quality, productivity, or
reliability[5]. Approaches to measuring reuse and reusability
can be found in [6]. Software reuse in industry has been studied
and its benefits analyzed [7-12]. These papers document an
improvement in softw are quality and productivity due to
software reuse. There are also many types of software reuse
[6]. In the paper by Mohagheghi and Conradi [8], it has been
pointed out that althoug h there is positive and significant
evidence for improved productivity, further study is required to
measure the actual gains in productivity. Our paper measures
the effect on productivity of a software developer making a
one-use component reusable.

Component based development in softw are reuse was
presented as early as 1968 by McIlroy [13] suggesting that
interchangeable pieces called software components should
form the basis for software systems. Our study is based on the
component based approach and the reuse design principles
presented in this paper aim at the design and implementation of
simple reusable software components. A software system
developed with reusable components follows a ‘with’ reuse
process while a component designed to be reused in other
systems follows a ‘for’ reuse process.

A. One-use component vs. Reusable component
The distinction between a reusable and its equivalent one-

use component is an intuitive concept that is not precisely
defined. One-use components are generally written for specific
applications and are not meant to be used again. Reusable
components on the other hand are developed to be used more
than once w ithin a domain or across domains for various
applications in various environments. Reusable components are
generally developed by taking a one-use component and
modifying it either to add more functionality or changing it to
work in other envi ronments following a re-engineering
approach. They can also be developed from scratch. Our study
involves reusable components built by re-engineering one-use
components. It foll ows that compared to equivalent one-use
components; reusable components tend to be larger, more
complex and slower. They also should have more potent ial
input/output types and more parameters.

As a simple example of a one-use versus a reusa ble
component, consider the “hello world” program, hello.c, as
a one-use component and the anymessage.c program as its
reusable equivalent. Here is the code for each:

//hello.c (one-use component)
main(){printf("hello world\n");}

//anymessage.c (reusable component)
main(argc, argv) /* print any message to output */

int argc; char *argv[];
{

int i;
 for (i=1; i< argc; i++)

 printf("%s ",argv[i]);
printf("\n");

}

195

Table I shows the relationships between hello.c and
anymessage.c in terms of attribut es such as size,
complexity, etc. We ran the wc program in the Unix
environment [http://www.computerhope.com/unix/uwc.htm]
on hello.c and anymessage.c. As predicted, the reusable
program is large r and has more parameters. We also
hypothesize that anymessage.c will be more complex,
require more testing, require more design know ledge, have
higher execution speed, and require more time to develop. Thus
Table I summarizes our theoretical model of the relationship
between a one-use and a reusable component. In the remainder
of this paper, w e will empirically evaluate certain aspects of
this model.

TABLE I: hello.c (one-use component) VS. anymessage.c
(reusable component)

Attribute hello.c anymessage.c
Size (lines, chars,
executable) (1, 8, 9878) (10, 25, 9931)

Parameters 0 2

Domain Knowledge Low Medium

Testing < >

Design < >

Execution Speed < >

Effort < >

B. Motivation
For practitioners and researchers, there are two motivations

in our stu dy. One is that even though the relation between
software quality and reuse has been established, no empirical
study has been foun d comparing one-use and equivalent
reusable components. The other motivation is that practitioners
and researchers need to address the problem of how to build
reusable components. This exploratory study used a
comprehensive list of reuse design principles presented in the
past two decades for software reuse and identified the most
used reuse design principles. This can be a guideline for
building reusable components. One major limitation of our
study is that the components studied are small in size.
However, this is an exploratory study and with 107 subjects,
nearly all of whom have some experience in software
engineering. The sample size is adequa te for comparing one-
use and reusable components. Also, this exploratory study is a
baseline for future study on designing, building, and measuring
reusable components.

One study that is similar to ours is presented by Seepold
and Kunzmann [14] for components written in VHDL .
However, the major limitation in that study was that it involved
only four com ponents - two one-use and two equivalent
reusable components. According to that study the complexity,
effort and productivity were all higher for reusable
components. The reasons identified were due to overhead in
domain analysis, component verification and documentation.

This paper is organized as follows: section II provides an
overview of the reuse design process and principles; section III
presents the hypotheses analyzed in this study; section IV
discusses the method employed, metrics used for evaluation,
and the s-stemmer component used in our study; section V
presents the results and discussion; and section VI presents the
conclusions and future work.

II. REUSE DESIGN PRINCIPLES

How to make a software component reusable has been one
of the key questions for software reuse research. Reusable
components may be built from scratch or re-engineered from
existing artifacts. As can be seen from Fig. 1., the quality of the
reusable components may be measured in terms of safety
(when implemented and/or merged with another component),
execution speed (generally the reusable components are slower
than the one-use components), cost, and size. Size may be
measured by source lines of code (SLOC). We assume that the
higher the SLOC, the higher will be the complexity resulting in
higher numbers of faults and parameters.

Many reuse design principles have been proposed. These
are summarized in the mindmap in Fig. 1 based on the work by
[1]. The principles are at var ious levels of abstraction. The 3
C's model of reuse design [15], for example, was developed to
explore the reuse design process in a general framework. It
specifies three levels of design abstraction: 1. Concept –
representation of the abstract semantics. 2. Content –
implementation details of the code or software. 3. Context –
environment required to use the component.

III. HYPOTHESES
This paper aims primarily to study and test four

hypotheses related to the reusable components. Due to the
higher complexity and functionality of the reusable
components, their size (in SLOC - source lines of code), effort
(in hours), the productivity (in source lines of code per hour)
and number of parameters should be significantly higher than
their equivalent one-use components. The choice of the
metrics is discussed in section 4.3. These hypotheses are
summarized in equations (1), (2), (3), and (4). SLOCReuse is the
actual source lines of code in the reusable component while
SLOCReuseDiff is the difference in the source lines of code
between the reusable and one-use components. The difference
is considered for the productivity of reusable components
because the reusable components studied in this paper were
not built from scratch; instead , they were reengineered by
modifying the one-use components based on the reuse design
principles given in Fig. 1.

SLOCReuse > SLOCone-use (1)
EffortReuse > Effortone-use (2)
SLOCReuseDiff/hour > SLOCone-use/hour (3)
ParametersReuse > Parametersone-use (4)

196

IV. METHOD

Based on the faceted classification on types of software
reuse by Frakes and Terry [6], the reuse design in our study
involves development scope as internal, modification as white
box, domain scope as vertical, management as ad hoc, and
reused entity as code. A total of 107 subjects participated in
this study. Nearly all the subjects were technical professionals
with at least some experience in software engineering. The
subjects were given an assignment to build a one-use software
component implementing the s-stemming algorithm [16] and
were later asked to convert their one-use stemmer component
to a reusable component. The subjects were students either at
Master’s or Ph.D. level at Virginia Tech., USA.

A. A S-Stemmer Component
Three rules specify the s-stemming algorithm as follows

(only the first applicable rule is used):

If a word ends in “ies” but not “eies” or “aies” then
Change the “ies” to “y”, For example, cities city

Else, If a word ends in “es” but not “aes”, “ees”, or “oes”
then change “es” to “e”, For example, rates rate

Else, If a word ends in “s”, but not “us” or “ss” then
Remove the “s”, For example, lions lion

The subjects were given lectures on the topics of software
reuse, domain engineering and reuse design principles. The
mindmap of the reuse design process as given in Fig. 1 was the
basis of the lecture. One hundred and one of them converted
their one-use components to an equivalent reuse component
based on the reuse design principles in Fig. 1. The reuse design
process followed was the reengineering method and not from
the scratch method i.e. an existing component was modified to
be reusable. The subjects were asked to follow a ‘for’ reuse
design process i.e. design for future use.

The programming language used w as Java. The reusable
components were compared with one-use components based on
the size (SLOC), effort (time in hours), number of parameters,
and productivity (SLOC/hr).

B. Data Collection
For both the one-use and reusable components the subjects

were asked to report the time required for developing the
component. For the reuse components, the subjects were also
asked to indicate and justify the reuse design principles (from
Fig. 1.) that they used. One hundred and seven students
successfully built the one-u se components and 101 built the
equivalent reusable component; six subjects did not build the
equivalent reusable component and three of those who
submitted did not report back the time required for building the
component. All the components, both one-use and reusable
components were graded as part of the assignment and required
to satisfy two criteria: (1) the components must compile and
execute error-free, and (2) the componen ts must provide the
right solutions for a set of test cases.

C. Evaluation Metrics
Source lines of code or SLOC is one of the first and most

used software metrics for measuring size and complexity, and
estimating cost. According to a survey by Boehm et al.[17],
most cost estimation models were based directly on size
measured in SLOC. Some of them are the COCOMO [18],
COCOMO II [19], SLIM [20], SEER [21]. In COCOMO and
COCOMO II the effort is calculated in man-hours while the
productivity is measured in SLOC written per hour . Many
empirical studies have also been based on measuring the
complexity of software components by measuring SLOC [22-
25]. There are also empirical studies where productivity of
software components is measured in SLOC/hr [22, 23, 25, 26].

Herraiz et al. [27] studied the correlation between SLOC
and many complexity measures such as the McCabe’s
cyclomatic complexity [28] and Halstead’s metrics as given in

Figure 1. Mindmap of Reuse Design Process

197

[29]. In their study they have presented empirical evaluations
showing that SLOC is a direct measure of complexity, the only
exception being header files which showed a low correlation
with the McCabe’s cyclomatic complexity measures. Research
by Graylin et al. presented evidence that SLOC and cyclomatic
complexity have a stable practically perfect linear relationship
that holds across programmers, languages, code paradig ms
(procedural versus object-oriented), and software processes
[30]. Linear models have been developed relating SLOC and
cyclomatic xomplexity. Buse et al [31], for example, presented
a study where they show a high direct correlation between the
SLOC and the structural complexity of the code. A study by
Gaffney [32] reported that the number of faults in a software
component is directly correlated to source lines of code
(SLOC). Krishnan et al. [33] also reported an empirical study
that showed a direct correlation between SLOC and the number
of defects in software components.

Based on these studies, we decided to compare the one-use
and reusable components in our study based on the size (in
SLOC), effort (man-hours) and productivity (in SLOC/hr).

V. RESULTS AND ANALYSIS

A. Reuse Design Principles
Table II shows the summary of the usage of reuse design

principles by the subjects. The mean number of principl es
used by a subject was 5.4. A well-defined interface (#1) was
the most highly ranked principle and was used for about half
of the reusable components. Link to documentation was
ranked 2 and used in about 42% of the reusable components.
Documentation has always been recommended and widely
used in the programming world. Clarity and understandability
of the code ranked next. This principle allows the users of the
component a better and easier way of comprehending the code
for future use. The next three principles were generality,
separate concepts from contents and commonality and
variability.

B. SLOC, Effort, Productivity and Parameters
The source lines of code for the one-use (N=107) and

reusable components (N=101) were measured using the
sloccount tool [http://www.dwheeler.com/sloccount/]. The
notched box plots of the SLOC measured for the one-use and
reusable components are shown in Fig. 2.

SLOCReuseDiff = (SLOCReuse – SLOCone-use) (5)

The effort taken in terms of time (hours) and the number of
parameters are shown in Fig. 3 and 4 respectively. Fig. 5
compares the productivity (in terms of SLOC/ho ur) of the
developers for one-use vs. reuse components. SLOCReuseDiff is
considered for the productivity of reusable components
because the reusable components studied in this paper were
not built from scratch; instead , they were reengineered by
modifying the one-use components.

SLOC/hrReuseDiff = (SLOCReuse – SLOCone-use) / EffortReuse (6)

TABLE II. Ranking of reuse design principles used

Rank# Reuse Design Principle Count#
1 well defined interface 56
2 link to documentation 43
3 clear and understandable 42
4 generality 41
5 separate concept from contents 40
6 commonality and variability 31
7 linking of test to code 24
8 encapsulation 23
9 one component use many 21

10 composition 19
11 variability mechanism 13
12 parameterization 12
13 genericity 11
14 optimization 9
15 restrictiveness 7
16 modification 3
17 isolate context and policy 1
18 abstraction 1
19 self-documenting code 1

Understanding and interpreting box plots can be found in
[34]. If the notches of boxpl ots of different groups overlap,
then there is no significant difference between the groups and if
they do not overlap, there is significant difference between the
groups.

The median of SLOC significantly increased for the
reusable components to 92 lines of code as compared to 51 for
the one-use components, an increase of 80%. The aver age
SLOC was 62 and 110 for the one-use components and the
reusable components respectively. The notches of the two box
plots do not overlap and this indicates a statistically significant
difference between the sizes of the tw o components. This
increase is due to inco rporating more functi onality in the
reusable components. The boxplots in Fig. 2 also shows that
there is much more variability in the SLOC measure for the
reusable components. This may be because the reusable
components have more functionalities and those functionalities
vary from subject to subject based on the understanding of the
reuse design principles; while for the one-use components the
subjects may have had a more similar understanding of the
functionality. From Fig. 3, the median of the time taken to
implement the components was 5.0 hours and 8.0 hours
respectively for the one-use and reusable components. Average
time taken was 3.6 and 6.5 hours for one-use components and
reusable components respectively. The notched areas of the
box plots overlap for the two and this indicates no significant
difference. As was the case for SLOC, the variability is higher
for the reusable components. The inter quartile range for the
one-use and reusable components are 3.0 hours and 5.5 hours
respectively while the standard deviations are 3.0 hours and 6.8
hours respectively.

198

Figure 2. Comparison of actual size (SLOC)

Figure 3. Comparison of Effort (hours)

As can be seen in Fig. 4, the number of param eters for the
reusable components was significantly higher than for the one-
use components. The medians were 2 and 5 for one-use and
reusable components respectively. The mean number of
parameters for the one-use components was 2.6 while the
reusable components were 5.4. 40% of the one-use components
had only a single parameter. In this case the variability is
somewhat larger for the reusable components. As can be seen
in Fig. 5, the medi an of the productivity was 21.0 and 6.45
SLOC/hr for the one-use and reusable components
respectively. The mean for the productivity of one-use
components (30.0 SLOC/hr) is almost three times the
productivity the reusa ble components (10.6 SLOC/hr). The
notches do not overlap and indicate significant difference. This
may be because more time may have been spent on the design
of the reusable component than on coding when compared to
the one-use component. For the productivity, the variability of
the one-use component is higher than the equivalent reusable
components. The standard deviations are 29.2 SLOC/hr for
one-use and 15.1 SLOC/hr for reusable components. The inter
quartile range for the one-use componen ts is 25.75 SLOC/hr
while it is only 9.3 SLOC/hr for the reusable components.

An outlier in the effort for one-use component was the
same subject who had an outlier in the SLOC (the subject who
had the second most SLOC in one-use component). This
indicates a higher effort for higher SLOC. The outliers for the
number of parameters for one-use components and the sa me

subject also caused outliers for reusable components. Using
more parameters might be a programming style followed by the
subjects.

Figure 4. Comparison of #parameters

Figure 5. Comparison of productivity (SLOC/hr)

C. Matched Pair t-tests
SLOC, effort, productivity and the number of parameters

were compared using the matched pair t-tests. For this analysis,
the difference in the valu es of the one-use and reusable
components was first calculated and this difference was then
analyzed using one-sample t-test with a hypothetical test mean
of zero. The results are shown in Table III. Table III shows that
the SLOC, effort, and the number of parameters are statistically
siginificantly higher. The productivity also shows a statistically
significant difference. The reusable components have
significantly lower productivity. Comparing the values of
Cohen’s d [35] the effect sizes are “large” for SLOC, number
of parameters, and productivity, and “medium” for effort.

TABLE III. Matched pair t-test statistics (p<0.0001)
Variable Mean Std.

Dev. df t Cohen’s
d

(SLOCReuse –
SLOCone-use)

48.6 53.7 100 9.09 0.89

(EffortReuse –
Effortone-use)

3.09 5.9 97 5.1 0.56

(ParametersReuse –
Parametersone-use)

2.76 2.87 100 9.64 0.88

(SLOCReuseDiff/hr –
SLOCone-use/hr)

-20.5 31.67 97 -6.4 -0.81

199

VI. CONCLUSIONS AND FUTURE WORK

One-use components and their equivalent reuse components
were analyzed for their sizes and the number of parameters.
Both of these were found to be significantly higher for the
reusable components. Programmer effort in terms of hours was
also analyzed and observed to be signif icantly higher for
reusable components. The productivity in SLOC/hour for the
SLOC difference of reusable components was significantly
lower than those for the one-use components. The higher
SLOC for the reusable components is due to the additi onal
functionality of the reusable components. The productivity was
also affected by the additional functionalities introduced in the
reusable components as the productivity was lower for the
reusable components. This may be because the subjects might
have spent more time in designing for the reusable components
and modifying the existing one-use components as they are
following the reengineering process for reuse design and not
the build from scratch method. The effort required for reusable
components was also sig nificantly higher than those for the
one-use components. The number of parameters was
significantly higher for the reusable components than those for
the one-use components. This may be because of more code
within the com ponent to realize the additional functionalities
for reusability.

Nineteen reuse design principles were taught to the
subjects. The most frequently used based on pareto ranking of
the principles were presented. The six most frequently used
reuse design principles were – well-defined interface, link to
documentation, clarity and understandability, generality,
separate concepts from contents and commonality and
variability. The reuse design principles of isolation of context
and policy from functionality, abstraction and self-documenting
code were least used by the subjects. This may be because the
components developed were relatively simple.

Future work may include an empirical study using a more
complex algorithm. Future work may include components built
in various other languages as well. Design with reuse may also
be studied in future by having subjects use the reusable
components developed in this study. The study will focus on
identifying whether a correlation exists between the reu se
design principles used and the ease of reusability.

[1] W. B. Frakes and D. Lea, "Design for Reuse and Object Oriented reuse
Methods," presented at the Sixth Annual Workshop on Institutionalizing
Software Reuse (WISR '93), Owego, NY, 1993.

[2] J. Sametinger, Software engineering with reusable components. Berlin
Heidelberg, Germany: Springer Verlag, 1997.

[3] B. Weide, et al., "Reusable software components," Advances in
computers, vol. 33, pp. 1-65, 1991.

[4] M. Ezran, et al., Practical software reuse: the essential guide. London:
Springer Verlag, 2002.

[5] W. B. Frakes and K. C. Kang, "Software reuse research: status and
future," IEEE Transactions on Software Engineering, vol. 31, pp. 529-
536, 2005.

[6] W. Frakes and C. Terry, "Software reuse: metrics and models," ACM
Comput. Surv., vol. 28, pp. 415-435, 1996.

[7] R. van Ommering, "Software reuse in product populations ," IEEE
Transactions on Software Engineering, vol. 31, pp. 537-550, 2005.

[8] P. Mohagheghi and R. Conradi, "Quality, productivity and economic
benefits of software reuse: a review of industrial studies," Empirical
Software Engineering, vol. 12, pp. 471-516, 2007.

[9] P. Mohagheghi and R. Conradi, "An empirical investigation of software
reuse benefits in a large telecom product," ACM Transactions on
Software Engineering Methodology, vol. 17, pp. 1-31, 2008.

[10] W. B. Frakes and G. Succi, "An industrial study of reuse, quality, and
productivity," Journal of Systems and Software, vol. 57, pp. 99-106,
2001.

[11] M. Morisio, et al., "Success and Failure Factors in Software Reuse,"
IEEE Transactions on Software Engineering, vol. 28, pp. 340-357, 2002.

[12] W. C. Lim, "Effects of Reuse on Quality, Productivity, and Economics,"
IEEE Softw., vol. 11, pp. 23-30, 1994.

[13] M. D. McIlroy, et al., "Mass produced software components," Software
Engineering Concepts and Techniques, pp. 88–98, 1969.

[14] R. Seepold and A. Kunzmann, Reuse techniques for VLSI design.
Netherlands: Springer 1999.

[15] L. Latour, et al., "Descriptive and predictive aspects of the 3Cs model:
SETA1 working group summary," 1991, pp. 9-17.

[16] W. B. Frakes and R. Baeza-Yates, Information retrieval: data structures
and algorithms, 2nd ed. vol. 77. Englewood Cliffs, NJ: Prentice-Hall. ,
1998.

[17] B. Boehm, et al., "Software development cost estimation approaches —
A survey," Annals of Software Engineering, vol. 10, pp. 177-205, 2000.

[18] B. W. Boehm, Software engineering economics. Upper Saddle River,
NJ: Prentice-Hall, 1981.

[19] B. Boehm, et al., "Cost estimation with COCOMO II," ed: Upper Saddle
River, NJ: Prentice-Hall, 2000.

[20] L. H. Putnam and W. Myers, Measures for excellence: Yourdon Press,
1992.

[21] R. Jensen, "An improved macrolevel software development resource
estimation model," in 5th ISPA Conference, 1983, pp. 88–92.

[22] R. W. Selby, "Enabling reuse-based software development of large-scale
systems," IEEE Transactions on Software Engineering, vol. 31, pp. 495-
510, 2005.

[23] T. Tan, et al., "Productivity trends in incremental and iterative software
development," in ESEM '09 Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement Lake
Buena Vista, Florida, USA, 2009, pp. 1-10.

[24] A. Gupta, "The profile of software changes in reused vs. non-reused
industrial software systems," Doctoral Thesis, NTNU, Singapore, 2009.

[25] N. E. Fenton and M. Neil, "Software metrics: roadmap," presented at the
Proceedings of the Conference on The Future of Softw are Engineering,
Limerick, Ireland, 2000.

[26] M. Dinsoreanu and I. Ignat, "A Pragmatic Analysis Model for Software
Reuse," in Software Engineering Research, Management and
Applications 2009. vol. 253, R. Lee and N. Ishii, Eds., ed: Springer
Berlin / Heidelberg, 2009, pp. 217-227.

[27] I. Herraiz and A. E. Hassan, "Beyond Lines of Code: Do We Need More
Complexity Metrics?," in Making Software: What Really Works, and
Why We Believe It, A. Oram and G. Wilson, Eds., 1st ed Sebastapol, CA:
O' Reilly Media, Inc. , 2010, pp. 125-141.

[28] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. SE-2, pp. 308-320, 1976.

[29] S. H. Kan, Metrics and models in software quality engineering. India:
Pearson Education India, 2003.

[30] J. Graylin, et al., "Cyclomatic Complexity and Lines of Code: Empirical
Evidence of a Stable Linear Relationship," Journal of Software
Engineering and Applications, p. 137, 2009.

[31] R. P. L. Buse and W. R. Weimer, "Learning a Metric for Code
Readability," IEEE Transactions on Software Engineering, vol. 36, pp.
546-558, 2010.

[32] J. E. Gaffney, "Estimating the Number of Faults in Code," IEEE
Transactions on Software Engineering, vol. SE-10, pp. 459-464, 1984.

[33] M. S. Krishnan and M. I. Kellner, "Measuring process consistency:
implications for reduci ng software defects," IEEE Transactions on
Software Engineering, vol. 25, pp. 800-815, 1999.

[34] W. B. Frakes and T. P. Pole , "An empirical study of representation
methods for reusable software components," IEEE Transactions on
Software Engineering, vol. 20, pp. 617-630, 1994.

[35] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., 1988.

200

Choosing licenses in free open source software

Ioannis E. Foukarakis
Department of Telecommunications

Science and Technology
University of Peloponnese

Tripolis, Greece

Georgia M. Kapitsaki
Department of Computer Science

University of Cyprus
Nicosia, Cyprus

Nikolaos D. Tselikas
Department of Telecommunications

Science and Technology
University of Peloponnese

Tripolis, Greece

Abstract—Free/Libre/Open Source Software (FLOSS) has been
lately on the focus of the software community in the attempt to
provide wide access to software resources and promote their
distribution. Open software resources may be linked directly or
indirectly with more than one open source licenses. Due to license
heterogeneity, incompatibilities may arise in such dependencies.
For this reason, adequate support for decision making in license
use is an important issue. Such systems can assist in determining
the right licenses and avoid potential violations. We tackle the
above aspects by giving an overview of the areas of license
extraction from software resources, license information storing
and license-related reasoning activities. We discuss about several
attempts in these areas and present an initial prototype assistance
system employing such techniques.

Keywords- data dependencies; licensing; open source software

I. INTRODUCTION

Free/Libre/Open Source Software (FLOSS) [1] has
influenced modern software engineering processes, allowing
individuals to use software for free and software engineers to
incorporate third party software libraries in their software
products and implementations. The terms, under which the
software has become available and is provided for use to the
community, are captured in the licenses that accompany open
source software. Licenses correspond to the characteristics of
the intellectual property and usually express the rights and the
obligations of the copyright owner and the one using the
license (referred to as the licensee). Many different licenses
have appeared: GNU General Public License (GPL), Apache
License, BSD License, MIT License to name a few. Licenses
fall into three main categories: permissive, weak copyleft or
strong copyleft, showing different degrees of freedom in
FLOSS use. The first category of permissive licenses states that
licensed software can be adopted even in commercial software
that is not distributed as open so urce. On the contrary, weak
copyleft licenses demand that any changes in the licenses
source code should be made available as open source software
itself, whereas strong copyleft licenses mandate that any kind
of further distribution be under open source principles.

Each license may have multiple versions making it difficult
for developers to cope with incompatibilities that might exist
due to the use of software libraries based on different licenses.
Especially during the development phase, it is often the case
that engineers include additional, and often redundant,
dependencies in their code light-hearted, without examining
possible licensing incompatibilities. As the number of

components increases, so does the complexity of deciding
which licenses can be applied to the final system, or of
checking if violations exist among the terms defined in the
licenses, leading to license incompatibility. Lindberg [2]
describes license compatibility as a sim ilar approach with
blood type compatibility: “two blood types are compatible if
donations from two different people can be used together.” In
the same way, licenses are compatible if software distributed
under two different licenses can be used together in the same
software product. Although no mature software for supporting
decisions in license issues is available, many research activities
and commercial efforts have recently appeared.

The current paper provides an overview of the aspects of
license decisions by presenting the process of license
compatibility detection that can be divided into the areas of
license extraction information from software resources, license
information storing, as well as modeling and reasoning actions.
Some techniques are applied on the implementation of a
prototype system extending a popular build tool. The rest of the
paper is structured as follows. Section II briefly presents the
steps of the license compatibilities process. Section III
discusses works on extracting license information from existing
components, whereas section IV is dedicated to the
presentation of repository-based approaches. In section V ways
for discovering licenses are presented. An initial prototype
implementation of the compatibility detection is demonstrated
in section VI. Finally, section VII concludes the paper.

II. THE LICENSE COMPATIBILITY PROCESS

Each software system is comprised of individual artifacts
that may include source code, compiled programs, software
libraries or other file types (i.e., images, multimedia files and
data in general). An abstract model of the software includes the
distinct artifacts and the way these are connected through the
development process. For instance, a source code file may hold
references to other source code files or libraries. In turn, the
compiled version of the source code may have static or
dynamic references to software libraries and so on.

The generic approach that can be followed for detecting
license incompatibilities is depicted in Fig. 1. The first step
towards making a decision for possible open source licenses is
to identify the individual components of the software system.
Afterwards, different license extraction techniques may be
applied to detect the license of each artifact, varying from text
matching to querying license repositories. In fact, the same

201

Figure 1. High level overview of detecting compatible licenses

license extraction techniques may be used to populate such
repositories. By combining the system’s model with license
metadata, an enriched version of the system model can be
derived, holding both information about the components that
comprise the system and the license of each participating
component. This enriched model can be seen as the license
architecture of the software system, depicting artifact and
license interconnections. The validity of these connections can
be examined by checking whether two connected components
have compatible licenses or not. In order to perform this task,
the definition of compatibilities between licenses is required.
This can be achieved by analyzing the licenses and modeling
their compatibilities either as a whole or on individual
permissions and restrictions. By combining the enriched
system model with the license compatibility model, it is
possible to detect permissible licensing schemas for the
software system and/or possible licensing violations.

III. LICENSE INFORMATION EXTRACTION

In FLOSS development, several methodologies and
corresponding tools have been developed in an attempt to
identify licenses from source code, software libraries in binary
format, components or programs of different suppliers under
FLOSS or proprietary licenses. A category of extraction
methods is based on regular expressions that indentify the
license of each file through string matching techniques. These
patterns result from the analysis of the actual license text. Tools
using this approach are Ohcount1

[3]

, OSLC (Open Source License
Checker), and ASLA (Automated Software License Analyzer)

. According to this method, source files and files that might
contain license information are first identified (i.e., commented
parts of source files and whole files) and are then checked, in
order to compare the content found against database files and
conclude whether a specific license is present or not.

A similar approach is followed in LIDESC (Librock License
Awareness System2

1 http://www.ohloh.net/p/ohcount

), which is an awareness tool for preventing
unintended violations of license terms of software that the

2 http://www.mibsoftware.com/librock/lidesc/

developer writes or acquires. In LIDESC a license is modeled
as a set of “license stamps” with each stamp corresponding to
the entries encountered in the license text. It can be seen as a
pair of a label and a string. The label defines a specific right or
obligation in the license. The same label may be used in
multiple licenses, whereas the string contains the license text
that defines the corresponding right. By using text comparison,
a set of license stamps is generated for each file, defined in two
specific files for each license: a .txt file that contains the license
text and a .lh file that uses the C language to define strings of
symbolic terms, in order to describe the license.

An algorithm for automatic license identification from
source code has been implemented in the Ninka tool [4]. The
algorithm works by extracting the license statement from the
file, which it breaks apart into textual sentences, and proceeds
to find a match for each sentence. The list of matched sentences
is analyzed to determine if it contains one or more licenses.
This method is based on and requires a knowledge base with
four sets of information: filtering keywords, sets of equivalence
phrases, known sentence-token expressions and, license rules.

When focusing on binaries, the Binary Analysis
Tool3

[5]

(BAT) looks inside binary code, in order to find license
compliance issues. BAT can detect bootloaders (such as
Redboot, loadlin and uboot), open various compression
archives (such as ZIP, RAR, tar, cpio and LZMA), search for
Linux kernel and Busybox issues and identify dynamically
linked libraries, while it r eports the outcome in XML format.
BAT uses symbol and string table comparisons to read binary
code in firmware formats and compare it with source code,
without undertaking reverse engineering actions. BAT can also
compare the compiled version of the software under review
with the corresponding source code, resulting in more accurate
results. A different technique is based on automatic licenses’
tracking of third-party artifacts . Popular open-source build
frameworks, i.e., Maven, Ivy and Gradle, describe artifacts and
dependencies in terms of reusable declarative modules. Project
Object Model (POM) files in Maven, as well as Descriptor files
in Ivy and Gradle respectively, were designed to contain
license information as part of the module metadata, giving the
hope that the extraction of license information from module
metadata can become fully automated. As we will describe, this
is usually achieved by using an artifact repository.

IV. LICENSES AND REPOSITORIES

When talking about open source code repositories, many
locations can be enumerated starting with SourceForge. Further
repositories that aggregate project content from other locations
can be found in commercial (e.g., Black Duck Knowledge
Base 4) or non-commercial solutions (e.g., Swik 5

[6]
, Ohloh).

Another approach can be found in FLOSSmole , a central
repository containing data and analyses about FLOSS projects
collected and prepared in a decentralized manner.

3 http://www.binaryanalysis.org
4 http://www.blackducksoftware.com/knowledgebase
5 http://swik.net/

202

The important aspect is to provide repositories with
“intelligence” by creating repositories that store not only source
code, but also sufficient information that would allow drawing
useful conclusions as described by the Fact Extractor Support
of Kenyon [7]. Repositories of this kind should be
accompanied with metadata in a machine understandable
format that can be parsed, analyzed and categorized fast and
efficiently. Metadata may indicate useful parameters, such as
file names and sizes, versions and modification permissions,
and license-related details. When concentrating on license
information and dependencies, input to the software repository
can be provided by agents that extract license information from
source code, libraries and text files. On the other hand, the
stored information is maintained in a suitable format, in order
to be provided to tools that can reason over the license details.
Reasoning mechanisms extract results that usually lead to an
implementation decision for a specific information system or
point out conflicts related with license use. Another important
parameter in software repositories is related to how different
versions of the same entry are handled. Information about
changes in license dependencies needs to be kept up to date,
since this may lead to changes in implementation decisions.

One attempt for storing license information in a repository
can be found in FOSSology [8]. The study of FLOSS was
initiated at Hewlett Packard more than a d ecade ago, but its
final version was released recently. FOSSology presents a list
with all license types identified for each project stored in the
repository, while it contains a tool for analyzing the files given
as input by matching text against license templates. Currently
FOSSology supports about 260 different licenses (considering
different license versions). A match percentage, indicating the
probability that the discovered license is indeed the one
included in the file under examination, is also provided. This
happens, since in practice the project authors may have
changed words or phrases of the original license text. The
presence of such a percentage is, thus, desirable in all license
repositories, as is the presence of license taxonomies that can
help towards identifying which license category each project
belongs to. Taxonomies can be further used for identifying
licenses that are outside the acceptable license set, defined in
policies imposed inside an organization. An example, where
matching of licenses against a set of management rules is
supported, can be found in Artifactory6

Based on the existing approaches and generic repository
structures, an example of what should form part of the license
association metadata for a software entry is illustrated in Fig. 2.
This information links projects with one or more licenses and
should be available for each license encountered (apart from

, an internal repository
that acts as a proxy between a build tool (e.g., Maven, Ant) and
the outside world. Artifactory supports five statuses for licenses
found: unapproved, approved, unknown, not found (when no
license information exists) or neutral (used to indicate
unapproved licenses when an approved license also exists).

6 http://www.jfrog.com/

Figure 2. License metadata in a software repository

the sixth one, which provides statistical information). Note that
the repository can either be centralized or distributed [9].

V. DISCOVERING POSSIBLE LICENSES

The previous techniques offer the means for e xtracting the
license information and for storing this information in
repositories. However, licenses and components cannot be
viewed individually, but should be put in context with the rest
of the entities that comprise the software system as part of the
license compatibility process. This can be performed through a
two-step procedure.

A. Modeling license relations
The first step lies in identifying the set o f all possible

licenses and modeling their relations. The whole set of open
source licenses is quite large: 69 licenses have currently an
approval from the Open Source Initiative7 (OSI) and 88 from
the Free Software Foundation 8

[10]

(FSF). Therefore, recent
literature works focus on the most well-known and most widely
used open source licenses, such as GNU GPL, GNU Lesser
General Public License (LGPL) (version 2), Apache License
(version 2.0), New BSD licenses, MIT license and Eclipse
Public License. A practical approach that presents
compatibility among some of the most popular open source
licenses can be found in . In general, license A can be
considered to be compatible with license B, if software that
contains components from both licenses can be licensed under
license B. Under this line of though, all known licenses and
their compatibilities can be represented through a di rected
graph G(V, E) as the one depicted in Fig. 3. Each node V of the
graph represents one of the known licenses, while each edge E
represents compatibility between the adjacent licenses. The
direction of the edge represents which license should be used
for software containing components with licenses from both
nodes. This approach is based on manual interpretation of each
license (through the corresponding license legal text) and
provides general rules for reasoning on compatibility among
licenses. A similar compatibility model is discussed in [11].

More detailed solutions, which integrate the notions of
rights and obligations linked with a license, aim at modeling

7 http://www.opensource.org/
8 http://www.fsf.org/

203

licenses in a machine understandable manner. Such approaches
can assist in automated license compatibility checks. The
aforementioned LIDESC uses the sets of “license stamps” to
model licenses. If one license fulfills the requirements
expressed in the license stamps of another license, then the two
licenses can be considered compatible. In [12], the authors
propose a metamodel for licenses refined using empirical data.
A license is considered as a set of rights, where each right may
refer to a set of obligations. A s et of rules helps to extract
license compatibilities. A similar approach is described in [13]
in the framework of the Qualipso (Quality Platform for Open
Source Software) project, where an ontology is used to model a
set of well-known FLOSS licenses and their rights (8 FLOSS
licenses were included). The ontology contains appropriate
classes represented in a hierarchical model. The semantics of
each license are modeled as a set of rights and conditions.

B. Inferring possible licenses
One of the most important issues in terms of deciding if two

or more components are compatible lies on how the connection
among them is modeled and under which conditions they can
be connected. Software libraries may be linked statically or
dynamically, whereas APIs may be used t o hide client-server
connections, middleware or protocol implementations. These
different types of connections may affect specific rights or
obligations defined within a license. For example, an email
client needs to connect to an email server via the corresponding
protocol. The license of the email server should not affect the
possible licenses of the client. Additionally, when the email
client needs to be tested, specific libraries can be used in the
development of the test cases. Nevertheless, these libraries
have no e ffect on the rights and obligations related to the
distribution, since they are n ot integrated within the software
but constitute external tools. Generally, license restrictions
come to play, when software distribution needs to be
addressed, but they should not affect actions performed in the
framework of internal activities, such as testing. This does not
exclude the presence of additional constraints imposed in
policies within an organization that need to be considered. In
order to tackle these issues and avoid conflicts, it is imperative
to provide a model of the software system under question.

A simple approach for modeling the related licenses in a
software system is to use the directed graph described
previously. The possible licenses for the resulting software
systems can be found among the ones that satisfy the
compatibility criteria for the licenses of all system components.
Consider for i nstance a proj ect having two dependencies, one
with license C and one with license E that may even belong to
different license categories. Initially, all known licenses (A to H
as in Fig. 3) can be regarded possible licenses. However, since
the first dependency’s license is C (Fig. 3(a)), the project can
only have one of the licenses of the following set: L1 = {C, F,
H}. In the same manner, since the second dependency’s license
is E (Fig. 3(b)), the project can only have one of the licenses
among L2 = {E, G, F, H}. By using the intersection of the two
license sets, it is concluded that the project is allowed to have
one of the following licenses: L1 . If there is no
information about the license of a dependency, the same
process can be used recursively using transitive dependencies.
Please note again that when organization policies on license

Figure 3. License compatibility graph

use are present (e.g., use of strong copyleft licenses is
prohibited), this simplified graph approach needs to be adapted
in order to take into account the additional constraints.

More detailed graph-based models for software systems can
also be employed in this part of the process. Such models are
useful in order to discover which rights and/or obligations may
apply to the resulting software. Instead of checking for the
possible licenses of the resulting system, all rights and
obligations that result from using one of the license relation
schemas described earlier are detected. In the Qualipso
ontology [13], rules expressed in a l egal rule language are
applied to the model and possible licenses are detected
automatically. Compatible licenses are found through the
introduced reasoner that searches for the licenses that provide
the required rights and/or belong to a specific class of the
hierarchy.

VI. A BUILD TOOL CASE STUDY

The approaches presented are applicable to a large number
of use cases. In order to evaluate the process of integrating the
aforementioned techniques in a ful ly functional system, a
prototype assistance system addressed mainly to s oftware
engineers that employ various components has been
implemented. An interesting fact is that most of the above
components are used for validating the result of the
development process, and not for assisting during the actual
implementation of the application. The prototype system has
been implemented as part of a build tool, since build tools are
widely employed in software engineering activities. By adding
an extension to an existing build tool the system is a ble to
support both stand-alone and team development, it can be used
as part of continuous integration builds and can be easily
incorporated in existing well known Integrated Development
Environments (IDEs). In this section information on the design
decisions and problems encountered during the development of
the prototype are given.

Initially an appropriate build tool to support the process had
to be selected. Since the community of Java software engineers
is one of the largest, we decided to focus on Java-related
technologies. Under the available Java-friendly solutions
Maven9

9 maven.apache.org/

from Apache was selected. Maven’s main advantage is

204

that holds a model of each software project internally. Using an
XML file, Maven describes each project’s model as a se t of
source code and third-party libraries (Java Archives or JARs).
Moreover, it is able to detect transitive dependencies
originating from the third-party libraries and include them in
the project. These files are downloaded automatically from
public or private repositories. Note that the model might
include metadata for ea ch dependency, such as the
dependency’s license name and text.

The detection of each dependency’s license is perhaps the
most difficult part in the process towards license decisions. As
described, license discovery can be implemented either by
searching each dependency’s file(s) or by looking up from a
repository. Although public repositories are available, the
existing repositories are not designed for providing license
information. Additionally, there’s no guarantee that every JAR
file contains license information. In order to evaluate the
situation, a crawler that indexed a large number of JAR files in
the central Maven repository was built. A list of the most
common file names that include licensing information is
presented in [4]. Out of the 31476 JAR files studied, exactly
14000 contained a file that might hold license information
(approximately 44.5% of the whole set). The most commonly
used word in the name of files that hold licensing information
was the obvious suspect, i.e., “license”, with 13601 of the JAR
files containing at least one such file. The second name in order
was “readme” with only 708 appearances. These numbers
indicate that in most cases license detection can be performed
without the need of a dedicated repository. However, there are
cases, in which licensing information cannot be determined for
a large number of dependencies. Consequently, although in the
implemented case study a license repository is not necessary, it
could offer a significant improvement in the results of the tool.

The final step in the case study was to create the enriched
system model and extract possible licenses. The missing
information for performing this task is the license compatibility
model. In the implemented tool, the licenses and their
compatibilities were captured in an XML format. Multiple
models have been discussed in the current paper; however, in
the current stage we opted for the approach of [10]. Although it
does not focus on individual rights and obligations expressed in
a license, it offers the required abstraction for und erstanding
which licenses can be adopted and which not. The file can be
modified, in order to introduce additional licenses or change
the relations of existing ones. The XML representation is easily
coupled with the simple graph approach captured in machine
readable notation. Moreover, it can also offer a graphical
representation of the system’s individual components and the
way their interconnections affect licenses allowing a cu stom
XML parser to detect permissive combinations. Using this
XML licenses dependencies file together with the set of
licenses originating from the project’s dependencies, as
collected from the first phase of license detection, appropriate
license decisions can be taken.

VII. CONCLUSIONS

In this paper licenses in free open source software have
been discussed along with representative approaches that guide
the license compatibility process. License identification deals

primarily with the extraction of license information from
existing source code and binary files, whereas software
repositories can be exploited for assisting the storing and fast
retrieval of license-related metadata linked to software
products. License discovery is then feasible by modeling the
relations among licenses and performing reasoning actions on
these relations. These aspects were demonstrated through a
prototype implementation for license identification in the
Maven build tool. Through the presented study, it can be
concluded that it is important for software engineers to detect
the correct licenses and avoid integrating prohibited licenses or
ones that cause violations in license dependency chains. This
decision is vital especially at our times, where a wide variety of
open source, already tested software is available at our
fingertips. Through the use case demonstration it can be seen
that such approaches can be combined with existing tools. We
are currently working towards completing the prototype system
with the aim to cover more file types and include intelligent
reasoning capabilities towards the provision of a complete
“license assistant” tool.

REFERENCES

[1] K. W. Miller, J. Voas and T. Costello, “Free and Open Source
Software,” IT Professional , vol.12, no.6, pp.14-16, Nov.-Dec. 2010.

[2] V. Lindberg, “Intellectual Property and Open Source A Practical Guide
to Protecting Code,” O'Reilly Media, 2008.

[3] T. Tuunanen, J. Koskinen and T. Karkkainen, “Automated software
license analysis,” Automated Software Eng., vol. 16, no. 3-4, pp. 455-
490, Dec. 2009.

[4] D. M. German, Y. Manabe and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proc. of the
IEEE/ACM int’l conf. on Automated software engineering, ACM Press,
2010.

[5] Y. Landman, “How to Use Continuous Integration to Protect Your
Projects from Open-Source License Violations,”
http://weblogs.java.net/blog/yoavl/archive/2010/12/16/how-use-
continuous-integration-protect-your-projects-open-source-licen, 2010.

[6] J. Howison, M. Conklin and K. Crowston, “FLOSSmole: A
collaborative repository for FL OSS research data and analyses,” Int’l
Journal of Information Technology and Web Eng., vol. 1, no. 3, pp. 17-
26, July 2006.

[7] J. Bevan, E .J. Whitehead Jr., S. Kim and M. Godfrey, “Facilitating
Software Evolution Research with Kenyon,” in Proc. of th e 10th
European software engineering conference held jointly with 13th ACM
SIGSOFT int’l symposium on Foundations of software engineering,
ACM Press, 2005.

[8] R. Gobeille, “The FOSSology project,” in Proc. of the 2008 Int’l
working conf. on Mining software repositories, ACM Press, 2008, pp.
47-50.

[9] M. Conklin, “Project Entity Matching across FLOSS Repositories,” in
Proc. of the 3rd int’l Conference on Open Source Systems, Springer-
Verlag, vol. 234, 2007, pp. 45-57.

[10] D.A. Wheeler, “The Free-Libre/Open Source Software (FLOSS) License
Slide,” http://www.dwheeler.com/essays/floss-license-slide.pdf, 2007.

[11] D. M. German, and A. E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development,” in
Proc. of the IEEE 31st int’l Conference on Software Engineering, 2009,
pp. 188-198.

[12] T. A. Alspaugh, W. Scacchi and H. U. Asuncion, “Software licenses in
context: The challenge of heterogeneously-licensed systems,” Journal of
the Association for Information Systems, vol. 11, no. 11, pp. 730-755,
Nov. 2010.

[13] T. F. Gordon, “Report on a Prototype Decision Support System for OSS
License Compatibility Issues,” Qualipso (IST- FP6-IP-034763),
Deliverable A1.D2.1.3, 2010.

205

A Unified Model for Server Usage and Operational
Costs Based on User Profiles: An Industrial

Evaluation

Johannes Pelto-Piri
Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden

Email: johannes.peltopiri@gmail.com

Peter Molin
Malvacom AB

Soft Center Fridhemsvägen 8

SE-372 25 Ronneby, Sweden

Email: peter.molin@malvacom.com

Richard Torkar
Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden

Email: richard.torkar@gmail.com

Abstract—Capacity planning is essential for providing good
quality of service, for that reason we need to be able to predict the
usage that the applications will impose on our servers. This paper
presents a unified model that can predict the usage, hardware
requirements and, ultimately, the operational costs. The goal of
this study is to present a model for capacity planning. The model
presented is developed and evaluated within the industry. The
evaluation is used to analyze the possibilities of the proposed
model. The models have been evaluated within a company
using historical data that originates from production software.
The evaluation was done by running the model against three
applications and mapping the result to a selection of Amazon
EC2 cloud instances. We then provided the same data to five
developers and asked them which instance they would have
chosen for the applications. Two of the developers suggested the
same instance as the model, the second smallest on the scale. The
remaining three developers chose the instance one step above the
model’s recommendation. The evaluation showed that the model
is able to produce estimations that are comparable to expert
opinions. The unified model in this paper can be used as a tool
to estimate the usage, hardware requirements and the final cost
of the servers. The model is easy to setup within a spreadsheet
and contains parameters that are easy to obtain from access logs
and various logging tools.

I. INTRODUCTION

Mobile applications have gained a high market penetra-

tion [1] that is continuously growing. That, in combination

with the rise of cloud computing, makes it easier than ever

for small companies and independent developers to reach out

to a large user population. For mobile applications it is more

and more common to utilize context aware and multimedia

services, which require more computational resources than

their predecessors [2]. As cloud computing is expensive for

applications with a heavy load and large data transfers [3], [4],

small companies and independent developers need be able to

make informed decisions about which infrastructure to use in

order to provide cost-effective Quality of Service (QoS).

This study has been conducted at Malvacom AB, a growing

startup in Sweden that develops a data synchronization service

called mAppBridge. The goal of this study is to investigate

how users and applications can be modeled and then derive

the server usage for mobile applications and, consequently, set

requirements for the infrastructure.

Capacity planning is the process in which we determine

the capacity needed for our services in order to provide QoS.

Literature has proposed many methods [5], [6], [7], [8], [9] for

this task. Menascé and Almeida describes capacity planning

as a series of steps where we identify the workload, forecast

the performance and then do a cost analysis [5], in which

it us up to us to implement and calibrate a workload and

a performance model. However, Gunther [10] discusses the

need for a simple to use capacity planning framework, arguing

that the frameworks currently used are too complex. In this

study we aim to create a unified model that can be easily

implemented to provide an overview of applications’ hardware

requirements and final costs. Thus, the main focus of our study,

and hence also for this paper are:

• Present a unified model that can be used to receive an

initial estimate about the hardware requirements needed

to sustain a certain size of user population (Section II).

• Show that the unified model is easy to calibrate and

capable of modeling server usage, hardware requirements

and costs (Section III).

II. A UNIFIED MODEL

To be able to derive the cost for the applications, we will

first model both the application and its users, and derive the

traffic from those two entities. Secondly, we will also model

the software’s hardware requirement for that traffic. Finally,

once we have the hardware requirements we will derive the

operational costs.

We have created a unified model for this. We have cre-

ated a User Model that models a user’s profile, i.e. their

availability. The User Model is then used by the Application

Model that models the load imposed on the servers. Next,

we use a Software Model that models how much hardware

that the software will require under the load derived from the

Application Model. The Hardware Model is then, in its turn,

used to model the cost of the hardware requirements generated

by the Software Model. An overview of the models can be seen

206

User Model

Application
Model

Software
Model

Hardware
Model

User Profile

Application
Profile

Hardware
Requirements

Operating
Cost

Online
Probability

Application
Charac-
teristics

Request costs

Hardware
Cost

Fig. 1. Model overview.

in Fig. 1. (The boxes to the left represent the parameters to

the model while the boxes on the right represents the outputs

from the models.)

A. User Model

The user model consists of one parameter P that contains

24 values; each value represents an hour t of any given day i.e.

T = {t1, t2, . . . , t23, t24}, and describes the probability that a

user will be online during t. The P parameter will later be

used as an input to the Application Model.

Pt = {P1, P2, . . . , P23, P24}

B. Application Model

The Application Model describes how many users the ap-

plication has. It uses the User Model’s probability function to

determine the number of users online at a given moment. This

is later used to derive the maximum concurrent users at a given

hour and the total requests for one day. The Application Model

takes the following parameters for modeling the application:

• Data Pattern (DPt) The data activity for the hour t.
• User Population (Upop) The user population of the

application.

The DP parameter contains a vector of decimals that

describes the usage profile for the application that we are

modeling, DP = {DP1, DP2, . . . , DP23, DP24}. Where 1

means that there is always something new to fetch from the

server. This is used to model applications that rely heavily

on push notifications, in which the server is responsible for

initiating the communication between the server and the client.

For example, an application that sends out four updates per

hour is likely to have more traffic than an application that only

sends out two. The Upop parameter is a natural number that

represents the number of users for our application. The output

of the model is in the form of a vector R that contains 24

elements, one element for each hour that describes the number

of requests in that hour. The equation for each element in the

vector is described in (1).

Rt = Upop ×DPt × Pt (1)

Rmax = max(Rt) (2)

Rsum = sum(Rt) (3)

Where Rsum (described in (3)) is the total number of

predicted requests for one day and Rmax (described in (2))

will be the maximum load that the servers will be expected to

handle, hence the maximum concurrent users at any time in

the system is not expected to exceed Rmax.

C. Software Model

The Software Model models the amount of hardware re-

sources that will be used by the application and its users. The

Software Model requires the following parameters:

• Request Size (Rsize): The average size of each request

in bytes.

• Request Cost (Rcost): The cost of one request for the

CPU in megahertz (MHz).

• User Size (Usize): The size required per user.

As well as these parameters the Software Model also uses

Upop and R from the Application Model in order to calculate

the requirements.

In short, the model needs to calculate the following require-

ments: CPU, storage, and bandwidth. We need to provide a

CPU measurement strong enough for dealing with our peak

loads. The equation for the CPU requirement can be found in

(4).

The bandwidth requirement, on the other hand, is divided

into two different sub-requirements: a) We need to derive the

bandwidth that is needed to support the traffic peaks and, b) we

want to know the daily load to know how much data we will

handle per day. For the bandwidth required to we use Rmax

in (5) and for the total traffic per day we use Rsum in (6).

The storage requirement can be found in (7).

CPUrequirement = Rmax ×Rcost (4)

Bandwidthpeak = Rmax ×Rsize (5)

207

Bandwidthdaily = Rsize ×Rsum (6)

Storagerequirement = Upop × Usize (7)

The models output are described in the formulas above.

CPUrequirement is defined in MHz, while outputs that are

dealing with size (bytes) are defined in the same units as Rsize

and Usize. Thus defining the parameters in MB will yield the

requirements in MB. Keep in mind that the Hardware Model

uses GB as inputs, so by defining the size in MB the output

will have to be converted to GB in a later stage.

D. Hardware Model

The main function of the Hardware Model is to calculate the

cost of the hardware requirements derived from the Software

Model. It calculates the cost for a one month period. The

Hardware Model uses all but the bandwidthpeak output from

the Software Model as inputs. The Hardware Model uses the

following parameters:

• CPU Cost : (CCPU) The cost for the one MHz of CPU.

• Storage Cost : (Cstorage) The cost of storing GB in the

servers per month.

• Bandwidth Cost : (Cbandwidth) The cost of using GB of

bandwidth per month.

The Hardware Model has the following outputs. The cost

of fulfilling the CPU requirement (8), the network cost per

month (9) and the storage cost (10).

CPUcost = CCPU ×RCPU (8)

Bandwidthcost = Cbandwidth × bandwidthdaily × 30 (9)

Storagecost = Cstorage × Storagerequirement (10)

Equation (8) is designed to derive the cost for the cost-

performance of the modeled application on the given hardware.

For applications hosted at Infrastructure as a Service provider

(IaaS providers) such as Amazon or Rackspace we also pay

for the bandwidth and storage of our applications. For the

bandwidth cost described in (9) we start with calculating the

daily cost and then converting it to a monthly basis. For the

storage cost (described in (10)) it is common to charge a

certain amount per GB for each month, hence we do not

convert it to a monthly basis. We simply calculate the cost

based on how many GB that will be required and the cost for

those.

TABLE I
THE APPLICATIONS INCLUDED IN THE VALIDATION.

Application Upop Rsize

1 15140 351839
2 1334 2210956
3 599 676276

III. EVALUATION

This section contains an evaluation of the models. The

evaluation was conducted in Malvacom AB; the parameters

were estimated using historical data. The validation was done

by modeling three applications that are currently in production.

The selection of the applications was done by looking at the

user population for the applications. We wanted to compare

one small application, one medium-sized and one large from

the available dataset in order to compare how the attributes

such as the user population and the users availability impacts

the actual cost. The selected applications can be seen in

Table I. Application 1 is an application used for walking and

social interactions while Application 2 and 3 is are social

networking applications. The results were then analyzed and

compared against developer opinions to see how the model

performs compares against expert opinion.

In the first step of the evaluation we describe how we

estimated the parameters. During the estimation we had access

to data that allowed us to estimate the user’s availability and

various attributes about the requests such as request size. For

the last step, when looking at the cost for deploying, we

chose Amazon EC2 due their clear documentation regarding

the pricing (obviously any other provider can be used as long

as they provide clear data regarding pricing).

A. Parameter Estimation

For the parameter P in the User Model we summarized the

traffic for mAppBridge, we grouped each request per hour and

took the average number of requests based on the number of

days we had collected traffic for and the average number of

unique users per day. We chose to treat all requests as a virtual

user, which results in 100% user activity when the number

of requests was equal to the total population. Our extracted

user pattern is described in the matrix below. The population

and the average request size for each of the applications are

described in Table I.

P =

⎛
⎜⎜⎝
0, 113 0, 091 0, 087 0, 135 0, 260 0, 383
0, 530 0, 613 0, 626 0, 652 0, 660 0, 675
0, 679 0, 711 0, 695 0, 651 0, 624 0, 658
0, 645 0, 655 0, 597 0, 439 0, 266 0, 165

⎞
⎟⎟⎠

Unfortunately, we did not have any good source regarding

the data activity for the application so we assume that there

were always something new for the user to fetch and, hence,

we set the activity to 100% for each hour, i.e. DP = {t1 =
1, t2 = 1, . . . , t24 = 1}.

208

TABLE II
THE PARAMETERS FOR THE HARDWARE MODEL.

Parameter: CCPU .CStorage.CBandwidth.
Cost $0.051. $0.383. $0.01.

For the request cost (Rcost) we have used (11). Unfortu-

nately we did not have access to any historical data regarding

the CPU utilization, therefore we made an assumption. We

assume that we are currently maintaining one server with a

single CPU with a processor speed on 2.2 GHz with an average

load on 50% for a benchmark with 30,000 requests. We

assume that the requests that the server is currently receiving

is equivalent in terms of CPU utilization as the request from

application we are trying to model. The estimation of the

request cost parameter can be found in (12).

Rcost =
Processor speed (MHz) × processor utilization

Observed Requests
(11)

Rcost =
22000× 0.5

30000
= 0.04 MHz (12)

For the users we assume that our application will take up 5

megabytes of space per user in personal data, i.e. Usize = 5MB
For the Hardware Model we must estimate the cost for the

processor, bandwidth and storage. We choose to model the

cost for a single small instance on Amazon EC2. At the time

of writing a small instance on Amazon with one EC2 unit,

which is equivalent to 1.2 gigahertz and includes 160 gigabytes

of storage, has a monthly cost of $61.2. Traffic that leaves

amazon costs $0.01 per gigabyte. The cost for the storage

and the CPU is done by dividing the processor speed and the

storage with the cost. The parameters can be seen in Table II.

B. Results

The first step is to calculate the number of requests for each

of the applications. This is done with (1). Table III shows the

summary of the requests for each of the applications while the

full request pattern for each of the application can be found

in the below matrices.

R1 =

⎛
⎜⎜⎝

1704 1376 1312 2045 3941 5793
8018 9283 9471 9866 9997 10219
10275 10767 10524 9861 9441 9963
9763 9913 9032 6645 4023 2493

⎞
⎟⎟⎠

R2 =

⎛
⎜⎜⎝
150 121 116 180 347 510
706 818 834 869 881 900
905 949 927 869 832 878
860 873 796 585 354 220

⎞
⎟⎟⎠

R3 =

⎛
⎜⎜⎝

67 54 52 81 156 229
317 367 375 390 396 404
407 426 416 390 374 394
386 392 357 263 159 99

⎞
⎟⎟⎠

TABLE III
THE PREDICTED REQUEST PEAK AND DAILY LOAD FOR EACH OF THE

APPLICATIONS.

Application Rsum Rmax

1 174,018 10,767
2 15,333 949
3 6,885 426

Total 196,236 12,141

When we have the request pattern for each of the applica-

tions we can move on and estimate the hardware requirements

with the Software Model. The hardware requirements for the

applications can be seen in Table IV. The equations used to

calculate the requirements are described in Section II-C. The

requirements that were in bytes have been converted to GB

for convenience.

The last step of the execution is to derive the final cost for

the hardware. We do this for each of the applications. The

results can be found in Table V.

C. Analysis

When we analyze the results it is important to keep in mind

which service provider we are using. In this case we have

mapped the results to Amazon EC2 instances. By looking at

the requirements (shown in Table IV) we can see that the

requirements fit a small instance. We asked five developers

to choose an instance for the applications based on the data

given in Section III-A. Two of the developers thought that

a small instance would suffice while three developers would

have chosen a larger instance. This shows that the output of the

model falls within the range of the developers’ suggestions.

As can be seen, each application is modeled separately; this

has resulted in different hardware requirements for each of

the applications. Meaning, that in theory, this output can be

used to distribute the applications across a set of servers so

that we are utilizing each server in an optimal way, possibly

leading to fewer resources allocated as we are keeping waste

to a minimum. Also, by modeling existing applications on

existing servers we can use the model to determine if we can

fit a specified application to it, as we were predicting the CPU

utilization of each application. This model also allows us to

quickly see how the cost and hardware requirements would

change if we change our service provider, as we can use one

set of Software and Hardware Models for different service

providers to compare the cost between them.

It should be noted that in order to gain more accurate

results, more data is needed to calibrate the parameters. The

parameters for these models are quite trivial in nature and

there exists a wide array of software logging tools that can be

installed to gather all the necessary data.

IV. VALIDITY THREATS

The goal of the evaluation was to see if the model is suitable

for usage. We evaluated this by looking at how the model’s

final prediction was positioned in comparison with experts. We

only compared against five experts, and we do not know how

209

TABLE IV
THE ESTIMATED HARDWARE REQUIREMENTS FOR EACH OF THE APPLICATIONS.

Application CPUrequirement (MHz) Bandwidthpeak Bandwidthdaily Storagerequirement

1 394.779 3.528 57.022 75.70
2 34.784 1.953 31.572 6.67
3 15.619 0.268 4.339 2.995

Total 445.183 5.750 92.933 85.365

TABLE V
THE FINAL COST FOR DEPLOYING THE APPLICATIONS.

Final Cost
Application CPUcost ($) Bandwidthcost ($) Storagecost ($) Total

1 20.134 17.106 28.955 66.195
2 1.774 9.427 2.551 13.797
3 0.979 1.302 1.146 3.244

Total ($) 22.704 27.880 32.652 83.236

the comparison would have fared with more people. Also, the

evaluation was targeted against mobile applications, furthering

limiting the comparison.

The data at our disposal was able to give us the total number

of unique users for the application, the user’s activity pattern

and the average size for each request. We were, however,

unable to use the data to estimate parameters such as the user

size (US) and various attributes in the Software Model such

as the request cost.

V. LIMITATIONS

There are several limitations with this model. As for now the

model does not help us to predict the QoS directly, as it simply

models the hardware requirements and their cost. Also, the

server’s storage and network costs are not that accurate when

it comes to the final cost since many service providers use

predefined templates for the hardware where a certain amount

of storage is already included in the price.

The requirements modeled by the Hardware Model does

not take any kind of growth into consideration. This is a

limitation when looking at the storage requirement. If we

were modeling a data intensive application, in which the users

are often uploading/downloading new content the storage will

grow and hence the required cost for it.

In order to estimate the parameters in the best possible

manner access to historical data is required. Also, different

applications may target different users and have different user

profiles as well, so in order for the historical data to be useful

it must contain data from a similar application type.

The CPU requirement are modeled after Rmax, the max-

imum numbers of users expected within one hour. This ap-

proach is a bit crude, a more realistic approach would be

to model the arrival rate within each hour using a suitable

probability distribution and then derive and use the mean or

maximum arrival rate as Rmax.

VI. CONCLUSIONS

In this study we have presented a unified model that can

be used to predict the workload, hardware requirements and

operational costs for a server infrastructure. The models are

designed with simplicity in mind and they are easily imple-

mented in a spreadsheet making the results easy to share.

Given a simple calibration of the model, the results are

comparable to expert opinions. The result can also be used

to compare the cost of service providers, and distribute ap-

plications based on their hardware requirements. In the end,

these models can be used to help us make a more educated

guess when we are performing capacity planning in order to

assure cost-effective QoS.

We have conducted a static evaluation of the model. The

evaluation has been focused on determining what the impact

the model can have. Our future work will be focused on:

a) Addressing some of the issues as described in Section V

and also b) investigate the possibilities of adding an easy to use

QoS model and finally c) validate the models from a business

perspective

REFERENCES

[1] M. Meeker, J. Dawson, J. Lu, B. Lu, R. Ji, S. Devitt, S. Flannery,
N. Delfas, and M. Schneider, “The Mobile Internet Report,” 2009.

[2] C. Canali, M. Colajanni, and R. Lancellotti, “Performance Evolution of
Mobile Web-Based Services,” IEEE Internet Computing, vol. 13, no. 2,
pp. 60–68, 2009.

[3] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To move or not to
move: The economics of cloud computing,” in Third USENIX Workshop
on Hot Topics in Cloud Computing (HOTCLOUD 2011), 2011, pp. 1–5.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above
the Clouds : A Berkeley View of Cloud Computing Cloud Computing,”
EECS Department, University of California, Berkeley, Tech. Rep., 2009.

[5] D. A. Menascé and V. A. F. Almeida, Capacity Planning for Web
Services: metrics, models and methods. Prentice Hall, Upper Saddle
River, 2001.

[6] M. Koorsse, L. Cowley, and A. Calitz, “Network Application Per-
formance Modelling,” in Southern African Networks and Applications
Conference, vol. 27, no. 0, 2004.

[7] R. Lopes, F. Brasileiro, and P. D. Maciel, “Business-driven capacity
planning of a cloud-based it infrastructure for the execution of Web
applications,” 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8,
2010.

[8] R. Garg, H. Saran, and R. Randhawa, “A SLA framework for QoS
provisioning and dynamic capacity allocation,” in Quality of Service,
2002. Tenth IEEE Internatinoal Workshop on, 2002, pp. 129–137.

[9] J. Allspaw, The Art of Capacity Planning: Scaling Web Resources.
O’Reilly Media,, 2008.

210

[10] N. Gunther, “Hit-and-run tactics enable guerrilla capacity planning,” IT
professional, vol. 4, no. 4, pp. 40–46, 2002.

211

A Model-centric Approach for the Integration of
Software Analysis Methods

Xiangping Chen1,2,3,4, Jiaxi Chen3,5, Zibin Zhao3,6, Lingshuang Shao7

1 Institute of Advanced Technology, Sun Yat-sen University, Guangzhou, 510006, China
2 Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China

3 National Engineering Research Center of Digital Life, Guangzhou, 510006, China
4 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, 100871, China

5 School of Software, Sun Yat-sen University, Guangzhou, 510006, China
6 School of Information Science and Technology, Sun Yat-sen University, Guangzhou, 510006, China

7 Computer School of Wuhan University, Wuhan, 430072, China
Chenxp8@mail.sysu.edu.cn, chenjiaxi2011@foxmail.com, zzbloving@qq.com, shaolsh@gmail.com

Abstract— Software analysis technologies are widely used in
software quality assessment and system property prediction. The
application of analysis technologies costs extra learning effort
and domain-specific skill, and requires integration of software
analysis methods. Current works on the integration of analysis
methods highlight the abstraction effect of model and mostly
focus on the integration of software modeling and model-based
analysis methods. However, integration of analysis methods for
other software artifacts, such as source code analysis methods, is
not considered. In addition, less attention has been paid to the
integration of the analysis results back to the software model. In
this paper, we proposed a model-centric approach for the
integration of software analysis methods. Our approach starts
from a high-level software model provided by user input or
generated from other artifact. We build the input adaptation
rules in a platform specific way. As a result, the analysis methods
can be integrated with input specification according to the model
and adapted to the required input automatically. Considering
different user interaction requirements, our framework provides
facilities for execution of analyzers implemented as Eclipse plug-
in and analyzers with command line interface in the execution
stage. The traceability information from model element, analysis
input to output is recorded in input adaptation and execution
stage, and used for the integration of analysis results. We
implement the integration framework as an Eclipse plug-in, and
integrate 13 analysis methods in our framework to show the
usability of our approach.

Keywords-integration;software analysis;model-centric

I. INTRODUCTION

With the increasing importance of quality requirements in
software systems, software analysis technologies are widely
used for software quality assessment and system property
prediction [12]. Because an analysis method is usually
developed for specific quality concern, the software system
with multiple quality requirements may require several analysis
methods. Considering the chan ging analysis requirements
during software lifecycle, applications of analysis technologies
cost a lot of learning effort and domain-specific skill.

The integration of analysis methods into a wider process
basically requires three steps: the extraction of input required
by the analysis; the con trol of analysis execution; and the

integration of analysis results back into the core model [1]. To
ease the use o f analysis methods, approaches and frameworks
for integration of analysis methods are proposed [2,3,4,5,6,7].
These works highlight the abstraction effect of model during
analysis for user understanding. However, most of these
approaches are developed for model-based analysis methods
without considering analysis methods for other software
artifacts, such as source code analysis methods. The input
adaptation and analyzer execution of analysis methods for other
kinds of artifacts should be consi dered. In addition, most
approaches focus on the construction of quality attribute model
through model transformation [3,4] to ease the heavy modeling
effort of model-based analysis methods. However, less
attention has been paid to the integration of the analysis results
back to the software model [7]. Integrating analysis results of
different formats in the model level involves the traceability
from model, analysis input to analysis result during analysis.

In this paper, we proposed a model-centric approach for the
integration of software analysis methods. Software models
provide abstraction of software systems. They are usefu l for
selecting analysis method, selecting analysis object, and
understanding analysis result. Our approach starts from a high-
level software model provided by user input or generated from
other artifacts. We build the input adaptation rules in a platform
specific way. As a result, the analysis methods can be
integrated with input specification according to the model and
adapted to the required input automatically. Considering
different user interaction requirements, our framework provides
facilities for execution of analyzers implemented as Eclipse
plug-in and analyzers with command line interface in the
execution stage. During input adaptation and execution stages,
the traceability information from model element, analysis input
to analysis results is recorded. With the traceability information,
our approach integrates the analysis results back to the model.
We implement the integration framework as an Eclipse plug-in,
and integrate 13 analysis methods to show usability of our
approach.

The remainder of the paper is organize d as follows:
Section 2 gives a gen eral overview of our solution, which is
further detailed in the Section 3. Section 4 presents the use of
our approach to integrate software analysis methods. Finally,

212

Section 5 d iscusses some related works before Section 6
concludes our work.

II. APPROACH OVERVIEW

Models are widely used to pr ovide abstraction of the
software systems during software lifecycle. Considering
providing a hi gh-level view during analysis, we pro posed a
model-centric approach for the integration of software analysis
methods. There are tw o kinds of users: analysis method
integrators and analysis method users. The integrators are
analysis method or analyzer developers who are familiar with
the analysis methods. They specify the integration definition.
The analysis method users are end-users of analysis methods.
They choose analysis method and analysis object according to
their analysis task at hand. The approach overview is shown in
Fig. 1.

Integration Definition

Model ViewAnalysis Process

Properties of
Model Element

Properties of
Model ElementAnalysis ResultsAnalysis Results

Model Element
Model Element

Analysis input

Artifact set
(for analysis)

Model

Model Element

Analysis Result

Analysis input
Analysis input

Input Adaptation

Analyzer Execution

Properties of
Model Element

Analysis Input
type

Tool Execution
Configuration

Traceability
Management

Analysis method user

Select
analysis method

Select input

Analysis method
integrator

Software artifacts

mapping

Specify definition

Figure 1. Approach overview

The software model is contained in the software artifacts
provided by analysis method user, or generated from other
artifacts. Model is used to guide the analysis users in choosing
analysis input and using the analysis results.

According to the input, execution and output of the analysis
methods, our approach includes three aspects: input adaptation,
analyzer execution and traceability recording for analysis result
integration. We bui ld the inp ut adaptation rules in a platform
specific way. As a result, the analysis object in the model level
can be mapped to an artifact set. W ith the specification of
required input of the analysis method, the artifact set for
analysis is adapted to the required analysis inputs automatically.
During input adaptation stage, the traceability information from
model element to analysis inputs is reco rded. Considering
different user interaction requirements, our framework provides
facilities for execution of analyzers implemented as Ecl ipse
plug-in and a nalyzers with command line interface. In the
execution stage, our framework provides input for the analyzer,
runs the analyzer, and acquires the analysis result. The in put-
output relationship is recorded during execution. With the
traceability information from model element, analysis input to
analysis results, our approach integrates the analysis result back
to the model.

III. MODEL-CENTRIC INTEGRATION OF SOFTWARE
ANALYSIS METHODS

A. Input Adaptation
Our approach starts from the generation of a software

model. We choose the Unified Modeling Language (UML) [8]
model as the high-level model. UML is a standardized general-
purpose modeling language in the field of object-oriented
software engineering. Most artifacts in object oriented
development could be abs tracted as ele ments or attributes of
elements in the model.

When analyzing a so ftware system, the analysis method
user selects the whole project or part of the project according to
the software model. The input adaptation includes two steps:
first, the selected elements and attributes are mapped to a
corresponding software artifact set. Because the arrangement
and format of software artifacts rely on their development
platforms, we b uild the mapping rules from UML model to
software artifacts in a platform specific way. Secondly, the
artifact set is adapted to proper inputs for the analysis method.
Because an analysis method has its input format considering
minimizing the required input or wi dely used input format,
there may be mismatch between the artifact set and the required
input of the analysis method. The adaptation may generate one
or more inputs for analyzer execution. The adaptation is in a
model-centric way with platform specific configuration and
pre-define input requirement.

The platform specific adaptation rules are saved as pre-
defined rules in our integration framework. We build the
mapping rules from UML c lass diagram to Java project in
Eclipse platform. Class diagram is the most important and most
widely used s tructural view. Java is an object oriented
programming language. The artifacts in a Java project can be
abstracted as elements or attributes in the UML class diagram.
In the Eclipse platform, the resources in a Java project are
arranged using a tree structure called JavaModel. The k ey
elements in the Java model are:

IJavaProject: represents a Java Pr oject. It con tains
IPackageFragmentRoots as child nodes.

IPackageFragmentRoot: holds source files or bi nary files,
can be a folder or a library (zip / jar file).

IPackageFragment: represents a single package. It contains
ICompilationUnits or IClassFiles, depending on the files in the
IPackageFragmentRoot. IPackageFragments are not organized
as parent-children.

ICompilationUnit: represents a Java source file. Its children
are IImportDeclaration, IType, IField, IMethod and so on.

IClassFile: represents a compiled (binary) file.

IType: represents either a source type inside a compilation
unit, or a binary type inside a class file.

The mapping rules are defined based on rules for reversing
design views [11], as shown in Table 1. We can see that the
rules for project and package elements are simply one-to-one
mapping. The mapping rules for class/interface elements
consider the implementation in a Java file that: (1) a Java file

213

may contain only one class/interface definition; (2) a Java file
may contain several class/interface definitions; (3) a class may
contain inner class definitions. For the mapping result of the
element IType, the IType can be extracted and used to form a
new ICompilationUnit which contains this IType as the only
element. An artifacts of the type I ImportDeclaration, IField,
IInitializer or IMethod is seldom used as analysis input because
its definition is meaningful only in the context of an IType. For
the mapping result of the type IField or IMethod, we extract its
parent element which is of IType as the analysis artifact.

TABLE I. THE MAPPING RULES

UML
Element

Pre-condition Mapping
type

Eclipse artifact

Project -- 1-1 IJavaProject
Package -- 1-1 IPackageFragment

If the ICompilationUnit
contains only one IType
which is of the same name

1-1 ICompilationUnit Class/
Interface

If the ICompilationUnit
contains more than one
IType, or the IType is
child of another IType

1-1 IType

Function -- 1-1 IMethod
Variable -- 1-1 IField

In the integration stage, the integrator describes the required
input of analysis method. We provide option list based on the
artifact formats used in a Java application. If there is mismatch
between the artifact set and the analysis input, we choose the
analysis input which is the maximum subset of the artifact set
compared to other validate analysis inputs included in the
artifact set. Because artifacts are arranged as a tree structure,
the input is adapted by a breadth-first search of analysis input
from the root of the tree.

B. Analyzer Execution
In the input adaptation stage, analysis inputs are generated

according to the input requirements. In the analyzer execution
stage, the analysis task includes providing input for the
analyzer, running the analyzer, and acquiring the analysis
results.

There are two kinds of analysis execution requirements:
automatic analysis and analysis with user interaction. Generally,
the goal of analysis is to acquire the analysis results for use.
This kind of analysis requires analyzing the input without user
interaction. However, with the increasing analysis complexity,
some analysis methods may require user configuration during
analysis based on some intermediate results. This kind of
analysis methods are usually implemented with graphical user
interface so as to help understanding the intermediate and final
results. Considering these two kinds o f analysis requirements,
our framework provides infrastructures for integration of
analyzer with command line interface and analyzer
implemented as Eclipse plug-in, respectively.

Analysis tools with command line interface are featured by
its structured commands and black-box-like execution. The
tool can be executed using command following pre-defined
structure. The command structure usually includes the
command name with several parameters, such as input and
output. In addition, some more parameters may be needed to
drive the analyzer in different modes.

For the integration of this kind of analyzer, we provide
#INPUT# and #OUTPUT# to stand for the input and output in
the command string. The analy sis integrator can define the
command structure using these par ameters. To drive the
analyzer, our framework generates a con crete command with
the input and the output of certain analysis task. The #INPUT#
will be replaced by the path of the artifact found in the input
adaptation. The output path can b e user-defined or using
default value generated by our framework. In some cases, we
find that the analyzer’s command structure does not include the
parameter for analysis output and its analysis results are
returned in standard output stream which is printed in texture
terminal. In this case, our framework saves the output as a file
in the output file path through output redirection. Take the
integration of an analysis method JDepend [9] as an example.
Its command structure is defined as “java
jdepend.xmlui.JDepend -file #OUTPUT# #INPUT#”. When
running the analyzer, our framework generates a command
“java jdepend.xmlui.JDepend -file C:\result C:\input” if the
input path is “C:\input” and the result path is “C:\result”.

For an analyzer implemented as Eclipse plug-in, it usually
provides graphical user interface and supports user interaction
during analysis. A plug-in has a unique identifier registered in
Eclipse plug-in registry. We assume that an analysis method in
the plug-in can accept command triggered by end-user from an
item in the user interface. Considering the Eclipse’s plug-in
mechanism, the command activating an analysis method is
called an ac tion. A plug-in may include several analysis
methods and provide the invocation interfaces of different
analysis methods through different actions. It should be noted
that not all the actions provide analysis service.

The definition for analyzer execution includes the plug-in
identifier, the extension type and the action class name. The
integration framework requires the installation of plug-in
analyzer before using the analysis method. When an analysis
method is started, our framework finds the plug-in according to
its unique identifier. And then, our framework instantiates an
extension object of the extension type to run the action.
Because the E clipse platform loads all its plug-ins in a lazy
manner, the integrated analysis methods will not be instantiated
and activated until it is used. It means that the integrated plug-
ins will not affect the performance of Eclipse platform.

When execution of an analysis method is finished, the
relationship between user input in UML model and analysis
result is recorded and stored in an XML file. The traceability
information is provided for integration of analysis results.

C. Analysis Result Integration based on Traceability
Information
Analysis is th e process of breaking a complex topic or

substance into smaller parts to gain a better understanding of it.
In an analysis method, its input is the analysis object, and the
analysis result is the property of the ana lysis object. Because
the analysis input can be abstracted as elements in the software
model, the analysis result can be abstracted as the property of
an element or a set o f elements. The goal of analysis result
integration is t o build the relationship between the software

214

model and the analysis results. The integration is based on the
traceability information recorded during analysis process.

The traceability information from the analysis object
selected in the UML model, the artifact set, the analysis inputs
and analysis results is kept by the integration framework during
input adaptation and runtime execution stage. Relationship
between UML model and the input is decided by the platform-
specific rules and the required input format of the analysis
method. During analyzer executeion, relationship is recorded
into an XML file. After these two st eps, the relationship
between UML model and analyzer output can be deduced. The
traceability recording process is shown in Fig. 2.

Properties of
Model Element

Properties of
Model ElementAnalysis ResultsAnalysis Results

Model Element
Model Element

Analysis input

Artifact set
(for analysis)

Model Element

Analysis Result

Analysis input
Analysis input

Properties of
Model Element

Artifacts Model

Model Element
Model Element

Model Element

Figure 2. Traceability recording

With the traceability information recorded, the UML model
will be e xtended with the analysis results as attributes of the
analysis objects. To display the integrated analysis results, we
provide a friendly user interface to show relationship between
UML models and analysis results. In the UML diagrams, the
extended properties will be linked to the analysis results.

IV. CASE STUDIES

We implement the supporting tool of our framework as an
Eclipse plug-in. Using the tool, we have already integrated 13
analysis methods. We first in troduce the integrated analysis
methods, and then use an analysis method JDepend[9] as an
example to introduce how to integrate an analysis method and
how to use an integrated analysis method in our framework.

A. The Integrated Analysis Methods
We have already integrated 13 analysis methods in our

framework. The in tegrated analysis methods are shown in
Table 2. We assume that the analysis method integrators are
analysis method developers who can provide detail information
about the a nalysis methods. As a resul t, we choose analysis
methods with open source analyzers, so as to provide de tail
integration information.

In the table, we can see th at an ana lyzer may implement
one or more analysis methods. An an alysis method is a
relatively standalone functional unit providing analysis service
in the analyzer. There may be several analysis methods in its
inner structure. An analysis method has its specific input
format requirement. However , in the table, we combined the
analysis methods with the same invocation interface but
different input requirements as one analysis method for space
limit.

TABLE II. INTEGRATED ANALYSIS METHODS

Analysis
method

Analyzer Input Format Analyzer
implementation

JDepend JDepend [9] IPackageFragmentRoot/
IPackageFragment

Eclipse plug-in/
Command line

Classycle Classycle
[13]

IJavaProject Eclipse plug-in/
Command line

Code
Analysis

CodePro
Analytix
[14]

IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Similar
Code
Analysis

CodePro
Analytix

IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Metrics CodePro
Analytix

IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Code
Coverage

CodePro
Analytix

IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Dependenc
y Analysis

CodePro
Analytix

IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Findbugs Findbugs
[15]

IJavaProject/
IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in

Checkstyle Checkstyle
[16]

IJavaProject/
IPackageFragmentRoot/
IPackageFragment/
ICompilationUnit

Eclipse plug-in
/Command line

PMD PMD[17] IPackageFragmentRoot/
ICompilationUnit

Command line

Yasca Yasca [18] IPackageFragmentRoot/
ICompilationUnit

Command line

JLint JLint [19] IPackageFragmentRoot/
ICompilationUnit

Command line

JavaNCSS JavaNCSS
[20]

IPackageFragmentRoot/
ICompilationUnit

Command line

B. Integrating the JDepend Analysis Method
JDepend[9] is an open source analysis tool for Jav a

application. Its analysis result is design qu ality metrics. The
metrics include number of classes and interfaces, afferent
couplings, efferent couplings, abstractness, etc. I t has two
versions of implementations and could be run as Eclipse plug-
in or from command line interface. In this section, we use
JDepend as an example to introduce how to integrate analysis
method and use integrated analysis method in our framework.

(1) Integrating an analysis method

The JDepend integrator provides the integration definition.
The elements of integration definition are shown in Tab le 3.
The elements analysis method plug-in identifier, type of
extension point, and plug-in action class are used for
integrating analyzer implemented as Ec lipse plug-in. The
element command structure is used for integrating analyzer
with command line interface. It should be noted that the
elements for inte grating analyzers are optional. An analysis
method can be integrated with any kind o f analyzer
implementations.

TABLE III. THE INTEGRATION DEFINITION

Element Name Description
Analysis Method Name The name of analysis method being integrated
Required input of
analyzer

The input format accepted by the analyzer. A
list of supported formats are provided.

215

Analysis method plug-in
identifier

Unique identifier of the plug -in in Eclipse
platform

Type of extension point The type of extension point associated with the
action

Plug-in action class The class for invocation of an action
Command structure The abstracted structure for generating

concrete command
The integrator provides the integration definition in the user

interface, as s hown in Fig. 3. The analysis method name is
“JDepend”. Its required input is of the type
“IPackageFragmentRoot(binary files)” for Java application.

To integrate JDepend implemented as Eclipse plug-in, our
framework provides facility to ease the definition specification.
If the integrator provides t he analyzer implementation, our
framework interprets the plug-in configuration file and lists all
the actions as analysis method candidates. The JDepend plug-in
includes only one analysis method candidate, as shown in Fig.
3. The integrator can add the definition by selecting the
JDepend analysis method or inputting the definition directly.
Its extension type is “popupmenu”. The action class name is
“de.loskutov.eclipse.jdepend.actions.ShowDependecy”.

To integrate JDepend analyzer with command line interface,
we refer to its documents and find that its command follows the
syntax “java j depend.xmlui.JDepend [-components
<components>] [-file <output file>] <directory> [directory2
[directory 3] ...] ”. By abstracting its input and output, one of
the running mode of JDepend command structure is defined as
“java jdepend.xmlui.JDepend -file #OUTPUT# #INPUT#”.

UI for analysis method selection

Figure 3. User interface for integration sepecification and selection of
analysis method in Eclipse plug-in analyzer

(2) Using an integrated analysis method

The user plan to analyze the software project Log4j [10].
Log4j is an open source project of the Apache Software
Foundation. Log4j enables logging at runtime without
modifying the application binary so as to avoid a heavy
performance cost for logging. The artifacts of Log4j contain
about 20000 lines of source code and 188 classes.

Because the artifacts of Log4j do not contain a so ftware
model, our framework first generates a UML model based on
the source code of Log4j using a reverse tool EclipseUML [21].
We build a tree view of the UML model in our framework. The
user selects the whole project as analysis object in the tree view
of the Log4j U ML model. The integration definition of an
analysis method is saved in an XML file. The integration
definitions form a repository of reusable analysis methods.
Based on the integration definitions, our framework provides a
list of integrated analysis methods for the analysis method
users. The user interface for selecting analysis object and
analysis method is shown in Fig. 4.

Figure 4. User interface for analysis object and analysis method selection

Our framework accepts UML model elements and maps the
input to the artifact set IJavaProject of Log4j project. Because
the required input of JDepend is an IPackageFragmentRoot
folder holding binary files, our framework breadth-first
searches IPackageFragmentRoot in the project and find two
folders: “src” folder holding source code and “bi n” folder
holding binary files. The “bin” f older is the proper analysis
input. Our framework invokes the analyzers with the adapted
inputs. For analysis method with one analyzer implementation,
our framework runs the analyzer by default. For analysis
method with two analyzer implementations, user can select to
run one or two analyzer implementations.

The user selects to run two JDe pend analyzer
implementations. Our framework first pre pares proper inputs
for analyzers. The inpu t of plug-in analyzer is an ob ject with
“IFolder” interface representing the IPackageFragmentRoot
folder “bin” in Eclipse workspace. The input of analyzer with
command line interface is the folder location. After invocation
of the plug-in analyzer, the command for analyzing the Log4j
is triggered and the analysis results are shown in the graphical
user interface. For the a nalyzer with co mmand line interface,
our framework generates a concrete command “java
jdepend.xmlui.JDepend -file
C:\log4j\AnalyticalResult\JDepend_bin_20111223161327.xml
C:\log4j\bin” automatically when the log4j project locates at
C:\log4j. Our framework uses runtime class to create a c hild
process for command execution.

Analysis Input:
log4j/bin/

Analysis Result:
JDepend_bin_20111223161327.xml

ResultMap.xml

Figure 5. The traceability recording process

In the input adaptation and analyzer execution stage, our
framework saves tr aceability information to dedu ce the
relationship between UML elements and analysis results. The
relationship between the element “project” in the UML m odel
and the analysis result file generated by JDepend is saved in an
XML file “ResultMap.xml”. The process is shown in Fig. 5.
Our framework extends the UML model with th e JDepend
analysis result. The user can interpret the analysis results in the

216

tree view of UML model, as show in Fig. 6. Al l the analysis
results of the selected element are in the tab le. Their
corresponding analysis result files will be open if selected.

Figure 6. User interface of analysis result interpretation

V. RELATED WORKS

Many approaches and frameworks have been developed for
complex analysis of software systems. Most o f these
approaches focus on the inte gration of software modeling with
quality analysis methods [1]. Model interchange approaches
have been proposed to make it possible to create a software
model in a t ool, then automatically transform the model
description for conducting specific analysis, and obtain the
results for use. DULLY [3] and XTEAM [4] are developed for
facilitating the development of model interpreters. DULLY [3]
is an automated framework that allows architectural languages
and tools interoperability. It provides the infrastructure for
(semi)automatic generation of the weaving model to integrate
analysis abilities provided by di fferent modeling tools.
XTEAM [4] is an interpreter framework focusing on solving
the mismatch between software model and required input of
analysis methods. KAMI [2] is a fra mework for run-time
model adaptation. It prov ides facilities to simplify the
development model updaters. However, these approaches focus
on the integration of model-based analysis method. They
assume that all the artifacts, no matter analysis input or output,
are all models. Our work considers the in tegration of analysis
methods for other software artifacts, such as source code
analysis methods. In addition, integration of analysis result is
also supported in our framework.

Several approaches are proposed to facilitate the use of
multiple analysis methods. ADD [5] and SOFAS [6] provide
standard interfaces for integration of analysis methods. ADD
supports integrating analysis results. SOFAS is developed
based on th e idea of software analysis as a ser vice. SOFAS
follows the principles of a RESTful architecture so as to make
analyses easily accessible and composable. However, few
analysis methods can be i ntegrated, because existing methods
cannot fulfill the design and implementation requirements of
these frameworks. Our approach aims at enabling effective
reuse of existing analysis methods.

VI. CONCLUSION AND FUTURE WORK

Considering providing a h igh-level view during analysis,
we proposed a model-centric approach for the integration of
software analysis methods. Our approach includes three aspects:
input adaptation, analyzer execution and traceability recording
for analysis result integration, so as to support fully integration
of analysis methods.

In the future, we will define more input adaptation rules so
as to support analyzing different kinds of software system, such
as C++ application, web application, and so on.

ACKNOWLEDGMENT

This effort is supporte d by the National Natural Science
Foundation of China (Grant No. 61100002), Guangdong
Natural Science Foundation (Grant No. S2011040005180);
Shenzhen Technology R&D Program for Basic Resea rch
(Project Name: Research on Software Architecture centric
Analysis for Internetware and its Application in Digital Home);
the National Key Technology R&D Program (Grant Nos.
2011BAH27B01 and 2011BHA16B08); the Major Science and
Technology Projects of Guangdong (Grant No.
2011A080401007), and the Industry-academy-research Project
of Guangdong (Grant No. 2011A091000032).

REFERENCES

[1] Dobrica L. Exploring Approaches of Integration Software Architecture
Modeling with Quality Analysis Models. Proceedings of Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011: 113-122.

[2] Epifani I, Ghezzi C, Mirandola R and Tamburrelli G. Model evolution
by run-time parameter adaptation. Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering. IE EE Computer
Society Washington, DC, USA, 2009:111-121

[3] Malavolta I, M uccini H, Pelli ccione P, Tamburri DA. Providing
architectural languages and tool s interoperability through model
transformation technologies. IEEE Transactions on Software
Engineering. 2009, 36(1): 119-140.

[4] Edwards G, Medvidovic N. A methodology and framework for creating
domain-specic development infrastructures. Proc of the 23rd IEEE ACM
Int'l Conference on Automated Software Engineering. 2008: 168-177.

[5] Bass L, Clements P, Kazman R. Software Architecture in Practice. 2nd
ed. Addison-Wesley. 2003.

[6] Ghezzi G and Gall HC. SOFAS: A Lightweight Architecture for
Software Analysis as a Service. Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011: 93-102.

[7] Xiangping Chen,Gang Huang,Franck Chauvel,Yanchun Sun,Hong Mei.
Integrating MOF-Compliant Analysis Results. Internatio nal Journal of
Software and Informatics, 2010,4(4):383~400

[8] Object Management Group. UML Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/

[9] Jdepend. http://www.clarkware.com/software/JDepend.html
[10] Apache Log4j. http://logging.apache.org/log4j/
[11] P. Tonella and A. Potrich. Reverse Engineering of Object Oriented Code.

Springer-Verlag, Berlin, Heidelberg, New York, 2005.
[12] Jackson D, Rinard M. Software Analysis: A Roadmap. In The Future of

Software Engineering, Anthony Finkelstein (Ed.), pp. 215-224, ACM
Press 2000.

[13] Classycle. http://classycle.sourceforge.net/index.html
[14] CodePro Analytix. http://code.google.com/intl/zh-

CN/javadevtools/codepro/doc/index.html
[15] Hovemeyer D, Pugh W. Finding Bugs Is Easy. Companion of the 19th

Ann. ACM SIGPL AN Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’04), Oct. 2004.

[16] Checkstyle. http://checkstyle.sourceforge.net/
[17] PMD. http://pmd.sourceforge.net/
[18] Yasca. http://www.yasca.org/
[19] JLint. http://artho.com/jlint/
[20] JavaNCSS. http://www.kclee.de/clemens/java/javancss/
[21] EclipseUML.http://www.ejb3.org/index.ht

217

CATESR: Change-aware Test Suite Reduction
Based on Partial Coverage of Test Requirements

Lijiu Zhang†, Xiang Chen‡, Qing Gu†∗, Haigang Zhao†, Xiaoyan Shi†, Daoxu Chen†

† State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, China

Email: jssyzlj@gmail.com

‡ School of Computer Science and Technology

Nantong University, Nantong, China

Email: xchencs@ntu.edu.cn

Abstract—Test suite reduction is an effective technique to
save the cost of regression test. This technique is performed by
identifying and eliminating redundant test cases from regression
test suite. However, fault detection ability of original test suite
may also be seriously weakened due to excessive reduction in
test suite. In this paper, we propose a new change-aware test
suite reduction approach CATESR, based on the conjecture that
test cases which are more likely to cover the changes after code
modification can gain a higher probability to reveal potential
faults in the modified code. To assess the effectiveness of our
approach, we implement CASTER and conduct a set of empirical
studies on eight real C programs. The results show that our
approach can not only greatly decrease the size of reduced test
suite but also keep, sometimes even improve, the fault detection
ability compared to HGS approach.

Index Terms—Regression Testing, Test Suite Reduction, Test
Requirement Classification, Change-aware

I. INTRODUCTION

During software development and maintenance, develop-

ers often modify codes and then trigger software evolution.

Code modification may be caused by new user requirements,

faults detected, code refactoring, or performance improvement.

Regression testing is an important method to guarantee the

quality of software during its evolution. Statistical data shows

that the cost of regression testing accounts for over 1/3 of

total development cost [15]. Main research issues in regression

testing include test suite reduction, test case selection, test case

prioritization, and test suite augmentation [8].

In this paper, we mainly concentrate on test suite reduction

issue. Some of previous research mainly focus on proposing

novel approaches to reduce test suites according to a single test

coverage criterion [2] [3] [7] [16] [21]. However, Rothermel et

al. observed that test suite reduction can significantly decrease

the size of test suites but at the cost of seriously losing

original fault detection ability (FDA) [19]. To solve this issue,

researchers have proposed some approaches based on multiple

test coverage criteria. For example, Jeffrey and Gupta proposed

a selective redundancy concept [13]. Black et al. performed

test suite reduction using bi-criteria binary ILP model [1].

� Correspondence author. Email: guq@nju.edu.cn

Then Hsu and Orso extended this work [1] and developed

a general tool MINTS [11].
Differing from previous research, we propose a change-

aware test suite reduction approach. According to the previous

approaches analysis, we find these approaches seldom ana-

lyzed the relationship between code changes and test require-

ments. In our research, we want to focus on test cases that

are more likely to cover the changes after code modification

in hope of detecting potential faults. Based on this conjecture,

we propose CATESR approach to perform test suite reduction

base on partial coverage of test requirements. In particular,

given a test suite TS and a set of test requirements R, we

firstly label R into three categories after code change analysis.

Secondly, we classify TS into three sub test suites based on the

requirement label result. Finally, we design a strategy named

Partial-CATESR, which only performs test suite reduction

over the sub test suite with the highest ability to cover the

code changes. However, this strategy maybe lose partial test

requirement coverage in most cases. Therefore, to verify the

effectiveness of Partial-CATESR, we also design a strategy

named Full-CATESR, which performs test suite reduction over

all three sub test suites respectively and combine these test

suites into a single test suite.
In our empirical study, we choose 7 real C programs in

Siemens suite and 1 large-scale C program named space
as our experiment subjects. In experiment setup, we choose

HGS approach as our test suite reduction approach and make

comparisons among HGS, HGS-based Partial-CATESR, and

HGS-based Full-CATESR. After data analysis, we find: (1)

Partial-CATESR can not only greatly decrease the size of

reduced test suite, but also keep, sometimes even improve,

the FDA of reduced test suite compared to HGS approach.

(2) The fault detection ability of reduced test suite are not

weakened due to the partial coverage of test requirements.
The main contributions of this paper include:

• we propose a change-aware test suite reduction approach

CATESR based on partial coverage of test requirements.

• we conduct an empirical study to verify the effectiveness

of our approach.

218

II. BACKGROUND

In this section, we firstly introduce the preliminaries of test

suite reduction and then show the motivation of our approach

by a simple example.

A. Test Suite Reduction

In regression testing, a simple strategy is to use all previous

test cases to test the modified software, however this strategy

is not always feasible. Researchers proposed different effective

approaches to solve this problem [8]. This paper mainly fo-

cuses on the issue of test suite reduction, which was originally

formalized as follows by Harrold et al. [7]:

Given: A test suite TS = {tc1, tc2, · · · , tcm}, a require-

ment set R = {r1, r2, · · · , rn} generated by a test adequacy

criteria C, and subsets of TS: T1, T2, · · · , Tn, for each asso-

ciated with a ri such that any test case tcj ∈ Ti can be used

to cover requirement ri.
Problem: To find a subset of T with the minimum cardi-

nality that covers all the requirements covered by T .

This problem has been demonstrated to be NP-Complete

and we summarize these related work in Section V.

B. Motivating Example

To illustrate the limitation of previous approaches and show

the motivation of our approach, we design a simple example

shown in Table I.

TABLE I
A MOTIVATING EXAMPLE

Program Segments Test Cases

bool TestAndSubtract(m, n) < 3, 4 > < 4, 3 > < 13, 13 >
1: if (m < 10) X X X
2: alert(m); X X
3: if (m <= n) X X X

4*: alert(n); - - -
4: return false; X X
5: else X
6: m −= n; X
7: return true; X

Fault Detection Ability T F F

The left-most column in Table I shows a segment of

program under test. The segment implements a function Tes-
tAndSubtract to test a non-negative integer n and subtract n
from a integer m. In particular, it firstly performs a low-value

checking for m (Lines 1-2). Then if m is not large enough to

be subtracted by n, this function will return false (Lines 3-4).

Otherwise, this function will perform a subtraction operation

and return true (Lines 5-7).

The rightmost three columns in Table I show the statement

coverage information of three test cases. For example, after

running the test case < 3, 4 >, this test case can cover

statements from line 1 to line 4.

Suppose a new requirement is proposed to alert m when

m is less than or equal to n. However this requirement is

incorrectly implemented by using statement alert(n) (Line 4*)

while the right implementation is alert (m). The bottom row

of Table I shows the fault detection ability of all three test

cases. Here only the test case < 3, 4 > can detect this fault. If

we use existing test suite reduction approaches, such as HGS

[7], we can get a reduced test suite {< 3, 4 >,< 4, 3 >}
or {< 4, 3 >,< 13, 13 >}. In this case, it only has 50%

probability to detect this fault. However, if we further analyze

the code change, we can find that we do not need to re-

execute the test case < 4, 3 > since this test case do not

cover change related statements (Lines 5-7). Therefore we can

remove this test case and then perform a test suite reduction

on {< 3, 4 >,< 13, 13 >}. Finally we can choose the test

case < 3, 4 > and this test case can detect the fault in the

modified function. Meanwhile the size of reduced test suite is

decreased from 2 to 1.

III. CATESR APPROACH

In this section, we firstly introduce the framework of our

CATESR approach and then introduce the implementation

detail.

A. The Framework of CATESR approach

We use Figure 1 to show the framework of CATESR ap-

proach. In particular, CATESR takes two consecutive versions

of source code and coverage information of test cases on i-
th version as its input, and produces a reduced test suite to

(i+ 1)-th version as its output.

Fig. 1. The framework of CATESR

CATESR consists of three modules: Test Requirements

Labeling Module (M1), Test Case Classification Module (M2),

and Test Suite Reduction Module (M3). Firstly, we perform a

code change analysis in M1 and label original test require-

ments into three categories: low confidence (LC) category,

medium confidence (MC) category, and high confidence (HC)

category. This test requirement labeling process is performed

based on the dependence analysis of code change. Meanwhile

these three categories conform the following total ordering

relation.

219

LC ≺ MC ≺ HC. (1)

Secondly, we divide the original test suite (TS) into three

sub test suites in M2 according to the ability to cover the

requirements with highest confidence category. Finally, we

perform test suite reduction over some or all sub test suites

independently in M3 and design a strategy to combine these

reduced sub test suites into a reduced test suite.

B. The Implementation detail of CATESR approach

1) Test Requirements Labeling Module (M1): This module

aims to label the test requirements into discriminating cate-

gories according to code change analysis. These categories

indicate the ability to be aware of the changes for test

cases who cover requirements in respective category. This

module includes two components: Change Impact Analyzer

Component (C1) and Requirements Labeler Component (C2).

Firstly, given two consecutive versions V ersioni and

V ersioni+1, we can use C1 to separately generate their

control flow graphs (CFGs) CFGi and CFGi+1. Then we

can analyze the difference Δi → i+ 1 between these two

versions. An item δ in set Δi → i+ 1 can be defined using

the following tuple:

δ � (type, lineob, lineoe, linenb, linene). (2)

The tuple δ contains five elements: type, lineob, lineoe,

linenb, and linene. The type element denotes code change

type and the valid value set is {ADD, DELETE, UPDATE,

UNCHANGED}. To assistant code change analysis, four ad-

ditional elements are needed. The lineob and lineoe elements

specify the beginning and end line-numbers of old statements

in V ersioni, and the linenb and linene elements specify

the beginning and end line-numbers of new statements in

V ersioni+1.

Then we can use C2 to label test requirements1 according

to the information collected by C1. We use Algorithm 1 to

describe this requirement labeling process.

Given a statement-level test requirements set Reqsstate,

CFGi, CFGi+1, and change information Δi→i+1 from

V ersioni to V ersioni+1, Algorithm 1 can label each re-

quirement in Statements by a proper category indicating the

confidence of being covered by our approach.

Algorithm 1 mainly has two steps: requirements labeling

preparation and requirements labeling. In requirements label-

ing preparation step, we iteratively collect the affected blocks

using an auxiliary function GetBlocks (Lines 4-10), and build

the line-number one-one mapping from new to old statements

for UNCHANGED code segments (Lines 11-16).

The signature of function GetBlocks is designed as follows:

blocks GetBlocks(CFG, linebegin, lineend);

This function can return all blocks in CFG that contain any

of the statements indexed with the line-number ranging from

1In this paper, we take statement coverage as our test criterion, thus
statements can be treated as test requirements needed to be covered.

Algorithm 1 Requirements Labeling algorithm

Require:
Reqsstate: statement-level test requirements;

CFGi: control-flow graph of V ersioni;

CFGi+1: control-flow graph of V ersioni+1;

Δi→i+1: software evolution from V ersioni to

V ersioni+1.

Ensure:
Each requirement in Reqsstate will be marked with a

proper confidence category (i.e., HC, MC, or LC).

1: Mapnew→old, Blocksnew, Blocksold ← ∅;

2: // Step 1: Calculate Affected Blocks and build the 1-1

line-number map from new to old version.

3: for all δ ∈ Δi→i+1 do
4: if δ.type = ”ADD” then
5: Blocksnew ← Blocksnew

∪ GetBlocks(CFGi+1,δ.linenb,δ.linene);

6: else if δ.type = ”DELETE” then
7: Blocksold ← Blocksold

∪ GetBlocks(CFGi,δ.lineob,δ.lineoe);

8: else if δ.type = ”UPDATE” then
9: Blocksnew ← Blocksnew

∪ GetBlocks(CFGi+1,δ.linenb,δ.linene);

10: Blocksold ← Blocksold
∪ GetBlocks(CFGi,δ.lineob,δ.lineoe);

11: else if δ.type = ”UNCHANGED” then
12: bias ← δ.lineob - δ.linenb;

13: for line ← δ.linenb to δ.linene do
14: Mapnew→old.Put(line, line + bias);

15: end for
16: end if
17: end for
18: // Step 2: Mark Test Requirements with proper confi-

dence category.

19: Initialize all s ∈ Reqsstate with Confidence LC;

20: for all block ∈ Blocksold do
21: Mark all s ∈ block.Statements with Confidence HC;

22: end for
23: for all block ∈ Blocksnew do
24: MarkStatements(block, Mapnew→old, HC);

25: end for

linebegin to lineend. Due to the limitation of the space, we

omit the implementation details of this function.

When calculating Affected Blocks, for ADD-type changes,

we only account blocks affected in CFGi+1 (Lines 4-5).

We treat DELETE-type changes in the same way (Lines 6-

7). However, for UPDATE-type changes, we will account

blocks in both CFGi and CFGi+1 (Lines 8-10). Here, blocks

collected from CFGi and CFGi+1 are separately denoted by

Blocksold and Blocksnew.

When building the line-number mapping Mapnew→old for

each UNCHANGED code segment δ (Line 11), we firstly

calculate the bias of line-number from old to new statement,

denoted by bias (Line 12). Then we iteratively put line-number

pairs < line, line + bias > into Mapnew→old for each line

220

Algorithm 2 MarkStatements function

Require:
block: program block to be processed;

Mapnew→old: 1-1 line-number mapping from new to old

statements for unchanged code segments;

CONFIDENCE: confidence category (i.e., LC, MC, or

HC).

Ensure:
Requirements W.R.T block will be properly labeled.

1: Stmtsnew ← block.Statements ∩Mapnew→old.Keys;
2: if Stmtsnew 	= ∅ then
3: Stmtsold ← Mapnew→old.MapToValues(Stmtsnew);

4: if Stmtsold.Confidence ≺ CONFIDENCE then
5: Mark all s ∈ Stmts with CONFIDENCE;

6: end if
7: else
8: for all blockpre ∈ block.PreBlocks do
9: MarkStatements(blockpre, Mapnew→old, MC);

10: end for
11: for all blcoksucc ∈ block.SuccBlocks do
12: MarkStatements(blocksucc, Mapnew→old, MC);

13: end for
14: end if

ranging from δ.linenb to δ.linene (Lines 13-15).

During the requirements labeling phase, all requirements

from Reqsstate are initially assigned to the lowest confidence

category LC (Line 19). If test cases can cover those statements

in affected blocks Blocksold and Blocksnew, they can be

aware of changes and further reveal potential faults with

high probability. In CATESR, for blocks in Blocksold col-

lected from V ersioni, their statements are also in Reqsstate
as partial requirements, will be reassigned to the highest

confidence category HC (Lines 20-22). However, for blocks

in Blocksnew collected from V ersioni+1, their statements

may not exist in the older version V ersioni. To label these

requirements, we design a recursive function MarkStatements
(Algorithm 2) (Lines 23-25). When calling MarkStatements
for the first time, the statements in V ersioni will be marked

with the highest confidence category HC. If no such statements

exist, the algorithm will recursively check such statements in

predecessors and successors of current block, and mark them

with a lower confidence category MC.

2) Test Cases Classification Module (M2): We use this

module to classify test cases into proper categories. Test

cases in the same category can at most cover the same level

of requirements’ confidence. After performing M1, all test

requirements are labeled by a confidence category (i.e., HC,

MC, or LC). Then, based on the total order relation given by

formula 1, for each test case tc in test suite TS, M2 computes

the highest confidence of requirements which tc can cover,

denoted by Confidence, and put tc into one proper subset of

TS in accordance with Confidence. We use algorithm 3 to

show the process of this module.

In Algorithm 3, we define three sets, TSHC , TSMC , and

TSLC to store test cases that can cover requirements with

Algorithm 3 Test Case Classification Algorithm

Require:
Requirements: labeled statement-level requirements;

TS: original test suite contains test cases to be classified;

Ensure:
TS is divided into 3 pieces, TSHC , TSMC , and TSLC ,

in which test cases can only get the highest confidence

HC, MC, and LC respectively.

1: TSHC , TSMC , TSLC ← ∅;

2: for all tc in TS do
3: tc.Confidence ←LC;

4: for all req in Requirements do
5: if tc.Cover(req) &&

tc.Confidence ≺ req.Confidence then
6: tc.Confidence ← req.Confidence;

7: end if
8: end for
9: if tc.Confidence = HC then

10: TSHC .Add(tc);
11: else if tc.Confidence = MC then
12: TSMC .Add(tc);
13: else if tc.Confidence = LC then
14: TSLC .Add(tc);
15: end if
16: end for

confidence HC, MC, and LC at most respectively. Initially,

we set these result sets empty (Line 1). Then, for each test

case tc, we compute the highest confidence of requirements

tc can cover (i.e., Confidence)(Lines 3-8). Finally, we add

tc to TSHC , TSMC , or TSLC according to tc.Confidence
(Lines 9-15). After classification, each test case can be in only

one of TS’s subsets (i.e., TSHC , TSMC , or TSLC).

3) Test Suite Reduction Module (M3): We use M3 to

generate the final reduced test suite. After classification by

M2, original test suite TS is divided into three sub test suites

TSHC , TSMC , and TSLC . Then we can reduce these three

sub test suites by using a classical test suite reduction approach

HGS [7]. Three reduced test suite with each confidence cate-

gory HC, MC, and LC are respectively denoted by RTSHC ,

RTSMC , and RTSLC . Finally, we propose a strategy named

Partial-CATESR to generate the final reduced test suite.

Meanwhile to illustrate the effectiveness of Partial-CATESR,

we also propose another strategy named Full-CATESR for

comparison.

Partial-CATESR is motivated by research work of Gu et al.

[5]. They conjectured that not all test requirements need to be

covered during regression testing. Their empirical results show

that properly not covering irrelevant test requirements could

not only reduce the size of test suite, but also keep the FDA.

Similarly, our Partial-CATESR strategy pays more attention

to the test cases covering the most related requirements (i.e.,

TSHC) and ensure the same requirement coverage of TSHC .

Based on the former analysis, reduced test suite RTSHC

has the highest confidence to cover the code changes after

modification, RTSMC the second, and RTSLC the lowest.

221

Therefore, the calculation of RTS under Partial-CATESR can

be given by the following process.

RTS ← if TSHC 	= ∅ then RTSHC

else if TSMC 	= ∅ then RTSMC

else RTSLC

(3)

Full-CATESR is a naive strategy by simply combining three

sub test suites into one test suite. The construction process of

RTS can be defined as follows:

RTS ← RTSHC ∪RTSMC ∪RTSLC (4)

IV. EMPIRICAL STUDIES

To evaluate the effectiveness of our CATESR approach, we

perform empirical studies to answer the following research

questions:

RQ1: To what extent can CATESR approach decrease the

size of reduced test suite compared to HGS approach?

RQ2: Can the FDA be kept, when CATESR approach

generates a relatively smaller reduced test suite, comparing

to HGS approach?

RQ3: Can the FDA be weakened due to the partial coverage

of test requirements?

A. Subjects and Experiment Setup

1) Experiment Subjects: We adopt seven small C programs

in Siemens suite and one large-scale C program named space
in our empirical study. The Siemens suite is originally con-

tributed by Ostrand et al. for a study of the fault detection

abilities of control-flow and data-flow coverage criteria [12],

and has been partially modified by researchers for further

studies. space is a program for interpreting statements written

in some specific array definition language (ADL). Each subject

contains a single correct version and a set of versions with a

single fault.

TABLE II
EXPERIMENT SUBJECTS

Subject # Test Cases # Versons LOC Description

printtok 4130 7 402 Lexical Analyzer
printtok2 4115 10 483 Lexical Analyzer
replace 5542 29 516 Pattern Replacement

schedule 2650 9 299 Priority Scheduler
schedule2 2710 9 297 Priority Scheduler

tcas 1608 40 138 Altitude Separation
totinfo 1052 23 346 Information Measure
space 13585 35 6218 ADL Interpreter

The characteristics of these subjects are summarized in

Table II. Each subject contains a large test pool with at least

1052 test cases, and 13585 at most. Each subject contains

multiple single-faulty versions, with the count between 7 and

40. For subjects in Siemens suite, the number of lines of code

(LOC) ranges from 138 to 516, which is relatively small com-

paring to practical programs. Therefore, we introduce space,

which contains 6218 LOC, to verify the scalability of our

CATESR approach. These subjects are available from Subject

Infrastructure Repository (SIR) at University of Nebraska-

Lincoln 2 [4].

2) Experiment Setup: Since there exists randomness in

our approach, we independently perform the experiment 1000

times on each faulty version for each subject. During each

iteration, we firstly generate a test suite by randomly choosing

test cases from the test pool, then we adopt both Partial-
CATESR and Full-CATESR in test suite reduction. To show

the effectiveness of our approach, we also implement HGS

algorithm [7] as a baseline. When randomly generating a test

suite, we firstly determine the size n of test suite. The value

of n is determined by LOC of the subject timing a random

number ranging from 0 to 0.5. Then we randomly choose n
test cases from the test pool and construct TS. Finally, when

test cases in TS cannot cover all feasible requirements covered

by the test pool, we will add additional test cases by randomly

choosing test cases from the remainder of the test pool. If no

test case in TS can detect the fault in this faulty version, we

will discard TS and regenerate the test suite. This experiment

design is motivated by Rothermel et al. [19].

B. Results and Analysis

In this subsection, we analyze the data gathered from our

experiments to answer RQ1, RQ2, and RQ3.

1) Experiment Metrics: In our empirical study, we mainly

focus on two metrics: time cost and FDA.

In real testing scenarios, time cost includes test environment

setup, test case execution, and test result examination. Since

test suite reduction can significantly reduce the time cost of

regression testing, here we only consider the size of test suite

as a metric to measure the time cost. Consequently, we can

adopt the average extent of reduction to original test suite in

percentage over 1000 times independent experiments, given

by the following formula:

TSReduced =
|TS|avg − |RTS|avg

|TS|avg ∗ 100 (5)

To measure the effectiveness of our approach, we also need

to check FDA after test suite reduction. Since each faulty

version contains only one fault, we define an indicator function

gf as follows:

gf (TS) =

{
1 if fault f can be detected by TS,

0 other wise.
(6)

Consequently, we can take the average value gf (TS) of

indicator over 1000 experiments as the metric of fault detection

ability, denoted by FDA.

2) Test Suite Size Analysis: To answer RQ1, we analyze the

data, and fetch the size of reduced test suites. The reduction

extent is measured by formula 5 and visualized in Figure 2.

For each subject over all available faulty versions, we mark

three key values to show the reduction extent TSReduced for

HGS, Partial-CATESR, and Full-CATESR,respectively in the

same vertical drop line.

2http://sir.unl.edu/php/index.php

222

(a) printtok (b) printtok2 (c) schedule

(d) replace (e) schedule2 (f) totinfo

(g) space (h) tcas

Fig. 2. The size of test suite reduction for each subject

We can find that our Partial-CATESR can at least gain the

same reduction extent as HGS performs. At most of the cases,

we can get more reductions. Within subject space, for instance,

original test suite are reduced by around 99 percentage using

our Partial-CATESR. In this case, the size of reduced test suite

is much smaller than reduced by around 93 percentage using

pure HGS approach. For those versions on which our Partial-
CATESR performs as well as pure HGS, we seriously check

both the source codes and their test cases. We find that all

test cases are classified in the same category, because either

they all have a strong confidence to cover the changes, or they

are insensitive to the changes through our CFG-based change

analysis.

Note that the performance of Full-CATESR, including re-

duction extent and FDA, will be discussed at the end of this

subsection.

3) Fault Detection Ability Analysis: To answer RQ2, we

also check the FDA using the metric FDA as we have

discussed above. Similar to the visualization of reduction

extent, we summarize FDA for each subject over all faulty

versions in Figure 3.

Clearly, FDA among all our experiments are not weakened

at all, and even strengthened many times. For some faults in

many subjects, such as replace and space, the probabilities of

being detected, used to be below 0.1 using pure HGS approach,

are increased to 1 when adopting our Partial-CATESR.

4) Partial Coverage Affect Analysis: To answer RQ3, we

design the Full-CATESR, to assure a 100 percentage coverage

of original test requirements. As we can see in Figure 2, the re-

duction extent are decreased due to additional test cases added

to RTS, which is generated by Partial-CATESR. However,

the FDA among all experiments are not enhanced at all (See

Figure 3). Our experiment results show that, it is meaningless

to re-execute test cases who have few relevance with the

changes during regression testing, though they may cover some

irrelevant test requirements. Therefore, we conclude that the

FDA will not be weakened by the insufficient coverage of

original test requirements.

223

(a) printtok (b) printtok2 (c) schedule

(d) replace (e) schedule2 (f) totinfo

(g) space (h) tcas

Fig. 3. The FDA of test suite reduction for each subject

C. Threats to Validity

We mainly discuss some potential threats for our empirical

studies in this subsection. Threats to internal validity mainly

come from the incorrect program implementation or corrupted

data. To avoid these threats, we prepared our data carefully and

tested our programs with simple programs. Threats to external

validity affect the result generalization. The primary threat is

the representativeness of our subjects. However, these subjects

are commonly used by other researchers. Another threat is that

we only adopt HGS as our test suite reduction approach. Using

other reduction approaches may affect the conclusion of our

paper. Threats to conclusion validity arise when accounting

for the random variation in our approach. To overcome these

threats, we need more sophisticated statistical hypothesis tests

to have a higher confidence in our results.

V. RELATED WORK

Test suite reduction is an important research topic in re-

gression testing. It has been successfully applied to different

application domains, such as web applications [20], GUI

applications [18], and fault localization [23]. We summarize

previous research work into three categories.

The first category of research focuses on proposing effective

approaches given a single test coverage criterion. Horgan

and London used linear programming to conduct test suite

reduction based on data flow coverage [10]. Harrold et al.

proposed a classical greedy approach called HGS [7]. Chen

and Lau proposed two greedy algorithms called GE and GRE

[2]. Jones and Harrold developed two techniques according to

the modified conditon/decision coverage (MC/DC) criterion

[14]. Tallam and Gupta proposed an approach based on formal

concept analysis [21]. Since test suite reduction is a typical

combinatorial optimization problem, Mansour et al. applied

meta-heuristic search techniques to this problem, such as

simulated annealing and genetic algorithm [16]. Zhang et al.

performed test suite reduction for JUnit test suites [24]. Chen

et al. proposed a test reduction approach based on the pairwise

interaction of test requirements [3].

The second category of research focuses on performing test

suite reduction based on multiple coverage criteria. Jeffrey and

224

Gupta extended HGS and proposed the concept of selective

redundancy. They attempted to select additional test cases that

are redundant to a particular coverage criterion but are not

redundant with respect to one or more other coverage criteria

[13]. Black et al. proposed a reduction approach using bi-

criteria binary ILP model [1]. Hsu and Orso extended the work

[1] and could solve a wide range of multi-criteria test suite

reduction problems [11].

The remaining work can be categorized into the third

category of research. Vaysburg et al. used EFSM dependence

analysis to conduct requirement-based test suite reduction

[22]. Harder et al. generated, augmented, and minimized test

suites by the operational difference technique [6]. Martina and

Bertolino introduced the notion of spanning sets of entities

and this notion can be used to perform test suite reduction

[17]. Heimdahl and George conducted test suite reduction with

respect to given specification-based criteria that are based on

formal models of the software [9].

Different from previous research, we consider the relation-

ship between code changes and test requirements. We attempt

to focus on test cases that are more likely to be aware of

the changes after code modification, and give a preliminary

empirical study for our proposed approach.

VI. CONCLUSION

Test suite reduction can significantly decrease the size of test

suites but at the cost of seriously losing original fault detection

ability. Based on the conjecture that test cases who are more

likely to cover the changes after code modification can gain

a higher probability to reveal potential faults, we propose a

new change-aware test suite reduction approach CASTER. Our

empirical studies show the effectiveness of our approach.

In the future, we want to further consider the following

issues. Firstly we want to apply data-flow analysis to our

approach, as a complement of current control-flow based

change analysis. Secondly we want to apply our approach to

more subjects written by other programming languages. Last

but not least we want to apply our approach to larger-scale

real-world applications.

ACKNOWLEDGMENT

This work is supported in part by the National High-Tech

Research and Development Plan of China (863) under Grant

No. 2006AA01Z177, the 973 Program of China under Grant

No. 2009CB320705, and the NSFC Projects under Grant No.

60873027 and Grant No. 61021062.

REFERENCES

[1] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for all-
uses test suite reduction,” in Proceedings of the International Conference
on Software Engineering, 2004, pp. 106–115.

[2] T. Chen and M. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5-6, pp. 347–354,
1998.

[3] X. Chen, L. Zhang, Q. Gu, H. Zhao, Z. Wang, X. Sun, and D. Chen,
“A test suite reduction approach based on pairwise interaction of
requirements,” in Proceedings of the Symposium on Applied Computing,
2011, pp. 1390–1397.

[4] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: an infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, pp. 405–435, 2005.

[5] Q. Gu, B. Tang, and D. Chen, “Optimal regression testing based on
selective coverage of test requirements,” in Proceedings of International
Symposium on Parallel and Distributed Processing with Applications,
2010, pp. 419–426.

[6] M. Harder, J. Mellen, and M. D. Ernst, “Improving test suites via
operational abstraction,” in Proceedings of the International Conference
on Software Engineering, 2003, pp. 60–71.

[7] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for control-
ling the size of a test suite,” ACM Transactions on Software Engineering
and Methodology, vol. 2, pp. 270–285, 1993.

[8] M. Harrold and A. Orso, “Retesting software during development and
maintenance,” in Proceedings of Frontiers of Software Maintenance,
2008, pp. 99 –108.

[9] M. P. E. Heimdahl and D. George, “Test-suite reduction for model based
tests: effects on test quality and implications for testing,” in Proceedings
of the International Conference on Automated Software Engineering,
2004, pp. 176–185.

[10] J. R. Horgan and S. London, “Data flow coverage and the c language,”
in Proceedings of the Symposium on Testing, Analysis, and Verification,
1991, pp. 87–97.

[11] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for
supporting test-suite minimization,” in Proceedings of the International
Conference on Software Engineering, 2009, pp. 419–429.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria,”
in Proceedings of the International Conference on Software Engineering,
1994, pp. 191–200.

[13] D. Jeffrey and N. Gupta, “Improving fault detection capability by selec-
tively retaining test cases during test suite reduction,” IEEE Transactions
on Software Engineering, vol. 33, pp. 108–123, 2007.

[14] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, pp. 195–209, 2003.

[15] H. K. N. Leung and L. White, “Insights into testing and regression
testing global variables,” Journal of Software Maintenance, vol. 2, pp.
209–222, 1990.

[16] N. Mansour and K. El-Fakih, “Simulated annealing and genetic algo-
rithms for optimal regression testing,” Journal of Software Maintenance,
vol. 11, pp. 19–34, 1999.

[17] M. Marré and A. Bertolino, “Using spanning sets for coverage testing,”
IEEE Transactions on Software Engineering, vol. 29, pp. 974–984, 2003.

[18] S. McMaster and A. Memon, “Call-stack coverage for gui test suite
reduction,” IEEE Transactions on Software Engineering, vol. 34, pp.
99–115, 2008.

[19] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of the International Conference on Software
Maintenance, 1998, pp. 34–43.

[20] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and A. Souter, “An
empirical comparison of test suite reduction techniques for user-session-
based testing of web applications,” in Proceedings of the International
Conference on Software Maintenance, 2005, pp. 587–596.

[21] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm
for test suite minimization,” in Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering, 2005, pp. 35–42.

[22] B. Vaysburg, L. H. Tahat, and B. Korel, “Dependence analysis in
reduction of requirement based test suites,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2002, pp.
107–111.

[23] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the
effects of test-suite reduction on fault localization,” in Proceedings of the
International Conference on Software Engineering, 2008, pp. 201–210.

[24] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical
study of junit test-suite reduction,” in Proceedings of the International
Symposium on Software Reliability Engineering, 2011, pp. 170–179.

225

A Process Model for Human Resources Management
focused on increasing the Quality of Software

Development

Flávio E. A. Horita, Jacques D. Brancher and Rodolfo M. de Barros
Computer Department

State University of Londrina, UEL
Londrina, Brazil

feahorita@gmail.com; {jacques, rodolfo}@uel.br

Abstract — The lack of quality in the production process of
software development isn’t attributed only to the techniques and
technologies, but also to the lack of attention and importance
placed on its members. Thus, this paper presents a process model
for Human Resources Management focused on improving the
quality of software development. Its preparation was based on
areas and expected results of the process of human resource
management present in the Reference Model for Brazilian
Software Process Improvement (MR-MPS)1. In order to
contribute to its understanding and use, it is presented a
comparative study with other models present in the literature
and identify their benefits and problems with an application in
two software development projects.

Keywords: Human Resources Management; Process Quality;
Training Management; Performace Management; Human Factor.

I. INTRODUCTION

The high dependence of human resources for the
development of a software project has demonstrated the
importance of its management. This is due to the fact that
some studies have demonstrated that they generate and
strengthen innovation, produce, take decisions, lead, motivate,
communicate, supervise, manage and direct the business [5],
[8], [9], [13], [14], [15].

However, even nowadays, these resources are still losing
focus on software development processes, which tend to give
more importance to the technical and practical areas [2], [14].
Moreover, it has been ever more common to find members
doing exhaustive tasks (working overtime, on weekends or
vacation) which end up resulting in their exhaustion,
dissatisfaction and demotivation.

Thus, the software development process is not only about
the use of software and hardware to generate systems. The
development and maintaining is its connected to people.

As a consequence, its success or failure is intimately
related to the way in which they are allocated and controlled
within your budget and time [15]. Professionals with the right
skills to perform their tasks, execute them in a most efficient
way, which reflect in the quality of the software development
process and in the final product.

1
 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)

Considering what was previously exposed, the aim of this
work is to present a model of process focused on the increase
of the quality of the software development process. For its
elaboration, we based on what Amâncio et al. [1] and Morais
[11] suggested and on the expected areas and results of the
human resources management process presents in the maturity
level E of MR-MPS.

This article is divided in six elementary sections, including
this introduction. In Section 2 it is presented the theory related
to the paper. In Section 3 it is presented the research
methodology that was used. Section 4 it is presented the
process model for Human Resources management. In Section
5 it is presented the results of the research. Finally, Section 6 it
is presented the conclusions and suggestions for future works.

II. THEORY

A. Human Resources Management on Software Development

Several studies demonstrate that holding the best
technological tools, using the most efficient techniques and
work models is not enough to guarantee the success of a
software project [9], [14], [15].

It is necessary the existence, in parallel, of a human
resources management able to develop skills and guarantee the
effective allocation of its members, in order to increase the
quality of its process [12].

However, several managers attribute more importance to
the technical and practical areas rather than the human
resources, which end up by losing the focus in software
development processes [2]. A manager must act in order to
encourage the developing staff to work together as a team,
concentrating in the customers’ needs and product quality.

This context made managers responsible not only for the
leadership in planning, organization and control of the efforts
expended during the project. They had to develop other skills
like manage people, e.g. ability to lead and stimulate people’s
development, abilities to solve problems and excellent
interpersonal competence [15].

Moreover, during the development of a software project,
the dynamic in business processes and the high turnover of
technologies and his members highlights the importance to

226

manage intellectual knowledge with creating mechanisms to
collect, store and share within the organization [6], [12].

B. Related Work

There are several authors working hard in new models and
processes to improve people management. We have made a
deep analysis to find the good and bad points of them.

Amâncio et al.’s work [1] presents the definition of a
process model grounded on the Human Resources
Management, area of knowledge of PMBoK. The author
presents its application in the software factory of a public
education institution which main focus is the development of
its members in the academic and professional spheres.

This process is divided into four activities, two of them
Planning Needed Human Resources and Hiring or Mobilizing
Project Team were developed in the initial phases of the
project, while the other two Develop Project Team and
Manage Project Team, must be executed in parallel until its
end.

According to the author, although partial, the
institutionalization of the process, besides achieving its main
objective, the decrease in turnover, managed to increase the
quality of its services and products through training and
continuous assessment of the skills and performance of the
people involved.

A human resource management process was also
suggested in De Carvalho’s work [7]. This work is divided
into three complementary areas: Planning, Monitoring and
Assessment, in each one of them its work instructions,
resources and roles present in its execution were carefully
defined and detailed.

Moreover, the author also defines some “external”
activities which must be accomplished in a more
administrative sphere. Among them, we can cite Effectivenes
of Professionals Hiring, that is not part of the IT manager
competence and must be carried out by the human resources
department.

Also, in this context, Morais [11] presents a human
resources management process focused on the improvement of
the knowledge identification, storage and sharing process
within the organization.

Developed to be adherent to the MR-MPS, this process is
composed by six activities that aim to work broadly the
organization’s needs, its trainings, manageable knowledge and
performance, besides controlling the dismissal of its members.

Apart from this presentation, the author performed a
preliminary validation of the process through its
implementation in the human resources area of a system
development organization. According to the author, the model
demonstrated to be efficient in this context.

Unlike the three first models, People Capability Maturity
Model (P-CMM) maturity model is a variant of Capability
Maturity Model (CMM) which has as focus to help in human
resources management. To do so, it offers a set of good
manners to make provisions for the continuous growing of
workforce abilities in the organization [6].

According to Curtis and Hefley [6], the workforce abilities
are defined as knowledge level, ability and capability to

perform activities within the project. In order to monitor and
improve these competences, the model is divided in five
maturity levels, so gradually each one of them will be
identified, developed and worked. Thus, the advantages
identified when implementing the P-CMM vary in function to
the maturity level in which the company finds itself [6].

C. Reference Model for the Brazilian Software Improvement
Process2

Developed in 2003 by the SOFTEX3 as part of the
MPS.Br4 program, the MR-MPS consists of a reference model
with the definition of prerequisites for the improvement of the
quality of the software process. Besides it, the program is
composed by an Assessment Method (MA-MPS) and a
Business Model (MN-MPS), each one of them described by
guides and/or document models.

In accordance with Capability Maturity Model Integration
for Development (CMMI-DEV) and following the described
headlines in its main program, this model was divided into
seven maturity levels. These levels define steps to
improvement processes in the organization [10]. Moreover,
this division aims to enable its implementation and assessment
in micro, small and medium enterprises.

These maturity levels are composed by processes which
define what the expected results are, and capabilities which
express its institutionalization level and implementation in the
organization. Thus, it is noteworthy that the development
among these levels happens cumulatively and only when all
demands were found.

III. RESEARCH METHODOLOGY

The research methodology used in this article was a case
study. According to Yin [17], case studies offer an empirical
research that investigates a contemporary phenomenon and
offers researchers an object of applied study in its natural
context. And, in addition, new facts and research issues about
this environment can be identified [17].

In order to work on the case study, we selected a project of
a software factory in a public university. Their teams were
composed by undergraduate and master’s students. Because of
this, the company suffers with the seasonality issues in periods
of academic activity, lack of commitment, interest and a low
rate of productivity in its members.

Another problem of this company is the lack of a process
of preservation of intellectual capital generated during the
projects. Figure 1 show the development process used in the
factory.

As shown in the Figure 1, the process begins with the
macro activity, Initial Analysis, when the project’s scope is
defined through meetings with the customer. Then, in the
macro activity Analysis and Planning it begins with the
project planning and the record of its information in the
Project Plan.

2 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)
3 Associação para Promoção da Excelência do Software Brasileiro
4 Programa para Melhoria do Processo do Software Brasileiro (MPS.Br).

227

Fig. 1. Study Case Development Process

After this stage, it starts its execution and implementation
and, subsequently, its validation and tests. During this stage, a
direction is defined, either turning to the previous macro
activity in order to correct inconsistencies and problems or,
follow to the Delivery and Project Completion.

Unlike others, the macro activity Keep Requisites and
Manage Portfolio occur in an asynchronous way and hold
responsibility for ensuring the coherence of system’s
requisites and managing information between projects and top
management, respectively.

Moreover, in each macro activities, a set of activities and
artifacts, workflow of the works and tasks to be accomplished
for each role of the process is defined.

IV. PROCESS MODEL PROPOSED

Aiming the elaboration of the process model, we based on
Amâncio et al. [1], Morais [11] and on the expected areas and
results present on maturity level E of MR-MPS. The notation
and elements used in the process modeling came from
Business Process Modeling Notation (BPMN), since it is a
notation language with standard icons for process design,
which facilitates the understanding of the customer [4]. Figure
2 holds a more detailed model.

As shown in Figure 2, the process begins with the planning
of the human resources. Then, it is conducted an analysis in
domestic assets, in order to identify the partners who will be
part of the project team. Based on this definition, it is carried
out the recruitment and member’s mobilization.

When the team is formed up and starts working on the
accomplishment of the project, its members are constantly
assessed towards knowledge, performance, training and
human aspects, to minimize the problems and difficulties and
maximize and improve the abilities. Next, we present each
activity of the process.

A. Human Resources Plan

Accomplishing the human resources planning, from the
very beginning of the project, has a big importance for its
manager. The reason is easy: this stage will be defined and
planned to identify factors that could influence the human
resources management.

Its workflow begins with the definition of the needed
resources for the accomplishment of the project.
Subsequently, based on this definition, a set of four
management policies5 must be defined. Then the
organizational chart is elaborated.

After its definition, in parallel, we must work on the
development of the career planning and on the detailing of the
pre requisites for roles allocation. Completed these two stages,
all this information will be grouped and will compose the
Human Resources Management Plan (HRMP).

B. Review the Business Needs

After planning, it is essential for the projects manager to
work on the formation of their team. And, for that, they must
base on the analysis of the organization’s environmental
factors (physical and social environments and people’s
attitude) and the organizational processes assets [1].

However, it is noteworthy that the revision of the
organization’s needs must encompass not only human needs,
but also those needs connected to technical and support
factors, such as: expenses with support people (e.g.
accountants and administrators), travels, materials and
trainings.

C. Hire and Relocate Members

The goal of this activity consists in identifying, from an
organizational chart, which roles and attributes will be needed
to the execution of the project. Based on this, abilities and pre
requisites can be defined and used to help in the selection of
the member of the team.

In order to form the team, it is needed that, based on roles
and attributes defined on the organizational chart, the manager
is able to choose between hiring new members or relocating
internal members. After this definition, the training needs must
be identified, defined and recorded in the Tactical Training
Plan (TTP).

During the development of this activity, the project
manager must have access to artifacts that present which are
the knowledge level, skills, experiences and availability of the
members of the organization, so these information will help
not only on the definition of whom is going to be part of the
team.

5 Policies of Development, Knowledge, Availability and Communication
Management.

Fig. 2. Process Model for Human Resources Management

228

D. Manage Training

When any training needs in the team members are
identified, they must be carried out according to the rules and
specifications defined on TTP.

However, during their accomplishment, it is important to
constantly monitor and assess their members. So that,
improvements in teaching infrastructure and new training will
be identified and implemented in order to guarantee the
increase in the abilities and capabilities of their members.

E. Manage Human Aspects

This activity has as purpose to identify the environmental
and social factors which may influence the good development
of the project.

For this, first of all, the needs of personal meetings,
structural and geographical factors of the working
environment and actions to minimize them must be defined.
Subsequently, it must be defined the needs of personal
meetings, exchange of staff and socialization needs.

All these factors must be constantly assessed, either
through interviews or surveys, so the satisfaction and
motivation levels of its members could be identified and
improved. During this activity, a psychological can help to
interpret data and collect information.

F. Manage Performance

Managing performance consists in constantly assess,
formally or informally, the member’s performance, during the
execution of their tasks, based on the assessment criteria pre-
defined in the HRMP.

This assessment is important, because people are not
always able to develop what is expected from them, resulting
in a discrepancy between the planning and the
accomplishment. Due to this, when identified, it’s important
that the manager adopts actions to correct or minimize them.

For that, with the definition of the criteria used for the
performance assessment, the manager identifies if there were
any discrepancy between what was planned and what was
accomplished. Then, from this, he will be able to evaluate
reasons and suggest corrective solutions for these problems.

G. Knowledge Management

The knowledge management consists in adopting
measures, techniques and tools to help the identification,
retention and sharing of knowledge. This management focuses
in to improve the quality and productivity in future projects or
development [16].

This knowledge can be formed by a group of data
generated throughout the projects, obtained from individuals,
from the organization culture, organizational transformations
and internal and external processes.

H. Artifacts and Positions

During the application of the project, a set of artifacts
must be elaborated and kept during the project. These must be
generated either during the execution of the activities. The
proper and constant update of these will serve as a help for
other activities or for the development of future projects.

Moreover, it’s important define the management roles,
which throughout the completion of the model have to ensure
the proper accomplishment of the activities. Besides this they
have to identify possible improvements in the processes and
suggesting corrective measures.

A summary of these artifacts and the roles related to the
activities is presented in Table I.

TABLE I. ARTIFACTS AND MANAGEMENT ROLES CONNECTED TO THE
ACTIVITIES OF THE PROCESS MODEL

Consumed

Artifacts

Generated

Artifacts Roles

Human

Resources

Planning

1) Organizational

Policies;

2) Scope

Document.

1) Human

Resources

Management Plan

(HRMP);
2) Organizational
Chart;
3) Plan of Positions
and Functions;
4) Career Plan.

1) Project

Manager;

2) Human

Resources

Manager.

Organization’s

Needs

1) Project

Requisites;

2) Organizational

Structure;

3) Economic

Conditions.

1) Organizational

Chart;

2) Career Plan;

(CP).

1) Project

Manager;

2) Human

Resources

Manager.

Training

Management

1) Tactical
Training Plan
(TTP).

1) Report of

Effectiveness of

Team Training.

1) Project

Manager;

2) Human

Resources

Manager;

3) Course

Coordinator.

As shown in Table I, for each activity, besides a set of

artifacts, there is a set of roles that must be associated and can
be used during its execution.

However, due to the diversity in project’s context, it is
worthy to highlight that the acceptance and utilization of these
roles must to attend to their needs. For more details about this
process, access http://www.gaia.uel.br/gaia_rh/.

V. RESULTS

In order to validate the process model, some performance
indicators for information and data collection were defined
and applied. Through the analysis of these sources, it was
possible to identify its advantages and limitations. Next, the
results obtained with this research are described.

The first indicator shows the variation in the rate of rework
from the training sessions. This is because high levels of
rework pose major problems during the development of a
project.

Through training exercises, we try to eliminate them by
improving the skills and knowledge of members. Thus,
solving the rework, this metric helps the project manager to
identify the level of effectiveness of training. Figure 3 show
this indicator for the case study.

229

Fig. 3. Training Time vs. Rework Index

As can be observed in Figure 3, the training carried out
with the team members have strong relationship with the
improvement of your content to rework. After the
implementation of the framework, this fact is evidenced by the
decrease in 78% of this index in Project, that research
contributes to the quality in the development process.

Besides this, the indicator for the analysis of improvement
in the performance of members by conducting training, it is
also important for improving quality in the development
process. This is because the effectiveness of the performance
actually contributes to the effectiveness of the members.

Thus, by conducting trainings, seeks to empower and
qualify them so they can increase this indicator. Furthermore,
through this measure, makes it possible to project manager to
analyze the performance of its members and, if necessary, take
steps to improve them. Figure 4 has the graphics prepared for
analysis of this indicator.

Fig. 4. Training Time vs. Performance Index

Also the rate of rework, the training carried out also
maintains a strong relationship with the improvement in the
performance index of members of the team. This fact strongly
evidenced by analyzing the graphs shown in Figure 4.

Through them, it is noted that with the completion of
training, implemented by the framework, an increase of 22%
in performance of the project members. And that contributes
not only to meet the deadline and measurement of the team,
but also to improve the quality of coding, and especially the
ease of maintenance.

Thus, in a general way, through the analysis of the
performance indicators and collected information, the
following advantages were identified:
• Increasing member’s motivation: Main factor for the
decrease in productivity and quality during the

accomplishment of the tasks. Their motivation is constantly
analyzed during the project, and actions for his improvement
be identified, suggested and worked;
• Improvement in the development process: The
continuous process to analysis and monitoring the knowledge,
performance and members’ abilities, aims to guarantee the
allocation of the appropriate member for each task and with
this increase the development;
• Improvement in selection and allocation of members:
These activities are improved by the selection and utilization
of members based on their performance, knowledge and stored
experiences in the History Database (HD);
• Decrease of member’s turnover: Aiming to keep the
integrity and consistency of the team, problems with respect,
inclusion, motivation and alignment of member’s personal
objectives with organization’s objectives are identified and
worked during the development of the project;
• Increase of the organizational memory of the
organization: The storage of experiences, estimates,
knowledge and performance of team’s members, during the
development of the projects, in the suggested HD, has as
objective to keep this information available in the beginning of
every project in order to facilitate the definition of the
workforce;

Moreover, through continuous monitoring of performance
and human aspects in projects’ teams, it can be stated that the
mentioned advantages have contributed significantly for the
decrease of its member’s turnover and for the increase in
motivation and improvement of its activities development.

All these factors, besides contributing significantly for the
application of the process model, also collaborates to the
establishment of a specialist’s network within the
organization.

A. Comparative Analysis

In order to provide a comparative analysis between the
models presented in Section 2a and the process model, Table
II was elaborated with questions and activities from materials
that generally cover staff management [3], as well as specific
studies for the software development area [5], [12] [17], [18].

According to Table II, the process model is able to find all
questions and activities defined for this analysis. We can
observe the importance placed on the human resources present
in the organization, the appreciation of the organization’s
intellectual capital from a specific level (individual) to a more
organizational one (company) and the work of monitoring and
evaluation performed on the human aspects of its members.

VI. CONCLUSIONS AND FUTURE WORKS

Analyzing the results obtained during the case study
development, we can evaluate the success in the
implementation of the process model. It is highlighted, mostly,
the increase in motivation of members, their skills and
capabilities, resulting in a significantly improvement in its
development process and decrease in member’s turnover.

Thus, focused on increase these human factors, the process
model presented was developed to attend, provide and add

230

more value to human resources of software project through
planning and continuous development of his team’s members.

Finally, as presented in Table II, this process model differs
from other existing process models in literature, with the
appreciation of the intellectual capital of the organization and
the work of monitoring and evaluation performed on the
human aspects of its members.

As future study suggestion is to development a tool to help
in planning, recruitment and selection, monitoring,
development and analysis of human resources during the
development and project planning.

REFERENCES
[1] Amâncio, S. F., Costa, H. A. X., De Camargo, V. and Penteado, R. A. D,

“Gerência de recursos humanos para uma fábrica de software de
pequeno porte”. In X Workshop Um Olhar Sóciotécnico sobre a
Engenharia de Software, Ouro Preto, Brazil, 2008.

[2] André, M., Badoquín, M. G. and Acuña, S. T, “Formal model for
assigning human resources to teams in software projects”. Information
and Software Technology 53, 2011, pp. 259-275.

[3] Chiavenato, I, Gestão de Pessoas: e o novo papel dos recursos humanos
nas organizações. 2nd ed, Rio de Janeiro, Elsevier, 2004.

[4] Cruz, T, BPM & BPMS: Business Process Management & Business
Process. 2nd ed, Rio de Janeiro, Brasport, 2010.

[5] Cibotto, R. A. G., Tait, T. F. C., Malucelli, A. and Reinher, S, “O fator
humano no desenvolvimento distribuído de software”. In VII Workshop
Um Olhar Sociotécnico sobre a Engenharia de Software, Curitiba,
Brazil, 2011.

[6] Curtis, B., Hefley, B. and Miller, S, P-CMM: People Capability
Maturiry Model. Software Engineering Institute, June, 2009.

[7] De Carvalho, L. R, Planejamento da alocação de recursos humanos em
ambientes de desenvolvimento de software orientados à organização,
Master Thesis, Universidade Federal do Rio de Janeiro, COPPE, Brazil,
2003.

[8] Denning, P. and Riehle, R, “The Profession of IT: Is Software
Engineering Engineering?”. Commun. ACM 52, 2009, pp. 24-26.

[9] Hazzan, O. and Hadar, I, “Why and how can human-related measures
support software development processes?”. The Journal of Systems and
Software, 2008, pp 1248-1252.

[10] MR-MPS (Modelo de Referência para Melhoria de Processo do
Software Brasileiro). Associação para Promoção da Excelência do
Software Brasileiro, August, 2011.

[11] Morais, S. R. G., Uma abordagem para a gerência de recursos humanos
de organizações de software, Master Thesis, Universaidade de Fortaleza,
Brazil, 2009.

[12] Qiu. Y., “Human resources management based on human capital in
enterprises”. In International Conference on Management and Service
Science, Wuhan, China, 2011.

[13] Reis, K., “Fatores Humanos: A influência na qualidade de software”.
Revista Engenharia de Software, ed. 18, 2, 2009, pp. 24-29.

[14] Shan, X. Jiang and G. Huang, T., “The optimization research on the
human resource allocation planning in software projects”. In
International Conference on Management and Service Science, Wuhan,
China, 2010.

[15] Tohidi, H., “Human resources management main role in information
technology project management”. In World Conference on Information
Technology, Antalya, Turkey, 2011.

[16] Wei, S., Qingpu, Z., and Chen, L., “The model of knowledge integration
management for IT corporation and its operating mechanism,” in
Information Management and Engineering (ICIME), 2010 The 2nd IEEE
International Conference on, 2010, pp. 85–89.

[17] Yin, R. K, Case Study Research: Design and Method, Third Edition,
Applied Social Research Methods Series, v. 5, Sage Publications, Inc,
2002.

 Amâncio et al. De Carvalho P-CMM Morais Process Model

Planning Human
Resources

Yes, during the initial
phase of the project.

Yes, realized in the
beginning of the project.

Yes, defined in the
initial phase of the

model.
No.

Yes, it is work in the
beginning of the project.

Revise
Organization’s Needs

Yes, approached
superficially during the

planning.

Yes, it uses a repository
of knowledge and

abilities.
No.

Yes, revised based on
organizational factors.

Yes, it uses
organizational factors.

Opt for Internal
Mobilization to
External Staffing

N/A N/A N/A N/A Yes.

Work the
Mobilization and
Staffing

No, the model only
defines functions and

timesheets.

Yes, performed based on
profiles of competences

demanded for the
project.

Yes, performed
based on project’s

needs and
availability in the

organization.

Yes, use an interview
database and a

recruitment process.

Yes, performed based on
setting of the

organizational chart.

Training
Management

High. It has a specific
activity and an action
and monitoring plan.

High. It defines and
constantly monitors.

High. It is worked
during the

development of the
model.

High.
Proposes a continuous

process of
improvement.

High. Worked on
according to the
project’s needs.

Performance
Management

High. Definition and
monitoring of indicators.

High. It monitors with
project repository.

High. Its analysis is
realized during the

whole model.

High. Monitoring
using predefined

indicators.

High. Constant
monitoring during the

project.

Organizational
Knowledge
Management

No. No. No.

Yes, the knowledge is
identified, storage and

sharing with the
company.

Yes, focused in the
individual sharing with

the company.

Uses Historical
Database

No.
Yes, it has an

organizational and a
project one.

Yes, used in all
phases of the

project.
No.

Yes, used in all phases of
the project.

Human Aspects
Management

No. No. Yes. No.
Yes, monitored during
the development of the

project.

TABLE II. COMPARISON BETWEEN THE EXISTENT MODELS AND THE PROCESS MODEL

231

Verification of Cyber-Physical Systems Based on Differential-Algebraic Temporal Dynamic Logic

Xiaoxiang Zhai, Bixin Li, Min Zhu, Jiakai Li, Qiaoqiao Chen, Shunhui Ji

School of Computer Science and Engineering, Southeast University, Nanjing, China

Email: {xxzhai, bx.li}@seu.edu.cn, kongs@139.com, jiakai li@seu.edu.cn,

joe 0701@126.com, shunhuiji@163.com

Abstract

Differential temporal dynamic logic (dTL) is an approach
for specifying and verifying properties of cyber-physical systems
(CPS) and it can handle with temporal behaviors for CPS.
The hybrid programs (HP), as operating model of dTL, only
contain differential equations that can be solved in polynomial
arithmetic, which results that dTL can only specify and verify
CPS of simple dynamics. However, differential-algebraic dynamic
logic (DAL) solves the problem through the introduction of differ-
ential invariants, but lacks verification capabilities for properties
with temporality. This paper combines the advantages of dTL
and DAL, and proposes differential-algebraic temporal dynamic
logic (DATL). We have achieved the following results: a trace
semantics for differential-algebraic programs (DAP), four new
rules based on the rules of dTL and DAL, a proof of the soundness
of the new rules, and the specification and verification of safety
of aircraft collision avoidance system with DATL. Our theory
together with a case study demonstrates that DATL overcomes
the constraints that differential equations must be solvable in
polynomial arithmetic and can be used to specify and verify
temporal properties of CPS.

Keywords—Cyber-physical systems; property verification; differ-
ential temporal dynamic logic; differential-algebraic dynamic logic;
differential-algebraic temporal dynamic logic; aircraft collision avoid-
ance system;

I. Introduction

Cyber-physical systems (CPS) are integrations of computa-

tion and physical processes. Embedded computers and networks

monitor and control the physical processes, usually with feed-

back loops where physical processes affect computations and

This work is supported partially by National Natural Science Founda-
tion of China under Grant No. 60973149, partially by the Open Funds
of State Key Laboratory of Computer Science of Chinese Academy
of Sciences under Grant No.SYSKF1110, partially by Doctoral Fund
of Ministry of Education of China under Grant No. 20100092110022,
and partially by the College Industrialization Project of Jiangsu Province
under Grant No.JHB2011-3.

Correspondence to: Bixin Li, School of Computer Science and Engi-
neering, Southeast University, Nanjing, China. E-mail: bx.li@seu.edu.cn

vice versa [1]. Many approaches have been proposed to verify

properties of CPS. They are primarily divided into two categories:

model checking and theorem proving. Because CPS do not admit

equivalent finite-state abstractions [2] and due to general limits

of numerical approximation, model checkers are still more suc-

cessful in falsification than in verification. Differential temporal

dynamic logic (dTL) and differential-algebraic dynamic logic

(DAL) are approaches falling the scope of theorem proving.

As operating model of dTL, HP have limited expressiveness

and cannot model complex CPS. For example, fluctuations and

errors in the physical processes cannot be expressed. As operating

model of DAL, DAP make up for the shortcomings of HP via the

introduction of quantifiers and differential invariants. However,

DAL cannot verify properties with temporality, and dTL has

the ability by introducing temporal operator and expanding the

relevant calculus rules. This paper combines the advantages

of dTL and DAL and proposes differential-algebraic temporal

dynamic logic (DATL) to verify properties of CPS with complex

dynamics and temporality.

This paper is organized as follows: next section first intro-

duces an aircraft collision avoidance system, then defines trace

semantics of DAP under temporal behavior. The aircraft collision

avoidance system is modeled using DAP and safety of the

system is specified as a DATL formula. Section 3 introduces

four new calculus rules for DATL by inheritance, expansion and

improvement of the rules of the DAL and dTL, and proves

the correctness of the new rules. The property of the aircraft

collision avoidance system is specified as a DATL formula and

we use DATL sequent calculus to formally verify the property.

Finally, a conclusion of research in this paper is drawn and some

expectations are brought forward for the future.

II. CPS Modeling and Property Specification

A. Aircraft Collision Avoidance System

There are a number of aircrafts flying in the air, their flight

dynamics can be described by a group of differential equations.

The differential equations of (∗) denote flight dynamics of

any two aircrafts X and Y , where point x(x1, x2, x3) and point

y(y1, y2, y3) denote three-dimensional coordinates of aircrafts X
and Y respectively, d(d1, d2, d3) and e(e1, e2, e3) denote speed of

232

Fig. 1. Aircraft Collision Avoidance System

X and Y along x-axis, y-axis and z-axis respectively, ω and �

denote angular velocity of X and Y in horizontal direction, and a,

b denote acceleration of X and Y in vertical direction respectively.

(∗)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1
′ = d1 ∧ x2

′ = d2 ∧ x3
′ = d3 ∧ d1

′ = −ωd2 ∧ d2
′ =

ωd1 ∧ d3
′=a ∧ a′ = 0 (F (ω, d3, a))

y1
′ = e1 ∧ y2

′ = e2 ∧ y3
′ = e3 ∧ e1

′ = −�e2 ∧ e2
′ =

�e1 ∧ e3
′=b ∧ b′ = 0 (G (�, e3, b))

If the distance between aircrafts X and Y at some time is less

than some value p, it should be considered that X and Y have the

risk of collision. At this point, X and Y should adopt a strategy

to avoid the collision. Platzer [3] proposed an aircraft collision

avoidance system of two-dimensional case, we extended it into

the three-dimensional case shown in Figure 1. As the coordinate

of X is point x(x1, x2, x3), and through the point x, there exists

only one plane α which is parallel to the ground. By the same

argument, through the point y(y1, y2, y3), there is only one plane

β which is parallel to the ground. We can get point y′ in plane

α by projecting Y on α (ignoring the size of the aircraft itself),

then there must exist a circle (noted as circle1) whose center is

c(c1, c2, x3) and in which point x and point y′ stay, as shown in

Figure 1. Similarly, there exists another circle (noted as circle2)

whose center is c′(c1, c2, y3) and in which point y stays. The

aircraft collision avoidance system can be described as follows:

when the distance between aircraft X and Y is less than some

value p, X and Y respectively change their flight direction into the

tangential direction in point x and y of circle1 and circle2 in the

plane α and β. And then X and Y fly several time in accordance

with dynamics described by differential equations shown in (#)

(Note: during the entire collision avoidance process, the height

of aircrafts is constant, in (#), differential equations describing

height are omitted). The aircrafts entered free flight after the

collision avoidance process is completed. If the risk of collision

happens again, the same collision avoidance strategy should be

adopted.

(#)

{
x1
′ = d1 ∧ x2

′ = d2 ∧ d1
′ = −ωd2 ∧ d2

′ = ωd1

y1
′ = e1 ∧ y2

′ = e2 ∧ e1
′ = −ωe2 ∧ e2

′ = ωe1

B. Trace Semantics of DAP

DATL introduces DAP as its operating model. Because the

semantics of state transition of DAP under temporal behavior

changes, it is necessary to redefine the semantics of state transi-

tion of DAP under temporal behavior , which is given as follows:

Definition 1 (Trace Semantics): The trace semantics, τ(α), of

a DAP α, is the set of all its possible hybrid traces and is defined

inductively as follows:

1. (v̂, ω̂) ∈ τ(J) iff (v̂, ω̂) |= J , where J denotes DJ-

constraint, and according to different structures of J , several

cases should be distinguished as follows:

1) (v̂, ω̂) |= x := θ iff val(ω, x) = val(v, θ).
2) (v̂, ω̂) |= θ1 ≥ θ2 iff val(v, θ1) ≥ val(v, θ2).

3) (v̂, ω̂) |= φ ∧ ψ iff (v̂, ω̂) |= φ and (v̂, ω̂) |= ψ.

4) (v̂, ω̂) |= φ ∨ ψ iff (v̂, ω̂) |= φ or (v̂, ω̂) |= ψ.

5) (v̂, ω̂) |= ¬φ iff it is not the case that (v̂, ω̂) |= φ.
6) (v̂, ω̂) |= φ→ ψ iff it is not the case that (v̂, ω̂) |= φ
or it is the case that (v̂, ω̂) |= ψ.

7) (v̂, ω̂) |= ∀xφ iff (v̂x, ω̂) |= φ for all states vx that

agree with v except for the value of x.

8) (v̂, ω̂) |= ∃xφ iff (v̂x, ω̂) |= φ for some state vx that

agrees with v except for the value of x.

2. τ(D) = {(ϕ̄) : ϕ̄ is a differentially augmented state flow and

some duration r ≥ 0 such that for all ζ ∈ [0, r], ϕ̄(ζ) |= D , and

val(ϕ̄(ζ), z) = val(ϕ̄(0), z) for all variables z that are not changed

by D , where D denotes DA-constraint}.
3. τ(α ∪ β) = τ(α) ∪ τ(β).
4. τ(α; β) = {σ◦ς : σ ∈ τ(α), ς ∈ τ(β) when σ◦ς is defined},

the composition of σ = (σ0, σ1, σ2, . . .) and ς = (ς0, ς1, ς2, . . .) is

σ ◦ ς =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(σ0, . . . , σn, ς0, ς1, . . .) if σ terminates at σn and

last σ = first ς

σ if σ does not terminate

not defined otherwise

5. τ(α∗) = ∪n∈Nτ(αn), where αn+1 = (αn;α) for n ≥ 1, as well

as α1 = α and α0 = (?true).

C. Modeling of Aircraft Collision Avoidance Sys-
tem

We use DAP to model the whole process of collision avoid-

ance, and the model is trm∗, where ∗ denotes that the execution

of trm which is described as (∼) is repeated 0 time or at least

one time. The trm consists of three phases: free flight phase

(described with f ree), changing phase of heading(assuming that

the phase is completed at once, without considering the delay,

described with tang) and flight limiting phase (aircrafts must

meet dynamic F (ω, 0, 0) ∧ G (ω, 0, 0) relative to the free flight

phase). In trm , φ means the distance between X and Y is

greater than or equal to p, d := ω(x − c)⊥ is a shorthand for

d1 := −ω(x2 − c2), d2 := ω(x1 − c1), and e := ω(y − c)⊥ is a

shorthand for e1 := −ω(y2 − c2), e2 := ω(y1 − c1) .

(∼)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

trm ≡ f ree; tang; F (ω, 0, 0) ∧ G (ω, 0, 0)

f ree ≡ ∃ω∃aF (ω, d3, a) ∧ ∃�∃bG (�, e3, b) ∧ φ
φ ≡ (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ≥ p2

tang ≡ ∃uω := u;∃c(d := ω(x − c)⊥ ∧ e := ω(y − c)⊥)

233

D. Safety Specification of Aircraft Collision Avoid-
ance System

We want to verify the property: aircrafts are safe at any time,

i.e., any time that aircrafts will not collide. This property has

temporal characteristics, that is, any time. DAL apparently cannot

specify this property of the CPS with temporal characteristics.

This paper specifies the property with DATL that combined with

the advantages of modeling complex CPS in DAL and specifying

properties of CPS with temporal behaviors in dTL, as follows:

We have used DAP to model aircraft collision avoidance

system and got an operating model trm∗. Here we will use DATL

formula to specify safety property of the system, we specify the

property “the aircrafts will not collide at any time” as a DATL

formula: ψ ≡ φ→ [trm∗]�φ, this formula denotes that φ implies

[trm∗]�φ. [trm∗]�φ denotes that φ is satisfied in any state of

any execution path of the system. That is, the formula ψ denotes

that if the distance between the two aircrafts is greater than or

equal to p, the constraint is satisfied at any time in the execution

of trm∗ .

III. Property Verification of CPS

So far, we have used DAP to model aircraft collision avoid-

ance system, used DATL formula to specify safety of the system

and got the formula ψ ≡ φ→ [trm∗]�φ. Based on the definition

of trace semantics of DAP, we add four new rules, prove the

soundness of them, and then use DATL sequent calculus to verify

the formula.

A. New Rules and Proof

We add four new rules to DATL as follows:

([J]�)
φ ∧ [J]φ

[J]�φ (〈J 〉♦)
φ ∨ 〈J 〉φ
〈J 〉♦φ

([D]�)
[D]φ

[D]�φ (〈D〉♦)
〈D〉φ
〈D〉♦φ

Other rules and proof calculus in dTL and DAL are main-

tained in DATL. We call any formula φ provable in the DATL if

we can find a DATL proof for it that starts with axioms (rule ax)

at the leaves and ends with a sequent � φ at the bottom. While

constructing proofs, however, we would start with the desired

goal � φ at the bottom and work our way backwards to the

subgoals until they can be proven to be valid as axioms (ax).

Once all subgoals have been proven to be valid axioms, they

entail their consequences, which, recursively, entail the original

goal � φ. Thus, while constructing proofs, we work bottom-up

from the goal. When we have found a proof, we justify formulas

from the axioms top-down to the original goal.

Next, we prove the soundness of rules [J]� and [D]�, and

the proof of other two rules are similar.

(1) ([J]�)
φ∧[J]φ

[J]�φ
Proof: It is proved inductively according to the structure of

J .

1) when J is the form x := θ, we want to prove
φ∧[x:=θ]φ

[x:=θ]�φ ,

and it has been proved in dTL [3].

2) when J is the form θ1 ≥ θ2, we want to prove
φ∧[θ1≥θ2]φ

[θ1≥θ2]�φ ,

i.e., assume that φ and [θ1 ≥ θ2]φ are satisfied, i.e., current state

v |= φ and v |= [θ1 ≥ θ2]φ, then prove that [θ1 ≥ θ2]�φ is also

satisfied. Let ∀σ ∈ τ(θ1 ≥ θ2), then the conclusion needed to

prove is equal to σ |= �φ, and σ = {(v̂) : val(v, θ1) ≥ val(v, θ2)} ∪
{(v̂, Λ̂) : val(v, θ1) < val(v, θ2)}. If val(v, θ1) ≥ val(v, θ2), σ =

{(v̂)} and the conclusion becomes {(v̂)} |= �φ, i.e., v |= φ. To

have already known, v |= φ is satisfied, then proof finishes. And

if val(v, θ1) < val(v, θ2), σ = {(v̂, Λ̂)}. Then conclusion satisfies

obviously. And accordingly θ1 = θ2, θ1 � θ2, θ1 < θ2, θ1 > θ2.

3) when J is the form ϕ ∧ ψ, we want to prove
[ϕ]�φ∧[ψ]�φ

[ϕ∧ψ]�φ .

According to the third point of trace semantics of DAP, we can

conclude that (v̂, ω̂) |= ϕ ∧ ψ iff (v̂, ω̂) |= ϕ and (v̂, ω̂) |= ψ, i.e.,

(v̂, ω̂) ∈ τ(ϕ∧ψ) iff (v̂, ω̂) ∈ τ(ϕ) and (v̂, ω̂) ∈ τ(ψ), i.e., [ϕ∧ψ]�φ
iff [ϕ]�φ ∧ [ψ]�φ.

4) when J is the form ϕ ∨ ψ, we want to prove
[ϕ]�φ∨[ψ]�φ

[ϕ∨ψ]�φ .

The proof is similar with 3).

5) when J is the form ¬ψ, we want to prove
¬([ψ]�φ)
[¬ψ]�φ .

According to the fifth point of trace semantics of DAP, we can

conclude that (v̂, ω̂) |= ¬ψ iff ¬((v̂, ω̂) |= ψ), i.e., (v̂, ω̂) ∈ τ(¬ψ)

iff ¬((v̂, ω̂) ∈ τ(ψ)), i.e., [¬ψ]�φ iff ¬([ψ]�φ).
6) when J is the form ϕ→ ψ, we want to prove

[ϕ]�φ→[ψ]�φ
[ϕ→ψ]�φ .

According to the sixth point of trace semantics of DAP, we can

conclude that (v̂, ω̂) |= ϕ → ψ iff ¬((v̂, ω̂) |= ϕ) ∨ ((v̂, ω̂) |= ψ),

i.e., (v̂, ω̂) ∈ τ(ϕ → ψ) iff ¬((v̂, ω̂) ∈ τ(ϕ)) ∨ ((v̂, ω̂) ∈ τ(ψ)), i.e.,

(v̂, ω̂) ∈ τ(ϕ → ψ) iff ((v̂, ω̂) ∈ τ(ϕ)) → ((v̂, ω̂) ∈ τ(ψ)), i.e.,

[ϕ→ ψ]�φ iff [ϕ]�φ→ [ψ]�φ.
7) when J is the form ∀xϕ, we want to prove

[ϕ{x:=∀θ}]�φ
[∀xϕ]�φ ,

where ϕ{x:=∀θ} means x in ϕ is assigned to all possible value θ.

According to the seventh point of trace semantics of DAP, we

can conclude that (v̂, ω̂) |= ∀xϕ iff (v̂x, ω̂) |= ϕ for all states vx

that agree with v except for the value of x, i.e., (v̂, ω̂) |= ∀xϕ iff

(v̂, ω̂) |= ϕ{x:=∀θ}, i.e., [∀xϕ]�φ iff [ϕ{x:=∀θ}]�φ.
8) when J is the form ∃xϕ, we want to prove

[ϕ{x:=∃θ}]�φ
[∃xϕ]�φ ,

where ϕ{x:=∃θ} means x in ϕ is assigned to some value θ. The

proof is similar with 7).

Proof finished. #

(2) ([D]�)
[D]φ

[D]�φ
Proof: assuming current state v � [D]�φ, there exists a trace

σ = (ϕ̄) ∈ τ(D), first σ = v, σ � �φ, and ∀ζ ∈ [0, r] , ϕ̄(ζ) |= D .

According to σ � �φ, there exists a position (0, η), η ∈ [0, r],

σ0(η) � φ. For ϕ̄ defined in [0, η], ϕ̄ |= D is always true. Further,

∵ ϕ̄(η) � φ , ∴ (ϕ̄|[0,η]) � φ, ∴ v � [D]φ, ∴ v � [D]�φ ⇒ v �

[D]φ, ∴ v |= [D]φ⇒ v |= [D]�φ.
Proof finished. #

Therefore, we can conclude that DATL is sound, i.e., all

formulas which can be proved with DATL are valid in all states

of all interpretations. However, like other logics such as dL, DAL

and dTL, DATL is incomplete, i.e., valid DATL formulas are not

always provable.

B. Verification of Safety of Aircraft Collision
Avoidance System

Here we use DATL sequent calculus to prove the formula ψ

shown in Figure 2 , we write the formula ψ as the form � φ →

234

∗
φ � [trm∗](true) · · · · · ·

r∀
φ � [trm∗](∀ω∀�∀x∀y∀d∀e(φ→ φ)) φ � [tang](φ ∧T) φ ∧T � [F (ω, 0, 0) ∧ G (ω, 0, 0)]φ

[DR′] []gen
φ � [trm∗][f ree]φ φ � [tang; F (ω, 0, 0) ∧ G (ω, 0, 0)]φ

[]gen
φ � [trm∗][f ree][tang; F (ω, 0, 0) ∧ G (ω, 0, 0)]φ

[;]
φ � [trm∗][f ree][tang][F (ω, 0, 0) ∧ G (ω, 0, 0)]φ

[D]�
φ � [trm∗][f ree][tang][F (ω, 0, 0) ∧ G (ω, 0, 0)]�φ

[;]
φ � [trm∗][trm]�φ

[∗]�
φ � [trm∗]�φ→ r
� φ→ [trm∗]�φ

Fig. 2. Calculus Process (Part 1)

∗ ∗
ax

φ � φ φ � ω(x − c)⊥ − ω(y − c)⊥ = ω(x − y)⊥∧r
φ � φ ∧ ω(x − c)⊥ − ω(y − c)⊥ = ω(x − y)⊥

[:=]
φ � [d := ω(x − c)⊥ ∧ e := ω(y − c)⊥](φ ∧T)

r∀, r∀
φ � ∀ω∀c[d := ω(x − c)⊥ ∧ e := ω(y − c)⊥](φ ∧T)

[;], [∃], [∃]
φ � [tang](φ ∧T)

Fig. 3. Calculus Process (Part 2)

∗ ∗
r∀ r∀

� ∀α (T ′
F (ω,0,0)∧G (ω,0,0)

) � ∀α (T → φ′
F (ω,0,0)∧G (ω,0,0)

)

DI DI
φ,T � [F (ω, 0, 0) ∧G (ω, 0, 0)]T φ � [F (ω, 0, 0) ∧G (ω, 0, 0) ∧T]φ

DS
φ,T � [F (ω, 0, 0) ∧G (ω, 0, 0)]φ∧l
φ ∧T � [F (ω, 0, 0) ∧G (ω, 0, 0)]φ

Fig. 4. Calculus Process (Part 3)

[trm∗]�φ which is suit for sequent calculus, then use the rule

→ r to get φ � [trm∗]�φ , and use the rule [∗]� and [;] to

get φ � [trm∗][f ree][tang][F (ω, 0, 0) ∧ G (ω, 0, 0)]�φ. Because

F (ω, 0, 0)∧G (ω, 0, 0) is DA-Constraint, we use the rule [D]� to

get φ � [trm∗][f ree][tang][F (ω, 0, 0) ∧ G (ω, 0, 0)]φ . Similarly,

we can get φ � [trm∗](true) by using rules [;] , []gen , [DR′] ,

r∀ , and the formula is satisfied obviously, so the calculus of the

left branch of Figure 2 ends, which marked with ∗ . Meanwhile,

the right branch of Figure 2 φ � [tang; F (ω, 0, 0) ∧ G (ω, 0, 0)]φ

uses the rule []gen to get two branches: φ � [tang](φ ∧ T) and

φ ∧ T � [F (ω, 0, 0) ∧ G (ω, 0, 0)]φ , where T is differential

invariant that can be calculated through fix-point algorithms [4]

and we get the result T ≡ d − e = ω(x − y)⊥ ≡ d1 − e1 =

−ω(x2 − y2) ∧ d2 − e2 = ω(x1 − y1) .

Figure 3 and Figure 4 is a continuance of Figure 2. Similar

with Figure 2, rules [;], [∃], r∀, [:=], ∧r, ax, ∧l, DS and DI
have been used in Figure 3 and Figure 4 and end with ∗ .

In summary, the calculus process above prove the correctness

of the formula ψ ≡ φ → [trm∗]�φ, i.e., it succeeds in verifying

the safety of the aircraft collision avoidance system. But if some

calculus process does not end with ∗, we consider that the

corresponding property cannot be verified with DATL, which is

determined by the incompleteness of DATL.

IV. Conclusion and Future Work

In this paper, we have extended dTL and DAL to achieve

DATL. Accordingly, we defined trace semantics of DAP, modified

four rules of dTL into new rules of DATL and proved soundness

of new rules. In addition, we specified and verified an aircraft

collision avoidance system, where we introduced temporality into

the model of the system and the property specification with DATL

compared with the work of Platzer [3]. The contributions of this

paper are:

(1) compared to the DAL, DATL can specify and verify

properties with temporality;

(2) compared to dTL, DATL can model more complex CPS;

(3) compared to the two-dimensional aircraft collision avoid-

ance system in [3], this paper presents a three-dimensional

avoidance system and considers the temporal behavior when

specifying and verifying the safety of the system.

In the future, we will extend the verification tool KeYmaera

which is developed by Platzer and Quesel [5], so that it can verify

DATL formulas. We will also propose more rules to enhance the

verification ability of DATL. In addition, we will verify more

general aircraft collision avoidance system with DATL.

References

[1] E.A. Lee. Cyber physical systems: Design challenges. In

Object Oriented Real-Time Distributed Computing (ISORC),
2008 11th IEEE International Symposium on, pages 363 –

369, 2008.

[2] T.A. Henzinger. The theory of hybrid automata. In Logic
in Computer Science, 1996. LICS ’96.Proceedings., Eleventh
Annual IEEE Symposium on, pages 278–292, 1996.

[3] A. Platzer. Logical Analysis of Hybrid Systems: Proving
Theorems for Complex Dynamics. Springer, Heidelberg,

2010.

[4] A. Platzer and E. Clarke. Computing differential invariants

of hybrid systems as fixedpoints. Form. Methods Syst. Des.,
35(1):98–120, 2009.

[5] A. Platzer and J.D. Quesel. Keymaera: A hybrid theorem

prover for hybrid systems (system description). In IJCAR,

pages 171–178, 2008.

235

HybridUML Based Verification of CPS Using
Differential Dynamic Logic

Min Zhu, Bixin Li, Jiakai Li, Qiaoqiao Chen,Xiaoxiang Zhai, Shunhui Ji
School of Computer Science and Engineering, Southeast University, Nanjing, China

{kong, bx.li}@seu.edu.cn

Abstract—CPS (Cyber-Physical Systems) which are characterized
by the combination of computation, communication and control
are applied in many safety-critical domains. For the successful
application of CPS, it is very important to ensure the correctness
of CPS. Many researchers are concerned about using formal
verification to verify the correctness of CPS since it has played a
key role in improving the security and reliability of systems. In
this paper, we demonstrated the feasibility of our CPS modeling
and verification framework through a case study. We first
introduced HybridUML, an extension of UML, to model CPS,
then we presented a model transformation method mapping
HybridUML model to Hybrid Program, and finally verified the
properties of the resulting model with KeYmaera.

Keywords-CPS; differential dynamic logic; HybridUML; model
transformation; verification

I. INTRODUCTION
Cyber-Physical Systems (CPS) in tegrate computation with

physical processes. Embedded computers and networks
monitor and control the p hysical processes, usually with
feedback loops where physical processes affect computations
and vice versa[1]. CPS have brought many opportunities and
challenges to various industries, such as intelligent
transportation, industrial automation, smart medical, agriculture
and national defense. It is crucial that the designed CPS work
as expected. A growing number of researchers are concerned
about the property verification of CPS since ver ification
technique has played a key role in improving the security and
reliability of CPS. Howe ver, traditional model checking
techniques which are designed for finite state systems do n ot
work well in verifying CPS as there are an infinite number of
states in CPS d ue to the dis crete and cont inuous behaviors.
Although model checking has been extended for infinite state
systems in many studies [2-4], it still could not do w ell in
verifying large-scale CPS si nce the restriction of reachability
problem. Zhou [5] extended duration calculus [6] by introducing
mathematical expression to the derivative of state variable.
However, the reasoning m ethod is n ot appropriate for
automatic verification, especially for derivative and continuity.
A theorem proving method based on differential dynamic logic
(DDL) proposed by A.Platzer has b een well applie d in the

verification of CPS [7] and the operating model of a DDL
formula is named Hybrid Programs(HP). Transforming generic
model into a formal model for verification is a h ot research
field of software engineering[8]. In addition, HybridUML[9], an
extension of UML, is introduced since UML has no precise
semantics[10] and cannot model continuous states. This p aper
introduces HybridUML as a generic model to model CPS,
presents a method based on model transformation mapping
HybridUML to Hybrid Programs, and ve rifies the resulting
model finally.

Figure 1. Dynamic movemnett authorities of ETCS

This paper demonstrates our DDL based framework for
CPS modeling and verification by a case s tudy. A simplified
European Train Control System (ETCS) is shown in Fi gure
1[11]. Trains are guided by moving block principle and they are
only allowed to move in the specified MA (Movement
Authority). The RBCs (Radio Block Controller) update the MA
dynamically based on the current track situation by wireless
communication. The speed of a train can be regulated freely in
the far mode, and the train can switch to the neg (negotiation)
mode for MA extensions from ST (start taking). If there is no
new MA updated after SB point, it starts braking in cor
(correcting) mode.

Our verification architecture works as follows. First, the
transformation from HybridUML to HP Model is accomplished
through executing model transformation rules and rule template;
second, KeYmaera in put code generation from the resulting
Model generated in the first step is fulfilled. KeYmaera is an
automated and interactive theorem prover for a natural
specification and verification logic for hybrid systems that
combines deductive, real algebraic, and c omputer algebraic
prover technologies[12]. The transformation rules in the paper
are defined according to th e relation between source meta-
model and target meta-model on the basis o f model

This work is supported partially by National Natural Science Fou ndation of
China under Grant No. 60 973149, partially by the Open Funds of State Key
Laboratory of Computer Science of Chinese Academy of Sciences under Grant
No.SYSKF1110, partially by Doctoral Fund of Ministry of Education of China
under Grant No. 20100092110022, and partially by the College Industrialization
Project of Jiangsu Province under Grant No.JHB2011-3.

236

transformation idea in MDA[13]. The DDL based framework for
ETCS modeling and verification is shown in Figure 2.

Figure 2. The framework of ETCS modeling and verification based on DDL

II. MODELING OF ETCS
In HybridUML, the system’s static structure is described by

class diagrams and composite structure diagrams whose basic
modeling element are both Agent. Modes are hierarchical
Hybrid Automata which contain discrete and c ontinuous
transitions. Transitions are entered or ex ited through control
points which can be classified into entry and exit control points.

HybridUML is not res tricted to be used with the
HybridUML Expression Language[10] (DifferentialExpression,
AlgebraicExpression,InvariantExpression). In order to facilitate
the transformation, we model CPS using HybridUML with the
corresponding expressions in first-order logic.

This paper transforms the HybridUML to Hybrid Programs
based on the specification defined by Bisanz in [10]. We add
some definitions based on HybridUMLModel as follows:

1) Classification of Modes and Agents.
According to the existence of submodes in Modes, Modes

are divided into primitive Modes an d composite Modes.
Similarly, Agents are divided into primitive Agents and
composite Agents by su bagents. There are premises and
conclusions before and after the symbol .

kindM : M { CompositeMode, PrimitiveMode }
m M, submodeM(m) kindM (m) CompositeMode
m M, submodeM(m) = kindM (m) PrimitiveMode

2) Top-level Mode. Only the primitive Agents contain top-
level modes for behavior description.

TMA: A behaviorA(A), a A kindA(a) = PrimitiveAgent
3) srcT and tarT. We already know that srcT and tarT

represent the source and target control point of transition and
add the definition of source Mode and target M ode of
transition.

srcModeT: T {M MI} tarModeT: T {M MI}
Transitions are not only switch control between Modes and

their submodes instances but also between submodes instances.
So srcModeT and tarModeT must satisfy the following
expressions:

t T srcModeT(t) M tarModeT(t) MI
 srcModeT (t) MI tarModeT (t) MI
 srcModeT (t) MI tarModeT (t) M

4) classification of transitions. According to the
classification of control points, Transitions are div ided into
three parts: EntryTransitions, InternalTransitions and
ExitTransitions.Take EntryTransitions for example:

EntryTransitions represent the Tr ansitions whose sources
are Mode’s entry control points and targets are Mode instance’s
entry control points.

EntryTransitionsT : M T
t T srcT (t) CP kindCP (srcT (t)) = entry

 tarT (t) CPI kindCP (cpCPI (tarT (t))) = entry

Firstly, we model ETCS using HybridUML, and get
composite structure diagrams and statechart diagrams.
Statechart diagram of train is shown in figure 3. Variable A and
b represent maximum acceleration and maximum deceleration
of train; Variable m represents the value of current MA;
Variable z and v represent train’s po sition and velocity of
current MA; Variable t is the safety moving time determined by
automatic train protection unit dynamically; Variable message
means whether the t rain is in e mergency situation; Variable
recommedspeed means the recommended speed of current MA,
that is, train must slow down when v beyond this value.
Variable message and recommedspeed are shared between
agent Train and RBC in composite structure diagram. When the
position of train is beyond SB, we calculate the minimum value
of SB using formula through KeYmaera.

(m z (m – z) SB v2 2b (m – z) v 0 A 0)
 [a A; z = v, v = a, t = 1 & v 0 t] (z m)

 SB
v2

2b +(
A
b + 1)(

A
2 2 + v) ()

Figure 3. Statechart of agent train

The details of variables in figure 3 are as follows:

spd

atpr

[flow: (C.5) flowDrive]
[inv: (C.6) invDrive]

atp

init

/ (A.3) actSetSB

[C.3] conBeyondSB
/ (A.4) actBrake

drive

[C.4] conEnergentcy
/ (A.4) actBrake

[C.1] conSpeedup
/ (A.1) actSpeedup

[t >]/t:=0

[C.1] conSlowdown
/ (A.1) actSlowdown

statemachine train

HybridUML
ETCS Model

Hybrid Program
ETCS Model

HybridUML
Meta-Model

Hybrid Program
Meta-Model

Rules

Rules

Template of Rules

DDL Formulas

KeYmaera

Model

Transformation

Specification

Verification

Input Code Generation

237

(C.1) conSpeedup v recommendSpeed
(A.1) actSpeedup a *; ? (-b a A)
(C.2) conSlowdown v recommendSpeed
(A.2) actSlowdown a *; ?(-b a 0)

(A.3) actSetSB SB
v2

2b + (
A
b + 1)(

A
2 2 + v)

(C.3) conBeyondSB m – z SB
(C.4) conEnergentcy rbc.message emergency
(A.4) actBrake a -b
(C.5) flowDrive z = v, v = a, t = 1
(C.6) invDrive v 0 t

III. MODE TRANSFORMATION
In this se ction, we presen t the mode transformation rules

and the rule template, and apply them to get Hybrid Programs.
At last, the KeYmaera input code is generated. RuleType
means the type of r ule include MappingRule and
ProcessingRule; the variables and data structure of rule are
given in declaration part; the main body of rule is
mapping/processing part; Return Result part return the rule
result. Transforming HybridUML to Hybrid Programs mainly
involves rules of static structure and rules of dynamic behavior.

A. Transformation Rules of static structure
Agents are t he basic element of static structure in

HybridUML model. This paper focuses on the situation in
which only one Agent contains continuous behavior among
Agents.

1) Shared variables table building
Variables have their own sco pe in Agents and share their

value via variable connectors among different Agents. There
are only global variables in Hybrid Programs which means that
all variables’ scope is the whole program. To avoid the shared
variables are tr eated as different ones, we build a shared
variables table named SharedVariableTable for the sake of
signing each shared variable. Each line of the table contains the
variable ports and corresponding variable names. The ru le is
named CreateSharedVariableTable.

2) Static structure to HPSkeleton transforming
Composite Agents don’t have their own behavior as

primitive Agents do. We focus on only one Agent c ontains
continuous behavior among Agents. In Hybrid Programs,
concurrency of Agents is handled as follows. Suppose that AP is
a set of primitive Agents, AP A AI, a AP kindA (a) =
PrimitiveAgent. If a0 AP is a pri mitive Agent which has
continuous behavior, the decisions of AP only depend on the
point in time when other Agents only have discrete behavior,
not on the communication latency. Thus, the nondeterministic
interleaving in CPS where either the AP or () other Agents
chose to take action faithfully models every possible arrival
time without the need fo r and explicit (delayed) channel
model[14]. The * indicates that the interleaving of AP and other
Agents repeats arbitrary times. The rule o f transform static
structure to HPSkeleton named MappingStructureToHP.

B. Transformation rules of dynamic behavior
Composite modes must be flattened to primitive modes

according to the semantic consistency requirement of model

transformation. The rule that submodes inherit all constraints of
their parent’s mode recursively till the top-level mode is named
MergeConstraints.

1) Hierarchical state chart flatting
In HybridUML, the modes containing source and target

control points of transition may be primitive mode or
composite mode, and the control points may be junct ion,
according the source and target state of transition are all
primitive state in HP. So th e hierarchical state chart which is
composed by modes must be flattened to primitive state charts.
After the application of rule MergeConstraints, every mode of
state charts in HybridUML has in herited its parent’s mode’s
constraints. For each transition of state charts, if the source or
target mode of transition is composite mode then search up or
down to find the final primitive mode. In the process of
searching, if the source control point of transition t2 is the target
control point of transition t1, then add the transition whose
source control point is the source control point of t1 and target
control point is t2 to the transition set T. After this operation,
delete t2, t2 from T. This rule is named CreateTransitionPath.
For each trans ition in transition set T in HybridUML, if the
target control point of the transition is junction, then apply rule
CreateTransitionPath to ever y transition whose targ et control
point is the junction till all the junctions have been eliminated.
This rule is named EliminateJunction. The rule for flattening
hierarchical state chart is named FlatHierarchyMode.

2) Transition transforming
There are only primitive modes and transitions between

them in HybridUML after flattening. The entry transitions of
top-level mode are mapped to InitBlock of HP, primitive
modes and the transitions are mapped to CE and DJ of HP
respectively. The rule is named MappingETtoInitBlock.

We defined TransitionGraph to signify the primitive modes
and the transitions between them corresponding to HPContent
of HP. TransitionGraph is defined as follows.

Definition 1. TransitionGraph (MTG, TTG) is directed graph
which is made up of primitive modes and transitions between
them. The set of vertex MTG is the set of primitive modes of
HybridUML, m MTG kindM (m) = PrimitiveMode, and TTG
is the set of edges satisfying t TTG kindM (srcModeT (t)) =
PrimitiveMode kindM (tarModeT (t)) = PrimitiveMode, the
relationship between edges t = {<v,w>| t TTG v = srcModeM
(t), w = tarModeM (t) } represents the transition whose source
mode is v and target mode is w.

TransitionGraph contains two kinds of dynamic behavior of
HybridUML: discrete transition and continuous evolution,
which accord with di screte jump and continuous evolution in
HP respectively. The discrete transitions which include trigger
event, guard and action are mapped to corresponding elements
in HP. In order to mark the current active state in HP, we add a
variable ActiveState in InitBlock. During the transition
transforming, we first c ompare the mode whose current
transition belongs to ActiveState, if it is equa l then guard of
transition will be judged. And then ActiveState will be assigned
the value of target mode of transition after transition action is
finished. The rule of transition transforming is named
MappingTGtoHP. Rule detail is illustrated in Figure 5.

238

MappingRule MappingTGtoHP {
[Rule Input]
 TransitionGraph tg
[Declaration]

HPContent hpcontent
TransTG: TG TTG
ModeTG: TG MTG

[Mapping]
// Transforming the discrete transition
for each t in TransTG(tg)

hpcontent (? hp.ActiveState = srcModeT(t) ;?grdT(t) ;
actT(t) ; hp.ActiveState tarMode(t)) hpcontent

// Transforming the continous evolution
for each m in ModeTG(tg)

hpcontent (?hp.ActiveState = m; flowM(m) &
invM(m)) hpcontent

[Return Result]
 return hpcontent

}
Figure 4. Rule MappingTGtoHP

C. Template of rules applied
In section IV we have built model transformation rules. To

organize those rules, a te mplate of rules is needed. Before
building the template, we gi ve two methods: method
RenameSharedVariables sets the shared variables to the same
name and method MergeHPModel merges the primitive mode
in HP.After model transformation, we get the following HP:

ETCS (train rbc)*
train ctrl; drive
ctrl 1 2 3 4

1 (?ActiveState = drive; ?(v recommendSpeed);

a *; ?(-b a A); SB
v2

2b + (
A
b + 1) (

A
2 2 + v);

(?(m–z SB message = emergency); a -b;
ActiveState drive))

2 (?ActiveState = drive;?(v recommendSpeed);

a *; ?(-b a A); SB
v2

2b + (
A
b + 1) (

A
2 2 + v);

(?(m – z SB message != emergency);a A;
ActiveState drive))

3 (?ActiveState = drive;?(v recommendSpeed);

a *;?(-b a 0); SB
v2

2b + (
A
b + 1) (

A
2 2 + v);

 (?(m – z SB message = emergency); a -b;
ActiveState drive))

4 (? ActiveState = drive; ? (v recommendSpeed);

a *; ? (-b a 0); SB
v2

2b + (
A
b + 1) (

A
2 2 + v);

(?(m –z SB message != emergency); a A;
ActiveState drive))

drive ? ActiveState = drive; t 0; (z = v, v = a, t = 1 & v
0 t)
rbc message emergency (m *, recommendSpeed
*; ? (recommendSpeed > 0))

IV. SPECIFICATION AND VERIFICATION OF ETCS
This case verifies the safety of the ETCS cooperation

protocol, that is, whether train can always move within MA.
The safety of ETCS is specified by DDL formula as follows:

[*]ETCS z m
 ActiveState = drive v2 2b(m – z) b > 0 A 0

ETCS (ctrl ; drive) rbc, ctrl 1 2 3 4
In the formula , is the initial condition. There are lots of

branches while reasoning, and the process ends when all th e
branches are reduced to an obvious expression. It costs 236
steps to reduce in KeYmaera and generates 10 branches in all.
To sum up, we know that train will stay within its MA all the
time when the initial condition is satisfied. There will not be
any crash when all trains moves within their own MA and the
train cooperation protocol is safe.

V. CONCLUSION
In this paper, we propose a DDL based framework for CPS

modeling and verification. We model an ETCS using a unified
modeling language HybridUML, transform HybridUML model
to the operating model of DDL-Hybrid Program, and reason
the resulting ETCS property formula by DDL proof rules. We
propose a tra nsformation method to translate a Hybr idUML
model to it s corresponding hybrid program. Through the
framework, we not only get a unified modeling method that can
be comprehended by most system designers but also can verify
property through DDL calculus using KeYmaera.

[1] Lee EA. Cyber physical systems: Design challenges. UCB/EECS. 2008
[2] Lygeros J, C ollins P. Computability of finite-time reachable sets for

hybrid systems. Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference. 2005: 4688-4693.

[3] Chutinan A, Bruce H. Computational techniques for hybrid system
verification. IEEE Transactions on Automatic Control(HSCC'03). 2003:
64-75.

[4] Tiwari A. Approxi mate reachability for linear systems. In Proceedings
of Hybrid Systems: Computation and Control (HSCC’03). 2003: 51 4-
525.

[5] Ravn AP, Zhou CC, Hansen MR. An extended duration calculus for
hybrid real-time systems. Hybrid Systems. 1993. 7: 36–59:

[6] Hansen MR, Zhou CC. Duration Calculus: A Formal Approach to Real-
Time Systems. Monographs in Theoretical Computer Science. 2004.

[7] Clarke EM, Platzer A. The image computation problem in hy brid
systems model checking. In Proceedings of Hybrid Systems:
Computation and Control (HSCC’07). 2007: 473–486.

[8] Caplat G, Sourrouille JL. Model Mapping Using Formalism Extensions.
Software,IEEE. 2005. 22(2): 44-51.

[9] Bisanz S, Berkenkötter K, Hannemann U, Pele ska J. The HybridUML
profile for UML 2.0. International Journal on Software Tools f or
Technology Transfer (STTT). 2006. 8(2):

[10] Bisanz S. Execu table HybridUML Semantics: A T ransformation
Definition. PhD thesis. University of Bremen. 2005.

[11] Platzer A, Quesel JD. European Train Control System: A case study in
formal verification. ICFEM, LNCS. Springer: 2009: 246–265.

[12] Quesel JD, Platzer A. KeYmaera: A hybrid theorem prover for hybrid
systems. Proc. of IJCAR 2008, LNCS 5195. Springer: Heidelberg. 2008:
171-178.

[13] Huang ZQ, Liu YP, Zhu Y. Research on Model Transformation Method
of Real-time System Based on Metamodeling. Journal of Chinese
Computer Systems. 2010. 31(11): 2146-2153.

[14] Platzer A. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer. 2010.

239

A HybridUML and QdL Based Verification Method
for CPS Self-Adaptability

Jiakai Li, Bixin Li, Qiaoqiao Chen, Min Zhu, Shunhui Ji, Xiaoxiang Zhai
School of Computer Science and Engineering, Southeast University, Nanjing, China

{jiakai_li, bx.li}@seu.edu.cn

Abstract—CPS (Cyber-Physical Systems) are physical and
engineered systems featuring a tight combination of computation
and physical processes by communication networks. CPS are
mainly applied in some critical domains, so it is very essential to
ensure the correctness of CPS. Formal verification has been
successfully applied in the correctness verification of CPS;
however, the high theoretical level of formal modeling techniques
of formal verification and the lack of visualization of formal
models make it difficult to integrate formal verification with
enterprise standard system development process. In this paper,
we model CPS by HybridUML, an extension of UML, and then
transform HybridUML model into the input language of
theorem prover KeYmaera-QHP(Quantified Hybrid Program),
and finally verify the QHP code with KeYmaera.

Keywords-CPS; Formal Verification; HybridUML; QHP;
MetaModel; Model Transformation

I. INTRODUCTION

CPS, in a broad sense, are controllable, trustable and
extensible networked physical device systems that deeply
integrate computation, communication and control capabilities
based on environment perception [1]. CPS are mainly applied in
areas having a high demand on performance, so to ensure the
correctness of CPS is extremely important.

CPS evolve over time with interacting discrete and
continuous dynamics, which accords with the definition of
hybrid systems, so the verification theory of hybrid systems
can be referenced in CPS verification. Although many present
model checking[2,3,4,5] and theorem proving methods [6,7,8] have
been proposed for Hybrid Systems verification, these
methods have great deficiencies in supporting the verification
of s ystems with distributed characteristics. To solve this,
André Platzer proposed a verification technique based on QdL
(Quantified Differential Dynamic Logic)[9,10,11]. In order to
achieve automatic verification, André designed a theorem
prover- KeYmaera. However, the high theoretical level of
formal modeling method in QdL and the lack of visualization
of QHP make it difficult to integrate QdL based formal
verification with enterprise system development processes in
which the Unified Modeling Language (UML) has been

accepted as the de facto standard modeling language.
However, UML lacks precise formal semantics, making it
hard to directly verify UML models formally. The paper first
models CPS by HybridUML, and then translates the model
into the input model of KeYmaera[12], and finally performs
formal verification with KeYmaera to ensure the correctness
of CPS.

The interconnection topology and the number of active
members of CPS network, especially those composed of
mobile devices such as the Distributed Air Traffic Collision
Avoidance System (DATC), tend to change dynamically,
making how to ensure critical properties hold dynamically
really challenging. The characteristic that CPS adjust their
behaviors flexibly according to the network structural and
dimensional dynamics is called self-adaptability. Verifying
self-adaptability, Hierarchical Hybrid StateMachine-Mode is
chosen as the CPS modeling view. First, the hierarchical
feature of the top-level Mode model is eliminated according to
execution semantics and a FlatMode model is gotten. Second,
transform the FlatMode model to a QHP model by executing
corresponding ATL transformation rules. Third, template rules
in a customized template language will be called to transform
the QHP model to QHP code, and then specify the CPS self-
adaptability property with a QdL formula . Finally, verify
property formula automatically with KeYmaera.

The paper is organized as follows. Section introduces
HybridUML based modeling method. Section describes the
translation from HybridUML model to QHP code. Section

 illustrates the application of our verification architecture by
a case study of a DATC. Section summarizes the paper and
makes a discussion about the future work.

II. CPS MODELING BASED ON HYBRIDUML

A. Basic modeling elements of HybridUML

1) Agent
In HybridUML, Agent is a stereotype for Class in UML.

As the basic building block for describing the static system
architecture, an Agent can own an internal structure consisting
of other Agent instances to support hierarchical models [13].

2) Hierarchical Hybrid StateMachine –Mode
In HybridUML, Mode is an extension of UML

StateMachine and is used for describing Agents′ behavior [13].
As a Hierarchical Hybrid StateMachine, a Mo de can contain
sub-modes and transitions inside its region. When a Mode is

This work is supported partially by National Natural Science Foundation of
China under Grant No. 60973149, partially by the Open Funds of State Key
Laboratory of Computer Science of Chinese Academy of Sciences under Grant
No.SYSKF1110, partially by Doctoral Fund of Ministry of Education of China
under Grant No. 20100092110022, and partially by the College Industrialization
Project of Jiangsu Province under Grant No.JHB2011-3.

240

executing a continuous transition, it i s actually acting as a
whole, which means the continuous updates of variables in the
mode are described by the constraints contained in itself and
all its active sub-modes.

B. The Extension of HybridUML

1) The Stereotype for Classes::Kernel::Expression
In order to deal with varying number of CPS network

members and properly express the co-evolution of all members,
first-order function symbols are used to parameterize primitive
state variables, for example, x(i) denotes the location of car i,
and quantifiers and a type system are introduced to quantify
over all objects of a given type, for example, ∀i:C, which
represents all car members of type C. Correspondingly, an
extension of Expression named QuantifiedExpression is
introduced. Its Subclasses include QDifferentialExpression,
such as ∀i:C!x(i)″=a(i), QAlgebraicExpression, such as
∀i:C!x(i):=a, and QBooleanExpression, such as ∀i,j:C far(i,j),
in which far(i,j) expresses a constraint.

2) The Stereotype for Classes::Kernel::Constraint
Corresponding to the extension of Expression, a Stereotype

named QuantifiedConstraint for Constraint is given, endowing
Constraints with quantified features. QuantifiedConstraint
includes quantified differential constraints, which contain
QDifferentialExpression instances expressing flow constraints,
and quantified invariant constraints containing instances of
type QBooleanExpression describing invariant constraints.

3) The Stereotype for CommonBehaviors::Comunications::
Signal

To express the signal that new members emerge in CPS
network, NewObjectSignal is introduced as an extension for
Signal in UML. To express the type of the new member, a new
attribute named agentType is added in each NewObjectSignal.

4) The Stereotype for CommonBehaviors::Comunications::
SignalEvent and ChangeEvent

Corresponding to the extension of Signal, NewSignalEvent,
a stereotype for SignalEvent, is introduced. A NewSignalEvent
happens when a new member appears in the CPS network and
it contains a NewObjectSignal instance inside. Considering the
extension of Boolean expression, extending the ChangeEvent
of UML becomes essential. As the profile of ChangeEvent, a
QChangeEvent contains a QBooleanExpression representing
the condition triggering events when it becomes true.

5) The Stereotype for CommonBehaviors::Comunications::
Trigger

As only very limited event types are used in our paper, it
becomes essential to restrict the event types that a Trigger
contains. A profile of Trigger named ModeTrigger is proposed
and the event types a ModeTrigger contains are confined to
NewSignalEvent and QChangeEvent.

6) The Stereotype for ModeUpdateActivity
Due to the extension of algebraic expression,

QUpdateActivity, a stereotype for ModeUpdateActivity, is
given to d escribe discrete updates on variables of all CPS
network members, and it c ontains a QAlgebraicExpression
expressing discrete update behaviors.

III. TOP-LEVEL MODE MODEL TO QHP CODE TRANSLATION

A. Metamodel of Hierarchical Hybrid StateMachine-Mode

Figure 1. Metamodel of Hierarchical Hybrid StateMachine-Mode

Definition 1. (Mode) A Mode is a tuple: < VS:{DataType},
SM:{Mode}, ES:{ModePseudostate}, XS:{ModePseudostate},
T:{ModeTransition}, Cons:{Mode!Constraint}>[14], where VS
is the variable set, SM represents all sub-modes, ES represents
all entry pseudostates, XS denotes all exit pseudostates, T
represents all ModeTransition instances contained in the
Mode’s region and Cons denotes all constraints contained in
the Mode. A Mode without a parent Mode is called a top-level
Mode and the one without sub-modes is called a leaf
Mode.ModeTransition can be divided into t hree types:
EntryTransition (s∈ES), InternalTransition (s∈XSSM, t∈ESSM),
ExitTransition (t∈XS). As for other element, see Figure 1.

Figure 2. The Hierarchical Hybrid StateMachine-Mode model for DATS
roundabout collision avoidance protocol

Being a Hierarchical Hybrid StateMachine, an active top-
level Mode actually contains more than one active sub-modes
inside. All such active Mode instances actually form a path
starting from the top-level Mode down to the innermost active
leaf Mode. Such a path is called a StateConfiguration. As
shown in Figure 2, th e Mode path DATC:agree:entry:Circle
forms a StateConfiguration when Circle is active.

A Mode acquires control through an EntryStep seen as a
path that starts from an entry pseudostate of the Mode to the
entry pseudostate of the to-be-active innermost leaf Mode. As
shown in Figure 2, (init, t1, free) is the EntryStep of Mode
DATC. A Mode relinquishes control via an ExitStep, which is
a path starting from the exit pseudostate of the innermost
active leaf Mode to an exit pseudostate of the Mode, for

241

example, (Circle, t5, t6, x4,). When an InternalTransition is
executed in a Mo de, an ExitStep whose targe is the starting
pseudostate of the InternalTransition and an EntryStep
originating from the target pseudostate of the Internal-
Transition will take place meanwhile, forming an execution
path called InternalStep, for example, (free, t2, t3, t4, Circle).
When a top-level Mode resides in a certain StateConfiguration,
continuous variables will be updated according to the flow and
invariant constraints contained in the StateConfiguration, and
such an execution process is called a ContinuousStep, As
shown in F igure 2, (DATC:free, DATC.flows∩free.flows,
DATC.invs∩free.invs) is a ContinuousStep.

B. Metamodel of QHP model

Figure 3. Metamodel of QHP model

Definition 2. (QHP) A QHP model can be formalized as a
tuple: <IBS:{QHPInitialization},DTS:{QHPDTransition}, CTS:
{QHPCTransition}, Cycle:Boolean, SG:{QHPState}>, where
IBS, DTS and CTS denote the set of all QHPInitialization,
QHPDTransition and QHPCTransition instances of the QHP
model respectively, Cycle signifies whether the model can be
executed repeatedly, and SG denotes all QHPState instances.
As for other model element, see Figure 3.

C. Model transformation from toplevel Mode to QHP Code

1) Description of main transformation rule based on ATL

TABLE I. MAIN TRANSFORMATION RULE-TLMODE2QHPCODE

entrypoint rule TLMode2QHPCode{
from
 m:Mode(m.isTopLevelMode=true)
to
 p:QHP (

 IBS<- m.EntrySteps->collect(i|thisModule.ES2QHPI(i)),
 DTS<- m.InternalSteps->collect(d|thisModule.IS2QHPDT(d)),
 CTS<- m.ContinuousSteps->collect(i|thisModule.CS2QHPCT(i)),
 Cycle<- m.CycleSymbol)
do{
 QHPModel2QHPCode(p);}
}

As shown in T ABLE , main rule TLMode2QHPCode
expressed in ATL[15] accomplishes the translation from a top-
level Mode model to its corresponding QHP code. For a given

top-level Mode m, the execution process of the rule
TLMode2QHPCode is as follows. First, get all EntryStep
instances of m by calling ATL helper EntrySteps, and by rule
ES2QHPI, each EntryStep is mapped to a QHPInitialization
instance, making up IBS. Second, get all InternalStep instances
of m by calling helper InternalSteps, and by rule IS2QHPDT,
each InternalStep is mapped to a QHPDTransition instance
composing DTS. Third, get all ContinusStep instances of m by
calling helper ContinusSteps, and by rule CS2QHPCT, each
ContinusStep is mapped to a QHPCTransition instance
composing CTS. Fourth, get the mark indicating whether all
InternalStep instances composes an execution cycle by calling
helper CycleSymbol, and as a Boolean variable, CycleSymbol
can be assigned directly to the variable Cycle of the QHP
model p. Finally, template rule QHPModel2QHPCode will be
invoked to generate final QHP code form QHP model p.

2) QHP code generation from QHP model

TABLE II. MAIN TEMPLATE RULE

template rule QHPModel2QHPCode{
from
 m:QHP
to
 IBS2QHPCode(m.IBS)+′;′

+′(′+DTS2QHPCode(m.DTS)+ ′∩′
+′(′+CTS2QHPCode(m.CTS)+ ′)′
+Cycle2Star(m.Cycle)

}
The template rule QHPModel2QHPCode is shown in

TABLE .In order to transform QHP model to QHP code, a
simple template-based model-to-code generation method is
given in the paper. For a given QHP model m, the execution
process of the rule QHPModel2QHPCode is as follows. First,
get IBS of m by dot operation and call template rule
IBS2QHPCode to output IBS in a specified format. Second, get
DTS of m by dot operation and template rule DTS2QHPCode
is called to fulfill the formatted output of DTS. Third, get CTS
of m and call template rule CTS2QHPCode to output CTS in a
specified format. Finally, rule Cycle2Star is invoked to
determine whether to print the star symbol indicating whether
QHP code can be executed cyclically. If Cycle is true, then
output star symbol. All output formats above follow the format
of QHP Code defined in the previous section.

IV. CASE STUDY

A. Case description and modeling

()

1 2

1 2 2 2 1 1

(; ; ; ; (; ; ;) (?)) *

: () &

*; *; : *;

: (() : (())); : (() : (()));

(: ; ? : (,))

:

: :
w i

CAMP free Agree Entry Circle newP Agree Entry Circle true

free i A i

Agree c c w

Entry i A d i w x i c i A d i w x i c

newP n new A i A S i n

Circle i

φ

≡

= ∀

≡ = = =

≡ ∀ = − − ∀ = −

≡ = ∀

≡ ∀
2 2 2

1 1 2 2

()

(,) ((() ()) (() ()))

, : (,)

w

P

A i

S i j A x i x j x i x j i j

i j A S i jφ

+ ≥ ∨ =≡ − −

= ∀

Figure 4. The QHP representation of DATS collision avoidance protocol

According to the verified property, the collision avoidance

242

protocol of DATS we used is properly modified from [11].
The differential equation set representing the flight dynamics
of an aircraft i of type A is shown in formula Fw(i)(i) in which
x1(i) and x2(i) denote the shift of i in the x-axis and y-axis
respectively, d1(i) and d2(i) represent the velocity of aircraft i
in the x-axis and y-axis respectively, and w(i) represents the
angular velocity of i.

x1(i)′=d1(i)∧x2(i)′=d2(i)∧d1(i)′=-w(i)d2(i)∧d2(i)′=w(i)d(i) (Fw(i)(i))

Two aircraft i and j satisfy safety separation property if
and only if the following formula holds:

S(i, j)≡(x1(i)- x1(j))2+(x2(i)- x2(j))2≥P2∨ i=j

 At the beginning, all aircraft are fa r apart from one
another, and they fly freely with angular velocity w(i).
However, when the distance between aircraft is no larger than
∂ that is positively proportional to P and the radius of the
roundabout circle, all involved aircraft will come to an
agreement on a c ommon angular speed w and a roundabout
circle center c(c1,c2), then through phase Entry, each aircraft
reaches a tangential location around center c. During Circle
phase, each aircraft flies along the roundabout circle
tangentially with the agreed common angular speed w. When
a new aircraft dynamically appears in the collision avoidance
zone, all aircraft again negotiate a new common angular speed
w and roundabout circle center c, and then each aircraft goes
through phase Entry and Circle again. Once the maneuver
finishes, each aircraft will continue to fly in the original
direction and enter phase free again. Adaptive collision
avoidance protocol is illustrated in Figure 2 in the form of a
Mode model. After the transformation of the model, final
QHP code shown in Figure 4 is gotten.

B. Self-Adaptability specification and verification

In this case, we focus on the verification of adaptive
collision avoidance property, i.e., when a new member enters
the collision avoidance zone of existing aircrafts, the collision
avoidance property still holds. Let φ≡∀i,j:A S(i, j), and the
property verified can be specified in the following formula:
φ→[CAMP]φ. The formula expresses that φ will always hold
after evolving along CAMP for an arbitrary length of time if φ
holds in the initial condition. In QdL, property verification is
accomplished in the form of QdL proof calculus for which
Sequent Calculus, which works by QdL proof rules, is
adopted as the basic proof system [9]. During the proof, the
proven property formula is placed at the bottom of the whole
process, and the proof calculus is carried out from the bottom
up. If the property finally holds, then the proof process ends
up with a star symbol, otherwise the precondition that is
required for the formula to hold is given. The a bbreviated
proof process that KeYmaera executes inside is shown in
Figure 5. That all branches end successfully means the
verified self-adaptability property holds.

' [?]
[1] [] [?] [(; 1)]

[] []
[] []

[;][]
[;]

,
[*]

true true true true
DR ax ax

M free true newP M
gen

gen

r ind
M

φ φ φ φ φ φ φ φ
φ α φ φ β φ

φ α β φ

φ φ
→

→

Figure 5. Property proof process

V. CONCLUSION

The paper proposes a QdL based verification architecture
for CPS self-adaptability property. First, CPS are modeled by
HybridUML. Second, the model expressed by HybridUML is
transformed into the input language of KeYmaera-QHP. Third,
combined with the QHP code, the property to be proven is
specified in the form of a QdL formula. Finally, the QdL
formula is verified automatically using KeYmaera. In order to
achieve the automatic translation from HybridUML Mode to
QHP code and automatic verification by effective integration
with KeYmaera, our future work will focus on t he
implementation of a model transformation tool.

ACKNOWLEDGMENT

The authors thank all the teachers and students who
provide support for our work. Particularly, we thank Qi
ShanShan and Liu CuiCui for their substantial work during
paper correction.

REFERENCES

[1] He JF. Cyber-physical Systems. Communication of the CCF,
2010,6(1):25-29.

[2] Clarke EM, Emerson EA, Sifakis J. Model checking: algorithmic
verification and debugging. Communications of The ACM, 2009,
52(11):74–84 .

[3] Alur R, Courcoubetis C, Halbwachs N, et al. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 1995,138(1): 3–34.

[4] Henzinger TA. The theory of hybrid automata. Proc. of the 11th Annual
IEEE Symposium on Logic in Computer Science. 1996. 278-292.

[5] Clarke EM, Zuliani P. Statistical Model Checking for Cyber-Physical
Systems. T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996,
2011,1–12.

[6] Manna Z, S ipma H. Deductive verification of hybrid systems using
STeP. Proc. of Hybrid Systems: Computation and Control, First
International Workshop, HSCC 98, Berkeley, California, USA.
California: Springer. 1998. 305–318

[7] Van Beek DA, Man KL, Reniers MA, et al. Syntax and consistent
equation semantics of hybrid Chi. Journal of Logic and Algebraic
Programming, 2006, 68(1-2):129–210.

[8] Zhou CC, Ravn AP, Hansen MR. An extended duration calculus for
hybrid real-time systems. Hybrid Systems, 1993, 7: 36–59.

[9] Platzer A. Quantified Differential Dynamic Logic for Distributed
Hybrid Systems. In: A.Dawar, H.Veith, eds. Proc. of CSL 2010, LNCS
6247. Heidelberg: Springer-Verlag, 2010. 469-483.

[10] Platzer A. Quantified differential dynamic logic for distributed hybrid
systems. Technical Report, CMU-CS-10-126, SCS, Carnegie Mellon
University, 2010.

[11] Platzer A. Quantified Differential Invariants. In: Emilio Frazzoli, Radu
Grosu, eds. Proc. of the 14th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2011, Chicago, USA, April
12-14, 2011, Chicago: ACM, 2011. 63-72.

[12] Platzer A, Quesel JD. KeYmaera: A hybrid theorem prover for hybrid
systems. In: Alessandro Armando, Peter Baumgartner, et.al, eds. Proc.
of IJCAR 2008, LNCS 5195, Heidelberg: Springer, 2008.171-178.

[13] Berkenkötter K, Bisanz S, Hannemann U, et al. The HybridUML profile
for UML 2.0. International Journal on Software Tools for Technology,
2006, 8(2):167–176.

[14] Alur R, Grosu R, Lee I, et al. Compositional modeling and refinement
for hierarchical hybrid systems. In Proceedings of J. Log. Algebr.
Program.. 2006, 105-128.

[15] Jouault F, Allilaire F. ATL: A model transformation tool. Science of
Computer Programming, 2008, 72(1-2):31-39.

243

Disabling Subsumptions in a Logic-Based Component

Éric Grégoire Sébastien Ramon
CRIL CNRS UMR 8188 - Université d’Artois

Rue Jean Souvraz SP18
F-62307 Lens, France

{gregoire,ramon}@cril.fr

Abstract

In this paper, we address a problem that is often over-
looked in the gradual construction of a logic-based knowl-
edge component: how can a new piece of information g
be added into a component KC so that g is not subsumed
by KC? More precisely, the focus is on iterating this
subsumption-freeness enforcement process when the com-
ponent is increased step by step. Interestingly, it is shown
that the approach and results initially related to standard
Boolean logic can directly apply to some non-monotonic
frameworks.

1 Introduction

The representation and handling of evolving knowledge

has long been a major topic of Artificial Intelligence and

knowledge engineering research, especially when knowl-

edge is expressed in logic [1, 2, 3, 4, 5]. In this respect,

updating and revising knowledge and beliefs remain very

fertile domains of research [6]. This paper is concerned

with a problem that has often been overlooked so far in such

a context. When a new piece of knowledge g is not logically

conflicting with a knowledge component KC, i.e. when g
is consistent with KC, it is often assumed that g should

simply be added into KC. This postulate is shared by most

theoretical studies about the dynamics of knowledge, like

knowledge and belief revision or update [6, 7, 8, 9, 10], and

knowledge merging or fusion [11, 12]. All the aforemen-

tioned studies and the abundant subsequent literature con-

centrate on handing inconsistent situations [13]. Recently,

we have shown that in real-life circumstances, inserting g
can require further modifications of KC when g must not

be subsumed by KC [14, 15] and when g is consistent with

KC. For example, assume that a rule R1 “When the switch

is on and the lamp bulb is ok then the light is on” is to be

inserted within KC, which already contains R2 “When the

switch is on then the light is on”. Clearly R1 and R2 are

not logically conflicting. Actually, R1 is subsumed by R2

in the sense that, from a logical point of view, R1 is a mere

strict deductive consequence of R2. Accordingly, both rules

cannot co-exist in a same knowledge component KC if we

want R1 to prevail. Otherwise, nothing would prevent R2

to apply and conclude that the light is on, provided that the

switch is on, even when the lamp bulb is not ok. Another

example is as follows. Assume that an agent believes that

Peter is in his office or at home. A new, more informative

piece of knowledge comes up: “Peter is in his office or at

home or in his car”, leaving open the additional possibility

that Peter is actually in his car. This last piece of informa-

tion is however again a mere strict deductive consequence

of the former knowledge, not conflicting with it. In some

way, the former knowledge should be expelled from KC
to really enforce the contents of the new -more informative-

one. However, subsumption between formulas is not always

that apparent; in the worst case, subsumption between two

formulas can only be established by making use of all for-

mulas of KC.

An original approach addressing this problem has been

introduced in [14]: both its algorithmic facets and formal

aspects have been investigated. This former study has been

extended to a general non-monotonic setting in [15] and ap-

plied to the legal domain in [16]. In this paper, the focus

is on the dynamics of such a process: how could the inser-

tion of knowledge be iterated, taking into account the above

treatment of information that must not be subsumed. In-

terestingly, this leads us to define a new form of integrity
constraints: knowledge that cannot be logically strength-

ened. A second contribution of the paper is in showing

that the involved standard logic apparatus offers a sufficient

framework for expressing the most important aspects of this

subsumption-related issue for an interesting case of non-

monotonic logics.

The formal framework in this paper is standard Boolean

logic. On the one hand, it is the simplest possible set-

ting for presenting and discussing the above subsumption-

related issues. On the other hand, recent dramatic progress

244

in Boolean search and reasoning has now revived Boolean

logic as a realistic framework for representing large knowl-

edge sets and solving numerous complex reasoning artificial

intelligence tasks [17]. Furthermore, as noted earlier, the

results in this paper will be shown relevant to some more

expressive non-monotonic logics.

The paper is organized as follows. In the next Section,

basic notions about Boolean logic are recalled. The sub-

sumption issue is presented in Section 3. In Section 4, the

iteration of the subsumption-freeness enforcement process

is investigated. Computational experimental results are pro-

vided and discussed in Section 5. Section 6 focuses on

extending the results to a generic form of non-monotonic

logic. The paper ends with perspectives and promising

paths for further research.

2 Logic-Based Framework

To concentrate on the aforementioned conceptual prob-

lems, we consider the very simple framework of standard

Boolean logic. Let L be a language of formulas over a

finite alphabet P of Boolean variables, also called atoms.

Atoms are noted a, b, c, . . . The ∧,∨,¬,⇒ and ⇔ symbols

represent the standard conjunctive, disjunctive, negation,

material implication and equivalence connectives, respec-

tively. A literal is an atom or a negated atom. Formulas are

built in the usual way from atoms, connectives and paren-

theses; they are noted f, g, h, . . . A formula is in conjunc-

tive normal form (CNF) when expressed as a conjunction

of clauses, where a clause is a disjunction of literals. The

semantical concepts needed in the paper are as follows. Let

Ω denote the set of all interpretations of L, which are func-

tions assigning either true or false to every atom. A model
of a set of formulas KC is an interpretation of Ω that satis-

fies every formula of KC. KC is consistent when its set of

models is not empty. KC � f expresses that the formula f
can be deduced from KC, i.e. that it is true in all models of

KC.

From a syntactical point of view, a knowledge compo-
nent KC will thus be a set of formulas of L. We opt for a

semantical (vs. a purely syntactical) regard of KC. Under

this point of view, KC is identified with the set of all its

deductive consequences. Anyway, we will still distinguish

between the formulas that are explicitly present in KC vs.

formulas that are only implicit deductive consequences of

the formulas that are explicitly present in KC. For conve-

nience purpose, KC will be represented by its set of explicit

formulas.

A word of caution might also be needed for readers who

are familiar with rule-based systems but not with logic. We

exploit the full (sound and complete) inferential capability

of Boolean logic, i.e. we do not only simply allow for mere

forward and backward chaining on ⇒ as in traditional rule-

based systems. For example, from the rule a ⇒ b and ¬b,
we infer ¬a using contraposition. Also, the reader not fa-

miliar with logic should always keep in mind that a rule of

the form (a ∧ b ∧ ¬c) ⇒ (d ∨ e) is logically equivalent to

¬a∨¬b∨ c∨d∨ e, and will be treated as such. Actually, in

the following, we consider clausal KCs and clauses, only.

3 Preempting Subsumption

In this Section, the approach in [14] for preempting sub-

sumption in the Boolean framework is briefly summarized.

Two central concepts in this paper are the strict implicant
and the subsumption ones, defined as follows.

Definition 1. Let f and g be two formulas. f is a strict
implicant of g iff f � g but g �� f . KC subsumes g iff
KC � f for some strict implicant f of g.

For example, KC = {office ∨ home} subsumes

office ∨ home ∨ car. Indeed, office ∨ home is a strict

implicant of office ∨ home ∨ car. Obviously, f (as men-

tioned in KC � f) needs not be explicit in KC but can be a

mere implicit formula in KC, i.e. a deductive consequence

f of the explicit formulas of KC such that f is not itself

explicit in KC.

In [14], it has been shown that if the choice is to mod-

ify KC before inserting a new formula g that must not be

subsumed, then it is necessary to first delete from KC all

possibilities to deduced g ⇒ fi for any strict implicant fi
of g. Alternatively, g can be introduced inside KC; then,

all strict implicants of g must be expelled from the aug-

mented KC. Interestingly, when the CNF format of the

formulas is considered, it is sufficient to expel the longest

strict implicants, in terms of the number of involved lit-

erals. In the above example, e.g. ensuring that the strict

implicant office ∨ home of office ∨ home ∨ car is ex-

pelled is sufficient to guarantee that e.g. the smaller im-

plicant office is also expelled (otherwise we would have

office � office ∨ home � office ∨ home ∨ car).

In order to check whether a clause is subsumed or

not, a first straightforward preprocessing step could check

whether any of its n strict longest sub-clauses is actually ex-

plicit in the component. This can be performed efficiently in

O(n,m), where m is the total number of clauses in the com-

ponent. This check can actually easily look for the presence

of smaller implicants as well. Obviously, this would not

detect more complex subsumption paths. From a computa-

tional point of view, checking whether a formula subsumes

another one is coNP -complete, and thus intractable in the

worst case. However, recent dramatic progress in Boolean

and search makes it often possible to get answers within

seconds, especially thanks to powerful SAT solvers [17, 18],

which check whether a set of clauses is consistent or not.

245

In [14], we have experimented an original method to ad-

dress the subsumption issue. The goal is not only to an-

swer whether the formula is subsumed or not, but also to

deliver clauses that can be required to be expelled in order

to eliminate the subsumption links. The technique consid-

ers clausal KCs and clauses, only. It is based on the SAT-

solvers technology and on methods [17, 18] for delivering

so-called MUSEs (Minimal Unsatisfiable Subsets). More

precisely: assume we need to check whether KC (that con-

tains g) subsumes g through a strict implicant f of g. The

solver considers the new set of formulas KC∪{¬f}, which

can only be inconsistent in case of subsumption. Then,

the solver looks for the MUSes, namely the (cardinality-

)minimal sets of clauses that are inconsistent. Making sure

that at least one clause in each of the MUSes is dropped en-

sures that the subsumption link disappears. Expelling such

clauses can be automatic, or the knowledge engineer can be

asked whether she (he) really wants to drop them, or even

be given the choice of selecting the clauses to be dropped in

the MUSes. When he (she) prefers keeping these MUSes in-

tact, she (he) is then conducted to revise his (her) former re-

quirement about the subsumption-freeness status of g. This

solver provides efficient results even for huge KCs, pro-

vided that the number of MUSes remains small [19]. As an

alternative to computing all MUSes, the solver also allows

to compute a cover of MUSes, which is formed of enough

MUSes to explain all inconsistencies.

At this point, it is important to stress that the above

subsumption-freeness enforcement process should often

only concern the subpart of KC that concerns complex

rules rather than mere facts. Indeed, for example, assume

that the fact “Light is on” is in KC. Then this fact sub-

sumes e.g. any rule having “Light is on” as a consequence,

like “If the switch is on and the lamp bulb is ok then the

light is on”. Accordingly, like in the first expert systems,

we distinguish between a working memory (made of basic

assertions translated as literals) and the so-called rule-based

one, made of more complex formulas translating generic

knowledge that is expected to be more permanent. In the

following, KC will always denote this latter part of the set

of formulas that must be taken into account to investigate

and solve the subsumption issue.

Finally, the process can take into account a traditional

concept of integrity constraints: these formulas cannot be

expelled from KC to ensure the subsumption-freeness of

a formula. The set of integrity constraints of KC is noted

KCIC .

4 Iterating the Process

When g is inserted inside KC and arrangements are

made so that g is not subsumed by KC, two basic ques-

tions arise if we iterate the process. Assume that we now

introduce another additional formula h in KC.

• If h must not be subsumed, what should be done if

g is an obstacle for achieving this other subsumption-

freeness insertion? In case h and g cannot be

subsumption-free at the same time, what policy should

be observed: do we need to give a higher priority to

one of the formulas? In the positive case, which one?

• What should be done if the insertion of h conducts KC
to subsume g?

Clearly, to address these questions, we do not only

need to know, at each insertion step, which formulas in

KC can be altered by the additional formulas to obey the

subsumption-freeness requirements. We also need to know

if all formulas that are to be subsumption-free must receive

an equal treatment, or if some priorities should arbitrate be-

tween them.

First, we define two possible statuses for formulas in

KC: a formula can be either permissive or restrictive with

respect to subsumption. A restrictive formula in KC is an

explicit formula in KC that is not only subsumption-free

in KC but must remain subsumption-free if a new piece of

information is then added into KC. We note KCR the set

of restrictive formulas in KC. No formula in KCR is thus

subsumed in KC. To some extent, elements of KCR rep-

resent integrity constraints of a new type, made of formulas

that cannot be logically strengthened. Also, like KCIC , it

is natural to expect KCR to be small with respect to KC.

Furthermore a small cardinality will ease the process from

a computational point of view.

Let us stress that there is no a priori specific links be-

tween KCR and KCIC . It might happen e.g. that some

or all elements of KCR belong to KCIC but those sets are

independent in the general case.

Now, the set of permissive formulas in KC is given by

KCP = KC \ KCR. Note that formulas in KCP can be

implicit and can (vs. must) be subsumed in KC.

As a case study, we investigate a form of preference for

the more recently introduced information when two expect-

edly restrictive formulas cannot be subsumption-free at the

same time. Accordingly, we suppose that KCR is actually

a LIFO-stack structure.

In Algorithm 1, the general skeleton of the algorithm

for the iterated introduction of formulas involving the

subsumption-freeness enforcement is provided, when all

formulas are restricted to clauses.

Interestingly, the traversal of the stack of restrictive for-

mulas is unique, since, because standard logic is monotonic,

any deletion of formulas cannot alter the subsumption-

freeness of remaining formulas. The subsumption-freeness

enforcement policy considers the global set of MUSes for

all longest strict implicants of g and requires each element

246

to be broken by expelling one of its clauses, in interaction

with the user or not. Alternative policies could require each

MUS to be broken as soon as it is extracted, or compute and

handle a cover of MUSes for each implicant. Also integrity

constraints from KCIC are protected from being expelled,

although this is not detailed in these algorithms.

Obviously enough, the actual implementation of the al-

gorithm should not be direct. Especially, redundant or use-

less computations should be avoided. Let us just stress on

two features in that respect. First, to show that a formula is

not subsumed by one of its longest strict implicants, mod-

els or counter-models are derived. They should be recorded

so that they are checked when the same question arises at

a next step of the process. Second, KC can be made of

unrelated components. The newly introduced piece of in-

formation g does not need to be checked against parts of

KC having no possible connection with g.

Algorithm 1: Main

Data: –

begin
KC ←− ∅; KCIC ←− ∅;

KCR ←− empty stack();
finished ←− false;

while finished is false do
write(”New clause: ”); read(g);

write(”Integrity constraint?: ”); read(is ic);
write(”Restrictive?: ”); read(is res);

construct(g, is ic, is res,KC,KCIC ,KCR);

write(Finished?:); read(finished);

end

Algorithm 2: construct

Data: g, is ic, is res,KC,KCIC ,KCR

begin
if is ic is true then

ic ok ←− check IC(KC ∪{g},KCIC ∪{g});

if ic ok is true then
KCIC ←− KCIC ∪ {g};

else
interactWithUser(g,KC,KCIC ,KCR);

exit;

if KC ∪ {g} is inconsistent then
revise(g,KC,KCIC ,KCR);

KC ←− KC ∪ {g};

if is res is true then
push(g,KCR);

enforce(KC,KCIC ,KCR);
end

Algorithm 3: enforce

Data: KC,KCIC ,KCR

begin
while g ←− nextElement(KCR) is not null do

MUSes ←− ∅;

forall longest strict sub-clauses fi of g do
if KC ∪ {¬fi} is inconsistent then

MUSes ←− MUSes ∪
extractMUSes(KC ∪ {¬fi});

if MUSes �= ∅ then
breakMUSes(MUSes,KC,KCIC ,KCR);

end

5 Experimental results

All experimentations have been conducted on a plain

PC (IntelCore 2 Quad 2.66GHz - 4Gb Ram) under Linux

Ubuntu 11.10 (3.0.0-16-generic). The solver is freely

available from http://www.cril.univ-artois.
fr/˜ramon/preempte. In Table 1, a sample of typ-

ical experimental results is provided for the central and

computationally-heavy part of the algorithm, namely the

MUSes detection step. It presents the performance of the

algorithm for that procedure, on usual SAT (i.e. set of

Boolean clauses) benchmarks from earlier SAT competi-

tions. The columns indicate the name of the benchmark,

the number of involved clauses and of different variables,

and the number of MUSes. Then, the performance of the

extraction of one MUS and a cover of MUSes is then given,

together with the size of the MUS and cover. The time-

out was set to 250 seconds. Our belief is that in most

real-life knowledge components, those MUSes will remain

small (smaller than in those benchmarks made for challeng-

ing SAT solvers) and of a manageable number, since a new

formula generally interacts with a small number of small

subparts of the existing KC, only.

6 Pushing the Enveloppe

The present work has been developed within the standard

Boolean logical setting. Interestingly, it also applies -with

no additional computational cost- to a generic form of non-

monotonic logic that is suitable for representing rules with

exceptions, where these exceptions can depend on consis-

tency checks.

In the following, we resort to McCarthys Abnormality

notation [20] to emphasize and encode possible exceptions

to rules. Let Ab be a subset of P . Its elements are noted

Ab1, . . . , Abm and called abnormality variables. They are

intended to represent exceptions to rules that can be either

247

Finding all MUSes Finding a cover of MUSes

instances #cla #var #MUSes #sec #cla in MUSes #sec #cla in MUSes

battleship-5-8-unsat 105 40 1 0.23 105 0.18 105

battleship-6-9-unsat 171 54 1 1.88 171 0.48 171

battleship-10-10-unsat 550 100 - timeout 19.58 417

battleship-11-11-unsat 726 121 - timeout 82.21 561

battleship-12-12-unsat 936 144 - timeout 172.93 711

5cnf 3500 3900 30f1.shuffled 420 30 - timeout 17.01 194

5cnf 3900 3900 060.shuffled 936 60 - timeout 33.99 777

marg3x3add8ch.shuffled-as.sat03-1448 272 41 1 177.15 272 7.10 272

marg3x3add8.shuffled-as.sat03-1449 224 41 1 8.79 224 3.48 224

php 010 008.shuffled-as.sat05-1171 370 80 - timeout 1.14 370

rand net60-30-1.shuffled 10 681 3 600 - timeout 233.46 10 681

C208 FA UT 3254 6 153 1 876 17 408 2.94 98 17.49 40

C208 FA UT 3255 6 156 1 876 52 736 6.67 102 18.97 40

Table 1. A Sample of Typical Experimental Results for SAT Benchmarks (MUSes detecting step).

deduced through the standard logic deductive apparatus, or

assumed inexistent by default.

For example, the rule “If the switch is on and the lamp

bub is ok and if it can be consistently assumed that the

switch is ok then the light is on” can be represented by

the knowledge component: KC = {switch on ∧ ¬Ab1 ∧
¬Ab2 ⇒ light on,¬switch ok ⇒ Ab1, lamp bulb ok ⇔
¬Ab2}.

Intuitively, KC is considered under a non-monotonic

reasoning schema in the following way. Assume that we

take into account in KC the additional contextual factual

information switch on and lamp bulb ok. Then, all Abi
are considered. Roughly, when neither Abi nor ¬Abi can be

established then ¬Abi is assumed by default. In the exam-

ple, ¬Abi is assumed by default and KC allows light on
to be inferred.

More formally, the non-monotonic inferential apparatus

can be defined as follows:

Definition 2. Let us index any model of KC by the set of
Abi atoms that the model satisfies. A minimal model of KC
is a model of KC such that no proper-subset of its index is
the index of a model of KC.

Definition 3. A formula f can be non-monotonically in-
ferred from KC (noted KC |∼ f) iff f is true in all minimal
models of KC.

A useful point here is that such a non-monotonic logic

covers standard Boolean logic in the sense that whenever

KC � f we also have that KC |∼ f . Now, a question

is: in order to move up the subsumption issue to this non-

monotonic framework, should we replace the standard en-

tailment relation � by |∼ in both the standard-logic defini-

tions (see Definition 1) of subsumption and strict implicant?

Actually, we do not make such a step here for the fol-

lowing reason. First, remember that in the classical logic

approach we do not consider the factual part of the knowl-

edge to handle the subsumption issue. Now, in the absence

of a proof of Abi from KC, we have that KC |∼ ¬Abi. Ac-

cordingly, we have that any formula of the form ¬Abi ∨ . . .
(equivalent to . . . ∧ Abi ⇒) is non-monotonically entailed

from KC and would thus be subsumed by KC. Classify-

ing all those formulas as subsumed ones would not meet the

same objective that motivated our treatment of subsumption

in classical logic. Indeed, these formulas would be sub-

sumed because of additional factual assumptions made by

default (¬Ab1 in the example). These assumptions do not

necessarily represent the actual context of KC. In the same

way that we have left apart from the subsumption issue the

factual part of the knowledge translated by literals, we left

here also apart the additional augmenting ¬Abi assump-

tions. In this way, we keep our policy coherent with our

motivation of separating the knowledge into two separate

components: the factual information about actual circum-

stances on the one side, and more complex permanent rules

on the other side. The factual information, either explicit in

KC or by default, is not thus considered in this treatment

of subsumption, be it classical or non-monotonic.

In this respect, by not taking into account these addi-

tional default assumptions, the treatment of subsumption in

the non-monotonic setting collapses down to the treatment

of subsumption within classical logic.

Obviously enough, this decision to consider subsump-

tion according to the standard logic interpretation of a non-

monotonic knowledge component cannot be justified for all

non-monotonic logics and all circumstances. For exam-

ple, in [15], we have refined the implicant and subsumption

concepts to fit a finer-grained non-monotonic framework,

248

where, among other things: 1. The treatment of exceptions

is more local in the sense that not every possible default

information is necessarily assumed. 2. It is decided to fo-

cus on the specific context of KC by including the involved

factual information in KC. 3. The factual contextual infor-

mation around the fired rules involving exceptions default

is itself taken into account in the subsumption issue.

7 Conclusions and Perspectives

Enforcing subsumption-free formulas is a difficult task

from both conceptual and computational perspectives.

However, it is essential to avoid inadequate and unexpected

inferences from a knowledge component. The contribution

of this paper about this issue is twofold. On the one hand,

we have shown how such an enforcement process can be

iterated. On the second hand, we have shown that this pro-

cedure can be applied to a non-monotonic extension of clas-

sical logic that is suitable for representing rules with excep-

tions. This research opens many perspectives. First, it re-

mains to extend the framework to more expressive logics.

Especially, finite fragments of first-order logics are natural

candidates in this respect. Also, adapting and grafting the

approach to description logics and answer set programs is

also a promising path for future research. We intend to pur-

sue these lines of research in the future.

Acknowledgments

This work has been supported in part by the Région
Nord/Pas-de-Calais and the EC through a FEDER grant.

References

[1] J. Doyle. A truth maintenance system. Artificial Intelligence,

12:231–272, 1979.

[2] M. Dalal. Investigations into a theory of knowledge base

revision (preliminary report). In 7th National Conference on
Artificial Intelligence (AAAI’88), volume 2, pages 475–479.

Morgan Kaufmann, 1988.

[3] P. Z. Revesz. On the semantics of theory change: Arbi-

tration between old and new information (preliminary re-

port). In 12th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles Of Databases Systems (PODS’93), pages 71–

82. ACM, 1993.

[4] V. S. Subrahmanian. Amalgamating knowledge bases. ACM
Transactions on Database Systems, 19:291–331, 1994.

[5] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the seman-

tics of updates in databases. In 2nd ACM SIGACT-SIGMOD
Symposium on Principles Of Database Systems (PODS’83),
pages 352–365. ACM, 1983.

[6] E. Fermé and S. Hansson. AGM 25 years. twenty-five years

of research in belief change. Journal of Philosophical Logic,

40:295–331, 2011.

[7] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic

of theory change: Partial meet contraction and revision func-

tions. Journal of Symbolic Logic, 50(2):510–530, 1985.

[8] H. Katsuno and A. Mendelzon. On the difference between

updating a knowledge base and revising it. In 2nd Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’91), pages 387–394. Cambridge

University Press, 1991.

[9] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics
of Epistemic States, volume 103. MIT Press, 1988.

[10] S. O. Hansson. A Textbook of Belief Dynamics. Theory
Change and Database Updating. Kluwer Academic, 1999.

[11] S. Konieczny and R. Pino Pérez. On the logic of merg-

ing. In 6th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’98), pages 488–

498. Cambridge University Press, 1998.

[12] S. Konieczny and É. Grégoire. Logic-based information fu-

sion in artificial intelligence. Information Fusion, 7(1):4–18,

2006.

[13] D. Zhang and É. Grégoire. The landscape of inconsistency:

a perspective. International Journal of Semantic Computing,

5(3), 2011.

[14] Ph. Besnard, É. Grégoire, and S. Ramon. Enforcing logically

weaker knowledge in classical logic. In 5th International
Conference on Knowledge Science Engineering and Man-
agement (KSEM’11), pages 44–55. LNAI 7091, Springer,

2011.

[15] Ph. Besnard, É. Grégoire, and S. Ramon. Overriding sub-

suming rules. In 11th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU’11), pages 532–544. LNAI 6717, Springer,

2011.

[16] Ph. Besnard, É. Grégoire, and S. Ramon. Logic-based fusion

of legal knowledge. In (submitted), 2012.

[17] 14th International Conference on Theory and Applications
of Satisfiability Testing (SAT’11). LNCS 6695, Springer,

2011.

[18] http://www.satlive.org.

[19] É. Grégoire, B. Mazure, and C. Piette. Using local search

to find msses and muses. European Journal of Operational
Research, 199(3):640–646, 2009.

[20] J. McCarthy. Applications of circumscription to formaliz-

ing common sense knowledge. Artificial Intelligence, 28:89–

116, 1986.

249

i2Learning: Perpetual Learning through Bias Shifting

Du Zhang
Department of Computer Science

California State University
Sacramento, CA 95819-6021

zhangd@ecs.csus.edu

Abstract
How to develop an agent system that can engage in
perpetual learning to incrementally improve its problem
solving performance over time is a challenging research
topic. In this paper, we describe a framework called
i2Learning for such perpetual learning agents. The
i2Learning framework has the following characteristics: (1)
the learning episodes of the agent are triggered by
inconsistencies it encounters during its problem-solving
episodes; (2) the perpetual learning process is embodied in
the continuous knowledge refinement and revision so as to
overcome encountered inconsistencies; (3) each learning
episode results in incremental improvement of the agent’s
performance; and (4) i2Learning is an overarching
structure that accommodates the growth and expansion of
various inconsistency-specific learning strategies. Using
mutually exclusive inconsistency as an example, we
demonstrate how i2Learning facilitates learning through
bias shifting.

Keywords: inconsistency, i2Learning, inductive bias, bias
shifting, perpetual learning agents.

1. Introduction

One of the challenges in developing an agent system
that can engage in perpetual learning to incrementally
improve its problem solving performance over time is
deciding on what will trigger its perpetual learning
episodes. In this paper, we describe a f ramework called
i2Learning for such perpetual learning agents. i2Learning,
which stands for inconsistency-induced learning, allows for
inconsistencies to be utilized as stimuli to learning episodes.
The proposed framework has the following characteristics:
(1) the learning episodes of th e agent are trigg ered by
inconsistencies it encounters during its problem-solving
episodes; (2) the perpetual learning process is embodied in
the continuous knowledge refinement and revision so as to
overcome encountered inconsistencies; (3) each learning
episode results in incremental improvement of the agent’s
performance; and (4) i2Learning is an overarching structure
that accommodates the growth and expansion of various
inconsistency-specific learning strategies.

Inconsistencies are ubiquitous in the real world,
manifesting themselves in a plethora of human behaviors
and the computing systems we build [2,6,16-22].
Inconsistencies are ph enomena reflecting various causes
rooted in data, information, knowledge, meta-knowledge, to
expertise [22]. As such, inconsistencies can be utilized as
important heuristics in an agent’s pursuit of perpetual
learning capability. When encountering an inconsistency or
a conflicting circumstance during its problem solving
episode, an agent recognizes the nature of such
inconsistency, and overcomes the inconsistency through
refining or augmenting its knowledge such that its
performance at tasks is improved. This continuous and
alternating sequence of problem-solving episodes and
i2Learning episodes underpins the agent’s incremental
performance improvement process.

In this paper, our focus is on describing how the
i2Learning framework facilitates the development of
perpetual learning agents that incrementally improve their
performance over time. Because of its generality and
flexibility, the i2Learning framework accommodates
different types of inconsistencies and allows various
inconsistency-specific heuristics to be deployed in the
learning process. Using mutually exclusive inconsistency as
an example, we demonstrate how i2Learning facilitates
learning through bias shifting.

The rest of the paper is organized as follows. Section 2
offers a bri ef review on related work. Section 3 des cribes
i2Learning, the proposed framework for perpetual learning
agents. In Section 4, we discuss the i2Learning for a
particular type of inconsistency, mutually exclusive
inconsistency, and describe how an iterative deepening bias
shifting process can be incorporated into the framework to
accomplish the learning process. Finally, Section 5
concludes the paper with remarks on future work.

2. Related Work

The areas o f related work to the results in this paper
include: lifelong learning agent systems, learning through
overcoming inconsistencies, and inconsistency-induced
learning through bias shifting.

250

A never-ending language learner called NELL was

described in [3]. NELL u tilized semi-supervised learning
methods and a collection of knowledge extraction methods
to learn noun phrases from specified semantic categories
and with specified semantic relations. NELL has four
component learners: a pattern learner, a se mi-structured
extractor, a morphological classifier, and a r ule learner.
NELL also accommodates human interaction to approve or
reject inference rules learned by the rule learner component.

The work in [1] reported an agent system called ALICE
that conducted lifelong learning to build a set o f concepts,
facts and generalizations with regard to a particular topic
directly from a large volume of Web text. Equipped with a
domain-specific corpus of t exts, some background
knowledge, and a control strategy, ALICE learns to update
and refine a theory of the domain.

The results in [10] defined continual learning to be a
continual process where learning occurs over time, and time
is monotonic. A continual learner possesses the following
properties: the agent is autonomous; learning is embodied in
problem solving, is incremental, and occurs at multiple time
steps; and there is no fixed training set. Knowledge an agent
acquires now can be built upon and modified later. A
continual learning agent system called CHILD was
described in [10].

YAGO2 is a lar ge and extendable knowledge base
capable of unifying facts automatically extracted f rom
Wikipedia Web documents to concepts in WordNet and
GeoNames [7]. YAGO2 exhibits its continuous learning
capability by allowing new facts to be incrementally added
to an existing knowledge base. Knowledge gleaned by
YAGO2 is of high quality in terms of coverage and
accuracy.

The results in [4] deal with clustering with inconsistent
advice. Advice such as must-link and cannot-link can be
incorporated into clustering algorithms so as to produce
more sensible groups of related entities. Advice can become
inconsistent due to different reasons. Clustering in the
presence of inconsistent advice amounts to finding
minimum normalized cuts [4].

Bias shifting can be a useful technique in the area of
transfer learning [9]. However, there are a n umber of
important differences between the aforementioned work and
the focuses of research in this paper. (1) i2Learning
emphasizes on the stimulus for perpetual learning, i.e., the
learning episodes of the agent are tri ggered by
inconsistencies it encounters during its problem-solving
episodes. This is not necessarily the focus in related work.
(2) i2Learning has a problem-solving slant, i.e., learning to
incrementally improve performance for solving problems at
hand, whereas the related work in [1,3,7,10] is p rimarily
geared toward the general task of knowledge-acquisition, or
building an ontology or a dom ain theory. (3) The learning
episodes also differ: i2Learning adopts discrete learning
episodes (as triggered by conflicting phenomena), whereas
the learning episodes in related work of [1,3,7,10] is largely
continuous, not necessarily triggered by any events. (4)

Inconsistencies are utilized as essential heuristics for the
perpetual i2Learning, whereas inconsistent advice in [4] is
only used as constraint for clustering. (5) Mos t of the
related work (with the exception of CHILD) is web-centric
in the sense that learning is carried out with regard to web
texts. i2Learning, on the other hand, accommodates a broad
range of heuristics in its learning process.

3. i2Learning: A Framework for Perpetual
 Learning Agents

A perpetual learning agent is one that engages in a
continuous and alternating sequence of problem-solving
episodes and learning episodes. In such an alternating
sequence, learning takes place in response to a whole host
of stimuli, including inconsistencies encountered in the
agent’s the problem solving episodes. Learning episodes
result in the agent’s knowledge being refined or augmented,
which in turn improves its p erformance at tasks
incrementally. We use learning burst and applying burst to
refer to reoccurring learning episodes and knowledge
application (problem solving) episodes.

The proposed i2Learning framework focuses on a
particular scenario for the aforementioned perpetual
learning agents: one in which the learning episodes of the
agent are tri ggered by inconsistencies it encounters during
its problem-solving episodes and the perpetual learning
process is embodied in the continuous knowledge
refinement and revision so as to overcome encountered
inconsistencies.

A perpetual learning agent has the following
components: (1) a kn owledge base (KB) for persistent
knowledge and beliefs, domain or ontological constraints,
assumptions and defaults; (2) a meta knowledge base (mKB)
for the agent’s meta-knowledge (knowledge on how to
apply domain knowledge in KB during problem solving); (3)
a working memory (WM) that holds problem specific facts,
and facts deduced with activated beliefs from KB; (4) a
reasoning mechanism to facilitate problem solving process;
(5) a component called CAL (Coordinator for Applying burst
and Learning burst) that recognizes inconsistency and
initiates learning bursts; (6) a bias space containing
candidate biases for the learning process; and (7) a learning
module i2Learning that carries out inconsistency-induced
learning to refine or a ugment KB, mKB, or WM (or any
combination of the three) so as to ov ercome encountered
inconsistencies. Figure 1 captures the structure of perpetual
learning agents.

When a co nflicting situation arises in WM during its
problem solving process, the agent’s CAL detects it,
suspends the current problem solving session, initiates the
next learning burst via passing the specific inconsistent
circumstance to t he learning module, and waits for the
result from the learning module. The learning module
i2Learning in turn carries out the learning process by
recognizing the type of inconsistency in the conflicting
circumstance, and selecting the appropriate in consistency-

251

specific learning method or heuristics to explain, resolve, or
accommodate the conflicting circumstance. Some human
interaction may be required at this stage.

Figure 1. Framework of i2Learning for Perpetual Learners.

The outcome of the learning process results in
knowledge refinement or augmentation to KB, mKB, or WM,
or all of them. Afterward, i2Learning module notifies CAL of
the learning result, and passes any WM revisions to CAL.
CAL in turn refreshes WM with any changes from the
i2Learning module and restarts the problem solving session
that was suspended earlier. This signifies the end of the
current learning burst and the agent is ready to return to the
problem solving episode to pick up where it lef t off. The
agent will continue engaged in problem solving until it
detects the next inconsistent scenario. Each such iteration
results in an incremental performance improvement for the
agent. Figure 2 illustrates the continuous nature of such
perpetual learning agents. The logic of t he i2Learning
module is given in Figure 3.

Figure 2. Spiral Model of Perpetual Learning Agents.

The types of learning that help improve the agent’s
performance are e ssentially embodied in the types of
inconsistency handling. There have been various
classifications of inconsistent data, information, knowledge,
and meta-knowledge in different domains [16-22].

Figure 3. The Learning Module.

The proposed framework is an overarching structure that

accommodates growth and ex pansion in various
inconsistency specific learning. Depending on which types
of inconsistency the learning module can recognize and
what corresponding algorithms or heuristics it comes
equipped with in handling the inconsistency at hand, its
inconsistency-induced learning capacities can change
dynamically. The inconsistent scenarios an agent encounters
at different points in time may be different and the learning
strategies it adopts in the subsequent learning bursts can
vary accordingly. The lines of 5 11 in Figure 3 can embody
a rich set of inconsistency-specific learning algorithms.

There are two modes of i2Learning: problem-solving
mode, and speedup mode, each having different pace or rate
for learning. When inconsistencies are en countered in WM
during problem solving sessions, an agent works under the
problem-solving mode and its pace of learning is driven by
how frequent conflicting decisions or act ions arise during
knowledge application. On the other hand, inconsistencies
can be intentionally injected into WM to induce learning
bursts during the time when an agent is n ot engaged in
problem solving. This latter case can be regarded as
inconsistency-induced speedup learning. The primary
objective of the agents is problem solving, and learning is
just the means for agents to get progressively better at what
they do.

1 Analyzing inconsistent scenario from WM;
2 Identifying category c and morphology m for
 the inconsistency;
3 Choosing appropriate learning method or
 heuristics;
4 Retrieving knowledge and bias;
5 Conducting i2Learning(c, m) {
6 case:
7 when (c=ci m=mij): i

2Learning(ci,mij);break;
8 when (c=ck m=mkl): i

2Learning(ck,mkl);break;
9 …………
10 else: default handling; break;
11 }
12 if (human interaction is needed) then {
13 Query expert;
14 Receive human response;
15 }
16 if (KB needs to be refined) then {
17 Refine KB;
18 }
19 if (mKB needs to be refined) then {
20 Refine mKB;
21 }
22 if (WM needs to be revised) then {
23 Revise WM and pass WM revisions to CAL;
24 }
25 Notify CAL to restart the current problem
26 solving session

252

4. i2Learning(DEC, mex) via Bias Shifting
Inconsistencies or contradicting circumstances manifest

themselves under different categories and in different forms
of each category [22]. In this section, we describe how the
learning process is carried out via a part icular type of
inconsistency, mutually exclusive inconsistency, in the
category of declarative knowledge (DEC) expressed in terms
of some declarative formalism (classic logic, def easible
logic, description logic, or default logic). The mutually
exclusive inconsistency (mex) refers to the derivation of two
literals containing mutually exclusive predicates that are
syntactically different and semantically opposite of each
other [15]. i2Learning(DEC, mex) facilitates knowledge
refinement through bias shifting.

4.1. Mutually Exclusive Inconsistency
Mutually exclusive inconsistency stems from

knowledge in a KB that derives conclusions which are
mutually exclusive and jointly exhaustive in a g roup of
concepts. If P and Q are s uch predicates denoted as P Q
[16], then we have the following: x.[P(x) ¬Q(x)
Q(x) ¬P(x)]. For instance, if we have two firewall rules
below expressed as first order formulas [19] in a firewall:

Allow(2, udp, 207.16.1.0, 24, 192.168.1.0, 24)
Deny(4, udp, 207.16.1.0, 24, 192.168.1.0, 24)

where the predicates “Allow” and “Deny” define the actions
taken by the firewall regarding the UDP traffic (packets)
from the source IP and the source port (IP of 207.16.1.0 and
port 24) to the destination IP and the destination port (IP of
192.168.1.0 and port 24), then Rule 2 al lows the traffic
while Rule 4 denies it. T he actions of “Allow” and “Deny”
are mutually exclusive and joint exhaustive. Such an
inconsistency in a firewall establishes a mutually exclusive
inconsistency.

In order f or CAL to detect the mutually exclusive
inconsistency in WM, information must be available in mKB
on sets of predicates that are considered mutually exclusive
and jointly exhaustive:

Predmex={{.., P, Q, ..} | (is a category of concepts)
 (P) (Q) (P Q)}

Definition 1. Let and be literals. We use + to
denote a derivation, via some inference method, of length
one or g reater where is th e tail an d is th e head of the
derivation. For instance, if we have R: W(x) Q(x) and R’:
Q(x) P(x), then W(x) + P(x) where = P(x) and = W(x).
Alternatively, we can also use the rule labels to denote the
derivation R + R’.

Definition 2. Given an input data set , we use the
following notation to represent the fact that the derivations
in { + | () (has properties X)} are preferred over
derivations in { ’ + ’ |(’) (’ has properties Y)} with
regard to . : { + | () }{ + |() }

Definition 3. Let denote KB and be a s et of
mutually exclusive literals which are rep resented as p(ä)
where p indicates a literal with the predicate symbol p and
ä is a v ector of ground terms corresponding to domain
elements. Let Ã denote a set of m features { 1,…, m} over
which an inductive bias b is defined, and be a s et of
weights for features in Ã. Finally let ((p(ä), k(ä)) be a
support function for a feature k(ä) in Ã and a literal p(ä)
in , and SA(p(ä)) be the total support of all the features in
A Ã for a literal p(ä) in .
o = { p(ä), q(ä)| (p(ä)) (q(ä)) (p q)

(p(ä) q(ä))}.
o Ã = { 1,…, m} where Ã and i is a p redicate

symbol denoting a feature, i [1,.., m].
o b Ã denoting an inductive bias of the learning

process which consists of a subset of features.
o (Ã) = { (k) |(k Ã) ((k) [0, 1])

(() = 1)}. In general, we can assume that
features in Ã have equal weights.

o (, Ã) ={ (p(ä), k(ä)) = | (p(ä)) (k(ä) Ã)
({+1, 1, 0})}

- (p(ä), k(ä)) = +1, if p(ä) + k(ä))
- (p(ä), k(ä))= 1, if ¬ p(ä) + k(ä))
- (p(ä), k(ä))= 0, if p(ä) + k(ä))

(¬ p(ä) + k(ä))]
o SA(p(ä)) = (ä), (ä) ,

where A = { 1,…, k} Ã.

4.2. Machine Learning Bias and Bias Shifting
A bias in a machine learning algorithm refers to any

considerations the algorithm uses in selecting some
hypotheses over other hypotheses [8]. Any learning
algorithm must have a bias, which can be static (bias
established at t he outset of learning and remained
unchanged in a learning algorithm), or dynamic (bias
shifting from one to another during learning) [5]. Bias
shifting is a m ulti-dimensional process that: (1) can be
triggered by different events such as the availability of fresh
training cases or th e occurrence of inconsistency; (2) can
result in the next bias to be s elected either from a pre -
established bias sequence or t hrough evaluating potential
alternative biases [5]; (3) can be con ducted as either an
offline or an online process [5]; (4) can rely on different
shifting approaches such as bias strengthening or weakening
methods; and (5) s hould itself have a bi as (meta-bias on
preference in selecting the next bias) [5].

Several properties exist about biases, correctness and
strength [14], and conservation law [12]. A correct bias is
one that defines a hypothesis space that contains the target
concept to be learned. A strong bias is one that results in a
small hypothesis space whereas a weak bias yields a large
hypothesis space. There are pros and cons for strong and
weak biases [13,14]. The conservation theorems indicate
that though no single bias works well under all
circumstances, learning algorithms with dynamic bias

253

through bias shifting perform better than algorithms with
static bias under certain conditions [12].

The performance criteria for biases include: predictive
accuracy of learned hypothesis, efficiency in a bias guiding
through the learning process, and readability of biases [5].
Finally, it should be noted that there is a d iscrepancy
between the aforementioned machine learning bias and the
statistical bias [13]. O ur focus in this paper i s on the
machine learning bias. The bias shifting process in our work
is triggered by the occurrence of inconsistency and carried
out as an online evaluation of potential candidate biases.
Given a bias as consisting of a f eature set, the shifting
methods are bas ed on strengthening or weakening a bi as
through adding or rem oving features with regard to the
initial feature set. T he performance criterion for the bias
shifting is to improve the predictive accuracy of the existing
hypothesis so as to overcome inconsistencies.

Definition 4. A bias b is consistent with regard to if
the hypothesis hb obtained via b has the following property:

hb (one of the elements in , not both)
The bias shifting process itself must have a bias which

is in meta-bias space [5]. In the proposed framework, the
meta-bias that underpins the i2Learning process is referred
to as Maximum Consistency-Minimum Shifting, or MC MS
for short. The existing bias b in the previous learning
episode contains a set of features that produced a model that
does not support generalization in a co nsistent manner, as
evidenced by the set o f inconsistent literals derived
during problem solving. Perpetual learning is embodied in
the continued process of overcoming inconsistencies, which
in turn relies on bias shifting so as to refine the previously
learned model. Bias shifting amounts to refining the feature
set used in defining the bias. The current bias b can be
either strengthened or w eakened through adding or
removing feature(s) from its defining set. The minimum
shifting is embodied in removing or adding one feature at a
time to revise b. The objective is to have a ref ined bias b
that is consistent.

4.3. i2Learning(DEC, mex)
We use the iterative deepening search [11] to carry out

the bias shifting process. The feature set for the current bias
b is the starting node in the s earch space. Removing a
feature from, or adding a feature to, b generates a successor
node (child node) b of b. If b results in a hypothesis hb that
produces a consistent generalization to circumvent the
inconsistency manifested in , then b is retu rned as th e
refined bias. hb will guide the refinement process to KB and
mKB. On the other hand, if all the possible successor nodes
obtained through removing/adding one feature from b
cannot lead to a hypothesis that produces a cons istent
generalization to resolve the inconsistency in , then the
iterative deepening search will repeat t his process by
generating the successor nodes to b . The depth of the
search for a con sistent bias is iteratively deepened, hence
capturing the essence of minimum shifting. Each time when
a new is encountered during the agent’s problem solving

episode, the learning module is engaged in overcoming the
inconsistency continuously, which enables the continuous
knowledge refinement that incrementally improves the
agent’s performance at its tasks, the essence of perpetual
learning.

We define the following algorithms to be used by
i2Learning(DEC, mex):
o IDBR(bias): for iterative deepening bias refinement,

which takes a bias (feature set) as its input and returns
either a co nsistent bias or failure. Here we only
consider the feature-removal case in bias refinement.

o RFR(node, limit): for recursive feature removal,
which takes a feature set and a search depth as its input
and returns either a consistent bias or failure/leaf.

o biasTest(node): for checking if a given feature set
can be a consistent bias, which takes a feature set as its
input and returns the truth value of true or false.

o sucSet(node): for creating a successor set for a
given feature set, which takes a feature set as its input
and returns a successor set.

Algorithms for i2Learning(DEC, mex)

Input: , Ã, KB, mKB, , , bias (feature set);
Output: bias , a consistent bias; hb , refined model;

1 IDBR(bias) {
2 for depth = 0 to |bias|–1 do {
3 result = RFR(bias, depth);
4 if (result leaf) then {return result}
5 }

1 RFR(node, limit) {
2 if (biasTest(node)) then
3 {return node} //consistent bias
4 else if (limit=0) then {return leaf}
5 else {
6 leaf_Reached=false;
7 for each successor in sucSet(node) do {
8 result=RFR(successor,limit-1);
9 if (result=leaf) then {leaf_Reached=true}
10 else if (result failure) then
11 {return result}
12 }
13 if (leaf_Reached) then {return leaf}
14 else {return failure}
15 }
16 }

1 biasTest(node) {
2 obtain hnode;
3 if (hnode yields consistent generalizations)
4 then {return true}
5 else {return false}
6 }

1 sucSet(node) {
2 successorSet = ;
3 for each feature in node do {
4 successorSet=successorSet {node–feature};
5 }
6 return successorSet;
7 }

254

4.4. An Illustrative Example
Now let us look at an illustrative example. Assuming

we have the following KB for classifying animals and plants
that is obtained based on a bias b of three features in Ã =
{Shape, Cell_Walls, Cell_Functions} where Shape is ab out an
object’s morphology, Cell_Walls pertains to cell walls being
non-rigid or rigid, and Cell_Functions defines if cells break
sugar down to carbon dioxide or turn carbon dioxide into
sugar. We rewrite b = { S, CW, CF} where S stands for
Shape, CW for Cell_Walls, and CF for Cell_Functions.

R1: CucumberShape(x) SeaCucumber(x)
R2: Cucumber(x) CucumberShape(x)
R3: Plant(x) Cucumber(x)
R4: NonRigidCellWalls(x) SeaCucumber(x)
R5: SugarToCarbonDioxide(x) SeaCucumber(x)
R6: Animal(x) NonRigidCellWalls(x)
R7: Animal(x) SugarToCarbonDioxide(x)
R8: Animal(x) RigidCellWalls(x)
R9: Animal(x) CarbonDioxideToSugar(x)
R10: Plant(x) RigidCellWalls(x)
R11: Plant(x) CarbonDioxideToSugar(x)
R12: Plant(x) NonRigidCellWalls(x)
R13: Plant(x) SugarToCarbonDioxide(x)
R14: RigidCellWalls(x) NonRigidCellWalls(x)
R15: CarbonDioxideToSugar(x) SugarToCarbonDioxide(x)
R16: NonRigidCellWalls(x) RigidCellWalls(x)
R17: SugarToCarbonDioxide(x) CarbonDioxideToSugar(x)

Given a seacucumber sc as an input
={SeaCucumber(sc)}, we obtain Plant(sc) from {R1, R2, R3},

and Animal(sc) from {R4, R5, R6, R7}. The given instance of sc
cannot be a plant and an animal at the same time, hence =
{Animal(sc), Plant(sc)} and Animal(sc) Plant(sc). We know
that there is one piece of supportive evidence for Plant(sc)
(via R3 R2 R1) and two pieces of supportive evidence for
Animal(sc) (via R6 R4 and R7 R5). In addition, we can
also obtain two pieces of negative evidence about Plant(sc)
(or two pieces of positive evidence about Plant(sc)) (via
R12 R4 and R13 R5). The issue becomes how to refine b
through minimum shifting to generate a co nsistent bias b .
By calling IDBR with b={S, CW, CF}, the iterative
deepening bias refining process takes place with regard to
the search space in Figure 4.

The minimum shifting process will result in b = {CW,
CF} being returned as a consistent bias. Table 1 shows the
supports for elements in the successor set of b. In addition,
the mKB will be augmented with the following control
information such that next time when an input i includes a
ground atom for SeaCucumber(x), derivations of {R6 R4,
R7 R5} are preferred and the derivation of {R3 R2 R1}
will be circumvented. (): { 6 4, 7 5}{ 3 2 1}

Figure 4. Search space.

Table 2. Support of {CW, CF} for Plant(sc) and Animal(sc).

 CellWalls CellFunction
Plant(SC) 0 0 0

Total
Support

Plant(SC) 0.5 0.5 1.0
Animal(SC) +0.5 +0.5 +1.0

Animal(SC) 0 0 0

5. Conclusion

In this paper, we describe i2Learning, a framework for
perpetual learning agents. i2Learning allows the learning
episodes of the agent to be initiated by inconsistencies the
agent encounters during its problem-solving episodes.
Learning in the framework amounts to th e continuous
knowledge refinement and/or augmentation in order t o
overcome encountered inconsistencies. An agent’s
performance at tasks can be incrementally improved with
each learning episode. i2Learning offers an overarching
structure that accommodates the growth and expansion of
various inconsistency-specific learning strategies. Through
the mutually exclusive inconsistency, we demonstrate
algorithmically how i2Learning facilitates learning in terms
of bias shifting.

The main contributions of this research work include
the following. We dem onstrate that learning through
overcoming inconsistency is a viable and useful paradigm.
The i2Learning framework accommodates various
inconsistency-specific heuristics to be deployed in the
continuous learning process. Through iterative deepening
bias shifting, an agent’s performance can be incrementally
improved by overcoming instances of mutually exclusive
inconsistency.

Future work can be carried ou t in the following
directions. Experimental work is needed on the iterative
deepening bias shifting process for the mutually exclusive
inconsistency case. Details of other frequently encountered
inconsistencies and their respective learning heuristics still
need to be fleshed out.

Acknowledgements. We express our sincere appreciation
to the anonymous reviewers for their comments that help
improve the content and the presentation of this paper.

255

References
[1] M. Banko and O. Etzioni, Strategies for Lifelong

Knowledge Extraction from the Web. Proc. of the
Fourth International Conference on Knowledge
Capture (K-CAP), Whistler, BC, October 2007, pp.95-
102.

[2] R.J. Brachman, and H.J. Levesque, Knowledge
Representation and Reasoning. Morgan Kaufmann
Publishers, 2004.

[3] A. Carlson, et al. T oward an Architecture for Never-
Ending Language Learning. Proc. of AAAI, Atlanta,
Georgia, July, 2010.

[4] T. Coleman, J. S aunderson, and A. Wirth, Spectral
Clustering with Inconsistent Advice. Proc. of 25th
International Conference on Machine Learning,
Helsinki, Finland, 2008, pp.152-159.

[5] D. Gordon and M. desJardins, Evaluation and Selection
of Biases in Machine Learning. Machine Learning
Journal, Vo.20, 1995, pp.1-17.

[6] R. Gotesky, The Uses of Inconsistency. Philosophy and
Phenomenological Research. Vol. 28, N o. 4, 1968,
pp.471-500.

[7] J. Hoffart et al, YAGO2: Exporing and Querying
World Knowledge in Time, Space, Context, and Many
Languages. Proc. of the 20th International World Wide
Web Conference, Hyderabad, India 2011.

[8] T. Mitchell, The Need for B iases in Learning
Generalization. Technical Report CBM-TR-117,
Rutgers University, 1980.

[9] S.J. Pan and Q. Yang, A Survey on Transfer Learning.
IEEE Transactions on Knowledge and Data
Engineering, Vol.22, No.10, 2010, pp.1345-1359.

[10] Ring, M.B. CHILD: A First Step towards Continual
Learning. Machine Learning, Vol.28, 1997, pp.77–105.

[11] S. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach. Prentice Hall, 2010.

[12] C. Shaffer, A Conservation Law for Generalization
Performance. Proc. of 11th International Conference on
Machine Learning, 1994, pp.259-265.

[13] P. Turney, How to Shift Bias: Lessons from the
Baldwin Effect. Journal of Evolutionary Computation,
Vol.4, Issue 3, 1996, pp.271-295.

[14] P. Utgoff, Shift of Bias for Inductive Concept
Learning. In R. Michalski, J. Carbonell, and T. Mitchell
(eds.) Machine Learning: An AI Approach, Vol.II,
Morgan Kaufmann, 1986, pp.107-148.

[15] D. Zhang, Fixpoint Semantics for Rule Base
Anomalies, the Proceedings of the Fourth IEEE
International Conference on Cognitive Informatics,
Irvine, CA, August 2005, pp.10-17.

[16] D. Zhang, Taming Inconsistency in Value-Based
Software Development. Proc. of the Twenty First
International Conference on Software Engineering and
Knowledge Engineering, Boston, July 2009, p p.450-
455.

[17] D. Zhang, On Temporal Properties of Knowledge Base
Inconsistency. Springer Transactions on
Computational Science V, LNCS 5540, 20 09, pp.20-
37.

[18] D. Zhang, Toward A Classification of Antagonistic
Manifestations of Knowledge. Proc. of Twenty Second
International Conference on Tools with Artificial
Intelligence, Arras, France, 2010, pp.375-382.

[19] D. Zhang, The Utility of Inconsistencies in Information
Security and Digital Forensics. In T. Özyer et al (ed.)
Recent Trends in Information Reuse and Integration,
Springer-Verlag, 2011, pp.381-397.

[20] D. Zhang, Inconsistency: The Good, The Bad, and The
Ugly. International Transactions on Systems Science
and Applications, Vol.6, No.2/3, August 2010, pp.131-
145.

[21] D. Zhang, On Localities of Knowledge Inconsistency.
International Journal of Software Science and
Computational Intelligence, Vol.3, No.1, 2011, pp.61-
77.

[22] D. Zhang and É. Grégoire, "The Landscape of
Inconsistency: A Perspective," International Journal of
Semantic Computing, Vol. 5, No. 3, S eptember 2011,
pp.235-256.

256

Evolutionary Learning and Fuzzy Logic applied to a Load Balancer ∗

Francisco Calaça Xavier
Instituto de Informática

Universidade Federal de Goiás

chicocx@gmail.com

Max Gontijo de Oliveira
Instituto de Informática

Universidade Federal de Goiás

maxopala@gmail.com

Cedric L. de Carvalho
Instituto de Informática

Universidade Federal de Goiás

cedric@inf.ufg.br

Abstract

Load balancing is a fundamental requirement in the
development of parallel and distributed applications. The
emergence of computational grids increased the demand
for more efficient load balancers. Fuzzy Logic and
Evolutionary Learning shown to be effective in order to
increase the performance of a load balancer. This paper
presents a Fuzzy Inference System capable to assist a load
balancing in a computational grid. Evolutionary Learning
was used to generate rules for an Inference System, which
evaluated the behavior of nodes when they are subjected to
a workload. The obtained results proved that it is possible
to improve the performance of a load balancer using
a Fuzzy Inference System when the rules are previously
generated according to a particular behavior of the system.

Keywords: Evolutionary Learning, Fuzzy Inference
System, Load Balance

1. Introduction

The scalability problem appears with the increasing use

of information systems. One way to scale these systems is

by using load balancers.

This paper proposes the use of a dynamic load balancer.

Software agents [3] are installed in the nodes that monitor

the state of load and transmit this data to the load balancer.

In load balancer, this state of load is used by a Fuzzy

Inference System to change dynamically the rate of requests

sent to each of these nodes.

In this proposal, initially we used Evolutionary Learning

[2] to learn fuzzy rules according to the behavior of nodes.

Subsequently, these rules were used in a Fuzzy Inference

System that dynamically changes the behavior of the load

balancer.

The rest of this paper is organized as follows. Initially,

in Section 2, some related works are described. Section

∗Sponsored by Fundação de Amparo à Pesquisa do Estado de Goiás -

FAPEG and Centrais Elétricas de Goiás - CELG

3 introduces the concept of load balancing. Section 4

describes the Artificial Intelligence techniques used to build

the load balancer developed in this work. In Section 5, a

case study and the results obtained with our experiments is

presented. Finally, we conclude the work in Section 6.

2. Related Work

Salehi et al [13] proposed the application of the ant

colony technique in a load balancer. In this case, intelligent

ants react proportionally to the conditions of the balancer’s

nodes. The load balancing is the result of the interaction

between these ants over the nodes.

In the approach proposed by Salehi et al, if a node gets

overloaded, it will create a new ant that will balance the load

by sending the requests to less loaded nodes. This step will

lead to balance the load between the nodes.

According to Wang et al [16], hosting databases on

virtual machines (VMs) has great potential to improve

efficiency of resource use and eases deployment of

databases.

The work of Wang et al [16] considers the problem

of allocating resources on demand to a virtual machine

running a database that serves data to a large amount of

dynamic and complex queries according to some Quality

of Service(QoS) 1 requirements.

To solve this problem, it was proposed an autonomous

resource management approach. This approach uses a fuzzy

modeling to capture and evaluate the performance of a

VM that hosts a database. Its goal is to take decisions

regarding resource requirements for each virtual machine,

anticipating their needs and changing dynamically work

loads. The proposed solution results demonstrated that CPU

and I/O disk can be efficiently allocated to the VMs running

the database in order to meet QoS requirements.

Steady-State Genetic Algorithm for Extracting Fuzzy

Classification Rules From Data (SGERD) [10] is a steady

1Quality of service (QoS) refers to several aspects that allow

evaluating the quality of information transport in computer networks and

communication systems.

257

state GA [11] [12] that aims the generation of a number Q

of rules per class, following the Cooperative-Competitive

Genetic Learning approach [8]. The generations (children)

are finite and limited to the extent of the problem. The

algorithm aims to keep the same amount Q of rules for

each class. The fuzzy rules if-then that classify a particular

problem with n attributes are represented in the following

form:

Rj : If x1 is Aj1 . . . and xn is Ajn, then class Cj (1)

for j = 1, 2, 3, . . . N

where X = [x1, x2, . . . xn] is the vector of input patterns,

Aji(i = 1, 2, . . . , n) are the linguistic terms used and

represent the antecedents of the rule Rj . Cj is the

consequent class Rj and N is the fixed number of fuzzy

rules necessary to classify the input patterns. This fuzzy

classification rule Rj can also be expressed as Aj ⇒ Cj ,

where Aj are all the antecedents linguistic terms of the rule

and Cj is the class that this rule classifies.

3. Load Balancer

Load balancing [5] is a technique used to evenly

distribute the workload between two or more resources,

such as network, CPU, hard drives, etc.. Its objective is to

optimize the use of these resources, maximize performance,

minimize response time and avoid overloading. As

illustrated in Figure 1, the balancer is able to split requests

among all nodes.

Two versions of load balancing problem have been

investigated in the literature: static and dynamic [4]. The

static version divides the workload equally among nodes,

regardless of their individually load. The dynamic version

changes the workload of a node as it increases. Therefore,

this last type of balancer performs real time measurements

of node workload in order to keep the whole system

workload balanced.

Generally, load balancers use a “Round-Robin” task

scheduler [14] [15]. In “Round-Robin” task schedulers, the

tasks are stored in a circular queue. The scheduler runs this

queue and allocates the resource for each of these tasks.

Thus, each task has a probability of being executed equal

to 1
n , where n is the total number of tasks to be allocated.

Therefore, there may be an overload on the nodes due

to several factors. One of these factors, which often

occurs, is when a particular request causes an excessive

consumption of resources, for example, when a very large

file is transmitted. The node that receives this file will

suffer a significant increase in its load which, inevitably

will cause an imbalance. Another factor that may also

Figure 1: Scheme for use and connection of computers used
in our tests.

occur, is when nodes are not identical, i.e., when there

are different hardware receiving files. In this case, if the

same amount of requests is sent to each of nodes, those

who have small amounts of resources such as processing

capacity and memory will work in their operating limits,

causing a significant slowdown or even may fail.

4. Evolutionary Learning and Fuzzy Logic
employed in a Load Balancer

Evolutionary Learning (EA) [2] is a machine learning

technique, which uses elements of Evolutionary

Computation, to extract knowledge from a database.

Generally, this knowledge is represented by if-then type

rules. These rules are easily understood by humans

and easily processed by machines. Several branches of

Evolutionary Computation such as Genetic Algorithms,

Evolution Strategy, Evolutionary Programming, Particle

Swarm, among others have been used in order to extract

this knowledge in the form of rules.

A Fuzzy Rule Based System [8] [9] (FRBS) is composed

of a Knowledge Base (KB), which contains information

in the form of if-then fuzzy rules, the input layer, which

contains the fuzzification interface, the fuzzy inference

system, which together with the knowledge base performs

inference from the input and output layer, which contains

the defuzzification interface.

The fuzzy rules contained in the Knowledge Base have

the following structure: “if a set of conditions are met

(antecedent of the rule) then a set of consequences can be

inferred (consequence of the rule).”

258

In addition to the rules, the knowledge base also

has membership functions used in fuzzification and

defuzzification processes of the values of input and output

respectively.

This paper proposes the use of Evolutionary Learning

and Fuzzy Logic to improve the performance of a load

balancer. This assistance is done through the dynamic

modification of the percentage of requests sent to each of

nodes served by the balancer.

With this objective, a module called COGNARE was

built. Its purpose is to perform a dynamic change in the rate

of requests sent to each of the nodes served by a balancer.

The inputs of this module are the current states of the

hardware such as memory, CPU, disk, network, etc.. The

output of this module is the allocation rate for each of the

resource managed by the load balancer.

A sensor agent software [3] was installed in each of

the nodes. Their function is to obtain the values of CPU

load, memory, disk, etc. and send them to COGNARE,

as illustrated in Figure 1. In this Figure, these agents are

represented by black circles.

Initially, the rules needed by fuzzy inference system

were learned. To that end, we sent requests to the balancer,

without using COGNARE. The workload percentages of

each node were changed in order to measure the processing

speed variation of the whole system. This change was made

randomly. After this, CPU and memory use of each node

was measured. Table 1 shows this.

CPU

N1 (%)

CPU

N2 (%)

Memory

N1 (%)

Memory

N2 (%)

Rate (%)

N1|N2

64 21 17 19 79|21

53 47 13 22 63|37

7 89 11 52 11|89

87 13 18 13 81|19

Table 1: Table used in learning the rules. Just some of the
values obtained are showed.

The membership functions, illustrated in Figure 2, were

used to fuzzify values of the Table 1. In this Figure, VL, L,

M, H and VH mean very low, low, medium, high and very

high respectively. After this step, we generated Tables 2 and

3.

CPU

N1

CPU

N2

Memory

N1

Memory

N2

Rate N1

H L L L L

M M L L H

L H L L VH

Table 2: Values in Table 1 fuzzified. Output refers to the
behavior of node 1.

CPU

N1

CPU

N2

Memory

N1

Memory

N2

Rate N2

H L L L H

M M L L L

L H L L VL

Table 3: Values in Table 1 fuzzified. Output refers to the
behavior of node 2.

The initial population was obtained from all possible

fuzzy rules which contain only one linguistic antecedent

value. In this case, as shown in Figure 2, the total quantity

of linguistic terms is 5 (VL, L, M, H and VH). The amount

of linguistic variables is 2 (CPU and memory). Thus, the

initial number of rules is N = 5 ∗ 2 =⇒ N = 10. For

each initial rule, it was calculated the consequent of their

respective class. The consequent class is also one of the

linguistic terms shown in Figure 2. As an example, if in

Figure 1, the load node C1 is 23%, then the fuzzy linguistic

term will be Low (L). If the load of the node C2 is 52%,

then fuzzy linguistic term will be fuzzy Medium (M).

After applying the technique described by Mansoori [10]

the rules are generated. Table 4 presents some of these rules.

Figure 2: Membership functions used for fuzzify the values in
Table 1.

No. Rule

1 if CPU1 is LOW and MEMORY1 is

MEDIUM then RATE1 is HIGH

2 if CPU1 is LOW and CPU2 is MEDIUM then

RATE1 is HIGH

Table 4: Some rules obtained after the learning process.

Starting from the generated rules, we created a Fuzzy

Inference System. The input variables are the values of the

system CPU and memory of each node. The membership

functions and fuzzy sets are described in Figure 2.

When the load balancer is working, COGNARE

constantly run fuzzy inference system. This step

recalculates the working rate of each node served by the

load balancer.

259

In this way, COGNARE could change dynamically

working rates for each node of the system.

5. Case study and evaluation of results

We used three computers in the same network in order

to test the technique proposed in this work. The three

computers have distinct setups. The Tables 5 and 6 show

these setups. The resources of the computer named C3 are

lower than the other two. This fact helped to check the load

balancer’s efficiency in situations where exist differences

among hardwares.

Name Cores CPU RAM

C1 4 800 MHz 4 GB

C2 4 800 MHz 6 GB

C3 2 1200 MHz 2 GB

Table 5: Configuration of the computers used in our tests.

As illustrated in Figure 1, the computer C1 generates

requests to the load balancer and COGNARE. The

computers C2 and C3 act like balancer nodes. The Table

6 describes each computer used in our tests.

Name Setup

C1 AMD Phenom(tm) II X4 955 Processor - 4 GB

RAM

C2 Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz -

6 GB RAM

C3 AMD Turion(tm) 64 X2 Mobile Technology

TL-50 1.2GHZ - 2GB RAM

Table 6: Computers used in our tests.

In the performed tests, 2000 requests were sent to the

load balancer. So, the total time to process all requests

was measured. The average speed to process requests

per minute was calculated. Therefore, a high speed

means a most efficient system. The test was repeated 20

times. Among this 20 times, 10 times were executed with

COGNARE changing dynamically the load of the nodes.

The another 10 times were executed using a Round-Robin
algorithm, where the allocation was made disregarding the

differences between computers nodes.

(a) Load balancer with “Round Robin”

(b) Load balancer with COGNARE

Figure 3: Behavior of nodes in the tests performed.

After the tests, the average speeds were calculated. The

Table 7 shows these values.

Test Speed (requests per minute)

COGNARE 1484

Round Robin 804

Table 7: Averages of the tests performed.

As showed in the Table 7, the load balancer with

COGNARE improved the system, increasing its processing

capacity. This happened because the weaker hardware

received fewer requests than the other hardware.

The Figure 3 shows the behavior of the nodes in the

our tests. Using Round-Robin (a), the computer 1 works

very less than the computer 2 and the maximum CPU’s

usage was 62.5%. In the case (b), using COGNARE, the

system’s performance was improved. The maximum CPU’s

usage was 42%. Moreover, despite the differences between

the hardwares, using COGNARE, the computers showed a

similar behavior.

6. Conclusion

This paper presented the use of Evolutionary Learning

and Fuzzy Logic for dynamic allocation of resources in a

load balancer.

260

As described in the previous sections, agents have been

installed in each of the nodes. The aim of these agents was

to measure the CPU and memory utilization and to send this

information to COGNARE.

From the information regarding the status of the nodes,

we extracted the fuzzy rules. These rules are used in a Fuzzy

Inference System to change the rate of load of each node.

We believe that the main contribution of this proposal

is the ability the system got with COGNARE to learn in

advance the rules about its behavior. This previous learning

have significantly reduced the workload during execution

of the balancer, which caused a significant increase in

performance of the system as a whole.

In future works, we plan to use other algorithms

related to the Evolutionary Learning, such HIDER [1]

[2], NSGA-II [6], TARGET [7], among others to improve

COGNARE’s learning process. We are also planning to

do other experiments. This time we intend to use a larger

number of nodes in order to better capture the efficiency of

COGNARE.

The results of our experiments have revealed that

COGNARE is capable of increasing the performance of

a load balancer. Because of these results, COGNARE, is

already in use, balancing the load of a high-demand system,

used by Government of Goiás2.

7. Acknowledgment

The authors wish to thank Fundação de Amparo à

Pesquisa do Estado de Goiás - FAPEG and the Centrais

Elétricas de Goiás - CELG by the grant which funded this

project.

References

[1] J. S. Aguilar-Ruiz, R. Giráldez, and J. C. Riquelme. Natural

encoding for evolutionary supervised learning. IEEE
Transactions on Evolutionary Computation, 11(4), pages

466–479, 2007.

[2] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro.

Evolutionary learning of hierarchical decision rules. IEEE
Transactions on systems, man, and cybernetics-part B:
Cybernetics, VOl. 33, No. 2, April, pages 324–331, 2003.

[3] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. Wiley, 2007.

[4] M. Bramson, Y. Lu, and B. Prabhakar. Randomized

load balancing with general service time distributions.

SIGMETRICS Perform. Eval. Rev., 38(1):275–286, June

2010.

[5] V. Cardellini, R. I, M. Colajanni, and P. S. Yu. Dynamic load

balancing on web-server systems. IEEE Internet Computing,

3:28–39, 1999.

2Goiás is one of 27 Federal Units of Brazil.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast

and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
Transactions on Evolutionary Computation, 6(2), pages

182–197, 2002.
[7] J. B. Gray and G. Fan. Classification tree analysis using

target. Computational Statistics Data Analysis, 52(3), pages

1362–1372, 2008.
[8] F. Herrera. Genetic fuzzy systems: taxonomy, current

research trends and prospects. Evolutionary Intelligence,

1:27–46, 2008. 10.1007/s12065-007-0001-5.
[9] L.A. and Zadeh. Fuzzy sets. Information and Control,

8(3):338 – 353, 1965.
[10] E. Mansoori, M. Zolghadri, , and S. Katebi. Sgerd:

A steady-state genetic algorithm for extracting fuzzy

classification rules from data. IEEE Transactions on Fuzzy
Systems, 16(4), pages 1061–1071, 2008.

[11] V. Marques and F. Gomide. Fuzzy coordination of genetic

algorithms for vehicle routing problems with time windows.

In Genetic and Evolutionary Fuzzy Systems (GEFS), 2010
4th International Workshop on, pages 39 –44, march 2010.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill, New

York, 1997.
[13] M. A. Salehi, H. Deldari, and B. M. Dorri. Balancing load in

a computational grid applying adaptive, intelligent colonies

of ants, 2007.
[14] M. Shreedhar and G. Varghese. Efficient fair queuing using

deficit round robin. IEEE Trans. Net, 1996.
[15] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster.

Virtual Infrastructure Management in Private and Hybrid

Clouds. Internet Computing, IEEE, 13(5):14–22, Sept.

2009.
[16] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. Fortes.

Fuzzy modeling based resource management for virtualized

database systems. In Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS),
2011 IEEE 19th International Symposium on, pages 32 –42,

july 2011.

261

Using Social Networks for Learning New Concepts
in Multi-Agent Systems

Shimaa M. El-Sherif1 , Behrouz Far2

Department of Electrical and Computer Engineering
University of Calgary

Calgary, Canada
e-mail: 1smmelshe@ucalgary.ca

2far@ucalgary.ca

Armin Eberlein
Department of Computer Science & Engineering

American University of Sharjah
Sharjah, UAE

e-mail: eberlein@ucalgary.ca

Abstract—Traditionally, communication between agents in multi-
agent systems is possible by committing to a common ontology.
Unfortunately, this commitment is unrealistic and difficult to
achieve in all cases. It is preferred in communication between
agents to enable each agent to use its own conceptualization of its
knowledge domain (i.e. each agent needs to use its own ontology).
But that makes communication between agents more difficult
and complex. In order to overcome this obstacle, agents need to
negotiate the meaning of concepts and use their learning
capability. Agents can learn new concepts they do not know but
need in order to communicate with other agents in the system.
This paper addresses the formation of new concepts in a multi-
agent system where individual autonomous agents try to learn
new concepts by consulting other agents. In this paper, individual
agents create their distinct conceptualization and rather than
commit to a common ontology, they use different ontologies. This
paper uses positive and negative examples to help agents learn
new concepts. It also investigates the selection of those examples
and their numbers from teacher agents based on the strength of
the ties between the learner agent and each teacher agent. A
contribution of this paper is that the concept learning is realized
by a multi-agent system in the form of a social network. We
investigate using the concept of social networks in defining
relationships between agents and show that it will improve the
overall learning accuracy.

Keywords- distributed knowledge management; concept
learning; multi-agent system; social network; ontology

I. INTRODUCTION

Interest in Distributed Knowledge Management (DKM)
systems has been growing due to their ability to solve real
world complex problems that cannot be solved by centralized
Knowledge Management systems. The challenges that DKM
faces are:

Representation of knowledge
Distribution of knowledge
Sharing of distributed knowledge

Ontologies can help represent knowledge and are therefore
a good solution for the first challenge faced by DKM
(representation of knowledge). Regarding the second challenge
(distribution of knowledge), multi-agent systems (MAS) can

handle distributed and heterogeneous environments. MAS is an
environment in which different agents can interact with each
other to solve complex problems. The third challenge is the
most difficult issue for DKM: how to share and communicate
knowledge and how to overcome the semantic heterogeneity.
This is the main target of this paper.

In this paper we propose a concept learning system based
on blending the heterogeneity of MAS and sharing capability
of social networks. In our system, several MASs interact with
each other to learn a new concept. Each MAS controls a
repository of knowledgebase (i.e. concepts and their relations)
that consists of an ontology with concept definitions and
instances illustrating each concept. These MASs can interact
with each other through a social network with varying strengths
of ties between each two agents. The strengths of ties can be
updated according to the frequency and type of interaction
between agents. In the case study system, there is one learner
agent that tries to learn a new concept from multiple teacher
agents using this setup. Each teacher agent has its own
ontology representation with its distinct understanding of the
new concept. Teacher agents try to teach the learner agent this
new concept the way they understand it by sending it positive
and negative examples.

II. BACKGROUND AND LITERATURE REVIEW

In this section we will cover the main areas that are
essential to understanding our proposed system. We will briefly
describe multi-agent systems (MAS), ontologies and social
networks. Then, we outline the current state of the art in
ontological concept learning.

A. Multi-Agent System (MAS)
MAS can be de fined as: “a l oosely coupled network of

problem solvers (agents) that interact to solve problems which
are beyond the individual capabilities or knowledge of each
problem solver” [1]. MAS is therefore a co llection of
heterogeneous agents, each of which with its own problem
solving capability, able to locate, communicate and coordinate
with each other.

In our system, agents perform major functionalities on
behalf of each repository. The main roles of agents in our
system are: handling query statements; managing concepts in

Shimaa M. El-Sherif1, Behrouz Far2

Department of Electrical and Computer Engineering
University of Calgary

Calgary, Canada
e-mail: 1smmelshe@ucalgary.ca

 2far@ucalgary.ca

Armin Eberlein
Department of Computer Science & Engineering

American University of Sharjah
Sharjah, UAE

e-mail: eberlein@ucalgary.ca

262

the ontology hierarchy; learning a new concept (in the learner
agent); selecting positive and negative examples for a certain
concept (in the teacher agents); searching the ontology
hierarchy for the best matched concept to teach the learner
agent; managing tie strengths between agents; and finding
peers.

B. Ontology
There are several definitions of ontology. We will use

Daconta's definition [2] as it is relevant to our work: “Ontology
defines the common words and concepts (meanings) and their
relationships used to describe and represent an area of
knowledge, and so standardize the meanings.”

If two agents use the same ontology or ar e able to
understand each other’s ontology, communication between
them is p otentially possible. Normally, diverse agents use
different ontologies. In this case they need a mechanism to
understand each other. In this paper, we illustrate how a single
learner agent can learn new concepts from different teacher
agents. Those teacher agents do not need to agree on the same
definition of the new concept; their understanding of this new
concept may be close but slightly different from each other.

C. Social networks
By social networks we do not mean Facebook, Twitter or

other related web services. In this work, a social network is a
set of actors (e.g. human, process, agent, document repository)
and relationships between them. It can be represented as a set
of nodes that have one or more types of relationships (ties)
between them [3]. Using social networks gives us flexibility in
dealing with the concepts in heterogeneous ontologies. It
allows agents to understand the meaning of the same concept
even though its definition might be slightly different in each
agent’s ontology.

The strength of a tie is affected by several factors.
Granovetter [4] prop osed four dimensions that may affect tie
strength: the duration of the relationship; the intimacy between
the two actors participating in the relationship; the intensity of
their communication with each other; and the reciprocal
services they provide to each other. In social networks of
humans, other factors, such as socioeconomic status,
educational level, political affiliation, race and gender are also
considered to affect the strength of ties [5]. Structural factors,
such as network topology and information about social circles,
may also affect the tie strength [6]. Gilbert et al [7] suggest
quantitative measures (variables) for tie strength including
intensity variable, days passed since the last communication
and duration [7]. Another variable that may affect the strength
of the tie is the neighborhood overlap variable [8] which refers
to the number of common friends the two actors have. Petróczi
et al [9] introduced mutual confidence between the actors of
social networks. We proposed in [10] a method to calculate the
strength of ties between agents in a social network using
Hidden Markov Models (HMM) [11]. We showed that tie
strength depends on several factors: Closeness factor: by
measuring how close two agents are to each other (i.e. the
degree of similarity between the two ontologies used by the
two agents participating in the relationship); Time-related
factor: combines all time factors that affect the strength of the
relationship (e.g. duration of the relationship, frequency of

communication between the two agents, time passed since the
last communication); Mutual confidence factor: clarifying the
nature of the relationship under measure, if it is a one-sided
relationship or a mutual relationship. Then we built an HMM
model to measure the strengths of ties between agents in a
social network using those factors.

D. Literature review
In this section, we describe some of the previous work done

in the concept learning area.

In [12], Steels uses a distributed multi-agent system where
no central control is required. He describes a “language game”
in which each agent has to create its own ontology based on its
experience of its environment. The agents communicate with
each other to stabilize to a common ontology or a shared set of
lexicons to be used afterwards in their interactions.

Palmisano [13] uses a m achine-learning approach for
creating a shared ontology among different agents that use
different ontologies. The main purpose of Palmisano’s work is
to make each agent maintain its own ontology and at the same
time keep track of the concepts’ meanings in other agents’
ontologies it communicates with.

Afsharchi tries in his work [14] to enable an agent to learn
new concepts from a group of agents then represent this new
concept in its own terminology without the need of a shared
ontology [15]. He deals with a multi-agent system as a group of
agents with different ontologies and any of them can learn a
new concept by asking the other agent about this concept and
then representing it using its own taxonomies.

III. CONCEPT LEARNING FRAMEWORK

In our framework, we assume that in a society of n agents
Ag1, Ag2… Agn, each agent Agi controls a repository Ri
(Figure 1). Each repository uses an ontology (Oi) that consists
of a set of concepts, relationships. Each concept C in each
repository possesses some supporting documents to represent
instances of the concept.

Figure 1. System Architecture

The goal of this paper is to advance the concept learning
mechanism based on semantic interoperation between concept
learning and semantic search modules based on MAS proposed
in [16][17]. In this prototype system, each MAS controls a
knowledgebase with a certain ontology. The system is expected
to have two main modules: Concept Learning module [18]; and
Semantic Search module [19]. In this paper we focus only on
advancing the concept learning module by applying the social

Ontology

Documents

Ontology

Documents

Ontology

Documents

MAS1 MAS2
MASn

...
R1 RnR2

...

263

networks concept to the relationships between agents in order
to improve the overall learning accuracy.

Figure 2 shows a f low diagram of tasks performed in the
concept learning system. The learner agent (AgL) initiates the
learning process by sending a learning request to all peer agents
(teacher agents in this case). This request contains a query with
all available information about the required concept Cgoal to be
learned (e.g. concept name, keywords list, annotation
information, feature/contextual information).

Figure 2. Flow diagram of tasks in the concept learning system

After receiving the initial query, each teacher agent (AgT)
finds a concept Cbest that best matches the information in the
initial query it receives. After finding Cbest, AgT chooses
positive and negative examples representing Cbest based on the
similarity between Cbest features and information sent in the
initial query (see section IV below). The number of positive
and negative examples chosen from each teacher agent depends
on how socially close this teacher agent is to the learner agent
(i.e. the strength of tie between AgL and each AgT), because tie
strength reflects how much AgL trusts and depends on AgT.
After selecting positive and negative example sets, each AgT
sends its own set to AgL.

AgL collects all sets from all te achers to learn the new
concept Cgoal. AgL checks for any conflict that may occur. As
each teacher agent uses a different ontology and different
representation of concepts in its ontology, the positive and
negative examples chosen by teacher agents are expected to be
different and some conflicts may occur as shown in Figure 3.

Figure 3. Representation of conflict

Some examples are agreed on by all teachers to be positive
examples. Other examples may be mentioned by some teachers
and not mentioned by others, i.e., they are considered as a
conflict. The worst case of conflict occurs when one or more
examples are considered as positive examples by some teachers
and as negative examples by others. These conflicts can be
resolved by the learner agent sending back a conflict resolution
request to all teacher agents asking them to vote on the
conflicting examples [20]. Sending votes back to AgL helps
resolve the conflict based on votes of teacher agents and
strength of ties between AgL and each teacher agent. After
resolving all conflicts, AgL starts the learning process to learn
the new concept Cnew considering the opinions of all teacher
agents. Then AgL updates its repository by representing the
new concept Cnew in its ontology OL.

Finally, AgL measures the closeness between its updated
ontology and the ontologies of all teacher agents. Based on this
closeness and the interactions that occurred during the whole
learning process, the strength of ties between AgL and all
teacher agents is updated [10].

IV. DOCUMENT CLASSIFICATION

In our system, we need to classify the documents used in all
repositories. Document classification means assigning
documents to one or more concepts using data mining methods.

A. Document Preprocessing
In this stage, we extract all features of textual documents,

these documents are considered positive examples of concepts
in the ontology used in our experiment, in order to process
these documents with data mining algorithms. The main
purpose of document preprocessing is feature extraction. It is
the selection of a list of words (features) that best describe the
document. At the beginning, documents are tokenized to get
the entire list of words in the documents. Second, using a
feature reduction technique to delete undesired words (words
that are irrelevant to the document content), such as common
English words like: a, an, in, for, the etc. Also we can create
our own list o f words that do not affect the document
categorization. Next, word stemming is applied by removing
suffix and prefix of words. In this case, we can treat words with
the same stem as a single word. For example: mathematics and
mathematical can be co nsidered as the same feature in the
document. Finally, a statistical metric is used to produce a
feature vector that best represents the group of documents by
calculating the relevance of each feature to the category it
belongs to. In our experiment, we use Term Frequency plus
Inverse Document Frequency (TF×IDF).

B. Document Representation
We select the top n words created for each category with

the highest scores accompanied with their weight as a feature
vector for each category. In our experiment, we set n to 20 as
we noticed that in almost all documents, all relevant document
features can be expressed with less than or equal to 20 words.

C. Document Categorization
This is the learning process. In this stage, we assign each

group of documents to a certain category and calculate the
accuracy of the learning technique used. In this paper, we use

264

three different learning techniques: K-Nearest Neighbor (K-
NN); Naive Bayes; and Support Vector Machine (SVM). In our
experiment, we adopt the RapidMiner (http://rapid-
i.com/content/view/181/190) tool to perform document
classification.

V. DATA SET

Our data set consists of structured hierarchy ontologies of
course syllabi of three universities; Cornell University,
University of Michigan and University of Washington. In order
to test our approach, we use three MASs as teacher agents:
AgC, AgM and AgW. Each MAS controls a repository that
contains one of the three ontologies for the course syllabi of the
three universities. We also set up a learner agent AgL to learn
some new concepts from the three teacher agents at the same
time. We choose to learn the concept “computer science”
because it has different representations among the three
ontologies. The University of Michigan organizes “computer
science” as an engineering discipline and as a joint program
with Electrical Engineering. The University of Washington
organizes “computer science” also as an engineering discipline
but independent from Electrical Engineering and as a joint
program with Computer Engineering. Cornell University
considers “computer science” as an engineering discipline but
independent from both Electrical and Computer Engineering.

VI. EXPERIMENT

In this experiment, we want to show how using social
networks can improve the accuracy of the learning process. We
follow the same strategy proposed in [17] in choosing positive
and negative examples. This strategy depends on the value of
sim(qspec, Cbest), where, sim(qspec, Cbest) is the ratio between the
number of examples that meet the entered query and the total
number of examples of chosen concepts Cbest. If sim(qspec, Cbest)
is greater than a specific threshold value (we set the value of
the threshold to 0.6), this concept completely represents the
concept to be learned. In this case, we can use any of its
examples as positive examples. The negative examples can be
chosen from its si blings (external negative examples). In this
case, the siblings’ examples are considered a good source of
negative examples because the two concepts have the same
parent which means they have some common features. At the
same time, they are two different concepts, each with its own
set of examples. So the examples of the siblings are considered
discriminating examples. If sim(qspec, Cbest) is smaller than the
chosen threshold value (i.e. 0.6), that means Cnew overlaps with
the concept Cbest, which means that some of the examples of the
concept Cbest reflect the meaning of Cgoal but the others do not.
In this case, the returned documents contain only positive
examples of Cnew. The negative examples can be chosen from
the rest of the examples (internal negative examples).

The scenario of our experiment is as follows:

1. No “computer science” concept is defined in the
learner agent AgL. The learner agent AgL therefore uses
only keywords to search for the best matching concept
Cbest in the teacher agents’ ontologies. The keywords
used are “(computer science) or (program language)”.
At the beginning, the strengths of ties between AgL and
all teacher agents (AgC, AgM, AgW) are the same.

2. Each teacher agent searches its ontology for the best
matching concept Cbest that has the highest value of
sim(qspec, Cbest). Depending on this value, each teacher
agent picks sets of positive and negative examples.

3. Each teacher agent sends its own sets o f positive and
negative examples to the learner agent AgL.

4. AgL develops a new concept “computer science” in its
ontology based on these examples using machine
learning methods, and then calculates the accuracy of
the learning process in each case.

5. Calculate the feature vector of the newly learnt concept
“computer science” in AgL.

6. Calculate the closeness between the feature vector
created for the new learnt concept and feature vectors
of each Cbest chosen by each teacher agent.

7. Depending on the closeness values calculated in step 6,
set the initial tie strengths between the learner agent
AgL and teacher agents AgC, AgM, AgW.

8. Repeat the learning process by using the same
keywords used before as well as the feature vector
created in step 5 based on the tie strengths calculated in
7 (repeat steps 2 to 5).

In order to measure the accuracy of the learned concept, we
use the confusion matrix to measure the proportion of true
results (i.e. true positive and true negative as opposed to false
positive and false negative). The overall accuracy is calculated
as follow: = (1)

VII. RESULTS

The first step in our experiment in learning the new concept
“computer science” is to find the best known concept Cbest in
teacher agents’ ontologies.

At the beginning, the learner agent AgL does not have the
concept “computer science” in its ontology. We use only
keywords to learn this concept. Our keywords that describe the
“computer science” concept are (“computer science” or
“program language”). According to the ratio between the
number of documents returned by the search and the total
number of documents describing each concept, we can
calculate sim(qspec, Cbest) for all concepts in each teacher
agent’s ontology. The concept with higher value of sim(qspec,
Cbest) is chosen as the best matching concept Cbest for each
teacher. Table I shows the value of sim(qspec, Cbest) of the
chosen concepts Cbest from each university.

We choose the following concepts:
“Computer Science E” from Cornell University

“Electrical Engineering and Computer Science” from
University of Michigan.
“Computer Science and Engineering” from University
of Washington.

For all universities, sim(qspec, Cbest) < 0.6 is chosen to be the
threshold, so we select the negative examples internally from
the documents of the chosen concepts. In this case, the strength
of ties between AgL and all teacher agents AgC, AgM and AgW

265

are the same, i.e. social closeness is not considered, therefore
the number of positive and negative examples from each
teacher agent are the same. We got 21 positive examples and
21 negative examples from each teacher agent for those
concepts. Those positive and negative examples are given to
AgL to learn the new concept “computer science”. We use three
machine learning techniques: K-NN, Naive Bayes, SVM.

TABLE I. THE SIMILARITY VALUES OF THE SEARCH RESULTS. THE
SEARCH KEYWORDS ARE (“COMPUTER SCIENCE” OR “PROGRAM LANGUAGE”)

University/department sim (qspec, Cbest)
Cornell

Computer science e 0.36
Michigan

Electrical engineering and
computer science

0.12

Washington
Computer science and

engineering
0.25

TABLE II. USING K-NN FOR LEARNING

true CS false CS
positive CS 52 23
negative CS 11 40

Overall accuracy = 73.02%

TABLE III. USING NAIVE BAYES FOR LEARNING

true CS false CS
positive CS 42 21
negative CS 21 42

Overall accuracy = 66.71%

TABLE IV. USING SVM FOR LEARNING

true CS false CS
positive CS 44 17
negative CS 19 46

Overall accuracy = 70.48%

Where, CS is the concept “Computer Science”. In Tables II,
III and IV, true CS represents the number of examples that are
classified as positive examples of the CS concept; false CS
represents the number of examples classified as negative
examples of the CS concept; positive CS are the real positive
examples of the CS concept; negative CS are the real negative
examples of the CS concept.

After learning the new concept “computer science”, we
extract the feature vector of this concept. TF×IDF is used to
extract the feature vector of each concept in all ontologies.

Now the learner agent AgL has the new concept “computer
science” in its ontology. AgL has also a feature vector of this
concept (See Table V). We need to update the strength of ties
between the learner agent and each teacher agent. We measure
the closeness between the feature vector of the new learnt
concept “computer science” in Ag L and all concepts used by
teacher agents (i.e. “Computer Science e” from AgC,
“Electrical Engineering and Computer Science” from AgM and
“Computer Science and Engineering” from AgW).

The closeness values are shown in Table VI. From these
values we can notice that, the learnt concept is closest in its
definition to the concept of Cornell University, the next closest

to University of Washington but far from the definition of the
concept used by University of Michigan. We consider these
closeness values as the initial values of tie strengths of our
social network.

TABLE V. FEATURE VECTORS OF THE NEWLY LEARNT CONCEPT AND
CHOSEN CONCEPTS FROM TEACHER AGENTS’ ONOTOLOGYIES

Feature vector of the learnt concept (computer science):
{ program , languag , comput , system , scienc , cover , function , type ,

algorithm , design , learn , logic , object , analysi , compil , machin , unix ,
java , includ , model }

computer science e (Cornell University):
{ program , comput , system , languag , algorithm , logic , design , scienc ,
cover , analysi , equat , learn , model , discuss , function , network , optim ,

parallel , type , applic }
Electrical engineering and computer science (University of Michigan):

{ system , design , comput , circuit , model , analysi , program , optic , control
, signal , algorithm , digit , applic , devic , network , languag , linear , perform

, logic , communic }
computer science and engineering (University of Washington)

{ comput , system , design , program , algorithm , languag , softwar , analysi ,
parallel , model , imag , network , logic , altern , architectur , machin , simul ,

databas , memori , applic }

TABLE VI. THE CLOSENESS VALUES BETWEEN THE LEARNER AGENT AGL
AND TEACHER AGENTS AGC, AGM, AGW

Teacher agent closeness value
Cornell University (AgC) 0.490

University of Michigan (AgM) 0.087
University of Washington (AgW) 0.180

In order to refine the definition of the learnt concept
“computer science”, we use both keywords (“computer
science” or “program language”) and conceptual knowledge
(the feature vector extracted) in searching for the best matched
concept in teacher agents’ ontologies. The selected best
concepts are the same as in the first case. The number of
positive and negative examples selected are proportional to the
tie strengths, so we use 31 positive examples and 31 negative
examples for the concept “Computer Science e” from AgC, 12
positive examples and 12 negative examples for the concept
“Computer Science and Engineering” form AgW and 5 positive
examples and 5 negative examples for the concept “Electrical
Engineering and Computer Science” from AgM. We use those
sets of positives and negative examples to teach AgL the
concept “computer science” using K-NN, Naive Bayes and
SVM.

TABLE VII. USING K-NN FOR LEARNING

true CS false CS
positive 39 9
negative 9 39

Overall accuracy = 81.21%

TABLE VIII. USING NAIVE BAYES FOR LEARNING

true CS false CS
positive 33 12
negative 15 36

Overall accuracy = 71.79%

266

TABLE IX. USING SVM FOR LEARNING

true CS false CS
positive 34 13
negative 15 34

Overall accuracy = 70.83%

Using K-NN as a learning technique, in the first phase of
the experiment, the accuracy of the learning was 73.02%. In the
second phase of the experiment it is increased to 81.21%.
Using Naïve Bayes as a learning technique, in the first phase of
the experiment, the accuracy of the learning was 66.71%. In the
second phase of the experiment it increased to 71.79%. Using
SVM as a learning technique, in the first phase of the
experiment the accuracy of the learning was 70.48%. In the
second phase of the experiment it increased to 70.83%. We can
notice that the accuracy of the learning process improved with
all three algorithms. As all parameters are the same in both
phases of the experiments except for the strengths of ties
between the learner agent AgL and all teacher agents AgC, AgM
and AgW, we can conclude that this improvement is due to
using social networks, i.e. using the tie strength, in our system.
Using social networks helps the learner agent to better resolve
conflicts that may occur during the learning process. According
to the above tie strengths used, the learner agent AgL is closer
to AgC, which means that AgL depends more on AgC in
learning new concepts (i.e. the learner agent trusts more the
teacher agent that control the Cornell University knowledge
base). That is why it uses more examples from this teacher in
the learning process. The opposite occurs with AgM. The
strength of the tie between AgL and AgM is the weakest, so the
learner agent knows that the concept definitions in this
ontology are far from its own ontology, so AgL cannot trust
AgM much, i.e. the lowest number of examples are borrowed
from this agent. That helps AgL to improve the accuracy of the
learning process. That is also reflected in the updated values of
the tie strengths shown in table X. AgL gets closer to AgC and
farer from AgM.

TABLE X. THE UPDATED TIE STRENGTH BETWEEN THE LEARNER AGENT
AGL AND TEACHER AGENTS AGC, AGM, AGW

Teacher agent Tie strength
Cornell University (AgC) 0.51

University of Michigan (AgM) 0.04
University of Washington (AgW) 0.14

VIII. CONCLUSION

In this paper, we propose a new mechanism to be used in
learning a new concept from multiple teacher agents each
having the concept represented in slightly different way in their
ontologies. This concept learning technique depends on
sending positive and negative examples to identify the asked
concept from teacher agents to learner agent. However, the
number of positive and negative examples received from each
teaching agent is decided by the strength of tie between the
learner and teacher. Through a detailed experiment we showed
that this improves the overall accuracy of the learning process.
Although in the experiment we focused on a network of four
nodes to illustrate the results, the method is general enough and
can be applied to networks of large number of nodes.

ACKNOWLEDGEMENT

Armin Eberlein would like to acknowledge the financial
contribution of the American University of Sharjah.

REFERENCES

[1] E. H. Durfee, V. Lesser, “Negotiating task decomposition and allocation
using partial global planning,” Distributed Artificial Intelligent, Issue 2,
Vol 2, pp 229-244, 1989.

[2] Daconta, M.C., Obrst, L.J., Smith, K.T, “The semantic web. a guide to
the future of XML,” Web Services and K nowledge Management
(Indianapolis (IN), USA 2003).

[3] Robert A. Hanneman, Mark Riddle, “Introduction to social networks
methods,” 2005.

[4] Granovetter, M., “The strength of weak ties: A network theory revisited,
sociological theory,” pp. 201 – 233, 1983.

[5] Lin, N., Ensel, “Social resources and strength of ties: Structural factors
in occupational status attainment,” American Sociological Review, vo;.
46, pp. 393 – 405, 1981.

[6] Burt, R., “Structural holes: The social structure of competition,” Harvard
University Press, 1995.

[7] Eric Gilbert and Karrie Karahalios, “Predicting tie strength with social
network,” Proceedings of t he 27th international conference on Human
factors in computing systems, Boston, MA, USA, pp. 211-220, 2009.

[8] J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J.
Kertesz, A. L. Barabasi, “Structure and tie strengths in a mobile
communication network,” Proceedings of the National Academy of
Science of the United States of America, vol. 104, no. 18, 2007.

[9] Andrea Petróczi, Tamás Nepusz and Fülöp Bazsó, “Measuring tie-
strength in virtual social networks,” vol. 27, no. 2, INSNA, 2007.

[10] Shimaa M. El-Sherif, Behrouz Far, Armin Eberlein, “Calculating the
strength of ties of a s ocial network in a s emantic search system using
Hidden Markov Models,” International Conference on Systems, Man
and Cybernetics SMC 2011.

[11] Olivier Cappe, Eric Moulines and Tobias Ryden, “Inference in Hidden
Markov Models”, Springer, 2007.

[12] Luc Steels, “The origins of ontologies and communication conventions
in Multi-Agent Systems,” Autonomous Agents and Multi-Agent
Systems, I(2), pp 169–194, 1998.

[13] Ignazio Palmisano, Luigi Iannone, Domenico Redavid, Gionanni,
Semeraro, “Ontology alignment throug instnce negotiation: A machine
learning approach,” Lecture Notes in Computer Science, Vol. 4275, pp
1058–1074, 2006.

[14] Mohsen Afsharchi, Behroz H. Far, “Conceptual hierarchy learning in a
Multi-Agent System,” Proceedings of the Computer Society of Iran
Computer Conference (CSICC), 2006.

[15] Mohsen Afsharchi, Behroz H. Far, Jorg De nzinger, “Learning non-
unanimous ontology concepts to communicate with groups of agents,”
IAT, Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pp 211–217, 2006.

[16] B. H. Far, C. Zhong, Z. Yang and M. Afsharchi, “Realization of
semantic search using concept learning and document annotation
agents,” The 21th Int. Conf. on S oftware Engineering and Knowledge
Engineering SEKE 2009, 2009.

[17] Zilan (Nancy) Yang, “A practical ontology-based concept learning in
MAS,” master thesis, University of Calgary,Department of Electrical
and Computer Engineering, 2010.

[18] Shimaa El-Sherif, Behrouz Far and A rmin Eberlein, “Using social
networking in r esolving conflicts of concept learning process,”
Proceedings of IEEE CCECE, 2010.

[19] Shimaa El-Sherif, Behrouz Far and Armin Eberlein,”Semantic search
based on multi-agent system and social networking,” Proceedings of the
sixth IASTED International Conference, ACSE, pp. 103-110, 2010.

[20] Mohsen Afsharchi, Behrouz H. Far, Jörg Denzinger, “Learning non-
unanimous ontology concepts to communicate with groups of
agents,” IAT 2006: 211-217.

267

Identifying Coincidental Correctness for Fault
Localization by Clustering Test Cases

Yi Miao1,2, Zhenyu Chen1,2, Sihan Li1,2, Zhihong Zhao1,2, Yuming Zhou1
1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2 Software Institute, Nanjing University, Nanjing, China
zhaozh@software.nju.edu.cn

Abstract—Coverage-based fault localization techniques leverage
coverage information to identify the faulty elements of a program.
However, these techniques can be adversely affected by
coincidental correctness, which occurs when faulty elements are
executed but no failure is triggered. This paper proposes a
clustering-based strategy to identify coincidental correctness. The
key rationale behind this strategy is that test cases in the same
cluster have similar behaviors. Therefore, a passed test case in a
cluster, which contains failed test cases, is highly possible to be
coincidental correctness. Our experimental results show that, by
cleaning or relabeling these possibly coincidentally correct test
cases, the effectiveness of coverage-based fault localization
techniques can be effectively improved.

Keywords- coincidental correctness; cluster analysis; fault
localization

1 INTRODUCTION
Coverage-Based Fault Localization (CBFL) leverages the

execution information of both the failed test cases and passed
test cases to assist the developer in identifying the program
elements that induce a given failure. The intuition behind these
techniques is that entities in a program that are primarily
executed by failed test cases are more likely to be faulty than
those that are primarily executed by passed test cases [1].
Although CBFL has shown promising results in previous
studies, it is still necessary to further improve its effectiveness.
One of the main challenges is the coincidental correctness
problem.

Coincidental correctness occurs when a test case executes
the faulty elements but no failure is triggered. The PIE model
presented in J.M. Voas et al., [2] emphasizes that for a failure
to be observed, the following three conditions must be satisfied:
“Execution”, “Infection”, and “Propagation”. The case is
termed weak coincidental correctness, if the program produces
the correct output when only the condition “Execution” is
satisfied. The case is termed strong coincidental correctness, if
the program produces the correct output when only the
conditions “Execution” and “Infection” are satisfied. As the
second condition of the PIE model has nothing to do with
CBFL, strong coincidental correctness is not within the
discussion of this paper. Hence, hereafter, coincidental
correctness will refer to the former definition as it is more
relevant to the execution profiles, and thus has more impact on
CBFL.

Previous studies have demonstrated that coincidental
correctness is prevalent in both two forms: strong and weak [3],
[4]. W. Masri et al. have proven that coincidental correctness is
responsible for reducing the safety of CBFL. More specifically,
when coincidentally correct test cases are present, the faulty
elements will likely be ranked as less suspicious than when
they are not present. As shown in the previous studies [4], [5],
the efficiency and accuracy of CBFL can be improved by
cleaning the coincidentally correct test cases. However, it is
difficult to identify coincidental correctness because we do not
know the locations of faulty elements in advance.

In this paper, we propose a clustering-based strategy to
identify the subset of test suite that is possible to be
coincidentally correct. We apply cluster analysis to group test
cases into different clusters. According to [6] and [7], test cases
in the same clusters have similar behaviors. As such, a passed
test case in a cluster, which contains failed test cases, is highly
possible to be coincidental correctness because it has the
potential to cover the faulty elements as those failed test cases
do. We also present two strategies to deal with the coincidental
correct test cases (see Section 3 for detail). By cleaning or
relabeling these test cases, adverse effects of coincidental
correctness can be reduced, which may lead to an increase of
the efficiency and accuracy of coverage-based fault localization
techniques. The experimental results show that our strategy is
effective to alleviate the coincidental correctness problem and
to improve the effectiveness of fault localization.

The remainder of this paper is organized as follows. Section
2 details the motivation of our work. Section 3 describes our
approach to identify coincidentally correct test cases in detail.
Section 4 presents the experimental work and results for the
proposed strategy. Section 5 introduces some related work on
coincidental correctness and cluster analysis on software
testing. Finally, Section 6 presents our conclusions and future
work.

2 MOTIVATION

2.1 Prevalence of Coincidental Correctness
In [3], Masri et al. demonstrated that coincidental

correctness is prevalent in both its forms (strong and weak).
Furthermore, the exhibited levels of weak coincidental
correctness are much more significant than those of the strong
one. To show the prevalence of the scenario under study, we
conducted an experiment on the Siemens programs. The

The work described in this article was partially supported by the National
Natural Science Foundation of China (90818027, 61003024, 61170067).

268

Siemens set contains seven C programs, and all of them can be
downloaded from the SIR repository [17]. Each of the
programs has a correct version, a number of faulty versions
seeded with a single fault, and a corresponding test suite. We
compare the output results of the correct versions with that of
the corresponding seeded versions to determine the failures.
Failures determined in this manner are called output-based
failures. According to the execution profile, if a faulty element
is executed during a test case, but no output-based failure is
detected, we categorize the test case as coincidentally correct.

Our study only takes into account 115 seeded versions, and
excludes the other versions because they contain code-missing
errors or the faulty statements are not executable. Figure 1
summarizes the result. It illustrates the exhibited level of
coincidental correctness is significant. The horizontal axis
represents the percentages of coincidentally correct tests (each
bar corresponds to a range of size 10%). The vertical axis
represents the percentage of seeded versions that exhibited a
given range. As can be seen, coincidental correctness is
common in software testing.

2.2 Safety Reducing Effect
Denmat et al. [15] pointed out the limitation of CBFL and

argued that the effectiveness of this technique largely depended
on the hypothesis that executing the faulty statements leads
most of the time to a failure.

In the following, we use Ochiai as an example to show that
coincidental correctness is a potential safety-reducing factor.
As shown in L. Naish et al., [16], the suspiciousness metric of
Ochiai is defined as:

))((
=M(e)

epefnfef

ef

aaaa
a

e = faulty program element

efa = number of failed runs that execute e
nfa = number of failed runs that do not execute e
epa = number of passed runs that execute e

Assume that there are k tests which execute e but do not
raise a failure. Two strategies can be applied on these tests to
improve the accuracy of the CBFL technique. The first strategy

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

%
 F

au
lty

 V
er

si
on

s

% Coincidental Correctnes(|Tcc|/|T|)

 Figure 1. Frequency of Coincidental Correctness

is to remove these tests from the test suite, that is, to subtract k
from epa . Consequently, the suspiciousness metric will be:

))((
=(e)M'

kaaaa
a

epefnfef

ef

It is easy to know that M(e) ≤ M’(e). To verify:

M’(e) ≥ 0, M(e) ≥ 0 and M’(e)/M(e) ≥ 1 => M(e) ≤
M’(e).

The second strategy is to relabel those tests from “passed”
to “failed”, i.e., to subtract k from epa and add it to efa , the
suspiciousness metric will be:

))((
=(e)'M'

epefnfef

ef

aakaa
ka

It is easy to know that M(e) ≤ M’’(e). To verify:

M’’2(e) －M 2(e) ≥ 0 => M(e) ≤ M’’(e). It can be seen
that ignoring coincidentally correct test cases will leads to an
underestimating of the suspiciousness of the faulty element.

3 METHODOLOGY

3.1 General Process
Some symbols we use throughout the rest of the paper are

explained as follows:
T: the test suite used for a given program.
Tp: the set of passed test cases.
Tf：the set of failed test cases.
Tcc: the set of coincidentally correct test cases.
Ticc: the set of identified coincidentally correct tests.
Given a test suite T, which is comprised of Tp and Tf, the

goal is to identify Tcc from Tp. The result is Ticc, and each
element of Ticc is a potential candidate of the members of Tcc.

In this paper, we propose a clustering-based strategy to
obtain Ticc. The goal of cluster analysis is to partition objects
into clusters such that objects with similar attributes are placed
in the same cluster, while objects with dissimilar attributes are
placed in different clusters [7]. So, execution profiles are used
as the features fed to a clustering algorithm. Specifically, test
cases which execute the faulty elements and have similar
execution profiles with the failed test cases are likely to be
clustered together. Therefore, if a cluster consists of both failed
test cases and passed test cases, the passed test cases within this
cluster are very likely to be coincidentally correct. Note that
our approach is based on the single-fault assumption. Multi-
fault programs are not within the discussion of this paper, but
will be explored in the near future.

For a developer to find the fault with the help of automatic
fault-localization techniques, he/she can use the following
procedure to take advantage of our strategy to improve the
effectiveness of the diagnosis: First, a set of test cases is
executed on the given program. As a result, each test case is
labeled "passed" or "failed" according to its output result.
Execution profiles which reveal the coverage information are

269

collected at the same time. Then, clustering is conducted on the
execution profiles. The next step is to identify coincidentally
correct test cases using the method mentioned above, and the
identified test cases are added to Ticc. Two strategies (cleaning
or relabeling) can be employed to handle with the test cases
that belong to Ticc, see Section 3.2.3 for details. Finally, a
CBFL technique is applied to the refined test suite.

3.2 Detailed Technologies
3.2.1 Execution Profile Collection

We use gcov (GNU call-coverage profiler) [18] to obtain
statement coverage information. For a test case, its statement
coverage profile pi = <e1, e2, ..., en>, where n represents the
number of lines of the given program, and ei = 1 if the ith line
of code is executed, otherwise ei = 0.

3.2.2 Cluster Analysis
The execution profiles of the test suite T are collected to

form the input to the cluster analysis. The execution profile of
each test case is regarded as an object to be clustered. The
number of objects is equal to the number of test cases of T. In
our context, n-dimensional Euclidean distance [19] is used as
the distance function because it is easily calculated and widely
used.

The simple K-means is employed as the clustering
algorithm in our approach. We chose this algorithm because it
is simple and fast. Besides, it performs reasonably well in our
previous studies [6], [8]. It takes the number of clusters as a
parameter. In our context, this number is set according to the
size of T. Let CN denote the number of clusters, CN = |T|*p,
where |T| is the number of test cases in T and 0 < p < 1.

Note that it is hard to decide a fixed ratio of the number of
clusters. It mainly depends on the size of the test suite, and how
much risk the developers are willing to take in order to identify
the coincidental correct test cases. If the size of test suite is
large, a relatively low value of p can be chosen to keep the
level of the false negatives. If the developers have a high
demand for accuracy of the recognition of coincidental
correctness, a relatively high value of p can be chosen to keep
the level of false positives.

3.2.3 Handling with the coincidental correctness
Passed test cases which are grouped into the same cluster

with the failed ones are very likely to be coincidentally correct,
and are added to Ticc. The reasons are two-fold:

1) A test case which executes the faulty statement does not
necessarily induce a failure, but not vice versa. It is a sufficient
condition for a failed test case to execute the faulty statements.

2) It is assumed that test cases with similar execution
profiles will be clustered together. Therefore, the identified
passed test cases will have similar execution profiles with the
failed ones.

As such, the identified test cases have a great chance to
execute the faulty elements, but still produce the correct output.
In other words, they conform to the definition of coincidental
correctness.

To deal with Ticc, we propose two strategies:

 The Cleaning Strategy: Test cases in Ticc are removed
from the original test suite T. According to the
suspiciousness metric, it will improve the
suspiciousness values of the faulty statements by
subtracting the number of coincidental correctness
from the number of passed test cases.

 The Relabeling Strategy: The labels of test cases in
Ticc are changed from "passed" to "failed". It will also
improve the suspiciousness values of the faulty
statements by subtracting the number of coincidental
correctness from the passed test cases and adding it to
the number of failed ones. The improvement may be
more significant than the cleaning strategy to a certain
extent, but it may have risks.

3.2.4 Fault Localization
In this study, we select Ochiai (rather than Tarantula) as the

CBFL technique. The main reason is that Ochiai is a recently
proposed technique and the metrics is more effective than
Tarantula in locating faults. Although these two techniques
share the basic principle of CBFL, and they operate on exactly
the same input data, as demonstrated in R. Abreu et al., [9], the
Ochiai similarity coefficient can improve diagnostic accuracy
over other coefficients, including those used by the Pinpoint
and Tarantula tools [16]. As a result, it will be more convincing
that if our approach can improve a well-performed CBFL
technique.

Note that the objective of this study is not to compare
various fault localizers, but rather to develop a strategy that will
improve the CBFL across multiple fault localizers. Although
existing CBFL techniques use different metrics for the
coverage entities, most of them share the same basic principle
to locate the faulty elements. In other words, they have the
same hypothesis and share similar input data. Therefore, we
believe that if our approach works on Ochiai, it will perform
reasonably well on other fault localizers. In the future work, we
will conduct experiments to investigate this conjecture.

4 EXPERIMENT AND EVALUATION

4.1 Subject Programs
The Siemens set is used as the subject programs in our

study because it is a particularly widely used benchmark for
evaluating software testing and fault localization techniques.
The detailed information on these programs is listed in Table 1.
The second column of the table shows for each program the
number of faulty versions used in our experiment. The third
column shows for each program the lines of code (the number
of executable statements in the parentheses) that it contains.

TABLE 1. DETAILED INFORMATION OF THE SUBJECT PROGRAMS

Program Versions LOC
(Executable)

Test Suite
Size

replace 29 563(243) 5542
printtokens 3 563(190) 4130
printtokens2 6 510(200) 4115

schedule 8 412(150) 2650
schedule2 4 307(127) 2710

totinfo 16 406(123) 1052

270

The program tcas is not included because it is too small for
cluster analysis. It has only 173 lines of code, of which 54 are
executable statements. Therefore, many test cases may have
same execution profiles. Consequently, the number of the
clusters generated is limited, and it is difficult to effectively
distinguish test cases in this case.

Additionally, we also exclude some of the remaining
versions for the following reasons: these versions have no
failures detected by any test case. Besides, similar to the
experimental setup of Jones and Harrold [1], executable
statements are used instead of LOC. Thus we ignore the
versions with modifications in the header files, mutants in
variable declaration statements, or modifications in a macro
statement started with “#define”. Furthermore, versions contain
code-missing errors are also excluded. Because CBFL hinges
on the assumption that a statement which has been executed by
most failed test cases is a good candidate for being faulty, and
in other words, if a faulty statement causes a test case to fail,
then the test case must have executed that statement. However,
this will not hold in certain cases such as code-missing fault. In
this situation, there is no so-called faulty statement and CBFL
cannot localize the fault exactly [14]. Finally, some versions
are omitted because they do not contain any coincidental
correctness. In summary, we have excluded 25 faulty versions
in total, and use 66 versions for our experiment.

4.2 Evaluation Metrics
Similar to [1], to evaluate the ability of our approach to

identify coincidental correctness, we compute metrics to
quantify the generated false negatives and false positives. Also,
to assess the impact of our approach on the effectiveness of
CBFL, we use the T-score reduction as the evaluation metric.

1) Measure of generated false negatives:

Tcc
TiccTcc ||

 (1)

This measure assesses whether we have successfully
identified all the coincidentally correct test cases. The lower the
measure value is, the better the recognition accuracy is.

2) Measure of generated false positives:

TccTp
TiccTccTp

 |)(|

 (2)

This measure assesses whether we have mistakenly
categorized test cases as coincidentally correct. Similarly, the
lower the measure value is, the better the recognition accuracy
is.

3) Measure of effectiveness improvement:

T-score reduction △TS = TS – TS’, where TS and TS’
represents for the T-score before and after applying our
approach respectively.

T-score is widely used in evaluating fault localization
techniques [1], [10], [11]. It measures the percentage of code
that has been examined in order to find the defect, and is
defined as follow:

 T-score = %100*
||

|| min

V
V edexa

 (3)

|V| refers to the size of the program (lines of the executable
statements), and |Vexamined| refers to the number of statements
investigated by the programmer in order to find the defect. The
lower the T-score value is, the more effective the method will
be. Therefore, a larger △TS implies a greater improvement.

4.3 Experimental Results
4.3.1 Recognition Accuracy

Table 2 shows the ability of our approach to recognize the

coincidental correctness. It takes p (the ratio of the number of
clusters) as a parameter, and p = 6%. This value is selected
according to previous studies [6], [8]. The column named
“Range” represents the percentages of false negatives and false
positives, and the column of “Versions” represents the
percentage of versions that exhibit a given range. "FN" and
"FP" are short for "False Negative" and "False Positive"
respectively.

From Table 2, the following observations can be made
about the recognition accuracy of our approach:

1) 2% versions can recognize more than 90% coincidentally
correct test cases

2) 21% versions generate 10%-50% false negatives
3) 33% versions generate 50%-90% false negatives
4) 44% versions fail to recognize most of the coincidentally

correct tests
5) Most of the versions, 92%, specifically, generate a small

number of false positives, in the range [0%, 10%]
It can be speculated that larger number of clusters yields a

higher rate of false negatives but a lower rate of false positives.
It is reasonable because the purity of a cluster increases as the
number of clusters increases. As a result, some of the
coincidentally correct test cases, once put into a cluster with
some failed ones, are spread to another cluster full of passed
test cases. Therefore, these coincidentally correct test cases will
be missed. Similarly, some non-coincidentally correct test
cases will be spread to another cluster full of passed test cases
so that these test cases will not be mistaken for coincidental
correctness.

TABLE 2. RECOGNITION ACCURACY

Range Versions%(FN) Versions%(FP)
0%~10% 1.51 92.42
10%~20% 1.51 3.03
20%~30% 7.57 4.54
30%~40% 4.54 0
40%~50% 7.57 0
50%~60% 3.03 0
60%~70% 6.06 0
70%~80% 9.09 0
80%~90% 15.15 0
90%~100% 43.93 0

271

4.3.2 Impact on the Effectiveness of Fault Localization
We use box plots to depict the overall experimental results.

It takes p (the ratio of the number of clusters) as a parameter,
and p = 6%. Each box plot represents the statistics of the T-
score reduction for each subject program. The bottom and top
of the box are 25th and 75th percentile, respectively. The line
within the box denotes the median of the values in the box and
the point denotes the mean. The ends of the whiskers represent
the minimum and maximum of all the data.

Figure 2 and 3 illustrates the impact of our approach on the
effectiveness of CBFL. Figure 2 depicts the results applying the
cleaning strategy, and Figure 3 depicts the results applying the
relabeling strategy. The ideal situation, where all the
coincidentally correct test cases are picked out, with 0% false
negatives and 0% false positives, is also shown on the figures
as a comparison. The bold dot presents the average T-score
reduction for each program under the ideal situation.

19.57% versions have been improved by the cleaning
strategy, and the T-score reduction can reach up to 8.55%.
33.33% versions have been improved by the relabeling strategy,
and the T-score reduction can reach up to 22.0%.

In summary, as shown in Figure 2 and 3, the cleaning
strategy is relatively a safe method, because if p is set to a
reasonable value, 6% in our case, more than 87% versions will
be improved or stay the same, with an increase rate of
0.67%~8.55%, while the rest 13% may be deteriorated, with
the decrease rate of -2.0% ~ -0.41%.

The effectiveness of fault localization of some versions
remains the same. We observe that the faulty statements in
most of the versions have already been ranked at the very front
position, such that dealing with the coincidental correctness
will have little effect on the improvement. Moreover, as
presented in W. Masri et al., [5], although cleaning coincidental
correctness will lead to an increment of the suspiciousness
metric of the faulty statement, the rank of the statement will not
necessarily increase correspondingly. Therefore, the
effectiveness of CBFL after applying our methodology remains
the same or even gets worse for some versions. The key factors
that influence the improvement of CBFL are the rate of false
negatives and false positives, which are heavily depended on
the clustering results.

Furthermore, we conducted a paired t-test on the differences
between the T-scores before and after applying our strategy.
The paired t-test is a statistical technique that is used to
compare two population means in the case of two samples that
are correlated, especially in a “before- after” study. Suppose
the T-score before using our strategy is A, and the T- score
after using our strategy is B. H0: A <= B, Ha: A > B. Note that,
during this test, only T-scores less than 20% are taken into
account. The reason is that it is not common to ask
programmers to examine more than 20% of the code in practice
[11]. It can observed that, by using cleaning strategy and
relabeling strategy, the p-value is 0.01 and 0.02, respectively,
both of which implies that the improvement is significant at the
0.05 level.

printtokens2 printtokens replace schedule2 schedule totinfo

 Cleaning Strategy

T-
sc

or
e

re
du

ct
io

n%

-10

-5

0

5

10

15

20

25

30

35

40

 Ideal

Figure 2. Impact of cleaning strategy on the effectiveness of CBFL

printtokens2 printtokens replace schedule2 schedule totinfo
-10

0

10

20

30

40

50

T-
sc

or
e

re
du

ct
io

n%

 Relabeling Strategy
 Ideal

Figure 3. Impact of relabeling strategy on the effectiveness of CBFL
Statistical test is also conducted on the results of the ideal

situation. Under the ideal situation, using cleaning and
relabeling strategy, the p-value is 3.43*10-4 and 9.71*10-17
respectively, and both of them indicate a very significant
improvement.

The above result shows that it is promising to improve the
effectiveness of CBFL by dealing with coincidentally correct
test cases. And using our approach, the preliminary
experimental result is encouraging and convincing.

4.4 Threads to Validity
The threats to external validity include the use of Siemens

set as our subject programs. As a matter of fact, these programs
are all small C programs and the faults are manually injected.
To reduce this threat, we plan to apply our technique to larger
programs in the future.

The threats to internal validity include the tools we use to
generate execution profiles and conduct the cluster analysis. In
our context, we use gcov to record coverage information and
rely on the data mining tool Weka for cluster analysis. Both of
them are mature and widely used. Another issue related to
internal validity is the clustering algorithm we choose. As in
our study, we use simple K-means because it is simple and
effective. However, having the failed test cases clustered either
too centralized or too scattered will have adverse effect on the

272

results. To be more specific, they will lead to high false
negative and false positive rates, respectively.

5 RELATED WORK
Voas [2] introduced the PIE model, which emphasizes that

for a failure to be observed, the following three conditions must
be satisfied: “Execution”, “Infection”, and “Propagation”. W.
Masri et al. [3] have proved that coincidental correctness is
responsible for reducing the safety of CBFL.

As shown in the previous studies [4, 5], the efficiency and
accuracy of CBFL can be improved by cleaning the
coincidentally correct test cases. However, it is challenging to
identify coincidental correctness because we do not know the
location of fault beforehand. X. Wang et al. [4] have proposed
the concept of context pattern to help coverage refinement so
that the correlation between program failures and the coverage
of faulty statements can be strengthened. W. Masri et al. [5]
have presented variations of a technique that identify the subset
of passed test cases that are likely to be coincidentally correct.
One of these techniques first identifies program elements (cce)
that are likely to be correlated with coincidentally correct test
cases. Then it categorizes test cases that induce some cces as
coincidental correctness. The set of coincidentally correct test
cases would be partitioned into two clusters further. A more
suspicious subset will be cleaned to improve the effectiveness
of fault localization. The experimental result is promising,
however, although it used the same subject program (the
Siemens test suite) as ours in their experiment, it is applicable
to only 18 versions of the 132 versions, which has a smaller
application scope than our approach (applicable to 66 out of
132 versions).

Previous empirical observations have shown that, by cluster
analysis, test cases with similar behaviors could be grouped
into the same clusters. Therefore, cluster analysis has been
introduced for test case selection. Vangala et al. [12] used
program profiles and static execution to compare test cases and
applied cluster analysis on them, identifying redundant test
cases with high accuracy. Dickinson et al. introduced cluster
filtering technique [7, 13]. It groups similar execution profiles
into the same clusters and then selects a subset of test cases
from each cluster based on a certain sampling strategy. Since
test cases in the same cluster have similar behaviors, the
subsets are representative for the test suite so that it is able to
find most faults by using the selected subsets instead of the
whole test suite.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a clustering-based strategy to

identify coincidental correctness from the set of passed test
cases. To alleviate the adverse effect of coincidental
correctness on the effectiveness of CBFL, two strategies, either
removing or relabeling, were introduced to deal with the
identified coincidentally correct test cases. We conducted an
experiment to evaluate the proposed approach. The
experimental results suggested that it achieved approximate
results as the ideal situation did.

We intend to conduct more comprehensive empirical
studies and explore the following issues in our future work:

1) Search for better clustering algorithms to fit in with this
scenario. As denoted in section 4.4, the failed test cases
clustered either too centralized or too scattered would lead to
poor results. We use K-means in our experiment for its
simplicity, and there are many other clustering algorithms need
to be explored.

2) Conduct empirical studies on how multiple-faults affect
the result of our approach and explore how to deal with this
situation to minimize the adverse effects.

REFERENCES

[1] J.A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique”, ASE, 2005, pp.273-282.

[2] J.M. Voas, “PIE: A dynamic failure-based technique”, IEEE Trans.
Softw. Eng., 1992, pp.717-727.

[3] W. Masri, R. Abou-Assi, M. El-Ghali and N. Fatairi. Nour, “An
empirical study of the factors that reduce the effectiveness of coverage-
based fault localization”, ISSTA, 2009, pp.1-5.

[4] X. Wang, S. Cheung, W. Chan and Z. Zhang, “Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization”, ICSE, 2009, pp.45-55.

[5] W. Masri and R. Abou-Assi, “Cleansing test suites from coincidental
correctness to enhance fault-localization”, ICST, 2010, pp.165-174.

[6] S. Yan, Z. Chen, Z. Zhao, C. Zhang and Y. Zhou, “A dynamic test
cluster sampling strategy by leveraging execution spectra information”,
ICST, 2010, pp.147-154.

[7] W. Dickinson, D. Leon and A. Podgurski, “Finding failures by cluster
analysis of execution profiles”, ICSE, 2001, pp.339-348.

[8] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang and B. Xu, “An improved
regression test selection technique by clustering execution profiles”,
QSIC, 2010, pp.171-179.

[9] R. Abreu, P. Zoeteweij, R. Golsteijn, A. J.C. van Gemund, “A practical
evaluation of spectrum-based fault localization”, Journal of Systems and
Software, Volume 82, Issue 11, 2009, pp. 1780-1792.

[10] B. Liblit, M. Naik, A. Zheng, A. Aiken and M. Jordan, “Scalable
statistical bug isolation”, PLDI, 2005, pp.15-26.

[11] C. Liu, X. Yan, L. Fei, J. Han and S. Midkiff, “SOBER: statistical
model-based bug localization”, ESEC/FSE, 2005, pp.286-295.

[12] V. Vangala, J. Czerwonka and P. Talluri, “Test case comparison and
clustering using program profiles and static execution”, ESEC/FSE,
2009, pp. 293-294.

[13] W. Dickinson, D. Leon and A. Podgurski, “Pursuing failure: the
distribution of program failures in a profile space”, ESEC/FSE, 2001, pp.
246-255.

[14] V. Debroy, W. Eric Wong, X. Xu, B. Choi, “A grouping-based strategy
to improve the effectiveness of fault localization techniques”,
QSIC,2010, pp.13-22.

[15] T. Denmat, M. Ducassé and O. Ridoux, “Data mining and cross-
checking of execution traces: a re-interpretation of Jones, Harrold and
Stasko test information”, ASE, 2005, pp. 396-399.

[16] L. Naish, H. J. Lee, and K. Ramamohanarao, A model for spectra-based
software diagnosis, TOSEM, in press.

[17] Software-artifact Infrastructure Repository. http://sir.unl.edu/, University
of Nebraska.

[18] http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
[19] http://en.wikipedia.org/wiki/Euclidean_distance

273

Regression Testing Prioritization Based on Fuzzy
Inference Systems

Pedro Santos Neto - UFPI - Teresina - PI - Brazil

pasn@ufpi.edu.br

Ricardo Britto - UFPI - Teresina - PI - Brazil

pasn@ufpi.edu.br

Thiago Soares - UFPI - Teresina - PI - Brazil

thiagoacs2@gmail.com

Werney Ayala - UFPI - Teresina - PI - Brazil

werney@gmail.com

Jonathas Cruz - UFPI - Teresina - PI - Brazil

jonathas jivago@hotmail.com

Ricardo Rabelo - USP - São Paulo - SP - Brazil

ricardor@sc.usp.br

Abstract—The software testing is a fundamental activity re-
lated to product quality. However, it is not performed in suitable
way by many organizations. It is necessary to execute testing in a
systematic and planned way. This work presents a fuzzy inference
system for test case prioritization, based on the use of inputs
related to volatility, complexity and relevance of requirements.
The developed inference system allows the specification of a
prioritization strategy by the tester based on linguistic rules in
a simple and easy way.

I. INTRODUCTION

Testing is the final verification of a software product [1].

Despite of the relevance of this phase on a project, testing

is not systematic fulfilled for the enterprises. That situation

happens mainly because of the costs and the short schedules

related to the software projects.

The software engineering community must find ways to

facilitate the inclusion of systematic testing into software pro-

cesses. In some enterprise environments, which use software

testing to assure the software quality, might be necessary

prioritize existing test cases because often there is not enough

time or resources to execute all planned test cases. In this case,

it is desirable to prioritize the test cases, in order to maintain

the most important ones in the first positions, assuring their

execution. To do that, it is necessary create a execution order

that optimizes the most important features for the testing in a

certain time, such as code covering.

Since creating the test execution order is a np-hard problem

[2], it is not possible to solve that problem in an efficient way

through standard techniques [3]. Thus, many researchers have

applied computational intelligence techniques to solve the test

case prioritization problem ([4], [5], [6]).

This work presents an approach based on Mamdani fuzzy

inference system [7] that uses requirements to solve the

test case prioritization problem ([8], [5], [9]). The approach

allows that a test engineer can insert his knowledge about

the prioritization process into the fuzzy inference system.

Therefore, the fuzzy inference system mimics the behavior

of the expert.

The main contribution of this work is the use of a fuzzy

inference system to qualify each existing test case of a

software project. This feature allows the prioritization through

a simple sort algorithm, driven by the value inferred for each

test case, based on common input data as relevance of the

requirement for the project, its complexity and volatility. The

complexity and volatility can be easily obtained from common

software metric tools, like Sonar1.

This work is organized as following: in Section 2 is pre-

sented a software testing primer; in Section 3 a fuzzy inference

system is described; in Section 4 the proposed approach is

detailed; in Section 5 an empirical evaluation is presented; in

Section 6 some related works are discussed; finally, in Section

7 the conclusions and future works are presented.

II. SOFTWARE TESTING PRIMER

Software Testing is one of the main activities of quality

assurance in software development. Software testing consists

of the dynamic verification of the behavior of a program on

a finite set of test cases, suitably selected from the usually

infinite executions domain, against the expected behavior.

There are different classifications related to software testing.

Tests can be classified by the target: one module (unit), several

modules grouped (integration) and all the modules together

(system).

Testing can be aimed at verifying different properties. This

represents the test classification by objectives. Test cases can

be designed to check that the functional specifications are

correctly implemented (functional testing). Other important

objectives for testing include (but are not limited to) reliability

measurement, usability evaluation, performance, stress and

acceptance, for which different approaches would be taken.

Note that the test objective varies with the test target; in

general, different purposes being addressed at a different level

of testing.

1http://www.sonarsource.org/

Pedro Santos Neto - UFPI - Teresina - PI - Brazil
 pasn@ufpi.edu.br

Th iago Soares - UFPI - Teresina - PI - Brazil
 thiagoacs2@gmail.com

Jonathas Cruz - UFPI - Teresina - PI - Brazil
 jonathas jivago@hotmail.com

 Ricardo Britto - UFPI - Teresina - PI - Brazil
 pasn@ufpi.edu.br

 Werney Ayala - UFPI - Teresina - PI - Brazil
 werney@gmail.com

 Ricardo Rabelo - USP - S˜ao Paulo - SP - Brazil
 ricardor@sc.usp.br

274

According to IEEE [10], regression testing is the selective

retesting of a system or component to verify that modifications

have not caused unintended effects. In practice, the idea is to

show that software did not regress, that is the software which

previously passed the tests still does. The repetition of tests

is intended to show that the softwares behavior is unchanged,

except insofar as required. Obviously a trade-off must be made

between the assurance given by regression testing every time

a change is made and the resources required to do that. A

important limiting factor applied to regression testing is related

to time-constraints. Sometimes, the total execution of testing

can take many hours. This makes unfeasible the test execution

constantly. Due to this factor it is required to prioritize the test

cases, in order to create the best sequence that meets the time

constraints.

It is relevant to emphasize that the selection must be found

quickly and the process to find this must not require the

tests execution, since the objective is right to reduce the test

execution.

Unfortunately, several approaches developed so far, mainly

related to the use of search based techniques applied to

this problem, are only theoretical proposals, that can not be

executed in a real software development environment.

It is mandatory the use of information that can be easily

obtained by automatic tools. Therefore, it is mandatory the

use of algorithms that do not require the tests execution to

find the best order. The sequence must be inferred from test

properties.

III. FUZZY INFERENCE SYSTEMS

Fuzzy inference systems are based on linguistic production

rules like ”if ... then”. The fuzzy sets theory [11] and fuzzy

logic [12] provide the math base required to deal with com-

plex processes, based on inaccurate, uncertain and qualitative

information.

Fuzzy inference systems have their operation based on three

steps: i) fuzzification, ii) inference procedures, and iii) defuzzi-

fication. The fuzzification is a mapping of the numerical inputs

to fuzzy sets. Those sets are represented by linguistic terms,

such as ”very”, ”little”, ”medium”, etc. The fuzzy inference

procedure is responsible to infer output fuzzified value based

on the input values. Defuzzification is applied to associate a

numerical value to a fuzzy output, obtained from the fuzzy

inference procedure.

In this work, we applied a Mamdani fuzzy inference system

model. That system model was applied because it computa-

tionally simulate the human ability to take rational decisions in

an environment with inaccuracies, uncertainties and noise [7].

Production rules in a Mamdani inference model have fuzzy

sets in their antecedents and consequents. Therefore, a rule

base in a Mamdani model can be defined exclusively in a

linguistic way, without the need of numerical data.

A fuzzy inference systems can express and handle qualita-

tive information. This allows the mapping of the experience

of domain specialists, facilitating the decision making process.

Thus, using a Mamdani fuzzy inference system, to solve the

test case prioritization problem, allows to get an action strategy

/ control that can be monitored and interpreted from the

linguistic point of view. Thus, the action / control strategy

of the Mamdani fuzzy inference system can be considered as

reasoned and consistent as the strategy of domain experts.

IV. PROPOSED APPROACH

Our approach evaluates the requirements to infer the test

case criticality for regression testing purpose. However, test

cases from real systems can eventually cover artifacts that may

be related to more than one requirement. In the current stage

of our work we do not take into account this behavior.

Each requirement is evaluated based on 3 variables that

represent the volatility, complexity and relevance. By using

these variables a value that represents the criticality of a test

case is generated. We projected a Mamdani fuzzy inference

system to infer the test case criticality, as shown in Figure 1.

The crisp input variables of the fuzzy inference system are

Volatility, Complexity and Relevance. The meaning of each

variable is described as following:

• Volatility (V): value representing the amount of versions

of the artifacts related to a requirement. The amount of

versions can be easily obtained from a control version

systems like GIT2 and SVN3.

• Complexity (C): value representing the ciclomatic com-

plexity of the artifacts related to a requirement. This can

be easily obtained from a common software metrics tools,

like Sonar.

• Relevance (R): value representing the relevance of the

requirement for the customer.

The values related to volatility and complexity are calcu-

lated from the data obtained for each artifact associated to a

requirement. Thus, the volatility for a specific requirement is

obtained from the volatility of the whole classes linked to the

requirement implementation. To do this, we use the traceability

matrix [1] to obtain the forward traceability information.

The 3 input variables can receive real values between 0

and 5. The output variable of the fuzzy inference system is

Criticality of the Test Case (CTC). The bigger the CTC, the

bigger the test case execution priority. Thus, the test case with

the biggest inferred CTC is the first to be executed.

The CTC output variable can receive real values between 0

and 10, representing the real values of that variable.

To map the fuzzy sets, we used a uniform distribution of the

sets. This is the normal process to do this task. After done the

uniform distribution of the fuzzy sets, it is possible to improve

the mapping empirically or using computational intelligence

techniques such genetic algorithms [13].

We used triangular and trapezoidal membership functions to

empirically map fuzzy sets to the input variables. To each input

variable 3 fuzzy sets were mapped: Low (L), Medium (M) and

High (H). We also used triangular membership functions to

empirically map fuzzy sets to the output variable. We mapped

2http://git-scm.com/
3http://subversion.tigris.org/

275

Fig. 1. Proposed Fuzzy Inference System

5 fuzzy sets to CTC: Very Low (VL), Low (L), Medium (M),

High (H) and Very High (VH). We can see in details the

distribution of the fuzzy sets in Figure 2.

To generate CTC of each test case through the 3 specified

input variables, we must set the rule base in the proposed

fuzzy inference system. The implemented rule base, which is

the kernel of the CTC estimation strategy, has 27 rules. The

rule base is presented in a matrix way, as seen in Table I.

In this Table, R means Relevance, C means Complexity, V

means Volatility, VL means very low, L means low, M means

medium, H means high and VH means very high.

TABLE I
THE RULE BASE OF THE PROPOSED APPROACH

R/C
V H/H H/M H/L M/H M/M M/L L/H L/M L/L
H VH H M H M M M M L
M VH H M M M M M L VL
L H M M M M L M L VL

The rule base and the fuzzy sets associated to the input and

output variables were defined using the authors’ knowledge

related to software testing, but the rule base was improved with

the expert knowledge as discussed in the following section.

The proposed approach allows that a test engineer easily

changes the test case prioritization strategy. To do that, the

expert must only change the rule base of the fuzzy system.

In this work, we implemented the centroid defuzzification

technique [14], formalized by Equation 1. In this equation,

x* is the defuzzified output representing the CTC value,

μi(x) is the aggregated membership function and x is the

output variable. It is important to notice that the implemented

inference system allows user to change the defuzzification

method in a simplified way.

x∗ =

∫
μi(x)x dx∫
μi(x) dx

(1)

V. EMPIRICAL EVALUATION

In order to evaluate the proposed approach, we have carried

out an empiric evaluation. We had 2 objectives to be reached

with the empiric evaluation:

1) Show the ability to mimic the expert knowledge. It

means that our fuzzy inference system should prioritize

the test cases of an under development system in a

similar way that the expert who adjusted the rule base

and the membership functions of the fuzzy inference

system;

2) Show the ability to generalize the knowledge of the ex-

pert. It means that the system should prioritize different

systems in a similar way.

In order to reach the above mentioned objectives, we applied

our approach to prioritize test cases of 2 real information

systems. The evaluated information systems are described as

follows:

• JBook: a book loan system to control the library of a

real software house.

• ReqG: a requirement management tool created to control

the requirements and use cases of a project.

The systems were analyzed with the help of a test expert

that have participated in the development of both systems. The

tester is member of a software development company at Brazil.

He has 2 years software development experience.
The empirical evaluation was conducted in the following

order: i) the tester indicated the values for Relevance (R),

Complexity (C) and Volatility (V) for each requirement related

to ReqG system; ii) the tester indicated the prioritization order

for ReqG tests in his point of view, using only his feeling

about the features; iii) we calibrated a rule base of our fuzzy

inference system with the tester information; iv) the tester

indicated the values (R, C, V) for JBook system; v) the tester

indicated the prioritization order for JBook tests in his point

of view, using only his feeling about the features; vi) we

generated the prioritization order for JBook using the proposed

approach; vii) we compared the results.
In order to calibrate the fuzzy rule base we have used linear

regression [15]. This is an approach to model the relation-

276

(a) Volatility

(b) Complexity

(c) Relevance

(d) CTC

Fig. 2. Distribution of the fuzzy sets

ship between a scalar variable and one or more explanatory

variables. The rule base were calibrated from a estimation

based on the coefficients R, C and V, suggested from the

analysis of the prioritization indicated by the tester. Running

a linear regression we can easily obtain the coefficients of the

equation that models the behavior. The bigger the coefficient

of a variable, the bigger its influence in the result. Thus, we

have to reflect this in the rule base. The variable with bigger

influence must be more important in the result determination

of CTC.

In order to facilitate the presentation of the results, we

grouped the results in two tables. Table II shows the test case

prioritization inferred by our approach for ReqG system. Table

III shows the test case prioritization inferred by our approach

for JBook system.

The tables have the same columns. Column R shows the

relevance of each requirement of the system. The column

C shows the complexity of each requirement. The column

V shows the volatility of each requirement. The column

CTC shows the criticality of the test case which cover the

respectively requirement. Finally, the column Tester shows the

prioritization indicated by our expert.

The analysis of the results shows some interesting data:

• The results from the Tester and our approach, related to

ReqG system, was exactly the same. This was possible

due to our calibration of the rule base made by using the

tester feeling. So, it was the expected result.

• The results from the Tester and our approach, related to

JBook system, was almost the same. There was only two

mistakes among 13 possibilities. This indicates that our

approach has mimicked the Tester behavior.

• Once in both cases our proposed fuzzy inference system

mimicked the Tester behavior, we also reached the other

objective, that was generalize the knowledge of the ex-

pert.

The results described above validates our approach, since

it is possible to capture a Tester feeling and use it for priori-

tization purposes. The data required to execute our approach

is simple and could be obtained from automatic tools. Our

approach does not requires the test execution to prioritize the

test cases. This is a relevant behavior since the system source

code changes all the time and it is necessary to prioritize test

to be executed to assure the system behavior.

TABLE II
PRIORITIZATION SEQUENCE FOR REQG INFERRED BY THE FUZZY

INFERENCE SYSTEM

Requirements R C V CTC Tester
Project 5 3 3 7,15 1
Review 3 5 5 7,15 2
Requirement 5 2 2 6,76 3
Use Case 5 3 2 6,76 4
Member 3 2 4 4,48 5
Change History 2 4 2 4,26 6
Actor 4 2 2 4,26 7
Review Criteria 3 1 2 3,86 8

277

TABLE III
PRIORITIZATION SEQUENCE FOR JBOOK INFERRED BY THE FUZZY

INFERENCE SYSTEM

Requirements R C V CTC Tester
Loan Request 5 3 2 6,76 1
Loan Report 5 3 2 6,76 2
Publication Register 5 1 3 5 3
Loan Confirmation 5 1 1 5 4
Loan Finalization 5 2 1 5 5
Login 5 1 1 5 6
Book Registration 4 1 2 4,16 7
Loan Cancellation 4 2 1 4,16 8
Loan Cancellation Request 3 2 1 3,86 9
Label Tipping Report 2 1 2 3,41 13
Password Change 3 1 1 2,33 11
User Registration 3 1 1 2,33 12
Email Notification 2 1 1 2,12 10

VI. RELATED WORKS

The work developed by Kavitha et al [8] presents an

approach to prioritize test cases based on requirements. The

approach uses three factors to prioritize test cases: the require-

ment priority in the client view, the implementation complexity

and the volatility of these requirements. For each requirement

a factor named RFV (Requirement Factor Value) is calculated,

representing the average of the considered factors. The weight

of a test case is obtained through a formula that takes into

account the RFV of all the requirements covered by the test

case. The bigger the weight of a test case, the bigger its

relevance. Our work also uses three factors to calculate the

criticality of a test case, but we use a fuzzy system to mimic

an expert tester.

The work of Srikanth et al [9] proposed a technique

for test case prioritization named PORT (Prioritization of

Requirements for Test). PORT prioritizes system test cases

based upon four factors: requirements volatility, customer

priority, implementation complexity, and fault proneness of

the requirements. The work presents a case study on four

projects developed by students. The results show that PORT

prioritization at the system level improves the rate of detection

of the faults considered in the study. The method to guide

the fault injection is not presented in the study. The main

difference from our work is the absence of an expert evaluation

in order to generate a guide for prioritization, since this could

present a bias depending on the faults used for evaluation.

Yoo and Harman [4] introduced the concept of Pareto

multiobjective optimization to the problem of test case se-

lection. They describe the benefits of Pareto multiobjective

optimization, and present an empirical study that investigated

the effectiveness of three algorithms for Pareto multiobjective

test case selection. However, the technique is not suitable for

a real scenario, since it requires several test executions to find

the best selection. Test cases change all the time, being hard

to find a static order that is not based on properties easily

obtained in an automatic way.

Maia et al [5] proposed an alternative solution to order

test cases. Such technique uses Reactive GRASP metaheuris-

tic to prioritize test cases. They compare this metaheuristic

with other search-based algorithms previously described in

literature. Five programs were used in the experiments. This

work has the same weakness of the previous work: the need

to execute all the tests to find the best order.

As mentioned before, our work is based on a fuzzy infer-

ence system that uses common input data easily generated

by automatic metric tools. The approach uses the expert

knowledge to prioritize test cases and does not require the

test execution to generate the suitable order. It qualifies each

test case individually in order to infer its criticality. The bigger

the criticality, the bigger the test case execution priority. Thus,

the test case with the biggest inferred criticality must the first

to be executed.

VII. CONCLUSION AND FUTURE WORKS

This paper presents a Mamdani fuzzy inference system

approach to solve regression testing prioritization problem on

software projects. The approach presented differs from related

works cited in Section VI because the proposed fuzzy infer-

ence system qualifies each test case individually, calculating

the Criticality of the Test Case (CTC). Using the CTC, the test

engineer can sort the test cases using a standard sort algorithm.

In the approaches present in the related works are created a

completely test case sequence. Any necessary change in the

sequence requires a recalculation.

Our empirical evaluation, although simple, validates our

approach, since it have shown that is possible to capture a

Tester knowledge and use it for prioritization purposes. The

input data required to execute our approach is simple and could

be obtained from automatic tools like SVN and Sonar. Besides,

our approach does not require the test execution to prioritize

the test cases, like other approaches described in the Related

Work Section.

Regression testing must be executed all the time. Any

approach created to solve regression testing prioritization

problem must be fast and simple to be used on real scenarios.

Our approach meets this requirement.

At the time that this is a work in progress, some issues in

the current stage of this work do not assure the optimality of

the inferred results:

• The experiment have used only one Tester. It is necessary

to use a test team to generalize our results;

• It is necessary to search for alternatives to calibrate

membership functions and the rule base of the proposed

fuzzy inference system. We have used a linear regression

in this work, but further work is needed;

• The approach must be used in a real scenario. It is

necessary to create a tool able to be used by a team during

a software development project.

Despite the issues summarized above, we can conclude, in

a preliminary way, that the proposed approach is much more

intuitive and suitable to be used by test engineers than other

kinds of approaches based only in metaheuristics. It is possible

due to the fuzzy inference system rule base construction.

278

It mimics the test engineer knowledge simpler than other

approaches heavily based on mathematical formulations.

We are developing some improvements for this work:

• a stable version of a tool that incorporates our approach

and can be connected directly with SVN and Sonar tools;

• a new version of the proposed fuzzy inference system

that will use Computational Intelligence to optimize the

previous specified membership functions and rule base as

well;

• studies to specify a metric to measure, in a formal way,

the Relevance variable. The metric will be probably based

on SQFD (Software Quality Function Deployment) [16].

VIII. ACKNOWLEDGMENTS

We would like to thank CNPq (grant 560.128/2010) and

INES, for partially supporting this work. Also, we would

like to acknowledge the Infoway company by the important

contributions to the research.

REFERENCES

[1] R. Pressman, Software Engineering: A Practionerı́s Approach. McGraw
Hill, 2006.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[3] M. Harman, “Search-based software engineering,” Information and
Software Technology, pp. 833–839, 2001.

[4] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2007.

[5] C. L. B. Maia, F. G. Freitas, and J. T. Souza, “Applying search-based
techniques for requirements-based test case prioritization,” in Anais do I
Workshop Brasileiro de Otimizacão em Engenharia de Software, 2010.

[6] C. L. B. Maia, R. A. F. Carmo, F. G. Freitas, G. A. L. Campos, and J. T.
Souza, “Automated test case prioritization with reactive grasp,” Advances
in Software Engineering - Special Issue on Software Test Automation,
2010.

[7] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning
Using Linguistic Synthesis,” IEEE Transactions on Computers, vol. 26,
no. 12, pp. 1182–1191, 1977.

[8] R. Kavitha, V. Kavitha, and N. Kumar, “Requirement based test case
prioritization,” in Communication Control and Computing Technologies
(ICCCCT), 2010 IEEE International Conference on, 2010.

[9] H. Srikanth, L. Williams, and J. Osbome, “System test case prioritization
of new and regression test cases,” in International Symposium on
Empirical Software Engineering, 2005.

[10] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,”
New York, USA, Sep. 1990.

[11] L. Zadeh, “Fuzzy Sets*,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[12] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions
on Fuzzy Systems, vol. 4, no. 2, 1996.

[13] L. B. LEAL, M. V. S. LEMOS, R. HOLANDA FILHO, R. A. L.
RABELO, and F. BORGES, “A hybrid approach based on genetic
fuzzy systems for wireless sensor networks,” in IEEE Congress on
Evolutionary Computation (CEC), june 2011, pp. 965 –972.

[14] T. J. Ross, Fuzzy Logic with Engineering Applications. Wiley, 2004.
[15] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regression

Models, fourth international ed. McGraw-Hill/Irwin, Sep. 2004.
[16] S. Haag, M. K. Raja, and L. L. Schkade, “Quality function deployment

usage in software development,” Commun. ACM, vol. 39, pp. 41–49,
January 1996.

279

280

integrate the test results.

 Autotest, which is a framework for automated testing.

 Eucalyptus, which manages Xen nodes u sing cloud
controller, node controller and so on.

 Xen nodes, which makes virtual machine available by
virtualization in cloud infrastructure.

A. Test_Manager
 T est_Manager is a module developed using Web
framework Django. It is the control center of AT-Cloud, which
manages the communication among the Web, Eucalyptus and
Autotest. The functions of Test_Manager are as follows:

1) Receives the test task, configuration file and test scene
flow graph from tester. The test task includes test source code,
test scripts based on test scene flow graph. The configuration
file describes the hardware and software environment
requirement of a test task.

2) Analyzes test scene flow graph and finds parallel paths
according to the prime path coverage criterion.

3) Transfers emi-id, unique ID of the registered machine
software image on the cloud, to the cloud controller.

4) Registers virtual machines to Autotest Server as clients
and schedules parallel test paths to run on the registered VMs.

5) Collects test results produced by each test path from
Autotest and integrates them together.

B. Autotest
 A utotest is an open test framework for implementing
automated test. The test procedures are shown as follows:

1) Autotest Server receives test source code, test scripts
from Test_Manager.

2) Autotest Server receives VM IP address from cloud and
adds the VM IP to Autotest Server’s host list as an Autotest
client.

3) Scheduled by Test_Manager, Autotest Server creates test
job and run test job on Autotest client.

4) Autotest Server saves test results for every test.

C. Eucalyptus
 A T-Cloud deploys virtual machine resource using
Eucalyptus, which comprised five components: Cloud
Controller, Walrus, Cluster Controller, Storage Controller, and
Node Controller. The procedures of providing virtual machine
resources VMs are as follows:

1) The cloud controller receives emi-id from Test_Manager.

2) According to the emi-id, Eucalyptus chooses or launches
an instance of VMs.

3) After creating an VM instance, Eucalyptus assigns the
instance an IP address, and this IP address will be transmitted
to Autotest Server by Test_Manager.

D. Xen
 AT-Cloud uses Xen as virtualization software. Xen is a

virtual-machine monitor providing services that allow multiple
computer operating systems to execute on the same computer
hardware concurrently [7].

III. FINDING PARALLEL TEST PAHTS
 Path test is a k ind of structure test based on program
source code in white-box test, which derives test path from
program graph [8]. In this paper, path test is introduced for
software function testing, modeling the test scene flow based
on prime path coverage criterion.

A. Test Scene Flow Graph and Test Path
By decomposing software functions based on the scenes of

a unit test, we can design the test cases according to the test
equivalence class, and use a test scene flow graph to describe
the function point and their relationships, which may have a
number of test paths.

B. Prime Path Coverage Criterion
 Prime path coverage criterion has the practical advantage
of finding the parallel paths and improving the test coverage.
In prime path coverage, tests should tour each prime path in a
test scene flow graph. Prime path coverage requires touring all
subpaths of length 0 (all nodes), of length 1 (all edges), length
2, 3, etc. Thus it subsumes node coverage, edge coverage and
edge-pair coverage, which have a high path coverage rate [9].
The following are definitions about prime path coverage
criterion:

1) Simple path: ni and nj are nodes in test scene flow graph
G. A path form ni to n j is a simple path if no node a ppears
more than once in the path, with the exception that the first
and last nodes may be identical.

2) Prime path: A path from ni to nj is a prime path if it is a
simple path and it does not appear as a proper subpath of any
other simple path.

3) Prime path coverage (PPC) criterion: Test requirement
contains each prime path in graph G.

C. Finding Parallel Test Paths
 According to PPC criterion, after finding all prime paths in
a graph, the parallel test paths can be obtained as follows.

1. Set up a test scene flow graph G
2. For path-length from 0 to the longest simple path in G,
find all possible prime path

 If the simple path's final node in G has no outgoing
edges or the simple path's node is a lready in the
path and not the first node

 A dd the simple path to path-list
 Else
 E xtending the simple path with every node that

can be reached from the final node
3. If one path in the path-list is a proper sub path of another

path in the path-list
 Re move the path from the path-list, finally all the

 pr ime paths will be found
4. For each prime path in the path-list
 S tarting with the longest prime paths and extends

them to the beginning and end nodes in the graph

281

D. An Example for Parallel Test Paths
 Fi gure 2 shows the test scene flow graph of software about
automated teller machine (ATM).

Figure 2 An example of test scene flow graph

 It has eight nodes and twelve edges except the start node
and end node. Seven prime paths can be found:

1) [1, 8]
2) [1, 2, 8]
3) [1, 2, 3, 4, 7, 8]
4) [1, 2, 3, 5, 7, 8]
5) [1, 2, 3, 6, 7, 8]
6) [1, 2, 3, 6, 8]
7) [6, 6]

 Then we get the set of test paths:

1) [1, 8]
2) [1, 2, 8]
3) [1, 2, 3, 4, 7, 8]
4) [1, 2, 3, 5, 7, 8]
5) [1, 2, 3, 6, 7, 8]
6) [1, 2, 3, 6, 8]
7) [1, 2, 3, 6, 6, 7, 8]
For each test scene, we can design the test cases from

different test equivalence class and set up a symbol to indicate
the next scene as TABLE I showed, which contains SceneId, a
serial number assigned to a test scene; CaseId, a serial number
assigned to a test case; Prerequisites describes the values of
the conditions and environment variable before the test is
performed; TestData are input data; ExpectedResult are
outputs or activities; NextScene indicates the following scene.
Test_Manager store the test case in XML document as Figure
3 and analyze the XML document to generate test scripts.

TABLE I. TEST SCENE AND TEST CASES

SceneId CaseId Prerequisites TestData ExpectedResult NextScene

1 1 100 exits in
User.CardId

CardId
=100

Output=“Input
Password” 2

1 2 101 not exits CardId=10Output= “Card 8

in User.CardId 1 error”

2 1 CardId=100
PS=123

PS=123 3

2 2 CardId=100
PS<>123

PS=123

Output=“Passwo
rd Error, again” 8

… … … … … …

Figure 3 Test cases in XML

IV. SCHEDULING PARALLEL TEST PATHS AND INTEGRATING
TEST RESULTS

The test paths can be dispatched on AT-Cloud and be
tested in parallel, which related with scheduling test paths and
integrating test results.

A. Schedule Parallel Test Paths
The goal of test task scheduling is to find an assignment

function to dispatch the test tasks for minimizing test time.
This paper considers test path length as dec ision
making criteria.

path-length: the number of nodes between beginning and
end nodes in a test path.

priority: the longer path has higher priority; the front path
near the start point of the graph has higher priority.

 G iven a set of test paths set S = {s1, s2, ..., sm}, there is a set
of VMs M in cloud, M = {m1, m2, ..., mn} and a set T for fail
test paths. The schedule procedure in AT-Cloud is as follows.

1) Sorting test paths
 If S is not empty, then sort the test paths based on path's
priority in descending order.

2) Choose or creating VMs
 I f machine set M is empty, which means VMs in AT-Cloud
with the required environment for the test task is not available,
notify the cloud to create a VM for the test task according to
the quantity of test paths and the resource requirements. If M
is not empty, choose a VM that satisfied the test requirement.

3) Dispatch test paths to VMs

<testcase>
<scene1>

<case1>
<Prerequisites> 100 exits in User.CardId
</ Prerequisites >
<TestData>CardID=100</TestData>
<ExpectedResult>Output=“Input Password”
</ ExpectedResult >

 <NextScene>scene2</NextScene>
</case1>
……

</scene1>
</scene2>
……
<scene2>
……

</testcase>

282

 No tify the cloud controller to get available VMs and
dispatch test paths to the VMs according to their priority
order. If a test path is dispatched, then remove it from set S.

4) Monitoring test status
 Monitor all the test paths and machines status in AT-Cloud.
If a VM is f ree and S is empty then terminate the VM to
release cloud resource.

5) Recording fault test path
 If any fault detected, related test path will be added into
test path set T, and also report to the tester.

6) Scheduling the waiting list
 After a test path has been finished, a VM will be free. If S
is not empty, return to step 3.

 Generally speaking, this process is repeated until all the
test paths are scheduled for processing on VMs, AT-Cloud is
automatically growing and shrinking resources as needed.

B. Integrate Test Result
Every test path on different VM may return a test result

and all the test results should be integrated in to a test report.
There are several descriptions:

1) The successful test results and the failure ones are
integrated into different files respectively so as to gain a fast
overview of program errors.

2) The errors are marked on the scene point of the test
scene flow graph which visualize the test results and show an
integrity view of the test results.

3) The starting time, ending time of the test, and also other
test information are recorded in a test result file.

4) A tester can download the result files and also examine
the test result through Test-Manager.

V. EXPERIMENTS
 In this section, we show an experiment of ATM software
parallel path tests over AT-Cloud. The test paths are explained
in section III.

 Four physical machines are used in the experiment, each
of which has 2 CPU and 2GB memory. One is installed
Eucalyptus cloud controller, cluster controller, SC controller,
one is installed Autotest server and our Test_Manager and the
other two are install Xen and Eucalyptus NC server and
running Centos5.5.

We prepare the software image which satisfies the test
environment requirement according the system configuration
file submitted by the tester from Test_Manager first. AT-Cloud
creates three v irtual machines and all the test paths are
dispatched on different machines. Figure 4 shows the parallel
test paths execution status on every Autotest client. It takes
less time for parallel paths test over AT-Cloud than serial paths
test on a single machine.

Figure 4 Parallel test paths execution

VI. CONCLUSIONS
This paper proposed an a utomated testing platform over

cloud called AT-Cloud and proposes a parallel path execution
method for software function testing. Test scene flow graph is
an effective way to describe the function points and test paths,
which contributes to parallel paths finding and test case scripts
generating.

 AT-Cloud not only permits automatically created or
selected a virtual machine according the test environment
requirements and also schedule multi test paths to the scalable
computing environment to implement parallel testing. Further,
we intend to generate test cases automated based on test scene
flow graph and consider more on test paths schedule
algorithm, do more experiments on large scale software which
can really show advantages of software test over Cloud.

ACKNOWLEDGMENT
This study is supported by Innovation Program of

Shanghai Municipal Education Commission (12ZZ060) and
Shanghai Foundation for Shanghai Key Laboratory
(09DZ2272600).

 REFERENCES
[1] Lian Yu, Wei-Tek Tsai, and X iangji Chen, Linqing Liu, Yan Zhao,

Liangjie Tang, Testing as a Service over Cloud, IEEE International
Symposium on Service Oriented System Engineering, 2010.

[2] T.Banzai ,H.Koizumi, R.Kanbayashi, T.Imada, H.Kimura, T.Hanawa,
M.Sato, D-Cloud: Design of a software testing environment for reliable
distributed system using cloud computing technology, in Proc.2nd
International Symposiums on Cloud Computing in conjunction with
CCCGrid 2010, May 2010.

[3] Toshilhiro Hanawa, Takayuki, Hitoshi Koizumi, Ryo Kanbayashi,
Takayuki Imada, Mitsuhisa Sato, Large-Scale Software Testing
Environment using Cloud Computing Technology for Dependable
Parallel and Distributed Systems, Third International Conference on
Software Testing, 2010 IEEE.

[4] SOASTA CloudTest Architecture,
http://www.alldaytest.com/index.do?lan=cn.

[5] D.Nurmi, R.Wolski, C.Gregorczyk, G.Obertelli, S.Soman, L.Youseff,
D.Zagorodnov, The Eucalyptus Open-source Cloud-computing System,
IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2009.

[6] Autotest structure overview,
http://autotest.kernel.org/wiki/AutotestStructure.

[7] Xen overview, http://xen.org
[8] Paul Ammann, Jeff Offutt, Introduction to Software Testing, China

Machine Press, 2008, pp.35- 42.
[9] Nan Li, Jeff Offutt, An Experimental Comparison of Four Unit Test

Criteria: Mutation, Edge-Pair, All-uses and Prime Path Coverage, IEEE
International Conference on Software Testing Verification and
Validation Workshops, 2009.

283

An Empirical Study of Execution-Data Classification Based on
Machine Learning

Dan Hao, Xingxia Wu, Lu Zhang
Key Laboratory of High Confidence Software Technologies, Ministry of Education

Institute of Software, School of Electronics Engineering and Computer Science, Peking University,
Beijing, 100871, P. R. China

{haod, wuxx10, zhanglu}@sei.pku.edu.cn

Abstract

As it may be difficult for users to distinguish a passing ex-
ecution from a failing execution for a released software sys-
tem, researchers have proposed to apply the Random For-
est algorithm to classify remotely-collected program execu-
tion data. In general, execution-data classification can be
viewed as a machine-learning problem, in which a trained
learner needs to classify whether each execution is a pass-
ing execution or a failing execution. In this paper, we report
an empirical study that further investigates various issues
in execution-data classification based on machine learning.
Compared with previous research, our study further investi-
gates the impact of the following issues: different machine-
learning algorithms, the numbers of training instances to
construct a classification model, and different types of exe-
cution data.

1. Introduction

After a software system is delivered to its different users,

it may be still necessary to analyze or measure the released

software system to improve software quality. Although a

software system usually has been tested before delivery, the

testing process cannot guarantee the reliability of the re-

lease. Before delivering a software system, developers need

to test the software system in-house, assuming that the soft-

ware system will be used in the field as it is tested. However,

this assumption may not always be satisfied [9], due to var-

ied running environments or unexpected inputs for instance.

Consequently, a software system still needs to be tested and

analyzed after it is delivered.

However, as a released software system runs on sites of

remote users, the testing and analysis activities on a released

software system are different from those in-house. For in-

stance, developers can hardly detect failures directly based

on the behavior of a released software system because its

behavior occurs on the sites of remote users. Moreover,

analysis on a released software system may require instru-

mentation, and only lightweight instrumentation is allowed

so as to incur as little as possible extra running cost. Con-

sequently, several techniques [6, 7, 11] are proposed to sup-

port Remote execution Analysis and Measurement of Soft-

ware Systems (abbreviated as RAMSS by Haran and col-

leagues [5]). RAMSS techniques usually collect data by in-

strumenting instances of a software system used by different

remote users and then analyze the collected execution data.

In RAMSS, a fundamental issue is to distinguish a failing

execution from a passing execution. Addressing this issue

helps developers understand the behavior of a released soft-

ware system. For instance, developers know how often fail-

ure occurs in the field when remote users run the released

software system by counting the numbers of passing exe-

cutions and failing executions. Moreover, distinguishing a

failing execution from a passing execution is also important

for developers to debug a released software system because

such information helps developers know in what circum-

stances failures occur.

To automate distinguishing failing executions from pass-

ing ones, Haran and colleagues [5] proposed to collect ex-

ecution data in the field and distinguish a failing execution

from a passing execution by applying a machine-learning

algorithm (i.e., the Random Forest algorithm) to the col-

lected execution data. According to the empirical study

conducted by Haran and colleagues [5], their approach is

promising, as it can reliably and efficiently classify the ex-

ecution data. However, there are several important factors

not addressed in their study. First, their study investigated

only one machine-learning algorithm, but there are quite

a few machine-learning algorithms for classification. Sec-

ond, their study did not investigate the impact of the num-

ber of instances for constructing the classification model,

but this number may be an important factor of the overhead

284

of execution-data classification. Third, their study investi-

gated execution data only in the form of counts for methods,

statements and so on, but did not investigate execution data

in the form of coverage, which is widely used in practice.

In this paper, we report an empirical study that evalu-

ates the impact of these three factors on the effectiveness

of execution-data classification. The aim of our empiri-

cal study is to provide evidence on the determination of

the three important factors in practice. For the first factor,

we investigate three popular machine-learning algorithms:

the Random Forest algorithm (RF), the Sequential Minimal

Optimization algorithm(SMO), and the Naive Bayes algo-

rithm(NB). For the second factor, we investigate training

sets of different sizes. For the third factor, we investigate

five types of execution data: the statement count, the state-

ment coverage, the method count, the method coverage, and

the branch coverage. The main contributions of this pa-

per are as follows. First, to our knowledge, our study is

the first empirical study on the impact of the three factors

in execution-data classification based on machine learning.

Second, our study provides guidelines for the application

of execution-data classification based on machine learning

regarding the choice of machine-learning algorithms, the

number of training instances, and the type of execution data.

2. Execution-Data Classification Based on Ma-
chine Learning

Haran and colleagues [5] proposed to collect execution

data by instrumenting instances of a released software sys-

tem and then classify passing executions and failing execu-

tions based on these collected execution data using the Ran-

dom Forest algorithm, which is an implementation of tree-

based classification. This technique can be viewed as an

application of a classification algorithm in machine learning

for execution-data classification. In the following, we gen-

eralize Haran and colleagues’ technique to execution-data

classification based on machine learning.

For the ease of presentation, let us consider the execution

data based on the statement count. For a program consist-

ing of n statements (denoted as ST={st1, st2, ..., stn}), the

execution data of a test case (denoted as t) is represented as

a series of numbers, each of which is the number of times a

statement is executed when using t to test the program. All

the test cases (whose execution data are already obtained)

are divided into two sets: the training set and the testing

set1. Each test case in the training set is also associated

with a label that indicates whether the test case is a passing

one or a failing one. For test cases in the testing set, it is

unknown whether each such test case is a passing one or a

failing one. The problem of execution-data classification is

1The training set and the testing set are two terminologies in machine

learning. Note that the testing set is not related to software testing.

Table 1. Subjects
Program Ver. Test TrainingSet LOC(Exe) Met. Bra.

print tokens 7 4,072 41∼203 565(203) 18 35

print tokens2 10 4,057 41∼203 510(203) 18 70

replace 32 5,542 58∼289 563(289) 21 61

schedule 9 2,627 33∼162 412(162) 18 25

schedule2 10 2,683 29∼144 307(144) 16 31

tcas 41 1,592 14∼67 173(67) 9 16

tot info 23 1,026 14∼136 406(136) 7 36

Space 38 13,585 1,244∼6,218 9,564(6218) 136 530

to use the training set to predict whether each test case in

the testing set is a passing one or a failing one.

3. Experimental Study

In this experiment, we plan to evaluate the impact of

three factors in execution-data classification so as to an-

swer the following three research questions. RQ1— which

machine-learning algorithm produces the best results in

execution-data classification? RQ2— what is the mini-

mal number of training instances that are needed to pro-

duce good enough results in execution-data classification?

RQ3— which type of execution-data produces the best re-

sults in execution-data classification?

Table 1 presents the details of the eight C subjects used in

this experiment, whose source code and test collections are

available from Software-artifact Infrastructure Repository

(http://sir.unl.edu/portal/index.php) [3]. Specifically, the ta-

ble gives the name of each subject, number of faulty ver-

sions, number of test cases in the test collections, the range

of the numbers of training instances used to construct a clas-

sification model in our empirical study, the number of lines

of code, and the number of branch statements. Moreover,

the “Exe” (abbreviation of executable statements) within

parentheses represents the number of executable statements,

which presents the real size of a subject. As the faulty pro-

grams in Table 1 are all single-fault programs, we totally

constructed 80 multiple-fault programs for the eight sub-

jects by extracting the faults from the single-fault programs

of each subject and then seeding more than one faults into

each subject.

3.1. Independent and Dependent Variables

The independent variables come from the three research

questions and are defined as follows.

The first independent variable Algorithm refers to the

machine-learning algorithm that is used to build a classi-

fication model. Many algorithms have been proposed in

the literature of machine learning. Here we investigate the

following three representative algorithms: Random Forest

(RF) [2], Naive Bayes (NB) [8], and Sequential Minimal

Optimization (SMO) [12], because these algorithms have

been found to be effective in the literature of machine learn-

ing and have been widely used. Moreover, these algorithms

285

are implemented on Weka 3.6.1 by using its default setting

since this experiment is designed to answer the three re-

search questions.

The second independent variable TrainingSet refers to

the number of instances (i.e., executions) in a training set.

As the number of available training instances may be asso-

ciated with the scale of a program, we use the ratio between

the number of training instances and the number of exe-

cutable statements to represent TrainingSet, which is set to

be 20%, 40%, 50%, 60%, 80%, and 100% in our empirical

study.

The third independent variable Attribute refers to which

type of execution data has been collected during the ex-

ecution of the program and used to classify the execu-

tion data. In our empirical study, the values of variable

Attribute can be any of the following: statement count

(abbreviated as #statements, which is the number of times

each statement has been executed), statement coverage (ab-

breviated as ?statement, which is whether each statement

has been executed), method count (abbreviated as #method,

which is the number of times each method has been exe-

cuted), method coverage (abbreviated as ?method, which is

whether each method has been executed), and branch cover-

age (abbreviated as ?branch, which is whether each branch

has been executed). To record the execution information

on branches when running the program, we used “GCOV”

command of GCC, whose collected branches are predicates

within a branch condition, not the whole branch condition.

Moreover, the predicates whose value is true or false are

taken as different branches.

The dependent variables in our empirical study are the

results of execution-data classification measured by ROC

analysis [4] since it has advantages overs other measures

like precision-recall and accuracy. Specifically, our study

uses the “Area under a ROC curve (usually abbreviated as

AUC)” to measure the performance of an execution-data

classification approach. The AUC is always between 0 and

1. The bigger the AUC is, the higher performance the corre-

sponding classification approach has. Moreover, a realistic

classifier is always no less than 0.5 since the AUC for the

random guessing curve is 0.5.

3.2. Process

First, we ran each subject with its test cases by recording

the five types of execution data as well as the outcome of an

execution (i.e., whether it is passing or failing).

Second, we took all the test cases with their execution

information (i.e., execution data and outcome) as instances

and split all the instances into a training set and a testing

set. Although all the test cases are labeled with either pass-

ing or failing, our experiment randomly selected some test

cases into a training set, and took the rest test cases as a

testing set. The training set is the set of test cases whose

execution data and outcome are taken as input to build a

classifier, whereas the testing set is the set of test cases that

are used to verify whether the classified outcome based on

the classifier is correct. Since all the test cases are known to

be passing or failing in our empirical study before building

the classifier, we know whether the classification is correct

or not by comparing the classification result with its actual

outcome.

Moreover, for each faulty program, our empirical study

randomly selected n ∗ 20%, n ∗ 40%, n ∗ 50%, n ∗ 60%,

n ∗ 80%, or n test cases from its whole test collection as

a training set and took the rest test cases as a testing set,

where n is the number of executable statements for each

subject shown by Table 1. To reduce the influence of ran-

dom selection, we repeated each test-selection process 100

times.

Third, we applied each of the three machine-learning al-

gorithms to each training set and recorded the classified out-

come of test cases in its corresponding testing set. As the

outcome of each test case is known, we know whether the

classification is correct. We recorded the number of passing

test cases that have been correctly classified to be passing,

the number of passing test cases that have been classified to

be failing, the number of failing test cases that have been

correctly classified to be failing, and the number of fail-

ing test cases that have been classified to be passing. Then

for each faulty program with a machine-learning algorithm,

we calculated its corresponding AUC. As each subject has

several faulty versions, we calculated their average AUC as

the result of the corresponding subject. Our experiment is

performed on an Intel E7300 Dual-Core Processor 2.66GHz

with 2G memory.

3.3. Threats to Validity

The construct threat of our empirical study lies in the

measures, although ROC analysis has been widely used in

evaluating classifiers in machine learning because it has ad-

vantages over the accuracy, error rate, precision, recall and

can decouple classifier performance from class skew and

error costs [4]. The main external threat comes from the

subjects and the seeded faults. Although these subjects in-

cluding the faults have been widely used in the literature of

software testing and analysis, we will perform more exper-

iments on larger programs with real faults.

3.4. Results and Analysis

In our empirical study we exclude the faulty programs

whose corresponding test collection has less than 5% fail-

ing test cases because its percentage of correct classification

would be larger than 95% if the test cases are always clas-

sified to be “passing”. After excluding such biased data,

286

Figure 1. Boxplots of average AUC results for
various machine-learning algorithms

Table 2. Paired Samples T-Test on Machine-
Learning Algorithms (α=0.05)

Single-Fault Programs t-value Sig. Result
SMO - RF -18.767 0.000 Reject
SMO - NB -14.576 0.000 Reject
RF - NB 3.970 0.000 Reject

Multiple-Fault Programs t-value Sig. Result
SMO - RF -30.602 0.000 Reject
SMO - NB -16.362 0.000 Reject
RF - NB 6.950 0.000 Reject

our empirical study has only the results of six single-fault

programs except for print tokens and schedule2, and seven

multiple-fault programs except for Space. Our empirical

study does not acquire the results of execution-data classi-

fication for Space based on its statement coverage or state-

ment count because the maximal memory of Java Virtual

Machine is not large enough to classify executions which

have a large number of attributes (i.e., the statement cover-

age or the statement count).

(1)RQ1: Machine-Learning Algorithms
Figure 1 shows the distribution of the average AUC of

the execution-data classification approach with the same

machine-learning algorithm for each single-fault subject.

The horizontal axis represents the three machine-learning

algorithms, whereas the vertical axis represents the aver-

age AUC. According to Figure 1, the classification ap-

proach with SMO is usually much less effective than the

approach with RF. The classification approach with RF pro-

duces close AUC results to the approach with NB. More-

over, sometimes (e.g., for replace) the execution-data clas-

sification approach with RF is better than the execution-data

classification approach with NB, whereas sometimes (e.g.,

for schedule) the latter approach is better than the former.

To further compare the three machine-learning algo-

rithms, we performed the paired samples t-test on the av-

erage AUC results by comparing each pair of results of the

execution-data classification approaches with the same sub-

ject, the same percentage of training instances, and the same

type of execution data, but different machine-learning algo-

rithms. The results are shown by Table 2. Here the t-test

is performed separately on results of single-fault programs

and multiple-fault programs because the machine-learning

based execution-data classification approach is intuitively

more effective to classify an execution for single-fault pro-

grams than for multiple-fault programs considering the im-

pact of multiple faults.

According to this table, the hypothesis that neither RF

nor NB is superior to the other in execution-data classifi-

cation is rejected (for both single-fault and multiple-fault

programs). Moreover, execution-data classification using

RF wins the classification approach using NB since its cal-

culated t-value is positive. That is, for single-fault and

multiple-fault programs, execution-data classification with

RF is significantly better than the approach with NB. Sim-

ilarly, execution-data classification with either RF or NB is

significantly better than the approach with SMO.

(2)RQ2: Training Set
According to the average AUC, with the increase of the

number of training instances (i.e., variable TrainingSet in-

creases from 20% to 100%), the average AUC of each sub-

ject usually increased except for a few data.

However, it is not practical to construct a classifier based

on a large number of training instances (i.e., execution

data with known outcome) in execution-data classification.

Thus, we are more interested in the experimental results

of execution-data classification using a small number of

training instances. According to the experimental results,

as we increase the number of training instances, the aver-

age AUC results increase slightly. That is, the execution-

data classification approach fed with 20% training instances

has close AUC results to the approach with 100% train-

ing instances, which produces reliable classification results.

Consequently, for any subject whose number of executable

statements is n, execution-data classification has been eval-

uated to be reliable even if the number of training instances

is n ∗ 20%.

(3)RQ3: Type of Execution Data
To show the influence of the types of execution data on

AUC results of execution-data classification, we draw some

boxplots for single-fault programs by statically analyzing

average AUC results of same type of execution data. For

each program, the five boxplots for various types of exe-

cution data have observable difference. For instance, the

AUC results of execution-data classification with the branch

coverage usually distribute in a smaller range than the ap-

proach with any of the other types of execution data. That

is, execution-data classification with the branch coverage

is more stable than the approach with the other type of

execution-data although some other types of execution data

287

Figure 2. Boxplots of average AUC results for
various type of execution data

Table 3. Paired Samples T-Test on Types of
Execution Data (α=0.05)

Single-Fault Programs t-value Sig. Result
#statement - ?statement -2.586 0.011 Reject

#method - ?method -0.790 0.432 Not Reject

?branch - ?statement 0.437 0.663 Not Reject

?branch - ?method 7.832 0.000 Reject
?branch - #statement 2.318 0.023 Reject
?branch - #method 7.736 0.000 Reject

#statement - #method 6.331 0.000 Reject
?statement - ?method 10.281 0.000 Reject

Multiple-Fault Programs t-value Sig. Result
#statement - ?statement -6.302 0.000 Reject

#method - ?method 2.308 0.044 Reject
?branch - ?statement 6.418 0.000 Reject
?branch - ?method 16.013 0.000 Reject

?branch - #statement 7.607 0.000 Reject
?branch - #method 13.126 0.000 Reject

#statement - #method 10.582 0.000 Reject
?statement - ?method 16.582 0.000 Reject

(e.g., the statement count, the statement coverage) provide

more information than the branch coverage. Moreover, the

distribution area of AUC results of execution-data classifi-

cation with the branch coverage is mostly higher than the

approach with any of the other four types of execution data.

Table 3 presents the paired samples t-test on the average

AUC results for various types of execution data. According

to this table, execution-data classification with the statement

coverage is significantly better than the approach with the

statement count in both single-fault programs and multiple-

fault programs. Moreover, the approach with the branch

coverage is significantly better than the approach with the

statement count, the method count, or the method coverage

in both single-fault and multiple-fault programs. Although

in single-fault programs, the execution-data classification

approach with the branch coverage has no significant dif-

ference with the approach with the statement coverage, the

former wins the latter in most comparisons. Moreover, in

multiple-fault programs, the former is significantly better

than the latter.

3.5. Summary and Discussion

Execution-data classification has been evaluated to be ef-

fective in our empirical study because this approach cor-

rectly classified most executions in our empirical study.

Among the three machine-learning algorithms, RF is sig-

nificantly better than NB in correctly classifying execu-

tions, while both of them are significantly better than SMO.

Execution-data classification usually produces better (at

least no worse) results as we increase the number of train-

ing instances. Moreover, even if the training set contains a

small number of instances (i.e., one-fifth of the executable

statements contained by a subject), execution-data classi-

fication is still reliable. Execution-data classification with

execution information on branches is usually better than

the approach with execution information on statements or

methods. Specifically, the former is significantly better than

the approach with the method coverage, the method count,

or the statement count. Moreover, execution-data classifi-

cation with execution information on the statement infor-

mation is significantly better than the approach with exe-

cution information on the method information. Execution-

data classification with execution information on the state-

ment coverage is significantly better than the approach with

execution information on the statement count.

Besides the preceding conclusion, we discuss some

issues involved in applying execution-data classification

based on machine learning. The first issue is the com-

putational cost of the machine-learning algorithms. Our

empirical study evaluated the classification performance

of machine-learning algorithms, and found their computa-

tional costs are different during the experiment. To apply-

ing execution-data classification in practice, we may need

to consider the computational cost as well as the classifica-

tion performance of machine-learning algorithms. Among

the three machine-learning algorithms, SMO is much costly

than RF and NB. The second issue is the type of execu-

tion data. As software systems have been delivered to re-

mote users, it is not preferable to collect execution data by

heavyweight instrumentation because it may significantly

hamper the use of software systems. According to Ta-

ble 1, the number of statements is much larger than that

of methods and that of branches. Therefore, it is definitely

less costly to instrument a program at methods or branches

than at statements. Moreover, the execution data on state-

ments occupy more space than the execution data on meth-

ods or branches. Consequently, considering the instrumen-

tation cost and the accuracy of execution-data classification,

execution-data classification with execution information on

288

branches is more applicable than the approaches with either

statements or methods.

4. Related Work

As the testing and analysis activities on released software

systems are different from those in-house, researchers have

proposed some techniques to facilitate testing and analysis

of released software systems. Pavlopoulou and Young [11]

proposed a residual test coverage monitoring tool to selec-

tively instrument a Java program under test so that the per-

formance overhead is acceptable. As a software system has

distributed in sites of many remote users, a monitoring task

can be divided into several subtasks, and each subtask is

assigned to different instances of the software system and

can be implemented by minimal instrumentation. This ap-

proach, called the Gamma system, is implemented by Orso

and colleagues [1, 10]. The preceding research aims to

propose different instrumentation strategies in monitoring

a released software system. However, our work uses execu-

tion data, which is collected by these instrumentation tech-

niques, to distinguish failing executions from passing ones.

The execution data collected from the field can be ana-

lyzed and used for the purpose of software maintenance and

evolution. Liblit and colleagues [6, 7] proposed to gather

executions by using Bernoulli process and then isolate bugs

based on the sampling executions. Orsa and colleagues [9]

investigated the use of execution-data from the field to sup-

port and improve impact analysis and regression testing in-

house. Although both of these research and ours use the

execution data, they have different aims. These work aims

at fault localization, impact analysis or testing, whereas our

work aims at classifying executions.

5. Conclusion

In this paper, we performed an empirical study on

execution-data classification by varying the three factors:

machine learning algorithms, number of training instances,

and type of execution data. Among the three machine-

learning algorithms, the Random Forest algorithm makes

the classification approach produce significantly better re-

sults than the Naive Bayes algorithm. Either of these al-

gorithms makes the classification approach produce signifi-

cantly better results than the Sequential Minimal Optimiza-

tion algorithm. As we increased the number of training

instances, the classification model usually produces better

classification results. However, execution-data classifica-

tion approach still correctly classifies most execution data

when fed with a small number of training instances (i.e.,

1/5 of the number of executable statements contained by a

program). Moreover, when the type of execution data is

branch coverage, the corresponding classification approach

produces better results than the approach with the other

types of execution data.

Acknowledgements

This work is supported by the National Basic Research

Program of China under Grant No. 2009CB320703, Sci-

ence Fund for Creative Research Groups of China under

Grant No. 60821003, the National Natural Science Foun-

dation of China under Grant No. 91118004, and the Na-

tional Natural Science Foundation of China under Grant No.

60803012.

References

[1] J. Bowring, A. Orso, and M. J. Harrold. Monitoring de-

ployed software using software tomograph. In Proc. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 2–8, 2002.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, Oct. 2001.
[3] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled

experimentation with testing techniques: An infrastructure

and its potential impact. Empirical Software Engineering,

10(4):405–435, 2005.
[4] T. Fawcett. An introduction to roc analysis. Pattern Recog-

nition Letters, 27:861–874, 2006.
[5] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Apply-

ing classification techniques to remotely-collected program

execution data. In Proc. 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages

146–155, 2005.
[6] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug

isolation via remote program sampling. In Proc. ACM SIG-
PLAN 2003 Conference on Programming Languages Design
and Implementation, pages 141–154, 2003.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.

Scalable statistical bug isolation. In Proc. 2005 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 15–26, June 2005.

[8] A. McCallum and K. Nigam. A comparison of event mod-

els for naive bayes text classification. In Proc. AAAI-98
Workshop on Learning for Text Categorization, pages 41–

48, 1998.
[9] A. Orso, T. Apiwattanaapong, and M. J. Harrold. Leverag-

ing field data for impact analysis and regression testing. In

Proc. 10th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 128–137, 2003.

[10] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma

system: Continuous evolution of software after deployment.

In Proc. the International Symposium on Software Testing
and Analysis, pages 65–69, July 2002.

[11] C. Pavlopoulou and M. Young. Residual test coverage mon-

itoring. In Proc. 21st International Conference on Software
Engineering, pages 277–284, May 1999.

[12] J. C. Platt. Fast training of support vector machines using se-

quential minimal optimization. Advances in kernel methods:
support vector learning, pages 185 – 208, 1999.

289

Identification of Design Patterns Using Dependence
Analysis

Wentao Ma, Xiaoyu Zhou, Xiaofang Qi
School of Computer Science and Engineering

Southeast University
Key Lab of Computer Network and Information Integration

(Southeast University), Ministry of Education
Nanjing, China

Ju Qian
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautic
Nanjing, China

Lei Xu, Rui Yang
Department of Computer Science and Technology

Nanjing University
Nanjing, China

Abstract—Identification of design pattern instances in source
codes facilitates software understanding and maintenance. Exist-
ing researches use three kinds of information in the identification:
structure, control flow, and class or method names. In this paper,
data flow information is used in identification. An approach is
presented to identify instances of Adapter, State, Strategy and
Observer patterns based on program dependence analysis. It
brings more precise and detailed identification result. The effec-
tiveness of the approach is illustrated by experiments on open
source programs.

Keywords-design pattern; program dependence; program
comprehension; reverse engineering;

I. INTRODUCTION
GoF design patterns are widely used in practice [1]. Identi-

fication of design pattern instances (hereinafter referred to as
"pattern instances" for short) in source codes recovers the de-
sign-code traceability, facilitates software understanding and
maintenance.

Ideally, identification of pattern instances should identify
all the classes, methods and variables that play roles in the de-
sign patterns.

Early researches focus on identifying pattern instances by
structure information [9]. These approaches cannot distinguish
design patterns having similar structures, such as State and
Strategy pattern [5][6]. They are also not good at identifying
methods playing roles in patterns.

 Supported partially by the National Natural Science Foundation of China
under Grant No. 90818027, and No. 60903026, and No. 61003156, and
partially supported by the Fundamental Research Funds for the Central
Universities under Grant No.1116020205, and No.1118020203.
 Correspondence to: Xiaoyu Zhou, School of Computer Science and Enginee-
ring, Southeast University, Nanjing, China. E-mail: zhouxy@seu.edu.cn.

Recently, some researches identify pattern instances by
checking whether call sequences of the analyzed source codes
are in accordance with that of the design patterns [7][11]. The-
se approaches are more capable in identifying methods of de-
sign patterns. But they can't identify design patterns that have
no special characteristics in method call sequences, such as
Adapter pattern [5][8][13].

Some few researchers identify pattern instances using se-
mantics of th e classes or methods names [10][12]. These ap-
proaches are not mainstream in pattern instance identification
research.

Existing researches can only identified two kinds of varia-
bles that play roles in design patterns: (1) field of one class that
refers to another class in the pattern instance; (2) method pa-
rameter or return value whose type is the class in the pattern
instances. Many other variables playing roles in design patterns
cannot be identified in these researches.

Design patterns should be identified from multiple perspec-
tives. The more perspectives are used, the more precise and
detailed result will be obtained. As far as we know, except for
our own work [2], data flow information has not yet been used
in design pattern identification research. In this paper, we iden-
tify pattern instances using dependence relations in the ana-
lyzed codes. In this paper:

1) We present the characteristic of dependence relations in
adapting method. Both Adapter and State pattern has adapting
method, but Strategy pattern doesn't. Based on the
distinguishment, we identify Adapter pattern instances, and
distinguish State pattern instances from that of Strategy.

2) Dependence relations of variables within Notify method
of Observer pattern is pres ented. Using the relations, we
identify Observer instances and some variables playing roles
in the pattern, such as the event objects notified to Observers,
and the variables that act as targets or results of observation.

290

To validate the proposed approach, we conduct an experi-
mental study on a popular open source software JHotDraw. We
compare the result with that reported by some other researches,
and find that our identification of Adapter pattern instances is
more precise, and identification result of State and Strategy
pattern instances is m uch more precise than that of existing
researches. For identification of Observer pattern instances, our
approach has relatively high precision. Our approach can iden-
tify instances that cannot be i dentified by other methods, and
report more detailed information of the pattern instances, but it
cannot identify Observer instances that hasn't data dependence
relations between Subject and Observer.

The rest of this paper is organized as follows: Section II in-
troduces the implementation of dependence analysis in our tool
JDP-Detector; Section III and IV introduce approaches to iden-
tifying adapting method and Notify method of observer pattern
respectively; Section V compares results of our experimenta-
tion with that of other researches; Section VI concludes the
paper.

II. DEPENDENCE ANALYSIS AND ITS IMPLEMENTATION
We use two kinds of dependence relations in our approach:

control dependence and data dependence. Control dependence
relations are computed using the approach in [15]. Data de-
pendence relations are computed directly from define-use rela-
tions [3]. The dependence relations is expressed by program
dependence graph (PDG). The Inter-procedural dependence is
expressed by system dependence graph (SDG), an extension of
PDG [14].

Construction of SDG is base d on information of method
call. We use points-to analysis to determine the callee of poly-
morphic method call. As a pattern normally involves only sev-
eral classes, we adapt Soot and implement a local points-to
analysis that can start from entry of any method [4].

We develop a to ol named JDP-Detector based on Soot to
identify pattern instances in Java system. JDP-Detector
takes .class files as input, and transforms them into Jimple in-
termediate representation [4]. Analysis is made on the Jimple
codes. JDP-Detector firstly identify pattern instance candidates
using structure information, and then make dependence analy-
sis on these candidates to get more precise result.

III. IDENTIFICATION OF ADAPTING METHOD

A. Dependency Characteristics of Adapting Method
In Adapter pattern, class Adapter inherits from Target.

Method of Adaptee has fulfilled the function required by Tar-
get, but has not the required interface, so the only work the
adapting method of Adapter needs to do is to call the method of
Adaptee and adapt the Adptee's interface to that of the Target.

So, strictly speaking, an adapting method m1 consists of
three parts: (1) a call to method m2; (2) statements (if available)
before the call, whose only duty is to prepare parameters for m2;
(3) statements (if available) after the call, whose only duty is to
transform the output of m2 to output of m1.

Based on the observation, we identify the adapting method
according to the following conditions: (1) m1 calls m2; (2) the
call statement depends on all the statements (when available)
before the call and part or all of m1's parameters; (3) the output
of m1 depends on the call statement and all the statements
(when available) after the call; (4) the input and output of m2
forms cut-set of m1's data dependence graph. Condition 4
means that the dataflow paths cannot bypass the call statement.

B. Case Study
Fig. 1 illustrates the structure of an Adapter instance identi-

fied by JDP-Detector in JHotDraw 5.1. In the instance,
startConnector is the Adapter interface and connectorAt is the
Adaptee interface. Fig. 2 shows the PDG of startConnector, in
which the yellow node represents a call to connectorAt, the
green nodes represent the parameters of startConnector and the
statements before the call to connectorAt, the red node repre-
sents the output of startConnector. As what can be seen from
Fig. 2, the PDG of startConnector matches the dependence
relation characteristic of adapting method.

Figure 1. An Object Adapter Instance in JHotDraw 5.1

Figure 2. The Dependence Graph of startConnector

IV. IDENTIFICATION OF NOTIFY METHOD

A. Dependence Relation of Notify Method
The intent of Observer pattern is to "define a one-to-many

dependency between objects so that when one object changes
state, all its dependents are notified and updated automatical-
ly" [1] . When Subject changes its state, its Notify method in-
vokes Update methods of all the Observers.

In some cases, the Subject only informs the Observers that
an event happens. As a classical implementation, the Subject
creates an event object, and sends it to Observer as a parameter
of Update. In some other cases, the Observer needs to update
values of its own fields to keep consistent with that of the Sub-
ject.

291

Our approach checks whether there is one of the following
dependence relations in SDG of Notify candidate: (1) Notify
method creates an object, and a parameter of Update depends
on the object; (2) some fields of Observer depend on fields of
Subject.

B. Case Study
 Fig. 3 shows an Observer instance identified by JDP-

Detector from open source software JEdit 4.3.2. In the instance,
HelpHistoryModel and HelpHistoryModelListener act as Sub-
ject and Observer, respectively, and fireUpdate is the candidate
of Notify method. JDP-Detector finds that there are dependence
paths between fields of HelpHistoryModel and HelpHistory-
ModelListener in SDG of fireUpdate. This indicates that
fireUpdate acts as Notify method. Correspondence between
Observer fields and Subject fields can be observed by follow-
ing the dependence paths: HelpHistoryModelListener._back is
the observed result of target HelpHistoryModel.historyPos, and
HelpHistoryModelListener._forward is th e observed result of
targets HelpHistoryModel.history and HelpHistoryModel.his-
toryPos.

Figure 3. An Observer Instance in JEdit 4.3.2

V. EXPERIMENT
This section reports the results of pattern instance identifi-

cation in JHotDraw 5.1 (8.3 KLOC, 173 classes) using JDP-
Detector, and compares it with the results reported by some
other researches taking JHotDraw 5.1 as experimental subject.

A. Identification of Adapter Pattern Instances
JDP-Detector finds 17 Adapter instances, 14 of which are

TP (true positive), and the precision is 82.35%. The 3 FP (false
positive) are two Strategy instances and a Decorator instance.
These patterns' structures are similar to that of Adapter, and
adapting behavior is permitted to exist in the two patterns.

M. von Detten et al. obtain 67 instances using fuzzy metric
[13]. They do not manually check the result, only figure out
that the result contains some repeated instances, and instances
with low membership degree is not eliminated. A. De Lucia et
al. get 41 instances using structure information [8]. N. Tsantalis
et al. identify pattern instances using similar scoring of struc-
ture graph, and recognizes 23 instances without distinguishing
Strategy pattern from Command pattern [5]. Result of [5] is a
subset of that of [8], and our result is a subset of that of [5]. In
other words, we adopt a stricter identification standard.

B. Identification of State and Strategy Instances
State instances and Strategy instances are difficult to distin-

guish in existing researches. We believe that, in State pattern,

Context has an adapting method, which delegates its duty to
State, while in Strategy pattern, Context only invokes the algo-
rithm encapsulated in Strategy, the invocation doesn't need to
be an adapting method. This identification standard is not ap-
parent according to descriptions in [1], but it brings good iden-
tification result in our experiment.

JDP-Detector identifies 37 Strategy instances, 35 of which
are TP, and the precision is 94.6%. It also identifies 8 State
instances, 6 of which are TP, and the precision is 75%.

Table I shows the recognized State instances. Manual anal-
ysis reveals that instances 3 and 8 in Table I are Adapter and
Strategy instances respectively.

TABLE I. STATE INSTANCES IDENTIFED BY JDP-DETECTOR

 Context State Manual
1 AbstractConnector Figure T
2 AbstractTool DrawingView T
3 ConnectionHandle Figure F
4 LocatorHandle Locator T
5 PolygonHandle Locator T
6 StandardDrawingView Drawing T
7 StandardDrawingView DrawingEditor T
8 StandardDrawingView Painter F

Due to space limitation, the recognized Strategy instances
can't be listed, two FP of which are Command and Adapter
instances respectively. The Command instance is recognized
because it has similar structure with Strategy pattern. The
Adapter instance (ChangeConnectionHandle/Figure) recogni-
zed as Strategy instance is the same one as item 3 of Table I, as
ChangeConnectionHandle is a subclass of ConnectionHandle.
This FP is identified because JDP-Detector fails to take the
inherited methods of the analyzed class into account.

N. Tsantalis et al. identify 22 instances using DPD without
distinguishing State from Strategy [5]. Y. Guéhéneuc et al.
infer structure characteristic of design pattern using machine
learning and get 2 State instances and 4 Strategy instances [6].
A. De Lucia et al. get 43 Strategy instances (the precision is
46.51%) and 36 State instances (the precision is 5.6%) using
both structure information and method call sequence infor-
mation [7]. Based on the comparison, we can conclude that our
approach is much more successful in distinguishing State in-
stances from Strategy instances.

C. Identification of Observer Instances
As illustrated in Table II, JDP-Detector identifies 4 Observ-

er instances, and reports the notified event objects in each in-
stances. Three of them are TP, and the precision is 75%. In-
stance 4 in Table II is a FP, which contains event notifying
behavior, but no one-to-many broadcast behavior.

A. De Lucia et al. identify 9 Observer instances using their
tool DPRE [7]. Five of the nine instances are TP, and the preci-
sion is 55.56%. We compare these instances with our result,
and find that three of their instances (Drawing/Drawing-
ChangeListener, StandardDrawing/DrawingChangeListener,
Drawing/DrawingView) are actually the same one as instance 2
of Table II. Moreover, we find a instance (Connector/Connec-
torFigure) identified by DPRE is not a TP, because it neither

292

contains broadcast of Subject to Observer nor event notification
or data observation. Thus, in fact, DPRE identifies 7 instances,
and only 2 of which is TP, so the precision is 28.6%.

TABLE II. OBSERVER INSTANCES IDENTIFIED BY JDP-DETECTOR

 Subject/Observer Event Object Manual
1 Figure/FigureChangeListener FigureChangeEvent T

2 StandardDrawing/
StandardDrawingView

DrawingChangeEvent T

3 StandardDrawingView/
AbstractTool

MouseEvent T

4 StandardDrawing/
FigureChangeEventMulticaster

FigureChangeEvent F

We download N. Tsantalis's tool DPD 4.5 [5], and recog-
nize 3 Observer instances (StandardDrawing/Drawing-
ChangeListener, StandardDrawingView/Painter, Standard-
DrawingView/Figure) with it. The first one of their instances is
the same as instance 2 of Table II. The other two instances is
not included in our result. The second one of their instances is
excluded by structure analysis of JDP-Detector. For the third
instance, Notify method of StandardDrawingView passes its
parameter instead of its fields to Update methods of Figure.
The dependence path of the data transfer process is included in
the SDG calculated by JDP-Detector, but is neglected by JDP-
Detector.

Based on the comparison, we conclude that except for some
defects in implementation of JDP-Detector, our approach is
effective in revealing the data flow of the Observer pattern, and
it identifies an instance (item 3 in Table II) that is not identified
by DPD and DPRE.

D. Time Consumption of the Identification Process
Our experiment environment is as following: Intel

Core(TM)2 Quad CPU Q8400 @ 2.66GHz processor, 3GB
RAM, Windows XP operation system. Identification of Adapt-
er, Strategy, State, and Observer instances in JHotDraw 5.1 by
JDP-Detector uses 5.217s, 1.793s, 7.39s and 14.082s, respec-
tively.

VI. CONCLUSION
In this paper, we propose an a pproach to identify design

pattern instances in source codes using dependency information.
Our approach improves the recognition precision (especially in
distinguishing State instances from Strategy instances), and
identifies the variables playing roles in design patterns that
cannot be identified by existing approaches.

Compared with the approaches using method call sequenc-
es, our approach reflects the effect of method call but has less
constraint to the method call sequence, and is somewhat more
flexible.

Using data flow information, we can describe the character-
istics of design patterns more detailed, which brings high iden-
tification precision, but may sometimes seems too strict. And
furthermore, our approach can only identify design patterns
that has obvious data flow characteristics.

REFERENCES

[1] E. Gamma, H. Richard, R. Johnson, and J, Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Boston: Addison-
Wesley Longman, 1995.

[2] X. Zhou, J. Q ian, L. Chen, and B. Xu, "Identification of centrally
managed aggregations in design patterns using shape analysis,". Journal
of Software, Vol.21, No. 11, pp. 2725−2737, November 2010.

[3] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles,
Techniques and Tools, 2nd ed., Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 2007.

[4] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon and P. Co,
"Soot — A Java optimization framework," In: IBM Centre for Advanced
Studies Conference(CASCON), November 1999.

[5] N. Tsantalis, A. Chatzigeorgiou and G. Stephanides, "Design pattern
detection using similarity scoring," IEEE Transactions on software
engineering, Vol. 32, Issue 11, pp. 896-909, November 2006.

[6] Y. Guéhéneuc, J. Guyomarc’h and H. Sahraoui, "Improving design-
pattern identification: a new approach and an exploratory study," Journal
of Software Quality Control. Vol. 18, Issue 1, pp. 145–174, March,
2010.

[7] A. D. Lucia, V. Deufemia, C. Gravino and M. Risi, "Improving
behavioral design pattern detection through model checking," In: 14th
European Conference on Software Maintenance and Reengineering
(CSMR), pp. 176-185, March 2010.

[8] A. D. Lucia, V. Deufemia, C. Gravino and M. Risi, "Design pattern
recovery through visual language parsing and source code analysis,"
Journal of Systems and Software, Vol. 82, Issue 7, pp. 1177–1193, July
2009.

[9] N. Pettersson, Welf and J. Nivre, "Evaluation of a ccuracy in design
pattern occurrence detection," IEEE Trans. Software Eng. Vol. 36, No. 4,
pp. 575-590, July/August, 2010.

[10] S. Romano, G. Scanniello, M. Risi and C. Gravino, "Clustering and
lexical information support for the recovery of design pattern in source
code," In: 27th IEEE International Conference on Software Maintenance
(ICSM), pp. 500-503, November, 2011.

[11] J. Y. Guéhéneuc and G. Antoniol, "Identification of behavioural and
creational design motifs through dynamic analysis," Journal of Software
Maintenance and Evolution: Research and Practice, Vol. 22, Issue 8, pp.
597 627, December 2010.

[12] G. Rasool, I. Philippow and P. Mäder, "Design pattern recovery based
on annotations," Advances in Engineering Software, Vol. 41, Issue 4, pp.
519–526, April 2010.

[13] M. V. Detten and D. Travkin, "An evaluation of the Reclipse tool suite
based on the static analysis of JHotDraw," Technical Report tr-ri-10-322,
Software Engineering Group, Heinz Nixdorf Institute, University of
Paderborn, Oct 2010.

[14] S. Horwitz, T. Reps and D. Binkley, "Interprocedural slicing using
dependence graphs," ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, Issue 1, pp. 26-60, January 1990.

[15] J. Ferrante, K. Ottenstein, and J. Warren, "The program dependence
graph and its use in optimization". ACM Trans. Program. Lang. Syst.
Vol. 9, Issue 3, pp. 319-349, July 1987.

293

—

294

S1 a=1;
S2 b=5;

cobegin
{
S3 read x;
S4 call f(x);
S5 a=x;
S6 call g();
S7 y=a+x;
}
{
S8 a=a+1;
}
coend

S9 proc f(u)
{
S10 u=5*u+10;;
}

S11 proc g()
{
S12 a=b/10 15;
}

295

8start t2

S8 a=a+1;

exit t2 9

S8

S5

S12

S7

start t1

S3 read x;
S4 call f(x);
A1 x(x);
S5 a=x;

4

S7 y= a+x; 6

S6 call g();
S11 proc g()
S12 a=b/10 15;

5

exit t1 7

2coend

start t0
S1 a=1;
S2 b=5;
cobegin

1

exit t0

(1, ,) m0
t0 (t1, t2)

3

t0 (t1, t2)

t0 (t1, t2)

(2, 4, 9) m3

S5

(2, 5, 8) m2
S8S12

(2, 5, 9) m5(2, 6, 8) m4
S8 S12S7

(2, 7, 8) m6
S8

(2, 6, 9) m7
S7

S8
(2, 4, 8) m1

S5

t0 (t1, t2)
(2, 7, 9) m8

3, ,) m9(

296

.

297

298

299

A Usage-Based Unified Resource Model

Yves Wautelet
Hogeschool-Universiteit Brussel

Stormstraat, 2,

1000 Brussels, Belgium

yves.wautelet@hubrussel.be

Samedi Heng
Université catholique de Louvain

Place des Doyens, 1,

1348 Louvain-la-Neuve, Belgium

samedi.heng@uclouvain.be

Manuel Kolp
Université catholique de Louvain

Place des Doyens, 1,

1348 Louvain-la-Neuve, Belgium

manuel.kolp@uclouvain.be

Abstract—Most of the time engineering methodologies focus
on the modeling of functional and non-functional requirements
of the system-to-be with no or poor representation of resource
elements. Resources are nevertheless central in most industrial
domains and do have an important impact onto the performance
and feasability of software requirements. That is why we propose,
in this paper, an ontology for resource representation centered on
its Usage i.e., the concepts of functionality for Resource Objects
and competency for Resource Agents. This ontology does not
tackle the particular problem of service level agreement which is
a complementary dimension but rather focuses on how resources
can be represented and handled at runtime. Heterogeneous
resources can thus be represented in a unified manner within
the context of “resource-intensive” domains where information
systems are developed. Moreover, it could also be used to
develop a specific heterogeneous monitoring system with, for
instance, the agent technology so that it acts for interoperability
purposes. The ontology proposal is applied on a case study in
the industrial context of a steel industry, namely CARSID where
lots of resources are collaborating to achieve defined services.
The purpose is to show the applicability of the ontology in an
industrial context where resources play a central role for the
information system.

I. INTRODUCTION

Poor focus on detailed representation of complex resources

within software development methodologies results omitting

taking into account important aspects of the software prob-

lem that could be represented using a common pattern to

ease the work of both the software analyst and designer.

We consequently propose in this paper a common ontology

allowing to model each type of resource in a unified and

standardized manner, i.e. independent of their type, domain
and interface. Indeed, resources are useless when they do

not provide an added value for a functional or operational

execution so that the ontology is driven by the Resource Usage
i.e., functionalities for Resource Objects and competencies
for Resource Agents. The ontology proposes to centralize re-

sources’ offer and demand through their Usages. More specif-

ically, we present an ontology for resource representation and

handling that can be used as a general reference into resource

intensive domain where information systems are developed.

The contribution is located at design stage so that resources

identified during analysis can be mapped into functionality and

competency providers at runtime for dynamic resource alloca-

tion and reservation. In that perspective, a generic multi-agent

system for resource-monitoring could be easily build up on its

basis. This, within a functional software application, furnishes

an intelligent – i.e., optimized on the basis of the available

information – resource allocation mechanism. This ontology

represents a contribution at design stage but is intended to

be used in the context of a larger development methodology

[1], [2] within the engineering of software services. Further

developments as well as advanced strategies for resource

monitoring as proposed in [3] are outside the scope of the

paper and are left for future perspectives.

The rest of the paper is structured as follows. Section

II discusses the structural choices of the ontology notably

through the concepts of functionality and competency; the

distinction between resources and actors and, finally, resource

composition and hierarchy. Section III overviews the con-

ceptual model itself while Section IV is devoted to a case

study in the steel making industrial environment of CARSID.

Finally, Section V briefly depicts related work and Section VI

concludes the paper.

II. MODELING RESOURCES

This section discusses the concepts of funtionality and

competency, distinguishes resources from actors and discusses

resource composition and hierarchy.

A. Modeling Resources with their Use

There are numerous definitions of the concept of resource.

The Merriam-Webster dictionary refers it as a person, asset,
material, or capital which can be used to accomplish a goal.
While remaining basic, this definition has the interest of

identifying the fact that a resource is not a process (something

functional/operational) but should be used for the proper

achievement (the goal) of such process through action(s). This

consequently leads to the intuition that resources do own

particular skills that are required in a functional context (for

the realization of processes or services). Within a pool of

resources, the requesting service is thus only interested by

resources helping him achieving its functional requirements.

Nevertheless, defining their type, resources are inanimate and

do have a functional utility (this is the case of Resource
Objects) or are able to behave (this is the case for Resource
Agents). Resources’ offer and demand can consequently not be

centralized into a single concept so that Resource Objects are

functionality providers while Resource Agents are competency
providers. Resources offer functionalities and competencies

while services demand them.

300

A functionality is the ability of a resource to be used for

achieving a specific purpose. In this sense the resource owning

the functionality is passively used during a process execution

so that it is specific to Resource Objects. Moreover, the concept

of competency used in human capital and business resources

management allows stakeholders and stockholders to reach

resources unification and integration to optimize the capacity

needed to achieve the vision, mission and objectives of their

organization.

Following [4], a competency is an aptitude to know, to know
how and to behave while [5] defines competencies as state-
ments that someone, and more generally some resource, can
demonstrate the application of a generic skill to some knowl-
edge, with a certain degree of performance. In other words,

competencies are observable skills, knowledge or know-how

defined in terms of behaviors and processes required for

performing job and business activities in a successful way.

They are consequently owned by resources able to behave

i.e. Resource Agents (see section II for a complete justifi-

cation and definition). Knowledge and learning are specific

to human/organizational resources and artificial intelligence

systems. Behavior can be considered as the ability owned

by Resource Agents, making them useful in an operational

context.

In the context of the proposed ontology, resources are thus

components encapsulating functionalities and competencies.

What fundamentally distinguishes those two concepts is that:

• a functionality is transparent in the sense that the envi-

ronment is perfectly aware of what the Resource Object
can deliver at defined quality level. The functional offer

of Resource Objects can be said to be stable since they

cannot acquire more functionalities - or lose existing

functionalities - unless being transformed (or degraded);

• a competency is partially hidden since initial evaluation is

necessary to assess the quality level at which a Resource
Agent can deliver it; it is also evolutionary since it can be

delivered at higher quality level later into the system life

cycle thanks to the inherent ability to learn from Resource
Agents.

Resources can nevertheless not always lead to an absolute

and successful achievement of the functionalities or compe-

tencies they advertise so that a quality level should be asso-

ciated to each of them. Competencies are indeed not neutral

and are furnished following a quality level so that without

being perfectly rational, their realization is non-deterministic

and must be estimated. The probabilistic measure is, in our

model, encapsulated in the concept of quality level; we indeed

consider the probability as being an aspect of the quality

ontology presented hereby. A Resource Agent providing a

competency with a lower realization rate will be attributed

a lower quality level following the particular quality ontology.

Quality ontologies are domain specific and such a charac-

terization is positioned into the proposed resource ontology

but not instantiated (see Section III). Similarly, furnishing

competencies sometimes requires resource composition – i.e.,

the use of a defined set of resources configured in a defined

way – so that resource hierarchization is required (as detailed

in Section III-C). Quality ontology proposal we can link this

work to are provided in [6].

Moreover, competencies can also be acquired in the case of

an individual or an organization through formal or non-formal

procedures. This suggests Resource Agents evaluation through

a formal process. For example, an ISO accreditation is, for

an organization (which is here a Resource Agent) receiving

it, a certification to have competencies to furnish a product

or a service at some defined minimal quality level. In the

same way, the follow-up and successful achievement of a

study program in a given school or university is a process

for a human (which is here a Resource Agent) to acquire

and accreditate (through the obtention of a diploma) defined

competencies at a specified quality level. The processes of

acquisition and assessment of competencies within particular

(or a particular set of) resources is outside the scope of this

paper. Functionality and competency ontologies are domain

specific and such a characterization is positioned into the

proposed resource ontology but not instantiated (see Section

III). Specific competency ontology proposals we can link this

work to are provided into [4], [5].

B. Resources, Actors and Services

In high level analysis formalisms such as the i* modeling

framework ([7]), human or machine resources can be modeled

as actors depending on each other involved in the achievement

services; this vision assumes an intentional dimension and

two parties, the service consumer and the service provider.

With respect to the service ontology presented in [8], this is the

Service Commitment level (prescriptive level) but the resource

ontology we propose in this paper is (also with respect to

[8]) at Service Process (design and implementation levels).

Following [9], Services are “high-level” elements i.e., coarse-

grained granules of information that encapsulate an entire or

a set of business processes. That is consequently the level

where service consumers and service providers are specified

and, since the proposed ontology is at service process level we

do not specify them into the contractual aspects of resource

reservation and use (see section III-B).

III. AN ONTOLOGY FOR RESOURCE REPRESENTATION

We define in this section a conceptual model for resource

representation. In this perspective, Figure 1 depicts the relevant

concepts and their dependencies using a class model [10].

A. Basic Concepts

Services require, for their proper execution (or realization),

a series of Functionalities and Competencies at a defined

QualityLevel furnished by one or more Resources. The use

of a Resource by a Service is only conceivable by setting

up a Contract for a defined period of time and defined

QualityLevel and Cost. All of the system Resources are kept

in the ResourceList while their “real-time” availability is given

301

FunctionalityParameter

Functionality ResourceObject

1..n 0..n1..n 0..n

provides

SoftwareAgent

CompetencyParameter

ResourceAgent

StatusParameter

Configuration

Competency

1..n

0..n

1..n

0..n

provides

CostParameter

name : String...

type : String

ResourceList

ResourceStatus

ServiceRealization

n

0..n

n

0..n

requires

CostOfUse

billing_model : String...

Usage

Resource

shared : Boolean...

location : String...

1..n

0..n

1..n

0..n

owns

0..n

0..n

0..n

0..n

uses

1

0..n

1

0..n

owns

Has

Contract

begin_of_contract : Date...

end_of_contract : Date

QualityParameter

name : String

type : String

QualityLevel

0..1

0..n

0..1

0..n

defines

HumanAgent HumanAgentTeam

Fig. 1. An Ontology for Resource Representation.

through their Status. Those concepts are formally defined

hereafter.

A tuple 〈{(usi, qrusi), . . . , (usi+m, qrusi+m
)}, Resr〉 is a Re-

source r, where usi is a Usage. A resource furnishes Usages
(which can be Functionalities or Competencies required by

Services to contribute to their fulfilment) at Quality Level qrusi
(qrusi follows a particular quality ontology). Resr is assumed

to contain all additional properties of the resource not relevant

for the present discussion, yet necessary when implementing

the solution. Resources belong to the set RL (RL stands for

Resource List).
More precisely, resources deliver Functionalities if they

are Resource Objects or Capabilities if they are Resource
Agents (see Section II for a complete justification). A Usage
is a generalization of Functionality and Competency and is

compulsorily one or the other. That concept allows to tackle

the problem in a generic manner. The reader should note that

the distinction between Resource Agent and Resource Object is

not in the sense of agent or object-orientation but in the sense

of Resource Objects being inanimate; so even if the program

is object-oriented, it is still classified as Software Agent, since

what matters is modeling behavior.

The model is independent of any Functionality and Com-
petency ontologies; it can for example be used through the

competency ontologies defined in [4], [5]. The Functionality-
Parameter and CompetencyParamater classes are assumed to

contain all of the dimensions of these custom ontologies.

As previously discussed, Services are considered here as

coarse-grained granules of information that encapsulate an

entire or a set of business processes. With respect to the

ontology proposed in [8], services are thus viewed at the level

of Service Processes - i.e., design and implementation levels so

that services’ format and content depend on the implementa-

tion paradigm being used (procedural, object, agent, etc.). For

that purpose, they are not further specified (e.g., in terms of

pre/post condition and invariants) and defined here. Indeed, for

example, within the i* framework, a Service can be a Goal or

Task (while functionalities and competencies are at Capability

302

level); in UML/J2EE technology [11] it can be a Use Case
(while functionalities and competencies are at Method Call
level). Further functional considerations of the Service are

outside the scope of this ontology which tackles a lower level

of abstraction (granularity).

The set of resources RL (ResourceList) can be used as

yellow pages refeering the resources present into the system;

their status – i.e., information about their availability at a

given moment of time – must then be evaluated using the

characterization that follows.

A ResourceStatus, statusi, is 〈statusprei , τi, status
post
i 〉,

where statusprei describes the preconditions for establishing

a contract (following a particular ResourceStatus ontology),

τi is a specification (following a particular API) on how the

resource can be interfaced with and statusposti describes the

postconditions to properly end up the contract (following the

same ResourceStatus ontology).

The ResourceStatus ontology can be customely imple-

mented within the model. The StatusParameter class is as-

sumed to contain all of the dimensions of this custom ontology.

A Configuration is a subset of ResourceStatus elements; this

concept can be used to predefine quality levels before runtime

for optimization purpose in the form of a “caching” system.

Quality and cost ontologies can be implemented within

the model on a case by case basis. The QualityParameter
and CostParameter classes are assumed to contain all of the

dimensions of these custom ontologies.

B. Contractual Aspects

As previously evoked, the resource ontology assumes a

“higher-level” (service) dimension. A resource in use within

the realization of a defined service can, for a time shift
be not available and has to be invoiced to the consuming

process (or its cost center). Consequently such a transaction

has to be tracked by a formal element managing the resource

reservation and invoicing aspects: the contract. Finally, the use

of a resource has a cost. Cost ontologies are domain specific

and such a characterization is positioned here without being

instantiated. A specific cost ontology proposal we can link this

work to is provided into [12].

A Contract ˆconti is 〈Servs, usi, resi, resQual
i , resCost

i ,
resBeginTime

i , resEndTime
i 〉 associates a Service s requiring

the Usage usi (Functionality or Competency) provided by the

selected Resource resi, where:

• resQual
i specifies the minimal ensured quality level. Its

definition follows a particular quality ontology. Whatever

the specific quality ontology, expected qualities are likely

to be specified as (at least) resQual
i =

〈(p1, d1, v1, u1), . . . , (pr, dr, vr, ur)〉, where:

– pk is the name of the QualityParameter;

– dk gives the type of the parameter (e.g., nominal,
ordinal, interval, ratio, ...);

– vk is the set of desired values of the parameter,

or the constraint <,≤,=,≥, > on the value of the

parameter;

– uk is the unit of the property value.

• resCost
i specifies the contractual cost of use with respect

to a particular cost ontology. Whatever the specific cost

ontology, expected costs are likely to be specified as (at

least) resCost
i = 〈(n1, t1, b1), . . . , (nr, tr, br)〉, where:

– nk is the name of the CostParameter;

– tk gives the type of the parameter (e.g., nominal,
ordinal, interval, ratio, ...);

– bk is the billing model (pay per use, subscription,...).

• resBeginTime
i is the time the reservation of the resource

starts for the particular contract;

• resEndTime
i is the time the reservation of the resource

ends for the particular contract.

C. Resource Composition and Hierarchy

The ontology assumes a resources hierarchy in the sense

that a Resource Object realizing a functionality or a Software
Agent (which is a specialization of Resource Agent) realizing

a capability can either be an assembly – i.e., a resource made

of other resources advertising competencies – or be atomic
– i.e., not made of other resources advertising competencies.

This is materialized into the ontology by the composition as-

sociation on the Resource Object and Software Agent concepts

themselves (see Section III). Similarly, Human Agents cannot

be compositions of themselves but a HumanAgentsTeam is a

composition of several HumanAgents; both of these concepts

are specializations of Resource Agents so that a composition

link joins these two concepts into the meta-model.

IV. CASE STUDY: COKING PROCESS

The ontology is applied in this section within the realization

of a particular service in the context of a supporting informa-

tion system for a coking plant.

A. Context

CARSID, a steel production company located in the Wal-

loon region, is developing a production management software

system for its coking plant. The aim is to provide users,

engineers and workers with tools for information management,

process automation, resource and production planning, deci-

sion making, etc. Coking is the process of heating coal into

ovens to transform it into coke and remove volatile matter

from it. Metallurgical Coke is used as a fuel and reducing

agent, principally by the blast furnaces, in the production of

iron, steel, ferro-alloys, elemental phosphorus, calcium carbide

and numerous other production processes. It is also used to

produce carbon electrodes and to agglomerate sinter and iron

ore pellets. The production of coke is only one step in the

steel making process but details about the other phases of the

production process are not necessary to understand the case

study. For more information about this CARSID project, we

refer the reader to [1].

B. Applying the Ontology

The illustration depicted in this section is in the context

of the development of a software application made of several

services; Pushing is the Service Process realization we will be

303

concerned with here. Indeed, other services are not essential

for the present discussion and the reader should just keep in

mind that the description that will be given here is part of a

much larger set of developments.

In a few word, the Pushing service represents the process

by which the Pusher Machine pushes the red-hot Coke out of

the Oven through the Coke Guide into the Coke Car.

Typically, during a coke pushing process, the pusher ma-

chine situated at the front side of the ovens battery, removes

the front door, pushes the red-hot coke into the coke car

situated underneath the oven; the coke guide is used to remove

the oven back door and to correctly guide the red-hot coke

coming out of the oven into the coke car. The upper part of

the machine runs a mechanic arm pushing slowly the coke

out of the oven. The coke car is positioned behind the open

oven receiving the red-hot coke pushed out of the oven by the

pusher machine.

A formal set of functionalities and competencies is required

to define this industrial process as reported in the Fulfillment
statement of the following specification:

Service Realization Pushing

Attribute input: material in oven

gc: GuideCoke

cc: CokeCar

Fulfillment cooking(input, o) ∧ align(pm, gc, cc, position(o)) ∧
guide(input) ∧ collect(input) → � cokeMaterial(cm) ∧
emptyOven(o)

More precisely, cooking(input, o) represents the capability

of the oven o to cook coke at a temperature between 1200

and 1350 ◦C during 16 to 20 hours to transform it into red-

hot coke. Note that when this red-hot coke will be cold-

down (through a passage at the quenching tower) it will be

transformed into (metallurgical) coke, the finished product of

the coking plant. Aligning the pushing machine, the guide

coke and the coke car with the oven is a necessity to proceed

with pushing the coke out of the oven, the reason why the

functionality align(pm, gc, cc, position(o)) is then specified.

When proceeding with the pushing, the red-hot coke is guided

by the coke guide (guide(input) capability) and collected into

the coke car (collect(input) capability).

The list of resources used for achieving the required func-

tionalities and competencies is given hereafter.

Resource Oven o

Type : Resource Agent

Has ovenId: O123, currentTemperature: 1250, maxCapacity: 10,

openDoorStatus: closed, exitDoorStatus: closed,

cookingStatus: active, cookingBeginTime: 18:00;

Provides evaluateCooking(input, this);

Resource PushingMachine pm

Type : Resource Agent

Has pmId: 1, maxPower: 10, status: available;

Provides align(this, position), pushing(input);

Resource cokeMaterial cm

Type : Resource Object

Has cokeId: lot1333, status: cooking;

Provides redHotCoke(input);

Resource guideCoke gc

Type : Resource Agent

Has gcId: gc1, status: available;

Provides align(this, position), guide(input);

Resource cokeCar cc

Type : Resource Agent

Has ccId: cc1, status: available;

Provides align(this, position), collect(input);

At runtime, the realization of the Pushing service implies

the fulfillment of the evaluateCooking(input, this), align(pm,
position(o)), align(gc, position(o)), align(cc, position(o)) and

collect(input) capabilities leading to the series of contracts

depicted hereafter.

Contract EvaluateCooking123

Fulfills evaluateCooking(input, o);

Using oven o, cokeMaterial cm;

QualityLevel N/A;

Cost N/A;

Contract Align123

Fulfills align(pm, position(o)), align(gc, position(o)),

align(cc, position(o));

Using pushingMachine pm, guideCoke gc, cokeCar cc, oven o;

Has beginTime: Date, endtime: Date;

QualityLevel N/A;

Cost Energy(pm(pos(x),pos(o)), gc(pos(x),pos(o)),

cc(pos(x),pos(o)));

Contract PushCokeLot1333

Fulfills collect(input);

Using oven o, cokeMaterial cm;

Has beginTime: Date, endtime: Date;

QualityLevel N/A;

Cost Energy(push);

C. Lessons Learned and Ontology Contributions

The use of the resource ontology as a pattern as well as

a structured approach for resource representation and tracing

among the analysis and design steps within the CARSID case

study has allowed us:

• to improve the structural complexity. Indeed, the current

application design has been enhanced with respect to

metrics as the ones defined in [13];

304

• to provide a unified catalogue of available resources in

the form of a yellow page system;

• to redefine resource as runtime dynamic elements. Object-

oriented development used a static and passive descrip-

tion of the resources;

• to better understand resource utilization through the ex-

post study of the contracts by production engineers. This

allows to identify possible bottlenecks and re-optimize

the production planning for adequate resource utilization;

• to compute and store into the caching system pre-

positions for devices as the pusher machine, coke car

and guide coke. Since several combinations of instances

of these machines are available, the process is non-trivial;

• to express the process from a resource-based point of

view which allows focusing on interoperability and evo-

lutionary aspects.

V. RELATED WORK

Different papers have proposed models to represent and

monitor resources. Even heterogeneous resources have been

dealt with – for example in [14] – their evocation has been

always in the context of hardware resources. Indeed, [15] goes

beyond the stage of defining an ontology for heterogeneous re-

sources representation by proposing a complete architecture as

well as an underlying management dimension with the use of

a semantic repository. The proposal nevertheless only focuses

on the particular context of grid computing and consequently

hardware resources so that it cannot be of any help in terms

of general business modeling. We nevertheless could envisage

to include “our” ontology into their contribution to develop a

larger resource monitoring system. Similarly [16] goes further

in the idea of developing semantic resource management

and within their management using a scheduling method but

also remains in the context of hardware for grid computing.

As evoked in Section II, competency-based modeling for

resource monitoring has been developed in [5] but in the

specific context of human resources. Our ontological frame

extends the competency concept to semantically encompass

these two resource types. Conceptual models as i* [7] include

the resource concept in their definition but do not define

advanced frames for forward engineering such concepts at

design stages; the ontological frame proposed here is intended

to be extended fill this gap and explicitly define traceability

between the business analysis and software design stages.

VI. CONCLUSION

The new hardware resource sharing paradigm and distant

software execution devices such as netbooks or smartphones

paves the way to new heterogeneous resource allocation

requirements supported by active software. To address this

problem at best, an ontology that can easily and flexibly be

included in a classical software engineering process, such as

[1], [2], to develop resource-aware software systems has been

presented in this paper. Section II has overviewed the structural

choices of the ontology including the concepts of functionality

and competency; the distinction between resources and actors

and, finally, resource composition and hierarchy. Section III

has presented the conceptual model itself while Section IV has

been devoted to a case study. Finally, Section V has briefly

depicted related work.

The conceptual model in this research proposes to centralize

resources’ offer and demand through the concepts of func-

tionality and competency. The ontology furnishes a common

semantic for consumers (i.e. services) to rent resources that can

themselves advertise their offer so that consumption contracts

can be set up.

Future work includes extending the ontology with a process

covering the whole software development life cycle from

(agent-based) analysis to service level agreements. The de-

velopment of a dynamic dimension allowing to document and

implement a multi-agent system resources management as well

as the realization on a case study in the field of outbound

logistics is currently under progress.

REFERENCES

[1] Y. Wautelet and M. Kolp, “Goal driven iterative software project
management,” in ICSOFT (2), M. J. E. Cuaresma, B. Shishkov, and
J. Cordeiro, Eds. SciTePress, 2011, pp. 44–53.

[2] Y. Wautelet, S. Kiv, and M. Kolp, “An iterative process for component-
based software development centered on agents,” T. Computational
Collective Intelligence, vol. 5, pp. 41–65, 2011.

[3] C. M. Jenkins and S. V. Rice, “Resource modeling in discrete-event
simulation environments: A fifty-year perspective,” in Winter Simulation
Conference, 2009, pp. 755–766.

[4] M. Harzallah and F. Vernadat, “It-based competency modeling and
management: from theory to practice in enterprise engineering and
operations,” Comput. Ind., vol. 48, pp. 157–179, June 2002.

[5] G. Paquette, “An ontology and a software framework for competency
modeling and management,” Educational Technology & Society, vol. 10,
no. 3, pp. 1–21, 2007.

[6] I. Jureta, C. Herssens, and S. Faulkner, “A comprehensive quality model
for service-oriented systems,” Software Quality Journal, vol. 17, no. 1,
pp. 65–98, 2009.

[7] E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos, and S. Fickas, Social
Modeling for Requirements Engineering. MIT Press, 2011.

[8] R. Ferrario and N. Guarino, “Towards an ontological foundation for
services science,” in FIS, 2008, pp. 152–169.

[9] R. Haesen, M. Snoeck, W. Lemahieu, and S. Poelmans, “On the
definition of service granularity and its architectural impact,” in CAiSE,
ser. Lecture Notes in Computer Science, Z. Bellahsene and M. Léonard,
Eds., vol. 5074. Springer, 2008, pp. 375–389.

[10] OMG, “Omg unified modeling language (omg uml). version 2.4,” Object
Management Group, Tech. Rep., 2011.

[11] K. Ahmed and C. Umrysh, Developing Enterprise Java Applications
with J2EE(TM) and UML. Addison-Wesley, 2001.

[12] K. Tham, M. S. Fox, and M. Gruninger, “A cost ontology for en-
terprise modelling,” in Proceedings of Third Workshop on Enabling
Technologies-Infrastructures for Collaborative Enterprises. IEEE Com-
puter Society, 1994, pp. 197–210.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[14] Y. Yu and H. Jin, “An ontology-based host resources monitoring ap-
proach in grid environment,” in WAIM, 2005, pp. 834–839.

[15] T. S. Somasundaram, R. A. Balachandar, V. Kandasamy, R. Buyya,
R. Raman, N. Mohanram, and S. Varun, “Semantic-based grid resource
discovery and its integration with the grid service broker,” in In AD-
COM 2006: Proceedings of 14th International Conference on Advanced
Computing & Communications, 2006, pp. 84–89.

[16] A. C. Vidal, F. J. da Silva e Silva, S. T. Kofuji, and F. Kon, “Seman-
ticsbased grid resource management,” MGC ’07 Proceedings of the 5th
international workshop on Middleware for grid computing, 2007.

305

Petri Net Modeling of Application Server Performance for Web Services

M. Rahmani, A. Azadmanesh, H. Siy
College of Information Science & Technology

University of Nebraska-Omaha
Omaha, NE 68106.

Tel: +1(402) 554-2084
{crahmani, azad, hsiy}@unomaha.edu

Abstract—A study of failure rates of a web service that is
deployed in a service-oriented architecture is presented. The
study focuses on the HTTP requests that are rejected by the
application server. The rejections may be caused by system
overloading or mismanagement of configuration
parameters. An analytical model and a Stochastic Activity
Network (SAN) model are developed to predict the number
of such failures. The performance of the models is
compared against the experimental results in a LAN
environment that is used as a test-bed. The models utilize
the parameters extracted from the empirical testing such as
the average response time and arrival rate of the web
service requests. The accuracy of the SAN model suggests
that the model can be beneficial to predict the rejection rate
of web services and to better understand the application
server performance for those cases that are difficult to
replicate in a field study.

Keywords- Application Server; Simulation Model; Service
Oriented Architecture; Web Service; Petri Net; Load Testing

I. INTRODUCTION AND RELATED WORK
 Web services, such as electronic shopping, online
auction, and banking services, have permeated our daily
lives due to the ease of use, flexibility and reduction of
cost in providing the services [1]. T hey are generically
seen by many as applications that can be accessed over
the Internet. A more precise definition of web services,
provided by the World Wide Web Consortium (W3C) [2],
defines it as a software system designed to support
interoperable machine-to-machine interaction over a
network. Web services are generally enabled through an
application server software that communicates with a web
server and a database server.

With the prevalence of web services in real-time and
critical software domains, high level of reliability and
performance are expected from them. As such, a number
of approaches to reliability prediction and performance
evaluations have been attempted. These approaches are
often not new and have been applied to reliability and
performance analysis of component-based software
systems. Some of the most common approaches are based
on Markov Chains, Tree-based, and Petri net models
[3,4,5,6,7]. The majority of research works is theoretical
with less emphasis on experimental analysis to support the
theoretical results [4,8,9,10,11]. For example, Zhong and
Qi [8] propose a Petri net model of performance and
dependability of web service composition. However, the

paper emphasizes on theoretical aspect of research and
does not include any experimental analysis. In [9], authors
presented a simulation-based model for performance
analysis and evaluation of application servers using Petri
nets. However, the numerical illustration of the presented
simulation model is based on hypothetical input and not
real experiments.

Some of the studies that use a combination of
theoretical and experimental analyses include
[12,13,14,15,16]. Xiao and Dohi [12] focused on the
relationship between the Apache server error rate and
system’s performance and developed a probability model
to describe this relationship. In [13], authors focused on a
performance evaluation model of a web server system,
which is based on a queuing model and evaluated the
effectiveness of the model through the experiments in the
lab environment. In [14], the authors proposed another
queuing model to evaluate the performance parameters of
a web server such as the response time and the blocking
probability. The authors in [15] evaluate the response time
and throughput of web services by collecting and
analyzing large sets of data from geographically
distributed locations. Goseva et al. [16] presented an
empirical as well as theoretical study of architecture-based
software reliability on a la rge open source application
with 350,000 lines of C code. They emphasized on
theoretical and experimental results on a large scale field
study to test and analyze the architecture-based software
reliability.

This paper is focused on the performance modeling of
the JBoss application server [17] with respect to response
time, throughput, and rejection (blocking) rate of web
service requests. The study 1) introduces an analytical
method to measure the rejection rate, 2) est ablishes an
experimental environment to collect data by generating
controlled loads of web service requests to JBoss, and 3)
injects the experimental results into a Petri net model that
simulates the JBoss performance behavior. In general, the
main contribution of the paper is the measurement and
comparison of web service rejection rate from analytical,
empirical and simulation (Petri net) points of view. Other
than the experimental and theoretical approaches, this
study is dif ferent from many other relevant research
works in that the focus is geared toward understanding the
effect of configuration parameters such as the maximum
HTTP thread pool and the queue size in the application
server. Petri nets are chosen for this study because of the

306

flexibility they provide to model systems with multi-
threaded executions. In comparison, analytical approaches
such as Ma rkov models are difficult to express multi-
threaded systems, at least because of the state-space
explosion problem, as each Petri net marking becomes a
single state in the Markov model. As Markov models can
be seen as a finite state machine, they are more suitable
for single-threaded systems.

The paper is organized as follows. Section II presents
a) the description of experiments, b) an analytical model,
and c) the Petri net model for HTTP request rejection rate
in JBoss. Section III focuses on experimental and
analytical results. Section IV offers some possible
directions to the future research and finally section V
contains some concluding remarks.

II. DESCRIPTION OF EXPERIMENT

A. Experimental Environment
The experimental environment consists of two hosts

(client and server) remotely located from each other in a
LAN environment. The host server on which JBoss is
running is excluded from running other tasks to ensure the
consistency of data sets collected. The Duke’s Bank
application [18] is transformed into a web service and
deployed on JBoss. JBoss uses the Apache Tomcat as its
default web server. The client host generates service
requests to JBoss. The bandwidth of the LAN is shared
with other users not relevant to this experiment. Tools like
Wireshark [19] and Ping are used to measure the round
trip delay (RTD), excluding the time spent in the hosts. In
comparison to the time spent in the server, the RTD is
observed to be so negligible that it is ignored in the
experimental analyses. The system structure is illustrated
in Fig. 1.

Figure 1. The experimental setup.

SoapUI [20] is used to generate controlled service
request loads to the server. SoapUI is an open source
testing tool solution for service-oriented architectures.
With a graphical user interface, SoapUI is capable of
generating and mocking service requests in SOAP format.
There are two main parameters in SoapUI load testing
tool that can be set to control the workload of the

application server: number of threads representing the
virtual users, and the number of requests (runs) generated
per thread. For example, if the number of threads is set to
20 and number of runs per thread is set to 10, then there
are 20 clients, each sending 10 SOAP requests for a total
of 200 requests. SoapUI measures several performance
parameters such as the average response time, avg,
transactions per second, tps, and the number of
transaction requests failed in the process, which is denoted
as err. Avg is the average time difference between the
times a request is sent out until the response is received.
Tps, also called arrival rate, is th e average number of
requests generated by the clients per second.

The experiments have been conducted with sixteen
different load configurations. For each load test, SoapUI
returns the values for avg, tps, and err. Each test is
repeated 5 times and the average of the returned values
are calculated. The total time T for each load test
configuration is computed as follows:

where cnt is the total number of requests for each test.
Consequently, the error and success rates for each load are
computed by:

The error reports generated by SoapUI consist of all
types of potential errors that are generated by the network,
application server, and web service itself. However, this
study considers only the errors that are generated by JBoss
when the HTTP requests are rejected. Th erefore,

 is treated as .

B. The Analytical Model
The actual rate of requests rejected can be obtained

from (2). This rate can be estimated in a different way.
Recall that avg is the average response time for one
request. Therefore, the service rate is 1/avg. In order for
JBoss not to reject any incoming request, it should be able
to use enough threads to keep up w ith the arrival rate.
Thus, JBoss will reject no requests if the following holds:

0
11

tpsthreads
avg

tpsthreads
avg

Otherwise some requests will be rejected. Thus, number
of requests rejected per unit of time, i.e. ,
will be:

)

Consequently, the total number of requests rejected is:

 (4)

 Client Server

OS Windows 7 Windows Vista

Processor 1.67 GHz 2.66 GHz

RAM 1.00 GB 2.00 GB

Software SoapUI (3.6.1) JBoss AS (4.2.2)

SOAP- Http Request

SOAP- Http Response

SOA
WS client

SoapUI

JBoss AS

Banking
 WS

307

The accuracy of (4) depends on threads, which will be

referred to as threshold. This is because any value higher
than the threshold value underestimates and any value
lower than the threshold overestimates the number of
rejections. Thus, the following will be used instead of (4).

 (5)

Threshold is computed from the experimental

analyses. Theoretically, when the configuration
parameters maxThread and acceptCount in server.xml file
are set to 250 and 100 respectively, it is expe cted that
JBoss handle 350 requests (250 in the thread pool and 100
in the queuing system). However, in real world
experiments, there are many factors such as m emory,
processor and type of operating system that may affect the
actual number of threads that can be devoted to requests.
More importantly, the response time evaluated by SoapUI
includes the time spent in the queuing system and the time
actually spent on servicing the request. With this
experiment setup in the lab and by running different tests,
threshold is estimated to be around 315. This is the
threshold number of threads in JBoss that leads to
performance results from the test cases performed on
SoapUI.

It is expected that the response time, avg, to i ncrease
as the number of requests increases. Fig. 2 shows the avg
numbers for different virtual users in the real experiments,
where each user sends 10 requests. The figure exhibits
that the response time increases up to a point, levels-off
for a moderate range of requests, and then increases again.

Figure 2. Average response time based on number of virtual users.

The reduction in response time beyond 370 up to
around 500 users is counterintuitive because as there are
more requests the response time ought to increase instead.
During this period, Fig. 3 indicates that the rejection rate
is increased. Toward the end, Fig. 2 further shows sharp
increase in the average response time while the rejection
rate on average in Fig. 3 stays the same. This paradoxical
behavior has two reasons. The first reason is that SoapUI
uses the total requests in calculating the average response
time, regardless of whether a request is successful or
rejected. It is f or this reason that the average response

time of 15.11 in Fig. 2 can be interpreted as the true
response time because at about 370 users the number of
rejections is low or almost nonexistent. The second reason
is contributed to JBoss, which can be explained as
follows. From 370 to around 500 users, the server is using
the resources that are already setup and activated, so the
system can reallocate them to other requests, such as the
thread resources. Beyond 500 users, the server overhead,
such as the time taken to reject the requests, accumulates
as the rejection rate increases.

Since SoapUI includes the rejection count in the
evaluation of average response time, one way to f ind a
good estimate of the actual response time is t o use a
packet capture tool such as Wireshark and evaluate the
response time for each successful request from the time
the request is received by the server until the response is
sent back to SoapUI. This requires filtering the blocked
requests and evaluating the response time for each
individual successful request, which seems to be
infeasible. The other approach is to use 15.11 as the
estimate of the actual response time for loads more than
370, where the rejections really start. This value shows the
peak of response time when the system utilizes all the
resources for high level loads without being biased by the
rejected requests. Therefore, in this study avg = 15.11 is
used as the closest approximation of average response
time for high level loads.

Figure 3. Request rejection rate based on number of virtual users.

C. The Stochastic Activity Network Model
Petri nets are a g raphical model for the formal

specification and analysis of concurrent and discrete-event
systems. Since the introduction of classic Petri nets, a
number of variants have been introduced. Stochastic Petri
Nets (SPN) is a subsidiary of timed Petri nets that adds
non-deterministic time through randomness of transitions.
Generalized Stochastic Petri Nets (GSPN) is a SPN
performance analysis tool that uses the exponential
random distribution, and thus conversion to Markov
Chains is automated. Stochastic Activity Network (SAN)
[21] is a structurally extended version of GSPN with
many features such as the ability of creating complex
enabling functions, probabilistic choices upon completion
of activities, and reward functions. In the world of SANs,
transitions (actions) are referred to as activities, which can
be of two kinds: timed and instantaneous. The firing
(activation) time of timed activities are exponentially
distributed. Once enabled, instantaneous activities

0
5

10
15
20
25
30
35

20
0

35
0

35
2

35
4

36
0

37
0

38
0

40
0

50
0

60
0

65
0

70
0

80
0

10
00

12
00

15
00

Number of virtual users

Av
er

ag
e

re
sp

on
se

tim
e

15.11

0
0.1
0.2
0.3
0.4
0.5
0.6

20
0

35
0

35
2

35
4

36
0

37
0

38
0

40
0

50
0

60
0

65
0

70
0

80
0

10
00

12
00

15
00

Re
je

ct
io

n
ra

te

Number of virtual users

308

complete in zero-time, and thus have priority over timed
activities. Reward functions are used to measure
performance or dependability related issues.

The SAN model describing the behavior of the web
service system is constructed using Mobius [22]. Mobius
can solve SAN models, either mathematically or by
simulation. Because of the types of reward rates used we
have found it easier and less time consuming to work with
the simulation solver. Fig. 4 provides a SAN model for
the service requests that arrive at the server (JBoss) side.
Recall that Duke’s Bank web service is u sed in this
experiment. This web service receives customer ID and
returns all account numbers of the customer.

Figure 4. The Petri net model of JBoss serving the requests.

In the figure, the timed and instantaneous activities are
shown by thick and thin bars, respectively. Each flat dot
represents a probabilistic choice that leads to taking a
different path in the model once the activity completes.
The place called Request is initialized to cnt, the number
of total HTTP requests for each test case. The rate of the
Tarrival activity gives the rate of arrivals per unit of time,
which is equal to tps. The HTTP thread instance pool in
JBoss is represented by the Threadpool place, which is
initialized to maxThread extracted from the configuration
file named server.xml. Once Tarrival completes, the token
generated, through the output gate OG, shown as a s olid
triangle, will be deposited in either Start or
Blockedrequest. OG represents the conditions for rejecting
HTTP requests. For instance, if Start has reached its
maximum capacity, OG will redirect the token to
Blockedrequest; otherwise the token is added to Start. The
rejected requests are accumulated in Down via T03
activity. Activity TJW, which represents the service rate
of the application server, is enable d only if Threadpool
and Start are not empty. When TJW is activated, a token
in Threadpool representing an available thread in JBoss is
allocated to a request in Start. Once the request is
serviced, the thread, through T01, is released to
Threadpool to be used by a ne xt request. In case the
server fails to service the request (lower case of TJW), the
allocated thread is returned to Threadpool via T02. The
failure probability (lower case) of T01 is the probability
that the service request is failed by means other than
failures caused by the application server, such as a failure
in the network or unregistered service. These failure

probabilities are set to zero but can be set to non-zero
values. Table I shows the parameters and their values used
in the SAN model. The impulse reward functions count
the number of activities that complete. The number of
activations at Tarrival shows the total number of requests
that has entered the Petri net model. Similarly, the number
of activation completions at T03 represents the number of
requests rejected. Let be the number of
these rejections, i.e. the number of T03 activations.

TABLE I. SAN MODEL PARAMETERS

Parameter name Parameter value

Requests Initialized to Cnt (from SoapUI)
Tarrival rate Initialized to Tps (from SoapUI)

Threadpool Initialized to maxThread (from
server.xml in JBoss AS)

OG

// threadpool = maxThread
// queue = acceptCount from
server.xml in // JBoss AS
// maxThread default: 250
// acceptCount default: 100
If (Start Mark() < (threadpool
+ queue))
 Start Mark() =
 Start Mark()+1;
Else
 Blockedrequest Mark() =
 Blockedrequest Mark()+1;

TJW rate

// avg from SoapUI
// threshold = 315
If (Start Mark() < Threadpool

Mark())
 Return ((1/avg) *
(Start Mark());
Else
 Return ((1/avg) * threshold);

T01 probability case1 1
T01 probability case2 0

TJW probability case1 1
TJW probability case2 0

Impulse Reward Functions
Total number of requests: If
Tarrival fires then return 1;
Number of requests rejected: If
T03 fires then return 1;

Since the threads in JBoss are executed in parallel, the

if-clause of the TJW rate in the table ensures that there are
enough threads to be allocated to the requests. The else-
clause, however, is not intuitive enough. The else-clause
should be looked at with the OG condition in mind. JBoss
allows a maximum of queue requests to be queued. In
other words, if Threadpool is empty, there can be at most
queue tokens in Start. Consequently, if there are x <
threadpool tokens in Threadpool, the maximum number
of tokens in Start is (queue + x). Since the value of x
changes depending on the available threads, the maximum
tokens in Start, i.e. (queue + x), continuously changes as
well. This causes threshold that represents the speed at
which the SAN model services the requests to be
dynamic. In other words, threshold needs to be throttled
each time x changes. This makes it difficult to predict an
appropriate threshold value that meets the rejection rate
observed by the experiments performed using SoapUI.
Thus, the maximum value of Start is set at the fixed value
(threadpool + queue). This in turn makes threshold to be
a fixed value. As it will be shown shortly, this approach

Request

Tarrival

OG Start S
 TJW

Threadpool

Response

Webservicedown

Blockedrequest

T01

n
T02

T03

Down

309

has shown that performance of the SAN model is very
close to that of the rejection rate reported by SoapUI.

III. RESULTS
Sixteen tests have been conducted on the banking web

service. Each test is run five times and the average of
extracted data is considered as experimental data. Table II
shows a sample data extracted from SoapUI. For each of
the 16 different loads, avg and tps values returned by
SoapUI are used in the SAN model (see Table I) and (5).
Table III shows the results for the 16 tests obtained from
SoapUI, the theoretical equation (5), and from running the
SAN model. As it is shown in the table, the worst
rejection rate happens when there are 380 users, which is
0.13 – 0.08 = 0.05, and 0.14 – 0.08 = 0.06 for the
theoretical and the SAN model, respectively.

TABLE II. SAMPLE DATA EXTRACTED FROM SOAPUI

Users
(threads

)

Runs
per

threa
d Cnt

Avg
(sec) Tps

Total
time
(sec)

Numbe
r of

request
s

rejected

Request
rejectio
n rate

200 10
200
0 7.46

24.6
8 82.55 0

350 10
350
0

13.7
6

22.9
2

153.2
5 0 0

352 10
352
0

13.8
3

22.2
5

158.2
1 0.5 0

354 10
354
0

13.6
9

22.6
1

156.5
8 5 0.001

360 10
360
0

14.5
4

22.1
5

162.6
7 24.2 0.006

370 10
370
0

15.1
1

21.7
8

170.4
6 185.4 0.05

380 10
380
0

13.7
1

24.1
3

157.6
4 332 0.08

TABLE III. REQUEST REJECTION RATE FOR ALL SIXTEEN TESTS

Number of
simultaneous
users

Request
rejection rate
(SoapUI)

Request
rejection rate
(rejectionest /cnt)

Request
rejection rate
(rejectionSRN
/cnt)

200 0 0 0.01
350 0 0 0.04
352 0 0 0.03
354 0.001 0 0.03
360 0.006 0.02 0.04
370 0.05 0.04 0.05
380 0.08 0.13 0.14
400 0.15 0.17 0.17
500 0.4 0.4 0.4
600 0.52 0.5 0.49
650 0.54 0.52 0.52
700 0.51 0.52 0.52
800 0.5 0.54 0.53
1000 0.54 0.51 0.51
1200 0.55 0.52 0.52
1500 0.51 0.5 0.49

Fig. 5 displays graphically the request rejection rate
for the three different models shown in Table III. The
figure shows that the rejection rate of the analytical and
the SAN models closely match the ones provided by
SoapUI. Another interesting result from the experimental
analysis is the throughput. Throughput is computed by:

 (6)

Fig. 6 shows the throughput as a func tion of users. As
expected, the throughput decreases as the users are
increased. The tps range reported by SoapUI is from 21 to
45 for an average of about 33, with a standard deviation of
about 10. T he average throughput is about 22.5, which
means on average, 30% of the requests are rejected.

Figure 5. HTTP rejection rate.

Figure 6. Throughput based on virtual users (extracted

from soapUI).

Figure 7. Web services rate not serviced using SAN model.

The close approximate behavior of the SAN model,
as shown in Fig. 5, allo ws for cases th at are more
difficult to rep licate in real world, e.g. inducing failures
in the application server (TJW activity in Fig. 4). As an
example, consider Fig. 7 that shows the rate o f failures
due to HT TP rej ections and web service failures. This

0

0.1

0.2

0.3

0.4

0.5

0.6

200 352 360 380 500 650 800 1200

Experimental model

Analytical model

Number of virtual users

Re
je

ct
io

n
ra

te

0

5

10

15

20

25

30

20
0

35
0

35
2

35
4

36
0

37
0

38
0

40
0

50
0

60
0

65
0

70
0

80
0

10
00

12
00

15
00

Number of simultanous users

Th
ro

ug
hp

ut

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.

01
0.

04
0.

08
0.

12
0.

16 0.
2

0.
24

0.
28

0.
32

0.
36 0.

4
0.

44
0.

48
0.

52

Failure rate
Total unsuccessful rate (HTTP rejections + failures)
HTTP rejection rate

Web service failure probability

Ra
te

 o
f w

eb
 se

rv
ic

es
 n

ot
 se

rv
ic

ed

310

figure assumes the experiment with 354 s imultaneous
users with the same arrival rate and average respon se
time shown in Table II. Rrunning the SAN model with
different web service failure probabilities produces the
rejection rate of about 3%. But the rate of successful web
services is greatly impacted if the web service failure
probability is greater than 4%. These probabilities are set
by changing case 2 of TJW activity (see T able 1).
Although TJW is the activity rate of th e web services
deployed, we are ass uming the application server might
fail to serv ice some accepted requests but those web
services do n ot cause t he server to f ail. Otherwise a
failure in the server would require the removal of all
requests from Start and restart of the server.

IV. FUTURE WORK
This study has concentrated on estimation of HTTP

rejections. The research treated the application server
software as a black box and showed that the SAN
simulation model closely matches the experiment results.
The current research is investigating a white-box approach
(Fig. 8) in that a hierarchical SAN model is being created
with submodels for the web server (Tomcat), the
application server (JBoss), the database, and th e web
service itself. Since the correctness of the black-box
approach has been verified through real test cases, the
black-box results can be used to validate the hierarchical
approach in that the white-box strategy ought to produce
performance similar to those shown in this research. The
white-box approach allows for finer granularity of
analysis such as the impact of sensitive components on
the overall reliability of the system that is otherwise not
possible in the black-box approach.

Figure 8. Architecture of JBoss, showing the interaction between
layers and shared resource.

V. CONCLUSION

This study has emphasized on the combination of load
testing and simulation modeling to predict rejections of
HTTP requests in a banking web service deployed in
JBoss. The analytical and the SAN models developed
utilize the parameters extracted from the load tests, such
as average response time and arrival rate in order to
predict the rejection rate of HTTP requests. The accuracy

of the models is validated by comparing the results of the
models against those of the experimental ones.

ACKNOWLEDGMENT
This research is f unded in part by Department of

Defense (DoD)/Air Force Office of Scientific Research
(AFOSR), NSF Award Number FA9550-07-1-0499,
under the title “High Assurance Software”.

REFERENCES
[1] M.N. Huhns, “Service-oriented computing: Key concepts and

principles”, IEEE Internet Computing, pp. 75-81, Jan-Feb 2005.
[2] World Wide Web Consortium, http://www.w3.org/.
[3] S. S. Gokhale, P. J. Vandal, J. Lu, “Performance and reliability

analysis of web server software architectures”, 12th Pacific Rim
Int’l Symp on Dependable Computing , 2006.

[4] R. C. Cheung, “A user-oriented software reliability model”, IEEE
Trans on Soft Eng, vol. 6, no. 2, pp. 118–125, 1980.

[5] K. Goˇseva–Popstojanova, K. Trivedi, “Architecture–based
approach to reliability assessment of software systems”,
Performance Evaluation, vol. 45, pp.179-204, 2001.

[6] M. Rahmani, A. Azadmanesh, H. Siy, “Architecture-based
reliability analysis of web services in multilayer environment”,
PESOS workshop, 33rd Int’l Conf on Soft Eng, 2011.

[7] B. Zhou, K. Yin, S. Zhang, H. Jian, A.J. Kavs, “A tree-based
reliability model for composite web service with common-cause
failures”, R.S. Chang et. al (Eds.), LNCS 6104, pp. 418-429,
2010.

[8] D. Zhong and Zhichang Qi, “A Petri net based approach for
reliability prediction of web services”, LNCS 4277, pp. 116-125,
2006.

[9] F. Souza, R. Arteiror, N. Rosa, P. Maciel, “Using stochastic Petri
nets for p erformance modelling of application servers”, Proc of
5th Int’l Work. on Pe rformance Modeling, Evaluation and
Optimization of Pa rallel and Distributed Systems, IEEE IPDPS,
pp. 1-8, 2006.

[10] H. Singh, V. Cortellessa, B. Cukic, E. Guntel, and V. Bharadwaj,
“A bayesian approach to reliability prediction and assessment of
component based systems”, Proc. 12th Int’l Symp on Software
Reliability Engineering, pp. 12–21, 2001.

[11] A. Filieri, C. Ghezzi, G. Tamburrelli, “Run-time efficient
probabilistic model checking”, Int’l Conf Soft Eng, pp. 21–28,
2011.

[12] X. Xiao, T. Dohi, “Estimating the error rate in an A pache web
server system”, Int’l J of Soft Eng and Its Applications, vol. 4, no.
3, 2010.

[13] R. D. va n der Mei, R. Hariharan, P. K. Reeser, “Web server
performance modeling,” Telecommunication Systems, vol. 16, no.
3/4, pp. 361-378, 2001.

[14] J. Cao, M. Andersson, C. Nyberg, M. Kihl, “Web server
performance modeling using an M/G/1/K*PS queue”, Proc of
10th Int’l Conf on Telecommunications , pp. 1501- 1506, 2003.

[15] Z. Zheng, M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems”, Proc of 32 rd Int’l Conf in Soft Eng,
2010.

[16] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli, “Large
empirical case study of a rchitecture-based software reliability,”
Proc Int’l Symp Software Reliability Eng, pp. 43-52, 2005.

[17] JBoss Application Server, http://www.jboss.org/jbossas/.
[18] The Duke’s Bank Application, http://download.oracle.com/

javaee/1.4/tutorial/doc/Ebank.html.
[19] Wireshark, http://www.wireshark.org/.
[20] SoapUI, http://www.soapui.org/.
[21] W.H. Sanders, J.F. Meyer, “Stochastic activity network: Formal

definition and concept”, LNCS, vol. 2090, pp. 314-343, 2001.
[22] Mobius, https://www.mobius.illinois.edu/.

Web

Server

Application

Server

Web

service

DB

SOAP/HTTP Request

Configuration
parameters

SOAP/HTTP
Response

Resource release Resource allocation

Http
thread
pool

EJB
pool

DB
connection
pool

311

Implementing Web Applications as Social Machines
Composition: a Case Study

Kellyton dos Santos Brito1,2, Lenin Ernesto Abadie
Otero2, Patrícia Fontinele Muniz2, Leandro Marques

Nascimento1,2
1DEINFO – Federal Rural University of Pernambuco

Recife, Brazil
[ksb, leao, pfm, lmn]@cin.ufpe.br

Vanilson André de Arruda Burégio2, Vinicius
Cardoso Garcia2, Silvio Romero de Lemos Meira2,3
2Informatics Center – Federal University of Pernambuco

3C.E.S.A.R - Recife, Brazil
[vaab, vcg, srlm]@cin.ufpe.br

Abstract: With the evolution of the web and the concepts of web
3.0 as known as programmable web, several issues need to be
studied in order to develop, deploy and use this new kind of
application in a more effective way, such as communication
between systems, unstructured data and non-scalable protocols,
among others issues. In this regard, a new concept – named Social
Machines – emerged to describe web based information systems
that interact for a common purpose. In order to apply and
validate in practice this new model, in this paper we describe a
case study which implements a web application that is a
composition of several public and well-known services from
different application domains, such as Wikipedia, Flickr, Twitter,
Google Places and Google Maps, following the Social Machines’
model. In the end, we present the results and some improvement
suggestions for the model.

Keywords: social machines, web development, sociable
applications, programmable web, case study.

I. INTRODUCTION

In web 3.0, the web as a programming platform [1],
software is developed for the web, through the web, and in the
web, using the web both as programming platform and
deployment and execution environments. Thus, nowadays
computing means connecting [2], due to the fact that
developing software is almost the same as connecting services
[3]. Examples of this scenario are the development of
Facebook, Twitter, Yahoo!, Salesforce, Google, Amazon and
many others, that makes their APIs available for anyone to
develop applications that interact with their services.

In addition to those popular APIs, there are several public
APIs and several applications that use them. For example, the
ProgrammableWeb website1 reached 5000 APIs in February
2012, and in the same month it listed more than 6500 mashups
using them. Although there have been many studies about the
future of the internet and concepts such as web 3.0,
programmable web [1, 4], linked data [5] and semantic web [6,
7], the segmentation of data and the issues regarding the
communication among systems, unstructured data, unreliable
parts and non-scalable protocols are all native characteristics
of the internet that needs a unifying view and explanations in

1 www.programmableweb.com

order to be developed, deployed and used in a more efficient
and effective way.

Furthermore, the read/write and programmable web are
recent enough to represent very serious difficulties in
understanding their basic elements and how they can be
efficiently combined to develop real, practical systems in
either personal, social or enterprise contexts. So, Meira et al.
[8, 9] defined the concept of a web of Social Machines, in
order to provide a common and coherent conceptual basis for
understanding this still immature, upcoming and possibly
highly innovative phase of software development.

In this context, in order to validate the Social Machines
model and to test solutions for open issues, in this paper we
revisited and applied the concepts of social machines, by
performing a case study of a new application, according to
following structure: in Section II we briefly present the Social
Machines concept; in Section III we present a case study with
the implementation of an application using the concept and
guidelines; Section IV discusses the benefits, difficulties and
challenges; and Section V concludes the paper and presents
future works.

II. THE WEB OF SOCIAL MACHINES

The concept of Social Machines overlaps other research
fields and issues currently well studied such as SaaS, Cloud
Computing, SOA and Social Networks, but we have not found
works that directly deals with the concept adopted by this
study. Roush [2] proposed Social Machine representing human
operated machines responsible for socializing information
among communities; Patton [10] defines them as virtual
machines operating in given social fields; Fuglsang [11]
discussed them as systems that (in society) consume, produce
and record information and are connected at large; and
Hendler [12] discusses social machines based on Berners-Lee
[13] who defines social machines as machines that do the
system and social administration while the people do the
creative work. In addition, the robotics view of a social
machine is that of one that can relate to people [14].

The social machine concept adopted by this work is an
abstract model to describe web based information systems that

312

could be a practical way of dealing with the complexity of the
emerging programmable web. The concept starts from Kevin
Kelly, of Wired fame, that is quoted as having said once: “The
internet is the most reliable machine ever made. It's made
from imperfect, unreliable parts, connected together, to make
the most reliable thing we have”. Thus, the social machines
are these parts, which connected together compose a functional
web system.

A Social Machine (SM) receives requests (Req) from other
SM’s and returns responses (Resp). The requests are
converted to inputs (I) for a processing unit (P), which has
states (S) and produces outputs (O). In addition, there are
rules that define relationships (R) with other SMs, under a
specific set of constraints (Const).

Formally, a SM can be defined as the tuple SM = <Rel, WI,
Req, Resp, S, Const, I, P, O>. More detailed description of
elements can be found at [8, 9].

In addition, SMs are sociable stuff and, in nearly all cases,
each one should provide means to interact with one another,
giving the developer the liberty to connect any number of SMs
through the Web in order to form different networks and
implement new services from the ones that already exist.

The idea behind SMs is to take advantage of the networked
environment they are in to make easier to combine and reuse
existing services from different SMs and use them to
implement new ones. In this context, SMs can be classified as:
(i) Isolated: SMs that have no interaction with other SMs; (ii)
Provider: SMs that provide services for other SMs; (iii)
Consumer: SMs that consume services from other SMs; and
(iv) Prosumer: SMs that both provide and consume services.

III. IMPLEMENTING WEB APPLICATIONS AS SOCIAL MACHINES

COMPOSITION

Although the initial paper of SMs presented one application
as a case study, more applications must be developed to
maturate this concept, in special, applications that uses other
API’s and services instead of social networks services. Then
we performed a new empirical study and implemented a new
application using the model. Thus, as the objective of the study
is to verify the feasibility and main benefits and challenges of
software development using a this approach in a real-life
context, we performed a case study, which was divided into
five activities: (a) Definition, (b) Planning, (c) Operation, (d)
Analysis and Interpretation, and (e) Presentation and Package.

A. Definition

In order to verify the feasibility to implement an application
that uses several web API’s of several application domains in
according to SMs model, and to identify and analyze the main
benefits, difficulties and challenges of this approach in these
context, the study has two research questions:

Q1. It is possible to implement this kind of application
according to SMs model?

Q2. What are the main benefits, difficulties and challenges of
implementing this kind of application according to SMs
model?

B. Planning

The planning follows the evaluation plan proposed by Basili
et al. [15] and will be described in future tense, showing the
logic sequence between the planning and operation.

Context: The study consists in an analysis and
implementation of a software project. It will be conducted as a
commercial project, by M.Sc. and D.Sc software engineering
students in a postgraduate class of the Informatics Center of
Federal University of Pernambuco (UFPE), Brazil.

Subjects: The subjects of the study are 1 D.Sc and 2 M.Sc
software engineering students of UFPE. All of them are
software developers and have previous experiences with
industrial projects, technologies and tools.

Training: The subjects of the study will receive education
about SMs and related technologies during the course. The
training includes the concepts of SMs, DSL’s, software
architecture, public API’s and cloud computing, and will be
performed in the first half of the class.

Instrumentation: The subjects will be encouraged to use an
agile methodology to project development, but at least a triplet
of documents must be created: software requirements,
architecture using SMs model, and a lessons learned
document.

Null Hypothesis, H0: This is the hypothesis that the
experimenter wants to reject with a high significance as
possible. In this study, the following hypothesis can be
defined:

H0’: it is not possible to design and implement the
application according to Social Machines model;

H0’’: there are no benefits in implementing the
application according to Social Machines model;

H0’’’: there are difficulties and challenges in
implementing the application according to Social Machines
model;

Alternative Hypothesis: This is the hypothesis in favor of
which the null hypothesis is rejected. In this study, the
following hypothesis can be defined:

H1: it is possible to design and implement the
application according to Social Machines model;

H2: there are benefits in implementing the application
according to Social Machines model;

H3: there are no difficulties and challenges in
implementing the application according to Social Machines.

Criteria: The evaluation criteria will be performed by a
qualitative analysis of application documentation, in addition
to public discussions involving the subjects, the professors and
cloud computing and application development specialists from
both UFPE and local companies.

Costs: Since the subjects of the study are postgraduate

313

students of UFPE and the environment of execution is the
university infrastructure and free tools, the execution of the
project is free of costs.

Variables: In this study, the independent variables are the
SMs model and the documentation required. We considered
the dependent variables the feasibility of application
implementation using the model, the benefits, difficulties and
challenges of implementation. These variables will be
measured by document analysis as well as promoted
discussions. Finally, we consider control variable the
comparison with previous project using SM model, the
Futweet, that was implemented by a similar team in a similar
context.

C. Operation

The operation was performed according to the planning.
The project development was conducted as follows:

Requirements: Application goal is to help people not
familiarized with one city or one city area, such as tourists,
business people or citizens, to gather information about places
nearby him. Using a smartphone or a traditional web browser,
the application allows user to see nearby places (registered on
google places or foursquare services) and to browse useful
information about it, such as: wikipedia and google search
information, photos from Flickr and real time comments from
twitter, from or about the place.

To provide this information, the application flows must be
in this sequence:

(i) User (in a computer or cell phone) opens the application,
which automatically detects his location, searches for nearby
places and shows these places in a map;

(ii) User selects one place in the map and gets the name,
some initial information and a link for “more information”;

(iii) User selects “more information” option and is
redirected to a page containing the additional information
related above: textual information, photos and comments by
other people.

Architecture: To satisfy these requirements, the project
team selected some initial APIs to provide needed information:
Google Maps for map visualization; Foursquare and/or Google
Places for places search, Wikipedia and/or Google Search for
textual information, Flickr for photos, and Twitter for real-
time comments.

According to SMs model, the application architecture is
illustrated in Figure 1.

In the figure, each service is considered as a SM, and SMs
with similar functionalities are grouped inside the same circle.
The application is named WhatHere, and is mainly the “glue
SM”, which includes the application business rules. Clients are
separated: Mobile and Web.

Each SM was described according to the previously
mentioned tuple: <Rel, WI, Req, Resp, S, Const, I, P, O>, and
Figure 2 shows the specification of WhatHere social machine.

Due to its relevance, Analysis and Interpretation will be
made in the next section.

Figure 1: Application Architecture

IV. DEVELOPMENT ANALYSIS AND INTERPRETATION

According to the planning and in order to reject the null
hypothesis and satisfy the alternative hypothesis, we analyzed
qualitatively the application design, code and documentation,
involving the subjects, the professors and some guests
specialists in web API’s, Cloud Computing and Software
Atchitecture. First, the guests analyzed application design and
performed a detailed code review. Then, documentation was
analyzed and several discussions were performed between the
subjects, professors and guests.

Figure 2: Internal SM definition

The application was designed and implemented in full
compliance with its requirements and with the SMs model,
which rejects the null hypothesis H0’: it is not possible to
design and implement the application according to Social
Machines model, which validates the alternative hypothesis H1.

In addition, the subjects reported several benefits from
applying this approach, mainly: (i) good system modularity
and maintainability, because of separation of application rules
and the services used; (ii) facilitation of the abstraction and use
of external services and API’s, centralized in the wrapper
interface, instead of merged in application logic; (iii) reuse of
SMs; due to the fact that the SMs are accessed by well defined
requests/responses, they can be reused by several applications,

314

and (iv) the reduced amount of lines of code implemented.
These benefits reject the null hypothesis H0’’: there are no
benefits in implementing the application according to Social
Machines model, which validates the alternative hypothesis H2.

However, the subjects reported some questions which not
reject the null hypothesis H0’’’: there are difficulties and
challenges in implementing the application according to
Social Machines model. Initially, they reported the difficulty to
define some SM’s, in special the SMs that are not developed
by the team, such as Twitter or Wikipedia SMs, mainly
because developers do not have full access to information
about them. Thus, we concluded that can be more effective to
create two classes of SMs − Internal and External − and reduce
the tuple of external SMs to SM = <Rel, Req, Resp, S, Const>.

Moreover, they also reported the difficulty to apply the
proposal of SM Architecture Description Language (SMADL)
presented in [8, 9], and prefer to represent items graphically or
descriptively, such as in the Figure 2.

Finally, they related the need to create SMs controllers in
order to manage groups of SMs. For example, instead of using
only the Flickr to get photos, the application could use other
image services, such as Google Images or Bing Images.
Thereby, some mechanism is necessary to manage where to get
the photos, based on heuristics, such as: service constraints,
QoS or availability, and should change the policy dynamically,
for example, if the preferred service became unstable. After
several discussions, the subjects and specialists concludes that
one possible approach is to create federations of SMs. The
federations would be a group of SMs with similar services, and
would have a manager, which implements the selection
policies. In this way the application wrapper interface would
only communicate and call the services exposed by federation
manager. This approach have the potential of increase the
application modularity and abstraction, because the final
application developer won’t need to know services API’s, but
only the federation manager API.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we revisited the concept of the emerging web
of social machines [8, 9], a model to provide a common and
coherent conceptual basis for the understanding of the young,
upcoming and possibly highly innovative phase of software
development, the “programmable web”. Due to the fact that
this is an initial concept and need to be more tested, we
performed a case study by developing an application that uses
several web API’s of several application domains in according
to Social Machines model.

The results of the case study showed that it is possible to
implement web applications which interact with several web
services of several domains. Some benefits were listed, such as
the increase of modularity and maintainability, abstraction,
reuse and the facility of use third part services and API’s.
Some improvements of the concept of SMs were suggested,
such as the creation of Internal/External SMs, and the
differentiation of the tuple for external SMs.

Moreover, we discuss a possible solution to some
challenges presented in initial SMs preliminary definition,
such as the creation of federation of SMs and a new type of
SM, Federation Manager, which can be used to address these
challenges.

For future developments we updated the preliminary agenda
of social machines research, in special: (i) to define,
implements and test a Social Machine’ federation model; (ii)
to investigate self-awareness characteristics of SMs and the
possibility to, in conjunction with federations, allow the
autonomous lifecycle management of SMs. In addition, the
preliminary agenda are been performed, including an
architectural framework for defining and developing SM-based
Systems, security, billing, monitoring and fault tolerance
questions, among others. Finally, more case studies are being
developed to continue to validate and investigate the model.

ACKNOWLEDGMENT

This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES2),
funded by CNPq and FACEPE, grants 573964/2008-4, APQ-
1037- 1.03/08 and APQ-1044-1.03/10 and Brazilian Agency
(CNPq processes number 475743/2007-5 and 140060/2008-1).

REFERENCES

[1] S. Yu and C. J. Woodard, "Innovation in the programmable web:
Characterizing the mashup ecosystem," in Service Oriented Computing
- ICSOC 2008 Workshops, 2009, pp. 136-147.

[2] W. Roush, "Social Machines - Computing means connecting," in MIT
Technology Review, August 2005, 2005.

[3] M. Turner, et al., "Turning Software into a Service," Computer, vol. 36,
pp. 38-44, 2003.

[4] J. Hwang, et al., "The structural evolution of the Web 2.0 service
network," Online Information Review, vol. 33, pp. 1040-1057, 2009.

[5] C. Bizer, et al., "Linked Data - The Story So Far," International Journal
on Semantic Web and Information Systems, vol. 5, pp. 1-22, 2009.

[6] P. Hitzler, et al., Foundations of Semantic Web Technologies: Chapman
and Hall, 2009.

[7] T. Berners-Lee, et al., "The Semantic Web," Scientific American, pp.
28-37, 2001.

[8] S. R. L. Meira, et al., "The emerging web of social machines," CoRR,
vol. abs/1010.3045, 2010.

[9] S. R. L. Meira, et al., "The Emerging Web of Social Machines," in
Computer Software and Applications Conference (COMPSAC),
Munich, 2011, pp. 26-27.

[10] P. Patton, Deleuze and the Political: Routledge, 2000.

[11] M. Fuglsang and B. M. Sorensen, Deleuze and the social: Edinburgh
University Press, 2006.

[12] J. Hendler and T. Berners-Lee, "From the Semantic Web to social
machines: A research challenge for AI on the World Wide Web,"
Artificial Intelligence, vol. 174, pp. 156-161, 2010.

[13] T. Berners-Lee and M. Fischetti, Weaving the Web: The Original
Design and Ultimate Destiny of the World Wide Web. New York:
Harper Collins, 1999.

[14] T. N. Hornyak, Loving the machine: the art and science of Japanese
robots: Kodansha International, 2006.

[15] V. R. Basili, et al., "Experimentation in Software Engineering," IEEE
Transactions on Software Engineering, vol. 12, pp. 733-743, July, 1986
1986.

2 www.ines.org.br

315

Interactive Business Rules Framework for
Knowledge Based Service Oriented Architecture

Debasis Chanda
Associate Professor, IIM

Shillong
Shillong 793014

cdebasis04@yahoo.co.in

 Dwijesh Dutta Majumder
Professor Emeritus, Indian

Statistical Institute
203 BT Road, Kolkata 700035

ddmdr@hotmail.com

 Swapan Bhattacharya
Professor & Head, Department of

Computer Science &
Engineering

Jadavpur University
Kolkata 700032

bswapan2000@yahoo.co.in

Abstract - In our paper we propose a SOA Framework
based on Knowledge Bases, where Business Rules can be
defined using Production Rule based Expert System. The
same expert system would be instrumental for achieving
user authorization functions.
In our paper we consider an example scenario from the
Banking domain for carrying out our discussions.

Keywords - Knowledge Base, Predicate Calculus,
Service Oriented Architecture, Rule Based Expert
System, IVRS

I.INTRODUCTION
The goal of this paper is to present an Interactive
Business Rules Framework for Knowledge based Service
Oriented Architecture, which uses Rules Based Expert
System. With the provision of IVRS (Interactive Voice
Response System), the proposed system will be of great
help for visibility impaired people, since the system
provides a s imple step-by-step interactive user friendly
process.

The rest of this paper is organized as follows: In Section
II we furnish literature review of articles published in
the relevant areas. In Section III, we introduce our
modeling framework and an example scenario to
facilitate understanding. In Sections IV we furnish
benefits our proposed Framework. Finally, Section V
provides some conclusions.

II.RELATED WORK
The Paper by Chanda et al. [1] pr oposes a S OA
(Service Oriented Architecture) Framework based on
Knowledge Bases, which serves the purpose of full-
fledged modeling of both normal structural knowledge
and dynamic behavior of the individual organizations

participating in M&A/JV, as well as the consolidated
organization. This paper is a continuation of the same.
The paper by El-Gayar et al. [2] reviews related work on
service-oriented architecture (SOA), distributed
infrastructure and business process management (BPM).
In our Paper we focus on business rules in the Banking
domain. This is relevant from the BPM context.
The paper by Fang et al. [3] suggests a framework for
designing agile and interoperable Enterprises. Our
Paper proposes a f ramework/architecture for business
rules that may be adopted on enterprise-wide basis.
With the aim of facilitating the development of service
oriented solutions, Marcos Lopez-Sanz et al [4] propose
the specification of an architecture centric model driven
development method. Our Paper adopts a K nowledge
Based & Business Rule based approach for arriving at a
service oriented model.
Service-based software architectures benefit in particular
from semantic, ontology-based modeling. Claus Pahl’s
paper [5] presents ontology-based transformation and
reasoning techniques for layered semantic service
architecture modeling. Our paper provides model for
configuring business rules.
Arroyo et al. [6] describe the practical application of a
semantic web service-based choreography framework.
We propose a business rules framework which is very
much essential for choreography.
David Chen et al. [7] define and clarify basic concepts of
enterprise architectures. We adopt an Expert System
based Business Rules framework / ar chitecture for
services, which can be adopted on organization-wide
basis.
The book by Luger [8] captures the essence of a rtificial
intelligence. We apply artificial intelligence concepts for
developing knowledge bases and business rules towards
modeling business processes in our work.

316

III.BUSINESS RULES FRAMEWORK FOR
KNOWLEDGE BASED SERVICE ORIENTED

ARCHITECTURE

A. PROPOSED APPROACH
Our Paper proposes an Expert System based Business
Rules Framework for Knowledge based Service Oriented
Architecture to realize services and business processes
(composition of services realized through their
orchestration).
For our purpose, the representative domain of discourse
considered is the deposit function of two banks (viz.
Bank1 & Bank2). The realization of Business Rules
Framework is based on Expert Systems [8].

B. PREDICATE CALCULUS KNOWLEDGE
BASE

For our purpose, the representative domain of discourse
considered is the deposit function of two banks, for
which the knowledge can be represented as a s et of
Predicate Calculus expressions.

C. PROPOSED MULTIPURPOSE SERVICE
The realization of the Multi-purpose service is achieved
through a Production Rule based Expert System. As an
example of goal-driven problem with user queries, we
consider an example of a simple expert system.

Let us consider the following four rules:

Rule 1
If

Name matches with Name in Bank1
Knowledge Base, and
Address Information matches with Address
Information in Bank1 Knowledge Base

Then
Customer belongs to Bank1

Rule 2
If

Name matches with Name in Bank2
Knowledge Base, and
Address Information matches with Address
Information in Bank2 Knowledge Base

Then
Customer belongs to Bank2

Rule 3
If

Name matches with Name in Bank1 & Bank2
Knowledge Bases, and
Address Information matches with Address
Information in Bank1 & Bank2 Knowledge
Bases

Then
Customer belongs to both Bank1 & Bank2

Rule 4
If

PhoneNo matches with PhoneNo in Bank1
Knowledge Base, and
Address matches with Address in Bank1
Knowledge Base

Then
Address Information matches with Address
Information in Bank1 Knowledge Base.

The graphical representation of the problem is furnished
in Fig 1.

To run this Knowledge Base under a goal-directed
control regime, the top-level goal, ‘The Problem is X’ is
placed in working memory as shown in Fig 2. X is a
variable that can match with any phrase, e.g. ‘The
customer belongs to both Bank1 and Bank2’; it will
become bound to the solution when the problem is
solved.

317

Three rules match with the expression in working
memory: Rule 1, Rule 2 and Rule 3. I f we resolve
conflicts in favour of the lowest-numbered rule, then
Rule 1 will fire. This causes X to be bound to the value
‘Customer belongs to Bank1’ and the premise of Rule 1
to be placed in working memory (Fig 3). The system has
thus chosen to explore the possible hypothesis that the
customer belongs to Bank 1. Another way to look at this
is that the system has selected an ‘Or’ branch in the And
/ Or graph in Fig 1.

We also note that there are two premises to Rule 1, both
of which must be satisfied to prove the conclusion true.
These are ‘And’ branches of the search graph
representing a d ecomposition of the problem (finding
whether the customer belongs to Bank 1) into two sub
problems (finding whether the PhoneNo matches with
PhoneNo in Bank1 Knowledge Base, and Address
Information matches with Address in Bank1 Knowledge
Base). We m ay then fire Rule 4, whose conclusion
matches with ‘Address Information matches with
Address Information in Bank1 Knowledge Base’
causing its premises to be placed in working memory as
in Fig 4.

At this point, there are three entries in working memory
that do not match with any rule conclusions. Our expert
system will, in this situation, query the user customer
directly about these sub goals. If the customer confirms
all three of these as true, the expert system will have
successfully determined that the customer belongs to
Bank1. In this case, the use case will return the balance
of the customer from Bank1. In our example, had we
failed to determine that the customer belongs to Bank1,
we would have needed to back up to the top level and try
Rule 2 instead.
Let us now consider a tr ace of the reasoning process.
Suppose our expert system has an explanation facility,
and let us assume that the consultation has reached the
stage represented by the working memory configuration
in Fig 4.
The following dialogue begins with the computer asking
the customer about the goals present in the working
memory.

Is your Phone Number 12345678?
Yes
Is your Address po_box_19_AB_Avenue_Kolkata?
Yes
Is your Name prakash_kumar?
Why

Here the system responds with a lite ral presentation of
the rule under question.

It has been established that:
The Address Information matches with that in Bank1
Knowledge base,
Therefore if
The Name matches with that in Bank1 Knowledge base
Then you are a customer of Bank1.

Following the above trace, the deposit of c ustomer
would be displayed.

Because the customer answered yes to the first two
questions, Rule 4 was able to fire, verifying the second
premise of Rule 1. When the ‘why’ query was made, the
system was trying to solve the first premise of Rule 1. It
is to be noted that the explanation for the systems
behavior is just a r estatement of the current rule under
consideration. However, this provides an adequate

318

explanation for why the program wants to know whether
the name is prakash_kumar. In the response to why
query, the system states that it h as concluded that the
Address Information matches with that in Bank1
Knowledge Base. Suppose the customer then asks:

How the Address Information matches with that in
Bank1 Knowledge Base

The system will respond to how it concluded that the
Address Information matches with that in Bank1
Knowledge base. The response is a tr ace of the
reasoning that led to this conclusion, working back from
the goal along the rules that support it to the user
responses.
This follows from Rule 4:

If: PhoneNo matches with PhoneNo in Bank1
Knowledge Base, and
Address matches with Address in Bank1 Knowledge
Base
Then: Address Information matches with Address
Information in Bank1 Knowledge Base.
PhoneNo provided by Customer
Address provided by Customer

The production system architecture provides an essential
basis for these explanations. Each cycle of the control
loop selects and fires another rule. The program may be
stopped after each cycle and inspected. Because each
rule represents a c omplete chunk of problem-solving
knowledge, the current rule provides a context for the
explanation. It can also be seen from the above how
authentication of the user/customer is achieved my
means of the Production Rule based expert system. The
expert system can similarly be used for implementing
role based authorization by defining appropriate
production rules e.g.
Rule 5
If

Role matches with Role in Bank1 Knowledge
Base, and
Address Information matches with Address
Information in Bank1 Knowledge Base

Then
Customer is authorized to access
Bank1Knowledge Base

The graphical representation uses predicate calculus
expressions in list syntax.

IV.BENEFITS OF USING BUSINESS RULES
FRAMEWORK FOR KNOWLEDGE BASED SERVICE

ORIENTED ARCHITECTURE
The following benefits are realized when an Expert
System based Business Rules Framework is used vis-à-
vis other approaches.
 Flexible configuration of Business Rules
 Highly Interactive Approach
 Explanation to the User regarding the conclusions

reached
 With the provision of IVRS (Interactive Voice

Response System), the proposed system will be of
great help for visibility impaired people, since
the system provides a simple step-by-step
interactive user friendly process

V.CONCLUSION
Our proposed Business Rules Framework using Rule
Based Expert System facilitates easy configuration of
Business Rules for Business Process Modeling. The
proposed Business Rules Framework is highly
interactive in nature, and with the provision of IVRS
(Interactive Voice Response System) will be of gr eat
help for visibility impaired users, since the system
provides a simple step-by-step interactive user friendly
process.

REFERENCES
[1] Debasis Chanda, D Dutta Majumder, Swapan Bhattacharya,

“Knowledge Based Service Oriented Architecture for M&A”,
Accepted for Publication in SEKE 2010 (The 22nd Conference on
Software Engineering and Knowledge Engineering), San Francisco
Bay, USA, July 1-3, 2010

[2] Omar El-Gayar, Kanchana Tandekar, An XML-based schema
definition for model sharing and reuse in a distributed environment,
Decision Support Systems 43 (2007) 791–808

[3] Chua Fang Fang, Lee Chien Sing, Collaborative learning using
service-oriented architecture: A framework design, Knowledge-
Based Systems 22 (2009) 271–274

[4] Marcos L´opez-Sanz, Cesar J. Acuna, Carlos E. Cuesta, Esperanza
Marcos, Modelling of Service-Oriented Architectures with UML,
Electronic Notes in Theoretical Computer Science 194 (2008) 23–
37

[5] Claus Pahl, Semantic model-driven architecting of service-based
software systems, Information and Software Technology 49 (2007)
838–850

[6] Sinuhe Arroyo, Miguel-Angel Sicilia, Juan-Manuel Dodero,
Choreography frameworks for business integration: Addressing
heterogeneous semantics, Computers in Industry 58 (2007) 487–
503

[7] David Chen, Guy Doumeingts, Francois Vernadat, Architectures for
enterprise integration and interoperability: Past, present and future,
Computers in Industry 59 (2008) 647–659

[8] George F Luger, AI Structures and Strategies for Complex Problem
Solving, Pearson Education, Fourth Edition, 2006

319

320

321

322

323

324

A model introducing SOAs quality attributes
decomposition

Riad Belkhatir, Mourad Oussalah
Department of Computing

University of Nantes
Nantes, France

{riad.belkhatir, mourad.oussalah}@univ-nantes.fr

Arnaud Viguier
Department Research and Development

BeOtic
Rezé, France

arnaud.viguier@beotic.com

Abstract—Recently, service oriented architecture (SOA) has been
popularized with the emergence of standards like Web services.
Nevertheless, the shift to this architectural paradigm could
potentially involve significant risks including projects
abandonments. With this in mind, the question of evaluating
SOA quality arose. The appearance of methods like ATAM or
SAAM propelled software architecture evaluation to a standard
stage for any paradigm. However, there still are a number of
concerns that have been raised with these methods; in particular
their cost in terms of time and money, essentially because of the
hand-operated nature of the evaluations conducted. The model
proposed in this paper for evaluating SOAs takes as a starting
point the McCall model; it allows the whole architecture to be
decomposed in three types of quality attributes (factor, criterion
and metric).

Keywords- SOA; factor; criterion; metric

I. INTRODUCTION
Architectural paradigms are design patterns for the structure

and the interconnection between software systems [1]. Their
evolution is generally linked to the evolution of the technology.

An architectural paradigm defines groups of systems in
terms of:

• Model of structure.

• Component and connector vocabularies.

• Rules or constraints on relations between systems [2].

We can distinguish a few architectural paradigms for
distributed systems, and, among the most noteworthy ones,
three have contributed to the evolution of the concerns. These
are chronologically, object oriented architectures (OOA),
component based architectures (CBA) and service oriented
architectures (SOA).

First developers were quickly aware of code repetitions in
applications and sought to define mechanisms limiting these
repetitions. OOA is focused on this concern and its
development is one of the achievements of this research. OOA
provides great control of the reusability (reusing a system the
same way or through a certain number of modifications) which
paved the way to applications more and more complex and
consequently to the identification of new limits in terms of

granularity. These limits have led to the shift of the concerns
towards the composability (combining in a sure way its
architectural elements in order to build new systems or
composite architectural elements). Correlatively, the software
engineering community developed and introduced CBA to
overcome this new challenge and thus, the CBA reinforces
control of the composability and clearly formalizes the
associated processes. By extension, this formalization
establishes the base necessary to a utomation possibilities. At
the same time, a part of the software community took the
research in a n ew direction: the dynamism concern
(developing applications able to adapt in a dynamic, automatic
and autonomous ways their behaviors to answer the changing
needs of requirements and contexts as well as possibilities of
errors) as the predominant aspect. In short, SOA has been
developed on the basis of the experience gained by objects and
components, with a focalization from the outset on ways of
improving the dynamism.

Service oriented architecture is a popular architectural
paradigm aiming to model and to design distributed systems
[3]. SOA solutions were created to satisfy commercial
objectives. This refers to a s uccessful integration of existing
systems, the creation of innovating services for customers and
cost cutting while remaining competitive. For the purpose of
making a system robust, it is necessary that its architecture can
meet the functional requirements ("what a system is supposed
to do"; defining specific behaviors or functions) and the non-
functional ones ("what a system is supposed to be"; in other
words, the quality attributes) [4]. Furthermore, developing an
SOA involves many risks, so much the complexity of this
technology is notable (particularly for services orchestration).
First and foremost among these, is the risk of not being able to
answer favorably to expectations in terms of quality of services
because quality attributes directly derive from business
objectives. Multi-million dollar projects, undertaken by major
enterprises (Ford, GSA) failed and were abandoned. As these
risks are distributed through all the services, the question of
evaluating SOA has recently arisen. It is essential to carry out
the evaluation of the a rchitecture relatively early in the
software lifecycle to save time and money [5]. This is to
identify and correct remaining errors that might have occurred
after the software design stage and, implicitly, to reduce
subsequent risks. Lots of tools have been created to evaluate
SOAs but none of them clearly demonstrated its effectiveness

325

[6]. The model presented in this paper allows evaluating SOAs
by combining the computerized approach and the human
intervention. We first relate in the section 2 the state of the art
and we present the m odel in the section 3. We relate the
experimentation led by the lab team in t he section 4 and we
conclude the paper with a discussion comparing the past works
and our model in the last section.

II. STATE OF THE ART

A. Related works on SOA Evaluation
There is something far more important with the SOA

evaluation as it is the bond between business objectives and the
system, insofar as evaluation makes it possible to assess quality
attributes of services composing the system [4].

The evaluation relates to:

• Qualitative and quantitative approaches.

• Load prediction associated with evolutions.

• Theoretical limits of a given architecture.

From this perspective, tools and existing approaches have
shown their limitations for SOA [6]. We are currently attending
the development of a new generation of tools developed by
industrialists in a hand-operated way. The scale of the task has
brought the academic world to tackle these issues and to try to
develop a more formal and generic approach than different
existing methods (ATAM, SAAM [6]) to evaluate SOAs.

B. Evaluation Results
In concrete terms, SOA evaluations product a report which

form and content vary depending on the method used. But, in
general terms, the evaluation generates textual information and
answers two types of questions [6].

1) Is the architecture adapted to the system for which it
has been conceived?

2) Is there any other architecture more adapted to the
system in question?

1) It could be said that the architecture is adapted if it

favorably responds to the three following points:
a) The system is predictable and could answer to the

quality requirements and to the security constraints of the
specification

b) Not all the quality properties of the system result
directly from the architecture but a lot do; and for those that
do, the architecture is deemed suitable if it makes it possible to
instantiate the model taking into account these properties.

c) The system could be established using the current
resources: the staff, the budget, and the given time before the
delivery. In other terms, the architecture is buildable.

This definition will open the way for all future systems and
has obviously major consequences. If the sponsor of a system
is not able to tell us which are the quality attributes to manage
first, well, any architecture will give us the answer [6].

2) A part of SOA evaluation consists in capturing the
quality attributes the architecture must handle and to prioritize
the control of these attributes. If the list of the quality
attributes (each of which is related to specific business
objectives) is suitable in the sense that at least all the business
objectives are indirectly considered, then, we can keep
working with the same architecture. Otherwise, it is time to
restart from the beginning and to work with a new
architecture, more suitable for the system.

C. Measuring the Quality.
It has been suggested that software production is out of

control because we cannot quantitatively measure it. As a
matter of fact, Tom DeMarco (1986) stated that "you cannot
control what you cannot measure" [7]. The measurement
activity must have clear objectives and a whole set of sectors
need to be measured separately to ensure the right management
of the software.

1) McCall model
One of the models that have been published is the McCall

model in 197 7 decomposing quality attributes in three stages.
This model led to the IEEE standard: ISO/IEC 9126. A certain
number of attributes, called external (applicable to running
software), are considered as key attributes for quality. We call
them quality factors [6]. These attributes are decomposed in
lower level attributes, the internal attributes (which do not rely
on software execution), called quality criteria and each
criterion is associated to a set of attributes directly measurable
and which are called quality metrics.

D. From past works to our model.
Current methods of evaluation stop the quality attributes

decomposition at the “quality factors step” and remain too
vague when it c omes to giving accurate measures to quality.
These methods are not precise because they cannot go further
in the decomposition and consequently they cannot be
automated to th e point of defining a finite value f or each
attribute. Our work differs from those existing insofar as we
wish to obtain a precise quantitative measurement for each
quality factor with our model.

III. THE MODEL PROPOSED

A. The model in more details.
The main idea of the process is to evaluate in three steps the

whole architecture from every metric to the set of quality
factors obtained after having previously identified the business
objectives. Our work is based on the architect point of view and
the attributes selected are the ones considered as the most
relevant among all existing. The process consists in three
principal stages corresponding each to a decomposition step of
our quality attributes.

1) We first identified relevant quality factors for our
architecture:

a) the CBA is defined with reusability and composability
[8]. Basing on previous analysis, we define the SOA with the
reusability, the composability and the dynamism. Moreover,

326

there exist a hierarchical ranking propelling “dynamism” on
top of SOA concerns, and this is precisely why we chose to
especially focus deeply on this quality factor.

2) Then, we isolate the quality criteria defining them:
a) We concentrated our work on technical criteria

because we adopted the point of view of an architect that is
itself a technical stakeholder. In this light, we identified six
criteria common to each of our three factors. These technical
criteria gather elements having significant impacts on global
quality, from the development process to the system produced:
the loose coupling (potential of dependences reduction
between services), the explicit architecture (paradigm ability
to define clear architectural application views), the expressive
power (potential of paradigm expression in terms of creation
capacity and optionalities), the communication abstractions
(paradigm capacity to abstract services functions
communications), the upgradability (paradigm ability to make
evolve its services), and the owner's responsibility
(corresponds to the responsibilities sharing out between
services providers and consumers).

3) And finally we define quality metrics composing each
criterion in order to quantify them numerically:

a) Our previous work allowed to conclude that the “loose
coupling” criterion is of biggest importance for the quality
factor “dynamism” [9]. We found three quality metrics for the
latter which must be considered for the last stage of our model
(the semantic coupling: {high, low or non-predominant} based
on the high-level description of a service defined by the
architect, the syntactic coupling: {high, low} measures
dependencies in terms of realization between abstract services
and concrete services and the physical coupling: {γ, β and α
with 0≤γ≤β≤α} focusing on the implementation of the service).
These metrics shall make it possible to identify physical
dependencies between concrete services.

B. Coefficients
Coefficients assigned to the factors will depend on the

company needs. Our works led us to conclude that for SOA
and the three factors we worked with, we would allocate a
coefficient of ‘3’ for the “dynamism” whereas we would affect
the value ‘2’ for the “reusability” and the “composability”.
With regards to the second step, our works led to list the six
technical quality criteria chosen under three distinct levels of
acceptance, α, β and γ at which we assign respectively the
values ‘3, 2 and 1’; We allocated the “loose coupling”, the
“upgradability” and the “communication abstraction” with the
value ‘3’. The coefficient ‘2’ goes for the “owner’s
responsibility” and “explicit architecture” criteria and ‘1’ for
the “expressive power”. And finally, the three metrics studied
may be all assigned to the value ‘1’ meaning that they are
equally important for calculating the global coupling of SOAs.
These coefficients will be used as a basis for the following
section. They have been affected to quality attributes as an
example; however, these latter have been chosen according to
the principle of proportionality validated by the lab-team. We
can select other impact coefficients providing that we keep the
same proportionality between the quality-attributes considered.

IV. EXPERIMENTATION
For the ex perimentation, we te mpted to quantitatively

measure the key quality attributes discussed in the previous
sections of this paper; notably, the quality factor “dynamism”,
the “loose coupling” criteria and the “physical, syntactic and
semantic coupling” metrics. That being said, it is important to
note that the SOAQE method must be reproduced for every
quality factor identified after having analyzed the objectives of
the company and the set of criteria and metrics belonging to
that quality factor. Taking as a starting point an existing
formula of the field of “Preliminary analysis of risks” (see
formula 1.1) [10] our works led to the identification of a
mathematical formula (see formula 1.2) combining the three
couplings studied: semantic, syntactic and physical.

NB: The simplified formula (see formula 1.1) usually used
in the automotive industry, makes it possible to measure the
default risk of a car component A is the Criticality of the car
component, B is the Probability of occurrence of a failure on
this component and C is the Probability of non-detection of this
failure.

We associate this concept of risk with our vision of the
coupling. Correlatively, the quintessence of the coupling is the
expression of the dependences which can exist between two
elements and the principle of dependence defines that one
element cannot be used without the other. Reducing the risk
that the role defined by a service cannot be assured anymore is
decreasing the dependence of the application in relation to this
service and thus reducing its coupling. The calculation of this
risk takes into account all the characteristics influencing the
coupling by redefining the thr ee variables A, B and C
according to the semantic, syntactic and physical couplings.
The global coupling corresponds to the sum of the three
couplings calculated individually beforehand. The lower this
result is, the more the coupling is weak.

NB: The criticality A∈[(a),(b),(c)] is affiliated to the
semantic coupling. ‘a’ if the service is only associated to non
predominant couplings, ‘b’ for non predominants and low
couplings and ‘c’ for non predominants, low and high
couplings, while ‘Ps’ is the probability of failure of a service.

Figure 1: Defaut risk of a car component (1.1) and global

coupling of an architecture (1.2) formulas.

This generic coupling formula can directly be used to
quantify the quality of the architecture by weighting up each of
the attributes concerned by means of the coefficients isolated
after having organized the attributes according to their
importance. Indeed, as we already specified in section 2, we
cannot automate this operation and define continuously the
same coefficients for all the architectures considered because
this operation is specific to the b usiness objectives of the
company. By applying to k nown quality attributes the
coefficients determined in the section III.B, we ob tain the
following tree:

327

Figure 2: SOA attributes tree weighted with means of

coefficients

Thus, according to the previous figure 2, we can establish
that the quantitative measure of the quality of an SOA
corresponds to the sum of the quality factors dynamism,
reusability and composability, all three affected by their
respective coefficients:

The following formula allows calculating the whole quality
of an SOA.

NB: the lower the loose coupling result is, the more the

coupling is weak. Conversely, the higher the architecture
quality result is, the more the quality is good; the result of each
criterion is expressed in percentage, this is why we subtract to
1 the result found.

For any architecture considered, we are able to determine a
finite value for the loose coupling criteria, the remaining work
consists in defining a way to calculate the five others criteria in
order to isolate a finite value for the quality.

V. DISCUSSION
Because SOA implies the connectivity between several

systems, commercial entities and technologies: some
compromises regarding the architecture must be undertaken,

and this, much more than for systems with a single application
where technical difficulties prevail. Forasmuch as the decisions
about SOA tend to be pervasive and, consequently, have a
significant impact on the company; setting an evaluation of the
architecture early in the li fe of the software is particularly
crucial. During software architecture evaluations, we weigh the
relevance of each problematic associated to the d esign after
having evaluated the importance of each quality attribute
requirement. The results obtained when e valuating software
architectures with existing methods (ATAM, SAAM) are often
very different and none of these latter carries out it accurately
(for example, SAAM does not provide any clear quality metric
for the architectural attributes analyzed [11]). We know the
causes of this problem: most methods of analysis and automatic
quality evaluation of software systems are carried out from the
source code; whereas, with regard to evaluation cases of
architectural models, the analysis is conducted based on the
code generated from the model. From this code, there exist
calculated metrics, more or less complex, associated with
algorithms, methods, objects or relations between objects.
From an architectural point of view, these techniques can be
indicated of low level, and can be found out of step with
projects based on new complex architectures. The finality of
our work is to design a conceptual framework and, in fine, a
semi-automated prototype called SOAQE (taking as a starting
point, past methods such as ATAM or SAAM) which could
quantify with an accurate value the quality of the whole service
oriented architecture.

VI. REFERENCES

[1] P.S.C. Alencar, D.D. Cowan, T. Kunz and C.J.P. Lucena, “A formal
architectural design patterns-based approach to software understanding,”
Proc. Fourth workshop on program comprehension, 2002.

[2] D. Garlan and M. Shaw, An introduction to software architecture,
CMU/SEI-94-TR-21, ESC-TR-94-21, 1994.

[3] H.K. Kim, “Modeling of distributes systems with SOA and MDA,”
IAENG, International Journal of Computer Science, ISSN 1819-656X,
Volumr: 35; Issue: 4; Start page: 509, 2008.

[4] O. Lero, P. Merson and L. Bass, “Quality attributes and service oriented
architectures” SDSOA 2007, 2007.

[5] P. Bianco, R. Kotermanski and O. Merson, “Evaluating a service
oriented architecture” CMU/SEI-2007-TR-015, Carnegie Mellon
University, Software Engineering Institute, 2007.

[6] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architectures: Methods and case studied, published by Addison-Wesley
Professional, 2001.

[7] T. Demarco, Controlling software projects: management, measurement
and estimates, Prentice Hall, 296 pages, 1986.

[8] I. Crnkovic, M. Chaudron and S. Larsson, “Component-based
development process and component lifecycle” ICSEA’06, International
Conference on Software Engineering Advances, 2006.

[9] A. Hock-Koon, “Contribution à la compréhension et à la modélisation de
la composition et du couplage faible de services dans les architectures
orientées services” Thesis (PhD). University of Nantes, 2011.

[10] Y. Mortureux, Preliminary risk analysis. Techniques de l'ingénieur.
Sécurité et gestion des risques, SE2(SE4010):SE4010.1–SE4010.10,
2002.

[11] M.T. Ionita, D.K. Hammer and H. Obbink, “Scenario-based software
architecture evaluation methods: an overview”, ICSE 2002, 2002.

328

Software as a Service: Undo

Hernán Merlino
Information Systems

Research Group. National
University of Lanús, Buenos

Aires, Argentine.
hmerlino@gmail.com

Oscar Dieste
Empirical Software Research

Group (GrISE). School of
Computer Science. Madrid

Politechnic University. Spain.
odieste@fi.upm.es

Patricia Pesado
PhD Program on Computer
Science. Computer Science
School. National University

of La Plata. Argentine.
ppesado@lidi.info.unlp.edu.ar

Ramon García-Martínez
Information Systems

Research Group. National
University of Lanús, Buenos

Aires, Argentine.
rgarcia@unla.edu.ar

Abstract— This paper proposes a highly automated mechanism to
build an undo facility into a new or existing system easily. Our
proposal is based on the observation that for a large set of
operators it is not necessary to store in-memory object states or
executed system commands to undo an action; the storage of
input data is instead enough. This strategy simplifies greatly the
design of the undo process and encapsulates most of the
functionalities required in a framework structure similar to the
many object-oriented programming frameworks.

Keywords- Undo Framework; Software as a Services; and
Usability component.

I. INTRODUCTION

It is hard to build usability into a system. One of the main
reasons is that this is usually done at an advanced stage of
system development [1], when there is little time left and the
key designed decisions have already been taken. Usability
patterns were conceived with the aim of making usable
software development simpler and more predictable [2].
Usability patterns can be defined as mechanisms that could be
used during system design to provide the software with a
specific usability feature [1]. Some usability patterns defined in
the literature are: Feedback, Undo/Cancel, Form/Field
Validation, Wizard, User profile and Help [3]. The main
stumbling block for applying these patterns is that there are no
frameworks or even architectural or designed patterns
associated with the usability patterns. This means that the
pattern has to be implemented ad hoc in each system.
Ultimately, this implies that (1) either the cost of system
development will increase as a result of the heavier workload
caused by the design and implementation of the usability
features or, more likely; (2) many of these usability features
(Undo, Wizard, etc.) will be left out in an attempt to reduce the
development effort.

The goal of this paper is to develop a framework for one of
the above usability patterns, namely, the undo pa ttern. The
undo pattern provides the functionality necessary to undo
actions taken by system users. Undo is a common usability
features in the literature [4]. This is m ore than enough
justification for dealing with this pattern first. There are other,
more technical grounds to support the decision to tackle undo
in first place. One of the most important is undoubtedly that
undo shares much of its infrastructure (design, code) with other
patterns. Redo and cancel are obvious cases, but it also applies
to apparently unrelated patterns, like feedback and wizard.

Several authors have proposed alternatives of undo pattern,
these alternatives focus on particular applications, notably
document editors [5][6] although the underlying concepts are
easily exportable to other domains. However, these proposals
are defined at high level, without an implementation (or design)
reusable in different types of systems. These proposals
therefore do not solve the problem of introduction of usability
features in software

In this paper, we present a new approach for the
implementation of Undo pattern. Our proposal solves a subset
of cases (stateless operations) in a highly efficiently manner.
The importance of having an automated solution of those is that
they are the most frequents operations occur in information
systems.

We have implemented the framework using Software as a
Service (SaaS). For this class of development we have
developed a framework similar to other such as Spring [7] or
Hibernante [8] that allows to build the undo easy into a system
(that we term “host application”). Furthermore, in host
application, it’s only need to i nclude a few modifications in
code, and this creates a lower propensity to introduce bugs in
the code and allows inclusion of it in a more simple developed
system.

This article is structured as follows. Section 2 describes the
state of the art regarding the implementation of undo. Section 3
presents the undo infrastructure, whereas Section 4 describes
undo infrastructure. Section 5 shows a proof of concept of the
proposed framework. Finally, Section 6 briefly discusses and
presents the main contributions of our work.

II. BACKGROUND

Undo is a very widespread feature, and is prominent across
the whole range of graphical or textual editors, like, for
example, word processors, spreadsheets, graphics editors, etc.
Not unnaturally a lot of the undo-related work to date has
focused on one or other of the above applications. For example,
[6] and Baker and Storisteanu [9] have patented two methods
for implementing undo in document editors within single-user
environments.

There are specific solutions for group text editors that
support undo functionality such as in Sun [10] y Chen and Sun
[11] and Yang [12]. The most likely reason for the boom of
work on undo in the context of document editors is its relative
simplicity. Conceptually speaking, an editor is a container

329

accommodating objects with certain properties (shape, position,
etc.). Consequently, undo is relatively easy to implement, as
basically it involves storing the state of the container in time
units i, i+1, …, i + n. Then when the undo command is
received, the container runs in reverse i + n, i + n-1, i.

A derivation of the proposed solutions for text editors is an
alternative implementation of undo for email systems like
Brown and David [13], these solutions are only for text editors
and email systems and applications that are built considering
undo functionality from the design.

The problems of undo in multi-user environments have also
attracted significant attention. Both Qin [15] and Abrams and
Oppenheim [14] have proposed mechanisms for using undo in
distributed environments, and Abowd and Dix [4] proposed a
formal framework for this field.

 In distributed environments, the solution has to deal with
the complexity of updates to shared data (basically, a history
file of changes) [15].

Several papers have provided insight on the internal aspects
of undo, such [16], who attempted to describe the undo process
features. Likewise, Berlage [17] proposed the construction of
an undo method in command-based graphical environments,
Burke [18] created an undo infrastructure, and Korenshtein
[19] defined a selective undo.

There has been work done on multi-level models for Undo
where each action for a system is defined as a discreet group
of commands performed, where each command represents a
requested action by the user, this is a really valid
approximation because defined as a discreet group of
commands, the system could be reverted to any previous stage,
only performing the actions the other way round; here a
difference can be found between the theory and the practice,
regarding the first one it is true that is possible to go back to
any previous stage of the system if t here is the necessary
infrastructure for the Undo, but actually the combination of
certain procedures performed by the user or a group of them
could be impossible to be solved related to expected response
time. For this reason the implementation of the Undo process
must complete these possible alternatives with regards to the
command combinations performed by the user or users.

Another important aspect which has been worked out is the
method of representation of the actions performed by the users
in Washizaki and Fukazawa [20], a dynamic structure of
commands is presented and it represents the history of
commands implemented.

The Undo model representation through graphs has been
widely developed in Berlage [17] present a distinction between
the linear and nonlinear undo, the nonlinear approach is
represented by a tree graph, where you can open different
branches according to user actions. Edwards [21] also
presented a graph structure where unlike Berlage [17] these
branches can be back together as the actions taken. Dix [22]
showed a cube-shaped graph to represent history of actions
taken. Edwards [23] actions are represented in parallel. It has
also used the concept of Milestoning and Rollback [24] to
manage the log where actions temporarily stored. Milestoning
is a logical process which makes a particular state of the

artifacts stored in the log; and rollback is process of returning
back the log to one of the points of Milestoning. All these
alternative representation of the commands executed by users
are valid, but this implementation is not a simple task, because
create a new branch and join two existing branches is not a
trivial action, because you must know all possible ways that
users can take; by this it may be more advisable to generate a
linear structure, that can be shared by several users, ordered by
time, this structure can be a queue, which is easy to deploy and
manage.

Historically frameworks that have been used to represent
the Undo only have used the pattern Command Processor [25],
Fayard, Shumidt [26] and Meshorer [27]. This serves to keep a
list of commands executed by the user, but it is not enough to
create a framework that is easy to add to existing systems, As
detailed below using service model allows greater flexibility
for the undo process integration in an application, this approach
allow a greater degree of complexity in the process of allowing
Undo handle different configurations.

Undo processes has been associated to exception
mechanisms to reverse the function failed [28] these are only
invoked before the request fails and the user, these are
associated with a particular set of applications.

Patents, like the method for building an undo and redo
process into a system, have been registered [29]. Interestingly,
this paper presents the opposite of an undo process, namely
redo, which does again what the undo previously reverted.
Other authors address the complexities of undo/redo as well.
Thus, for example, Nakajima and Wash [30] define a
mechanism for managing a multi-level undo/redo system, Li
[31] describes an undo and redo algorithm and Martinez and
Rhan [32] present a method for graphically administering undo
and redo, based primarily on the undo method graphical
interface.

The biggest problem with the above works is that, again,
they are hard to a dopt in so ftware development processes
outside the document editor domain. The only noteworthy
exception to this is a design-level mechanism called Memento
[33]. This pattern restores an object to a previous state and
provides an implementation-independent mechanism that can
be easily integrated into a system. The downside is that this
pattern is not easy to build into an existing system.
Additionally, Memento only restores an object to a previous
state; it does not consider any of the other options that an undo
pattern should include.

The solutions presented are optimized for particular cases
and are difficult to apply to other domains; on the other hand, it
is necessary to include a lot of code associated with Undo in
host application.

III. THEORETICAL JUSTIFICATION OF UNDO FRAMEWORK

Before describing proposed Undo Framework, and its
implementation as SaaS, theoretical foundations that
demonstrate the correctness of our approach. This will be done
in two steps; first we will describe how to undo operations that
do not depend on its s tate, the procedure to undo these

330

operations consist in reinjection input data at time t-1, second
we prove that reinjection input always produces correct results.

A. Initial Description

The most commonly used option for developing an undo
process is to save the states of objects that are liable to undergo
an undo process before they are put through any operation; this
is the command that changes the value of any of their
attributes. This method has an evident advantage; the system
can revert without having to enact a special-purpose process; it
is only necessary to remove and replace the current in-memory
objects with objects saved previously.

This approach is a simple mechanism for implementing the
undo process, although it has some weaknesses. On one hand,
saving all the objects generates quite a heavy system workload.
On the other hand, developer’s need to create explicitly
commands for all operations systems. Finally, the system
interfaces (mainly the user interface) have to be synchronized
with the application objects to enact an undo process. This is by
no means easy to do i n monolithic systems, but, in modern
distributed computer systems, where applications are composed
of multiple components all running in parallel (for example,
J2EE technology-based EJB), the complications increase
exponentially.

There is a second option for implementing an undo process.
This is to store the operations performed by the system instead
of the changes made to the objects by these operations. In this
case, the undo would execute the inverse operations in reverse
order. However, this strategy is seldom used for two reasons.
On one hand, except for a few exceptions like the above word
processing or spreadsheet software, applications are seldom
designed as a set of operations. On the other hand, some
operations do not have a well-defined inverse (imagine
calculating the square of a table cell; the inverse square could
be both a positive and a negative number).

The approach that we propose is based on this last strategy,
albeit with a simplified complexity. The key is that, in a ny
software system whatsoever, the only commands processed
that are relevant to the undo process are the ones that update
the model data (for example, a data entry in a field of a form
that updates an object attribute, the entry of a b ackspace
character that deletes a letter of a d ocument object, etc.). In
most cases, such updates are idempotent, that is, the effects of
the entry do not depend on the state history. This applies to the
form in the above example (but not, for example, to the word
processor). When the updates are idempotent, neither states of
the objects in the model nor the executed operations has to be
stored, and the list of system inputs is only required. In other
words, executing an undo at time t is equivalent to entering via
the respective interface (usually the user interface) the data
item entered in the system at time t-2. Figure 1 shows an
example of this approach. At time t, the user realizes that he
has made a mistake updating the name field in the form, which
should contain the value John not Sam. As a result, he wants to
revert to the value of the field that the form had at time t-1. To
do this, it is necessary (and enough) to re-enter the value
previously entered at time t-2 in the name field.

Figure 1. Undo sequence.

Unless the updates are idempotent, this strategy is not valid
(as in the case of the word processor, for example), and the
original strategy has to be used (that is, store the command and
apply its inverse to execute the undo). However, the
overwhelming majority of cases executed by a system are
idempotent, whereas the others are more of an exception.

Consequently, the approach that we propose has several
benefits: (1) the actual data inputs can be processed fully
automatically and transparently of the host application; (2) it
avoids having to de al with the complexity of in-memory
objects; (3) the required knowledge of system logic is confined
to commands, and (4), finally, through this approach, it is
possible to design an undo framework that is i ndependent of
the application and, therefore, highly reusable.

B. Formal Description

The following definitions and propositions are used to
proof (in an algebraic way) that UNDO process (UNDO
transformation) may be built under certain process
(transformation) domain constrains.

Definition 1. Let Ε = {εj
i / εj is a data structure} be the set of

all data structures.
Definition 2. Let εj

i be the instance i of data structure εj

belonging to Ε.

Definition 3. Let εj
C = { εj

i / εj
i is an instance i of the

structure εj} be the set of all the possible
instances of data structure εj.

Definition 4. Let οτ
εj be a transformation which verifies οτ

εj
: εj

C εj
C and οτ

εj
 (εj

i) = εj
i+1.

Definition 5. Let εj
Cr be a constrain of εj

C defined as εj
Cr

={ εj
i / εj

i is an instance i of the data structure
εj which verifies οτ

εj (εj
i-1) = εj

i}
Proposition 1. If οτ

εj : εj
C εj

Cr then οτ
εj is bijective.

Proof: οτ
εj es injective by definition 4, οτ

εj is
surjective by definition 5, then οτ

εj is bijective
for being injective and surjective. QED.

Proposition 2. If οτ
εj : εj

C εj
Cr then has inverse.

Proof: Let οτ
εj be bijective by proposition 1,

then by usual algebraic properties οτ
εj has

inverse. QED.
Definition 6. Let οτ be the set of al transformations οτ

εj.

Definition 7. Let Φ be the operation of composition defined
as usual composition of algebraic
transformations.

331

Definition 8. Let Σ be the service defined by structure <
ΕΣ , οτ

Σ , Φ > where ΕΣ Ε and οτ
Σ οτ.

Definition 9. Let Χ = οτ
εj1 Φ οτ

εj2 Φ ... Φ οτ
εjn be a

composition of transformations which verifies
οτ

εji : εj
C εj

Cr for all i :1...n. By algebraic
construction Χ : εj

C εj
Cr.

Proposition 3. The composition of transformations X ha s
inverse and is bijective.
Proof: Let be Χ = οτ

εj1 Φ οτ
εj2 Φ ... Φ οτ

εjn. For
all i:1...n verifies οτ

εji has inverse by
proposition 2. Let [οτ

εji]-1 be the inverse
transformation of οτ

εji, by usual algebraic
properties [οτ

εji]-1 is bijective. Then it is
possible to compose a transformation X-1 =
[οτ

εjn]-1 Φ [οτ
εjn-1]-1 Φ ... Φ [οτ

εj1]-1. The
transformation X-1 is bijective by being
composition of bijective transformations. Then
transformation X-1 : εj

Cr εj
C exists and is the

inverse of X. QED.
Definition 10. Let UNDO be the X-1 transformation of X.

IV. STRUCTURE OF UNDO FRAMEWORK

In this section, we will describe our proposal for designing
the undo pattern using SaaS to implement the replay of data.

A. Undo Service Architecture

Figure 2 represents the service Undo infrastructure, a high-
level abstraction of the architecture. Undo service has 3
modules, (a) Undo Business Layer, (b) Undo Application
Layer (c) Undo Technology Layer.

Undo Business Layer is responsible for creating,
maintaining and deleting applications that will access the undo
service. An a pplication that could access to se rvice must
execute following steps: (a) creating application unique
identifier, this should be attached to each message that is sent
to the service, (b) creation of user profile identifier, this must
be attached to each message that is sent to the service, once
defined two identifiers, host application may immediately use
undo service

All these added to the header data set that can be invoked
by the user for later retrieval, enable the service to h andle
different applications at the same time, within an application
users can manage their own recovery without interfering lists,
plus each user can manage their own separate lists per
interface; the service giving maximum flexibility for every
application.

Figure 2. Undo infrastructure

B. Operation of Undo Framework

Fig. 3 details process of send and get data to service, first
we described undo receives data service from external system,
at this point is where you start the process that ended with the
injection of data re be invoked by the external system. In the
External Layer, the user application generates an event that
triggers an action likely to be overturned, this creates an Undo
Service invocation, this is received by the service interface that
is plotted on the Undo Abstract Layer, this action fires a set of
processes:

(i) Check current user session, this start with Validate Session
and Profile, this process communicates with the Undo
Application Layer, with f unction that processes Validate
Undo Service Session and Profile. This service is based on
two components responsible for validation and
maintenance of active user sessions and profile´s user,
Session component is responsible for validating whether
the session with which you access the service is active,
component Profile is responsible for validating invocation
of the temporary storage. Both components communicate
with lower-level layer called Layer Undo Technology, this
is basic infrastructure for Undo service, which consists of a
processing unit and data storage.

(ii) After that, the validation process begins to check if host
application has access to temporary storage, this process
communicates with Validate Undo Data process, and it is
responsible for validating the data to be stored, first
validates that host application is active, if so, host
application obtains credentials to use. If the process is
successful the user is returned a successful update code, if
an error occurs, it returns an error code also
asynchronously, and with external system code decides if
it generates exception or continues with the normal flow.

Figure 3. Undo receives data service

At last we described process which undo data service return
stored temporarily to external system, this is where it describes
the beginning of re injection data by the external system for the
service provided. In the same way explained above, Layer
External triggers an event that generates a r equest for data
stored, this process is divided into two stages:

(i) Charge of the validation of the application, which has the
same activities as described in the process of Undo Send
Data,

(ii) Retrieve all values that have been stored for the tuple,
application and interface. Return of this process to
External Layer is the list sorted in reverse with all values
stored, service provide option to request only the last value

332

stored. If event failure, external application receives an
asynchronously error code.

V. CONCLUSIONS

In this paper we have proposed the design of an undo
framework to b uild the undo functionality into any software
application whatsoever. The most salient feature of this
framework is the type of information it stores to be able to
undo the user operations: input data instead of in-memory
object states or commands executed by the system. This lessens
the impact of building the framework into the target application
a great deal.

Building an Undo Service has some significant advantages
with respect to Undo models presented, first of all the
simplicity of inclusion in a host application under construction
or existing, you can see in the proof of concept. Second the
independence of service in relation to the host application
allows the same architectural model to provide answers to
different applications in di fferent domains. Construction of a
service allows to Undo be a complex application, with
possibility of include analysis for process improvement, as
described in the next paragraph it is possible to detect patterns
of invocation of Undo in different applications.

Further work is going to bring: (a) creation of a pre-
compiler, (8) automatic detection of fields to store, (c) extend
the framework to other platforms.

VI. REFERENCES

1. Ferre, X., Juristo, N., Moreno, A., Sanchez, I. 2003. A Software
Architectural View of Usability Patterns. 2nd Workshop on Software and
Usability Cross-Pollination (at INTERACT'03) Zurich (Switzerland)

2. Ferre, X; Juristo, N; and Moreno, A. 2004. Framework for Integrating
Usability Practices into the Software Process. Madrid Polit. University.

3. Juristo, N; Moreno, A; Sanchez-Segura, M; Davis, A. 2005. Gathering
Usability Information through Elicitation Patterns.

4. Abowd, G.; Dix, A. 1991. Giving UNDO attention. University of York.
5. Qin, X. y Sun, C. 2001. Efficient Recovery algorithm in Real-Time and

Fault-Tolerant Collaborative Editing Systems. School of computing and
Information Technology Griffith University Australia.

6. Bates, C. and Ryan, M. 2000. Method and system for UNDOing edits
with selected portion of electronic documents. PN: 6.108.668 US.

7. Spring framework. http://www.springsource.org/.
8. Hibernate framework. http://www.hibernate.org/.
9. Baker, B. and Storisteanu, A. 2001. Text edit system with enhanced

UNDO user interface. PN: 6.185.591 US.
10. Sun, C. 2000. Undo any operation at time in group editors. School of

Computing and Information Technology, Griffith University Australia.
11. Chen, D; Sun, C. 2001. Undoing Any Operation in Collaborative

Graphics Editing Systems. School of Computing and Information
Technology, Griffith University Australia.

12. Yang, J; Gu, N; Wu, X. 2004. A Documento mark Based Method
Supporting Group Undo. Department of Computing and Information
Technology. Fudan University.

13. Brown, A; Patterson, D, 2003. Undo for Operators: Building an Undoable
E-mail Store. University of California, Berkeley. EECS Computer
Science Division.

14. Abrams, S. and Oppenheim, D. 2001. Method and apparatus for
combining UNDO and redo contexts in a distributed access environment.
PN: 6.192.378 US.

15. Berlage, T; Genau, A. 1993. From Undo to Multi-User Applications.
German National Research Center for Computer Science.

16. Mancini, R., Dix, A., Levialdi, S. 1996. Reflections on UNDO.
University of Rome.

17. Berlage. T. 1994. A selective UNDO Mechanism for Graphical User
Interfaces Based On command Objects. German National Research
Center for Computer Sc.

18. Burke, S. 2007. UNDO infrastructure. PN: 7.207.034 US.
19. Korenshtein, R. 2003. Selective UNDO. PN: 6.523.134 US.
20. Washizaki, H; Fukazawa, Y. 2002. Dynamic Hierarchical Undo Facility

in a Fine-Grained Component Environment. Department of InformaTION
AND Computer Science, Waswda University. Japan.

21. Edwards, W; Mynatt, E. 1998. Timewarp: Techniques for Autonomous
Collaboration. Xerox Palo Alto Research Center.

22. Dix, A; Mancini, R; Levialdi, S. 1997. The cube – extending systems for
undo. School of Computing, Staffordshire University. UK.

23. Edwards, W: Igarashi, T; La Marca, Anthony; Mynatt, E. 2000. A
Temporal Model for Multi-Level Undo and Redo.

24. O´Brain, J; Shapiro, M. 2004. Undo for anyone, anywhere, anytime.
Microsoft Res..

25. Buschmann, F; Meunier, R; Rohnert, H; Sommerlad, P; Stal, M. 1996.
Pattern-Oriented Software Architecture: A System Of Patterns. John
Wiley & Sons.

26. Fayad, M.; Shumidt, D. 1997. Object Oriented Application Frameworks.
Comunications of the ACM, 40(10) pp 32-38.

27. Meshorer, T. 1998. Add an undo/redo function to you Java app with
Swing. JavaWord, June, IDG Communications.

28. Shinnar, A; Tarditi, D; P lesko, M; Steensgaard, B. 2004. Integrating
support for undo with exception handling. Microsoft Research.

29. Keane, P. and Mitchell, K. 1996. Method of and system for providing
application programs with an UNDO/redo function. PN:5.481.710 US.

30. Nakajima, S., Wash, B. 1997. Multiple level UNDO/redo mechanism.
PN: 5.659.747 US.

31. Li, C. 2006. UNDO/redo algorithm for a computer program. PN:
7.003.695 US.

32. Martinez, A. and Rhan, M. 2000. Figureical UNDO/redo manager and
method. PN: 6.111.575 US.

33. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison- Wesley.

333

A Petri Net Model for Secure and Fault-Tolerant
 Cloud-Based Information Storage

Daniel F. Fitch and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{daniel.fitch, hxu}@umassd.edu

Abstract—Cloud computing provides a promising opportunity for
both small and large organizations to transition from traditional
data centers to cloud services, where the organizations can be
more concerned with their applications, services, and data rather
than the underlying network infrastructures and their associated
cost. There are major concerns, however, with data security,
reliability, and availability in the cloud. In this paper, we address
these concerns by proposing a novel security mechanism for
secure and fault-tolerant cloud-based information storage. We
present a formal model of the security mechanism using colored
Petri nets (CPN). The model utilizes multiple cloud service
providers as a cloud cluster for information storage, and a service
directory for management of the cloud clusters including service
query, key management, and cluster restoration. Our approach
not only supports maintaining the confidentiality of the stored
data, but also ensures that the failure or compromise of an
individual cloud provider in a cloud cluster will not result in a
compromise of the overall data set.

Keywords-Cloud computing; information storage; data security;
fault tolerant; colored Petri nets; formal modeling and verification.

I. INTRODUCTION

As the Internet continues to evolve, service-oriented
systems are becom ing more widely adopted by large
companies and governm ent into their c omputing platforms.
Cloud computing extends this concept, allowing for access to
powerful, ubiquitous and rel iable computing to the ge neral
public through the use of web services and a pplication
programming interfaces (API). Although there is a large push
towards cloud computing, there is a lack of work having been
done in regards to data security, ownership and privac y in
cloud computing. A survey conducted by the US Government
Accountability Office (GAO) states t hat “22 of 24 major
federal agencies reported that they were either concerned or
very concerned about the potential information security ri sks
associated with cloud c omputing” [1]. Due to the infanc y of
cloud computing, there are not m any standards or best
practices in terms of securing data in the clouds. Besides a few
major companies investing into the cloud, t here are also
numerous startups and smaller com panies attempting to
become cloud providers. For these smaller entities, t here are
no guarantees that t hey are following or have the resources
available to follow be st practices for se curing their data
centers. In addition, services change frequently as product
offerings are developed and discontinued, leaving users of the

service scrambling to find alternatives, forced to take a
migration path etched by the provider, or stuck using a service
that is no longer being developed, refined, and patched. In an
enterprise environment, the issues t hat are plaguing cloud
computing would be considered unacceptable. If the corporate
world is to adopt cloud computing, it must guarantee that the
stored data is secure, stable, and available in the cloud.

Personal Information (PI), such as credit card information,
that falls under Payment Card Indust ry (PCI) data security
standards legislation, or medical records that falls under the
Health Insurance Portability and Accountability Act (HIPAA),
are especially at question re garding if and how exactly these
pieces of data can be stored and m anaged utilizing cl oud
computing. Although there are some attempts to address
HIPAA compliance in the cloud [2], there exist no widely
accepted best practices or clear recommendations as to how
this data can be stored i n the cloud. C urrently, users are
advised to seek their own legal counsel on this matter, with the
provider offering no liability for m isguiding or incorrect
advice. In addition, legislative acts, s uch as HIPAA, were
developed with traditional network architectures in mind, with
numerous regulations regarding phy sical facilities, e mployee
best practices, and operating system best practices. In a cloud
environment, all or at least most of these im plementation
details are hidden from the cl oud consumers, so companies
that fall under HIPAA regulations do not have direct influence
or authority over t hese compliance details. Procedures and
requests can be specified during the c ontract creation t ime
between a cloud provider and an enterprise, but this would
require complex negations and audit procedures that the cloud
provider may not be equipped for or willing to follow. There
are efforts in the security indu stry to certify certain cloud
providers as being com pliant with legislative m andates for
handling PI, but we can fi nd no established practice at this
time. In this paper, we develop a security model that addresses
these issues of cloud computing, easing concerns of
legislatures and enterprise of stori ng data in the cloud. The
proposed model can be adopted t o serve as an e quivalent
alternative to enterprise cont rolled facility, personnel and
infrastructure mandates.

Although cloud computing is still in its infancy, there has
been a considerable am ount of w ork on data security and
federation for distributed data, in which this work is related to.
Goodrich et al. explored efficient authentication mechanisms
for web services with unknown providers [3]. In t heir
approach, they utilized a third party notary service that could

334

ensure users the trustworthiness of the service providers.
Weaver studied the topic of exploring data security when using
web services [4]. In his approach, he placed a layer of
authentication and authorization services between the clie nts
and the web services they were trying to access in order to
authorize users. He also e xplored the issue of federation to
manage trust relationships am ong services, which could be
extended towards securing cloud computing. Santos et al.
provided efforts to establish a secure a nd trusted cloud
computing environment [5]. They, howe ver, assumed that
providers could prevent physical attacks to their servers, which
might not be tr ue in the cas e of a poorly vetted em ployee or a
poorly designed facility. In our approach, we focus on data
security, redundancy, and privacy issues in cloud com puting.
We develop a formal model of information storage that utilizes
a cloud cluster with multiple cloud providers to leverage the
benefits of storing data in the cloud while minimizing the risks
associated with storing data in an offsite, insecure, unregulated
and possibly noncompliant atmosphere.

II. SECURE AND FAULT-TOLERANT CLOUD-BASED
INFORMATION STORAGE

A. A Motivating Example
Consider a sce nario where a medical company wishes to

have all medical records of its patients available to its trusted
partners, as well as to doctors who may be off site. First, the
medical data is required to be high ly fault tolerant, as losing
patient records is no t an option. Secondly, the data m ust be
secure, as the com pany has an obligation to its patient s to
protect their pe rsonal information. Thirdly, the medical
records must be guaranteed to be available, as it may become a
matter of life or death if the data cannot be accessed quickly.
The company realizes that storing t he data on site would
require a complex setup to make the data widely available to
its central location and branch offices, with a large cost to
purchase servers and storage devices. Furthermore, storing the
data on site also requires a robust m echanism to ensure that
the data is redundant and available in case of disaster, as well
as a scalable infrastructure in case of growth. The company is
attracted by the be nefits of cloud com puting, namely the
availability of the data over the Internet fo r its remote offices
and doctors, not having to invest a large amount of money to
establish the infrastructure, the scalability, and the promise of
resiliency and redundancy. Therefore, the company wishes to
explore the option of using cloud computing for information
storage and archiving of its data. It is, however, very
concerned with moving its data into the cloud since losing
physical control of its data be of high risk. Although the
company can choose reputable cloud providers to host its data,
there is no wa y to vet indivi dual employees who are hired by
the cloud provider to prevent insider attacks, whereas the
medical company is required to do full background checks and
audits on employees who are allowed to handle its data. The
company is also conce rned with the physical locations of its
data. With a cloud provider, the medical company does not
even know where its data resides in the cloud, let alone what
safeguards are at place at t he physical faci lity. The company
has also seen through the medi a the am ount of dam age that
can be caused by its data being compromised by a third party.

It must assume that by storing its data in t he cloud, it can be
compromised, so it nee ds to ensure that the cloud providers
and their employees absolutely do not have access t o the
underlying information. The company is finally concerned
with the avail ability of its da ta, as although it sees cl oud
computing as mostly reliable, it needs to make sure t hat its
data is av ailable and that there are no ex tended length of
outages. When the medical company is treating a patient , for
example, it is critical to know if the patient is allergic to any
medication. If this information became unavailable, there may
be dire consequences. If the company chooses to build the data
center by itsel f, it would take into account all of the above
concerns. In the cloud, however, the environment is ever-
changing with providers having the ability to deci de critical
implementation details, where data resides, and can at whim
discontinue or radically change a se rvice offering. Given the
current state of cl oud computing, the healthcare provider
would have some very seri ous and legitimate concerns that
need to be addressed.

In order to m itigate the m ajor concerns that the m edical
company faces, we design a reliable, fault-tolerant, and secure
architecture for cloud c omputing. Our a pproach can assist in
bridging a major issue that resides in cloud com puting yet to
be solved, namely how to securely store personal information
in the clouds. Thus, our approach can mitigate concerns from
companies that are trying t o adopt cloud c omputing and
regulators as well as the general public who are concerned for
the security and confidentiality of the stored information.

B. An Architectural Design
Our proposed information storage model for cloud

computing can be de ployed on m ultiple cloud se rvice
providers. As shown in Fig. 1, the model consists of use rs, a
service directory, and a c ollective group of cloud stora ge
providers. The users are cloud c lients who wish to store and
access data in the clouds. A user can first interact with the
service directory, which acts as a coordinator that can set up a
cloud cluster with multiple cloud service providers and assign
it to the user, and also store inform ation regarding the
addresses of all service providers in the a cloud cluster.

Figure 1. Architectural design of the information storage model

Once the client obtains t he address information of the
cloud providers from the service directory, it interacts with the
cloud cluster, namely a collection of available se rvice
providers that can store and send data using predefined

335

protocols. Each set of data, composed of the user’s sensitive
information can be split into m ultiple pieces using a
predefined security mechanism, and are stored i nto the cloud
cluster after they are e ncrypted. The cloud providers in the
cloud cluster have no knowledge of which cluster they belong
to as well as which are the other members in the cloud cluster
they are se rvicing. This means the cloud clusters are virtual
clusters in the clouds, which are generated and exclusively
managed by the service directory. Furthermore, the service
directory has the capability to restore data when needed. When
a service provider in a cloud cluster fails, the service directory
can automatically restore th e data using a pred efined
restoration algorithm, and replace the faile d service provider
with a new one from the Provider Pool.

The security mechanism defined in our model consists of
two levels. In the first level, the information to be st ored is
split into m ultiple pieces using the RAID 5 techniques with
distributed parity [6] so that if a provider fails, the data stored
collectively in the cluster would be recoverable. Note that the
RAID technique uses block-level striping with distributed
parity in a cluster of disk drives [7]. Due to data redundancy,
when a disk drive fails, any subsequent reads can be calculated
from the distributed parity, and the data in the failed drive can
be restored. In our approach, we consider each cloud provider
in a cloud cluster as a virtual disk drive; thus, our information
storage model is fault tolerant upon the failure of any cl oud
provider in the cloud cluster, and the missing piece of data can
be recovered from the distributed parity stored with the other
cloud providers in the cloud cluster. Another advantage of our
approach is, due to the distribution of data over multiple cloud
providers, no cloud provider is able to calculate the original
data because the providers have no knowledge of whic h the
other members are in the cloud cluster.

In the second level of our security mechanism, encryption
plays an important role. To ensure that providers do not have
access to the underlying data that is being stored, symmetric
key encryption can be used. A symmetric key is an encryption
key that is used for both encryption and decryption of data and
should be kept secret from all entities that do not have access
to the data. A user with the needed access permission can
utilize a symmetric key t o encrypt a piece of data to be stored
prior to sending it out to the cloud and to decrypt the data after
it is retrieved from a cloud provider. When a read operation is
performed, all pieces of information need to be decrypted after
retrieved from the cloud providers in t he cloud cluster, and
then they are combined into the original information.

In order to c orrectly design the security mechanism, we
develop a formal model of the secure and fault-tolerant
information storage system in cloud c omputing, and verify
some key properties of the model. We adopt colored Petri net
formalism because it is a well-founded process modeling
technique that has formal semantics to al low specification,
design, verification, and simulation of a complex concurrent
software system [8]. A Pet ri net is a directed, connected, and
bipartite graph, in whic h each node is either a place or a
transition. In a Petri n et model, tokens are used to specify
information or conditions in the places, and a tra nsition can
fire when there is at least one token in every input place of the
transition. Colored Petri nets (CPN or CP-net) are an extension
of ordinary Petri nets, which allow different values

(represented by different colors) for the tokens. Colored Petri
nets have a formal syntax and semantics that leads to compact
and operational models of very complex systems for modular
design and analysis. The major advantage of de veloping a
CPN model of the inform ation storage system is to provide a
precise specification, and to ensure a correct design of the
information storage system; therefore, design errors, such as a
deadlock, can be avoided in the implemented system.

III. FORMAL MODELING SECURE AND FAULT-TOLERANT
CLOUD-BASED INFORMATION STORAGE ARCHIETCTURE

To make the m odel easy to com prehend, we utilize
hierarchical CPN (HCPN), which allows using substitut ion
transitions and i nput/output ports to represent a secondary
Petri net in t he hierarchy. In our design, we first provide the
high-level model with its key com ponents. Then we utilize
HCPN to refine each com ponent into a m ore complete Petri
net. Since the architecture we proposed is most suitable for
storing personal or confidential data, In the following sections,
we present the HCPN m odel with an exa mple of m edical
record online storage system , which consists of a service
directory, a cloud cluster with three cloud providers, and two
users (cloud clients), namely a patient and a doctor.

A. High-Level Petri Net Model

The HCPN model can be devloped using CPN Tools [9].
In Fig. 2, we present a high-level model that defines the key
components, namely the Doctor, the Patient, the Cloud, and
the Directory, as well as the communications among the
components. The key components are defined as substitution
transitions, denoted as double rectangles in t he figure. The
purpose of the communications among the patient, doctor, and
cloud is to transfer and access a patient’s medical record. The
directory acts as a data coordi nator between the users and the
cloud. To simulate the cl oud providers that are selected a s
members of a cloud clust er as well as the data being
transferred between the users and the cloud providers, a PROV
and a MEDRECORD colored t oken type a re defined using the
ML functional language integrated in CPN Tools as follows:
colset PROV = record colset MEDRECORD = record
 prID: STRING * recID:STRING *
 ready: BOOL * data: STRING;
 mrec: MEDRECORD;

where prID is a provi der ID, ready is a flag of a provider
indicating whether the provider is functioning or failed, mrec
is a m edical record, recID is a record ID, and data is the
medical data stored in the record.

The directory is responsible for initializing the cloud
providers in a cloud cluster assigned to a user, replying queries
from a use r for providers’ addresses, and proces sing
restoration request upon t he failure of a cloud provider in a
cloud cluster. As shown in Fig. 2, the cloud cluster (denoted as
the place “Cluster Providers”) is initialized with t hree
providers "Pr1", "Pr2" and "Pr3" of type PROV, each of
which is i nitialized with initrec that contains a blank
medical record. Furthermore, the place “Provider Pool” is
initialized with one spare cloud provider "Pr4", which can be
used to replace a failed cloud provider in the cloud cluster.

336

z

x

Doctor

Doctor

Directory

Directory

Cloud

Cloud
Patient

Patient

Restore
1`false

BOOL Cluster
Providers

1`{prID="Pr1",ready=true,mrec=initrec}++1`{prID="Pr2",ready=true,mrec=initrec}++
1`{prID="Pr3",ready=true,mrec=initrec}

PROV

Provider
Pool

1`{prID="Pr4",ready=true,mrec=null}

PROV

Query_Resp

QUERYRESP

Down
Providers

PROV

Read_Ack

RDRESP

Write_Ack

WRRESP

Write_Req
WRREQLIST

Read_Req

RDREQLIST

Service
Ready

1 `ReadWrite
STATUS

Query_Dir

DIRQUERY

Patient Cloud

Directory

Doctor

1 3

1

1

Figure 2. High-level CPN model of the cloud storage

A read request (RDREQ) and a write request (WRREQ) to a
cloud provider can be defined as colored tokens as follows:
colset RDREQ = record colset WRREQ = record
 clID:STRING * clID:STRING *
 recID:STRING * mrec:MEDRECORD *
 prID:STRING; prID:STRING;

where clID is a client ID. Note that in Fig. 2, RDREQLIST and
WRREQLIST are defined as a list of read requests, and a list of
write requests, repectively. Thus, our model allows accessing
multiple pieces of inform ation concurrently from the cloud
providers participating in a cloud cluster.

After a read (write) requst has been processed, a read
(write) response will be returned to the user, simulated as a
token of type RDRESP (WRRESP) being deposited in place
“Read_Ack” (“Write_Ack”). The colored token types RDRESP
and WRRESP are defined as follows:
colset RDRESP = record colset WRRESP = record
 clID:STRING * clID:STRING *
 prID:STRING * prID:STRING *
 mrec:MEDRECORD * mrec:MEDRECORD *
 success:BOOL; success:BOOL;

where the flag success indicates if a rea d request or a write
request is successful or failed. In case a read or write re quest
fails (i.e., a cloud provider is down), the user will change the
token in place “Restore” from false to true, notifying the
directory to start the restoration process for the cloud cluster.

B. Petri Net Model for the Directory Component

We now refine the Directory component (i.e., the
Directory substitution transition in Fi g. 2) into a CPN m odel
as shown in Fi g. 3. In the figure, the place “Clust_Prov_List”
is intialized with a list of providers ["Pr1","Pr2","Pr3"]
due to the initial setting of the cloud cluster in place “ Cluster
Providers.” When a patient client or a doctor client starts
querying the directory for the addresses of the providers in its
assigned cloud cluster, a query token will be placed by the
client into pl ace “Query_Dir.” This enables the transition
“Provider Locations.” When it fires, it creates a toke n of
QUERYRESP type in p alce “Query_Resp,” which attaches the
provider information stored in place “ Clus_Prov_List.” Note
that to simplify our CPN model, the provider information only

consists of the provider IDs rather than the providers’ actual
endpoint addresses. Therefore, a service invocation to a cl oud
provider could be simulated by matching the cloud provider’s
ID rather than calling at its endpoint address. Since the place
“Query_Resp” is an input port of the clients, the token
becomes available to the client for further processing. On the
other hand, if the “Restore” place contains a true token due
to an access error e xperienced by a user, the “Check
Providers” transition becomes enabled as long as the directory
is not c urrently restoring t he cloud cluster (denoted by a
false token in place “ Init_Restore”) and there is a failed
provider (i.e., its ready flag is set to false) in place “Cluster
Providers.” Once t he transition fires, it pl aces a true token
into the “ Init_Restore” place, signifying that a restoration
process should take place. The firing also removes the failed
provider from the “ Clust_Prov_List” place and transfe rs the
provider from the “ Cluster Providers” place to the “Down
Provider” place. When the restoration process starts, the
“Restore” transition fires, and deposits a copy of the remaining
two providers into the “ Restore Gather Info” place. This
enables the “Calculate Replacement” transition, and its fir ing
simulates the calculation of the missing piece of data based on
the distributed parity information, and results in the rest ored
medical record being placed in the “Replacement Record”
place. Note t hat for sim plicity, the detailed procedure of the
parity calculation is not modeled in Fig. 3.

1`false

restore

{prID = (#prID g),
ready = (#ready g),mrec = m}

h

ins h (#prID g)

mg

{recID = (#recID (#mrec g1)),
data = (#data(#mrec g1))}

1`g1 ++ 1`g2

h

b

b

1`true

rmall (#prID g) h

g

{query=d,
provlist =h}

h

d

g

h

Transfer
to Replace

[length h = (NPROV-1)
andalso (#ready g) = true]

Restore

[length h = (NPROV-1)
andalso b = true]

Provide
Locations

[length h =
NPROV]

Check
Providers

[#ready g = false
andalso restore = true
andalso b= false]

Restore
In BOOL

Replacement
Record

MEDRECORD

Restore
Gather Info

PROV

Init_Restore

BOOL

Cluster
Providers

I/O

Query_Resp
Out

QUERYRESP

Provider
Pool

In
PROV

Service
Ready

I/O

Down
Provider

Out
PROV

Clust_Prov_List

1`["Pr1","Pr2","Pr3"]

CLUST

Query_Dir
In

DIRQUERY
In

Out

In

Out

In

I/O

I/O

1`false

1`ReadWrite

PROV

Calculate
Replacement

1`g1 ++ 1`g2

STATUS x

1`g1++
1`g2

1

1

3

1

11`ReadWrite

1

Figure 3. CPN model for the Directory component

Once the record has been restored, the “Transfer to
Replace” transition becomes enabled, and its firing takes a
provider from the “ Provider Pool,” initializes it with the
restored medical record, updates provider list in the
“Clus_Prov_List” place by adding the new provider into the
list, and places the provider into the “Cluster Providers” place.
This step completes th e restoration process, with the required
number of functioning providers allocated in the cloud cluster.

C. Petri Net Models for the Patient and Doctor Clients
A patient client should have the permisison to read its

medical record. As shown in Fig. 4, a patient first requests the
addresses of the cloud providers in the cloud cluster assigned
to him, which is m odeled by placing a true token in the

337

“Query Directory” place. With this token as well as the client
ID of t he user in the “ClientID” place, the “ Init_Query”
transition can fire, and its firing results in a DIRQUERY token
to be placed in the “Query_Dir” output port.

b

1`true

1`[]
hr

#mrec u

m

m

(NPROV-1)`m++1`m1

n

1`true

t

t

hr

hr

ins hr {clID= (#clID n),
prID= List.nth((#prov n),0),
recID= (#recID n)}

{recID=(#recID n), clID = (#clID n),
prov = (List.drop((#prov n),1))}

n

{recID=s,
clID = t,prov=h}

t

u

#mrec u u

s

h

#provlist q

q

{clID = t}
b

t

t

Combine
Data

Next_Read

Start_Read

[length(#prov n) = 0]

Construct
Read Req

[length(#prov n) > 0]

Read
Failure

[(#success u) = false
andalso (#clID u) = t]

Decrypt
Data

[(#success u) = true
andalso (#clID u) = t]

Extract
Providers

[(#clID (#query q)) = t]

Init_Read

Init_Query

[b=true]

Restore
Out BOOL

Data

MEDRECORD

Read
Request

1`[]

RDREQLIST

Read
Informaion

RDINFO

File
Store

MEDRECORD

Provider
Locations

CLUST

Query_Resp
In

QUERYRESP

Query_Dir
Out

DIRQUERY

Query
Directory

1`true

BOOL

ClientID

1`"Pat1"

STRING

Data to
Read

1` ("P1.rec")

STRING

Read_Ack
In

RDRESP

Read_Req
Out

RDREQLIST

Out

In

Out

In

Out

1

1`false

11

1

1

Figure 4. CPN model for the patient client

When a response from the direct ory is put int o the
“Query_Resp” input port, the providers’ address information
becomes available. T his enables the “ Extract Providers”
transition, and the firing of the transition places a CLUST token
in the “ Provider Locations” place. T he CLUST token type is
defined as a list of providers as follows:
colset CLUST = list STRING with 0..3;

where the with clause specifies the minimum and maximum
length of the list, and each item in the list contains the a ddress
of a provider (represented by its provider ID as a string for
simplicity) that can be used by the client t o communicate with
the provider. To model a read operation, a token "P1.rec" is
initialized in the “Data to Read” place, which is a record ID
representing patient P1’s medical record. The firing of the
“Init_Read” transition starts the read process, and places the
record ID along with the provider information into the “Read
Information” place. Note that in this model, we assume that
there is only one record for each patient that can be matched
with medical data stored on the providers. Now the “Construct
Read Req” transition can fire once for each provider in the
provider list, a nd creates a t oken of type RDREQLIST in the
“Read Request” place, such t hat the multiple read requests in
the list can be made concurrently to the cloud providers in the
cloud cluster. This makes the associate d providers in place
“Read Information” being removed and enables the “Start
Read” transition. When it fi res, it t ransmits the RDREQLIST
token to the “Read_Req” place, which is an input port to th e
cloud cluster. After the requests have been processed by the
cloud providers, multiple tokens of type RDRESP will be
deposited in place “Read_Ack.” If a RDRESP token contains a
success flag with a true value, it indi cates that the read
request has been completed successfully by the corresponding
cloud provider. In this case, the piece of medical record is
extracted from the token and placed in the file store after bieng
decrypted. Once all piece s of the medical record are

successfully decrypted, the “ Combine Data” transition
becomes enabled and can fire. The firing simulates the process
of generating the original medical record by recombining the
RAID data slices retrieved from the cloud providers. If one of
the providers returns a token with the success flag set to
false, a rea d failure occurs for the cl oud provider. In t his
case, the “ Read Fail” transition becom es enabled. Once it
fires, it changes the token i n place “Restore” from false to
true, signifying the directory to initiate a “restore” operation.

The CPN m odel for t he doctor client that replaces t he
Doctor substitution transition of the hi gh-level model is
similar to the one for t he patient client, but a doct or client
should also have the privilege to write data into t he clouds.
Due to page limits, we do not show such a CPN model here.

D. Petri Net Model for the Cloud Component
Finally, we refine the Cloud substitution transition of the

high-level model into a CPN model as shown in Fig. 5, where
the cloud providers are represented as colored toke ns of type
PROV. The clouds can accept either “read” or “write” requests
from the c lients, namely the patient and the doctor. Upon
receiving the requests, cloud providers invoke corresponding
cloud services by matching their IDs in the cloud cluster, and
return responses to the clients. In a ddition, the cloud providers
in a cloud clus ter are also res ponsible for providing their data
to the service directory on demand in a cas e that a restora tion
process is initiated when a read or write request fails due to the
failure of a cloud provider in the cloud cluster.

{prID=(#prID g),
ready=false,
mrec=(#mrec g)}

r

r
hr

e

e

e

e

1`v1++1`v2++1`v3

1`v1++1`v2++1`v3

1`u1++1`u2++1`u3

1`u1++1`u2++1`u3

w

whwhw

hr

x y

{prID = (#prID g),
clID = (#clID r),
mrec = null,success=false}

g

{prID = #prID g,
req = w, success=false}

g

pd

g
{prID = #prID g,
ready = #ready g,
mrec=(#mrec w)}

g

g

{prID=(#prID g),
req = w, success=true}

{prID = (#prID g),clID = (#clID r),
mrec = (#mrec g),success=true}

Write_Resp

Read_Resp

Write_Start

Read_Start

Read_Fail
[(#prID r) = (#prID g)
andalso (#ready g) = false]

Write_Fail

[(#prID w) = (#prID g)
andalso (#ready g) = false]

Provider_Down

[pd = SimEnabled
andalso (#prID g)="Pr1"]

output (y);
action(ReadOnly);

Write_File

[(#prID w) = (#prID g)
andalso (#ready g) = true]

Read_File

[(#recID r)=(#recID (#mrec g))
andalso (#prID r)=(#prID g) andalso (#ready g)=true]

Read_Start

RDREQ

RW_Control

1`e

UNIT

Write_Ack
Out

WRRESP

Read_Ack
Out

RDRESP

Write_Start

WRREQ
Service
Ready

In

STATUS

Provider
Down

1`SimEnabled

SIMPROVDOWN

Provider
Pool

Out PROV

Write_Req
In

WRREQLIST

Cluster
ProvidersOut

PROV

Down
Providers

In PROV

Write_Resp

WRRESP

Read_Req
In

RDREQLIST

Read_Resp

RDRESP

In

In

Out

In

Out

Out

Out

In

1

1

1
1

3

Figure 5. CPN model for the cloud component

In this model, the “Cluster Providers” place is shared with
the directory, where the PROV tokens in the place represent the
providers selected to constitu te the cloud cluster. In addition,
the “Provider Pool,” “Down Providers,” and “Service Ready”
places are als o shared places in the directory model. The
“Provider Pool” acts as a hol ding place for available providers
identified by the directory. The “ Down Providers” place
contains the provide rs that are down and deem ed needing
replacement. Finally, the “Service Ready” place acts as an input
place to the cloud for simulation purposes only. In our current
model, we only consider a m aximum of one cloud provider

338

going down at a time. This is a reasonable assumption because
cloud providers should be somewhat reliable. In order to satisfy
this constraint in the m odel, the “ Provider Down” place is
connected to the “Provider_Down” transition, which allows the
“Provider_Down” transition to fire once.

When a client makes a “read” request, a RDREQLIST token
with a lis t of RDREQ requests will be deposited into p lace
“Read_Req.” This enables the “ Read_Start” transition as long
as the “ RW_Control” place contains a unit token, which
ensures “read” and “write” actions are mutual exclusive. When
the “Read_Start” transition fires, it splits the RDREQLIST token
into singular RDREQ tokens, places them into place
“Read_Start,” and rem oves the unit token from the
“RW_Control” place. The “Read_File” transition then
examines each of the RDREQ tokens, matches it with its
respective cloud provider, an d fires as long as the success
flag of the c orresponding PROV token in place “ Cluster
Provider” is true. The following M L transition guard c ode
accomplishes this task:

[(#recID r) = (#recID (#mrec g)) andalso
 (#prID r) = (#prID g) andalso (#ready g)=true]

where g represents a cloud provider that is a member of the
cloud cluster and r represents a “read” request. The guard
selects the correct provider by comparing the provider ID in the
request (#prID r) with that of a provider from the
cluster(#prID g), matches the medical record ID, and makes
sure that the cloud provider i s functioning, i.e., its ready flag
is set to true. If all conditions are m et, the transition can fire,
and the firing of the transition creates a RDRESP token and
deposits it into the “ Read_Resp” place. On the other hand, if a
“read” request fails due to the corresponding provider being not
ready (i.e., its ready flag is set to false), the “ Read_Fail”
transition can fire, and its firing se nds a RDRESP token with a
blank medical record and a success flag set to false to the
“Read_Resp” place. Once all three tokens a re in th e
“Read_Resp” place, the “Read_Resp” transition may fire. The
firing of the transition returns a unit token to the “RW_Control”
place and places the RDRESP tokens into the “ Read_Ack” port,
available for the clients to digest.

A “write” request follows an alm ost identical path through
the model. When the doctor places a WRREQLIST token into the
“Write_Req” port, the “ Write_Start” transition becomes
enabled, and the firing of the transition places the individual
WRREQ tokens into place “Write_Start.” With the tokens in this
place, the “Write_File” transition can fire as long as the ready
flag of some PROV token in place “Cluster Providers” is true.
The firing of the transition replaces the medical record stored in
the PROV token with the replace ment record, and also
constructs a WRRESP token and places it in the “ Write_Resp”
place. On the other ha nd, if the ready flag of a provider is set
to false, the “Write_Fail” transition may fire. In this case, the
medical record is not altered, and a WRRESP token with t he
success flag set to false will be deposited in pl ace
“Write_Resp.” Once all th ree WRRESP tokens are in the
“Write_Resp” place, the “Write_Resp” transition can fire, and
its firing returns a unit token back to the “ RW_Control” place
and deposits the WRRESP tokens in the “ Write_Ack” place,
being available for the client to process.

A restoration process can be simulated in the cloud m odel
by setting the SIMPROVDOWN token in place “ Provider Down”
to SimEnabled. When the “Provider_Down” transition fires, it
randomly selects a provider from the place “Cluster Providers”
and sets the ready flag of the provider to false. This step
simulates the failure of a clou d provider in the cloud cluster.
Furthermore, the firing of the transition als o sets the STATUS
token in place “ Service Ready” to ReadOnly, which disables
the transition for writing in the CPN m odel for the doctor
patient. The doctor patient will be allowed to write again only
after the STATUS token in place “Service Ready” is c hanged
back to ReadWrite. Meanwhile, when either a patient or a
doctor client experiences a n access error to a failed cl oud
provider, a restoration process will be initiated by the clie nt.
Communication with the directory for a “restore” operation is
done through the shared port “Cluster Providers.” This port,
containing the PROV tokens of the providers who make up the
cluster, allows the directory direct access to the PROV state
when required. When the re storation process completes, the
failed cloud provide r in pla ce “Cluster Providers” will be
replaced by a new one taken from the “Cluster Pool.”

IV. FORMAL ANALYSIS OF THE CPN-BASED MODEL

In addition to providing an accurate model for our proposed
security mechanisms for cl oud-based information storage,
building a form al design model also has the advantage of
ensuring a correct design through state space analysis. Utilizing
the CPN Tools, a form al analysis of the CPN model can be
performed to verify if th e model meets certain system
requirements. Typically, the model we developed s hould be
live, bounded, and deadlock-free. When we use the CPN Tools
to calculate th e state space and analyze its major behavioral
properties, the CPN Tools produce the following results:

Statistics

 State Space
 Nodes: 154908
 Arcs: 571408
 Secs: 1832
 Status: Full
 Scc Graph
 Nodes: 90616
 Arcs: 431478
 Secs: 37

Liveness Properties

 Dead Markings
 99 [44684,44683,44682,
 44510,44509,...]
 Dead Transition Instances
 None
 Live Transition Instances
 None

The analysis shows that the state s pace contains dead
markings, thus the m odel we de veloped must contain
deadlocks. By tracing t he firing sequence for the deadlock
states as we did in our previous work [10], we found a s ubtle
design error. The error is due to the removal of the failed
cloud provider from the place “ Cluster Provider” in the CPN
model for th e Directory component, which occurs when the
transition “Check Providers” fires. However, some “read”
request in place “Read_Req” of the CPN model for the Cloud
component would require communicating with a removed
cloud provider if the “read” request was created before the
cloud provider fails. Since there is no matched cloud provider
in the “ Cluster Provider” place of the Directory model, the
system may enter a deadlock state. The easiest way to fix this
problem is to allow the failed cloud provider to stay in the
“Cluster Provider” place. This would allow t he “Read_Fail”

339

transition to fire, and return a “read” error to the client. After
we add a new arc from the transition “Check Providers” to the
place “Cluster Provider” in th e Directory model, the C PN
Tools now produce the following results:

Statistics

 State Space
 Nodes: 204267
 Arcs: 880021
 Secs: 4599
 Status: Full
 Scc Graph
 Nodes: 133063
 Arcs: 726216
 Secs: 242

Liveness Properties

 Dead Markings
 None
 Dead Transition Instances
 None
 Live Transition Instances
 Cloud'Read_File 1
 Cloud'Read_Resp 1
 Cloud'Read_Start 1
 ...

Boundedness Properties
--
 Place Upper Lower
 Cloud'Provider_Down 1 0
 Cloud'RW_Control 1 0
 Cloud'Read_Resp 3 0
 Cloud'Read_Start 3 0
 Cloud'Write_Resp 3 0
 Cloud'Write_Start 3 0
 Directory'Clust_Prov_List 1 1
 Directory'Init_Restore 1 0
 Directory'Replacement_Record 1 0
 Directory'Restore_Gather_Info 2 0
 High_Level'Cluster_Providers 4 3
 High_Level'Down_Providers 1 0
 High_Level'Provider_Pool 1 0
 High_Level'Query_Dir 2 0
 High_Level'Query_Resp 2 0
 High_Level'Read_Ack 6 0
 High_Level'Read_Req 2 0
 High_Level'Restore 1 1
 High_Level'Service_Ready 1 1
 High_Level'Write_Ack 3 0
 High_Level'Write_Req 1 0
 ...

The analysis shows t hat our modified net m odel is
deadlock free, and all transi tions except those related t o the
restoration process are live. Note that in our sim ulation, we
allow the “Provider_Down” transition in the Cloud model can
fire only once. The analysis also shows that our net m odel is
bounded. We notice that the upper bound of the place
“Cluster_Providers” in the high-level model is 4 rather than 3.
This is because a failed cloud provider will be kept i n the
cloud cluster after the service directory restores the cl oud
cluster by adding a re placement cloud provider into the
cluster. A more sophisticated model that allows a failed cl oud
provider to be removed from the cloud cluster, and also allows
more than one patient and more than one doct or to access
cloud clusters with shared cloud providers is envisioned as a
future, and more ambitious research plan.

V. CONCLUSIONS AND FUTURE WORK

Cloud computing is quickly becoming a widely adopted
platform to allow for complex computational nodes and storage
clusters without any of the difficulties and cost associated with
configuration and maintenance. There are, however, m ajor
legitimate concerns from enterprises and sensitive data holders
related to offsi te storage of personal or m ission critical data .

Studies show that given the c urrent state of cloud com puting,
enterprises are very concerned with unresolved issues related to
security, trust, and management in the cloud. For a majority of
these enterprises, this is also the main reason why they have not
yet adopted cloud com puting into their infrastructure. In t his
paper, we introduce a cloud-ba sed information storage m odel
that takes into account the fact that cloud provide rs may
experience outages, data breaches, and exploitations. We cope
with these issues by developing a distributed cloud-based
security mechanism. We then utilize hierarchical colored Petri
nets to form ally model and analyze our concurrent security
model. The verification results show that the m odel we
developed is live, bounded and deadlock-free.

For future work, we plan to develop a more sophisticated
model that allows more clients to access the cloud clusters with
shared cloud providers, and demonstrate how to cope with the
state explosion problem using the net reduction approach.
Meanwhile, we will try to implement a prototype cloud-based
information storage system with an improved distributed parity
algorithm that m ay strengthen the security mechanism by
preventing potential provider collusion to obtain information
stored in a cl oud cluster. Finally, the m odel can be further
improved if w e allow the service directory to autonom ously
detect failures, drops in quality of service (QoS), and anomalies
of the cloud providers, and react accordingly.

REFERENCES

[1] GAO, “Information Security: Additional Guidance Needed to Address
Cloud Computing Concerns,” United States Government Accountability
Office (GAO), October 6, 2011, Retrieved on December 18, 2011 from
http://www.gao.gov/new.items/d12130t.pdf

[2] AWS, “Creating HIPAA-Compliant Medical Data Applications with
AWS,” Amazon Web Services (AWS), Amazon, April 2009, Retrieved on
August 22, 20 10, from http://awsmedia.s3.amazonaws.com/AWS_
HIPAA _Whitepaper_Final.pdf.

[3] M. T. Goodrich, R. Tamassia, and D. Yao, “Notarized Federated ID
Management and Authentication,” Journal of Computer Security, Vol.
16, No. 4, December 2008, pp. 399-418.

[4] A. C. Weaver, “Enforcing Distributed Data Security via Web Services ,”
In Proceedings of the IEEE International Workshop on Factory
Communication Systems (WFCS), Vienna, Austria, September 22-24,
2004, pp. 397-402.

[5] N. Santos, K. Gu mmadi, and R. R odrigues, “Towards Trusted Cloud
Computing,” In Proceedings of the Workshop on Hot Topics in Cloud
Computing (HotCloud09), San Diego, CA, USA, June 15, 2009.

[6] A. Thomasian and J. Menon, “RAID 5 Perform ance with Distributed
Sparing,” IEEE Transactions on Parallel and Distributed Systems, Vol.
8, No. 6, June 1997, pp. 640-657.

[7] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction to
Redundant Arrays of Inexpe nsive Disks (RAID),” COMPCPN
Spring’89, Thirty-Fourth IEEE Computer Society International
Conference: Intellectual Leverage, Digest of Papers, Feb. 27 - March 3,
1989, San Francisco, CA , USA, pp. 112-117.

[8] K. Jensen, Colored Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, Vol. I: Basic Concepts, EATCS M onographs on
Theoretical Computer Science, New York Springer-Verlag, 1992.

[9] A. V. Ratzer, L. Wells, H. M. Lasen, M. Laursen, J. F. Qvortrup, et al.,
“CPN Tools for editing, simulating and analyzing colored Petri nets,” In
Proceedings of the 24th International Conference on Application and
Theory of Petri Nets, Eindhoven, Netherlands, Jun. 2003, pp. 450-462.

[10] H. Xu, M. Ayachit, and A. Reddyreddy, “Formal Modeling and Analysis
of XML Firewall for Service-Oriented Systems,” International Journal
of Security and Networks (IJSN), Vol. 3, No. 3, 2008, pp. 147-160.

340

Decidability of Minimal Supports of S-invariants and the Computation of their Supported
S-invariants of Petri Nets

Faming Lu, Qingtian Zeng*, Hao Zhang,Yunxia Bao, Jiufang An
Shandong University of Science and Technology

Qingdao, China

Abstract—S-invariants play an important role in the structural
property analysis of Petri nets and there is no algorithm that can
derive all the S-invariants of a Petri net in polynomial time.
Fortunately what needed to do in some practical applications is
only to decide whether or not a given place subset is a minimal
support of S-invariants or to compute one of its supported S-
invariants. For this reason, a sufficient and necessary condition
for a place subset to be a minimal support of S-invariants is
proved in this paper. After that, two polynomial algorithms for
the decidability of a minimal support of S-invariants and for the
computation of an S-invariant supported by a given minimal
support are presented.

Keywords: Petri nets; S -invariants; minimal supports of S-
invariants

I. INTRODUCTION
Petri nets are widely applied in modeling and simulation of

flexible manufacturing system, workflow management,
discrete event systems and many other fields [1-4]. S-invariants
are one of the basic analysis tools of Petri nets from which we
can analyze such properties as co nservativeness, liveness and
other important properties of a system.

For the computation of S-invariants, reference [1] h as
already pointed out that there is no algorithm which can derive
all the S-invariants of Petri nets in polynomial time
complexity. Even so, t here is still a lot of work devoted to
deriving S-invariants. In [5], a linear programming based
method is presented to compute part of S-invariant’s supports,
but integer S-invariants can’t be obtained. In [6-7], a
Fourier_Motzkin method is presented to compute a basis of all
S-invariants, but its time complexity is exponential. Reference
[8-9] put forward a ST FM method which has a g reat
improvement in efficiency compared to the above methods,
but there are some kinds of Petri nets the S-invariants of which
can’t be obtained with STFM method and the STFM method
has an exponential time complexity too in the worst case.

So the difficulty of deriving S -invariants is high. What
needed to do in some practical applications is only to decide
whether or not a given place subset is a minimal support of S-
invariants, or to compute only one S-invariant for a g iven
place subset. Even so, there is no efficient algorithm by now

which can decide t he minimal supports of S-invariants or
compute an S-invariant for a given place subset. In this paper,
two polynomial algorithms for th e decidability of a minimal
support of S-invariants and for the computation of an S-
invariant supported by a given minimal support are presented.

The rest of this paper is organized as follows. In Section 2,
we provide the basic concepts about Petri nets and S-
invariants. In Section 3, so me properties of S-invariants are
presented. With these properties, a pol ynomial algorithm is
provided to decide th e minimal supports of S-invariants in
Section 4. After that a polynomial algorithm to compute an S-
invariant for a giv en place s ubset is presented in Section 5.
Finally a case study and a conclusion are given in Section 6-7.

II. BASIC CONCEPTS ABOUT PETRI NETS

A Petri net is a 5-tuple
0(, ; , ,)S T F W M , where S is a

finite set of places, T is a finite set of transitions,
()F S T T S

is a set of flow relation, : 1, 2, 3, ...W F is a

weight function, 0 : {0 1, 2, }M S is the initial marking,
and S T S T . Usually, a P etri net can be
represented by a bipartite graph just like in Fig.1 where a place
is presented by a circle, a transition is presented by a rectangle,
a flow relation is presented by an arc and t he marking is
presented by those black-points in places.

t1
t2 t3

t4
s1

s2 s3
s4

s5 s6

2 2
2 1 0 0 1 0

0 1 1 0 0 1

0 0 1 1 1 0

2 0 0 1 0 1

A

Fig 1. A Petri net example 1
According to [3-4], the incidence matrix of 1 is the above

matrix A with each row corresponding to a transition and each
column corresponding to a place. Place subsets

1 1 2 3 4, , ,S s s s s and 2 1 4 5, ,S s s s are two minimal
supports of S-invariants of 1 . It has been proved in [4] that
there is a un ique minimal S-invariant supported by a given
minimal support. And the minimal S-invariants supported by

1S and 2S are 1 1 2 2 2 0 0
T

Y and

2 1 0 0 2 2 0
T

Y respectively. 3 1 2 3 4 5, , , ,S s s s s s is

a support of S-invariants too and 3 1 1 1 2 1 0
T

Y is
one of its supported S-invariants. But 3S is not a minimal

This work is supported partly by the NSFC (61170079); Sci. & Tech. Development Fund
of Shandong Province of China (2010GSF10811); Specialized Research Fund for the
Doctoral Program of Higher Education of China (20103718110007); Sci. & Tech.
Development Fund of Qingdao(10-3-3-32-nsh and 2011-2-47), Excellent Young Scientist
Foundation of Shandong Province (BS2009DX004 and BS2010DX009);Natural Science
Foundation for Distinguished Young Scholars of Shandong and SDUST (JQ200816 and
2010KYJQ101),Guiding project of Coal Ministry(MTKJ2011-370); Project of Shandong
Province Higher Educational Sci.&Tech. Program(J12LN11); Research Project of SUST
Spring Bud(2010AZZ177, 2010AZZ069).

* corresponding author: Q. Zeng, Email: qtzeng@sdust.edu.cn

341

support because 3 1 2S S S which means that 3S is the union
of other supports.

III. PROPERTIES OF MINIMAL SUPPORTS OF S-INVARIANTS
In this section, we will give a suff icient and necessary

condition for a place s ubset to be a m inimal support of S-
invariants. Before that, some properties are given below.

Lemma 1[12] If 0S is an support of S-invariants, but not a
minimal support, then there are at least t wo minimal supports
of S-invariants 1 2, , ..., 2kS S S k such that 0 1 2 ... kS S S S .

Lemma 2 Let C be an *m n ordered integer matrix and the
rank of C satisfies R C n . Then the homogeneous

equation 0CX has a fundamental system of solution in
which all the base solutions are integer vectors.

Proof: Because R C n and the coefficient matrix C is
an integer matrix, using Gaussian elimination method, we can
get a fu ndamental system of solu tion which is co nsisted of
rational vectors for the homogeneous equation 0CX . We
denote the system by 1 2= , , ..., k . Because

1i i k is a ration al vector, so we can suppose that

...

T

i1 i2 in
i

i1 i2 in

, where , ...,i1 in and , ...,i1 inv v are

all integers and , ...,i1 inv v are nonzero.

Let
1

n

i ij
j

v and
1 2

1 1 1
1 2

'

T

n n n

i i i i ij i ij in ij
j j j
j j j n

v v v .

Then it is eas y to see th at '
i is an in teger vector. And as a

constant times of the base solution vector i for the

homogeneous equation 0CX , '
i is surely to be a base

solution of 0CX . As a result, ' ' '
1 2' , , ..., k constitute

a fundamental system of integer solution of 0CX .■

Definition 1[4] Let A be an incidence matrix of a Petri net

0(, ; , ,)S T F W M , and 1iA i S denotes the ith
column vector in A. For a given place s ubset

1 21 , , ...,
kj j jS s s s S ,

1 1 2
, , ...,

kS j j jA A A A , a sub-matrix

of A, is called the generated sub-matrix corresponding to 1S .

Theorem 1 Let
1 21 , , ...,

kj j jS s s s

be a place su bset,

1SA be

the generated sub-matrix corresponding to 1S .If the rank of

1SA satisfies
1 1() 1SR A S and

1 1
0S SA Y has positive

integer solutions, then 1S is a minimal support of S-invariants.

Proof: Since
1 1

0S SA Y has positive integer solutions,
1S

must be a su pport of S -invariants. Assuming that
1S is not a

minimal support of S-invariants, then there are at leas t two
minimal supports of S-invariants 11 12 1, , ..., (2)kS S S k such
that 1 11 12 1... kS S S S according to Lemma 1. Let iY
and jY (1 ,i j k i j) be the minimal S-invariants
supported by 1iS and 1 jS

respectively. It’s obviously that iY

and jY are linearly independent and 0i jAY AY .

Denote the lth element of iY by iY l . If 'siY l

corresponding place ls

does not belong to 1S , then 0iY l

because the support of S-invariant iY , i.e. 1iS , is a su bset of

1S . Deleting all those elements whose corresponding places
don’t belong to 1S from iY , and denoting the resulted vector
by i , then

1
0S iA

holds because i is constructed by

deleting some zero ele ments from iY and 0iAY
holds.Similarly, deleting all tho se elements whose
corresponding places don’t belong to 1S from jY , and
denoting the resulted vector by j , then the equation

1
0S jA

holds.

In addition, because iY and jY are linearly independent, i
and j are obtained by deleting the same zero elements from

iY and jY

respectively, so i and j must be linearly

independent too. F urthermore, from
1

0S iA

and

1
0S jA

we can see i and j are two linear independent solutions of

1 1
0S SA Y . Only when

1 1() 2SR A S ,
1 1

0S SA Y can have
such two independent solutions. But this is contradictory with
the assumption

1 1() 1SR A S

in the theorem. So 1S must be

a minimal support of S-invariants. ■

t1

t7

s1

s5

t2

s2

t3

s3
t4

s4

t5 t6

t8

s6

s7

Fig 2. A Petri net example 2
Now let’s verify Theorem 1 w ith Peri n et 2 in Fig.2. In

fact, 2 has two minimal supports of S-invariants, which are

1 1 2 5 6 7, , , ,S s s s s s and 5 6 7, , , ,2 3 4S s s s s s respectively.

The generated sub-matrix
1SA corresponding to

1 1 2 5 6 7, , , ,S s s s s s is as follows.

342

1

2 1
8 7

1 1 0 0 0 1 1 0 0 0

1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 1 0

0 0 1 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0

r r
r r

SA

After two elementary-row-transformations listed above, it’s
easy to see th at the rank of

1SA satisfies
1 1() 4 1SR A S

and
1

2 2 1 1 1
T

SY is a positiv e integer solution of

1 1
0S SA Y . According to Theorem 1, 1S is a minimal support

of S-invariants. This is consistent with the facts.

2 1
2 5

4 6

1 1 0 0 0 1 1 0 0 0

1 1 0 0 0 0 1 0 1 1

0 0 1 1 0 0 0 1 1 0

0 0 1 1 0 0 0 0 0 1

0 1 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

3

r r
r r
r 4 r 3
r r

SA

However, for 1 2, , , ,3 3 4 5S s s s s s , its corresponding
generated sub-matrix

3SA is given above. After four
elementary-raw-transformations, it’s easy to see that the last
element in any solution of 0

3 3S SA Y must be 0 acco rding to

the 4th line in the ladder-type matrix. So 0
3 3S SA Y has no

positive integer solutions. According to Theorem 1, 3S isn’t a
minimal support of S-invariants. This is correct again.

Theorem 2 If 1S is a minimal support of S-invariants, then the
rank of

1SA satisfies
1 1() 1SR A S and

1 1
0S SA Y has positive

integer solutions.

Proof: Let 0Y be the minimal S-invariant supported by 1S ,
 be the sub-vector of 0Y corresponding to 1S . Obviously,
 is a positiv e solution of

1 1
0S SA Y according to the

definition of minimal S-invariants. Next, we only need to
prove

1 1() 1SR A S .

Assuming that
1 1()SR A S , then

1SA is a full-column-rank

matrix. According to [10], the equation
1 1

0S SA Y has only

zero solutions when
1SA is full-column-rank. It is

contradictory with the above conclusion that is a positive

solution of
1 1

0S SA Y .

Assuming that
1 1 1SR A S , according to Lemma 2, the

equation
1 1

0S SA Y has a fundamental system of integer

solution, denoted by 1 2= , , ..., k ,where 2k .

1) On one hand, we will prove that any base solution in

isn't constant times of . Otherwise, assuming that i
satisfies i c (0c R c). Since the linear
independence among base s olutions, (1)j j k j i
isn’t constant times of . So for any positive integers 1 and

2 , 1 2' i j
isn’t constant times of .

However, because i and j are both positive integer

solutions of
1 1

0S SA Y , so 1 2' i j
is also a

positive integer solution vector of
1 1

0S SA Y . So '
corresponds to an S-invariant supported by 1S . By now, an S-
invariant corresponding to ' is obtained, which isn’t constant
times of the minimal S-invariant corresponding to . Both of
them are supported by the same minimal support 1S . However,
it has been proved in [4] that a ny S-invariant is a constant
multiple of the minimal S-invariant when they are supported
by one minimal support of S-invariants. This contradiction
indicates that any fundamental system of integer solution of

1 1
0S SA Y

should contain no base solutions which are

constant times of ;

2) On the other hand, as a solu tion of
1 1

0S SA Y , should
have the form that

1 1 2 2 k... k ------(1)
where 1 2, , ..., k are constants.

As has been proved that each vector in 1 2= , , ..., k
can’t be constant times of , so there are at least two nonzero
constants in 1 2, , ..., k . Assuming that 0i , then the
following equation holds:

1

() /
k

i j j i
j
j i

------(2)

According to (1) an d (2), 1 2 -1 1' , , ... , , , ...,i i t

and 1 2= , , ..., t are equivalent. So ' is also a

fundamental system of integer solution of
1 1

0S SA Y . However,
' contains vector , which is contradictory to t he

conclusion obtained in the last sentence (shown in bold) of
part 1) in this proof. So

1 1 1SR A S is not true.

To sum up, neither
1 1SR A S nor

1 1 1SR A S

holds

which indicates
1 1() 1SR A S .■

In Fig.2, 1 1 2 5 6 7, , , ,S s s s s s is a minimal support of S-

invariants, so
1 1() 1SR A S holds and

1 1
0S SA Y

has a

positive integer solution
1

2 2 1 1 1
T

SY , which is
consistent with Theorem 2.

Now we can get a sufficient and necessary condition for a
place subset to be a minimal support of S-invariants as follows.

343

Theorem 3 For a place subset 1S , it is a minimal support of S-
invariants if and only if

1 1() 1SR A S and
1 1

0S SA Y has
positive integer solutions.

Proof: It can be derived from Theorem 1 and Theorem 2. ■

IV. DECIDABILITY OF A MINIMAL SUPPORT OF S-INVARIANTS

For the conditions of Theorem 3, whether
1 1() 1SR A S is

established or n ot can be deter mined through elementary
transformation method of matrix. But it’s difficult to decide
whether

1 1
0S SA Y has positive integer solutions. Fortunately,

the following lemma can address the problem.

Lemma 3 Let
1 1 1SR A S and be an arbitrary non-

trivial solutions of
1 1

0S SA Y . The equation
1 1

0S SA Y has
positive integer solutions if and only if is a positive vector
or a negative vector.

Proof: First, we prove the sufficiency. Assuming
is positive or negative, we only need to construct a positive
integer solution of

1 1
0S SA Y .

Since
1 1SR A S ,

1 1
0S SA Y has a fundamental system

of integer solution according to Lemma 2. Let be an integer
solution in such a system.

From
1 1 1SR A S , we can know that must be

constant times of . Because is positive or negative, so is
. If is negative, 1* is a p ositive integer solution of

1 1
0S SA Y . If is positive, itself is a positive integer

solution of
1 1

0S SA Y . In both cases, we construct a positi ve

integer solution of
1 1

0S SA Y

successfully.

Next, we prove the necessity. If
1 1

0S SA Y has positive
integer solutions, let be such a positi ve integer solution.

Since
1 1 1SR A S there must be a nonzero constant

such that . Because is a positive integer vector,
 is positive or negative. ■

Theorem 4 Let be an a rbitrary non-trivial solution of

1 1
0S SA Y . 1S is a minimal support of S-invariants if and only

if
1 1() 1SR A S and is positive or negative.

Proof: It can be derived from Theorem 3 and Lemma 3. ■

According to T heorem 4, we can get the following
algorithm to decide a minimal support of S-invariants.
Algorithm 1 Decidability of a minimal support of S-invariants
INPUT: a place subset S1 and its generated sub-matrix

1SA

OUTPUT: 1S is a minimal support of S-invariants or not

PROCEDURES:
Step1: Transform

1SA to a ladder-type matrix and compute the rank of
1SA

with the elementary row transformations method [10] ;
Step2: If

1 1 1SR A S

{

Step3: C omputing a non-trivial solution of
1 1

0S SA Y with Gaussian
elimination method[10];

Step4: If the solution is positive or negative, output that 1S is a minimal
support of S-invariants and exit;

}
Step5: Output 1S isn’t a minimal support of S-invariants.

We perform Algorithm 1 with 5 6 7, , , ,2 3 4S s s s s s and its
generated sub-matrix

2SA in Fig. 2 as input.

First, with the elementary raw transformation method,

2SA can be transformed to a ladder-type matrix as follows.

00000

11000

01100

01110

00000

00011

00000

00000

11000

11000

01100

01110

00011

00011

00000

00000

78
34

2

rr
rr

SA

Obviously, 2() 4 1
2SR A S holds according to the

adder-type matrix above. Starting from the ladder-type matrix
and using Gaussian elimination method, we can compute one
solution

2
2 2 1 1 1

T

SY of
2

0SA Y . The solution is
positive, so 2S is a minimal support of S-invariants .

In Algorithm 1, the time complexity of Step1 is 2

1O S T

[10]. For Step 3, it is 2

1O S [10]. For Step 4, it is 1O S . So

the time complexity of Algorithm 1 is 2

1O S T .

V. COMPUTATION OF A MINIMAL-SUPPORTED S-INVARIANT
According to Theorem 4, if 1S is a m inimal support of S-

invariants, then
1 1 1SR A S . In this case, the great linearly

independent group of
1
'sSA row spaces must include 1 1S

row vectors[10]. Denote the matrix composed of these row
vectors by C. Then C must be a 1 11 *S S ordered full-

row-rank matrix which satisfies
1 1() () 1SR C R A S . And

the equation
1

0SC Y

is equivalent to

1 1
0S SA Y

because the

relationship between C and
1SA [10]. Since 1() 1R C S the

great linearly independent group of 'sC column spaces must
include 1 1S column vectors. Denote the matrix composed
of these column vectors by D. Then D must be an

1 11 * 1S S ordered full-rank square matrix which

344

satisfies 1() () 1R D R C S . Compared to C, D is obtained
by deleting one column vector from C. Assume the deleted
column vector is the jth column of C and denote it by jC .

Next we will construct a non-trivial integer solution of

1 1
0S SA Y with D, jC

and j defined above.

Lemma 4 For the equation
1 1

0S SA Y , denote the kth element

of
1SY by

1 :S ky . Let
:1

det()
S j

y D . And for 11,i S i j ,

let
1 : det(())S i i jy D C , where det()D is the determinant of

D, ()i jD C denote the resulted matrix after replace the ith

column of D with vector Cj. Then
1 1 1 1 1:1 :2 :, , ...,

T

S S S S SY y y y

is a non-trivial integer solution of
1 1

0S SA Y .

Proof : Denote the kth column vector of the matrix C by
kC . Denote th e resulted vector after deleting the jth element

from
1SY

by

1 /S jY . According to th e relationship between D

and C,
1

0SC Y has the following equivalent transformations:

1

1
1

1 11

1 1

1 1 1 1

1

1 1

:1

:2

1 2 :
1

:

: : / :
1,..., 1, 1,...| |

/ :

0 , , ..., 0
...

0 0

S

S
S

S S i iS
i

S S

S i i S j j S j S j j
i j j S

S j S j j

y

y
C Y C C C y C

y

y C y C D Y y C

D Y y C

Let
1: det()S jy D , then the above equation becomes

1 / det() *S j jDY D C . Because D is a full-rank matrix, the
solution of

1 / det() *S j jDY D C is unique. According to th e
Cramer’s rule[10], the ith element in the solution is as follows:

1:

det((det() *))
det(())

det()
i j

S i i j

D D C
y D C

D

where 11, 2, ..., 1, 1, ...i j j S .

Thus,
1 : det(())S i i jy D C 11, 2, ..., 1, 1, ...i j j S

constitutes a solution of
1 1/ :S j S j jDY y C when

1: det()S jy D . Because
1 1/ :S j S j jDY y C is equivalently

transformed from
1

0SC Y , so
1 : det(())S i i jy D C

11, 2, ..., 1, 1, ...i j j S and
1: det()S jy D constitute one

solution of
1

0SC Y (i.e.,
1SY is a solu tion of

1
0SC Y). In

addition, because
1 1

0S SA Y and
1

0SC Y are equivalent, so

1SY is also a solution of
1 1

0S SA Y .

Furthermore, according to th e construction method of D
and jC , their elements come from

1SA . According to

Definition 1, the elements of
1SA are all in tegers, so D and

()i jD C are integer matrixes. Hence
1: det()S jy D and

1 : det(())S i i jy D C are all in tegers. Finally,
1: det()S jy D is

nonzero because D is full-ranked. Therefore,
1SY is a non-

trivial integer solution of
1 1

0S SA Y . ■

According to T heorem 4, the solu tion
1SY constructed in

Lemma 4 must be positive or negative integer vector. If
1SY is

positive let
1 1S SY Y , else let

1 1
1S SY Y . Then

1SY must be a

positive integer solution of
1 1

0S SA Y . Each element of
1SY

corresponds to a place in 1S . For each place in 1S S , we add

a zero elem ent to
1SY and denote th e resulted vector by Y .

Then it’s obviously that Y is an S-invariants supported by 1S .
As a result, we can get the following algorithm.
Algorithm 2 Computation of a minimal-supported S-invariant
INPUT: a minimal support of S-invariants 1S and its generated sub-matrix

 1SA

OUTPUT: one integer S-invariant supported by 1S
PROCEDURES:

Step1: Get the great linearly independent group of
1SA 's row spaces with

elementary column transformation method[10]. Denote the matrix composed of
these row vectors by C;

Step2: Get the great linearly independent group of C’s column spaces
with elementary row transformation method[10] . Denote the matrix composed
of these column vectors by D;

Step3: In fact, D is obtained by deleting one column vector from C.
Assume the deleted column vector is the jth column of C and denote it by jC ;

Step4: For equation
1 1

0S SA Y , denote the kth element of
1SY by

1 :S ky . Let

:1
det()

S j
y D . And for 11,i S i j , let

1: det(())S i i jy D C .

Construct the vector
1 1 1 1 1:1 :2 :, , ...,

T

S S S S SY y y y ;

Step5: If
1SY is positive, let

1 1S SY Y ,else let
1 1

1S SY Y ;

Step6: Denote the element of
1SY corresponding to place i 1s S by

()
1S iy s .Construct an |S|-dimensional column vector Y as follows:

1 1

1

()
()

0

S j j

j
j

y s if s S
y s

if s S

where ()jy s is the element of Y which corresponds to js S ;

 Step7: Output that Y is an S-invariants supported by 1S .

Considering the Petri net and 5 6 7, , , ,2 3 4S s s s s s in Fig.2.
In Step1, the great linearly independent group of

2SA 's row
spaces constitutes C as follows.

5

1 1 0 0 0 1 1 0 0 0

0 1 1 1 0 0 1 1 1 0

0 0 1 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1 1

C D C

In Step2, the great linearly independent group of C’s
column spaces constitute D shown above. In Step3, it’s easy to

345

see the 5th column of C is deleted in D. So j=5 and 5C is
shown above.

In Step 4, the elements in
2SY are as follows:

2 2:5 :1 1 5

1 1 0 0 0 1 0 0

0 1 1 1 0 1 1 1
det() 1; det(()) 1* 2

0 0 1 1 0 0 1 1

0 0 0 1 1 0 0 1

S Sy D y D C

Similarly,
2 : 5det(()) 2S 2 2y D C ,

2 : 5det(()) 1S 3 3y D C ,

2 : 5det(()) 1S 4 4y D C . Thus 2 2 1 1 1
2

T

SY .

In step 5,
2

1 2 2 1 1 1
2

T

S SY Y .

 In step 6, the elements of Y is as follows:
1 1

1 1 1

() 0, () 0, () () 2, () () 2,

() () 1, () () 1, () () 1

1 2 3 S 3 4 S 4

5 S 5 6 S 6 7 S 7

y s y s y s y s y s y s

y s y s y s y s y s y s

Thus we get an S-invariant 0 0 2 2 1 1 1
T

Y
supported by 5 6 7, , , ,2 3 4S s s s s s .

In Algorithm 2, th e time complexity of Step 1 is
2

1(| | | |)O S T [10]. For Step 2, it is 3
1(| |)O S [10]; For Step 3, it is

1(| |)O S ; For Step 4, it is 4
1(| |)O S [10]; For Step 5-7, the time

complexity is all (| |)O S . So the time complexity of Algorithm
2 is 2 4

1 1(| | | | | |)| |O S T S S .

VI. CASE STUDY

Taking Petri net 1 and place su bset 2 1 4 5, ,S s s s in
Fig.1 as a case.

4 1

4 3

2

2 0 1 2 0 1

0 0 0 0 0 0 2 0 1 2 0

0 1 1 0 1 1 0 1 1 0 1

2 1 0 0 0 0

r r
r r

SA C D

With Algorithm 1,
2SA

can be transformed to a ladder-type

matrix shown above. Obviously, 2() 2 1
2SR A S holds.

With Gaussian elimination method we get
2

1 / 2 1 1
T

SY

which is a solu tion of
2 2

0S SA Y . The solution is positive, so

2S is a minimal support of S-invariants.

With Algorithm 2, the parameters C,D are shown above too.
Based on this, we get that 3 1 1

T
C and the elements in

2SY are as follows:

2 2:3 :1 1 3

2 0 1 0
det() 2; det() 1;

0 1 1 1S Sy D y D C

Similarly
2 :2 2 3det() 2Sy D C .Thus we get

1 2 2
2

T

SY and
2

1 1 2 2
2

T

S SY Y .

Eventually we get a S-invariant 1 0 0 2 2 0
T

Y
supported by 2 1 4 5, ,S s s s .

VII. CONCLUSIONS
In this paper, after a deep research to th e properties of

supports of S-invariants, a sufficient and necessary condition
for a place s ubset to be a m inimal support of S-invariants is
obtained. Based on the condition, two polynomial algorithms
for the decidability of minimal supports of S-invariants and for
the computation of an S-invariant supported by a given
minimal support are presented.

Compared to those existed methods for the computation of
S-invariants, the algorithms presented in this paper have
polynomial time complexity. And based on these algorithms,
we can further give some effective algorithms for the S-
coverability verification of workflow nets, as well as th e
decidability of the existence of S-invariants.

REFERENCES
[1] Claude Girault, Rüdiger Valk. Petri Nets for Systems Engineering A

Guide to Modeling,Verification and Applications[M]. Springer-Verlag ,
Berlin Heidelberg, 2003.

[2] Wil van der Aalst, Christian Stahl. Modeling Business Processes: A Petri
Net-Oriented Approach. MIT Press,May,2011.

[3] T.Murata,”Petri nets:properties,analysis and application”, Proc.IEEE,
vol.77, no.4, pp.541-579, 1989.

[4] Zhehui Wu. Introduction to Petri net. Beijing: China Machine
Press.2005.

[5] Q.W.Ge, T.Tanida, and K.Onaga.Construction of a T-base and design of
a periodic firint sequence of a Petri net. In Proc.8th Mathematical
Programming symposium, Japan,pp.51-57,November 1987.

[6] J.Martinez and M.Silva. A Simple and Fast Algorithm to Obtain All
Invariants Of a Generalized Petri Nets[J] Proceedings of S econd
European Workshop on Application and Theory of Petri Nets,Informatik
Fachberichte 52,Springer Publishing Company,Berlin,1982

[7] Maki Takata,Tadashi Matsumoto and Sciichiro Moro. A Direct Method
to Derive All Generators of Solutions of a Matrix Equation in a P etri
Net·Extended Fourier-Motzkin Method [J],the 2002 International
Technical Conference on Circuits/systems,Computers and
Communitions,2002.

[8] M.Yamauchi, M.wakuda, S.Taoka, and T.Watanabe. A Fast and Space-
Saving Algorithm for Computing Invariants of Petri Nets. Systems, Man,
and Cybernetics, 1999. IEEE SMC '99,Vol 1,pages:866-871

[9] Akihiro TAGUCHI , Atsushi IRIBOSHI, Satoshi TAOKA, and
ToshimasaWATANABE. Siphon-Trap-Based Algorithms for Efficiently
Computing Petri Net Invariants. IEICE Trans. Fundamentals,2005,
E88–A(4):964-971

[10] David C.Lay. Linear algebra and its applications. 4th Edition[M].
Addison-Wesley , 2012:12-124.

[11] S.Tanimoto, M.Yamauchi,,T.Watanabe. Finding minimal siphons in
general Petri nets[J].IEICE Trans.Fundamentals,1996,E79-A(11): 1817-
1824.

[12] Faming Lu. An algebraic method for the reachability analysis of Petri
nets [D].Qingdao, China: ShanDong Universitry of Science and
Technology. 2006.

346

Automated Generation of Concurrent Test Code from
Function Nets

Dianxiang Xu
National Center for the Protection of the Financial

Infrastructure, Dakota State University
Madison, SD 57042, USA

dianxiang.xu@dsu.edu

Janghwan Tae
Intelligent Computing Lab

Samsung Advanced Institute of Technology
Yongin-si, Korea

janghwan.tae@samsung.com

Abstract—The advances in multi-core computing are promoting a
paradigm shift from inherently sequential to truly concurrent
applications. Testing concurrent applications, however, is more
labor-intensive. In this paper, we present an approach to
automated generation of concurrent test code from function nets,
which are lightweight high-level Petri nets. We generate
concurrent test sequences automatically from function nets.
Based on a mapping of the modeling elements to implementation
constructs, we further transform the test sequences into test code
in C/pthread, which can be executed immediately against the
system under test. We have implemented our approach based on
MISTA, a framework for model-based integration and system
testing. This paper also demonstrates the technical feasibility of
our approach through some case studies.

Keywords- software testing, m odel-based testing, concurrent
programming, Petri nets, high-level Petri nets, test automation

I. INTRODUCTION
The advances in m ulti-core computing are prom oting a

paradigm shift from inherently sequential to truly concurrent
applications. To utilize the pow er of m ulti-core technologies,
concurrent programming is critical. It is w ell-known, however,
concurrent programming is more error-prone. As an important
means for quality assurance, softw are testing is very labor-
intensive. Various studies have reported that softw are testing
and related activities account for more than 50% of the total
development costs. It is highl y desirable to autom ate the
software testing process. A utomated testing can significantly
improve overall productivity and reduce costs. For example,
model-based testing uses explicit behavior models of software
for generating test cases. As m odel-based testing can automate
or partially automate test generation, many test cases can be
created, executed, and repeated. Although automated test
generation and execution have a great potential, the extent of
automation in the existing model-based testing approaches
remains limited. In particular, there is little research on m odel-
based generation of concurrent tests.

In this paper, we present a model -based approach to
automated generation of concurrent test code. In this approach,
function nets, which are lightweight high-level Petri nets [1],
are used as the modeling notation for building test models of
concurrent programs. High-level Petri nets have been widely
applied to modeling and analysis of distributed systems [2].

Concurrent test sequences and m ulti-threaded test code are
generated automatically from the function nets. W e have
implemented this approach ba sed on MISTA (formerly ISTA)
[3]1, a fram ework for m odel-based integration and system
testing. MISTA allows executable test code to be generated
automatically from a M ID specification, which consists of a
function net and a mapping of the modeling elements to
implementation constructs. In this paper, we enhance M ISTA
for testing concurrent program s from the following
perspectives. First, to facilitate generating concurrent tests, new
notations (regions and sinks) are introduced to function nets for
building test models of conc urrent programs. Second, new
algorithms are developed for generating concurrent test
sequences from test models. Third, new algorithms are
developed for generating concurrent test code in C.

The remainder of this paper is organized as follows. Section
II introduces function nets as test models of concurrent
programs. Sections III and IV present automated generation of
test sequences and pthread test code. Section V describes case
studies. Section VI reviews th e related work. Section V II
concludes this paper.

II. FUNCTION NETS AS TEST MODELS OF CONCURRENT
PROGRAMS

A. Function Nets: Structure and Semantics
Function nets are lightweight high-level Petri nets. A

function net consists of places (circles), transitions (rectangles),
arcs, arc labels, guard conditions of transitions, and initial
marking. p is an input place (or precondition) of transition t if
there is an arc from p to t; p is an output place (or
postcondition) of t if there is an arc from t to place p. If the arc
is bi-directional, p is both input and output place (or
precondition and postcondition) of t. An inhibitor arc between
p and t is represented by a line segm ent with a little diam ond
on both ends (p is called an inhibitor place or negative
precondition of t). The label of an arc is a tuple of variables and
constants. Suppose variables star t with a lower-case letter or
the question mark (?). If an arc is not labeled, the default arc
label is the no-argument tuple, denoted as <>. The guard

1 The beta release of MISTA v1.0 is available at

http://www.homepages.dsu.edu/dxu/research/MBT.html

347

condition of a transitio n is a logical form ula built from
arithmetic or relational operations. A transition m ay be
associated with a list of variables as its form al parameters. A
marking is a set of tokens distri buted in all places. A token is a
tuple of constants. W e represent t oken <V1, …, Vn> in p as
p(V1, …, Vn). No-argument token (<>, or little solid circle or
dot in traditional Petri nets) in p is simply denoted as p. Figure
1 shows an example, where initial marking is {p1(0), p4(0)}.

Figure 1. A test model for producer/consumer

A variable substitution θ is a set of variable bindings
{xi=Vi}, where variable xi is bound to value Vi. Let l be an arc
label. l/θ denotes the tuple (or t oken) obtained by substituting
each variable in l for its bound value in θ. A transition t is said
to be enabled by variable substitution θ under marking M0 if
(1) each input place p of t has a token l/θ, where l is the label
of the arc from p to t; (2) each inhibitor place p of t has no
token l/θ, where l is the label of the inhibitor arc betw een p
and t; (3) t’s guard condition evaluates true w ith respect to the
substitution θ.

Firing an enabled transition t with θ removes the matched
token from each input place, and adds a token l/θ to each
output place p, where l is the label of the arc from t to p. This
leads to a new marking. A fi ring sequence is denoted as
M0[t1θ1>M1[t2θ2>M2 …[tnθn>Mn , or sim ply t1θ1t2θ2 …tnθn,
where firing transition ti with substitution θi(1≤i≤n) under Mi-1
leads to Mi (1≤i≤n). A marking M is said to be reachable from
M0 if there is such a firing sequence that leads to M from M0.

A function net captures system behaviors through state
transitions from a given initial state (m arking). An initial
marking determines the entry point (s), i.e., w hat transitions
can be fired at the initial state. We also allow a function net to
have one or more “ sink” transitions, sim ilar to term ination
states or exi t points in other models such as finite state
machines and activity diagrams. The behaviors of a function
net can be interpreted by its reachability tree (graph). To
facilitate test generation from different data sets, our approach
allows a function net to be a ssociated with multiple initial
markings. Therefore, the root of a reachability tree represents

a dummy state, whose child nodes are built from the given
initial markings. The construction of a reachability tree starts
with expanding each initial marking node. Each node is
expanded as follows: (1) find all possible firings tiθj under the
marking of the current node under expansion; (2) for each
firing tiθj, create a new child node according to the new
marking. The edge from the current node to the new child is
labeled with tiθj. (3) if ti is not a sink transition and the new
marking has not yet expanded in the sub -tree of the same
initial marking, then expand the new child node.

In MISTA, partial ordering of concurrent (or independent
firings) and pairwise combina tion of input values are two
techniques for reducing the com plexity of reachability tree.
When the partial ordering of concurrent firings is used, step (2)
only selects one firing from a se t of concurrent firings. W hen
pairwise combination is used , all pairs (rather than all
combinations) of input values are used to derive firings in step
(1). We use a region to represent a collection of events in the
same thread (or process) of a concurrent system. For example,
region (consumer)={get, consume, cstop}. Building the
reachability tree for a region uses the transitions listed in the
given region.

B. Function Nets as Test Models
Function nets can represent various building blocks of

software models, such as sequence, condition (choice),
repetition (loop), concurrency, synchronization and m utual
exclusion, structured data, ar ithmetic and relational operations,
and modularization (hierarchy). These building blocks can be
used to compose complex test models of concurrent programs.
Consider bounded buffer as an exam ple. A bounded buffer is
shared by different producer and consumer threads. A producer
thread puts data into the shared buffer, whe reas a consumer
thread gets data from the shared buffer. To function correctly,
the implementation of bounded buffer must synchronize the
concurrent “put” and “ get” actions from different threads.
Figure 1 shows a test model of bounded buffer, where a
producer produces and puts five items to the buffer and a
consumer gets and consumes five items from the buffer. The
producer is not intended to put any item to the buffer if the
buffer is not empty. The consumer is not intended to get an
item from the buffer unless the buffer has an item . The
“produce” and “ put” actions in the producer thread are
sequential; the “ get” and “ consume” actions in the consumer
thread are sequential. They are represented by two sequential
structures. They are included in the two loo p structures,
respectively. “put” has two postconditions: updating the loop
control value and depositing the produced item into the buffer
(place p3). Producer and consumer have concurrent actions
(e.g., produce and consume). They are synchronized because of
the shared buffer.

Although building a test m odel depends on what needs to
be tested against a specific sy stem under test (SUT), there are
two different perspectives: whitebox and blackbox. A white
test model is sim ilar to the design m odel of a SU T – w hat is
described in the model is suppos ed to be implemented by the
SUT. For example, Figure 1 w ould be a whitebox test model
for the producer/consumer program if a SUT has im plemented
the producer and consumer threads and these threads are the

produce[x<
5, y=x+1]

put

get[x<5,
y=x+1]

consume

x

y

y

z
 y,z

<0>

y

<0>
 x

y

M0= {p1(0), p4(0)}
region(consumer)={get,consume,cstop}
region(producer)={produce,put, pstop}

sinks = {pstop, cstop}

p1

p2

p3

p4

p5

z

pstop [x>=5] cstop [x>=5]
x

y,z

y

x

348

target of testing. A blackbox test model does not describe how
a SUT is implemented. Rather, it focuses on how a SUT will be
tested from a blackbox perspectiv e according to the interface.
Figure 1 would be a blackbox test model for bounded buffer.
The model describes how bounded buffer w ill be tested
through calls to put and get. Bounder buffer is like a black box
to the test model. As will be discussed in Section III, w hitebox
and blockbox models are used for different testing purposes.

III. AUTOMATED GENERATION OF TEST SEQUENCES

A. Generating Deterministic Test Sequences from WhiteBox
Test Models
A deterministic test sequence of a concurrent program (or

syn-sequence [4]) is of the form, <r0, t0θ0, M0,>…, <rn-1, tn-1θn-

1, Mn-1,>, where ri (0≤i<n) is a region, tiθi is a firing (test input)
in region ri, and Mi is the resultant m arking (test oracle).
Deterministic test sequences are used for deterministic testing
or reachability testing of a concurrent program – forcing the
execution of a concurrent program to follow the specified order
of events. This can be done by using a replay tool [4]. Our
approach generates determinis tic test sequences from the
reachability tree of a w hitebox test m odel. To reduce the
number of sequences, the partial ordering technique can be
used to generate only one sequence from each set of concurrent
firings. To derive test sequences, we retrieve all leaf nodes
from the reachability tree , and, for each leaf node, obtain the
test sequence from the initial m arking node to the leaf node.
For example, <producer, produce(1)>, <producer,put(1)>,
<consumer, get>, <consumer, consume>, <producer,
produce(2)>, <producer, put(2)> is a determ inistic sequence
generated from the model in Figure 1.

B. Generating Nondeterministic Test Sequences from
Blackbox Models
A nondeterministic test sequence is of the form , <r0,

F0>,…, <rn-1, Fn-1>, where ri (0≤i<n) is a region (thread) and
Fi is a firing sequence in region ri. It means that the transition
firings in different regions are concurrent. To generate
nondeterministic test sequences, we first determine whether or
not the regions in a given blac kbox test model are independent
(this paper w ill not elaborate on this due to lim ited space). If
they are independent, we generate nondeterministic se quences
by parallel composition of all firing sequences from the partial-
ordering-based reachability trees of individual regions;
otherwise we first generate determ inistic sequences from the
partial-ordering-based reachability tree of the entire test m odel
and convert them into non-deterministic ones. The partial
ordering technique is very efficient because it avoids the
interleaving of concurrent firings from independent regions.

Algorithm 1 describes the generation of nondeterministic
test sequences from a blackbox test m odel with independent
regions. It first creates a partial-ordering-based reachability tree
for every region (lines 3 -7), which includes the firing
sequences in the respective region. Then it generates
concurrent test sequences for each initial m arking by parallel
composition of firing sequences from different regions (lines 8-
28). Lines 9-16 create a new list of trees that includes only the
trees that contain test sequences derived from the given initial
marking. The size of this new tree list indicates the num ber of

threads of test code. Lines 17 -20 compute (non-deterministic)
test sequences of all trees in the list. Each com bination is
represented by the sequence indices in the respective trees.

Algorithm 1. Generating nondeterministic test sequences from
a test model with independent regions
Input: PrT net with independent regions
Output: nondeterministic (concurrent) test sequences
Declare: tree is a regional partially-ordered reachability tree;

 treeList, newTreeList are lists of regional reachability trees
 totalSeqsOfIndThreads is integer array
 combSeqs is a two-dimensional array
 currentSeq is a nondeterministic test sequence
 testSeqs is a list of nondeterministic test sequences:

1. begin
2. testSeqs ← ∅
3. treeList ← ∅
4. for each region do
5. tree ← generate a reachability tree for the region
6. add tree to treeList
7. end for
8. for each initial marking do
9. newTreeList ← ∅
10. for each tree in treeList
11. if tree has test sequences with respect to the

current initial marking
12. add tree to newTreeList
13. end if
14. end for
15. if newTreeList = ∅
16. continue (to next initial marking)
17. for i=0 to newTree.size-1 do
18. totalSeqOfIndThreads[i] ← number of sequences in

newTree(i)
19. end for
20. combSeqIndices ← all combinational sequence indices

from totalSequencesOfIndividualThreads
21. for i=0 to combSeqIndices.length-1 do
22. currentSeq ← ∅
23. for regionIndex=0 to newTree.size-1
24. currentSeq ← currentSeq + < newTree

(regionIndex).region, sequence from newTree(regionIndex)
whose index is combSeqIndices[i][regionIndex] >

25. end for
26. add currentSeq to testSeqs
27. end for
28. end for
29. end

The test m odel in Figure 2 yields the following
nondeterministic test sequences:

1. <producer<produce(1), put(1), produce(2), put(2), pstop
>>,<consumer,<get, consume, get, consume, cstop>>

2. <producer,<produce(1),put(1),produce(2),put(2),pstop>,
<consumer,<get, consume, get, consume, get, consume,
cstop>

3. <producer,<produce(1),put(1),produce(3), put(2),
produce(3), put(3), pstop>, <consumer, <get,consume,
get,consume, cstop>>

4. <producer,<produce(1),put(1), produce(2), put(2),
produce(3), put(3), pstop>, <Consumer, <get, consume,
get, consume, get, consume, cstop>>

349

When the regions are interdependent, we first generate

deterministic sequences (sim ilar to Section III-A) and
transform them into concurrent sequences. For example,
deterministic sequence <producer, produce(1)>, <producer,
put(1)>, <consumer, get>, <consumer, consume>, <producer,
produce(2)>, <producer, put(2), <consumer, get>, <consumer,
consume> > can be transformed into the following non -
deterministic sequence: <producer, <produce(1),put(1), produce
(2), put(2)>>, <consumer, <get, consume, get, consume>>.

IV. AUTOMATED GENERATION OF TEST CODE
We generate test code from nondeterministic sequences

based on model-implementation mapping (MIM).

A. MIM
A MIM specification for a test model consists of the following
components [3]:
(1) ID is the identity of the SUT tested against the model.
(2) fo is the object function that maps objects in the test model

to objects in the SUT.
(3) fe is the event (also called method) mapping function that

maps events in the model to operations in the SUT.
(4) fa is the accessor function that maps predicates in the test

model to accessors in the SUT.
(5) lh is the list of hidden predicates in the test model that

produce no test code.
(6) h is the helper code function that defines user -provided

code to be included in the test code.

ID refers to the system under test. The functions fo, fe, fa and
fm map objects, events, and predicates to respective
counterparts in the SUT. Operation for an event or accessor for
a predicate is a block of code that can be executed . The helper
code function allows the user to provide additional code
required to make the generated tests executable.

TABLE I. A MIM SPECIFICIFICATION FOR BOUNDED BUFFER

SYSTEM BoundedBuffer1
HIDDEN (lh) p1, p2, p3, p4, pstop, cstop

METHOD (fe) produce(?y) pch = item[?y];

printf("Producing %c...\n", pch);
put(?y) put(pch);
get() gch=get();
consume() printf("Consuming %c ... \n", gch);

#INCLUDE
(h(include))

#include <pthread.h>
…

Table 1 shows an exam ple. The system name is
BoundedBuffer1, after which the files of test code will be
named. Predicates p1, p2, p3, and p4 and transitions pstop and
cstop in the test m odel are listed as “ hidden”, which m eans
they do not produce test code. Transition produce(?y) is
corresponding to the following code:

pch = item[?y];
printf("Producing %c ...\n", pch);

When generating test code, a transition firing is a function
call or more generally a block of code. Variables (e.g., ?y) will
be substituted for the bound values in the variable substitution
of the transition firing.

B. Algorithms for Test Code Generation
The code structure of a concurrent test based on pthread s

consists of the header (incl uding setup, teardown and local
code), declarations of pthr eads, definitions of pthread
functions, and the m ain function (test driver). The header is
provided by tester; other code is generated automatically
according to the M IM specification. Algorithm 2 below
generates a pthread function from a firing sequence in a region.
A pthread function is a function that is used to create a pthread.

Algorithm 2. Generate a pthread function from a firing
sequence of a region
Input: region, firing sequence [t1θ1>M1[t2θ2>M2 [tnθn>Mn, MIM
(ID, fo, fe, fa, lh, h)
Output: pthread function code named after region (pfcode)
Declare: testInput is a string representing test input code
 testOracle is a string representing test oracle code
 newLine starts a new line
1. begin
2. pfcode ← “void *”+region+”(void * parm)”
3. pfcode ← pfcode +”{”+ newLine
4. for i=1 to n do
5. if ti is not a hidden event, i.e., ti∉lh
6. let tiθi = ti (V1 ., Vk),Vj is an actual parameter
7. testInput ← fe(ti (fo(V1), , fo(Vk)));
8. endif
9. testOracle ← “”;
10. for each p(V1, , Vk) in Mi do
11. if p∉lh
12. testOralce ←testOracle + fa(p(fo(V1), , fo(Vk)));
13. endif
14. end for
15. pfcode ← pfcode+testInput+testOralce
16. end for
17. pfcode ← pfcode+ newLine +”pthread_exit(0)”
18. pfcode ← pfcode+ newLine +”}”
19. end

A firing sequence is a sequence of nodes ([tiθi>Mi) in a
reachability tree. Line 2 creates the signature of the function.
Lines 3 and 18 provide “{}” to enclose the function. Lines 4-16
generates test inputs and oracles from the given firing

produce[x<
3, y=x+1]

put

get[x<3,
y=x+1]

consume

x

y

y

y,z

<0>

y

<0>
 x

y

M0= {p1(0), p4(0)}
region(consumer)={get,consume, cstop}
region(producer)={produce,put, pstop}

sinks = {pstop, cstop}

p1

p2

p4

p5

pstop [x>1] cstop [x>1]

x

y,z

x

Figure 2. A test model with independent regions

350

sequence. Each tiθi in the firing sequence is a test input if ti is
not a hidden event (Lines 5-8). Each predicate in Mi is
corresponding to a test oracle if p is not hidden (Lines 11-13).
fe(ti(fo(V1),…, fo(Vk))) means that each model -level actual
parameter Vj of transition ti is first replaced with the
corresponding implementation-level parameter from object
mapping fo and then the implementation code for transition ti is
obtained from fe. fa(p(fo(V1),…, fo(Vk))) means that each model -
level actual param eter Vj of p is first replaced with the
corresponding implementation-level parameter from object
mapping fo and then the accessor code for transition ti is
obtained from event mapping fe.

Algorithm 3 below generates a C file, which contains
multiple pthreads for a nondeterministic test sequence.

Algorithm 3. Generate multi-threaded test code in C from a
nondeterministic test sequence
Input: test ID, nondeterministic test sequence <r0, F0>, , <rn-1,
Fn-1>, MIM(ID, fo, fe, fa, lh, h)
Output: testCode file
Declare: fi is the thread function for Fi(generated by Algorithm2)
1. begin
2. testCode ← h
3. for i=1 to n do
4. testCode ← testCode + thread declaration for ri
5. endfor
6. for i=1 to n do
7. fi ← call Algorithm 2 with Fi and MIM
8. testCode ← testCode + fi
9. endfor
10. testCode ← testCode + signature of main function
11. testCode ← testCode + ”{”
12. testCode ← testCode + setup call if setup is defined
13. for i=1 to n do
14. testCode ← testCode + thread creation for ri
15. endfor
16. for i=1 to n do
17. testCode ← testCode + thread join for ri
18. endfor
19. testCode ← testCode + teardown call if is defined
20. testCode ← testCode + “}”
21. save test code to a file named after system ID + test ID
22. end

The code snippet below shows the test code for concurrent test
sequence <producer <produce(1), put(1), produce(2), put(2),
pstop>>, <consumer,<get, consume, get, consume, cstop>>.

#include <pthread.h>

pthread_t tidproducer; // thread declaration

void *producer(void * parm) {

pch = item[1]; // produce(1)
printf("Producing %c ...\n", pch); // produce(1)
put(pch); // put(1)
pch = item[2]; // produce(2)
printf("Producing %c ...\n", pch); // produce(2)

pthread_exit(0);

}

void *consumer(void * parm) {

gch=get(); // get
printf("Consuming %c ... \n", gch); // consume

}

main(int argc, char *argv[]) {
pthread_create(&tidproducer, NULL, producer, NULL);

pthread_join(tidconsumer, NULL);

}

Obviously, Algorithm 3 can be called to generate test code
for a set of non-deterministic test sequences, e.g., produced by
Algorithm 1.

V. CASE STUDIES
We have implemented our approach based on the M ISTA

tool. Our case studies focus on demonstrating that our approach
can generate concurrent test code from test models.

A. Bounded Buffer
Bounded buffer is a classical example for demonstrating the

synchronization problem of multi-threaded programming. It
involves two types of threads, producer and consumer, that
share a fixed-size buffer. A producer generates a piece of data,
puts it into the buffer, and starts again. A t the sam e time a
consumer consumes the data one piece at a time. Existing work
often focuses on the testing of given producer and consumer
programs together with the bounde r buffer (Strictly speaking,
producer and consumer are only one test for bounded buffer).
Our work, however, focuses on the testing of the bounded
buffer. We view producer and consumer programs as test cases
for the bounded buffer. As shown in Section IV, we use test
models to generate different kinds of producers and consumers.
For example, a concurrent test may have different number of
producers and consumers. The producer and consumer in one
test may have different numbers of calls to put and get.

B. ATM
ATM [5] is a client/server program for managing ATM

accounts, e.g., querying the current balance of an account,
depositing money to an account, and withdrawing money from
an account. The server program can accept requests from
different clients by using mu lti-threaded programming. The
multiple threads can access account data sim ultaneously. For
the ATM program, testing can be done from the client side. For
example, a test case can first deposit money to an account and
then withdraw money from the same account. Such traditional
test cases can be generated by the existing MISTA tool. In this
study, we focus on generation of concurrent tests with m ultiple
threads. Each thread sends requests to the server. D ifferent
threads may operate on the same account to check if th e server
fails to respond correctly.

For each case study, we were able to generate executable
pthread code for many concurrent tests. This has demonstrated
the technical feasibility. W e are currently applying the
approach to an industry project at Samsung.

VI. RELATED WORK
Our approach is related to code-based and specification -

based testing of concurrent programs and testing with Petri

351

nets. Due to limited space, this paper will not review the work
on code-based testing or te st execution frameworks of
concurrent programs.

A. Specification-based Testing of Concurrent Programs
Carver and Tai [6][7] have developed a specification-based

approach to testing concurrent programs. Sequencing
constraints on succeeding and preceding events (CSPE) are
used to specify restrictions on the allowed sequences of
synchronization events. They described how to achieve
coverage and detect violations of CSPE constraints based on a
combination of deterministic and nondeterministic testing.
Chung et al. [8] developed a specification-based approach to
testing concurrent programs against M essage Sequence Charts
(MSCs) with partial and nondete rministic semantics. Based on
the sequencing constraints on the execution of a concurrent
program captured by M SCs, this approach verifies the
conformance relations between the concurrent program and the
MSC specification. Seo et al. [9] presented an approach to
generating representative test se quences from statecharts that
model behaviors of a concurrent program. Representative test
sequences are a subset of all possible interleavings of
concurrent events. They are used as seeds to generate automata
that accept equivalent sequences. Wong and Lei [10] have
presented four methods for generating test sequences that cover
all the nodes in a given reachability graph. The reachability
graph is typically constructed from the design of a concurrent
program. Test sequences are generated based on hot spot
prioritization or topological sort . It is not concerned with
automated generation of data i nput or mapping of the abstract
SYN-sequences derived from the given reachability graph to
concrete implementation sequen ces. Different from the above
work, our approach can generate executable multi-threaded test
code from test models.

B. Testing with Petri Nets
Zhu and He [11] have propos ed a methodology for testing

high-level Petri nets. It is not concerned with how tests can be
generated to meet the criteria. Lucio et al. [12] proposed a
semi-automatic approach to test case generation from CO-OPN
specifications. CO-OPN is a form al object-oriented
specification language based on abstract data types and Petri
nets. This approach transform s a CO-OPN specification into a
Prolog program for test generation purposes.

VII. CONCLUSIONS
We have presented an approach to automated testing of

concurrent pthread programs. It can automatically generate
(non) deterministic test sequences as well as multi-threaded test
code. These functions, together with the existing M ISTA tool,
can provide a useful toolkit for testing concurrent programs. It
can reap two important benefits. First, software testing would
not be effective without a good understanding about a SUT.
Using our approach, testers w ill improve their understanding
about the SUT while documenting their thinking through the
creation of test models. Test m odels can clearly capture test
requirements for software assurance purposes. Second,
automated generation of test code from test models can
improve productivity and reduce cost. W hen concurrent
software needs m any tests, the tests can be generated
automatically from their test m odels. This can better deal w ith

the frequent changes of requirements and des ign features
because only the test models, not test code, need to be updated.
The savings on the manual development of test code also allow
testers to focus on the intellectually challenging aspect of
testing – understanding what needs to be tested in order to
achieve high-level assurance. Our case studies based on small
programs are primarily used to demonstrate the technical
feasibility. We expect to apply our approach to real -world
applications that require a larg e number of concurrent tests in
order to reach a high level of quality assurance.

Our future w ork will adapt the approach to autom ated
generation of concurrent code in other languages and thread
libraries, e.g., Java, C #, and C++. In addition, effectiveness of
the test cases generated from test models essentially depends
on the test models and test generation strategies. W e plan to
evaluate the effectiveness of our approach by investigating
what types of bugs in concurrent program s can be revealed by
the test cases generated from the test m odels. To this end, w e
will first define a fault model of concurrent programs in a given
target language (e.g., C/pthread), create mutants by injecting
faults in the subject programs deliberately, and test the m utants
with the test code generated from the test m odels. A mutant is
said to be killed if the test c ode reports a failure. U sually the
percentage of the mutants killed by the tests is a good indicator
of the fault detection capability of the test cases.

REFERENCES
[1] H.J. Genrich, “Predicate/Transition Nets,” In: Brauer, W ., Reisig, W .,

Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties.
Springer-Verlag London, 1987, pp. 207-247.

[2] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. of
the IEEE, vol. 77, no. 4, 1989, pp. 541-580.

[3] D. Xu, “A Tool for Automated Test Code Generation from High -Level
Petri Nets”, Proc. of the 32nd International Conf . on Application and
Theory of Petri Nets and Concurrency (Petri Nets 2011), LNCS 6709,
Newcastle, UK, June 2011, pp. 308–317.

[4] R. H. Carver and K. C. Tai, M odern Multithreading: Implementing,
Testing, and Debugging Multithreaded Java and C++/Pthreads/Win32
Programs, Wiley, 2006.

[5] D. Buttlar, J. Farrell, B. Nichol s, PThreads Programming: A POSIX
Standard for Better Multiprocessing, O'really Media, Sept 1996.

[6] R. H. Carver and K. C. Tai, “Use of Sequencing Constraints for
Specification-based Testing of Concurrent Programs,” IEEE Trans. on
Software Engineering, vol. 24, no. 6, 1998, pp. 471-490.

[7] R.H. Carver, K.C. Tai, "Test Sequence Generation from Formal
Specifications of Distributed Programs," Proc. 15th IEEE International
Conference on Distributed Computing Systems (ICDCS'95), 1995, pp.
360-367.

[8] I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B. S. Lee, “Testing
of Concurrent Programs based on Message Sequence Charts,” Proc. the
International Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE '99), pp. 72-82.

[9] H. S. Seo, I. S. Chung, and Y. R. Kwon. “Generating Test Sequences
from Statecharts for Concurrent Progr am Testing,” IEICE - Trans. Inf.
Syst. E89-D, 4, 2006, pp. 1459-1469.

[10] W. E. W ong and Y. Lei. “Reachability Graph-Based Test Sequence
Generation for Concurrent Programs,” International Journal of Software
Engineering and Knowledge Engineer ing, vol. 18, no. 6, 2008, pp. 803-
822.

[11] H. Zhu and X. He. "A Methodology for Testing High -Level Petri Nets,"
Information and Software Tech., vol.44, 2002, pp. 473-489.

[12] L. Lucio, L. Pedro, and D. Bu chs. “Semi-Automatic Test Case
Generation from CO-OPN Specifications,” Proc. of the Workshop on
Model-Based Testing and Object-Oriented Systems, 2006, pp. 19-26.

352

SAMAT - A Tool for Software Architecture
Modeling and Analysis

Su Liu, Reng Zeng, Zhuo Sun, Xudong He

School of Computing and Information Sciences

Florida International University

Miami, Florida 33199, USA

{sliu002, zsun003, rzeng001, hex}cis.fiu.edu

Abstract—A software architecture specification plays a
critical role in software development process. SAM is a
general framework for developing and analyzing software
architecture specifications. SAM supports the scalability of
architectural descriptions through hierarchical decomposition
and the dependability analysis of architectural descriptions
using a dual formalism based on Petri nets and temporal logic.
In this paper, we present SAMAT1 (Software Architecture
Modeling and Analysis Tool), a tool to support the hierarchical
modeling and analyzing of software architecture specifications
in SAM. SAMAT nicely integrates two external tools PIPE+ for
behavioral modeling using high-level Petri nets and SPIN for
model checking system properties.

Keywords: Petri Net; Modeling and Analysis Tool; SAM

I. INTRODUCTION

Since late 1980s, software architecture has become an active

research area within software engineering for studying the

structure and behavior of large software systems [16]. A

rigorous approach towards architecture system design can help

to detect and eliminate design errors early in the development

cycle, to avoid costly fixes at the implementation stage and

thus to reduce overall development cost and increase the

quality of the systems. SAM [17], [8], [9], [10] is a general

framework for systematically modeling and analyzing software

architecture specifications. Its foundation is a dual formalism

combining a Petri net model for behavioral modeling and a

temporal logic [9] for property specification. To support the

application of SAM framework, we are developing a tool set,

called SAMAT.

SAMAT has the following features:

1) supporting software architecture modeling through hier-

archical decomposition;

2) modeling software component and connector behaviors

using high-level Petri nets [2];

3) specifying model constraints (system properties) using

first-order linear time temporal logic [15];

4) analyzing the SAM’s behavior model through model

translation and model checking using SPIN [11].

In the following sections, we discuss our development of

SAMAT and its main features. Section 2 gives an overview

of the SAM framework as well as its foundation. Section 3

1SAMAT can be downloaded at http://users.cis.fiu.edu/~sliu002/samat

presents the components and functionality of SAMAT and the

design of SAMAT. Section 4 provides the model translation

process from SAM to PROMELA for model checking in SPIN.

Section 5 shows an example to illustrate the use of SAMAT.

Section 6 compares the SAM famework and SAMAT with

related software architecture framework and tools. Section 7

contains a conclusion.

II. THE SAM FRAMEWORK

SAM [17] is a general formal framework for specifying and

analyzing software architecture. SAM supports the hierarchical

modeling of software components and connectors.

The architecture in SAM is defined by a hierarchical set of

compositions, in which each composition consists of a set of

components (rectangles), a set of connectors (bars) and a set

of constraints to be satisfied by the interacting components.

The component models describe the behavior (Petri net) and

communication interfaces (called ports, represented by semi-

circles). The connectors specify how components interact with

each other . The constraints define requirements imposed on

the components and connectors, and are defined by temporal

logic formulas.

Figure 1 shows a hierarchical SAM specification model.

The boxes, such as “A1” and “A2”, are called compositions,

in which “A1” is component and “A2” is connector. Each

composition may contain other compositions, for example

“A1” wrap up three compositions: “B1”, “B2” and “B3”.

Each bottom-level composition is either a component or a

connector and has a property specification (a temporal logic

formula). The behavior model of each component or connector

is defined using a Petri net. Thus, composing all the bottom-

level behavior models of components and connectors implic-

itly derives the behavior of an overall software architecture.

The intersection among relevant components and connectors

such as “P1” and “P2” are called ports. The ports form the

interface of a behavior model and consist of a subset of Petri

net places.

A. The Foundation of SAM

The foundation of SAM is based on two complementary

formal notations: predicate transition nets [6], [7] (a class of

high-level Petri nets) and a first-order linear-time temporal

logic [15].

353

Figure 1. Hierarchical SAM Specification Model

1) Predicate transition nets (PrT nets), a class of high-

level Petri nets, are used to define the behavior models

of components and connectors. A PrT net comprises

a net structure, an underlying specification and a net

inscription [7]. A token in PrT nets contains typed data

and the transitions are inscribed with expression as guard

to move or stop the tokens.

2) First-order linear time temporal logic (FOLTL) is used

to specify the properties (or constraints) of components

and connectors. The vocabulary and models of our

temporal logic are based on the PrT nets. Temporal

formulae are built from elementary formulae (predicates

and transitions) using logical connectives ¬ and ∧ (and

derived logical connectives ∨, ⇒ and ⇔), the existential

quantifier ∃ (and derived universal quantifier ∀) and the

temporal always operator � (and the derived temporal

sometimes operator ♦).

SAM supports the behavior modeling using PrT nets [14]

and property specification using the FOLTL. SAM supports

structural as well as behavioral analysis of software archi-

tectures. Structural analysis is achieved by enforcing the

completeness requirement imposed on the components and

connectors within the same composition, and the consistency

requirement imposed on a component and its refinement.

Behavioral analysis requires the checking of system properties

in FOLTL satisfied in the behavioral models in PrT nets. In

this paper, we analyze SAM behavior model by leveraging

SPIN [11], which is a popular formal verification tool used

worldwide.

III. SAMAT

In this section, we present the functional view and the design

view of SAMAT.

A. Functional View of SAMAT

SAMAT is comprised of a modeling component, a SAM

model, and an analysis component (Figure 2). The modeling

Figure 2. The Functional View of SAMAT

component has three functions: structure modeling creates

hierarchical compositions, behavior modeling specifies behav-

iors of software components/connectors using Petri nets, and

property modeling defines property specifications using tem-

poral logic. The SAM specification is a hierarchical structure

integrating the results of structure, behavior, and property

modeling, which can be transformed into XML format. The

analysis component contains a translator to generate a model

suitable for model checking.

B. Design View of SAMAT

SAMAT is a platform independent (implemented in Java)

and visual software architecture modeling and analysis tool.

As shown in Figure 3, SAMAT is designed using the Model-

Vew-Control pattern.

1) The model of SAMAT includes a hierarchical layer of

SAM compositions that builds the SAM model in Figure

2. It also include the functionalities of generating flat

Petri net model and conjunctions of FOLTL formulas

for analysis purpose.

2) The graphical interface of SAMAT is developed using

Java Swing API as it provides full GUI functionalities

and mimics the platform it runs on. It consists of a SAM

composition editor, a PIPE+ editor, a FOLTL editor and

an analysis displayer. The composition editor is used

for modeling the SAM compositions into a hierarchical

structure; the PIPE+ editor is used for modeling the

behaviors of SAM model via PrT nets; the FOLTL editor

is used for defining the properties into FOLTL formulas;

the analysis displayer is used for showing the analyzing

result generated by SPIN [11].

354

Figure 3. The Design View of SAMAT

3) The controller is comprised of composition controllers, a

XML transformer and a PROMELA translator. The com-

position controllers provide options to specify detailed

properties of a SAM composition; the XML transformer

transforms SAMAT model into hierarchical XML format

for storage purpose; the PROMELA translator translates

the generated flat Petri net model and the conjunction

of FOLTL formulas into PROMELA language, which is

the input to SPIN.

SAMAT integrates two external tools: PIPE+ [14] for behavior

modeling and SPIN [11] for model analysis.

C. SAM Hierarchical Model in SAMAT

SAMAT stores the SAM model in a hierarchical way. As

we can see in Figure 4, the SAM model’s data structure

are in layers. In addition to the SAM compositions, the top

layer contains a sub-composition model called sub-layer that

has the same elements of the parent one except the bottom

layer, which instead of a sub-composition model, is a Petri

nets model. Therefore, each sub-composition model also has

allocated space for its own sub-composition and a user can

model arbitrarily number of levels by this recursive layer

structure.

The Petri nets layer in the bottom of Figure 4 is the behavior

model of its parent composition. In this case, it is a high-level

Petri net formalism modeled in PIPE+ editor. Once a Petri net

model is created, it is transformed and saved in XML format

and is appended to its parent SAM composition.

In this way, SAMAT is capable of storing hierarchical

layers of the SAM architecture model. SAMAT supports a top-

down approach to develop a software architecture specification

by decomposing a system specification into specification of

components and connectors and by refining a higher level com-

ponent into a set of related sub-components and connectors

at a lower level. From the SAMAT’s GUI, each component

provides options for a user to define a sub layer or a behavior

Figure 4. The SAM Hierarchical Model

Figure 5. The Architecture of SAM Model Package

model. If the sub-layer is selected, a new tab of drawing

canvas is built in the mainframe editor with designated title

of “parent name :: sub composition name”. Furthermore, if

the sub composition can be further decomposed, another new

tab will be built. If the behavior model option is selected,

PIPE+ is triggered for the user to build a behavior model using

Petri nets. Therefore, the top-down decomposition process is

straightforward.

D. Inheritance Class Design in SAMAT

The design of the SAM model package in SAMAT must

include all the SAM’s graphical elements (i.e. components,

connectors, arcs and ports). Figure 5 illustrates the class

design hierarchy diagram. For the reusability and extensibility

purpose, all of the SAM graphical elements are derived from

SamModelObject class that holding basic features of a graph-

ical object such as position, label and handler. Furthermore,

Arc, Port and RectangleObject classes are inherited from

SamModelObject, and Component and Connector classes are

inherited from RectangleObject class.

E. FOLTL Editor

One of the underlying formalism in SAMAT is FOLTL. The

vocabulary and models of FOLTL used in SAMAT are based

on the high-level Petri net formalism and follow the approach

defined in [13]. An example FOLTL formula is �((x>y) ⇒ ♦
(b=1)), where variables are restricted to the underlying behav-

ior models’ arc variables. Since in each composition, SAMAT

355

integrates a FOLTL formula editor where a user can specify

system properties, the composition-level property specification

is obtained by conjoining the property specifications of all

components and connectors. The FOLTL compiler checks

the syntax of a FOLTL formula and the translator generates

constraint code in PROMELA.

F. PIPE+

The other formalism in SAMAT is PrT nets, which are a

class of high-level Petri nets. We integrate an existing open

source high-level Petri net tool PIPE+ [14] to specify the

behavior model of the SAM architecture. PIPE+ is capable

of specifying and simulating high-level Petri nets proposed in

[2]. SAMAT leverages PIPE+’s editing mode in which a high-

level Petri net behavior model can be developed graphically

with dragging and dropping actions. The high-level Petri net

model is comprised of:

1) A net graph consists of places, transitions and arcs.

2) Place types: These are non-empty sets restricting the

data structure of tokens in the place.

3) Place markings: A collection of elements (tokens) as-

sociated with places. For analysis purpose, a bound of

tokens’ capacity on each place is necessary, so that

verification run on SPIN can always stop.

4) Arc annotations: Arcs are inscribed with variables that

contributes to the transition expression formula vari-

ables;

5) Transition conditions: A restricted first order logic for-

mula Boolean expression is inscribed in a transition. It

is called restricted because the grammar doe not permit

free variables.

With all of the above high-level Petri net concepts specified,

the behavior model is formally defined and can be verified by

model checking engines.

G. XML Transformer

SAMAT transforms a SAM structure model into a XML

model based on its hierarchical structure; and then appends

the high-level Petri net XML model generated by PIPE+ to

it. In this way, the SAM structural and behavior models are

complete and are stored and loaded via XML saver and loader.

IV. VERIFYING SAM SPECIFICATIONS

To ensure the correctness of a software architecture spec-

ification in SAM, we have to check all the constraints are

satisfied by the corresponding behavior models. To automate

the verification process in SAMAT, we leverage an existing

linear time temporal logic model checking tool SPIN [11].

A. SPIN and PROMELA

1) The SPIN Model Checker: SPIN [11] is a model checker

for automatically analyzing finite state concurrent systems. It

has been used to check logical design errors in distributed

systems, such as operating systems, data communications

protocols, switching systems, concurrent algorithms, railway

signaling protocols, etc. A concurrent system is modeled in the

Figure 6. Verifying SAM Specifications

PROMELA (Process or Protocol Meta Language) modeling

language [11] and properties are defined as linear temporal

logic formulas. SPIN can automatically examine all program

behaviors to decide whether the PROMELA model satisfies the

stated properties. In case a property is not satisfied, an error

trace generated, which illustrates the sequence of executed

statements from the initial state. Besides, SPIN works on-

the-fly, which means that it avoids the need to preconstruct

a global state graph or Kripke structure, as a prerequisite for

the verification of system properties.
2) PROMELA: SPIN models in PROMELA consist of

three types of objects: processes, message channels and vari-

ables. Processes specify the behavior, while the channels and

variables define the environment for processes to run. The

processes are global objects and can be created concurrently,

which communicate via message passing through bounded

buffered channels and via shared variables. Variables are

typed, where a type can either be primitive or composite in

the form of arrays and records.

B. From SAM Model to PROMELA Model
As shown in Figure 6, SAMAT starts by generating a flat

(high-level) Petri net model from its hierarchical SAM model.

Then, SAMAT automatically translates the flat Petri net model

into a PROMELA model. Combined with FOLTL constraint

formulas, SPIN can check the PROMELA model and output

a verification result to SAMAT.
1) Generating An Integrated Flat Petri Net Model: Because

a SAM model is hierarchically specified and each component

in a different layer has its own behavior model, direct trans-

lation of a hierarchical SAM specification into PROMELA

could result in a complex model not preserving the original

semantics. Thus, SAMAT preprocesses the model by flattening

the hierarchical structure.
In this phase, all the individual Petri net models created in

different components of a SAM model need to be connected

by directed arcs in both horizontal and vertical dimensions.

Therefore, selecting interfaces among all the Petri net models

are important. Because each Petri net model has input places

(places without input arc, e.g. Sender in Figure 1) and output

places (places without output arc, e.g. Receiver in Figure 1),

which are used to communicate with other models, these input

and output places are chosen as candidate interface places

heuristically. Similarly, each SAM component has its input

ports (P1 in Figure 1) and output ports (P4 in Figure 1) for

the communication with other components, these input and

output ports form the interface of the component.
The connection strategies are :

• Horizontally: Each SAM component has its input ports

and output ports specified by one of the interface places

356

Figure 7. Generating Analysis Model by Horizontal Connection

of the underlying Petri net model (e.g. in Figure 7,

Port 1 specified by P1 and Port 2 specified by P2).

Integrating Petri net models from different components in

the same hierarchical layer is by connecting the interface

places. Moreover, the components in the same layer

are connected by SAM connectors and arcs, so that

SAMAT transforms them into Petri net transitions and

arcs respectively. A new transition is created for each

connector during the transformation (e.g. in Figure 7

is T3). The pre-condition of such transition is true by

default; however a post-condition may be added. In the

example, a post-condition “Y=X” is added. The variables

in the new transition formula match the connector’s

input and output arc variables. The sort of the variables

is exactly the sort of the interface places, specified in

ports, through connected arcs. Corresponding new arcs

are added to reserve the flow relationships, which are

connected with the interface places in ports and related

transitions. For example, a new arc between place P2 in

Port2 and T3 in Connector1.

• Vertically: The input or output ports not connected with

any arcs in a component are mapped to the corresponding

input and output ports in the parent component. For ex-

ample in Figure1, ports P1 and P2 in top layer component

A1 map to the second layer’s input port P5 and output

port P8.

Thus, the Petri net models are connected and flattened into an

integrated flat Petri net model that is ready to be translated

into PROMELA model.

2) Translating Behavior Models to PROMELA: The trans-

lation process maps a high-level Petri net model to a

PROMELA model. The resulting PROMELA model should

catches the concept of high-level Petri nets defined in [2]

and preserves the semantics. The PROMELA program’s major

parts are definitions of places and place types, transition

enabling and firing inline functions, a main process and an

init process that defines the initial marking.

The translation map is shown in Table 1:

• Translating places: We predefined each message type

(place type) into a new structure. Places and place types

are mapped to PROMELA’s buffered channels and pre-

defined message types. Besides, structured tokens are

mapped to typed messages in PROMELA. Because SPIN

verifies a model by exhaustive state searching, we set

bounds to limit the number of tokens in places. The

High-level Petri net PROMELA
Place Channel

Place Type Typedef Structure

Token Message

Transition Inline Function

Initial Marking Message in Channel

Table I
MAP FROM HIGH-LEVEL PETRI NET TO PROMELA

bounds are then mapped to the length of the channels. A

sample PROMELA program resulted from place transla-

tion is shown below:

d e f i n e Bound_Place0 10
t y p e d e f t y p e _ P l a c e 0 {

i n t f i e l d 1 ;
s h o r t f i e l d 2

} ;
chan P l a c e 0 = [Bound_Place0]

of { t y p e _ P l a c e 0 } ;

• Translating transitions: In high-level Petri nets, a transi-

tion expression consists of a precondition and a postcon-

dition. The precondition defines the enabling condition of

the transition, and the postcondition defines the result of

the transition firing. Each precondition and postcondition

are translated into two inline functions, is_enabled() and

fire(), respectively. fire() is triggered by the Boolean

variable in is_enabled() evaluated to be true, otherwise it

is skipped as the transition is not enabled. To check the

precondition of a transition expression, we first consider

a default condition that whether each of the input place

has at least one token by checking the emptiness of

each mapped channel. Because the expression is usually

defined by conjunct clauses, we then evaluate each clause

(the postcondition clauses are not evaluated this time).

The evaluation process includes non-deterministically re-

ceiving a message from an input channel to a local

variable, instantiating the Boolean expression, and eval-

uating it. A sample PROMELA program from transition

translation is shown below:

i n l i n e i s _ e n a b l e d _ T r a n s i t i o n 0 {
}
i n l i n e f i r e _ T r a n s i t i o n 0 { . . . }
i n l i n e T r a n s i t i o n 0 {

i s _ e n a b l e d _ T r a n s i t i o n 0 () ;
i f
: : T r a n s i t i o n 0 _ i s _ e n a b l e d

−> f i r e _ T r a n s i t i o n 0
: : e l s e −> sk ip
f i

}

• Defining main process: The dynamic semantics of Petri

nets is to non-deterministically check and fire enabled

transitions, so the main process is defined by including all

the transitions in a loop, “do ... od”. Since PROMELA has

finer granularity that a transition firing process includes

multiple sub-steps, we aggregate them into an atomic

construct. A sample PROMELA program for an overall

357

PrT net structure is shown below:

proctype Main () {
. . .
do
: : atomic { T r a n s i t i o n 0 }
: : atomic { T r a n s i t i o n 1 }
od

}

• Defining initial marking: Since PROMELA has a special

process “init{}”, which is often used to prepare the true

initial state of a system. Therefore, the initial marking

is defined in init process by declaring typed messages

and send them into buffered channels. A PROMELA

prototype is shown below:

i n i t {
t y p e _ P l a c e 0 P0 ;
P0 . f i e l d 1 = 1 ;
P0 . f i e l d 2 = 0 ;
P l a c e 0 ! P0 ;
run Main ()

}

• Using basic data types: Since the basic data types

supported in PIPE+ are integer and string, which are

mapped to “int” and “short” in PROMELA respectively.

• Handling non-determinism: In high-level Petri nets, to-

kens are meaningful data and usually different from each

other and thus different firing orders result in different

markings. Therefore, a non-deterministic inline function

is defined and is called to non-deterministically pick a

token from an input place each time a precondition is

evaluated.

• Supporting power set: Because PIPE+ supports quanti-

fiers in restricted first order logic formulas in transition

expression, the domain of each quantified variable is a list

of tokens as a power set contained in a place. For this

kind of places, we are not dealing with one message but

all the messages in the channel, we do not put all received

messages into a local variable but directly manipulate

the channel. The strategy is when the first message is

received from the channel, it is used and then is sent

back immediately.

3) FOLTL Formula: Since the FOLTL constraint formula

extracted from the SAM composition model is conjoined into

one integrated conjunctive FOLTL formula, the translation

process is straightforward. We only need to wrap the formula

by following PROMELA’s syntax:

l t l f { /∗ f o r m u l a ∗ / }

4) Translation Correctness: The translation correctness is

ensured by the following completeness and consistency criteria

[18], [3]
Let N be a given Petri net and PN be the resulting

PROMELA program from the translation.

• Completeness Each element in N is mapped to PN

according to the mapping rules described in Section 4.2.2.

• Consistency The dynamic behavior of N is preserved by

PN as follows:

– A marking of N defines the current state of N in

terms of tokens in places, our place translating rule

correctly maps each marking into a corresponding

state in PN ;

– The initial marking of N is correctly captured by the

initial values of variables in the init{} process of PN ;

– The enabling condition and firing result of each

transition t in N is correctly inline functions

“is_enabled_Transition_i” and “fire_Transition_i” re-

spectively;

– The atomicity of enabling and firing a transition in N
is preserved in PN by language feature “atomic{}”.

– An execution of N is firing sequence τ =
M0t0M1t1...Mntn..., where Mi(i ∈ nat) is a mark-

ing and ti(i ∈ nat) denotes the firing of transition

ti. Each execution is correctly captured by the con-

struct “do ... od” in the “Main” Promela function,

which produces an equivalent execution sequence

σ = S0T0S1T1...SnTn, where Si(i ∈ nat) is a

state and Ti denotes the execution of inline function

“Transition_i”.

The proofs of the completeness and consistency are

straightforward and can be found in [18], [3] .

C. Verification using SPIN

The two inputs to SPIN are a PROMELA model and a

property formula. SPIN performs verification by going through

all reachable states produced by the model behaviors to check

the property formula. If the property formula is unsatisfied, it

produces a trail file indicates the error path. SPIN also provides

a simulation function to replay the trail file so that any error

path that leads to the design flaw can be visualized. SAMAT

encapsulates the verification process in SPIN and displays the

verification result as well as captured error path by SPIN in

the GUI.

V. USING SAMAT

The alternating bit protocol (ABP) is a simple yet effective

protocol for reliable transmission over lossy channels that

may lose or corrupt, but not duplicate messages. It has been

modeled and analyzed in [10]. In this section, we show some

snapshots of using SAMAT in modeling and verifying this

protocol.

In Figure 8, the top layer of ABP model in SAMAT

consists of three components and four connectors. The first

component “Sender” has a behavior model shown in Petri

net. On the right, it shows the FOLTL editor to edit formula

<>(Deliver(m) = 5). After the modeling process, SAMAT

automatically generates PROMELA code as an input for SPIN

and displays the model checking result after SPIN finished

model checking. In this case an error is found, the replayed

simulation on the error path is shown below the model

checking result. The error indicates the ABP specification

model in [10] is incorrect. A deadlock state (a none final

state such that none of the transitions are enabled) can be

reached when an acknowledgement message was corrupted in

the channel and a resend message successfully reached the

receiver’s DataIn place. This discovery highlights the great

benefits and usefulness of SAMAT.

358

Figure 8. Model the ABP in SAM Tool

Framework

Name

Hierarchical

Structure

Formalism Tool Verification

Engine

Darwin/FSP Yes FSP and FLTL Darwin LTSA

Archware Yes Archware ADL and

Archware AAL

ArchWare CADP

CHARMY No State and Sequence

Diagram and PSC

Charmy SPIN

Auto

FOCUS

Yes Model-based AF3 NuSMV and

Cadence SMV

PoliS No PoliS and PoliS TL N/A PolisMC

Fujaba Yes UML and LTL/CTL Fujaba UPPAAL

SAM Yes Petri Nets and

FOLTL

SAMAT SPIN

Table II
SOFTWARE ARCHITECTURE FRAMEWORKS

VI. RELATED WORK

In the past decades, many software architecture modeling

and analysis framework were proposed and their supporting

tools were built. Several comparative studies[19], [4], [5] on

these frameworks were published. Table 2 presents a compari-

son of several architecture modeling and analysis frameworks

and their supporting tools.

Besides, CPN Tools [1] is a widely used Coloured Petri nets

[12] tool that can also be used for modeling and analyzing soft-

ware architecture. In terms of software architectural modeling,

CPN Tools do not directly support architecture level concepts

and features and thus the resulting models do not match user’s

abstraction well and can be difficult to understand. In terms

of analysis, CPN Tools generates a full state space during

verification and thus is often limited by the memory size while

SPIN can perform verification on-the-fly to avoid full state

space preconstruction so that it can handle complex behavior

models.

VII. CONCLUSION

In this paper, we present a tool SAMAT for modeling

and analyzing software architecture specifications in SAM.

SAMAT leverages two existing tools, PIPE+ for building Petri

net models and SPIN for analyzing system properties. SAMAT

can be a valuable tool for complex concurrent and distributed

system modeling and analysis. SAMAT is an open source tool

and is available for sharing and continuous enhancements from

worldwide research community.

Acknowledgments This work was partially supported by

NSF grants HRD-0833093.

REFERENCES

[1] Cpn tools. http://cpntools.org.
[2] High-level Petri Nets - Concepts, Definitions and Graphical Notation,

2000.
[3] Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, and

Leyuan Shi. A formal approach for translating a sam architecture to
promela. In SEKE, pages 440–447, 2008.

[4] Paul Clements and Mary Shaw. The golden age of software architecture:
A comprehensive survey. Technical report, 2006.

[5] L. Dobrica and E. Niemela. A survey on software architecture analysis
methods. Software Engineering, IEEE Transactions on, 28(7):638 – 653,
jul 2002.

[6] H.J. Genrich and K. Lautenbach. System modelling with high-level petri
nets. Theoretical Computer Science, 13(1):109 – 135, 1981.

[7] Xudong He. A formal definition of hierarchical predicate transition nets.
In Application and Theory of Petri Nets, pages 212–229, 1996.

[8] Xudong He and Yi Deng. Specifying software architectural connectors
in sam. International Journal of Software Engineering and Knowledge
Engineering, 10(4):411–431, 2000.

[9] Xudong He and Yi Deng. A framework for developing and analyzing
software architecture specifications in sam. Comput. J., 45(1):111–128,
2002.

[10] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, and Yi Deng.
Formally analyzing software architectural specifications using sam.
Journal of Systems and Software, 71:1–2, 2004.

[11] Gerard Holzmann. Spin model checker, the: primer and reference
manual. Addison-Wesley Professional, first edition, 2003.

[12] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured
petri nets and cpn tools for modelling and validation of concurrent
systems. In INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR
TECHNOLOGY TRANSFER, page 2007, 2007.

[13] Leslie Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16:872–923, May 1994.

[14] Su Liu, Reng Zeng, and Xudong He. Pipe+ - a modeling tool for high
level petri nets. International Conference on Software Engineering and
Knowledge Engineering (SEKE11), pages 115–121, 2011.

[15] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1992.

[16] Mary Shaw and Paul Clements. The golden age of software architecture.
IEEE Softw., 23:31–39, March 2006.

[17] Jiacun Wang, Xudong He, and Yi Deng. Introducing software architec-
ture specification and analysis in sam through an example. Information
& Software Technology, 41(7):451–467, 1999.

[18] Reng Zeng and Xudong He. Analyzing a formal specification of mondex
using model checking. In ICTAC, pages 214–229, 2010.

[19] Pengcheng Zhang, Henry Muccini, and Bixin Li. A classification and
comparison of model checking software architecture techniques. Journal
of Systems and Software, 83(5):723 – 744, 2010.

359

Singular Formulas for Compound Siphons,
Complementary Siphons and Characteristic Vectors

for Deadlock Prevention in Cloud Computing

Gaiyun Liu1, D.Y.Chao2, Yao-Nan Lien3

Abstract—Unmarked siphons in a Petri net modeling concur-
rent systems such as those in cloud computing induce deadlocks.
The number of siphons grows exponentially with the size of
a net. This problem can be relieved by computing compound
(or strongly dependent) siphons based on basic siphons. A
basic (resp. compound) siphon can be synthesized from an
elementary (resp. compound called alternating) resource circuit.
It however cannot be extended to cases where two elementary
circuits intersect at a directed path rather than a single place
(i.e., corresponding to a weakly dependent siphon). This paper
develops a uniform formula not only for both cases but also
valid for the complementary set of siphon and characteristic
vectors. We further propose to generalize it to a compound siphon
consisting of n basic siphons. This helps simplify the computation
and the computer implementation to shorten the program size.
Also, the formula is easier to be memorized without consulting
the references due to the same underlying physics.

Index Terms—Petri nets, siphons, control, cloud computing,
concurrent systems.

I. INTRODUCTION

LATELY, Service Oriented Architectures (SOA) and

Cloud Computing are increasingly prominent. Deadlocks

can easily occur [1], [2] when resources are inappropriately

shared among large concurrent processes. The degree of con-

currency explodes compared with multicore PCs. The number

of concurrent processes competing for a limited amount of re-

sources becomes huge and deadlocks can easily occur negating

the advantages of fast speed and automation. Currently, there

is no effective solution for this.

Li and Zhou [4] propose the concept of elementary siphons

(generally much smaller than the set of all emptiable siphons

in large Petri nets) to minimize the new addition of con-

trol places. They classify emptiable siphons into two kinds:

elementary and dependent. By adding a control place for

each elementary siphon Se, all dependent siphons S too are

controlled too, thus reducing the number of monitors required

rendering the approach suitable for large Petri nets.

As a result, for complex systems, it is essential to apply the

concept of elementary siphons to add monitors; the number of

This work was supported by the National Science Council under Gant NSC
99-2221-E-004-002.

1. Gaiyun Liu is with the school of Electro-Mechanical Engineering, Xidian
University, Xi’an, 710071 China.

2. D. Y. Chao is with the Department of Management and Information
Systems, National ChengChi University, Taipei 116, Taiwan, Republic of
China.

3. Yao-Nan Lien and Keng-Cheng Lin are with the Department of Computer
Science, National ChengChi University, Taipei 116, Taiwan, Republic of
China.

which is linear to the size of the nets modeling the systems.

However, the number of dependent siphons is exponential to

the size of the net, even though that of elementary siphons is

linear.

We discover that different cases can be unified by the same

physics resulting in a single formula to compute dependent

siphons, their complementary set of places, and characteristic

T-vectors. This helps to memorize the formula and simplify

the implementation since the codes for different cases can be

shortened with a single set of codes for the uniform formula.

This relieves the problem of computing siphons (and related

variables for controlling the siphons), the number of which

grows exponentially with the size of a net.

II. PRELIMINARIES

Here only the definitions used in this paper are presented.

The reader may refer to [3], [5] for more Petri net details.

Let Ω ⊆ P be a subset of places of N. P–vector λΩ is

called the characteristic P-vector of Ω iff ∀p ∈ Ω, λΩ(p) =1;
otherwise λΩ(p) =0. η is called the characteristic T-vector

of Ω, if ηT = λΩ
T •[N], where [N] is the incidence ma-

trix. Physically, the firing of a transition t where [η(t)>0,

η(t) =0, and η(t)<0] increases, maintains and decreases the

number of tokens in S, respectively. Let ηSα
, ηSβ

, ..., and ηSγ

({α, β, ..., γ} ⊆ {1, 2, ..., k}) be a linear independent maximal

set of matrix [η]. Then ΠE = {Sα, Sβ , ..., Sγ} is called a set

of elementary siphons. S /∈ ΠE is called a strongly dependent

siphon if ηS =
∑

Si∈ΠE
aiηSi

where ai ≥ 0. S /∈ ΠE is

called a weakly dependent siphon if ∃non-empty A, B ⊂ ΠE ,

such that A ∩ B = ∅ and ηS =
∑

Si∈A aiηSi
− ∑

Si∈B aiηSi

where ai > 0.

Definition 1: [5], [6] The strongly connected circuit from

which an SMS can be synthesized is called a core circuit. An

elementary resource circuit is called a basic circuit, denoted

by cb. The siphon constructed from cb is called a basic siphon.

A compound circuit c = c1 ◦ c2 ◦ . . . ◦ cn−1 ◦ cn is a circuit

consisting of multiply interconnected elementary circuits c1,

c2, . . . , cn extending between Process 1 and 2. A transition t
in a path [ri t rj], ri and rj being in c, is called an internal
one if η(t) = 0. The SMS synthesized from compound circuit

c using the Handle-Construction Procedure in [5] is called an

n-compound siphon S, denoted by S = S1◦S2◦. . .◦Sn−1◦Sn

(resp. S = S1⊕S2 ⊕ . . . ⊕Sn−1⊕Sn). if ci∩ci+1 = {ri} (resp.

{ra, . . . , rb}), ri, ra, . . . , rb ∈ PR i.e., ci and ci+1 intersects

at a resource place ri (resp. more than a resource place).

360

(r1r2. . . rk)1 denotes Path [r1t1r2. . . riti. . . rk−1tk−1rk]1 for

simple presentation.

t2 in [r2 t r1] in Fig. 1 is an internal one of c3 since η3(t2) =
0.

III. MOTIVATION

First we observe that (Table I) for a strongly dependent 2-

compound siphon,

ς3 = ς1 + ς2 − ς12 (1)

where ς12 is the ς value for the siphon with R(S) = R(S1∩
S2), where ς = S, [S], and η, R(S) is the set of resource

places in S. Next extend this equation to a weakly dependent

2-compound siphon (Table II).

In Fig. 2, there are 3 elementary siphons S1-S3 and 1 weakly

dependent siphon S4; their characteristic T-vectors η are shown

in Table I. Since the number of SMS grows exponentially with

the size of a net, the time complexity of computing η for

elementary siphons is exponential and quite time consuming.

IV. THEORY

In the sequel, we assume that all core circuits extend

between two processes is an S3PR. Eq. (1) for 2-compound

siphon will be proved first based on Theorem 2 followed by

the theory for n-compound (n>2) siphons.

We first deal with strongly 2-compound siphons based on

the following lemma.

Lemma 1: Let r ∈ PR, the minimal siphon containing r
is S = ρ(r) = {r} ∪ H(r) (also the support of a minimal

P-invariant) with [S] = ∅ and ηS =0.

Theorem 1: For every compound circuit made of cb1and

cb2in an S3PR corresponding to an SMS S0 such that cb1∩
cb2= {r},

1) η0 = η1 + η2, where r ∈ PR and η0 is the η value for

S0

2) η0 = η1 + η2 − η12, where η12 is the characteristic T-

vector of the minimal siphon containing r.

3) [S0] = [S1] + [S2] − [S12].
4) S0 = S1 + S2 − S12.

5) ς = ς1 + ς2 - ς12, where ς = S, [S], η.

This theorem proves Eq. (1) for a strongly 2-compound

siphon. We now deal with weakly 2-compound siphons. We

shows that if S0 weakly depends on S1 and S2, then there

exists a third siphon S3 — synthesized from core circuits

formed by c1 ∩ c2, respectively, such that η0 = η1 + η2 − η3.
We [5] show that in an S3PR, an SMS can be synthesized

from a strongly connected resource subnet and any strongly

dependent siphon corresponds to a compound circuit where the

intersection between any two elementary circuits is at most a

resource place.

Let S0 be a strongly dependent siphon, S1, S2. . . , and Sn

be elementary siphons, with ηS0 = ηS1 + ηS2 + ... + ηSn. We

show in [5] that c0 (the core circuit from which to synthesize

S0) is a compound resource circuit containing c1, c2. . . , cn

and the intersection between any two ci and cj , i =j-1>0,

is exactly a resource place, where ci (i =0,1,2, . . . , n) is the

core circuit from which to synthesize Si. Thus, if S0 is a WDS

(weakly dependent siphon), the intersection between any two

ci and cj , i = j − 1>0 must contain more than one resource

place.

The following theorem from [7] shows that if S0 weakly

depends on S1 and S2, then η0 = η1 + η2 − η3.

Theorem 2: (Theorem 2 in [7]) For every compound circuit

made of cb1 and cb2 in an S3PR corresponding to an SMS S∗,

if c1∩c2 contains a resource path that contains transitions, and

there is a minimal siphon S12 with R(S12) = R(S1∩S2). Then

η0 = η1 + η2 − η3, where η3 is the characteristic T-vector of

S12. (Let ci be the core circuit for SMS Si, i = 1, 2 and c1 ∩
c2 �= ∅. Then there is a third core circuit formed by parts of

c1 and c2 (ca
1 and cb

2, respectively; i.e., c3 = ca
1 ∪ cb

2).

The theorem definitely holds for the net in Fig. 2 as shown

in Table II where Γ = c1 ∩ c2 = [p15t2p14] is in Process 1.

Γ1 = [p15t2p14t3p13]1 plus [p13t8p15]2 forms basic circuit c1,

Γ2 = [p16t1p15t2p14]1 plus [p14t4p16]2 form basic circuit c2,

Γ3 = [p15t2p14]1 plus [p14t6p15]2 forms basic circuit c3.

In general, the resource path of c1 ∪ c2 in Process 1

can be expressed as ΓαΓΓλ (serial concatenation of Γα,

Γ, and Γλ) where ΓαΓ belongs to c2, ΓΓλ belongs to

c1, Γα = [r1t1r2. . . ritirj . . . tk−1rk]1 (In Fig. 2, Γα =
[p14 t3 p13]1), Γλ = [ritirj . . . tk−1rktkrk+1. . . tm−1rm]1 (In

Fig. 2, Γλ = [p16 t1 p15]1), and Γ = [ritirj . . . tk−1rk]1
(In Fig. 2, Γ = c1 ∩ c2 = [p15t2p14]1). It remains true that

η0(t) = η1(t)+ η2(t)− η3(t) for every transition in Processes

1 and 2 since each of Γα, Γ, Γλ is expanded by adding internal

transitions t with η(t) = 0.

Define S1,2 = S3 and S0 = S1 ⊕ S2 since R(S1 ∩ S2) =
R(S3). S1 ⊕S2 is similar to S1oS2 in terms of controllability

to be shown later. S1 ⊕ S2 is different than S1oS2 in that

R(S1 ∩ S2) for the former contains more than one resource

place while the latter contains only one resource place.

Definition 2: : Let (N0,M0) be a net system and S0 =
S1 ⊕ S2 denotes the fact that S0 is a weakly dependent SMS

w.r.t. elementary siphons S1, S2, and S1,2 = S3 such that

η0 = η1 + η2 − η3.

We now propose the following:

Theorem 3: Let S0 = S1 ⊕ S2 as defined in Definition 1,

then

1) [S0] = [S1] ∪ [S2],

2) [S0] = [S1] + [S2] − [S3],

3) [S1] ∩ [S2] = S1,2],

4) S0 = S1 + S2 − [S12,

5) ς = ς1 + ς2 - ς12, where ς = S, [S], η, and

6) M([S0]) = M([S1]) + M([S2]) − M([S1,2]).

Consider the S3PR in Fig. 3(a), [S0]=
{p2, p3, p7, p8,p9,p10}. Based on Table I, one can verify

that 1) [S0]= [S1] ∪[S2] and 2) [S1] ∩ [S2]= [S1,2]= S3.

This theorem confirms the uniform computation for a

weakly 2-compound siphon. The following theorem extends

the uniform computation to a weakly n-compound siphon.

Theorem 4: Let S0 = S1 ⊕ S2⊕ . . .⊕Sn Then

1) η0 = η1 + η2 + ... + ηn - η1,2 - η2,3 - . . . - ηn−1,n.

2) [S0] = [S1] + [S2] + ... + [Sn] - [S1,2] - [S2,3] - . . . -

[Sn−1,n].

3) S0 = S1 + S2 + ... + Sn - S1,2-S2,3 - . . . - Sn−1,n.

4) ς = ς1 + ς2 + ... + ςn - ς1,2 - ς2,3 - . . . - ςn−1,n.

361

p5

t6

p4

r1

r2

p1

t1

p2

t2

t3

p3 p7

5

1
t7

2

t4

r3

t5

p6

p8

t8

2

p9

p10

p11

4

Fig. 1. Example S3PR with stronglydependent siphon. η3 = η1 + η2.

Fig. 2 Example weakly 2-compound siphon. 0
= 1+ 2- 3.

4

p5 p4
p1

p2 p3

p15 p14 p13 p16

p8 p7 p10 p9 p12 p11
p6

t1 t2 t3

t4 t5 t6
t7 t8

t9

t10

4

Fig. 2. Example weakly 2-compoundsiphon. η0 = η1 + η2 − η3.

TABLE I
TYPES OF SIPHONS FOR THE NET IN FIG. 1

SMS [S] η Set of places c
S1 {p2, p7} [−t1 + t2 + t6 − t7] {p9, p10, p3, p6} c1 = [p9t6p10t2p9]
S2 {p3, p8} [-t2 + t3 + t7 − t8] {p10, p11, p4, p7} c2 = [p10t7p11t3p10]
S3 {p2, p3, p7, p8} [−t1 + t3 + t6 − t8] {p9, p10, p6, p11, p4} c3 = c1oc2

TABLE II
FOUR SMS IN FIG. 2 AND THEIR η. η4 = η1 + η2 − η3 .

SMS [S] η Set of places c
S1 {p2,p3,p8,p9,p10,p11} [+t2 − t4 + t8 − t9] {p4, p12, p13, p14, p15} c1 = [p15t2p14t3p13t8p15]
S2 {p3,p4,p7,p8,p9,p10} [+t1 − t3 + t7 − t10] {p5, p11, p14, p15, p16} c2 = [p14t4p16t1p15t2p14]
S3 {p3,p8,p9,p10} [+t2 − t3 − t4 + t7] {p4, p11, p14, p15} c3 = [p15t2p14t6p15]
S4 {p2, p3, p4, p7, p8, p9,

p10, p11}
[+t1 + t8 − t9 − t10] {p5, p12, p13, p14, p15, p16} c4 = c1 ⊕ c2

Thus, we prove the uniform formula for weakly n-

compound siphons. It also holds for strongly dependent

siphons as shown earlier. Thus, the uniform formula holds

irrespective to whether the compound siphon is strongly or

weakly. This further enhances the uniformity of the formula.

A more complicated example in the next section illustrates

this for a weakly 3-compound siphon.

V. EXAMPLE

This section employs Fig.3 to demonstrate Theorem 4. As

shown in Tables III-VII, S, [S] and η for weakly compound

siphons all share the same formula verifying Theorem 4.

For strongly dependent siphons, the same formula also holds

except Sij = [Sij] = ∅ , ηij = 0, ∀i �= j.

VI. CONCLUSION

In summary, we propose a uniform formula to compute

SMS, their complementary set and characteristic T-vectors for

both strongly and weakly n-compound siphons based on the

same underlying physics. We further propose to generalize it

to a compound siphon consisting of n basic siphons. This helps

to retain the formula in brain without consulting the references

and simplify the computation plus its implementation to reduce

the lines of codes. Future work can be directed to large S3PR

and more complicated systems.

REFERENCES

[1] Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., and Mahlke, S.A.,
“Gadara: Dynamic deadlock avoidance for multithreaded programsc In
USENIX Symposium on Operating Systems Design and Implementa-
tion, 2008.

[2] Wang, Y., Kelly, T., Kudlur, M., Mahlke, S., and Lafortune, S., vThe
application of supervisory control to deadlock avoidance in concurrent
software “ In International Workshop on Discrete Event Systems, 2008.

[3] T. Murata, “Petri nets: properties, analysis and application,” in Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[4] Li, Z. W. and M. C. Zhou., ”Elementary Siphons of Petri Nets and Their
Application to Deadlock Prevention in Flexible Manufacturing Systems,”
IEEE Trans. Syst. Man Cybern. A., 34(1), 38-51, 2004.

[5] D.Y. Chao, “Computation of elementary siphons in Petri nets for
deadlock control,” Comp. J., (British Computer Society), vol. 49, no.
4, pp. 470–479, 2006.

[6] D. Y. Chao, ”Improved controllability test for dependent siphons in
S3PR based on elementary siphons,” Asian Journal of Control, vol. 12,
no. 3, pp. 377 – 391, doi:10.1002/asjc.217, 2010.

[7] D. Y. Chao, Jiun-Ting Chen, Mike Y.J. Lee, and Kuo-Chiang Wu,
”Controllability of Strongly and Weakly Dependent Siphons under
Disturbanceless Control,” Intelligent Control and Automation, vol.2,
no.4, pp. 310-319, 2011.

362

Fig. 3. Example a 3-compound weakly dependent siphon. S0=S6=S1 ⊕S2⊕S3, S4=S1,2, S5=S2,3 and η0=η1+η2+η3-η4-η5.

TABLE III
EIGHT SMS S , AND CORE CIRCUITS IN FIG. 3.

S Set of places c
S1 p5, p17, p14, p15, p16 c1=[p14 t4 p16 t1 p15 t2 p14]
S2 p4, p26, p12, p13, p14, p15 c2=[p15 t2 p14 t3 p13 t18 p12 t8 p15]
S3 p2, p27, p11, p12, p13 c3=[p13 t18 p12 t17 p17 t14 p13]
S4 p4, p17, p14, p15 c4=[p15 t2 p14 t6 p15]].
S5 p2, p26, p12, p13 c5=[p13 t18 p12 t12 p13]
S6 p5, p27, p11, p12, p13, p14, p15, p16 c6=c1⊕c2⊕c3
S7 p5, p26, p12, p13, p14, p15, p16 c7 = c1⊕c2
S8 p4, p27, p11, p12, p13, p14, p15 c8 = c2⊕c3

TABLE IV
EIGHT SMS S ,[S] AND η IN FIG. 3.

S Set of places [S] η
S1 p5, p17, p14, p15, p16 p3, p4, p7, p8, p9, p10 t1-t3+t7-t10
S2 p4, p26, p12, p13, p14, p15 p2, p3, p8, p9, p10, p17, p21, p23, p24, p25 t2-t4+t13-t17
S3 p2, p27, p11, p12, p13 p20, p21, p23, p24, p25, p26 -t8+t14-t16+t18
S4 p4, p17, p14, p15 p3, p8, p9, p10 t2-t3-t4+t7
S5 p2, p26, p12, p13 p21, p23, p24, p25 -t8+t13-t17+t18
S6 p5, p27, p11, p12, p13, p14, p15, p16 p2, p3, p4, p7, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 t1-t10+t14-t16
S7 p5, p26, p12, p13, p14, p15, p16 p2, p3, p4, p7, p8, p9, p10, p17, p21, p23, p24, p25 t1-t10+t13-t17
S8 p4, p27, p11, p12, p13, p14, p15 p2, p3, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 t2-t4+t14-t16

363

364

365

366

367

368

369

Verifying Aspect-Oriented Activity Diagrams Against
Crosscutting Properties with Petri Net Analyzer

Zhanqi Cui, Linzhang Wang, Xi Liu, Lei Bu, Jianhua Zhao, Xuandong Li
State Key Laboratory of Novel Software Technology

Department of Computer Science and Technology
Nanjing University, Nanjing, 210046, China

zqcui@seg.nju.edu.cn, lzwang@nju.edu.cn, liux@seg.nju.edu.cn, {bulei, zhaojh, lxd}@nju.edu.cn

Abstract—Aspect-oriented model-driven approaches are
proposed to model and integrate crosscutting concerns at
design phase. However, potential faults that violate desired
properties of the software system might still be introduced
during the process. Verification technique is well-known for its
ability to assure the correctness of models and uncover design
problems before implementation. This paper presents a
framework to verify aspect-oriented UML activity diagrams
based on Petri net verification techniques. For verification
purpose, we transform the integrated activity diagrams into
Petri nets. Then, the Petri nets are checked against formalized
crosscutting requirements to detect potential faults.
Furthermore, we implement a tool named Jasmine-AOV to
support the verification process. Case studies are conducted to
evaluate the effectiveness of our approach.

Keywords: aspect-oriented modeling; verification; model
checking; activity diagram; Petri net

I. INTRODUCTION

Dealing with crosscutting concerns has been a criti cal
problem during software development life cycles. In our
previous work [1], we proposed an aspect -oriented model-
driven approach based on UML activity diagrams. The
approach shifts aspect-oriented techniques [2] from a code-
centric to a model-centric, which is employed to handle the
crosscutting concerns during design phases. Thus, it
alleviates software complexity in a more abstract level. The
primary functional concerns are modeled with activity
diagrams, and crosscutting concerns are modeled with
aspectual activity diagrams, respectively. Then the o verall
system design model, which is also an acti vity diagram, is
integrated by weaving aspect models into primary models.

Design models are widely used as a basis of subsequent
implementation [3][4] and testi ng [5][6][7] processes. It is
costly if defects in design models are discovered at later
implementation and testing stages. Aspect-orient ed
modeling techniques cannot guarantee the correctness of
produced design models. For instance, wrong weaving
sequences may cause the integrated models violate system
crosscutting requirements. Therefore, assuring the
correctness of the aspect -oriented design models is vitally
important. So far, the applicable approach is manual review.
It is time consuming and dependent on reviewers’ expertise.
However, existing automatic verification tools cannot deal
with UML diagrams directly.

As an o ngoing work, in this paper, in order to ensure
crosscutting concerns are correctly modeled, we propose a
rigorous approach to automatically verify aspect-oriented
models (activity diagrams) by using Petri net based
verification techniques. Firstly, the in tegrated activity
diagram is translated into a Petri net. Then, cr osscutting
concerns in system requirements are refined to properties in
the form of CTL formulas. Finally, the Petri net is verified
against the formalized properties.

The rest of this paper is organized as follows. Section 2
presents backgrounds of activity diagrams, Petri nets, and a
running example. Section 3 discusses the verification of
aspect-oriented activity diagrams. Section 4 presents 2 case
studies and evaluations of our approach. Section 5 reviews
the related work. Finally, section 6 concludes the paper and
discusses future work.

II. BACKGROUND

In this section, we b riefly introduce UML activity
diagrams and Petri nets, and a running example that will be
employed to demonstrate our approach in following sections.

A. Activity Diagrams and Petri nets
The UML activity diagram is a powerful tool to describe

control flow based program logic at different levels of
abstraction. Designers commonly use act ivity diagrams to
describe the sequence of behaviors between classes in a
software system. Nodes and edges are two kinds of elements
in activity diagrams. Nodes in acti vity diagrams are
connected by edges. We fo rmally define activity diagrams
as follows.

Definition 1. (Activity Diagram). An act ivity diagram
AD is a 4-tuple (N, E, F), where:

N = {n1, n2, …, ni} is a f inite set of nodes, which
contains action, i nitial/final, decision/merge and
fork/join nodes, nI N is the initial activity state,
NF N is a set of final activity states;

E = {e1, e2, … , ej} is a finite set of edges;

F (N × E) (E × N) is the flow relation between
nodes and edges.

Due to the nature of UML is semi-formal and UML
diagrams are design-oriented models, translating activity
diagrams into formal verification-oriented models is

370

necessary before verification. In this approach, we translate
activity diagrams into Petri nets, because in UML 2, t he
semantics of activity diagrams is explained in terms of Petri
net notations [9], like tokens, flows etc. Petri net is a formal
specification language that is widely used to model software
behaviors. A Petri net consists of places, transitions, and
arcs. Like UML act ivity diagrams, Petri nets offer a
graphical notation for stepwise processes that include choice,
iteration, and concurrent execution. On the other hand, Petri
nets have a precise mathematical definition of their
execution semantics, with a well-developed mathematical
theory for process analysis. A Petri net is formally defined
as follows.

Definition 2. (Petri net) A Petri net [8] is a 4-tuple PN =
{P, T, A, M0}, where

P is a finite set of places and T is a finite set of
transitions, and P and T are disjoint.

A is a finite set of arcs connect between places and
transitions, where ()A P T T P .

M0 is the initial marking, M0(p) denotes the number
of tokens at place p under initial marking M0.

Places, transitions and arcs in A are drawn as cir cles,
boxes and arrows, respectively. We do not consider weights
of arcs in this paper for simplification.

B. Running Example
We adapt the order processi ng scenario from [9] as a

running example to demonstrate our approach. There are 4
crosscutting concerns related to this scenario: authentication,
validation, logging, and informing.

Figure 1 is the primary model of the order processing
scenario, which consists of 3 m ain steps: f ill order, ship
order, and close order.

Fill Order Ship Order Close Order

Figure 1. The primary model of the order processing scenario

Based on o ur previous aspect-oriented modeling
approach [1], the crosscutti ng concerns of the running
example are modeled in Figure 2.

<<Joinpoint>>
Fill_Order

Ship_Order

*

<<Joinpoint>>

(a) Pointcut and advice model of authentication

(d) Pointcut and advice model of infrorming

<<Pointcut>>
{advice:=Advice4}

<<Pointcut>>
{advice:=Advice1}

<<Entry>>

Input_Pin

<<Exit>>

Validated
[yes]

[no]

<<Advice>>
{type:=Before}

<<Entry>>

<<Exit>> Send_Email

<<Advice>>
{type:=After}

<<Joinpoint>>
Close_Order

Ship_Order

*

<<Joinpoint>>

(c) Pointcut and advice model of logging

(b) Pointcut and advice model of check payment

<<Pointcut>>
{advice:=Advice2}

<<Pointcut>>
{advice:=Advice3}

<<Entry>>

Log_Order

<<Exit>>

<<Advice>>
{type:=Before}

<<Entry>>

<<Exit>>

<<Advice>>
{type:=After}

Receive_
Cheque

Validate_Cheque

Pointcut Model Pointcut Model

Pointcut Model Pointcut ModelAdvice Model

Advice ModelAdvice Model

Advice Model

Figure 2. Pointcut and advice models of the order processing scenario

In order to u nderstand how crosscutting concerns wil l
affect primary functionalities, aspect models are integrated
with primary models to g enerate an ove rall system design
model. Different weaving sequences would produce
different integrated models. For example, we add an
authorization aspect i n the running example, which
describes the logged-in user need to be checked whether
she/he has the permission to fill orders. If the authorization
aspect is woven before authentication, then the result of
integration is shown in Figure 3 (a). Otherwise, if the
authentication aspect is wo ven before authentication, then
the result of integration is show n in Figure 3 (b) . As we
know, the leg al user has to be lo gged-in before being
checked whether the corresponding permission is granted or
not. As a result, the authentication aspect should be woven
firstly, and Figure 3 (b) is the corr ect integration result we
expected. Extensive explanations about the integration
process can be also found in [1].

Authentication Authorization

Validation

Fill Order
Ship Order

Close Order Logging

Informing

(b) Weaving authentication before authorization

Authorization Authentication

Validation

Fill Order
Ship Order

Close Order Logging

Informing

(a) Weaving authorization before authentication

Figure 3. Two different integrated models of the order processing
scenario

III. VERIFYING ASPECT-ORIENTED MODELS

In our previous work, aspect-oriented models, including
primary models, aspect models, as well as integrated models,
were all depicted with UML activity diagrams. Since the
correctness of the integration process cannot be guaranteed,
how to ensure the consistence between the integrated
activity diagrams and crosscutting requirements becomes a
critical research problem. In UML 2, the semantics of
activity diagrams is exp lained in terms of Petri net. Ther e
are also vario us automatic tools, i.e., LoLA (a Low Level
Petri Net Analyzer) [10], verifying Petri n ets against
specified properties. As a result, if we can translate activity
diagrams into Petri nets, we could verify the act ivity
diagram models by verifying corresponding Petri net models
for specific properties. In this section, we first discuss
transformation from activity diagrams to Petri nets, and then
present the verification against crosscutting concerns.

A. Transforming from Activity Diagrams to Petri Nets
We adapt the mapping semantics of control-flows in

UML 2 acti vities in [9] to c onvert activity diagrams into
Petri nets. Basically, action nodes and fork/join nodes are
translated to net transitions, control nodes (initial, final,
decision, and merge nodes) become net places, and edges
are transformed to net arcs. Auxiliary transitions or plac es
are added when the end s of an arc both are transitions or
both are places. Fo r simplification, we restr ict an act ivity
diagram only consists o f action nodes, control nodes, a nd
control flows in this approach. The transformation of more
complex activity diagrams (containing data flows,
exceptions, and expansions etc.) is straightforward based on
transformation rules in [11].

371

Based on the mapping rules in [12], we construct an
algorithm to transform activity diagrams to Petri net s and
implement in our ver ification tool to provide automatic
transformation support. The algorithm is described in List 1.
With the algorithm, the act ivity diagram of the r unning
example in Figure 3 (b) is converted to the Petri net in
Figure 4. The transformed Petri net is a bi-simulation of the
activity diagram, which means they are semantically equal.
So we can achieve the verification of the activity diagram by
verifying the equivalent Petri net against same system
properties.

A
ut

he
nt

ic
at

io
n

V
al

id
at

io
n

A
ut

ho
ri

za
tio

n

Fi
ll

O
rd

er

C
lo

se
 O

rd
er

Fo
rk

Jo
in

Sh
ip

 O
rd

er

L
og

gi
ng

In
fo

rm
in

g

Figure 4. The Petri net transformed from the order processing scenario

B. Verifying Petri Nets
Crosscutting concerns describe the r unning sequences

between advices and primary behaviors in all paths of
integrated models. These properties can be described in the
form of Computation Tree Logic (CTL) formulas [13]
naturally. CTL for mulas cannot be generated from aspect
models by synthesizing conditions o f join points specified
by pointcut models and checking the corresponding advice
models appears at right places. This is because th at the
context specified by a pointcut model would be changed
after integration, and the join points matched by the pointcut
model could no longer exist. In this approach, the properties
to be checked are directly refined from crosscutting
requirements.

1) Properties specified from the requirement

Based on the Petri net generated, we can easily analysis
reachability, safety, liveness, and fairness properties [8]. In
this approach, we only focus on checking properties that are
closely related to crosscutting concerns. We cat egorize
crosscutting concerns from two facets. Firstly, according to
the execution sequence between action in advice models and
join points, a crosscutting concern can be eit her executing
before or after join points. Secondly, the execution of a
crosscutting concern is either sequential or parallel with the
primary behaviors. Sequential crosscutting concerns are
synchronous features that their running positions are
restricted by the jo in points. Pa rallel crosscutting concerns
are asynchronous features that are running concurrently with
primary actions and they are finished or started by the join
points.

a) Before-crosscutting concerns
A before-crosscutting concern specifies some extra

behaviors must be performed before matched join points.
Actions specified by a s equential before aspect model are
executed between the j oin point node and the p redecessor
node of the join point in the primary model. The key word
of sequential before-crosscutting concerns in require ments
level is “ before”. A parallel before aspect speci fies
crosscutting actions that must be finished by the join point
edge. The key word of parallel before-crosscutting concerns
in requirements is “be finished by”. In the integrated model,
the actions of the crosscutting concern are running
concurrently with the pri mary behaviors, and then
synchronized at the join node which replaced the join point
edge.

In corresponding Petri nets, assume jp is the transition
transformed from one of the join point, ad is the transition
transformed from the structured activity node that represents
the advice model. The requirement of a before aspect can be
represented in the f orm of the CTL formula as: AG
((()) (()))ad ad jp ad jp jpEX EX .

b) After-crosscutting concerns
An after-crosscutting concern specifies some actions

must be performed after matched join points. An after-
crosscutting concern can also be either a sequential or a
parallel aspect with respect to the flows of primary models.
Actions specified by a sequential after aspect model are the
actions executed between the join point node and th e
successor node of the join point in the primary model. The
key word of sequen tial after-crosscutting concerns in
requirements level is “after”. A parallel after aspect
specifies crosscutting actions must be started by the join
point edge. The ke y word of parallel after-crosscutting
concerns in requirements is “be started by”. In the integrated
model, the act ions of the crosscutting concer n are enabled
by the f ork node, which replaced the join point edge, and
then running concurrently with primary behaviors.

In corresponding Petri nets, assume jp is t he net
transition transformed from the join point, ad is t he net
transition transformed from the structured activity node that
represents the advice model. The requi rement of a
sequential after aspect can be represented in the form of the

List 1. Convert an activity diagram into a Petri net
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Input: AD := an activity diagram
Output: PN{P, T, A, M0} := a Petri net
for each node N in AD

if N is an initial node, final node, decision node, or merge node
 Generate a corresponding place in PN.P

else // action node, fork node, or join node
 Generate a corresponding transition in PN.T
for each edge E in AD

N1 := source node of E in AD
N2 := target node of E in AD
M1 := corresponding place or transition of N1 in PN.P
M2 := corresponding place or transition of N2 in PN.P
if both N1 and N2

(initial nodes final node decision node merge node)
 Generate an auxiliary transition T1 in PN.T
 Generate an arc start from M1 to T1 in PN.A
 Generate an arc start from T1 to M2 in PN.A

else if both N1 and N2 (action node fork node join node)
 Generate an auxiliary place P1 in PN.P
 Generate an arc start from M1 to P1 in PN.A
 Generate an arc start from P1 to M2 in PN.A

else
 Generate an arc start from M1 to M2 in PN.A
for each place without an incoming arc
 Generate an initial token for that place in PN.M0

return PN

372

CTL formula as: ((()) (()jp jp ad jp adAG EX EX
))ad .

2) Conflicts of Multiple Crosscutting Concerns
The CTL formula need to be adjusted if more than one

crosscutting concerns (which are all “before” aspects or are
all “after” aspects) match a sa me join point. Because t he
running sequence between one aspect and a join point can
be affected by other aspects of the same before/after kind,
which match the same join point. For instance, in the
running example, the authenti cation and authorization
concerns are conflicted because they bot h are be fore-
crosscutting aspects and they have same join point, the
“Fill_Order” action. The running sequence of authentication
aspect and “Fill_Order” operation will be changed from
“Authentication->Fill_Order” to “Authentication-
>Authorization->Fill_Order” after the weaving of
authorization aspect.

a) Conflicts between two before-crosscutting concerns
For a before-crosscutting concern cc1 with advice model

ad1 and join point jp1, if any other before aspect, whi ch
matches the same join point jp1 and weaves after cc1, then
some extra act ions are performed after ad1 and b efore jp1.
Assume it’s a bef ore-crosscutting concern cc2 with advice
ad2 weaves after cc1, then jp1 should be replaced by ad2 in
the CTL formula of cc1 as:

1 1 2((())ad ad adAG EX

1 2 2(())).ad ad adEX

b) Conflicts between two after-crosscutting concerns
For an after-crosscutting concern cc1 with advice ad1 and

join point jp1, if any other after aspect , which matches the
same join p oint jp1and weaves after cc1, then some extra
actions are performed after jp1 and before ad1. Assume it’s
an after-crosscutting concern cc2 with advice ad2 weaves
after cc1, then jp1 should be replaced by by ad2 in the CTL
formula of cc1 as:

2 2 1((())ad ad adAG EX

2 1 1(())).ad ad adEX

3) Verification
After the system crosscutting properties are refined as a

set of CTL formulas. We can veri fy the Petri net against
specified CTL formulas generated. If the verification is
passed, it means the model satisfies the corresponding
crosscutting requirements. Otherwise, the model violates the
corresponding crosscutting requirements to some extent,
which means further revision about the model is needed.

In the running example, the integrated model in Figure 1
(a) and (b) are both verified against the crosscutting
requirements of authentication, authorization, validation,
logging, and informing. First, the integrated models are
transformed to Petri n ets. Then the 5 crosscutting
requirements are refined to 5 CTL formulas. Finally, Petri
net analyzer LoLA is employed to verify the two Petri nets
against the formalized crosscutting requirements,
respectively.

The Petri net transformed from the model in Figure 3 (b)
passes the veri fication process and output “result: true” for

all the 5 C TL formulas. While the Petri net transformed
from the model in Figure 3 (a) fails when verifying against
the 2 CTL formulas generated from authentication and
authorization requirements, and passes the verif ication
against the other 3 CTL formulas. This verification result
shows that the crosscutting requirements of authentication
and authorization do not hold in this aspect-oriented model.
After correcting the weaving preference fault and
integrating the aspect model again, the new integrated
model passes the verification process.

C. Tool Implementation
We implemented a tool named Jasmine-AOV1 based on

Topcased 2 and LoLA 3 . As Figure 5 shows, this tool is
composed of 4 main parts: Model Transformer, Crosscutting
Concern Manager, CTL Generator, and Model Checker. The
Model Transformer converts an activity diagram to a Petri
net automatically. The inputs of Model Transformer are
UML diagrams designed by Topcased in the form of XML
file and the outputs of the tool are Petri net files which are
readable for LoLA to perform verification tasks. The
Crosscutting Concern Manager is used to manage mapping
relations between crosscutting concerns in requirements and
elements in corresponding activity diagrams. It provides an
assistant for mapping textual crosscutting requirements to
design activity diagrams. The CT L Generator can
automatically generate CTL f ormulas from crosscutting
requirements that are mapped to d esign models. The CTL
Generator also supports users to input CTL formulas
manually. Model Checker is implemented by di rectly
wrapped an ex isting checker, LoLA. It can ver ify the Petri
net against crosscutting properties in the format of CTL
formulas and report the result.

Model
Checker

Verification
Results

Model
Transformer Petri-Net

Crosscutting
Concern
Manager

CTL
Formulas

Crosscutting
Requirements

Aspect-Oriented
Models

CTL
Generator

Crosscutting
Concern in

Design Models

Jasmine-AOVTopcased

LoLA

Figure 5. The framework of Jasmine-AOV

The screenshot of Jasmine-AOV is in Figure 6. The
“Crosscutting concerns” area manages the crosscutting
requirements which are mapped to design models. The
“New Crosscutting Concern” dialog provides an a ssistant
for mapping textual crosscutting requirements to design
activity diagrams. The “Petri net” area displays the Petri net
transformed from the corresponding activity diagram. The
“CTL Formulas” area lists t he formulas refined from
crosscutting concerns in the “Crosscutting concerns” area
automatically or wrote by users manually. The “Verification
Results” area outputs the results of verifying the Petri net in

1 Jasmine AOV, http://seg.nju.edu.cn/~zqcui/Jasmine AOV
2 Topcased, http://www.topcased.org/
3 LoLA, http://www.informatik.uni rostock.de/tpp/lola/

373

the “Petri net” area against the CTL formulas in the “CTL
Formulas” area by LoLA.

Writing complex CTL formulas is not easy for a
software engineer without proper training about formal
methods. To tackle this problem, we implemented the CTL
Generator to assist generating CTL formulas automatically.
As Figure 6 shows, the user only need to select actions
which is th e advice, the join po ints, and the relationship
between the advice and the join points, based on the textual
description of the crosscutting concern. After this
information is inputted, the CTL Generator generates a CTL
formula for the crosscutting concern and adjusts CTL
formulas if there is more than one aspe ct of the same
before/after type apply on a same join point.

Figure 6. The screenshot of Jasmine-AOV

IV. EVALUATION AND CASE SUITES

To evaluate the effectiveness of our approach, we have
applied our approach to the d esign models adapted from the
Ship Order example in [9] and the Teleco m System4. The
Ship Order ex ample contains 5 crosscutting concerns and
the Telecom System contains 6 crosscutt ing concerns. For
both of the 2 case studies, we transformed the integrated
models to Petri nets, and mapped crosscutting requirements
to the design models with the he lp of the tool. Then,
corresponding CTL formulas of verification tasks are
generated automatically. Finally, the Petri nets are checked
against the CTL formulas generated.

The faults of aspect-oriented models, which can be
caused by design defects or incorrect integration processes,
are categorized as follows:

1. Aspect model faults
a) Incorrect weaving preference. The priorities of

aspect models are incorrectly assigned. This kind of
fault will lead to match join pints faults or running

4 AJDT toolkit: http://www.eclipse.org/ajdt

sequence changed unexpected.
b) Incorrect binding between pointcut model and

advice model. The pointcut model is incorrectly
mapped to an unrelated advice model. This kind of fault
will result in i mproper advice models apply at so me
join points.

2. Pointcut model faults
a) Overmatch/Mismatch join points. The pointcut

model matches extra join points or miss some join
points should be matched. The consequence of this kind
of faults is that extra ad vices are performed at
unexpected join points or desired advices are not going
to be performed at join points.
b) Incorrect position of join points. The e lement

which serves as a join point in the pointcut model is
incorrectly appointed. The phenomenon of this kind of
faults is that advices are applied at in correct points of
the primary model.

3. Advice model faults
a) Incorrect type of advice models. The type of the

advice model is declared incorrectly. This kind of fault
will cause the running sequence b etween the advice
model and the primary model change unexpectedly.

To further evaluate the ability of our approach to detect
the faults of aspect-oriented models, mutated models are
created based on preceding category of aspect model faults.
26 and 28 model mutants are con structed for the 2 case
studies, respectively. Table 1 classifies all these model
mutants by their fault types. All of them are killed because
they violate the crosscutting requirements from various
ways and these violations are detected by the verification
process. This result illustrates the ability of our approach to
find the faults in aspect-oriented models and to improve the
quality of design models.

TABLE I. MODEL MUTANTS OF THE 2 CASE STUDIES

Fault Types Ship
Order

Telecom
System

Incorrect weaving
preference 1 1 Aspect model

faults Incorrect binding 5 3
Overmatch join points 5 6
Mismatch join points 5 6 Pointcut model

faults Incorrect position of
join point 5 6

Advice model
faults

In correct type of advice
models 5 6

Number of model mutants in total 26 28
Mutants killed 26 28

V. RELATED WORK

There are many research projects on bringing aspect-
oriented ideas to sof tware requirement engineering from
different perspectives. Whittle and Araujo [14] f ocus on
scenario-based requirements and composing them with
aspects to generate a set of state machines that represent the
composed behaviors from both aspectual and non-aspectual
scenarios. In contrast, our approach is carried out at the
design level instead of requirement level. However, our
approach can be enhanced with the aspect m ining tool at

374

requirements level, like EA-Miner [15], by inputting
crosscutting concerns detected by these tools to our
Jasmine-AOV tool for verification.

There is also a large body of research on aspect-oriented
modeling. But most of them do not concern about the
correctness of the integrated model and provides verification
supports. In a ddition to support asp ect-oriented modeling
and integration, our approach also formally checks whether
crosscutting concerns in requirements are correctly designed.
Xu et al. proposed to model and compose aspects with finite
state machines, and then transformed to FSP processes and
cheeked by LTSA model checker against all system
requirements [16]. Whereas our approach is carried out on
activity diagrams and only focuses on checking crosscutting
concerns. Furthermore, we cat egorize 4 k inds of
crosscutting concerns and generate CTL formulas
automatically from crosscutting concern specifications,
which bridges the gaps between crosscutting requirements
and aspect-oriented design models. We also provide a
solution for the conflicts between crosscutting concerns.

Several model checking techniques have been presented
for aspect-oriented programs. Denaro et al. fi rst reported a
preliminary experience on verifying deadlock freedom of a
concurrent aspect [17]. They first derived PROMELA
process templates from aspect-oriented units, and then
analysis the aspect-oriented program with SPIN. Ubayashi
and Tamai [18] proposed to app ly model checking
techniques to v erify whether the result of weaving classes
and aspects contained unexpected behaviors like deadlocks.
The approach in this paper is different from these methods,
because our approach is carried out at the model level other
than the program level. In comparison, our approach can
identify system faults at an earlier stage, and save costs to
revise programs when detecting design faults at
implementation or maintenance phase.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a f ramework to verify aspect-
oriented UML activity diagrams by using Petri net based
verification techniques. For verification purpose, we
transform the integrated activity diagrams into Petri nets.
Then, crosscutting properties of the system are refined as a
set of CTL formulas. Last, the Petri net is verified against
the refined CTL formulas. The v erification result shows
whether the Petri net satisfy the requirements or not. We can
reason whether the integ rated activity diagram meets the
requirement since they ar e equivalent. In ot her words, we
can claim that the aspect -oriented modeling is correct with
respect to speci fied crosscutting requirements. Two case
studies have been carried out to demonstrate the feasibility
and effectiveness of our approach. Concerning the future
work, we wil l focus on testing system implementations
against aspect-oriented models have been verified.

ACKNOWLEDGMENT

We would like to th ank Professor Karsten Wolf at
University Bamberg, who is th e author of LoLA, for his
help in dealing with problems encountered when integrating
LoLA into our tool Jasmine-AOV. This work is suppor ted

by the National Natural Science Foundation o f China
(No.61021062 No. 61170066), the Nat ional 863 High-
Tech Program of China (No. 20 12AA011205), and the
National Grand Fundamental Research 973 Program of
China (No. 2009CB320702).

REFERENCES

[1] Z. Cui, L. Wang, X. Li, and D. Xu. Modeling and integrating aspects
with UML activity diagrams. In Proceedings of the ACM Symposium
on Applied Computing, Honolulu, Hawaii, ACM, New York, NY,
2009, pp. 430-437.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In the annual
European Conference on Obj ect-Oriented Programming, 1997, pp.
220–242.

[3] X. Li, Z. Liu, J. He, and Q. Long.Ge nerating a Prototy pe From a
UML Models of System Requirements. Distributed Computing and
Internet Technology. Lecture Notes in Computer Science 3347, Berlin,
Heidelberg: Springer, 2005, pp. 135-154.

[4] A. Fischer. Mapping UML designs to Java. In Proceedings of the 15th
ACM SIGPLAN conference on O bject-oriented programming,
systems, languages, and applications, 2000, pp. 178-187.

[5] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng. Generating Test
Cases from UML Activity Diagram based on Gray-Box Method. In
Proceedings of the 11th Asi a-Pacific Software Engineering
Conference, 2004, pp. 284-291.

[6] C. Nebut, F. Fleurey, Y. L. Traon, and J. Jezequel. Automatic Test
Generation: a Use Case Driven Approach. IEEE Transactions on
Software Engineering, Vol.32, No.3, 2006, pp. 140-155.

[7] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li. UML Activity
Diagram Based Automatic Test Case Generation for Java Programs.
In The Computer Journal, Vol.52, No.5, Oxford Press, 2009, pp. 545-
556.

[8] T. Murata, Petri nets: Properties, analysis and applications,
Proceedings of the IEEE , Vol.77, No.4, Apr 1989, pp. 541-580.

[9] OMG, UML Superstructure v2.1, http ://www.omg.org/technology/
documents/formal/uml.htm.

[10] K. Schmidt. LoLA A Low Level Analyser. In Proceedings of the
Application and Theory of Petri Nets, 2000, pp. 465-474.

[11] H. Störrle, Structured nodes in UML 2.0 activities. Nordic J. of
Computing, 11(3), 2004, pp. 279-302.

[12] H. Störrle. Semantics of Control-Flow in UML 2.0 Activities. In
Proceedings of the 2004 IEEE Symposium on Visual Languages -
Human Centric Computing, 2004, pp. 235-242.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst. 8, 2, pp. 244-263.

[14] J. Whittle, J. Araujo. Scenario Modelling with As pects. In IEEE
Software, Vol 151, Issue 4, Aug. 2004, pp. 157–172.

[15] A. Sampaio, A. Rashid, R. Chitchyan, and P. R ayson. EA-Miner:
Towards Automation in Aspect-Oriented Requirements Engineering.
Transactions on Aspect-Oriented Software Development III, Lecture
Notes In Computer Science, Vol. 4620. Springer-Verlag, Berlin,
Heidelberg, pp. 4-39.

[16] D. Xu, O. E. Ariss, W. Xu, and L. Wang, Aspect-Oriented Modeling
and Verification with Finite State Machines, Journal of Computer
Science and Technology, 24(5), Sept. 2009, pp. 949-961.

[17] G. Denaro, and M. Monga. An experience on ve rification of aspect
properties. In Proceedings of the 4th international Works hop on
Principles of Software Evolution, ACM, New York, NY, 2001, pp.
186-189.

[18] N. Ubayashi, and T. Tamai. Aspect-oriented programming with
model checking. In Proceedings of the 1st international Conference
on Aspect-Oriented Software Development, ACM, New York, NY,
2002, pp. 148-154.

375

376

377

378

379

380

381

Resource Modeling and Analysis for Workflows:
A Petri Net Approach

Jiacun Wang Demin Li

 Monmouth University Donghua University
W. Long Branch, NJ 07764, USA Shanghai, China

 jwang@monmouth.edu deminli@dhu.edu.cn

Abstract-Petri nets are a powerful formalism in modeling
workflows. A workflow determines the flow of work
according to pre-defined business process definitions. In
many situations, business processes are constrained by scarce
resources. The lack of resources can cause contention, the
need for some tasks to wait for others to complete, and the
slowing down of the accomplishment of larger goals. In our
previous work, a resource-constrained workflow model is
introduced and a resource requirement analysis approach is
presented for emergency response workflows, in which
support of on-the-fly workflow change is critical [6]. In this
paper, we propose a Petri net based approach for recourse
requirements analysis, which can be used for more general
purposes. The concept of resource-oriented workflow nets
(ROWN) is introduced and the transition firing rules of
ROWN are presented. Resource requirements for general
workflow can be done through reachability analysis. For a
class of well-structured workflows, an efficient resource
analysis algorithm is developed.

Keywords—workflows, workflow nets, Petri nets, resource

requirements analysis.

I. INTRODUCTION

A workflow consists of processes and acti vities, which
are represented by well-defined tasks. T he entities t hat
execute these tasks are h umans, application programs or
machines. These tasks are r elated and dep endent on one
another based on business policies and rules.

This paper focuses on the resource requirements of a
workflow. In many situations, business processes are
constrained by scarce resources. The lack of resources can
cause contention, the need for some tasks to wait for others
to complete, and the slowing down of the accomplishment
of larger goals. This is particularly true in an emergency
response system where large quantities of resources,
including emergency responders, ambulances, medical care
personnel, fire trucks, medications, food, clothing, etc., are
required. Often potential delays can be avoided or reduced
by using resource analysis to identify ways in which tasks
can be executed in parallel, in the most efficient way. A
workflow with resource usage defined can help keep track
of resource availability, disable the paths that are not
executable, and present all executable paths, thus allowing
the automatic selection of feasible path for system
execution.

Petri nets are a powerful tool to m odel and anal yze
resources-constrainted systems. Some excellent research
results on resource allocation and deadlock avoidance are
published. For example, workflow nets have been
identified and widely used as a solid m odel of business
processes [1][3][5]. Resource-constrained workflow nets
are introduced and discussed in [3][4]. In them, the authors
study extensions of workflow nets in which processes must
share some global resources. A resource belongs to a t ype.
One place is used for one type, where the resource is
located when it is free. There are static and dynamic places.
Static places are for resources that will be shared by cases.
An important assumption in resource-constrained
workflow nets is all resources are durable: they cannot be
created or destroyed.

Resource-oriented Petri nets are introduced in [9][10],
which deal with finite capacity Petri nets. In a resou rce-
oriented Petri net, a t ransition is enab led if and on ly if
tokens, which represent resource, in a place won’t exceed
the predefined capacity of the place if the transition fires,
as well as there are enough tokens in each input place.

Both resource-constrained workflow nets and resource-
oriented Petri nets only deal with durable resources, which
are claimed and relea sed during the workflow execution
but cannot be created and d estroyed [3]. However, there
are a lot of workflows where task execution consumes
and/or produces resources. For exa mple, in a incident
response workflow, some resources (e.g. medication) can
be consumed, and some resources (e.g. fire trucks) can be
replenished during emergency response.

The paper presents a P etri net based ap proach for
resource requirements analysis that applies to du rable
resources and n on-durable resources. The approach is
based on our previous work on workflow modeling
[6][7][8], in which a W IFA model is develo ped for
emergency response workflows.

The paper is organized as f ollows: Section II briefly
introduces the resource-oriented workflow model. Section
III defines well-nested workflow and shows how it can be
constructed recursively, and then proposes an efficient
resource requirement analysis algorithm. Finally, Section
IV presents conclusions and ideas f or the continuation of
the work.

382

II. RESOURCE-ORIENTED WORKFLOW MODEL

A workflow is composed of tasks that execute in a
specific order. A task is an activity or an event. We assume
a task is ato mic. When it g ets started, it is g uaranteed to
finish. An important implication of this assumption is all
required resources to finish the task will be held by the task
until it is done.

Workflows are case-based. Every piece of work is
executed for a specific case. For example, an incident is a
case for an incident response workflow. A patient visit is a
case for the emergency department workflow.

Workflow execution requires resources. Workflows are
executed by humans or machines, which are du rable
resources. When Petri nets are used to model a workflow,
these kinds of resources can be specif ied using tokens.
Besides workflow executors, executing a task in a
workflow may consume/occupy other resources and when
a task execution is finished some of these resources may be
released or some new resources may be produced. Petri net
tokens are not suitable to model this class of resources.

A. Task Modeling

A task can be modeled with a transition in a Petri net.
However, in order to catch resources in use when a task is
in execution and released when the task is done, we use
two sequential transitions to model a task, on e modeling
the beginning of the task execution and the other the end of
the task execution.

Fig. 1 Petri model of a task.

As shown in Fig. 1 (a), transition B represents the
beginning of a task execution; E represents the end of the
task execution. Place InEx represents the task is in
execution, while Idle represents the task is idle. From
reachability analysis perspective, Fig. 1(a) can be reduced
to a sing le transition, which represents the entire task
execution as a sing le logic unit. If there is n o resource
involved in a task execution, then we don’t need to model
it using two transitions.

B. Resource Modeling

We assume there are n types of resources in a system,
and the quantity of each type of resource can be
represented by a non-negative real number. Hence,
resources are described by S = (r1, r2, …, rn), where each ri
is a non-negative real number.

A task may hold or co nsume particular resources
during execution and rele ase or p roduce particular
resources once execution is completed. We use R+ to

describe the resources consumed and/or h eld when
executing a task and use R- to describe resources produced
and/or released after task execution is finished, where ri

+ ≥
0 and ri

- ≤ 0 and i = 1, 2, … n.
Resource modeling is based on the two-transition

model. More specifically, for a task TSk, R+(TSk) is
associated with transition Bk and R-(TSk) is associated with
transition Ek.

C. Resource-Oriented Workflow Nets (ROWN)

In [1], a Petri net that models a workflow process is called
a workflow net. A workflow net is a Petri net that satisfies
two requirements. First, it h as one source place and on e
sink place. A token in the source place co rresponds to a
case needs to be handled. A token in the output place
corresponds to a case th at has already been handled.
Secondly, there are no dangling transitions or places.

Formally, a Petri net is PN = (P, T, I, O, M0) if and only
if
1) PN has two special places: i and o. Place i is a sou rce

place: *i = ; Place o is a source place: *i = ,
2) If we add a transit ion t to P N that connects place o

with i, then the resulting Petri net is strong ly
connected.

A resource-constraint workflow net (ROWN) is
workflow net in which a task whose execution requires
resources is rep resented in two sequential transitions: a
transition representing the start of the task and with
resources consumption defined on it, and a transition
representing the end of th e task with resources
production/release defined on it. Mathematically, it i s
defined as a 7-tupe: ROWN = (P, T, R, I, O, M0, S0), in
which (T, R) is a pair: f or each Tk T, there is an Rk R
that specifies resource change associate with the firing of
transition Tk. S0 represents the initially available resources.

D. Transition Firing

A transition tk is enabled under state (Mi, Si) if and only
if

Mi ≥ I(tk), (1)
Si ≥ R(tk) (2)

Condition (1) stan ds for control-ready, while condition 2
stands for resource-ready. Notice that R(tk) is R+(tk) if tk
represents the start of a ta sk; it is R-(tk) if tk represents the
end of a task; it is a 0 vector if the task represented by tk
does not involve any resource changes. The transition’s
enabledness is affected by resource availability only if it
represents the start of a task.

After an enabled transition tk fires, the new state is
determined by

Mj = Mi + O(tk) - I(tk), (3)
Sj = Si - R(tk). (4)

Eq. (3) is exactly the same as it is for regular Petri nets. Eq.
(4) reflects resource change after firing a trans ition: if the
transition represents the start of a task , R(tk) is a p ositive

B E InExec

Idle

383

vector and available resources are decreased . If the
transition represents the end of a task, R(tk) is negative and
available resources are increased. If no resource involved,
then available resources remain unchanged.

Based on the transition firing rule reachability analysis
can be perf ormed, which explores all p ossible states and
execution paths, reveals possible deadlocks due to resource
contention.

E. An Example

Fig. 2 shows an ROWN with four tasks. Assume three
types of resources are involved in the workflow execution
and their initial quantities are S0 = (30, 25, 20). Resource
changes by task execution are specified as follows:

R(B1) = R+(TS1) = (3, 8, 5)
R(E1) = R-(TS1) = (-3, -2, -5)

Fig. 2 An RCWN of 4 tasks.

R(B2) = R+(TS2) = (5, 0, 10)
R(E2) = R-(TS2) = (0, 0, -5)
R(B3) = R+(TS3) = (15, 10, 5)
R(E3) = R-(TS3) = (-5, -2, -5)
R(B4) = R+(TS4) = (0, 5, 15)
R(E4) = R-(TS4) = (0, -5, -5)

At the initial state, B1 is the only transition that is

enabled. After it fires, S1 = S0 – R(B1) = (27, 17, 15). Then
E1 is the only transition that is enabled. After E1 is fired, S2
= S1 – R(E1) = (30, 12, 20). At state (M2, S2), both B2 and
B3 are enabled. If B2 fires, S3 = S2 – R(B2) = (25, 1 2, 10).
Then if B3 fires, S4 = S3 – R(B3) = (10, 2, 5). We can
continue this process until we get to a state th at no
transitions are enabled.

III. RESOURCE REQUIREMENT ANALYSIS

After a workflow is built and the resource consumption
and production are def ined for all tas ks, the resource
requirement for executing the workflow can be f ormally
analyzed. We are in terested in the maximum resource
consumption (MRC), which is defined as the minimum
amount of resources that if satisfied, the workflow can be
executed along any possible path till finish without the

occurrence of resource shortage. Meeting MRC
requirement is very important for emergency response
workflows because it is de sired to not see an y resource
shortage in an y case in emergence response. To analyze
MRC, we need to f ind out the maximum amount of each
type of resources that can be held or co nsumed in the
execution of a workflow. We present two approaches in
this section. One is through reachability analysis, the other
one is based on ROWN structure and applies to a class of
ROWNs.

A. Reachability Analysis Based Approach

Let H be th e reachable state set. For each t ype of
resource ri, Find a state (Mk, Sk) such that

Sk(ri) = min{Sj(ri) | (Mj, Sj) H} (5)

Sk(ri) is the lowest possible level of availability of resource
ri during the workflow execution. Therefore, S0(ri) - Sk(ri)
indicates the minimum requirement on resource ri in order
for the workflow to be exec uted along all possible pat h.
Denote it by Rq(ri).

Rq(ri) = S0(ri) - min{Sj(ri) | (Mj, Sj) H} (6)

There are several advantages using this approach for

resource requirements analysis: First, it is si mple. One can
easily modify an existing Petri net tool to s upport this
functionality. Secondly, it allows multi-case resources
requirements analysis. The number of cases are specif ied
by the number of tokens in the source place i at the initial
state. Thirdly, it v irtually works for all workflows,
regardless of whether they are complex or simple in terms
of control flow and whether they are big or small in size.

B. Free-choice Workflow Nets

We only consider free-choice workflows. A w orkflow
net free-choice if and only if

p1* p2* ≠ => |p1*|=|p2*| = 1, p1, p2 P,
Free-choice workflow net does not allow confusion, a
situation where conflict and concurrency are mixed.

C. Well-nested Workflows

Based on the concept of free-choice workflows, we
further introduce well-nested workflows. To facilitate the
definition of well-nested workflows, a piece of workflow
in which tasks are seriall y connected to f orm a si ngle
branch is called a procedural branch, and a piece of
workflow in which two or more procedural branches are
sprung out from a start task and then join in an end task is
called a fork-join block. There are two types of fork-join
blocks: one is parallel split-synchronization block (PS-
blocks), in which multiple tasks are trigged by one task,
run currently and are even tually synchronized at anot her
task. The other type is exclusive choice-simple merge
blocks (ES-blocks), in which multiple tasks are trigged by
one task, run exclusively, and whichever is selected to run

B1

E1

InEx1

Idle1

B2 E2 InEx2

Idle2 B4
E4 InEx4

Idle4 B3 E3 InEx3

Idle3

i o

a

b

c

d

384

eventually triggers a co mmon task. Fig. 3 shows an
example of a procedural branch, a PS-block and a n ES-
block.

A well-nested workflow is recursively defined as
following:

1. A procedural branch is said to be a well-nested
workflow.

2. A workflow resulted from replacing a tas k in a
well-nested workflow with a f ork-join block is
also a well-nested workflow

Fig. 4 shows three well-nested workflows and their
relationship.

(a)

(b)

(c)

Fig. 3. (a) A procedural branch. (b) A PS-block.
 (c) An ES-block

C. Resource Analysis

The purpose of resource analysis is to track the

maximum resource consumption of each type of resource
during the workflow execution by structurally traversing
each branch of the workflow from the start task to end task.

A workflow’s maximum resource consumption (MRC)
is, for each type of resources, the minimum amount of the
resource that allows the workflow to complete its
execution along all possible execution paths.

(a) (b)

 (c)

Fig. 4. (a) A three-task procedural workflow.

(b) The middle task in (a) is replaced with an ES-block.
(c) One task in (b) is replaced with and

MRC analysis for a well-nested workflow is mainly
based on the analysis of a procedural branch. Con sider a
procedural branch constituting of tasks TS1, TS2, …, TSn,
sequentially. In order to execu te TS1, the requirement on
resource ri is:

ri
+(TS1);

In order to execute T2, the requirement on resource ri is:

ri
+(TS2) + ri

+(TS1) + ri
-(TS1);

TS1

TS2

TS100

TS1

TS100

TS21

TS200

TS22 TS23

TS1

TS100

TS21

TS220

TS221 TS231

TS230

TS222 TS223 TS232 TS233

TS200

385

(Notice that ri
-(TS1) ≤ 0) In order to execu te T3, the

requirement on resource ri is:

ri
+(TS3) + ri

+(TS2) + ri
-(TS2) + ri

+(TS1) + ri
-(TS1);

…

Therefore, the requirement on resource ri of executing the
procedural branch, denoted by Rq(ri) is

Rq(ri) = max{ ri
+(TS1),

 ri
+(TS2) + ri

+(TS1) + ri
-(TS1),

 …
 ri

+(TSn) + ∑k=1
n-1(ri

+(TSk) + ri
-(TSk))} (7)

The net resource consumption is

Rc(ri) = ∑k=1
s(ri

+(TSk) + ri
-(TSk)) (8)

The overall resource requirement of executing the
procedural branch is

Rr = (Rq(r1), Rq(r2), … Rq(rs)) (9)

For an ES-block composed of w procedural branches,
we use f ormula (9) to calcu late the resource requirement
for each branc h, excluding the starting and ending tasks.
Denote by Rqk(ri) the requirement on resource ri of branch
k. Because in any given execution instance the workflow
can only choose one branch to execute, therefore, the
resource requirement of the ES-block on ri should be

 Rq(ri) = max{Rqk(ri) | k=1,2, .., w} (10)

Notice that it is possible t hat the maximum value in
formula (7) may be identified on different branches for
different resources. For exa mple, executing branch on e
may demand more on resource A than B, while executing
branch two may demand more on resource B than A. But
the overall resource requirement is a co mbination of worst
case (the maximum demand) for each type of resources.

The maximum net resource consumption on ri is

Rc(ri) = max{Rck(ri) | k=1,2, .., w} (11)

For a PS-block composed of w procedural branches, we
again use formula (9) to calculate the resource requirement
for each branc h, excluding the starting and ending tasks.
Denote by Rqk(ri) the requirement on resource ri of branch
k. Because these branches will execute concurrently, the
worst case (maximum demand for a resource) would be a
state in which all branches reach maximum demand for a
given resource. Therefore, the resource requirement of the
PS-block on ri should be

 Rq(ri) = ∑k=1
wRqk(ri) (12)

The net resource consumption on ri is

Rc(ri) = ∑k=1
wRck(ri) (13)

The overall workflow MRC analysis is carried out by
the analysis of PS-blocks and ES-blocks and then replacing
each of them with a task that is equivalent to the block in
terms of maximum resource requirement and resou rce

consumption. It starts f rom inter-most blocks. B efore we
formally describe th e algorithm, let us illustrate the idea
using the example the right-most workflow in Fig. 4(c)
first. In this workflow, there are two internal most blocks:

 ES-block, composed of TS221, TS222 and TS223 and
TS220.

 PS-bock, composed of TS231, TS232 and TS233 and
TS230.

For the ES block, we replace the two branches with a new
task T22, while for the PS-block, we replace the three
branches with a n ew task T23, as ill ustrated in Fig. 5(a).
Now there is on ly one block in Fig. 5, which starts with
TS21 and ends with TS200 and has two branches, each
having three tasks. We replace each branch with a sing le
new task, and then replace the two branches (now each
branch has only one task) with a new task. After that, only
one branch is left in the ROWN.

Fig. 5. An equivalent ROWN to Fig. 4(c).

For any type of blocks, when all its branches are
replaced with a si ngle task TSb, the equivalent resource
parameters of TSb for resource ri are:

ri
+(TSb) = Rq(ri) (14)

ri
-(TSb) = Rq(ri) - Rc(ri) (15)

If the block is an ES -block, Rq(ri) and Rc(ri) are given by
(10) and (11), respectively. If it is a PS-block, they are
given by (12) and (13).

MRC analysis algorithm

TS1

TS100

TS21

TS220

TS221 TS231

TS230

TS22 TS23

TS200

386

Input: A resource oriented workflow

Output: The maximum requirement on any type of
resource ri to allow the workflow execute along all
possible paths.

Step 1: Identify all blocks.
Step 2: If no blocks exist, go to Step 4.
Step 3: Identify an inter-most block.

Step 3.1: Calculate each branch’s resource requirement
Rq(ri) and net consumption Rc(ri) using formulas (9)
and (10).

Step 3.2: Replace all branches with a single connected
task Tb, calculate its rb

c and rb
p using formulas (10),

(11), (14) and (15) if it is an ES-block, or using (12),
(13), (14) and (15) if it is an PS-block.

Step 3.3: Go to Step 1.
Step 4: Using formula (12) to calcu late Rq(ri). Output

Rq(ri).

For example, when we convert the ROWN shown in
Fig. 4(c) to th e one shown in Fig. 5, t he resource
parameters for the equivalent task TS22 should be

ri
+(TS22) = max{ ri

+(TS222), ri
+(TS222)};

ri
-(TS22) = max{ ri

+(TS222), ri
+(TS222)}

- max{(ri
+(TS222) - ri

-(TS222))
+ (ri

+(TS222) - ri
-(TS222))}.

IV. CONCLUDING REMARKS

Resource-oriented workflow nets (ROWN) are
introduced in this paper to analyze resources usage and
requirements for workflows. ROWN are an extension to
workflow nets by associating resource change with each
transition that represents resource consumed, occupied,
produced or released when the event that the transition
stands for happens. Transition firing and state change rules
are presented for ROWN. Two approaches for resource
analysis are proposed. One is through reachability analysis,
the other one is based th e ROWN structure. The
reachability approach applies to any kind of ROWN, while
the structure based ap proach only applies to well-nested
workflows but th e analysis algorithm is very efficient.
ROWN are dif ferent from resource-constrained workflow
nets and resource-oriented Petri nets in that these two nets
can only deal with durable resources but ROWN are good
for both durable and non-durable resource analysis.

More work needs to be done in workflow resource
analysis. One is to f ind conditions for a ROW N to be
deadlock free. Another one is considering the possibility
that a task is abolished in the middle of execution.

V. REFERENCES
[1] W.M.P. van der Aalst, “Verification of workflow nets”, Proceedings

of Application and Theory of Petri Nets, Volume 1248 of L ecture
Notes in Computer Science, pp. 407-426, 1997.

[2] M. P. Fanti and M. Zhou, “Deadlock control methods in automeated
manufacturing systems,” IEEE Transactions on Systems, Man and
Cybernetics, Part A, 34(1), 5-21, 2004.

[3] K. van Hee, N. Sidorova and M. Voorhoeve, “Resource-constrained
workflow ntes,” Fundamenta Informaticae, 71(2-3):243-257, 2005.

[4] G. Juh´as, I. Kazlov, and A. Juh´asov´a. Instance Deadlock: A
Mistery behind Frozen Programs. PETRI NETS 2010, LNCS vol.
6128, pp. 1-17. Springer, 2010.

[5] María Martos-Salgado, Fernando Rosa-Velardo: Dynamic Soundness
in Resource-Constrained Workflow Nets. FMOODS/FORTE 2011:
259-273

[6] J. Wang, W. Tepfenhart and D. Rosca, Emergency Response
Workflow Resource Requirements Modeling and Analysis, IEEE
Transactions on Systems, Man and Cybernetics, Part C, vol. 39, no.
3, 270-283, 2009.

[7] J. Wang, D. Rosca, W. Tepfenhart, and A. Milewski, “Incident
command systems workflow modeling and analysis: A case study,”
Proceedings of the 3rd International ISCRAM Conference (B. Van de
Walle and M. Turoff, eds.), Newark, NJ, May 2006.

[8] J. Wang, D. Rosca, W. Tepfenhart, A. Milewski and M. Stoute,
Dynamic workflow modeling and analysis in incident command
systems, IEEE Transactions on Systems, Man and Cybernetics, Part
A, vol. 38, no. 5, 1041-1055, 2008.

[9] N. Wu and M. Zhou, Resource-Oriented Petri Nets in Deadlock
Avoidance of AGV Systems, Proceedings of the 2001 IEEE
International Conference on Robotics & Automation, Seoul, Korea,
May 21-26, 2001

[10] N. Wu and M. Zhou, System Modeling and Control with Resource-
Oriented Petri Nets, CRC Press, Oct. 2009.

387

ACADA:
Access Control-driven Architecture with Dynamic Adaptation

Óscar Mortágua Pereira, Rui L. Aguiar

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
{omp,ruilaa}@ua.pt

Maribel Yasmina Santos
Centro Algoritmi

University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract— Programmers of relational database applications
use software solutions (Hibernate, JDBC, LINQ, ADO.NET) to
ease the development process of business tiers. These software
solutions were not devised to address access control policies,
much less for evolving access control policies, in spite of their
unavoidable relevance. Currently, access control policies,
whenever implemented, are enforced by independent
components leading to a separation between policies and their
enforcement. This paper proposes a new approach based on an
architectural model referred to here as the Access Control-
driven Architecture with Dynamic Adaptation (ACADA).
Solutions based on ACADA are automatically built to statically
enforce access control policies based on schemas of Create,
Read, Update and Delete (CRUD) expressions. Then, CRUD
expressions are dynamically deployed at runtime driven by
established access control policies. Any update in the policies is
followed by an adaptation process to keep access control
mechanisms aligned with the policies to be enforced. A proof of
concept based on Java and Java Database Connectivity
(JDBC) is also presented.

Keywords-access control;software architecture; adaptive
systems.

I. INTRODUCTION
Software systems have increasingly played a key role in

all dimensions of our existence as humans, such as transport
operators, financial movements, e-health, e-governance and
national/international security. T hey are responsible for
managing sensitive data that needs to be kept secure from
unauthorized usage. Access control policies (ACP) are a
critical aspect of security. ACP are aimed at preventing
unauthorized access to sensitive data and is usually
implemented in a three phase approach [1]: security policy
definition; security model to be followed; and, finally,
security enforcement mechanism. Security policies define
rules through which access control is governed. The four
main strategies for regulating access control policies are [2,
3]: discretionary access control (DAC), mandatory access
control (MAC), Role-based access control (RBAC) and
credential-based access control. Security models provide
formal representations [4-8] for security policies. Security
enforcement mechanisms implement the security policy
formalized by the security model. ACP exist to keep
sensitive data safe, mostly kept and managed by database
management systems. Among the several paradigms, the

relational database management systems (RDBMS) continue
to be one of the most successful one to manage data and,
therefore, to build database applications. Beyond RDBMS,
software architects use other current software solutions
(CuSS), such as JDBC [9], ODBC [10], JPA [11], LINQ
[12], Hibernate [13], ADO.NET [14] and Ruby on Rails [15]
to ease the development process of business tiers of database
applications. Unfortunately, CuSS were devised to tackle the
impedance mismatch issue [16], leaving ACP out of their
scope. Current mechanisms to enforce ACP to data residing
in a RDBMS consist of designing a separate security layer,
following one of two different approaches: traditional and
PEP-PDP:

1) The traditional approach is based on a security
software layer developed by security experts using RDBMS
tools. ACP architecture vary from RDBMS to RDBMS but
comprise several entities, such as u sers, roles, database
schemas and permissions. They are directly managed by
RDBMS and are completely transparent to applications.
Their presence is only noticed if some unauthorized access is
detected. Basically, before being executed, SQL statements
are evaluated by RDBMS to check their compliance with the
established ACP. If any violation is detected, SQL
statements are rejected, otherwise they are executed.

2) The PEP-PDP approach consists in a security software
layer with two main functionalities: the policy decision point
(PDP) and the policy enforcement point (PEP), as defined in
XACML [17] and used in [18], see Figure 1. The PEP
intercepts users requests for accessing a resource protected
by an ACP (Figure 1, 1) and enforces the decision to be
performed by PDP on this access authorization. PDP
evaluates requests to access a resource against the ACP to
decide whether to grant or to deny the access (Figure 1, 2). If
authorization is granted, the action is s ent by the PEP to
RDBMS to be executed (Figure 1, 3) and, if no ot her

Business Logic

RDBMS

...
accessGranted =
If (accessGranted) {
 ...

PEP PDP
1 2

3
4

Figure 1. PEP-PDP approach.

388

access control exists, the action is executed by the RDBMS
(Figure 1, 4). PDPs are designed and configured by security
experts and exist as independent components. PEPs are
intentionally inserted in key points of the source code to
enforce PDP decisions.

Both approaches impose a sharp separation between ACP
and the mechanisms responsible for their enforcement. This
fragility is also app arent in CuSS: security layers exist t o
enforce ACP and CuSS exist to ease the development
process of database applications. This separation of roles
entails four important drawbacks regarding the usage of
current CuSS:

 1) For programmers who use CuSS, this separation
demands a complete mastering on the established ACP and
on their dependency on database schemas. This mastering is
very difficult to be sustained when the complexity of ACP
increases, usually coupled by an increase in complexity of
databases schemas.

2) Programmers who use CuSS are free to write any
CRUD expression opening a s ecurity gap. CRUD
expressions may be in compliance with the formalized ACP
but violating security rules that are not possible to be
formalized. ACP are suited to control the access to schema
objects but not to control the information SQL statements
may get from them. If a u ser has the permission to, for
example, read a set of columns from one or more tables, it is
not possible to prevent any SQL statement from reading that
data. Select statements may select raw data or may use
aggregate functions, for example, to select critical statistical
information, opening a possible security gap.

 3) Whenever ACP are updated, the correspondent access
control mechanisms have to be updated in advance. There is
no way to aut omatically translate ACP into access control
mechanisms of CuSS.

4) Some ACP need to be hard-coded to manage runtime
constraints. There is no way to automatically update these
scattered and hidden hard-coded access control mechanisms
in current CuSS.

To tackle the aforementioned drawbacks we propose a
new architecture for CuSS, herein referred to as Access
Control-driven Architecture with Dynamic Adaptation
(ACADA). Software solutions cease to be of general use and
become specialized solutions to address specific business
areas, such as accountability, warehouse and customers.
They are automatically built from a bu siness architectural
model, enforcing ACP defined by a security expert. ACP are
statically enforced by typed objects driven by schemas of
Create, Read, Update and Delete (CRUD) expressions. Then,
CRUD expressions are deployed at runtime in accordance
with the established ACP. Any modification in the ACP is
followed by an adaptation process to keep access control
mechanisms aligned with the policies to be enforced. A proof
of concept based on Java, JDBC [9] and SQL Server 2008 is
also presented.

This paper is organized as follows: section II presents the
motivation and related word; section III presents the

proposed approach; section IV presents a proof of concept
and, finally, section V presents the final conclusion.

II. MOTIVATION AND RELATED WORK
CuSS have been devised to improve the development

process of business logic mainly for tackling the impedance
mismatch [16]. From them, two categories have had a wide
acceptance in the academic and commercial forums: 1)
Object-to-Relational mapping (O/RM) tools [19, 20] (LINQ
[12], Hibernate [13], Java Persistent API (JPA) [11], Oracle
TopLink [21], CRUD on Rails [15]) and 2) Low Level API
(JDBC [9], OBDC [10], ADO.NET [14]). Other solutions,
such as embedded SQL [22] (SQLJ [23]), have achieved
some acceptance in the past. Others were proposed but
without any general known acceptance: Safe Query Objects
[24] and SQL DOM [25].

Listing 1 shows the usage of four CuSS (JDBC,
ADO.NET, JPA and LINQ) for updating the attribute
totalValue returned by the query “select clientId, ttlValue
from Orders where date=2012-01-31”. Programmers are
completely free to edit any CRUD expression (CRUD
expressions are encoded inside strings), to execute it (line 2,
9, 20, 27) and to update the attribute ttlValue (line 4-5, 14-
16, 21-24, 28-29). There is no sign of any ACP: neither for
the CRUD ex pression being executed nor for the updated
attribute. Beyond updating totalValue, nothing prevents
programmers from writing source code to update any other
attribute. Programmers have no guidance either on the
established ACP or on the underlying database schema. Only
after writing and running the s ource code, programmers
become aware of any ACP violation or any database schema
nonconformity. Moreover, this same source code may be

 1 // JDBC - Java
 2 rs=st.executeQuery(sql);
 3 rs.next();
 4 rs.updateFloat(“ttlValue”, newValue);
 5 rs.updateRow();
 6
 7 //ADO.NET – C#
 8 SqlDataAdapter da=new SqlDataAdapter();
 9 da.SelectCommand=new SqlCommand(sql,conn);
10 SqlCommandBuilder cb=new SqlCommandBuilder(da);
11 DataSet ds=new DataSet();
12 da.Fill(ds,"Orders");
13 DataRow dr=ds.Tables["Orders"].Rows[0];
14 dr["ttlValue"]=totalValue;
15 cb.GetUpdateCommand();
16 da.Update(ds,"Orders");
17
18 // JPA - Java
19 Query qry=em.createNamedQuery(sql,Orders.class);
20 Orders o=(Orders)qry.getSingleResult();
21 em.getTransaction().begin();
22 o.setTtlValue(value);
23 em.persist(o);
24 em.getTransaction().commit();
25
26 //LINQ – C#
27 Order ord=(from o in Orders select o).Single();
28 ord.ttlValue=value;
29 db.SubmitChanges();

Listing 1. Examples using CuSS

389

select o.clientId,SUM(o.ttlValue) as ttlValue
 from Orders as o
 where o.date between '2012-01-01' and '2012-01-31'
group by o.clientId
order by o.clientId desc

Listing 2. CRUD expression with aggregate function.

used to execute an infinite number of different CRUD
expressions requiring the same ACP, such as the one shown
in Listing 2. There is no way to avoid this type of security
violation. Even if a PEP was used, it would not solve any of
the hurdles previously presented. An example of the need for
evolving ACP, is the designation of a secretary Susanne to be
temporally allowed to update clients’ ttlValue. Her role has
to be changed but roles of other secretaries are to be kept
unchanged. ACP foresee this possibility by using the
delegation concept. The problem is the lack of preparedness
of CuSS to accommodate this situation. Source-code needs
to be modified to accommodate the new permission for
Susanne. The situation will further deteriorate if the
permission is t o be only granted while she is w ithin the
facilities of the company. The use of hard-coded mechanisms
to enforce ACP entails maintenance activities on source-code
of client-side components of database applications whenever
ACP evolve. CuSS and current access control mechanisms
are not prepared to seamlessly accommodate and enforce
these evolving ACP.

To address these issues several solutions have been
proposed.

SELINKS [18] is a programming language in the type of
LINQ and Ruby on Rails which extends Links [26]. Security
policies are coded as user-defined functions on DBMS.
Through a t ype system named as Fable, it is assured that
sensitive data is never accessed directly without first
consulting the appropriate policy enforcement function.
Policy functions, running in a remote server, check at
runtime what type of actions users are granted to perform,
basically controlling more efficiently what RDBMS are
currently able t o do, and this way not tackling the need to
master ACP and database schemas. Moreover, if ACP evolve
there will be n o way to au tomatically accommodate the
modifications in the client-side components.

Jif [27] extends Java with support for information access
control and also for information flow control. The access
control is assured by adding labels that express ACP. Jif
addresses some relevant aspects such as the enforcement of
security policies at compile time and at runtime. Anyway, at
development time programmers will only be aw are of
inconsistencies after running the Jif compiler. In spite of its
valuable contribution, Jif does not address the announced
goals of this research.

Rizvi et al. [28] uses views to filter contents of tables and
simultaneously to infer and check at runtime the appropriate
authorization to execute any query. The process is
transparent for users and queries are rejected if they do not
have the appropriate authorization. This approach has some
disadvantages: 1) the inference rules are complex and time
consuming; 2) security enforcement is t ransparent, so users
do not know that their queries are run against views; 3)

programmers cannot statically check the correctness of
queries which means they are not aware of either the ACP or
the underlying database schema.

Morin et al. [29] uses a s ecurity-driven model-based
dynamic adaptation process to address simultaneously access
control and software evolution. The approach begins by
composing security meta-models (to describe access control
policies) and architecture meta-models (to describe the
application architecture). They also show how to m ap
(statically and dynamically) security concepts into
architectural concepts. This approach is mainly based on
establishing bindings between components from different
layers to enforce security policies. Authors didn´t address the
key issue of how to st atically incorporate the established
security policies in software artifacts.

Differential-privacy [30] has had significant attention
from the research community. It is mainly focused on
preserving privacy from statistical databases. It really does
not directly address the po int here under discussion. The
interesting aspect is Frank McSherry’s [31] approach to
address differential-privacy: PINQ - a LINQ extension. The
key aspect is that the privacy guarantees are provided by
PINQ itself not requiring any expertise to enforce privacy
policies. PINQ provides the integrated declarative language
(SQL like, from LINQ) and simultaneously provides native
support for differential-privacy for the queries being written.

III. ACADA: PROPOSED APPROACH
In this section a new architecture, ACADA, is proposed

for CuSS. We first introduce an overview for the proposed
approach. Then we introduce some relevant aspects of CuSS
from which ACADA will evolve. Then, CRUD Schemas are
presented as k ey entities of ACADA. Finally, ACADA is
presented.

A. Overview
ACADA is an architecture for software solutions used in

business tiers of database applications. Each software
solution derived from ACADA, herein known as Access
Control-driven Component with Dynamic Adaptation

a)

+ACADA

ACCDA

Static
ACP

Running Platform

Monitoring
Framework

Dynamic
ACP

Running database application

ACCDA b)

Figure 2. Proposed approach for the adaptation of ACCDA a) static
composition and b) dynamic adaptation.

390

(ACCDA), is customized to address a specific need of a
business area, such as accountability, warehouse and sales.
Then, at runtime, they are dynamically adapted to be ke pt
aligned with the established ACP. This approach combines a
static composition of ACCDA and a dynamic adaptation to
the running context as shown in Figure 2. During the s tatic
composition, Figure 2 a), static parts of ACP are used to
build an ACCDA based on an architectural model
(ACADA). Static parts of ACP comprise the information
needed to build the business logic to m anage CRUD
expressions. Any modification in the static parts compels to a
new static composition. During the dynamic adaptation, see
Figure 2 b), CRUD expressions are dynamically assigned
and unassigned to running ACCDA in accordance with ACP
defined for each user. This process is continuous and may
have as input data from a m onitoring framework and from
security experts. Security experts modify ACP, for example,
to allow secretary Susanne to update clients’ ttlValue and,
therefore, to use the necessary business logic and necessary
CRUD expressions. Monitoring framework updates ACP, for
example, only to allow Susanne to update clients’ ttlValue
while she is within the facilities of the company.

B. Relevant Aspects of CuSS
To proceed with a more detailed presentation it is

advisable to learn and understand CuSS and the context in
which CRUD expressions are executed. Identifying a
common base for current approaches is a key aspect to
devise ACADA. The following shared functionalities are
emphasized:

1) To promote reusability of CRUD expressions,
parameters may be used to define runtime values. Parameters
are mainly used to define runtime values for clause
conditions and for column lists. Listing 3 shows an Update
CRUD expression with four parameters: a, b and c are
columns and d is a condition.

update table set a=?, b=?, c=? where d=?

Listing 3. CRUD expression with parameters.

 2) If CRUD expression type is Insert, Update or Delete,
its execution returns a value indicating the number of
affected rows.

3) Data returned by CRUD expressions of type Select is
managed by a l ocal memory structure (LMS) internally
created by CuSS. Some LMS are readable only and others
are readable and modifiable. Modifiable LMS provide
additional functionalities to modify their internal content:
update data, delete data and insert new data. These actions,
are equivalent to CRUD expressions and the results are
committed into the host RDBMS.

Thus, CRUD expressions are used at two levels: at the
application level and at the LMS level. At the application
level CRUD expressions are explicitly used, while at the
LMS level CRUD expressions are implicitly used. In both
cases, to guarantee compliance with established ACP and
with database schemas, CRUD expressions need to be

emanated from the established ACP and from database
schemas and not from programmers’ will. In reality, CRUD
expressions and LMS are the key assets of CuSS to interact
with RDBMS. They are the entities used to read data from
databases and to alter the state of databases.

C. Crud Schemas
CRUD expressions and LMS are two key entities of

ACADA. They are the entities used to interact with
databases and, therefore, the privileged entities through
which ACP may be enforced. To this end, ACADA
formalizes CRUD expressions and LMS using a schema
herein known as CRUD schema. A CRUD schema is a set of
services needed to manage the execution of CRUD
expressions and the associated LMS (only for Select CRUD
expressions). It comprises four independent parts: a) a
mandatory type schema – the CRUD type - query (Select) or
execute (Insert, Update or Delete); b) an optional parameter
schema – to set the runtime values for the conditions used
inside SQL clauses, such as the “where” and “having”
clauses and runtime values for column lists (only for Insert
and Update CRUD expressions); c) mandatory result
schema for Insert, Update and Delete CRUD expressions – to
handle the number of affected rows during the CRUD
expressions execution and, finally, d) a m andatory LMS
schema for Select CRUD expressions – to manage the
permissions on the LMS.

Table I shows a possible definition for the permissions on
an LMS derived from the CRUD expression Select a,b,c,d,e
from table. This access matrix [32] like representation,
defines for each attribute of this LMS, which LMS
functionalities (read, update, insert, delete) are authorized.
delete action is authorized in a tuple basis and, therefore, it is
executed as an atomic action for all attributes.

TABLE I. TABLE OF PERMISSIONS IN A LMS

 a b c d
Read yes no yes yes
Update no yes no yes
Insert yes yes no no
delete yes

D. ACADA Presentation
Figure 3 presents a class diagram for an ACADA model,

for building ACCDA. Figure 3 a) presents the entities used to
define CRUD schemas. Figure 3 b) presents the final class
diagram of ACADA. There are six types of entities: ILMS,
ICrudSchema, Manager, IFactory, IConfig and CrudSchema:

ILMS (used for Select CRUD expressions only) defines
the permissions on LMS, following the approach presented
inTable I: IRead defines the readable attributes, IUpdate
defines the updatable attributes, IInsert defines the insertable
attributes and IDelete defines if LMS’s rows are deletable.
Aditionally, ILMS also uses IScroll to define the scrollable
methods to be made available.

ICrudSchema is used to model the business logic for each

391

«interface»
ILMS

IRead IUpdate

IInsert
IDelete

IScroll

Only if readable and
only readable attributes

Only if insertable and
only insertable attributes

Only if deletable

Only if updatable and
only updatable attributes

+execute(in param_1,...,param_n)

«interface»
ICrudSchema

ILMS Only if Select

Only if Insert or
Update or Delete

IResult

a)

b)

+addCRUD(in crudId : int, in crud : string, in crudSchemaId : int)
+removeCRUD(in crudId : int, in crudSchemaId : int)

«interface»
IConfig

#CrudSchema_1(in conn : Connection, in crud : string)

CrudSchema_1
ICrudSchema_1

#CrudSchema_n(in conn : Connection, in crud : string)

CrudSchema_n
ICrudSchema_n

+CrudSchema_1(in crudId : int) : ICrudSchema_1
+...()
+CrudSchema_n(in crudId : int) : IBusinessContract_n

«interface»
IFactory

+getInstance(in username : string, in password : string, in url : string, in port : int) : IFactory

Manager

*
1

1 *

Figure 3. Class diagram for ACADA: a) entities used to define schemas of CUD expressions; b) final class diagram of ACADA.

CRUD schema instance – see ICrudSchema_1, …,
ICrudSchema_n, in Figure 3 b). It comprises a mandatory
method, execute(param_1,…,param_n), to set the parameter
schema and to execute CRUD expressions, and two optional
interfaces: ILMS and IResult. IResult (for Insert, Update and
Delete CRUD expressions only) implements the result
schema.

CrudSchema is used to implement ICrudSchema. The
arguments conn and crud are a co nnection object to a
database and the CRUD expression to be managed,
respectively. Each CrudSchema is a ble to manage any
CRUD expression with equivalent schema. CRUD
expressions with the same CRUD Schema are herein known
as sibling CRUD expressions. Listing 4 presents two simple
sibling CRUD expressions: both are Select, both have the
same select list, none has column list or condition list
parameters. This property is an o pportunity to extend the
adaptation capability of ACADA. In practice each
CrudSchema is able to manage an infinite number of sibling
CRUD expressions. Thus, any CrudSchema used by UserA
is able to manage not one CRUD expression but one set of
sibling CRUD expressions and the same CrudSchema may
be used by UserB to manage a different set of sibling CRUD
expressions.

Select * from table;
Select * from table where id=10;

Listing 4. 2 Sibling CRUD expressions.

 Manager implements two interfaces (IFactory and
IConfig) and is the entry point for creating instances of
ACCDA (using getInstance, authentication is r equired). url
and port are used to connect to a component responsible for
the dynamic adaptation process and for the authentication of
users.

IConfig is used to dynamically adapt running instances of
ACCDA to u sers previously authenticated. The dynamic
process comprises the deployment of CRUD expressions and
also the required information to set the connection to
RDBMS (not shown). Each CRUD expression is assigned to
a CrudSchema responsible for its management. IConfig is
implemented using a socket to decouple ACCDA from
components responsible for managing the dynamic
adaptation process.

 IFactory is u sed to create instances of
CrudSchema.Users request the access to a CrudSchema and
to a CRUD expression. The access is granted or denied
depending on the ACP defined by the dynamic adaptation
process.

IV. PROOF OF CONCEPT
In this section a proof of concept based on Java and

JDBC (sqljdbc4) for SQL Server 2008, is presented. A
component, herein known as ACEngine, was developed to
automatically create releases of ACCDA. The biggest
challenge was centered on the approach to be followed to
formalize CRUD schemas to be used to define the target
business area. Several approaches were considered, among
them XML and standard Java interfaces. In spite of being
less expressive than XML, Java interfaces proved to be an
efficient and effective approach. Programmers do not need to
use a different development environment, interfaces are basic
entities of any object-oriented programming language and
are widely used, interfaces are easily edited and maintained
and, finally, CRUD schemas have also been defined as
interfaces, see Figure 3. These were the fundamental reasons
for having opted for Java interfaces in detriment of XML.

ACEngine accepts as input, for each CRUD schema, one
interface extending all the necessary interfaces as defined in

392

ICrudSchema and shown in Figure 3. Then, through
reflection, ACEngine detects which interfaces are defined
and which methods need to be implemented to automatically
create the source code.

A component for the dynamic adaptation process was
also created. The main information is organized around
users. For each user it is defined its authentication
parameters (username and password), the assigned CRUD
expressions and the correspondent CrudSchemas. Any
modification in this information is immediately sent to users
running ACCDA instances.

The example to be presented is based on the Select and
on the permissions used in Table I.

Figure 4 shows the four interfaces used to formalize the
LMS’s permissions, which are in agreement with Table I.
CuSS use the same access methods for updating and for
inserting attributes. This approach prevents the separation
between update permissions and insert permissions.
Therefore, to overcome this limitation, access methods of
IUpdate and IInsert have been given different names.
IUpdate use a pr efix u and IInsert use a pr efix i. Some
additional methods, such as uUpdate() and iBeginInsert() are
used to implement the update and insert protocols defined by
JDBC for LMS.

Figure 4. IRead, IUpdate, IInsert and IDelete interfaces.

Figure 5 presents the usage of ACCDA from a
programmer’s perspective. An attempt is done to create a
new ACCDA instance (line 29). It will raise an exception if a
connection to ACDynam fails or if authentication fails.
Authentication is processed by ACDynam and if it
succeeds, ACDynam transfers to ACCDA all th e CRUD
expressions, in accordance with the ACP assigned to the
authenticated user. Then, an attempt is made to create an
instance of a crudSchema for managing the CRUD
expression identified by token 1 (line 30). As previously
mentioned, programmers c annot ed it CRU D
expressions.They are only allowed to use CRUD expressions
made available by ACDynam, overcoming this way the
security gap of CuSS. If it fails (user is not authorized to

Figure 5. ACCDA from the programmer’s perspective.

execute the CRUD expression), an exception is raised. If not,
CRUD expression is executed (line 31) and LMS is scrolled
row by row (line 32). The dynamic adaptation is on behalf of
ACDynam that, at any time, may modify the permission to
use this CRUD expression. There is no need to update any
source-code this way overcoming CuSS to be adapted to
evolving ACP. The three readable attributes are read (line
33-35). Update protocol is started (line 36). Auto-completion
window (line 38-43) shows the available methods to update
attributes of LMS, relieving programmers from mastering the
established ACP and database schema. This type of guided-
assistance is available for all operations involving ACCDA,
this way overcoming the need for mastering ACP and
database schemas when using CuSS.

V. CONCLUSION
In this paper a new architecture (ACADA) was presented

to devise solutions driven by ACP and able to be
dynamically adapted to deal with evolving ACP. The
adaptation process of each ACCDA release is achieved in a
two phase approach: static composition and dynamic
adaptation. Static composition is tr iggered whenever a
maintenance activity is n ecessary in CRUD S chemas.
Dynamic adaptation is a continuous process where CRUD
expressions are deployed to running ACCDA instances in
accordance with ACP. ACP are dynamically updated by a
monitoring framework and/or by security experts.

Source code is automatically generated from an
architectural model and from ACP defined by a security
expert. In opposite to CuSS, programmers using ACCDA are
relieved from mastering ACP and database schemas, and
also from writing CRUD expressions. Security is ensured by
preventing programmers from writing CRUD expr essions
and by controlling dynamically, at runtime, the set of CRUD
expressions that each user may use. Evolving ACP are
seamlessly supported and enforced by ACCDA. An
independent and external component keeps the access control
mechanisms of ACCDA updated at runtime by assigning and
unassigning CRUD expressions. This adaptation capability
of ACCDA avoids maintenance activities in the core client-
side components of database applications when ACP evolve.
The adaptation capacity is significantly improved by

393

CrudSchema design which, theoretically, is able to manage
an infinite number of sibling CRUD expressions.

Summarizing, ACADA overcomes the four drawbacks of
CuSS. This achievement is mostly grounded on its two phase
adaptation process: static composition and dynamic
adaptation.

It is expected that this work may open new perspectives
for enforcing evolving ACP in business tier components of
database applications.

REFERENCES
[1] P. Samarati and S. D. C. d. Vimercati, "Access Control: Policies,

Models, and Mechanisms," Foundations of Security Analysis and
Design, pp. 137-109, 2001.

[2] P. Samarati and S. D. C. d. Vimercati, "Access Control: Policies,
Models, and Mechanisms," presented at the Revised versions of
lectures given during the IFIP WG 1.7 International School on
Foundations of Security Analysis and Design on Foundations of
Security Analysis and Design: Tutorial Lectures, 2001.

[3] S. D. C. d. Vimercati, S. Foresti, and P. Samarati, "Recent Advances
in Access Control - Handbook of Database Security," M. Gertz and S.
Jajodia, Eds., ed: Springer US, 2008, pp. 1-26.

[4] D. Basin, J. Doser, and T. Lodderstedt, "Model Driven Security: From
UML Models to Access Control Infrastructures," ACM Transactions
on Software Engineerig and Methodology, vol. 15, pp. 39-91, 2006.

[5] R. Breu, G. Popp, and M. Alam, "Model Based Development of
Access Policies," International Journal on Software Tools for
Technology Transfer, vol. 9, pp. 457-470, 2007.

[6] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl, "MAC and UML
for Secure Software Design," presented at the Proceedings of the 2004
ACM Workshop on Formal Methods in Sec urity engineering,
Washington DC, USA, 2004.

[7] I. Ray, N. Li, R. France, and D.-K. Kim, "Using UML to Visualize
Role-based Access Control Constraints," presented at the Proceedings
of the ninth ACM Symposium on Access Control Models and
Technologies, Yorktown Heights, New York, USA, 2004.

[8] OASIS, "eXtensible Access Control Markup Language (XACLML),"
ed: OASIS Standard.

[9] M. Parsian, JDBC Recipes: A Problem-Solution Approach. NY, USA:
Apress, 2005.

[10] Microsoft. (2011 Oct). Microsoft Open Database Connectivity.
Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[11] D. Yang, Java Persistence with JPA: Outskirts Press, 2010.
[12] M. Erik, B. Brian, and B. Gavin, "LINQ: Reconciling Object,

Relations and XML in the .NET framework," in A CM SIGMOD
International Conference on Management of Data, Chicago,IL,USA,
2006, pp. 706-706.

[13] B. Christian and K. Gavin, Hibernate in Action: Manning Publications
Co., 2004.

[14] G. Mead and A. Boehm, ADO.NET 4 Database Programming with C#
2010. USA: Mike Murach & Associates, Inc., 2011.

[15] D. Vohra, "CRUD on Rails - Ruby on Rails for PHP and Java
Developers," ed: Springer Berlin Heidelberg, 2007, pp. 71-106.

[16] M. David, "Representing database programs as objects," in Advances
in Database Programming Languages, F. Bancilhon and P. Buneman,
Eds., ed N.Y.: ACM, 1990, pp. 377-386.

[17] OASIS. (2012 Feb). XACML - eXtensible Access Control Markup
Language. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[18] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, Label-based
Security Enforcement for Web Applications," presented at the
Proceedings of t he 35th SIGMOD International Conference on
Management of Data, Providence, Rhode Island, USA, 2009.

[19] W. Keller, "Mapping Objects to Tables - A Pattern Language," in
European Conference on Pattern Languages of Progra mming
Conference (EuroPLoP), Irsse, Germany, 1997.

[20] R. Lammel and E. Meijer, "Mappings Make data Processing Go
'Round: An Inter-paradigmatic Mapping Tutorial," in Generative and
Transformation Techniques in Software Engineering, Braga, Portugal,
2006.

[21] Oracle. (2011 Oct). Oracle TopLink. Available:
http://www.oracle.com/technetwork/middleware/toplink/overview/ind
ex.html

[22] J. W. Moore, "The ANSI binding of SQL to ADA," Ada Letters, vol.
XI, pp. 47-61, 1991.

[23] Part 1: SQL Routines using the Java (TM) Programming Language,
1999.

[24] R. C. William and R. Siddhartha, "Safe query objects: statically typed
objects as remotely executable queries," in 27th International
Conference on Software Engineering, St. Louis, MO, USA, 2005, pp.
97-106.

[25] A. M. Russell and H. K. Ingolf, "SQL DOM: compile time checking
of dynamic SQL statements," in 27th International Conference on
Software Engineering, St. Louis, MO, USA, 2005, pp. 88-96.

[26] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, "Links: Web
Programming Without Tiers," presented at the Proceedings of the 5th
International Conference on Formal Methods for C omponents and
Objects, Amsterdam, The Netherlands, 2007.

[27] D. Zhang, O. Arden, K. Vikram, S. Chong, and A. Myers. (2011 Dec).
Jif: Java + information flow. Available: http://www.cs.cornell.edu/jif/

[28] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, "Extending Query
Rewriting Techniques for Fine-grained Access Control," presented at
the Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, Paris, France, 2004.

[29] B. Morin, T. Mouelhi, F. Fleurey, Y. L. Traon, O. Barais, and J.-M.
Jézéquel, "Security-Driven Model-based Dynamic Adaptation,"
presented at the Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
2010.

[30] C. Dwork, "Differential Privacy: A Survey of Results," presented at
the Proceedings of the 5th International Conference on T heory and
Applications of Models of Computation, Xi'an, China, 2008.

[31] F. McSherry, "Privacy Integrated Queries: An Extensible Platform for
Privacy-preserving Data Analysis," Commun. ACM, vol. 53, pp. 89-
97, 2010.

[32] B. W. Lampson, "Protection," SIGOPS Operating Systems Review,
vol. 8, pp. 18-24, 1974.

394

Connectors for Secure Software Architectures

Michael E. Shin,
Bhavya Malhotra

Department of Computer Science
 Texas Tech University

Lubbock, TX 79409-3104
{michael.shin;

bhavy.malhotra}@ttu.edu

 Hassan Gomaa
Department of Computer

Science
George Mason University
Fairfax, VA 22030-4444

hgomaa@gmu.edu

Taeghyun Kang
Department of Computer

Science
Texas Tech University

Lubbock, TX 79409-3104
th.kang@ttu.edu

Abstract

This paper describes secure software connectors
encapsulating security services, which are designed
separately from application business components in
software architectures for business applications. Secure
connectors provide application business components with
security services when these components need the
services. Each secure connector is structured with
security relevant objects associated with security services
that are needed to make software applications secure. In
this paper, secure connectors are designed for different
types of communication, such as either synchronous or
asynchronous communication, as well as for different
security services, such as authentication, authorization,
confidentiality, integrity, and non-repudiation. Secure
connectors can make complex applications more
maintainable by separating security concerns from
application concerns in the software architectures. Secure
connectors are applied to the software architecture of an
e-commerce application.

1. Introduction

With the widespread use of internet technologies, the
threats to software applications are increasing day by day.
It has become essential to design secure software
architectures for applications to counter potential threats.
The software architecture can be composed of
components and their connectors in which connectors
encapsulate the details of comm unication between
components. However, mixing security concerns with
business concerns in s oftware architectures makes
applications more complex. Therefore designing security
concerns separately from the busi ness concerns would
make the applications more maintainable.

Several approaches have been de veloped to design
secure applications by means of separation of concerns in
software development. Most of t he approaches have
focused on m aking application business components
secure so that the components perform security services .
But less attention has been paid to connectors, which can
provide security serv ices for application business
components. Security concerns can be encapsulated in

software connectors, which are referred to as secure
connectors, separately from application com ponents
containing application business logic.

This paper describes the secure connectors that are
used to design the software architectures for secure
applications. The secure connectors are de signed
separately from application busine ss components by
considering different communication patterns between the
components as well as security services required by
application components. Each sec ure connector
encapsulates security rele vant objects to provi de
application components with security services. Once
secure connectors are m ade, they can be reused for
different applications if they match both the required
security services and re quired communication pattern
between application components. In this paper, secure
connectors are applied to the software architecture of an
e-commerce application.

This paper is organized as follows. Section 2 prese nts
existing approaches to implementing security concerns in
software applications syste ms. Section 3 desc ribes the
secure connectors for synchronous and asynchronous
communication between application components. Section
4 concludes this paper.

2. Related Work

Related work focuses on approaches to d esigning
software architectures for secure applications.

Banerjee et. al. [1] identified s everal critical
dimensions of software security and related them to the
building blocks of software architecture. The critical
dimensions for a se cure software system are
authentication, access c ontrol, confidentiality, integrity,
availability and non-repudiation. The software
components, connectors and their confi gurations are t he
architectural building blocks, which can be customized to
enforce the security dimensions. However, no f ormal
methodology has been specified in [1] t o inject security
into software architecture.

The security mechanisms are formalized and
embedded directly into the soft ware architecture via
components in [2]. A component in [2] incorporates
multilevel security, in which input and output of that

395

component are properly labeled with security levels. The
component enforces the multilevel security policy
internally so that security mechanisms are i ntended to
provide secure access c ontrol. This technique is
developed for a single security model, so it is restricted to
access control. Other security features a re not taken into
account.

Deng et. al. [3] proposed a methodology to m odel
secure software architectures and verify whether required
security constraints are assured by t he composition of
components of the system. This approach introduces
security constraint patterns, which specify the se curity
policies that the security syste m must enforce. However,
this approach is lack ing focus on what type and fo rm of
security policies should be used in a give n context and
how to im plement them in a system d esign. The
components are considered the central units for assembly
and deployment. Interactions between components are
captured in component interfaces.

Using connectors as the central construct, a distributed
software architecture in [4] is com posed of a set of
components and a set of connect ors that can be used to
connect the components. The Unified Modeling Language
(UML) [10, 11] is used to describe the com ponent
interconnection patterns for synchronous, asynchronous
and brokered communications. Though different kinds of
connectors are proposed in [4], t here are no
considerations for en forcing security in to these
connectors. The message communication via the
connectors between components is not secure.

In [5], a connector centric approach is used to model,
capture, and enforce security. The security characteristics
of a software architecture are described and enforce d
using software connectors. An e xtensible architecture
security contract specified by components is regulated
and enforced by connectors. Connectors can decide what
principals can e xecute the connected components. But,
this approach models only access control as a security
concern. The security properties like confidentially, non-
repudiation and integrity are not taken into account.

Aspect-oriented design (AOD) techniques in [6] are
used to encapsulate security concerns in complex systems.
Different security concerns are modeled as aspects that
can be woven into models of essential functionality. The
mechanisms required to protect against attacks are used to
identify the needing aspects and the strategy for weaving
them into a design. There ar e many benefits of t reating
security concerns as aspects during design m odeling, but
this approach requires s oftware engineers to know
knowledge of aspect-oriented design.

In earlier work by the aut hors [7], an approach is
described to model complex applications by m odeling
application requirements and designs separately from
security requirements and designs using the UML
notation. Security requirements are captured in security
use cases and encapsulated in security objects. When a

system requires security serv ices, security use cases are
extended from the non-secure business use case at
extension points. However, [7] paid relatively less
attention to secure application architecture where security
requirements can be m apped to a sec ure software
architecture.

In later work by the aut hors [8], an approach is
described for modeling the evolution of a non-secure
application to a secure application in term s of a
requirements model and a software architecture. In the
software architecture, security services a re encapsulated
in connectors separately from components. The sec urity
services are activated if the security requirement
conditions are satisfied. However, this approach does not
offer various secure connectors that are used for different
communication patterns and security services.

3. Secure Connectors

The software architecture [14, 15] for concurrent a nd
distributed applications can be designed by m eans of
components and connectors. The components address the
functionality of an application, whereas connectors deal
with communication between components. Each
component defines application business logic that is
relatively independent of th ose provided by other
components. A component may request ser vices from
other components, or provide services to them through
connectors. A connector acts on behalf of components in
terms of com munication between components,
encapsulating the det ails of i nter-component
communication.

Separately from application com ponents, security
services can be encapsulated in connec tors between
components in the software architecture for concurrent
and distributed applications [8]. The original role of
connectors in the software architecture is t o provide the
mechanism for m essage communication between
components [14, 15]. However, in this paper, the role of
connectors is extended to security by adding security
services to the connectors, which are referred to as secure
connectors. Secure connectors are designed by
considering both the security serv ices required by
components and the type of message communication
required between the components.

The security services provided for components are
confidentiality, integrity, non-repudiation, access control,
and authentication, as follows:

Confidentiality security service, which prevents
secret information from being disclosed to any
unauthorized party, can be achieved by secu re
connectors encapsulating cryptosystems.
Integrity security service, which protect s against
unauthorized changes to sec ret information, can be
performed by secure connectors using message digest
(MD) or message authentication code (MAC) [13].

396

Non-repudiation security service protects against one
party to a transaction later falsely denying that the
transaction occurred. Non-repudiation security
services can be realized using digital signatures [13].
Access control security service protects a gainst
unauthorized access to valuable resources. Access
control may be implemented using mandatory access
control (MAC) or role-based access control [12, 16].
Authentication security service allows an entity (a
user or system) to identify itself positively t o another
entity. This can be achieved using a password,
personal-identification number or challenge response.

Typical message communication patterns between
components are asynchronous (loosely coupled) m essage
communication and synchronous (tightly couple d)
message communication [9], although there are other
types of c ommunications between components. An
asynchronous message is sent from a sender component to
a receiver component and is stored i n a queue if the
receiver is busy. The sender component can continue to
send the next message to the receiver component as long
as the que ue is not full. In sy nchronous message
communication, a sender component sends a message to a
receiver component and waits for a response from the
receiver. When a re sponse arrives from the receive r, the
sender can continue to work and send the next message to
the receiver.

A distributed secure synch ronous connection is
provided by means of a pair of c onnectors, namely a
secure synchronous sender connector a nd a sec ure
synchronous receiver connector. The secure synchronous
sender and receiv er connectors act as stub s sending and
receiving messages for the ir respective components.

When the s ecure sender connector receives a message
from the sender component, it ap plies the security
services to the message if required by the component. The
secured message is packed by the secure sender
connector, which sends it to the secure synchronous
receiver connector. When the receiver connector receives
a secured and packed message, it c hecks the security of
message and unpacks the message before sending it to the
receiver component. Conversely, a response is sent from
the receiver c omponent to the sender component via
secure connectors. If the response requires security
services, the secure connectors apply the appropriate
security services.

Fig. 1 depicts secure synchronous sender and receiver
connectors for browsing a c atalog that re quires catalog
access control and cust omer identity confidentiality
security services between the Customer and Catalog
application components in the business to business (B2B)
electronic system. A custom er browses through va rious
WWW catalogs and views various catalog items from a
given supplier's catalog. The customer may need
permission to access a specific catalog, and the customer
identity for access control may also nee d to be
confidential. These security requirements are handled by
two secure synchronous connectors, the secure
synchronous Customer Interface connector for Customer
Interface application com ponent and the secure
synchronous Catalog Server connector for Catalog Server
component. The security services for c atalog access
control and custom er identity confidentiality are
encapsulated in the secure synchronous Custom er
Interface and Catalog Server connectors, separately from
Customer Interface and Catalog Server components.

<<secure connector>>
aSynchronousCustomer

InterfaceConnector

<<application
component>>

aCustomerInterface

<<application
component>>

:aCatalogServer

<<resource>>
:Network

<<stub>>
:Catalog

ServerStub

A1: Request (out Catalog
Index)
A2: Catalog Selection (in
Customer Identity, out
Catalog)

A1.1: Request Catalog Index
A2.2: Encrypted Customer Identity &
Catalog Selection

A1.3: Request Catalog Index
(out Catalog Index)
A2.6 [Authorized]: Request (out
Catalog)

<<secure connector>>
aSynchronousCatalog

ServerConnector

A1.4: Catalog Index
A2.7: Catalog

A1.5: Catalog Index
A2.8: Catalog

<<security service>>
:AccessControlAgent

A2.5 [Catalog requires access
control]: Authorize (in Customer
Identity, in Catalog Selection, out
Permission)

<<security service>>
:DecryptionAgent

A2.4 [Customer Identity
requires confidentiality]:
Decrypt (in Encrypted
Customer Identity, out
Customer Identity)

<<stub>>
:Customer

Stub

<<security service>>
:Encryption

Agent
A2.1 [Customer Identity
requires confidentiality]:
Encrypt (in Customer Identity,
out Encrypted Customer Identity)

A1.2: Request Catalog Index
A2.3: Encrypted Customer Identity &
Catalog Selection

Fig. 1 Secure Synchronous Connector for Confidentiality and Access Control security services

397

The catalog access control and c ustomer identity
confidentiality security serv ices are implem ented in
security objects in th e secure synchronous Customer
Interface and Catalog Server connectors in Fig. 1. For
customer identity confidentiality, the secure synchronous
Customer Interface connector contains the Encryption
Agent security object, whereas the secure synchronous
Catalog Server connector encapsulates the Decryption
Agent security object (Fig. 1). Consider the following
secure connection scenario in which the customer requires
confidentiality: The Cust omer Stub i n the secure
synchronous Customer Interface connector requests the
Encryption Agent security object to encrypt the customer
identity (message A2.1 in Fig. 1). The Encryption Agent
security object encrypts the customer identity with a key .
The Customer Stub then sends the encrypted message to
the Catalog Server (messages A2.2, A2.3). The encrypted
customer identity is decrypted by the Decryption Agent
security object in the secure synchronous Catalog Server
connector (message A2.4 through i n Fig. 1). Access to a
specific Catalog is controlled by the secure synchronous
Catalog Server connector th at encapsulates the Access
Control Agent security obj ect (Fig. 1). The Catalog St ub
requests Access Control Agent security obj ect to
authorize customer access to a specific catalog if catal og
requires access control (message A2.5). Access Control
Agent authorizes a c ustomer access to a catalog item
(message A2.6) depending on the organization’s access
control policy.

Fig. 2 depicts a secure synchronous connector that
provides authentication security service for p aying a
selected product in the business to customer (B2C)
electronic commerce system. A customer puts an item on

a product cart and logs into his/her account on the
website. The custom er needs to be authenticated to get
access to his/her account. This authentication security
service can be implemented in the sec ure synchronous
Payment Server connector, separately from Customer
Interface component and Payment Server component. The
secure synchronous Payment Server connector is
structured with Authentication Agent and Authentication
Data security objects to au thenticate a customer identity.
Consider the following secure connection sce nario in
which the customer requires authentication: The Payment
Stub in the c onnector requests the Aut hentication Agent
security object to aut henticate a customer identity
(message C4 in Fig. 2). The Authentication Agent
security object verifies a customer identity using t he data
stored in the Authentication Data security object (message
C5).

A distributed secure asynchronous connection is
provided by means of a secu re asynchronous sender
connector and a secure asynchronous receiver connector.
A secure asynchr onous connector provides components
with security services while it follows the c omponent
interconnection pattern for loosely coupled message
communication. A secure asynchronous sender connector
can encapsulate an Encryption Agent security object that
encrypts a plain m essage before se nding the message to
the receiver, whereas a se cure asynchronous receiver
connector contains a Dec ryption Agent secu rity object
that decrypts a cipher message to a plain message. T hese
security objects are exec uted if application com ponents
require the confidentiality security service.

<<secure connector>>

aSynchronousCustomer
InterfaceConnector

<<application
component>>

aCustomer Interface

<<application
component>>

:aPaymentServer

<<resource>>
:Network

C1: RequestBill (in
Customer Identity, out
Billing Information)

C2: Customer
Identity

C8: Billing
Information<<stub>>

:Customer
Stub

C3:Customer Identity

<<stub>>
:Payment

ServerStub

<<secure connector>>
aSynchronousPayment

ServerConnector

C7: Billing Information

<<security service>>
:AuthenticationAgent

C4 [Customer requires
authentication]: Authencate
(in Customer Identity, out
Result)

<<security service>>
:AuthenticationData

C6 [Authenticated]: Request
(out Billing Information)

C5: Read (out Data)

Fig. 2 Secure Synchronous Connector for Authentication security service

398

<<secure connector>>
anAsynchronousCustomer

InterfaceConnector

<<application
component>>

:aCustomer Interface

<<application
component>>

:aDeliveryOrder

<<resource>>
:Network

<<stub>>
:DeliveryOrder

Stub

B1: Customer
Order

B4: Encrypted Purchase Request &
Signature

B8: [Verified]:
Purchase Request

<<secure connector>>
anAsynchronous

DeliveryOrderConnector

<<security service>>
:Signature Verification

Agent B7 [Purchase request requires non-
repudiation]: Verify (in Purchase Request &
Signature, out Result)

<<security service>>
:Decryption

Agent B6 [Purchase request requires
confidentiality]: Decrypt (in
Encrypted Purchase Request &
Signature, out Purchase Request &
Signature)

<<stub>>
:Customer

Stub
<<security service>>

:Signature
Agent

B3 [Purchase request requires
confidentiality]: Encrypt (in
Purchase Request & Signature out
Encrypted Purchase Request &
Signature)

B5: Encrypted Purchase
Request & Signature

<<security service>>
:Encryption

Agent

B2 [Purchase request requires non-
repudiation]: Sign (in Purchase Request,
out Purchase Request & Signature)

Fig. 3 Secure Asynchronous Connector for Confidentiality and Non-repudiation security services

For an integrity security service, a secure asynchronous
sender connector can have an Integrity Generation Agent
security object to generate a message digest for a message
being sent. The message digest is sent to the re ceiver
along with the original message. A secure asynchronous
receiver connector encapsulates the Integrity Checking
Agent security obj ect, which checks the integrity of t he
message by m eans of comparing the received message
digest with the message digest generated by the receiver
using the received message. These Integrity Generation
and Checking security objects are performed if
application components require an integrity security
service.

In addition, a secure asyn chronous sender connector
can contain a Signature Agent security object that signs a
message. The signature and original message are sent
from the sender connector to the receiver connector. The
secure asynchronous receiver connector e ncapsulates the
Signature Verification Agent security object to prove the
authenticity of the received signature. The signature for a
message is st ored at t he Signature Verification Agent
security object for later use. These sec urity objects are
activated if application components require a non-
repudiation security service.

Fig. 3 depicts a sec ure asynchronous connector for
confidentiality and non-repudiation security services,
which are required for sending a purchase request from a
customer to a supplier in the electronic commerce system.
The secure asynchronous Customer Interface connector is
structured with Encryption Agent and Signature Agent

security objects. The secure asynchronous Delivery Order
connector contains corresponding Decryption Agent and
Signature Verification Agent security objects. Consider
the following confidential purchase request scenario: The
Customer Stub in the sender c onnector requests the
Signature Agent security object to si gn the purc hase
request with a key (m essage B2 in Fi g. 3). Th en the
Customer Stub se nds the signed purchase request to t he
Encryption Agent security object to e ncrypt the secret
data with a key (message B3 in Fi g. 3). The encrypted
purchase request and signa ture are decrypted by the
Decryption Agent security object (message B6 in Fig. 3),
and then the signature is v erified by the Signature
Verification Agent security object (message B7 in Fig. 3).

4. Conclusions

This paper has described an approach to desi gning
secure connectors that make software architectures secure
for software applications. Secure connectors contain
security objects to im plement the security services
separately from application com ponents. These security
objects are a ctivated only if application com ponents
require the desired security services such as
authentication, access c ontrol, confidentiality, integrity,
and non-repudiation. Secure connectors have been
designed by considering communication patterns between
application components in software architecture. Secure
connectors can make complex systems more maintainable
by separation of sec urity concerns from application

399

concerns. A secure connector can be reused in different
applications if it m atches the security requirem ent and
communication style between application components. To
validate this approach, the s ecure connectors have been
implemented in an electronic commerce application.

This paragraph describes future resea rch for sec ure
connectors. The security services provided by secure
connectors described in t his paper are confidentiality,
integrity, non-repudiation, authentication, and
authorization. Secure c onnectors can be extended to
include an availability security service, which should be
capable of preventing deliberate denial of services in a
software application. In addition, security connectors can
be specialized to ones that realize specific m ethods or
algorithms. For e xample, a secure connector containing
access control security servi ce can be implemented with
role-based access control or mandatory access control. To
realize these specific methods or algorit hms, a secure
connector could be specialized to create the a ppropriate
secure objects. In addition, secure connectors can be
building blocks for composing secure software
architectures along with application components. Future
work needs more investigation on how software
architectures for secure applications can be composed of
secure connectors and application components.

References

[1] S. Banerjee, C. A. Mattmann, N. Medvidovic, and L.
Golubchik, “Leveraging Architectural Models to Inject
Trust into Soft ware Systems,”
Proceedings of the ICSE 2005 Works hop on Software
Engineering for Sec ure Systems, St. L ouis, Missouri,
May, 2005.

[2] M. Moriconi, X. Qian, R. A. Riemenschneider, and Li
Gong “Secure Software Architectures,” IEEE Symposium
on Security and Privacy, 1997.

[3] Y. Deng, J. Wang, J. J. P. Tsai, and K. Beznosov, “An
Approach for Modeling and Analysis of Security System
Architectures,” IEEE Transactions on Knowledge and
Data Engineering, vol.15, no.5, pp.1099-1119, Sept/Oct,
2003.

[4] H. Gomaa, D. A. Menasce, and M. E. Shin, “Reusable
Component Patterns for Distributed Software
Architectures,” Proceedings of ACM Symposium on
Software Reusability, ACM Press, Pages 69-77, Toronto,
Canada, May 2001.

[5] J. Re n, R. Taylor , P. Dourish, and D. Redmiles,
“Towards An Architectural Treatment of Softwa re
Security: A Connector-Centric Approach,”
Proceedings of the Workshop on Software Engineering

for Secure Systems, St. Louis, Missouri, USA, May 15-16,
2005.

[6] G. Gong, I. Ray, and R . France, “Using Aspects to
Design a Sec ure System,” Proceedings of the 8th IEEE
International Conference on Engineering of Com plex
Computer Systems, December, 2002.

[7] H. Gomaa, M. E. Shin , “Modeling Complex Systems
by Separating Application and Security Concerns” 9th

IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2004), Italy, April,
2004.

[8] M. E. Shin and H. Gomaa, “Software Modeling of
Evolution to a Secure Application: From Requirements
Model to Soft ware Architecture,” Science of Computer
Programming, Volume 66, Issue 1, April 2007, pp. 60-70.

[9] H. Gomaa, “Software Modeling and Design: UML,
Use Cases, Patterns, and Software Architectures”,
Cambridge University Press, February 2011.

[10] G. Booch, J. Rumbaugh, and I. Jacobson, “The
Unified Modeling Language User Guide,” Addison
Wesley, 2nd Edition, 2005.

[11] J. Ru mbaugh, G. Booch, and I. Jaco bson, “The
Unified Modeling Language Reference Manual,”
Addison-Wesley, 2nd Edition, 2004.

[12] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, “Role-based access control models,” IEEE
Computer, Volume 29, Issue 2, February 1996, pp. 38-47.

[13] C. P. Pfleeger, a nd S. L. Pfleege r, “Security in
Computing,” Prentice-Hall, Inc., third edition, 2002.

[14] F. B uschmann, R. M eunier, H. Rohnert, and P.
Sommerlad, "Pattern Oriented Software Architecture: A
System of Patterns," John Wiley & Sons, 1996.

[15] R. N. Ta ylor, N. Medvidovic, and E. M. Dashofy,
“Software Arcthiecture: Foundations, The ory, and
Practice,” John Wiley & Sons, 2010.

[16] D. Bas h, M. Clavel, a nd M. Egea, “A Decade of
Model-Driven Security,” 16th ACM symposium on
Access control models and technol ogies SACMAT11,
Innsbruck, Austria, June 15-17, 2011.

400

How Social Network APIs Have Ended the Age of Privacy

Derek Doran, Sean Curley, and Swapna S. Gokhale
Dept. of Computer Science & Engineering

University of Connecticut, Storrs, CT, 06269
{derek.doran,smc08002,ssg}@engr.uconn.edu

Abstract

Online Social Networks (OSNs) have captured our imag-
ination by offering a revolutionary medium for communi-
cation and sharing. Skeptics, however, contend that these
OSNs pose a grave threat to privacy. This paper seeks to ex-
amine the veracity of this skepticism by analyzing the APIs
of six popular OSNs for their propensity to violate user pri-
vacy. Our analysis lends substantial support to this skepti-
cism by finding that OSNs: (i) facilitate an extensive collec-
tion of user information; (ii) provide default access to infor-
mation of new users; (iii) do not seek comprehensive per-
missions; (iv) request these permissions ambiguously; and
(v) offer privacy settings that enable only limited control.

1 Introduction and Motivation

Online Social Networks (OSNs) are now tightly knit
into the fabric of our society. People are overwhelmingly
participating in these OSNs regardless of their age, socio-
economic, and demographic status [10]; approximately 50%
of all U.S. adults, and over 90% of all Gen-Y members use
OSNs. Moreover, the growth in the user base is staggering,
and is occurring in unconventional segments; recent data
suggests a 90% increase in users over 50 years old, while
only a 13% increase in users aged 18 to 29 [9].

OSNs can be designed for a variety of purposes. Some
such as Facebook and Orkut offer a platform to stay con-
nected with friends and acquaintances. Microblogging sites
such as Twitter provide a modern news ticker to simul-
taneously stream current events and friends’ updates [4].
OSNs also offer portals to share opinions and recommen-
dations about products and brands; and users vastly aff rm
their trust in these peer recommendations over advertise-
ments [1]. Many organizations thus seek to harness OSNs
to raise brand awareness, build reputation, and stay relevant.
Besides their commercial potential, OSNs can also serve as
channels of societal transformation; the recent Egyptian po-
litical unrest may have been precipitated with the support of
social media such as Facebook and Twitter [13].

The API of an OSN is a collection of public and open

access methods for third parties to interact with the OSN.
These APIs can be used to systematically harvest user infor-
mation, and hence, commercial organizations exploit these
APIs to collect user data for several purposes [2, 4, 14].
Most APIs also expose methods to enhance the usability of
OSN services; the Twitter API enables posts from mobile
devices, the YouTube API allows integration with TVs, and
the Facebook API facilitates photo uploads directly from
digital cameras. OSNs design their APIs to attract third par-
ties to harvest user data or to integrate their social features
into commercial products. Thus, through these APIs, OSNs
seek to embed themselves deeper into the daily experiences
of their users. These APIs thus need to be sophisticated for
third parties to collect meaningful information to offer novel
services. However, the higher the porosity of the APIs, the
greater is the chance that third parties will misuse them to
acquire unnecessary personal data and compromise user pri-
vacy. OSNs thus have to balance the conf icting priorities of
providing a rich API against protecting user privacy.

OSNs balance these competing concerns through a care-
ful consideration of three aspects in the design of their APIs.
First, they build these APIs to expose a wealth of user infor-
mation. However, they then cede control back to their users
by offering a range of privacy settings on their accounts, and
by requiring third parties to seek permissions from users be-
fore collecting their information. Users can protect their pri-
vacy through these settings and permissions by limiting the
information that third parties can retrieve. Figure 1 shows
how privacy settings and permissions form a protective bar-
rier between access queries and user information.

Most users, especially certain groups such as seniors and
minors, are very fascinated by the novel communication ca-
pabilities of OSNs, and do not appreciate their wide reach
and impact [5]. They do not realize that their shared infor-
mation may be used to their detriment by various agencies
(law enforcement, insurance, and employers) and even crim-
inals. For example, the Center for American Progress sug-
gests that had the Egyptian movement been unsuccessful,
the same OSNs that supported this movement would have
provided adequate information to track down and persecute
the protesters [13]. Even worse, they do not acknowledge
the necessity to adjust and benef t from the privacy settings
on their accounts [12]. Finally, third parties usually seek

401

broader permissions than what are legitimately necessary
for their services. Not mindful of the privacy implications,
many users grant these permissions, bypassing this layer of
protection as well. Thus, despite the mechanisms available
to limit the exposure of information, OSN APIs can easily
compromise users’ privacy.

This paper presents a comparative analysis of the propen-
sity of OSN APIs to violate user privacy. Ever since Face-
book CEO Mark Zuckerberg famously defended the change
to make user activity public-by-default, technologists have
asserted that the “Age of Privacy” on the Web is over.1 We
seek to verify the truth in this assertion by examining the
APIs of six popular and widely used OSNs. We f nd substan-
tial support for this assertion because OSNs: (i) facilitate a
collection of detailed user data; (ii) provide limited privacy
settings and control; and (iii) use ambiguous requests to seek
unnecessarily broad and general permissions.

The paper is organized as follows: Section 2 introduces
OSN APIs and privacy control mechanisms. Section 3
presents our comparative analysis. Section 4 summarizes
our f ndings and offers directions for future work.

2 OSN APIs: An Overview

Fundamentally, OSNs offer a platform for users to con-
nect, interact, and share information. Each user is repre-
sented with a prof le that contains the user’s information.
A social feed attached to the prof le provides a forum to
share information. OSN users establish connections; and
updates to their social feeds are broadcast to their connec-
tions. Popular OSNs differ with respect to what constitutes
user connections and the information shared via social feeds.
User connections on Facebook, Orkut, and Google+ are bi-
directional friendships, social feeds include status updates,
photos, videos and posts by other users, and updates can be
broadcast to all or a subset of users’ connections. Twitter
(YouTube) def nes uni-directional relationships where users
subscribe to receive other users’ updates (video uploads).

Each OSN designs an API to allow third parties to collect
information or to act on behalf of their users. These open,
Web-based APIs can be queried with HTTP requests to re-
trieve a particular user’s information. For example, the re-
quest https://graph.facebook.com/220439 re-
trieves all the public information on Facebook’s CTO. A
request to http://search.twitter.com/search.
json?q=happy returns recent tweets which include the
word happy. Frequently, the APIs also return irrelevant in-
formation; for instance, the above Twitter call returns the
name, user id, and a link to the user’s photo for each tweet.

OSN users may expect that their shared information will
be protected at the friendship, network, and public lev-
els [6]. Friendship- and network-level protection prevents
unintended disclosure, and users believe that these may be
achieved through privacy settings. They may also presume

1http://news.cnet.com/8301-17852 3-10431741-71.html

Figure 1. API access and privacy protection

public-level protection, because their notion of an OSN is a
walled garden, impenetrable without authorization. Piercing
through these privacy expectations, however, are the open
access APIs. Most OSNs thus try to restore users’ percep-
tion of privacy by empowering them with two forms of con-
trol: (i) conf gurable privacy settings; and (ii) express per-
mission requests from third parties.

Understanding how the APIs of six popular OSNs bal-
ance these competing concerns of information access ver-
sus user privacy is the focus of this paper. We choose these
OSNs because of their extreme popularity, widely varying
purposes, and unique features as summarized in Table 1. We
measure popularity in terms of the number of users2 and in-
clude representative (not exhaustive) prof le data.

3 Comparative Analysis

We extensively analyzed the online documentation, and
aggregated the details of each OSN API along three dimen-
sions: (i) user information that can be collected; (ii) privacy
settings that can be conf gured; and (iii) permissions that
may be requested.3 For each dimension, we def ne the cov-
erage metric as the percentage of the number of features that
the API currently implements to the total number of features
that it can feasibly provide, given the context and the func-
tionality of the site. Because the total number of feasible
features is determined by the union of the features across
all APIs, it is inherently subject to our interpretation of the
APIs. Therefore, we intend to use the coverage metric as a

2http://vincos.it/social-media-statistics
http://royal.pingdom.com/2011/02/04/facebook-youtube-our-collective-

time-sinks-stats
3API details are available at http://www.cse.uconn.edu/∼ded02007/osnapi.

402

OSN Social Feed Unique Features Connections Prof le # Users
Facebook Status, media,

friend posts,
external sites,
application alerts

Groups, events,
notes, “Like” brands
and Web pages,
service integration

Bi-directional
friendship

Name, contact info,
family, education,
work history, interests

845M+

Twitter Tweets, retweets,
mention tweets

Public access social
feed

Uni-directional
subscriber

Real name, location 200M+

Google+ Status, media,
friend posts,
external sites

Social circles,
groups, “+1” brands
and Web pages

Bi-directional
friendship

Name, contact info, ed-
ucation, work history,
interests

90M+

LinkedIn Status, resume up-
dates, discussion
posts, application
alerts

Groups, message
boards, share
professional recom-
mendations

Bi-directional,
professional
connection

Name, work history,
education, professional
accomplishments,
goals, skills

150M+

YouTube Uploaded, sub-
scribed, and
favorite videos

Share video chan-
nels and playlists,
public commentary
on videos

Uni-directional
subscriber

Age, country, occupa-
tion, education, inter-
ests

490M+

Orkut Status, media,
friend posts,
application alerts

Integrated applica-
tions

Bi-directional
friendship

Name, contact info,
pets, family status, ro-
mance views, drinking
habits

120M+

Table 1. Purpose, popularity (# of users), and features of OSNs

rough measure of the strength of an API along each dimen-
sion, and report their approximate rather than exact values.
Next, we compare the APIs along these dimensions to un-
derstand their similarities and differences.

3.1 User information

We def ne nine categories to homogenize the disparity in
the types of data that users can upload as seen from Table 1,
in order to meaningfully compare the OSN APIs.

• Profile: Personal details such as hometown, date of
birth, gender, and other information.

• Social Message: Text posted to users’ social feeds, ap-
pearing in the news feeds of their connections.

• Media: Photos, videos, and music.
• Friend: First-degree connections.
• Friend-of-friend: Second-degree connections.
• Brand Page: A page dedicated to a branded entity,

such as a company, a business, a movie, or a band.
• Event: Event details such as name, place, and time.
• Group: Membership details of users’ groups.
• Note: A long post concerning a specif c subject; typi-

cally more detailed than a social message.

The number of unique methods for each data type are:
Prof le (94), Social Message (10), Media (23), Friend (23),
Friend-of-Friend (21), Brand Page (7), Event (7), Group (5),

and Note (7). Table 2 lists the number of methods and cov-
erage for each OSN. It shows that because Google+ im-
plements only 9 methods for Social Messages, although it
could feasibly implement 10, its coverage for this data type
is 90%. If an OSN does not provide any method for a given
data type, a 0 appears in the corresponding cell in the upper
table (Google+, Friend-of-friend). Additionally, if a OSN
does not implement any of the feasible methods for a data
type, a 0 appears in the corresponding cell in the lower ta-
ble (Google+, Friend-of-friend). Finally, when no methods
are feasible for a given data type for a given OSN, a 0 ap-
pears in the upper table, and a “−” appears in the lower table
(YouTube, Events).4 For each data type, the number of dis-
tinct methods is less than the total number of methods across
all OSNs; 92 distinct methods collect prof le data, but a total
of 209 prof le access methods exist across all OSNs.

All APIs offer high coverage for prof le data. This is ex-
pected from Facebook, Orkut, and LinkedIn because their
primary purpose is sharing of personal information. Surpris-
ingly, YouTube makes many user details available, although
its main objective is open, public sharing. Twitter, Face-
book, and YouTube APIs can retrieve nearly every attribute
of media and social messages, leading to very high coverage.
Although Google+ does not provide access to media, this is
planned.5 Most APIs only expose names and prof le pic-
tures (if any), of f rst- and second- degree connections. Ta-

4Tables 3 and 5 have the same interpretation of 0 and -.
5http://siliconf lter.com/google-gets-an-api-for-photos-and-videos/

403

ble 2 shows that all OSNs except LinkedIn provide limited
coverage of connections, otherwise third parties can retrieve
user data without their consent as long as their friends’ data
is accessible. The LinkedIn API, however, strongly covers
second-degree connections. This accessiblility may be de-
liberate to support LinkedIn’s main objective of mining con-
nections to establish professional and business relationships.
Thus, the LinkedIn API can be abused to collect signif cant
user information without directly targeting them.

Number of methods
Fb T G+ LI YT Ork

Prof le 44 14 33 40 25 52
Message 9 9 9 5 6 6
Media 21 12 0 0 6 10
Friend 2 1 1 23 0 1
Friend-of-friend 0 1 0 21 0 0
Brand 7 0 6 0 0 0
Event 7 0 0 0 0 0
Group 6 1 3 0 0 0
Note 7 0 0 2 0 0

Coverage (%)
Fb T G+ LI YT Ork

Prof le 80 70 70 90 85 90
Message 90 90 90 100 85 60
Media 90 100 0 - 85 65
Friend 20 100 15 100 - 15
Friend-of-Friend 0 35 0 100 - 0
Brand 100 - 85 - - -
Event 100 - - - - -
Group 100 100 60 - - -
Note 100 - - 100 - -

Table 2. User information – # and coverage

3.2 Privacy Settings

OSN users can expect to control the spread and visibility
of their information through privacy settings. Each setting is
associated with a privacy option which indicates the pieces
of data it covers. Moreover, a privacy option is exercised by
assigning a scope, which identif es the audience of the data.
Next, we study the privacy options and scopes of the APIs.

3.2.1 Privacy Options

Privacy options may apply either to a collection of users’
data at the account level or to a specif c data item such as a
social message, a photo, or a video. Account-level options
are broad, whereas, item-level options are narrow. Item-
level options offer f ner, second layer of protection on top of
account-level options. For example, account-level options
may allow public access to all Facebook wall posts, but an
item-level option can restrict the visibility of a specif c post.

We identif ed 35 distinct options; 20 are account-level, and
15 are item-level. Table 3 lists these options and their cov-
erage for each OSN.

Facebook and LinkedIn def ne a large number of account-
level options to give users substantial control over how they
can be searched and reached. LinkedIn users can decide
which f elds of their resume are publicly viewable, and who
can send them a message. Similarly, Facebook users can
choose the distance between themselves and other users who
can send them friend requests, and whether their prof le can
be indexed by a search engine. Google+ and Orkut have
weaker account-level options, and users can neither control
who can share information with them nor can they decide
how their prof le can be searched. Orkut’s limited account-
level options is concerning, because it seeks very personal
information as listed in Table 1. Finally, YouTube and Twit-
ter can implement numerous account-level options given the
type of information users share, and arguably these options
may even be necessary. However, the lack of these account-
level options may be intentional, because the purpose of
these OSNs is open, public sharing.

Number of options
Fb T G+ LI YT Ork

Account 11 0 6 15 3 4
Item 9 2 3 2 3 4

Coverage (%)
Fb T G+ LI YT Ork

Account 70 0 50 85 25 35
Item 70 30 40 50 60 55

Table 3. Privacy options – # and coverage

Facebook and Google+ offer strong item-level options,
and users can limit the audience of a wall post, and iden-
tify a group who can see an update. Other OSNs offer very
few item-level options and implementation of some addi-
tional, feasible ones can easily enhance user privacy on these
OSNs. For example, Twitter can implement important item-
level options such as reviewing of tweets that mention a user,
and restricting the reach of tweets to specif c receivers.

3.2.2 Privacy Scopes

Very few users accept the notion that OSN activity is public-
by-default, private-by-effort; 84% Facebook prof les set to
full, default, public access [7] conf rm this belief. Most
users are also easily confused and frustrated by too many op-
tions and scopes and are therefore discouraged from chang-
ing their default settings [11]. Savvy users, however, need
comprehensive options and scopes to adequately manage
their privacy. This conf ict poses a tradeoff between the
number of options and scopes and their usability.

Table 4 lists the privacy scopes for each OSN; a (x)� in-
dicates (un)availability of a scope. Only Twitter (YouTube)

404

users can control the reach of their tweets (videos) to a
particular individual; shown by a ‘�’ against their private
scope. User groups scope, def ned by Facebook, Google+,
and Orkut, is similar but richer compared to the private
scope because it allows the selection of a specif c group
rather than an individual. Facebook, LinkedIn, and Orkut of-
fer additional scopes based on degrees of separation between
the owner of the data and its viewers. For example, Face-
book users can limit their photos to just friends, but make
wall posts visible to friends-of-friends as well. LinkedIn
users can share publicly, with only f rst-degree connections
or up to third-degree connections. Sharing with third-degree
connections may be equivalent to public sharing because
most OSN users are separated by less than four degrees [3].

Fb T G+ LI YT Ork
Up to 1st degree � x x � x �
Up to 2nd degree � x x x x x
Up to 3rd degree x x x � x x

Public � � � � � �
Private x � x x � x

User Groups � x � x x �

Table 4. Privacy scopes

3.3 User permissions

Permissions authorize third parties to access information
that would otherwise be out of bounds because of users’ pri-
vacy settings. All six OSNs use the OAuth protocol [8]
to manage these permissions. This protocol represents a
permission as an access token, which includes the spe-
cif c information that is covered by the request, and a user-
def ned/OSN-specif ed expiration time. A dialogue displays
a summary of this information to the user. Upon receiving
user’s consent, the dialogue requests the OSN to create this
access token, which is then handed off to the requesting third
party. Each OSN def nes its permissions and customizes the
dialogue presentation and information summary. We study
these two attributes of user permissions across the APIs.

3.3.1 Permission types

We aggregate the permissions that third parties may request
into two types: data permissions and action permissions.
Data permissions grant access to users’ social data, while
action permissions allow third parties to perform tasks such
as uploading media, changing a prof le f eld, and posting
to social feeds on behalf of users. Each type of permission
has different implications; data permissions enable third par-
ties to harvest user information, whereas, action permissions
allow third parties to impersonate users. We identif ed 44
unique permissions; 29 data and 15 action. Table 5 shows
the number of permissions and their coverage for each OSN.

Number of permissions
Fb T G+ LI YT Ork

Data 28 7 15 0 0 1
Account 13 6 2 0 0 1

Coverage (%)
Data 95 80 80 - - 20

Account 85 100 65 - - 100

Table 5. Permission types – # and coverage

Facebook, Twitter, and Google+ exhibit high coverage
for both types of permissions. On Facebook, third parties
can request comprehensive permissions including authoriza-
tions to access data when users are off ine, and to read the
stream of updates to social feeds of users’ connections. Al-
though Twitter’s purpose is public sharing, users can still
protect their tweets through explicit permissions. Retweets
and mention tags, however, can expose these tweets to third
parties with access to the tweets of users’ connections.

Orkut seeks a generic token which grants broad access to
all the prof le information, which does not have a friends-
only privacy option. Third parties need to seek additional
permissions to extend this generic token to post to users’ so-
cial feeds or to access their photos. LinkedIn and YouTube
users also cannot grant detailed data and action permissions,
but instead grant a generic token to access all information
that is not protected by a private scope. Thus, on LinkedIn
the generic access token provides third parties with the po-
tential to collect all personal information, and on YouTube it
allows third parties to upload videos, and even browse lists
of favorite and recommended videos. YouTube’s generic ac-
cess is worrisome because of its weak privacy control cover-
age as seen in Table 3. LinkedIn, however, limits its generic
token by curtailing access to specif c prof le f elds through
comprehensive account-level privacy options.

3.3.2 Permission presentation

OSNs may seek broad data and action permissions from
their users to enable them to enter into favorable agreements
with third parties. Users, however, may be unwilling to grant
such broad permissions, and OSNs may try to circumvent
this reluctance through ambiguous permission dialogues.

Figure 2 displays a typical Facebook dialogue for an ap-
plication that desires access to a user’s prof le for registra-
tion and login to an educational site for learning languages.
The application requests permission to retrieve all “basic”
Facebook data. The f gure also shows that this application
retrieved hometown, current city, religious views, work his-
tory, and even relationship details from the user’s prof le.
Most of this basic information, however, is unnecessary for
registration/login or to teach languages. This collection is
additionally disturbing because many users probably do not
expect their consent to expose so many private details.

405

Figure 2. Permission dialogue, accessed data

Except Twitter, the dialogues of all OSNs provide
sketchy details.6 Facebook and Google+ provide coarse
summaries; Google+ users can retrieve details, but only after
clicking on the summary. Most users will either not know
or care to take this extra step without explicit instruction.
LinkedIn and Orkut ambiguously caution users that their in-
formation will be shared with third parties and seek assent to
terms of service linked from the dialogue. Finally, YouTube
dialogues provide no details about the data that third parties
can retrieve once users provide their consent.

4 Conclusions and Future Work

This paper reveals that OSN APIs expose signif cant user
data, and substantially enable third parties to act on behalf
of their users. Their privacy options are not comprehensive
and can be exercised only with limited scopes. Permissions
are often confusing and inconsistent, and their ambiguous
presentation may mislead users into revealing excessive in-
formation. OSNs thus tip the scale towards information ex-
posure versus privacy protection, lending ample support to
critics’ skepticism regarding user privacy.

Our future work seeks to quantify the privacy content
in the information posted by different demographic groups.
We also propose to develop tools and educational materials
to raise public awareness about how third parties can exploit
APIs to collect user data and how users can protect them-
selves by adopting proper measures.

References

[1] Personal recommendations and consumer opinions
posted online are the most trust forms of advertising
globally. The Nielsen Company Press Release, July
2009.

6Images of these dialogues are available at:
http://cse.uconn.edu/∼ded02007/osnapi

[2] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and
R. Passonneau. Sentiment analysis of twitter data. In
Proc. of the Workshop on Languages in Social Media,
pages 30–38, 2011.

[3] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and
S. Vigna. Four Degrees of Separation. Technical re-
port, arXiv:1111.4570v3 [cs.SI], 2012.

[4] M. Cha, A. Mislove, and K. Gummadi. A
Measurement-driven Analysis of Information Propa-
gation in the Flickr Social Network. In Proc. of 18th
Intl. Conference on World wide web, 2009.

[5] D. Boyd. Why youth (heart) social network sites: The
role of networked publics in teenage social life. Youth,
Identity, and Digital Media, pages 119–142, 2008.

[6] A. P. Felt and D. Evans. Privacy Protection for Social
Networking APIs. In Workshop on Web 2.0 Security
and Privacy, 2008.

[7] M. Gjoka, M. Kurant, C. T. Butts, and
A. Markopoulou. Practical Recommendations on
Crawling Online Social Networks. IEEE Journal on
Selected Areas in Communications, 29(9):1872–1892,
Oct. 2011.

[8] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
OAuth 2.0 Protocol. http://tools.ietf.org/html/draft-
ietf- oauth-v2-10, 2010.

[9] P. S. R. A. International. Pew Internet & American
Life Poll: Social Side of the Internet. Roper Center for
Public Opinion Research Study USPEW2010-IAL12
Version 2, Nov. 2010.

[10] P. S. R. A. International. Pew Internet & Amer-
ican Life Poll: Spring Change Assessment Survey
2011. Roper Center for Public Opinion Research Study
SPEW2011-IAL04 Version 2., Apr. 2011.

[11] H. R. Lipford, A. Besmer, and J. Watson. Understand-
ing Privacy Settings in Facebook with an Audience
View. In Proc. of 1st Conference on Usability Psy-
chology and Security, 2008.

[12] Y. Liu, K. Gummadi, B. Krishnamurthy, and A. Mis-
love. Analyzing facebook privacy settings: user expec-
tations vs. reality. In Proc of ACM SIGCOMM Confer-
ence on Internet Measurement, pages 61–70, 2011.

[13] P. Swire. Social Networks, Privacy, and Freedom of
Association. Technical report, Center for Americal
Progress, Feb. 2011.

[14] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi.
On the Evolution of User Interaction in Facebook. In
Proc. of 2nd ACM Workshop on Online Social Net-
works, 2009.

406

Computer Forensics: Toward the Construction of Electronic Chain of Custody on the
Semantic Web

Tamer Fares Gayed, Hakim Lounis
Dept. d’Informatique

Université du Québec à Montréal
Montréal, Canada

gayed.tamer@courrier.uqam.ca
lounis.hakim@uqam.ca

Moncef Bari
Dept. d’Éducation et Pédagogie

Université du Québec à Montréal
Montréal, Canada

bari.moncef@uqam.ca

Abstract—The tangible Chain of Custody (CoC) document in
computer forensics is the record of all information about how
digital evidences are collected, transported, analyzed, and
preserved for production. Chain of Custody plays a vital role in
the digital forensic investigation process because it is used to
prove the integrity of the evidences from seizure through
production in court. The CoC integrity is the demonstration that
the digital evidences have been properly copied, transported, and
stored. With the advent of the digital age, the tangible CoC
document needs to undergone a radical transformation from
paper to electronic data (e-CoC), readable and consumed by
machines and applications. Semantic web is a flexible solution to
represent the tangible CoC document knowledge. It provides
semantic markup languages for knowledge representation,
supported by different provenance vocabularies to ensure the
trustworthiness and the integrity of this represented knowledge.
The semantic web is a web of data that are published and
consumed according to the web aspects known as the data linked
principles. This paper proposes the construction of e-CoC
through a semantic web framework based on the same principles
used to publish data on the web.

Keywords-Chain of Custody; Semantic Web; Semantic Markup
Language; Provenance Vocabularies; Resource Description
Framework.

I. INTRODUCTION

Computer/Digital forensic is a growing field. It combines
computer science concepts including computer architecture,
operating systems, file systems, software engineering, and
computer networking, as well as legal procedures. At the most
basic level, the digital forensic process has three major phases:
Extraction, Analysis, and Presentation. Extraction (acquisition)
phase saves the state of the digital source (ex: laptop, desktop,
computers, mobile phones) and creates an image by saving all
digital values so it can be later analyzed. Analysis phase takes
the acquired data (ex: file and directory contents and
recovering deleted contents) and examines it to identify pieces
of evidence, and draws conclusions based on the evidences that
were found. During presentation phase, the audience is
typically the judges; in this phase, the conclusion and
corresponding evidence from the investigation analysis are
presented to them [1].

Nevertheless, there exists others forensic process models,
each of them relies upon reaching a consensus about how to
describe digital forensics and evidences [2][17]. The next table
(Table-I) shows the current digital forensic models. Each row

of the table presents the name of the digital forensic process
model, while the columns present the processes included in
each of these models.

TABLE I. DIGITAL FORENSIC PROCESS MODELS [17]

Like any physical evidence, digital evidence needs to be
validated for the legal aspects (admissibility) in the court of
law. In order for the evidence to be accepted by the court as
valid, chain of custody for digital evidence must be kept, or it
must be known who exactly, when, and where came into
contact with the evidence at each stage of the investigation [3].

The role of players (first responders, investigators, expert
witnesses, prosecutors, police officers) concerning CoC is to
(im)prove that the evidence has not been altered through all
phases of the forensic process. CoC must include
documentation containing answers to these questions:

• Who came into contact, handled and discovered the
digital evidence?

• What procedures were performed on the evidence?

• When the digital evidence is discovered, accessed,
examined or transferred?

• Where was digital evidence discovered, collected,
handled, stored and examined?

• Why the evidence was collected?

407

• How was the digital evidence collected, used and
stored?

Once such questions (i.e. known as 5Ws and the 1H) are
answered for each phase in the forensic process, players will
have a reliable CoC which can be then admitted by the judges’
court.

On the other hand, the main aim of the semantic web is to
publish data on the web in a standard structure, and
manageable format [8]. Tim Berner Lee outlined the principles
of publishing data on the web. These principles known as
Linked Data Principles (i.e. LD principles):

• Use URI as names for things.

• Use HTTP URIs so that people can look up those
names.

• When someone looks up a URI, provide useful
information using the standards (RDF, SPARQL).

• Include RDF statements that link to other URIs so that
they can discover related things.

This paper proposes the creation of electronic chain of
custody (e-CoC) using a semantic web based framework that
represent and (im)prove the classical/traditional paper-based
CoC during the cyber forensics investigation. Semantic web
will be a flexible solution for this task because it provides
semantic markup languages such as Resource Description
Framework (RDF), RDF Scheme (RDFS), and Web Ontology
Language (OWL) that are used to represent knowledge.

In addition, the semantic web is rich with different
provenance vocabularies [10], such as Dublin Core (DC),
Friend of a Friend (FOAF), and Proof Markup Language
(PML) that can be used to (im)prove the CoC by answering the
5Ws and the 1H questions.

Furthermore, the principles used to publish data on the web
can also be applied on the represented knowledge. Thus, each
CoC generated from each forensic phase in a forensic process
can be represented and interlinked together using the web
technology stack (i.e. URI and HTTP).

The remainder of this document is organized as follows:
section 2 presents the state of the art related to this work.
Section 3 provides the different challenges met by the tangible
CoC documents. Section 4 gives a brief presentation about the
semantic web, and the principles used to publish data on the
web. In section 5, the proposed solution is explained, and
finally, last section provides the conclusion.

II. STATE OF THE ART

The state of the art related to this work can be summarized
over three dimensions. The first dimension is the works on
(im)proving the CoC. In [22], a conceptual Digital Evidence
Management Framework (DEMF) was proposed to implement
secure and reliable digital evidence CoC. This framework
answered the who, what, why, when, where, and how
questions. The ‘what’ is answered using a fingerprint of
evidences. The ‘how’ is answered using the hash similarity to
changes control. The ‘who’ is answered using the biometric

identification and authentication for digital signing. The ‘when’
is answered using the automatic and trusted time stamping.
Finally, the ‘where’ is answered using the GPS and RFID for
geo location.

Another work in [23], discusses the integrity of CoC
through the adaptation of hashing algorithm for signing digital
evidence put into consideration identity, date, and time of
access of digital evidence. The authors provided a valid time
stamping provided by a secure third party to sign digital
evidence in all stages of the investigation process.

Other published work to (im)prove the CoC is based on a
hardware solution. SYPRUS Company provides the Hydra PC
solution. It is a PC device that provides an entire securely
protected, self contained, and portable device (i.e. connected to
the USB Port) that provides high-assurance cryptographic
products to protect the confidentiality, integrity, and non-
repudiation of digital evidence with highest-strength
cryptographic technology [15]. This solution is considered as
an indirect (im)proving of the CoC as it preserves the digital
evidences from modification and violation.

The second dimension concerns knowledge representation.
An attempt was performed to represent the knowledge
discovered during the identification and analysis phase of the
investigation process [26]. This attempt uses the Universal
Modeling Language (UML) for representing knowledge. It is
extended to a unified modeling methodology framework
(UMMF) to describe and think about planning, performing, and
documenting forensics tasks.

The third dimension is about the forensic formats. Over the
last few years, different forensic formats were provided. In
2006, Digital Forensics Research Workshop (DRWS) formed a
working group called Common Digital Evidence Storage
Format (CDEF) working group for storing digital evidence and
associated metadata [12]. CDEF surveyed the following disk
image main formats: Advanced Forensics Format (AFF),
Encase Expert Witness Format (EWF), Digital Evidence Bag
(DEB), gfzip, ProDiscover, and SMART.

Most of these formats can store limited number of
metadata, like case name, evidence name, examiner name, date,
place, and hash code to assure data integrity [12]. The most
commonly used formats are described here.

AFF is defined by Garfinkel et al. in [27] as a disk image
container which supports storing arbitrary metadata in single
archive, like sector size or device serial number. The EWF
format is produced by EnCase’s imaging tools. It contains
checksums, a hash for verifying the integrity of the contained
image, and error information describing bad sectors on the
source media.

Later, Tuner’s digital evidence bags (DEB) proposed a
container for digital crime scene artifacts, metadata,
information integrity, and access and usage audit records [5].
However, such format is limited to name/value pairs and makes
no provision for attaching semantics to the name. It attempts to
replicate key features of physical evidence bags, which are
used for traditional evidence capture.

408

In 2009, Cohen et al. in [4] have observed problems to be
corrected in the first version of AFF. They released the AFF4
user specific metadata functionalities. They described the use
of distributed evidence management systems AFF4 based on an
imaginary company that have offices in two different countries.
AFF4 extends the AFF to support multiple data sources, logical
evidence, and several others (im)provements such the support
of forensic workflow and the storing of arbitrary metadata.
Such work explained that the Resource Description Framework
(RDF) [7] resources can be exploited with AFF4 in order to
(im)prove the forensics process model.

III. COC CHALLENGES

Chain of custody is a testimony document that records all
information related to the evidences (digital/physical) in order
to ensure that they are not altered throughout the forensic
investigation. It contains information about who handled the
evidence, why there was a change of possession and how each
person safeguards it. Failure to record enough information
related to the evidence may lead to its exclusion from the legal
proceedings.

The continuous growing of devices and software in the field
of computing and information technology creates challenges
for the cyber forensics science in the volume of data (i.e.
evidences) being investigated. It also increases the need to
manage, process, and present the CoC in order to minimize and
facilitate its documentation.

The second issue is related to the interoperability between
digital evidence and its CoC documentation. Last works
concentrated mainly on the representation and correlation of
the digital evidences [24][25] and as an indirect consequence,
the (im)proving of the CoC by attempting to replicate the key
features of physical evidence bags into Digital Evidence Bags
(DEB) [5]. However, the documentation of CoC for digital
evidences remains an exhausted task. Knowledge
communication between the digital evidence and the
information documentation about the evidence, apart from
natural language, can create some automation and minimize
human’s intervention.

The third issue concerns the CoC documents. They must be
affixed securely when they are transported from one place to
another. This is achieved using a very classical way: seal them
in plastic bags (i.e. together with physical evidence if it exists,
such as hard disk, USB, cables, etc.), label them, and sign them
into a locked evidence room with the evidences themselves to
ensure their integrity.

The fourth issue is about the judges’ awareness and
understanding that the digital evidences are not enough to
evaluate and take the proper decision about the case in hand.
One solution is to organize a training program to educate the
juries the field of Information and Communication Technology
(ICT) [6]. From the point of view of the authors, this will not
be an easy task to teach juries the ICT concepts. The other
solution is to provide a descriptive e-CoC using forensic and
provenance metadata that the juries can query and so, find the
answers to their questions through these metadata.

The last issue is that the problem is not only to represent the
knowledge of the tangible CoC in order to solve the issues
mentioned above, but also to express information about where
the CoC information came from. Juries can find the answers to
their questions on the CoC, but they need also to know the
provenance and origins of those answers. Provenance of
information is crucial to guarantee the trustworthiness and
confidence of the information provided. This paper
distinguishes between forensic information and provenance
information. Forensic information is responsible to answer the
5Ws and 1H questions related to the case in hand, while
provenance information is responsible to answer questions
about the origin of answers (i.e. what information sources were
used, when they were updated, how reliable the source was).

IV. THE WEB OF DATA

Semantic web is an extension of the current web, designed
to represent information in a machine readable format by
introducing knowledge representation languages based in
XML. The semantic markup language such as Resource
Description Framework (RDF), RDF Schema (RDFS), and the
web ontology language (OWL) are the languages of the
semantic web that are used for knowledge representation.

According to the W3C recommendation [7], RDF is a
foundation for encoding, exchange, and reuse of structured
metadata. RDF supports the use of standards mechanisms to
facilitate the interoperability by integrating separate metadata
elements (vocabularies) defined by different resource
description communities (e.g. Dublin Core).

RDF consists of three slots: resource, property/predicate,
and object. Resources are entities retrieved from the web (e.g.
persons, places, web documents, picture, abstract concepts,
etc). RDF resources are represented by uniform resource
identifiers (URI) of which URLs are a subset. Resources have
properties (attributes) that admit a certain range of value or
attached to be another resource. The object can be literal value
or resources.

In 2006, Berners Lee outlined set of rules for publishing
data on the web using the LD principles. These rules explain
that the data (content/resources) should be related one another
just as documents are already. The semantic web extended
these web principles from document to data and provided the
RDF framework that allows data to be shared on the web.

With the linking data principles, entities/resources are
identified with the HTTP URIs that can be resolved over the
Web. Data itself are represented using the RDF generic model
where each element (i.e. subject, predicate, and object) in this
model can be URI for unnamed entities. The property/predicate
in the RDF model describes how the subject is related to the
object and it is defined in vocabularies. The late can also be
represented as RDF data and be published as linked data. The
HTTP URIs enables applications to retrieve and consume the
data. RDF data are related to each others thought RDF links
where the subject is a URI of one data source and the object is
a URI in the name-space of another data source. Thus, RDF
graphs retrieved by resolving URI references are called the
linked data object.

409

The example in next figure (figure-1) [28] shows that the
interlink of three datasets and the object of an RDF graph
(dbpedia:berlin) can be the subject of another RDF graph
related through by predefined predicate name-spaces (i.e. URI:
http://dbpedia.org/resource/Berlin).

Figure 1. Example RDF Linked Data Example [28]

The Linking Open Data (LOD) project is the most visible
project using this technology stack (URLs, HTTP, and RDF)
and converting existing open license data on the web, into RDF
according to the LOD principles [9].

The LOD project created a shift in the semantic web
community and changed the researches wheel of the semantic
web. Pre-2007, the concern was concentrated on defining the
semantics and the capability to capture the meanings on the
semantic web (i.e. languages to represent them, logics for
reasoning with them, methods and tools to construct them), but
post-2007, the researches on the semantic web are mainly
concentrated on the web aspects (i.e. how to publish and
consume the data on the web).

Moreover, Semantic web provides provenance vocabularies
that enable providers of web data to publish provenance related
metadata about their data. Provenance information about a data
item is information about the history of the item, starting from
its creation, and including information about its origins.
Provenance information of Web data must comprise the aspect
of publishing and accessing data on the Web. Providing
provenance information as linked data requires vocabularies
that can be used to describe the different aspects of provenance
[11][10][13][14].

V. THE PROPOSED FRAMEWORK

The solution framework is about the use of the semantic
web to represent the CoC using RDF and (im)prove its
integrity through different built in provenance vocabularies.
Thus, the CoC forensic information and its provenance
metadata will be published and consumed on the web.

There exist various vocabularies to describe provenance
information with RDF data. The popular standard metadata that
can be used in different contexts is the Dublin core metadata

terms defined in the RDFS schema [19]. The main goal of
consuming this provenance metadata is to assess the
trustworthiness and quality of the represented knowledge.

As mentioned in section 2, digital evidence can be stored in
open or proprietary formats (e.g. CDEF, AFF, EWF, DEB,
gfzip, ProDiscover, and SMART). These formats store forensic
metadata (e.g. the sector size and device serial number). The
most advanced format for representing the digital evidence is
the AFF4 which is an extension of the AFF to accommodate
multiple data sources, logical evidence, arbitrary information,
and forensic workflow [16].

The framework proposed in Figure-2 shows that the
tangible CoC can be created manually from the output of
forensic tools (e.g. AFF4 or any other format). AFF4 can be
modeled into RDF. Human creates the CoC according to a
predefined form determined by the governmental/commercial
institution and fill the forms from the forensic information
synthesized from the forensic tools. Experience can be used, if
necessary, to prune or add some forensic metadata not provided
on the current output format.

This framework is generalized to all phases of the forensic
investigation. As we have different forensic models with
different phases, the framework can be adapted for different
phases of different models (see table I). A summary of different
process models can be found in [2][17]. Each phase for specific
forensic process model has its own information: forensic
metadata, forensic algorithm, player who came into contact,
etc.

Figure 2. Framework for representing and (im)proving CoC using semantic
web

The AFF4 can be directly represented using the RDF.
Researchers have proposed several solutions on the use of
AFF4 and RDF resources to (im)prove digital forensics process
model or software. The tangible CoC associated to each
phase/digital evidences can be also represented in RDF. Players
of each phase can enter the necessary information through a
web form interface which is then transformed to RDF triple
using web service tool (e.g. triplify) [18]. The RDF data are
supported by different build in provenance vocabularies like
DC [19], FOAF [20], and Proof Markup Language (PML) [21].
For example the provenance terms used by the DC are:

410

dcterms:contributor, dcterms:creator, dctemrs:created,
dcterms:modified, dcterms:provenance, which can give the
juries information about who contributed, created, modified,
the information provided to the court.

FOAF provides classes and properties to describe entities
such as persons, organizations, groups, and software agents.

The Proof Markup Language describes justifications for
results of an answering engine or an inference process.

CoC representation for each phase in RDF data can be
linked with another, using the same principle of the LOD
project (i.e. RDF graph/statement can be linked and be
navigated using the semantic technology stack: URLs, HTTP,
and RDF). Digital evidence may be also integrated with its
CoC information. After representing all information related to
the digital evidence and its associated CoC, the player who
comes into work in this phase can finally sign his RDF data.
Finally, we will have an interlinked RDF based on the LOD
principle which represents the whole e-CoC of the case in
hand.

Juries can use application based on the same idea of the
web crawler; they can not only navigate over the interlinked
RDF graph/statement, but also, run query through a web
application over the represented knowledge using SPARQL
query language, and find the necessary semantic answers about
their forensic and provenance questions.

Figure 3. The application of the Framework for the authentication phase in
the Kruse DFPM

An example on this framework is shown in the last figure
(Figure-3). The authenticate phase of the Kruse DFPM (i.e. this
model consists of 3 phases: acquire, authenticate and analyze-
see Table-I). The authentication in digital forensics is usually
done by comparing data of the original MD5 hash with the
copied MD5 hash.

The digital format is the EWF as mentioned in section 2
(i.e. produced by EnCase’s imaging tools) contains checksums,
a hash for verifying the integrity of the contained image, and
error information describing bad sectors on the source media.
Players that come into role in the authentication phase of the
Kruse DFPM can be one of the following prosecution, defense,
or first responder.

Figure 4. Interlinked Forensic RDF and Metatada

Figure-4 reflects the same idea as figure-1. In this figure,
the forensic information is represented using RDF graph. The
example used here is using the AFF4; it is more advanced than
the EW4 and also can be synthesized from different forensic
toolkits. We imagined according to the proposed framework
that the forensic information/digital evidence can be supported
with other build in vocabularies metadata. Last figure shows
that the Dublin core is used to specify the publisher of this
evidence and another build in scheme like the XML schema
was also used to specify the date of publication.

The proposed framework can provide solutions to the
previously mentioned issues. Representation of the tangible
CoC knowledge in RDF facilitates the management and
processing, because it is a machine readable form (first issue).
It is also interoperable; digital evidence representation and its
CoC description can be unified together under the same
framework (i.e. RDF). Also, each player comes into role can
secures (i.e. using cryptographic approaches) and signs his
RDF data (i.e. using digital signature) to ensure the integrity
and identity, respectively (second issue and third issue). On the
other hand, juries can consume and navigate over the
interlinked RDF data which present the whole and detailed
information about the history of evidence from its collection to
its presentation in the court (fourth issue). Provenance
vocabularies can also be used to provide extra and descriptive
metadata beyond the forensic metadata provided by the
forensic tools (last issue).

VI. CONCLUSION

This paper proposes the construction of a semantic web
based framework to represent and (im)prove tangible chain of
custody using RDF and provenance vocabularies. This
framework will be based on the same principles used to publish
data on the web. The first phase of this framework will be the
definition and analysis of all related information (metadata) for
each phase in a selected forensic process (i.e. source will be the
human experience and forensic tools output). Secondly, we will
focus on the conversion and representation of tangible CoCs
information into interlinked RDF (e-CoCs). This representation
will contain forensic and provenance metadata (built-
in/custom) related to the case in hand. The last phase will be
the construction of a web interface that let the juries consume
and query these interlinked RDF data in order to answer all
questions related to the CoCs of evidences and their
provenances.

411

REFERENCES

[1] Erin Kenneally. Gatekeeping Out Of The Box: Open Source Software

As A Mechanism To Assess Reliability For Digital Evidence. Virginia
Journal of Law and Technology. Vol 6, Issue 3, Fall 2001.

[2] Michael W. Andrew “Defining a Process Model for Forensic Analysis of
Digital Devices and Storage Media” Proceedings of the 2nd
International Workshop on Systematic Approaches to Digital Forensic
Engineering SADFE 2007

[3] osi , J., Ba a, M. Do we have a full control over integrity in digital
evidence life cycle, Proceedings of ITI 2010, 32nd International
Conference on Information Technology Interfaces, Dubrovnik/Cavtat,
pp. 429-434, 2010

[4] COHEN, M.; GARFINKEL, S.; SCHATZ, B. Extending the advanced
forensic format to accommodate multiple data sources, logical evidence,
arbitrary information and forensic workflow. Digital Investigation, 2009.
S57-S.

[5] Turner, P. Unification of Digital Evidence from Disparate Sources
(Digital Evidence Bags). In 5th DFRW. 2004. New Orleans

[6] Judges’ Awareness, Understanding and Application of Digital Evidence,
Phd Thesis in computer technology in Education, Graduate school of
computer and information sciences, Nova Southeastern University, 2010

[7] RDF: Model and Syntax Specification. W3C recommendation, 22
Februrary 1999, www.w3.org/TR/REC-rdf-syntax-19990222/1999

[8] The semantic web, Linked and Open Data, A Briefing paper By Lorna
M. Campbell and Sheilla MacNeill, June 2010, JISC CETIS

[9] Christian Bizer, Tom Heath, Tim Berners-Lee: Linked Data - The Story
So Far. Int. J. Semantic Web Inf. Syst. 5(3): 1-22 (2009)

[10] Olaf Hartig: Provenance Information in the Web of Data. In Proceedings
of the Linked Data on the Web (LDOW) Workshop at the World Wide
Web Conference (WWW), Madrid, Spain, Apr. 2009

[11] Olaf Hartig and Jun Zhao: Publishing and Consuming Provenance
Metadata on the Web of Linked Data. In Proceedings of the 3rd
International Provenance and Annotation Workshop (IPAW), Troy, New
York, USA, June 2010

[12] CDESF. Common Digital Evidence Format. 2004 [Viewed 21 December
2005]; Available from: http://www.dfrws.org/CDESF/index.html

[13] [Olaf Hartig and Jun Zhao: Using Web Data Provenance for Quality
Assessment. In Proceedings of the 1st Int. Workshop on the Role of
Semantic Web in Provenance Management (SWPM) at ISWC,
Washington, DC, USA, October 2009 Download PDF

[14] Olaf Hartig, Jun Zhao, and Hannes Mühleisen: Automatic Integration of
Metadata into the Web of Linked Data (Demonstration Proposal). In

Proceedings of the 2nd Workshop on Trust and Privacy on the Social
and Semantic Web (SPOT) at ESWC, Heraklion, Greece, May 2010

[15] Solvinghe digital Chain of Custody Problem, SPYRUS, Trusted
Mobility Solutions, © Copyright 2010

[16] M. I. Cohen, Simson Garfinkel and Bradley Schatz, Extending the
Advanced Forensic Format to accommodate Multiple Data Sources,
Logical Evidence, Arbitrary Information and Forensic Workflow,
DFRWS 2009, Montreal, Canada

[17] MD Köhn, JHP Eloff and MS Olivier, "UML Modeling of Digital
Forensic Process Models (DFPMs)," in HS Venter, MM Eloff, JHP Eloff
and L Labuschagne (eds), Proceedings of the ISSA 2008 Innovative
Minds Conference, Johannesburg, South Africa, July 2008 (Published
electronically)

[18] http://triplify.org/Overview

[19] http://dublincore.org/

[20] http://www.foaf-project.org/

[21] P. P. da Silva, D. L. McGuinness, and R. Fikes. A Proof Markup
Language for Semantic Web Services. Information Systems, 31(4-
5):381–395, June 2006

[22] osi , J., Ba a, M. (2010) A Framework to (Im)Prove Chain of Custody
in Digital Investigation Process, Proceedings of the 21st Central
European Conference on Information and Intelligent Systems, pp. 435-
438, Varaždin, Croatia

[23] osi , J., Ba a, M. (2010) (Im)proving chain of custody and digital
evidence integrity with timestamp, MIPRO, 33. me unarodni skup za
informacijsku i komunikacijsku tehnologiju, elektroniku i
mikroelektroniku, Opatija, 171-175

[24] Schatz, B., Mohay, G. And Clark, A. (2004) ‘Rich Event Representation
for computer Forensics’, Proceedings of the 2004 Asia Pacific Industrial
Engineering and Management System

[25] Schatz,B., Mohay, G. and Clark, A.(2004) ‘Generalising Event
Forensics Across Multiple domains’ Proceedings of the 2004 Australian
Computer Network and Information Forensics Conference (ACNIFC
2004), Perth, Australia.

[26] Bogen, A. and D.Dampier. Knoweldge discovery and experince
modeling in computer forensics media analysis.In international
Symposium on Information and Communication Technologies.2004:
Trinity College Dublin

[27] Garfinkel, S.L., D.J. Malan, K.-A. Dubec, C.C. Stevens, and C. Pham,
Disk Imaging with the Advanced Forensics Format, library and Tools.
Advances in Digital Forensics (2nd Annual IFIP WG 11.9 International
Conference on Digital Forensics), 2006

[28] http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/

412

A Holistic Approach to Software Traceability

Hazeline U. Asuncion
Computing and Software Systems
University of Washington, Bothell

Bothell, WA 98011 USA
hazeline@u.washington.edu

Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697 USA
taylor@ics.uci.edu

Abstract—Software traceability is recognized for its utility in
many software development activities. Nonetheless, applying
traceability in practice is generally difficult due to interrelated
factors such as high overhead costs, the presence of
heterogeneous artifacts and tools, and low user motivation. In
addition, many traceability techniques tend to only address
difficulties from either the economic, technical, or social
perspective, but not all three. To holistically tackle these three
dimensions, we created a traceability technique, Architecture-
Centric Traceability for Stakeholders (ACTS). The ACTS
technique connects distributed and varied artifacts around
concepts represented by the architecture, enables stakeholders to
trace to artifacts that are of interest to them, and captures
traceability links prospectively in the background as stakeholders
perform development tasks. Our case studies of the ACTS tool
usage reveal that it is possible to simultaneously address
economic, technical, and social difficulties, suggesting that such
an approach can aid the adoption of traceability in industry.

Keywords-documentation; software traceability; software
architecture; open hypermedia

I. INTRODUCTION
In a typical softwa re development setting, num erous

artifacts are produced throughout the s oftware lifecycle.
Software traceability aims to identify and explicitly link
together related artifacts to support various softw are
engineering tasks, and is useful in system comprehension,
impact analysis, and system debugging [18, 26]. Despite these
benefits, implementing novel traceability methods within an
industry setting is often very difficult [20]. Manual approaches
are tedious and error-prone; as a result, software engineers have
an aversion to traceability tasks [18]. Autom ated techniques
often require human intervention [15].

We posit that the difficulties with transitioning traceability
techniques to real-world settings stem from a na rrow
understanding of the challenges around tra ceability. In fact,
many interacting factors hinder traceability, such as high c osts
[18], complex interrelationships between artifacts [2],
heterogeneity of artifacts and tools [14], and varied
stakeholder interests [13, 29]. These factors, which reflect
economic, technical, and social perspectives, must all be
addressed to realize the benefits of traceability.

This paper presents a novel technique to traceability that
aims to holistically address interacting challenges from these
three perspectives. Our technique, Architecture-Centric
Traceability for Stakeholders (ACTS) adva nces the state-of-

the-art in traceability by (1) connecting distributed and varied
artifacts to concepts re presented by the architecture, (2)
enabling stakeholders to trace to artifacts that are of intere st to
them, and (3) capturing traceability prospectively, in situ, as
software engineers perform development tasks.

In previous work, we discussed traceability challenges from
the three perspectives within the specializ ed context of one
organization [6]. ACTS provides a generalized and automated
technique for holistically addressing traceability challen ges,
using open hypermedia and rules to generate trace links. More
recently, we com bined architecture-centric traceability with a
machine learning m ethod known as topic m odeling [5];
however, that work did not fo cus on holistic traceability. In
this work, we focus on the rationale and methodology behind
ACTS and perform case studies that suggest that our a pproach
has utility from economic, technical, and social perspectives.

In the next section, we discuss the importance of analyzing
the challenges to traceability from the three perspectives and
survey existing techniques. Section 3 presents the main
elements of ACTS. Section 4 covers the A CTS tool support.
Section 5 dis cusses three case studies of tool usage, and
Section 6 concludes with future work.

II. PROBLEM ANALYSIS AND EXISTING TECHNIQUES
Traceability challenges can be viewed from economic,

technical, and social perspectives, which we describe below.

A. Economic Perspective
The economic perspective focuses on the cost of supporting

traceability. Costs can be in term s of labor hours [18],
documentation, and user training time [6]. High cost is one of
the major hindering factors to traceability [18]. Technique s to
minimize cost include examining the trade offs between cost
and quality or between cost and benefit [12].

B. Technical Perspective
The challenges from the technical perspective include the

complexity of tracing due to the heterogeneity of artifacts and
tools [14, 21], the combinatorial explosion of the artifact space
[20], and the continuous and independent evolution of artifacts.

There are several approac hes that tackle these technical
challenges. Techniques to address the heterogeneity of
artifacts include natural language proce ssing [8], model
transformation [19], and translation techniques [2]. Techniques
to address the heterogeneity of artifacts and tools include

This material is based in part upon work supported by the National Science
Foundation under Grant No. 0917129.

413

shared repository and specialized code [6]. Open hypermedia
adapters can also be used to create traceability links across tool
boundaries [3]; we build upon th is technique to automatically
capture traceability links. Information retrieval techniques may
be used to address the explos ion of the artifact space [9, 11,
15]. Finally, centrally managing all the artifacts in one tool
[24] may be used to address traceability link maintenance.

C. Social Perspective
The social perspective has equally important challenges that

arise from the interaction of stakeholders with traceability, such
as differing e xpectations and low use r motivation. I t is
recognized that people play a crucial part in deter mining the
quality of traceability links [4, 15]. Be cause of diffe rent
stakeholder expectations [13], it is difficult to create a general
traceability tool that caters to these different stakeholders. This
difficulty can be addressed by developing customized tools [6,
26]. In addi tion, software engineers ge nerally have low
motivation to perform traceability tasks [18]. Providing
incentives to engineers or integrating traceability tasks into the
development process may address these challenges [4, 6, 25].

D. Perspectives Interplay
We argue that the challenges from the economic, technical,

and social perspectives are interrelated. As an exam ple, let us
consider the following scenario. Because of the high cost of
manually capturing traceability links, an organization may
resort to automated techniques to ca pture traceability links
(e.g., [11]). However, since automated techniques cannot
achieve 100% accuracy [9], hum an analysts must still check
the recovered traces, which can be tedious [15]. Since the
number of tra ces to be exa mined can be high [20], manual
checking could lead to additional overhead costs. Thus, simply
addressing the challenges from one perspective is inadequate.

III. ADDRESSING THE CHALLENGES WITH ACTS
To holistically address the traceability challenges, we

present Architecture-Centric Traceability for Stakeholders
(ACTS). The key elements of ACTS are centering the links to
the architecture, enabling stakeholders to trace artifacts that are
of interest to them, and capturing links pr ospectively. We
focus on addressing the challenges of the cost of capturing
traceability links (ec onomic), ability to link across
heterogeneous tools and art ifacts (technical), and low user
motivation in performing traceability tasks (social).

A. Architecture-Centric Traceability
To address the technical challenges of tracing across

heterogeneous artifacts, we chose to center the tracea bility
links to the architecture, since it provides higher level concepts
than the code [12] and it ha s a more rigorous representation
than requirements [15]. T here is also an inherently c lose
relationship between the architecture and other artifacts in
software development: e.g., between r equirements and
architecture [22], between architecture and source code [23],
and between architecture and test cases [17]. Moreover, the
architecture itself contains information that a ids in
understanding the system and its related artifacts. The software

architecture provides a comprehensive view of the system,
enabling engineers to better understand the system in its
entirety as well as in its indi vidual computational units. This
understanding lends itself to understanding the traceability
links from the architecture to the various software artifacts. It
also aids in understanding the links across different syste m
versions and across software product lines [16]. Links centered
on the architecture can be updated to reflect system evolution.

We define software architecture broadly, as the set of
principal design decisions about a software system [28]. This
definition implies that ever y software system has an
architecture—some set of design decisions that were m ade in
its development. Principal design decisions can be expressed
as the system’s structure, functional behavior, interaction, and
non-functional properties; this pa per focuses on decisions as
expressed in the system ’s structure, e. g., the functional units,
the mode of communication between the functional units, and
the configuration of these units. These principal design
decisions provide product-based concepts by which traceability
can be anchored and supported.

B. Stakeholder-driven Traceability
To address the social challe nge of low motivation, we

enable different stakeholders to bot h capture and use the
traceability links they capture, which we call stakeholder-
driven traceability. Stakeholders are indivi duals who ha ve a
vested interest in capturing relationships between soft ware
artifacts. Oftentim es, the stakeholder who captures the
traceability links is not the sam e stakeholder who uses the
links, causing a separation between the work and the incentive
to perform the work [4]. We believe, however, that i t is
imperative for stakeholders who invested time in capturing the
traceability links to also be able to use the links.

To achieve stakeholder-driven traceability, the tool support
must satisfy th e following requirem ents. F irst, the tool m ust
cater to varied stakeholder in terests in capturing traceabi lity
links. For example, a requirements analyst may be interested in
tracing high level to low level require ments while a
maintenance engineer may be interested in tracing architecture
to source code. Thus, the tool support must decouple the
heuristics of deter mining the traceability links from the tool
itself, to allow stakeholders to specify which artifacts to tr ace.
Secondly, the tool m ust enable stakeholders to use the
traceability links they captured. To be usable, the links should
be accessible (i.e., traced artifact s are vie wable within the
context of its native editor), updateable, and maintainable.

C. Tracing Links Prospectively
To address the economic challenge of overhead cost, we

capture traceability links autom atically in the background, in
situ while artifacts are gener ated or e dited. This prospective
technique is complementary to retrospective techniques which
recover links after the fact [9, 11, 15]. The online capture of
links can ensure that important information is not neglected or
overlooked due to lack of resources or tim e [29]. The idea of
tracing prospectively is not ne w [24], but it was only recently
that this approach became feasible [19]. Empirical evidence
reveals that traceability links captured in thi s manner are often
useful [27].

414

Figure 1. Prospectively capturing traceability links

 Figure 1 shows an overview of the process of prospectively
capturing traceability links—numbers denote steps, triangled
steps denote user actions, a nd circled steps denote autom ated
tool support. A user may select which rules to apply prior to
any recording session (Step A). The user initiates a recording
session in the trace tool (1). The trace tool invokes appropriate
tool-specific recorders (2, brown arrows) whenever the user
opens specific artifacts. As the user perform s development
tasks and accesses, generates, or edits artifacts (3), each
recorder captures the user interaction eve nts. Each e vent
captured is associated with the resource path and perha ps a
location within the resource. When the user ends the recording
session of the trace tool (4), the adapters output the ca ptured
events to a common event log (5, green arrows). The trace tool
orders the events sequentiall y. Rules may be autom atically
applied to transform the event log into traceability links (6).
Finally, the new traceability links are added to the linkbase (7).

IV. TOOL SUPPORT
We implemented ACTS within ArchStudio, an

architecture-centric development environment integrated with
Eclipse [10]1. We focused on relating artifacts to the structural
representation of the architecture and we de signed our system
to achieve the goals of supporting stakeholder-driven
traceability and prospectively capturing links ac ross
heterogeneous artifacts. Detailed usage scenarios are in [7].

A. Using Open Hypermedia Concepts
A main difficulty with current traceability approac hes is

tracing across heterogeneous artifacts and tools [14] . Previous
efforts to integrate off-the-shelf (OTS) software development
tools required the framework to adjust to the assumptions of the
OTS tools [25] or required OTS developers to adhere to the
environment's framework [1]. In contrast, our approach
loosely integrates existing independently developed tools into a
traceability framework via open hypermedia techniques such as
adapters and first class traceability links (see [7]).

To support us er-customized link capture, we designed the
tool to have an explicit ex tension point for incorporating
custom adapters. The adapters, which utilize a third party tool's
API, are external to the trace tool and are i ndependent of each

other. In addition to the concept of rendering adapters that are
used in a hypermedia system [3], we cre ated recording and
maintenance adapters. Recording ada pters capture user
interactions within the context of the tools. Rendering adapters
render the artifacts within th e context of the third-pa rty tool
when a link is navigated. Finally, maintenance adapters detect
if a traced artifact has been deleted, modified, or moved.

Capturing links across heteroge neous artifacts is supported
through tool-specific recorders. The following tools are
supported: Eclipse, Mozilla F irefox, MS Office (Word, Excel,
Powerpoint), and Adobe Acrobat. Currently, only the artifacts
launched within these tools can be prospectively captured;
however, adapters can also be implemented for other tools.

To support queries and upda tes, we use first class n-ary
traceability links. We currently use a xADL file [28] whi ch is
an XML-based architecture descri ption language to store our
linkbase; xADL was extende d with a traceability schem a. A
traceability link consists of a set of two or more endpoints that
share a common relationship.

B. Using Rules
We use rules to analyze a potentially la rge set of user

interaction events and to aut omate the capture of traceability
links. Rules are used to filter noise by ignoring user
interactions based on a criterion (e.g., “ignore files
ProjectX”, “ignore Save events”). Rules are also used to
transform the user interactions to traceability links by using a
criterion (e.g., patterns of events or primary trace artifact). To
decouple heuristics from the trace tool, rul es are external to
ACTS. Rules are im plemented as XSL Transformations
(XSLT) on XML, and Xalan-Java acts as our rule engine. A
rule is usually represented by a single XSLT file.

Rules may be applied in the background or interactively. To
apply rules in the background, the user selects the rules prior to
a recording se ssion. The rules are automatically applied after
each recording session. To apply rules interactive ly, ACTS
prompts the user to select a rule after each recording session.
The status of link transformation is displayed and additional
rules may be applied. In both cases, traceability links are added
to the linkbase after the rule application.

1For info on the tool, see http://faculty.washington.edu/hazeline/acts/

415

TABLE I. COMPARISON OF THE ACCEPTABILITY OF OVERHEAD TIME
BETWEEN THE TWO GROUPS

Question Interactive Background P-Value

Please rate the
acceptability of the time
spent on recording links

Ave: 2.4
 ± 0.9

Ave: 2.2
 ± 0.8 0.341

Please rate the
acceptability of time

spent on applying rules

Ave: 3.0
± 1.3 N/A N/A

Note: Scale of 1 to 5, where 1= “Highly Acceptable” and
5=”Unacceptable”

TABLE II. LEVEL OF DISTRACTION IN LINK CAPTURE WITH ACTS

Question Interactive Background P-Value

Did you find the turning on
and off of the recording

button distracting?

Ave: 2.8
 ± 1.2

Ave: 3.9
 ± 1.1 0.027

Did you find the rules to be
distracting?

Ave: 2.2
± 1.0 N/A N/A

Note: Scale of 1 to 5, where 1= “Very Distracting” and 5=”Not at all”

I. EVALUATION
To assess the extent to which ACTS addre sses challenges

from the three perspectives, we ran case studies in vari ous
contexts: lab settings, a proprietary project, and an open source
project. We focused on the following questions:

Q1. Is the cost associated with capturing a traceability
 link acceptable to users? (Economic and social)
Q2. Are architecture-centric traceability links usable?
 (Technical and social)
Q3. Would users use the tool in future projects?
 (Social, economic and technical)

A. Case studies in laboratory setting
Case studies in a laboratory setting allow us to perform a

screen capture of the user actions with the tool for later
analysis. W e solicited feedb ack from 18 participants, 15 of
whom are PhD stude nts in either Co mputer Science or
Informatics at the University of California, Irvine. In addition,
seven of these participants ha ve held indus try positions (e.g.,
programmer, architect, manager, and intern), allowing them to
assess the feasibility of the tool based on their roles in industry.

The participants were asked to use the AC TS tool in the
following task: capture trac eability links while editing a
structural design in A rchStudio and while viewing or editing
documentation files. Half of the user s were asked to
interactively apply rules and half applied the same rules in the
background. All users were also asked to retrieve the captured
links. Prior to the task, users were given a brief tutorial on how
to use the tool (about 5 m inutes). After t he task, users were
then asked to provide feedback via a questionnaire and semi-
structured interview. Based on the screen capture, we also
measured the time for capt uring and retrieving traceabili ty
links.

Q1: Both groups concur that time spent is a cceptable (see
Table 1). An independent one-tailed t-test shows th at there is
no significant difference bet ween the ratings of both groups,

suggesting that both groups view the overhead as e qually
acceptable. Users commented that the tool “make[s] the lin king
job easier” and “[t]he tool saved me lots of time. Thanks!”

Using the recorded screen ca pture, we also measured the
time it takes for users to c apture traceability links and to
retrieve the captured links . The box plot in Figure 2 show s the
distribution of overall tim es between users who applied the
rules interactively and users who applied the rules in the
background. The box plot shows that most of the users are
more efficient when applying rules in the background. A one-
tailed independent t-test co mparison between the two groups
yields a p- value of 0.005, strongly suggesting that appl ying
rules in the background is m ore efficient than interactive
application.

Meanwhile, the participants in the interacti ve rules group
felt that the manual application of rules was less ac ceptable
(average rating of 3 in Table I). These users felt that turning the
record button on and off was “somewhat distracting” while
users who applied the rules au tomatically in the background
found it less distracting (see Table II). An independent one-
tailed t-test between the two groups on this question shows p =
0.027, indicating there is a significant difference between the
views of the groups. A user from the interactive rules gr oup
described turning the recording on and off to be “tedious.”

Q2: Linking artifacts to the architecture (or design) is a
useful feature to some of our pa rticipants. Five participants
(three with industry expe rience) identified this feature as the
feature they liked about the t ool. One of these participants, an
architect/programmer, reasoned that “ [i]n practice [it is]
necessary to link architectu re to doc uments (requirements
specs). [T]his makes the documents more useful.”

Q3: Over hal f of the particip ants indicated interest in
continued usage of the tool for their own software development
projects. Nine participants answered “yes”, and three
additional participants answered “yes” with conditions, such as
if the user is a system architect using ArchStudio or if the user
needed to link the documentation with the design. Three
additional participants answered “maybe”.

Most of the participants l iked the abilit y to link design
elements to documentation, the ability to link to specific points
within the documentation, and the ease of navigating to the
documentation from design. One participant liked the ability to
view the artifacts in their native tool: “Simplifies the process,
everything is integrated into one workspace.”

Figure 2: Time to capture and retrieve traceability links

416

B. Case study in a proprietary project
The tool was a lso used in a c ompany where capturing and

managing traceability is crucial. The tool was use d by an
engineering specialist who was in cha rge of evaluating
software artifacts and capturing traceability links to them.

Q1: The user was concerned with the am ount of overhead
needed to create the rules tha t will filter the traceability links.
Since the user may be switching between different projects, the
user may be v isiting artifacts that should not be traced to the
current project. Because the rules are currently expressed as
XSLT, it required m ore overhead than was acceptable to the
user. “I nee d an environm ent that allows me to m ake snap
decisions about individual pote ntial links, or whole groups of
links, quickly and on the fly.”

Q2: Centering links on the architecture was of limited value
because the organization has a requirem ents-centric approach
to traceability and it currently ha s no centralized architec ture
document for a project (i.e., t he architecture is spread out over
multiple documents and different form ats). M oreover,
traceability capture starts before an a rchitecture is created (e.g.,
among different levels of requirements document).

Q3: The user has expressed reservations with using ACTS,
because of its architecture-centric approac h and because of
usability issues, such as the background capture of links.
Again, because the user may be switching between diffe rent
projects and because the user wanted to ensure that traceability
links are inde ed captured, the user wanted a capability to
simply “point” to the artifact to capture t he traceability links,
instead of automatically capturing links in the background.

C. Case study in an open source project
Finally, to assess how the ACTS tool works in the context

of a gr oup of users, the tool wa s used to support a team of
developers adding functionality to the ArchStudio project. A
team of four undergraduate stude nts with i ndustry experience
(architect, programmer, technical support) were instructed to
capture links between the architecture and online refere nces
during the ten weeks of development. They were also provided
a pre-defined set of rules to use.

Q1: Three of the four students indicated that the time spent
in recording a nd using the pre-defined rules was accepta ble.
Using the same scale as in Table I, two students rated it a s 1
and one student rated it as 2.

Q2: The students indicated that linking to the architecture
was useful. Three students found it useful in the following
tasks: learning about the syste m, gathering requirements,
designing, implementing new features, and testing. Since t hey
coordinated their tasks am ong themselves, three students used
the traceability links to help answer questions from their
teammates. When asked how often they use d their traceability
links to perform these tasks, 3 students responded “Majority of
the time” while one responded “One fourth of the time”.

Q3: All the students stated that they would continue using
the tool. They pointed out that “[t]he main hassle is the
installation and setup,” but once they learned how to us e the
tool, they found that it supported their development tasks. The

students commented, “Thanks. It’s very useful for me” and
“Excellent tool.”

D. Discussion
The case studies demonstrated that in development settings

where an a rchitecture is p redominantly used, the AC TS
technique was able to address difficulties from the three
perspectives, such as the cost in capturing links (with pre-
specified rules), supporting traceability capture across different
tools, and inc reasing the motivation to perform traceability
tasks (indicated by the willingness to use the tool again).

Q1: There is a concern with regards to the overhead
involved in creating the rules, as expressed by the engineering
specialist in the proprietary project case study. Because XSLT
requires an initial learning curve, we previously planned that a
“traceability administrator” would be in charge of creating the
rules and simply providing them to the users, as we have done
in the lab usage trials and in the open s ource case study. It
turns out that there are users who would like to create their own
rules, and thus, making the rules access ible to the general user
is an important requirement to be addressed in future work.

During this study, we also encountered an une xpected
result—that users are willing to spend m ore time capturing
traceability links as long as they are in control of the
traceability task. In fact, some lab participants asked for the
ability to manually map artifacts to design via “drag and drop.”
One participant even sugges ted displaying a dialog box to
manually confirm the links to add after each recording session:
“I’d like to have more control over the links. I ’d like to have
checkboxes to m anually pick the one link I wanted.” One
participant also wanted to be able to manually enter labels for
the captured traceability links. T his finding is consistent with
our engineering specialist who works in a setting where it is
important not to have missing links. Thus, higher cost may be
acceptable to users as long as they have more control.

Q2: Our approach takes the assumption that there is an
architectural model whereby all the other artifacts can be
linked. The lab usage trial as well as open source case st udy,
where an architectural model exists, has demonstrated that
capturing traceability links work well. In fact, the tra ced
artifacts can support development tasks as demonstrated in the
open source project case study. However, in settings where
there is no dom inant architectural model, as in the propri etary
project case study, our approach provid es limited value. A
placeholder or “bare-bones” architectural model could be used
until a substantive model is developed.

Q3: Future tool usage was largely dependent on the user
experience during the trial usage and the context of usa ge.
Many of the lab users and the undergraduate team saw that they
could benefit from ACTS. T wo of the lab users, an architect
and a manager, opined that ACTS c ould be useful in the
context of thei r work: documents become more useful when
linked to the architecture and traceability is useful during
company audits. The undergraduate team was also able to save
time since they could orga nize their refer ences around the
architectural model. We also see that if ACTS does not match
the context of usage, as in th e proprietary project, it is unlikely
to be used in that setting.

417

While the lab participants li ke the idea of being able to
automatically capture links t o documentation, they expre ssed
several usability issues regarding the current tool
implementation. Some participants prefer more visual feedback
on the status of traceability capture (e.g., a better visual
indicator that the recording i s taking place). One user would
like more “on-the-fly” directions to know what actions to take
while recording. These usability issues can be addressed by
further tool development.

Most of the literature on automating traceability techniques
focus on increasing the accuracy of traceability links captured
to minimize the cost (i.e., the time spent on capturing
traceability links [15]). By holistically analyzing the probl em,
we learn that software engine ers’ aversion to traceability is not
solely because traceability tasks are tim e consuming, but
because of the interaction of cost with socia l challenges (e .g.,
engineers capture traceability links because of an exte rnal
mandate [4, 6]) or the interaction of cost with the technical
challenges (e.g., captured traceability links quickly bec ome
outdated). Time spent in ca pturing traceability links become s
less of an issue whe n software engineers have a direct benefit
[4, 6]. This is confirmed by our finding where some users are
also willing to spend more time for a greater level of control.

II. CONCLUSION
This paper examined the traceability challenges and showed

that the complexity of the pr oblem stems from multiple
interacting factors that arise from the economic, te chnical, and
social perspectives. ACTS is a novel technique that holistically
tackles these challenges by unifying distributed and varied
artifacts around the architecture, by catering to stake holder
interests, and by prospectively capturing links. The ACTS tool
support is extensible—existing OTS tools can be integrated via
hypermedia adapters and heuristics can be s pecified via
external rules. Our case stud ies have shown that ACTS can
address interacting challenges from different perspectives.

There are several avenues of future work. ACTS can
potentially be adapted to settings where an architectural model
may be distributed among different artifacts or m ay not play a
central role in developm ent. More work is also needed to
understand other interactions be tween the three pers pectives.
For example, it is important to know how to balance individual
versus organizational priorities in capturing traceability links.
We anticipate that these issues can be a ddressed and tha t a
holistic approach like ACTS can aid in transitioning state of the
art traceability techniques into practice.

ACKNOWLEDGMENT
The authors are grateful to G. Mark, S. Hendrickson, Y.

Zheng, and E. Dashofy for useful discussions, and C. Leu, J.
Meevasin, H. Pham, D. P urpura, and A. Rahnemoon for tool
development.

REFERENCES
[1] The Jazz Project. http://jazz.net.
[2] K.M. Anderson, S.A. Sherba, and W.V. Lepthien. T owards large-scale

information integration. In Proc of ICSE, 2002.

[3] K.M. Anderson, R.N. Ta ylor, and E.J. Jr. Whitehead. Chimera:
Hypermedia for heterogeneous s oftware development environments.
TOIS, 18(3):211–245, 2000.

[4] P. Arkley and S. Riddle. Overcoming the traceability benefit problem. In
Proc of 13th Int’l Conf on Requirements Engineering (RE), 2005.

[5] H.U. Asuncion, A.U. Asuncion, and R.N. Taylor. Software t raceability
with topic modeling. In Proc of ICSE, 2010.

[6] H. U. Asuncion, F. François, and R.N. Taylor. An end-to-end industrial
software traceability tool. In Proc of ESEC/FSE, 2007.

[7] H.U. Asuncion and R.N. Ta ylor. Software and Systems Traceability,
chapter Automated Techniques for Capturing Custom Traceability Links
across Heterogeneous Artifacts. Springer-Verlag, 2012.

[8] J.A. Camacho-Guerrero, A.A. Carvalho, M.G.C. Pim entel, E.V.
Munson, and A.A. Ma cedo. Clustering as an approach to support the
automatic definition of sem antic hyperlinks. In Proc of Conf on
Hypertext and Hypermedia, 2007.

[9] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and S. Clark.
Best practices for automated traceability. Computer, 40(6):27–35, 2007.

[10] E. M. Dashofy, H. Asuncion, S.A. Hendrickson, G. Suryanarayana, J.C.
Georgas, and R.N. Ta ylor. Archstudio 4: An archite cture-based meta-
modeling environment. In Proc of ICSE, volume Res Demo, 2007.

[11] A. De Lucia, M. Di Penta, and R. Oliveto. Improving source code
lexicon via traceability and information retrieval. TSE, 37(2):205 –227,
2011.

[12] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. Determining the cost-
quality trade-off for auto mated software traceability. In Proc of Int’l
Conf on Automated Software Engineering (ASE), 2005.

[13] O. Gotel and A. Finkelstein. Modelling the contri bution structure
underlying requirements. In Proc of 1st Int’l Workshop on RE:
Foundations for Software Quality, 1994.

[14] J. Hayes and A . Dekhtyar. Grand ch allenges for tracea bility. Tech Rep
COET-GCT-06-01-0.9, Center of Excellence for Traceability, 2007.

[15] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate
link generation for requirements tracing: The study o f methods. TSE,
32(1):4–19, 2006.

[16] S. A. Hendrickson and A. van der Hoek. Modeling product line
architectures through change sets and relationships. In Proc ICSE, 2007.

[17] P. Inverardi, H. Muccini, and P. Pelliccione. Automated check of
architectural models consistency using SPIN. In Proc ASE, 2001.

[18] M. Jarke. Requirements tracing. Com. of the ACM, 41(12), 1998.
[19] F. Jouault. Loosely coupled traceability for ATL. In Proc of the ECMDA

Workshop on Traceability, 2005.
[20] J. Leuser. Challenges for se mi-automatic trace recovery in the

automotive domain. In Proc of Workshop on TEFSE, 2009.
[21] M. Lindvall and K. Sandahl. Practical implications of trac eability.

Software - Practice and Experience, 26(10):1161–80, 1996.
[22] B. Nuseibeh. Weaving together require ments and architectures.

Computer, 34(3):115–117, March 2001.
[23] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-based runtime

software evolution. In Proc of ICSE, 1998.
[24] F.A.C. Pinheiro and J.A. Goguen. An object-oriented tool for tracing

requirements. Software, 13(2):52–64, 1996.
[25] K. Pohl, K. Weidenhaupt, R. Dömges, P. Haumer, M. Jarke, and

R. Klamma. PRIME–toward process-integrated modeling environments.
TOSEM, 8:343–410, October 1999.

[26] B. Ramesh and M. Jarke. Toward reference models for requirements
traceability. TSE, 27(1):58–93, 2001.

[27] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting navigatio n
in software maintenance. In Proc of ICSM, 2005.

[28] R. N. Taylor, N. Medvidovic, and E.M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, 2010.

[29] A. von Knethen and B. Paech. A survey on traci ng approaches in
practice and res earch. Tech Report IESE-Report Nr. 095.01/E,
Fraunhofer Institut Experimentelles Software Engineering, Fraunhofer
Gesellschaft, 2002.

418

Pointcut Design with AODL
Saqib iqbal

Department of Informatics
University of Huddersfield,

Huddersfield, HD1 3DH, United Kingdom
s.iqbal@hud.ac.uk

Gary Allen
Department of Informatics
University of Huddersfield,

Huddersfield, HD1 3DH, United Kingdom
g.allen@hud.ac.uk

Abstract—The designing of pointcuts is a crucial step in Aspect-
Oriented software development. Pointcuts decide the places
where aspects interact with the base system. Without designing
these pointcuts properly, the weaving process of aspects with the
base system cannot be modelled efficiently. A good design of
pointcuts can ensure proper identification of join points, clear
representation of advice-pointcut relationships and overall
efficiency of the weaving process of the system. The existing
approaches do not design pointcuts separately from their parent
aspects, which hinders in identifying pointcut conflicts before the
implementation of the system. This paper provides a set of
graphical notations to represent join points, pointcuts, advices
and aspects. A graphical diagram has been proposed that shows
the relationships between pointcuts and their relevant advices.
The paper also provides a technique to represent and document
pointcuts along with their related advices and corresponding base
elements in a tabular way. The technique can help in resolving
two of the most complicated problems of pointcut modelling, the
fragile pointcut problem and the shared join point problem.

Keywords-component; Aspect-Oriented Design, Pointcut Design,
Pointcut Modelling, Aspect-Oriented Design Language

I. INTRODUCTION
The handling of concerns is extremely important for

critical, distributed and complex systems. Each concern has to
be identified, specified and designed properly to avoid
inconsistencies which can lead to serious consequences if the
system is cr itically sensitive. Object-oriented design
approaches have been the pick of the design techniques for
such systems during the last three decades. Unified Modelling
Language [2] emerged in the 1990s, and rapidly became
accepted as the standard analysis and design approach for
object-oriented development of systems. Unfortunately, object-
oriented approaches started showing problems in capturing
concerns that are scattered in nature and whose implementation
overlaps other concerns and/or system units. Such concerns are
known as crosscutting concerns. Examples of crosscutting
concerns include system security, logging, tracing and
persistence. The implementation of these concerns resides
within the implementation of other concerns or classes, which
results in inconsistencies and modification anomalies.

Aspect-Oriented Programming (AOP) [1] was introduced to
rectify this problem. AOP introduced a new construct, called an
aspect, besides the traditional object-oriented classes. The
aspect is i dentified, specified and designed separately, and is
woven into the base system at run-time wherever it is required.
AOP was proposed as an implementation solution to the
crosscutting problem. That is the reason why initial

developments in AOP were mainly in the field of
implementation. AspectJ, AspectWerkz and JBoss AOP are
among a n umber of implementation technologies which were
proposed immediately after AOP came into existence. With the
passage of time research was extended to earlier phases of
development as well, resulting into development of aspect-
oriented requirement engineering and design approaches.
Although modularity of aspect-oriented systems has been
ensured with the introduction of such techniques, the cohesive
nature of aspects with the base system has not been addressed
properly in the existing approaches. Pointcuts, which are
responsible for identifying join points in the system where
aspects are invoked, are highly dependent on the base
program’s structural and behavioral properties. This
characteristic makes pointcuts fragile with respect to any
changes in the base program, and results in a problem called
Fragile Pointcut Problem [6,7]. Another problem related to
pointcuts is Shared Join Point Problem [4], where more than
one advice from a single or multiple aspects are supposed to be
executed at a single join point. A proper design is required to
resolve the precedence of advices so that they run in a pre-
determined order. This paper addresses these two pointcut
problems and proposes a diagrammatic and tabular approach to
help in rectifying both issues without compromising the
consistency of the system. The tabular approach promises
better documentation of pointcuts and enables modifications to
be made in a consistent manner.

The rest of this paper is structured as follows: Sections 2
and 3 desc ribe the Fragile Pointcut Problem and the Shared
Join Point Problem respectively. Section 4 describes the
proposed pointcut-advice diagram and Pointcut Table, and
section 5 provides discussion and conclusion of the paper.

II. THE FRAGILE POINTCUT PROBLEM
Pointcuts are considered fragile because their definitions

are cohesively coupled with the constructs in the base system.
Upon modification in the base system, pointcuts’ semantics are
bound to change [6,7]. Pointcuts are defined by join points
which are specific points in the base system. Once a join point
is modified in the base system, the relevant pointcut is altered
to adopt that change or lose that particular join point. This
fragile nature of pointcuts forces designers to reflect changes in
the pointcut definitions when they make any modification to
the base system. Join points are formed not only on structural
characteristics of the system but also on behavioural properties
of functional units of the system. Therefore, any type of change
to structural or behaviour property of the base system would

419

require related pointcuts to be altered [3]. The fragility of
pointcuts leads to two core problems: unintended join point
capture problem, which arises when a join point is accessed
which does not exist anymore because of modifications to the
source code; and accidental join point miss problem, which
happens when a join point is not captured which was originally
supposed to be captured, again due to an alteration to the
source code of the base program [3].

III. THE SHARED JOIN POINT PROBLEM
Aspects superimpose their behaviours at well-defined join

points in the base system. A shared join point is a point where
multiple aspects interact and superimpose their advices. The
problem arises in deciding which aspect should run first. This
is a critical decision because execution of one aspect’s advice
can change the attributes which are supposed to be used by
another aspect’s advice. Figure 1, taken from [4], illustrates the
problem.

Figure 1. ‘Employee’ class and its superimposed aspects

(taken from [4]).

This problem is c onsidered to be an implementation-level
problem and has been addressed by renowned aspect-oriented
programming techniques. For example, AspectJ [10] provides a
declare precedence keyword to order advices, Composition
Filters [8] provides Seq operator to declare precedence, and
JAC [9] determines the order by implementing wrappers in the
classes which are filed in a wrapper file in an execution
sequence.

IV. DESIGNING POINTCUTS IN AODL
Pointcuts rely heavily on the lexical structure of the base

program. The definition of pointcuts (group of join points)
contains direct reference to the syntax of base elements. This
tightly coupled nature makes it hard for programmers to make
any changes to base program without having knowledge of
pointcuts and vice versa. Aspect-Oriented Design Language
(AODL) [5] presents a diagrammatic approach to the design of
pointcuts and a tabular way of documenting their definitions.
This kind of well-documented representation of aspects in the
design phase makes it easier for designers as well as
programmers to evolve either aspects or the base program.
Before moving onto the proposed models, we introduce AODL
briefly in the following section.

A. Aspect-oriented Design Language
Aspect-Oriented Design Language (AODL) [5] is a UML-

like design language that has been developed by the authors to
design aspects, aspectual elements, and object-aspect
relationships. AODL offers a unified framework to design both
aspects and objects in one environment. The constructs of
aspects are denoted by specialized design notations and

structural and behavioral representations are done with the help
of design diagrams. The details about the semantics of the
notations can be found in [5]. Figure 2 shows design notations
adopted by AODL.

Join Point

Weaving
Association

Aspect

Pointcut

Figure 2. AODL Design Notations

AODL proposes a three phase design for aspects,
constituent elements and the relationships between aspects and
objects, details can be found in [5]. In the first phase, join
points are modeled with the help of two diagrams, one for the
structural identification of join points, known as a Join point
Identification diagram, and the second for the behavioral
representation of join points, known as a Join Point
Behavioural diagram. In the second phase, aspects are designed
with the help of an Aspect Design Diagram. And in the final
phase, aspects are composed with the base model with the help
of two diagrams, an Aspect-Class Structure Diagram and an
Aspect-Class Dynamic Diagram. Complete details about the
semantics of the language and its usage can be found in [5].

B. Pointcut-Advice Diagram
Pointcuts are highly dependent on the base objects through

join points. Similarly, advices are tightly coupled with their
corresponding pointcuts. To represent these cohesive
relationships, we need to show related pointcuts, advices and
base objects in a diagrammatic model. An Aspect Design
Diagram (shown in Figure 3) contains the properties and
behavior of an aspect. The diagram connects with the base
classes through use of the crosscuts stereotype. Pointcuts are
represented along with their corresponding advices and
occurrence attributes (before, after and around) in a po intcut-
advice diagram.

Figure 3. Pointcut-Advice Diagram

C. Pointcut Table
Pointcuts are predicates which are set on defined points

(join points) in the execution of a program. To define and
document pointcuts properly ensures consistency of the
program. AODL has proposed a pointcut table (shown in Table
1) to document pointcuts along with their related advices,
aspects and base classes. The table defines pointcuts in vertical
columns by indicating the join points of the base system
horizontally. The columns of the table provide list of aspects
and complete definition of their pointcuts along with their
related advices. The rows, on the other hand, show the base

Aspect name
Attributes

Operations

Pointcuts
Advices

 Join points

 Pointcut name

before
Ad01

after
Ad02 Join points

Pointcut Name

420

system attributes, methods and execution points where join
points have been identified. The execution order of advices on
a single join point is declared in the last column, named Order.
The table has been tested and verified to represent all types of
legitimate AspectJ pointcuts, as defined in [11].

Table 1: Pointcut Table

Aspect A Aspect B Order

 AdA1
(Before)

AdA2
(After)

 AdB1
(Before)

 AdB2
(Around)

Class A this

Attribute

constructor execution

Method1 execution execution AdA1,
AdB1

Method2

getX()

Class B

Method1 call within AdB1,
AdA1

Method2 exception(type)

Pointcut
Definition

this(A) &&
exec(MA1)
&& call MB1)

exception(type) call(A1) OR
within(MB1)

Pointcut P1 P2 P3 P4

Pointcut
Trigger !(P2) cflow(P1) P1

&& P2

Complete
Definition

this(A) &&
exec(MA1)
&& call (MB1)
&&!(P2)

exception(type)
call(A1) OR
within(MB1)
&& cflow(P1)

P1
&& P2

In case of system being too complex and containing a
number of aspects, the table can be broken into multiple tables
and a specific number of aspects can be contained in each table.
This way each table will contain pointcut information about a
specific number of aspects only (say 3 or 5) and the readability
of the system will improve.

D. Implications of the Approach
The existing aspect-oriented design approaches do not provide
means to design pointcuts separately from their parent aspects.
The composition of aspects heavily depends on consistency of
pointcuts because they define the join points where aspects are
woven into the system. The authors felt that (i) the pointcuts
should be des igned properly with the help of designated
design notations and design diagrams, (ii) the pointcuts should
be documented properly so that their features and relationships
are specified efficiently before being implemented, and (iii)
the pointcuts should be ordered at the modelling level so that
problems such as the fragile pointcut problem and the shared
join point problems are handled before implementation.

The authors of the paper do not claim that the proposed
diagrammatic and tabular approach resolve both the problems
completely. It is, however, suggested that adopting this type of
approach can help in resolving a num ber of problems
especially inconsistencies and conflicts involving pointcuts.

E. Example
To make the proposed approach more understandable, we

will implement the Observer Pattern [12] as implemented by
[13]. An abstract aspect Observer is extended by two aspects,
Observing1 and Observing2 as sh own in Figure 4. The

following sections implement this example using a Pointcut-
Advice Diagram and a Pointcut Table.

Figure 4: Observer Pattern Implementation (Taken from [13])

Pointcuts are designed with the help of pointcut-advice
diagrams, where each pointcut is represented along with its
corresponding advice. As shown in Figure 5a, pointcuts p() and
c() of the Observing1 aspect have been represented with the
help of a pointcut diagram which shows the definition of the
pointcut (set of join points) and the advices with the occurrence
attribute (which is after for both the pointcuts). Similar diagram
has been drawn in the Figure 5b for Observing2 aspect.

Figure 5a: Aspect Design Diagram for Observing1

Figure 5b: Aspect Design Diagram for Observing2

OBSERVER PATTERN
abstract aspect Observer {
void notify() { ... }
abstract pointcut p();
abstract pointcut c();
after(): p() {notify();}
after(): c() {notify();}
}
aspect Observing1 extends Observer {
pointcut p(): call(void Buffer.put(int));
pointcut c(): call(void Buffer.get());
}
aspect Observing2 extends Observer {
pointcut p():within(Buffer) && call(* put*(*);
pointcut c():within(Buffer) && call(* get*(*));
}

<<crosscuts>>

Observing2

Attributes
 Operations

 Buffer

after

 notify
within(Buffer)&&
call(*put*(*);

 p()

after
 notify within(Buffer)&&

call(* get*(*);

 c()

<<crosscuts>>

Observing1

Attributes
 Operations

 Buffer

after

 notify
call(void
Buffer.put(int));

 p()

after
 notify call(void

Buffer.get());

 c()

421

Table 2 shows the pointcut table for the Observer Pattern. It
documents all of the information about the pointcuts of a
particular aspect, along with the corresponding base methods
and attributes, in a tabular way. Besides documenting all the
information about a pointcut, the table also shows the order in
which advices are executed on a particular join point. For
instance, in the first row of the table we have two advices,
AdOb2_1 and AdOb2_2, which are supposed to be executed on
a join point “within” which is defined on objects of the Buffer
class. The table also provides the Order column, where we can
show which advice should be executed first, which in the case
of Table 2 shows that AdOb2_1 will execute before AdOb2_2.

Table 2: Pointcut Table for Observer Pattern

Observing1 Observing2 Order

AdOb1_1
(After)

AdOb1_2
(After)

AdOb2_1
(After)

AdOb2_2
(After)

Class
Buffer within within AdOb2_1,

AdOb2_2

Attributes

put() call

put(int) call call AdOb1_1,
AdOb2_1

get() call call AdOb1_2,
AdOb2_2

get(int) call

Pointcut
Definition

call(void
Buffer.put(int))

call(void
Buffer.get())

witin(Buffer) &&
call(*put*(*))

witin(Buffer)
&&

call(*get*(*))

Pointcut
Name P() c() p() c()

Pointcut
Trigger

Complete
Definition

call(void
Buffer.put(int))

call(void
Buffer.get())

witin(Buffer) &&
call(*put*(*))

witin(Buffer)
&&

call(*get*(*))

V. FRAGILE POINTCUT AND SHARED JOIN POINT PROBLEM
The method to document pointcuts, shown in Table 1 and

Table 2, reduces the fragile nature of pointcuts. The table
provides complete information about a pointcut, which helps in
modifying the pointcut without allowing inconsistencies. This
kind of tabular documentation helps remove modification
anomalies when join point definitions are altered in the base
system.

The pointcut table also provides a column named Order to
declare the precedence of advices which have execution clashes
with each other. Advices are grouped in order of their
execution on a join point which is shown in that particular row.
The table therefore provides an opportunity for designers to set
the precedence on the execution of advices during the design
phase in order to avoid clashes in execution.

It is again stressed that the authors do not claim that the
proposed approach resolves all types of pointcut conflicts
including the fragile pointcut problem and sh ared join point
problem. It is, however, asserted that this approach can help in
designing pointcuts at modelling level and it can help in
identifying and resolving some key issues of pointcuts before
they are implemented.

VI. DISCUSSION AND CONCLUSION
Aspect-Oriented Development unifies separately defined

aspects with objects of the base system through well-defined
join points. The composition between aspects and objects
depends heavily on the identification of join points and their
proper grouping in the form of po intcuts. The cohesive nature
of pointcuts is defined by definition of join points which are
susceptible to change if an alteration is m ade in the base
program. The resultant pointcuts are inconsistent with the
system and r esult in either missing some join points or
capturing join points which are not intended by the designer.
To avoid such problems, proper documentation and proper
design of a pointcut becomes vitally important. This paper has
proposed a di agrammatic approach to the design of pointcuts
along with their related aspects, advices and base objects. The
diagram does not only help structural design of a pointcut but
also helps in representing the relationships between an aspect
and its corresponding advices. The paper also proposes a
tabular approach to the documentation of pointcuts during the
design phase, so that all of the corresponding definitions of a
pointcut are defined along with its characteristics and parent
entities (aspects and classes). The pointcut table promises the
rectification of two of the most common problems of pointcut
design, the fragile pointcut problem and the shared join point
problem during the design phase.

The future research will strive to develop pointcut composition
models to identify aspect interferences at the pointcut level.
Tool support will also be provided to automate development of
pointcut models and generation of code.

REFERENCES
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier, and J. Irwin. “Aspect-Oriented Programming,” In: Proceedings of
ECOOP 1997, Jyväskylä, Finland, June 9-13, 1997, pp. 220-242.
[2] “Unified Modelling Language”, OMG, http://www.uml.org/. Accessed on
09 Dec. 2011.
[3] A. Kellens, K. Gybels, J. Brichau, and K. Mens. A model-driven pointcut
language for m ore robust pointcuts. In Proc. Workshop on Software
Engineering Properties of Languages for Aspect Technology (SPLAT), 2006.
[4] I. Nagy, L. Bergmans, and M. Aksit. “Composing aspects at shared join
points”. In Proceedings of International Conference NetObjectDays (NODe),
Erfurt, Germany, Sep 2005.
[5] S. Iqbal and G. Allen, Designing Aspects with AODL. International
Journal of Software Engineering. 2011, ISSN 1687-6954 (In Press)
[6] C. Koppen and M. Stoerzer. Pcdi : Attacking the fragile pointcut
problem. In First European Interactive Workshop on Aspects in Software
(EIWAS), 2004.
[7] M. Stoerzer and J. Graf. Using pointcut delta analysis to support evolution
of aspect-oriented software. In 21st IEEE International Conference on
Software Maintenance (ICSM), pages 653–656, 2005.
[8] “Compose* portal”, http://composestar.sf.net, Accessed on 24 Jan, 2012.
[9] “Java Aspect Component”, http://jac.ow2.org/, Accessed on 24 Jan, 2012.
[10] Eclipse, AspectJ, http://www.eclipse.org/aspectj/, Accessed 05 Dec. 2010
[11] Pointcuts, Appendix B. Language Semantics,
 http://www.eclipse.org/aspectj/doc/next/progguide/semantics-pointcuts.html,
Accessed on 30 Jan, 2012.
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of R eusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley, Reading, Ma, USA, 1995.
[13] W. Cazzola, S. Pini, and M. Ancona. Design-Based Pointcuts Robustness
Against Software Evolution. In Proceedings of RAM-SE’06 Workshop,
Nantes, France, July 2005

422

Feature modeling and Verification based on
Description Logics

Guohua Shen, Zhiqiu Huang, Changbao Tian, Qiang Ge
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
Nanjing, China

{ghshen, zqhuang}@nuaa.edu.cn

Wei Zhang
School of Electronics Engineering and Computer Science

Peking University
Beijing, China

zhangw@sei.pku.edu.cn

Abstract Most of the current domain engineering methods have adopted
the feature model as a domain requirements capturing model. But these
methods lack the semantic description of the feature model and the
relationship between features. This has led to the redundancy and confusion
in feature model representation between different domain engineering
methods. In this paper, a description logics-based feature model, including
the feature class and the constraints of the features, is presented. A group of
rules for constraints are proposed, which are used to verify the consistency
and completeness of feature model instances. Then, combining with a real
software domain, the modeling process of the feature model with
description logic and its verification are discussed systematically.

Keywords feature model; requirements engineering; software reuse;
model verification; description logics

I. INTRODUCTION

Software Product Line (SPL) is an important way to reuse software
domain assets. SPL practices guide organizations towards the
development of products from existing assets rather than the
development of separated products one by one from scratch. Thus,
features can be shared among all software products in domain. The
feature model has been widely adopted as a domain requirements
capturing model by most of the current domain methods, such as
FODA [1], FORM [2], FeatuRSEB [3], PuLSE [4] and SPL [5].

Description logics (DLs) are a family of languages for representing
knowledge and reasoning about it. There are several studies proposing
the usage ofDL to analyze feature models, such as [6,7,8]. Intuitively, a
domain-specific feature model is a concrete instance of meta-model.
However, these methods do not rigorously differentiate between the
feature meta-model and feature models (i.e., instances of meta-model).
New concepts, roles and constraints are created for every domain
feature model, which causes additional efforts and bloating in the
numbers of concepts, roles and constraints. Actually, the feature meta-
model is domain-independent and built for only once, while feature
models are domain-dependent and must be instantiated for each
domain bydomain engineers.

II. FEATUREMODEL

A. Feature
The features define both common aspects of the domain as well as

differences among all products of a SPL. A Feature is a distinctive
characteristic of a product, and it may refer to a requirement, a
component oreven to piecesofcode [9].

A feature model is a compact representation of all potential
products of a SPL. Feature models are used to model SPL in terms of
features and relationsamong them.

B. Feature-Oriented model
The feature model is an abstraction of commonality and variability

in a software family across a domain. Most proposals organize feature
in hierarchy, and the parent feature is composed of children features.
Figure 1 describes the feature model of the graph editor domain.

graph-add
graph-movegraph-select

graph-manipulate

moving-mode

moving-constraint

outline-move content-move

graph-delete

ent ity-add connector-add

graph-compose

select-mode

increment-select nonincrement-select

hori-constraint verti-constraint

dimension-valuefeature

whole-part relationoptional

graph-dim

3D 2D

alternative

or
require

mutex

Figure1. Featuremodel of graph editor.

The feature model describes the variability in two ways: i) the
feature is optional; ii) the feature is a variation point (vp-feature, also
called dimension feature [10]), which attaches some value features. For
example, the feature moving-constraint is optional for its parent feature
graph-move, and the feature moving-mode is a dimension feature with
two different values: content-moving and outline-moving (see Figure 1).

C. Feature Model Tailoring
Feature modeling is an activity of development for reuse. We

customize a specific software productspecification through tailoring.

The system can be changed at certain time in the system’s lifecycle.
Selecting some variant of the feature model is called binding the variant.
Every variation pointhas at least one associated binding time.There are
three typesofbinding time:reuse-time,compile-time and run-time.

Every feature has the binding states like bound, removed and
undecided. A bound feature means that if its pre-conditions are
satisfied, this feature will be executed. A removed feature means that it

423

will never be bound again. An undecided feature means that it is
currently not in the bound state, but still has the chance to be bound or
removed in later binding-times. In addition, we use “tailoring” to
denote the action of changing a feature’s binding state from undecided
to removed, use “binding” to denote the action of changing a feature’s
bindingstate from undecided to bound [11].

III. SEMANTIC FEATURE MODELING

A. Description Logics
Description logics play an important role in Semantic Web since

they are the basis of the OWL1 (Web ontology language). DLs offer
considerable expressive power, while reasoning is still decidable [12].

Concepts and roles are basic elements in DLs. The syntax and
semantics of a description logic are summarized in table 1, where C
and R are conceptsand roles respectively.

TABLE I. SYNTAX ANDSEMANTICSFORDLSCONSTRUCTORS

Constructor Syntax Semantics
topconcept ΔI

bottomconcept

concept negation ¬C ΔI\ CI

intersection C D C I D I

union C D C I D I

existential restriction R.C {aΔ I |b.(a,b)R IbC I}
valuerestriction R.C {aΔ I |b.(a,b)R IbC I }
set { a1,…,an }

A knowledge base K of DLs is constituted by the Tbox T and the
Abox A, denoted as K=(T, A), where the TBox introduces the
terminology (that is, concepts), as well as axioms like general concept
inclusion (GCI) and general role inclusion (GRI); while the ABox
contains assertions about named individuals in terms of this vocabulary
[12]. In TBox, there are concepts definition and axioms. Inclusion
axioms are of the form “C D”. GCI and GRI axioms express the
inclusion relation between concepts and roles respectively. For
example, axiom “Woman Person” indicates that Woman is a sub-
conceptofPerson.

In ABox, each assertion states a fact. Assertions are divided into
two types: concept assertions (written as “C(x)”) and role assertions
(written as “r(x,y)”). For example, the assertion ”Woman(mary)” states
that mary is an individual (instance) that belongs to the concept Woman,
while “hasMother(peter, mary)” states that peter has mother mary.

B. Semantic feature modeling based on DLs
Our DLs-based feature model is composed of two levels: the

feature meta-model and models. The feature meta-model is domain-
independent, and defined in TBox. Feature models are domain-
dependent and built in ABox. The domain engineers instantiate models
according to the meta-model.

1) Feature class
In DLs, the feature in meta-model is expressed as a concept, and its

definition is as follows. The concept Feature has role hasBindTime,

1 http://www.w3.org/TR/owl-guide/

whose range is the concept BindTime, and has role hasState, whose
range is the concept BindState.

Feature::= hasBindTime.BindTime hasState.BindState
The binding time consists of reuse-time, compile-time and run-time.

So the conceptBindTime is defined byusing the set constructor as:
BindTime ::= {reuse-time, compile-time, run-time}
The binding state consists of bound, removed, undecided and

conflict. Anew state conflict is appended,which is used forconsistency
verification (see conflict-rule in detail). So the concept BindState is
defined byusing the set constructor as:

BindState ::= {bound, removed, undecided,conflict}
A dimension feature has variable behavior. The dimension feature

concept DimFeature is the sub-class of concept Feature, and it is
associated with some value features DimValue.

DimFeature::=Feature hasValue.DimValue
The concept DimValue is the sub-class ofconcept Feature too. The

sub-class relation is defined in GCIaxiom as:
DimValue Feature.
Figure 2 depicts the conceptsof feature meta-model.

Feature

DimFeature DimValue

BindTime

hasPart

hasValue

hasBindingTime

concept role

hasState

sub-concept/role

BindState

Figure2. Semantic featuremeta-model (concepts)

2) Relationsbetween features
The features are organized in hierarchy. For example, the feature

graph-manipulate is composed of graph-add, graph-select and graph-
move. The whole-part relation is described as role hasPart, whose
domain and range are both Feature.

hasMandatoryPart

hasPart

concept role
sub-concept/role

Feature

hasPart

require mutex

hasValue

hasOptionalPart

hasAlternativeValue

Figure3. Semantic feature meta-model (roles and constraints).

There are two kinds of whole-part relations: optional and
mandatory. These two relations are defined as role hasOptionalPart
and hasMandatoryPart. Both of them are sub-role of hasPart, written
as following GRIaxioms:

424

hasOptionalPart hasPart
hasMandatoryPart hasPart
The role hasValue, which is sub-role of role hasPart, describes the

relation between concept DimFeature and DimValue. The sub-role
relation is defined in GRI axiomas:

hasValue hasPart.
Figure 3 depict the roles, and their inclusion relation.

C. Constraintsof the feature model
Several methods proposed their own constraints of the model. E.g.,

the semantic between vp-feature and variant features in FeatuRSEB [3]
is somewhat similar to the one between dimension feature and value
features in FODM [10]. However, the “require”, “mutual exclusion” in
FODA [1], and “OR”, “XOR” constraints in FeatuRSEB are redundant
and easy to cause confusion among different methods. In this paper, we
define roles require and mutex, to describe the dependency and mutual
exclusion constraints respectively (see Figure 3).

We define a role hasAlternativeValue, which is sub-role of role
hasValue, to indicate the mutual exclusion constraints.

hasAlternativeValue hasValue.
We use DLs to describe the semantic of constraints between

features.The rules are defined in DLs knowledge base.

Alternative-Rule: f1f2f3 DimFeature(f1)DimValue(f2)
DimValue(f3)hasAlternativeValue(f1,f2)hasAlternativeValue(f1,f3)
mutex(f2,f3)

Mutex-Rule:f1f2 Feature(f1)Feature(f2) hastate(f1,bound)
mutex(f1,f2)hasState(f2, removed)

The alternative-rule indicates that f2 and f3 are mutuallyexclusive.

The mutex-rule means that f1 and f2 are instances of Feature, and
they are mutually exclusive, if f1 isbound,then f2 must be removed.

The role hasMandatoryPart expresses the dependency constraint
implicatively. That is, feature instance f1 has a mandatory child feature
f2 means that f2 dependson f1 (see require rule1). If f2 is bound, then f1
must be bound (see require rule2). If f1 is removed, then f2 must be
removed (see require rule3).

Require-Rule1: f1f2 Feature(f1) Feature(f2)
hasMandatoryPart (f1, f2) require(f2, f1)

Require-Rule2: f1f2 Feature(f1) Feature(f2)
hasState(f2,bound) require(f2, f1)hasState(f1,bound)

Require-Rule3: f1f2 Feature(f1) Feature(f2)
hasState(f1,removed) require(f2, f1)hasState(f2,removed)

D. Reasoning aboutmodel for its verification
There are some basic inference issues considered in the reasoning

about consistency and completeness of feature model. In order to
reason about consistency, we define the state conflict by using the
following conflict rule, which indicated that a feature instance f1 has the
two states bound and removed at the same time, then f1 has the state
conflict.

Conflict-Rule: f1 Feature(f1) hasState(f1,bound)
hasState(f1,removed)hasState(f1,conflict)

Definition1. consistency

For knowledge base K=(T,A), the ABox A, in which the feature
model is described, is consistent with respect to (w.r.t.) the TBox T if
there is no state conflict.

Definition2.completeness
For K=(T,A), the ABox A, in which the feature model is described,

is complete w.r.t. the TBox T if all the assertions necessary are included.

IV. CASE STUDY

We take the graph editor system as an example, and analyze its
feature modeling and verification based on DLs. The graph editor is
used for manipulating and displaying graphs in domains such as
CAD/CAM. It is a relativelysimple, easy to understand domain system.

A. Semantic modelof graph editor
Though the notations of the graphs have different semantic, we can

abstract features,which can be shared among all graph software.

In graph editor, graph manipulation is a key function; it controls the
lower level functions such as graph addition, selection, deletion,
moving and composition. These lower level functions are bound in
reuse time, and graph composition is optional. Figure 1 depicts its
typical feature model.

B. Reasoning about feature model of graph editor

Figure4. Feature meta-modeldefinition inProtégé.

We adopt Protégé3.4.42 as OWL editor, Jena3 as ontology API.
Jena is a Java framework for ontology application. It provides a
programmatic environment for OWL, query language SPARQL4 and
includesa rule-based inference engine and SPARQL query engine.

First, we create the feature meta-model according to the DLs-based
modeling method (see Section 3.2) in Protégé. That is, we define the
concepts, roles and constraints (see Figure 4).

Second, we use rule language to describe all rules.

2 http://protege.stanford.edu/
3 http://jena.sourceforge.net/
4 http://www.w3.org/TR/rdf-sparql-query/

425

Third, we present the feature model of the graph editor by adding
assertions (refer to the tutorial5 for use ofprotégé).

Last, we reason about feature model to verify its consistency and
completenessbyusing reasoner and SPARQL.

We get feature instances whose state is conflict by following
SPARQL: "SELECT ?x WHERE {?x hasState conflict}"

Case 1: Suppose ABox A={Feature(graphManipulate),
Feature(graphDelete), Feature(graphSelect), hasState(graphDelete,
bound), hasState(graphSelect,removed), require(graphDelete,
graphSelect)}. Using SPARQL, we find two conflict feature instances
graphDelete and graphSelect according to require-rule2, require-rule3
and conflict-rule.

Case 2: Suppose ABox A={ Feature(graphMove), DimFeature
(movingMode) , hasState(movingMode,bound), hasMandatoryPart
(graphMove, movingMode), DimFeature(graphDim), DimValue(2D),
DimValue(3D), hasState(3D,bound), hasAlternativeValue
(graphDim,2D), hasAlternativeValue(graphDim,3D), mutex
(graphMove, 3D)}. Using SPARQL, we find three conflict feature
instances 3D, graphMove and movingMode according to mutex-rule,
require-rule3 and conflict-rule. Feature instances 3D, graphMove are
conflict because they are mutually exclusive. The feature instance
movingMode is conflict, because new assertion
“hasState(movingMode,removed)” is derived according to require-
rule3, the assertion is inconsistent with “hasState(movingMode,bound)”.

By using reasoner, we can verify the consistency of feature model,
orachieve new assertions to make the feature model more complete.

V. RELATEDWORK

Current methods have some limitations. The relationship between
features and constraints among them are similar but different. For
example, the variation-variant features (in FeatuRSEB [3]) are
equivalent to dimension-value features (in FODM [10]); and XOR-
relation (in FeatuRSEB) and alternative-relation (in Czarnecki’s
proposal [13]) are similar. Furthermore, most proposals depict feature
models in a grapy way by using slightly different notations. They are
essential and easy to comprehension. However, they lack semantic, and
thishas led to the redundancy and confusion.

Ontology-Oriented requirement analysis (OORA) [14] method
enhances the object-oriented analysis and design. In FODM,
propositional logic is selected separately to model and verify constraint
relations. Kaiya et al [15] proposed a method of software requirements
analysis based on ontologies, where inference rules is established to
detect incompletenessand inconsistencyin a specification.Peng et al [8]
proposed an ontology-base feature meta-model supporting application-
oriented tailoring. Some constraints rules are introduced to validate
constraints by ontology reasoning. Benavides et al [9] used constraint
programming to model and reason on a SPL. The model need to be
extended to support dependencies such as requires or excludes relation.
To the best of our knowledge [16], there are only small numbers of
proposals that treat automatic reasoning about feature models to verify
the constraints. Many ontology-based approaches do not differentiate
between feature meta-model and feature models.

5 http://protege.stanford.edu/doc/users.html#tutorials

VI. CONCLUSIONS

In this paper, we propose a DLs-based method to model feature:
describing feature meta-model with concepts, roles, axioms and rules in
TBox, while describing feature model with assertions in ABox. We can
reason about the feature model to verify the consistency and
completeness. A case study in graph editor domain shows that this
method will be beneficial.

The main features of this method are as follows: i) our feature
model is compatible with the model that adopted by most of domain
engineering methods. ii) The explicit semantic clarifies the similarity
and differences among these methods. iii) Concrete feature models are
instantiated in ABox, so it is convenient to perform running-time
verification. Still there are some weaknesses: some non-functional
features are not taken into considerations; how to elicit feature in a
domain dependson expertise experience.

ACKNOWLEDGMENT

This research was supported by the National High-Tech R&D
Program of China (No. 2009AA010307), and by Fundamental
Research Funds for the Central Universities (No. NS2012022). We
thank Prof. David Parnas, Jie Chen for theirhelpful suggestions.

REFERENCES

[1] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-
Oriented Domain AnalysisFeasibility Study [R]. Technical Report(SEI-90-TR-21),
CMU,1990.

[2] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A Feature-
Oriented Reuse Method with Domain-Specific Architecture [J]. Annals of
Software Engineering, vol. 5, pp. 143-168, Sept.1998.

[3] M.L. Griss, J. Favaro, and M. d'Alessandro. Integrating Feature Modeling with the
RSEB [C] //Procof ICSR 1998, pp. 76-85,1998.

[4] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and
J.M. DeBaud. PuLSE: A Methodology to Develop Software Product Lines[C]
//Proc of SSR'99, May1999.

[5] P. Clements, L.M. Northrop. Software Product Lines: Practices and Patterns [M].
Addison-Wesley, 2001.

[6] H. Wang, Y.F. Li, J. Sun, H. Zhang, and J. Pan. Verifying Feature Models using
OWL. Journal of Web Semantics, 5:117–129, June2007.

[7] S. Fan and N. Zhang. Feature model based on description logics. In Knowledge-
Based Intelligent Information and Engineering Systems, 10th Intl. Conf., KES,
Part II, volume4252 of Springer–Verlag, 2006.

[8] X. Peng, W.Y. Zhao, Y.J. Xue, Y.J. Wu. Ontology-Based Feature Modeling and
Application-Oriented Tailoring [C] //Procof ICSR 2006. pp.87-100, LNCS,2006.

[9] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning on Feature
Models. //ProcofCAiSE 2005. pp.491-503, LNCS, 2005.

[10] W. Zhang, H. Mei. A Feature-Oriented Domain Model and Its Modeling
Process[J]. Journal of Software, 2003,14(8): 1345-1356(in Chinese).

[11] W. Zhang, H.Y.Zhao, H. Mei, A Propositional Logic-Based Method for
Verification ofFeatureModels, ICFEM 2004 (LNCS, 3308) , pp.115-130,2004.

[12] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider. The
description logic handbook: theory, implementations and applications [M].
Cambridge UniversityPress, 2003.

[13] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods,
Techniques, and Applications.Addison–Wesley, may2000.

[14] R.Q. Lu, Z. Jin. Domain Modeling-Based Software Engineering: A Formal
Approach [M]. KluwerAcademic Publishers, pp. 1-347, 2000.

[15] H.Kaiya, M.Saeki. Using Domain Ontology as Domain Knowledge for
Requirements Elicitation [C] //ProcofRE'06, pp. 189-198, IEEE C.S., 2006.

[16] D. Benavides, S. Segura, A. Ruiz-Cortés: Automated analysis of feature models 20
years later:A literature review. Information Systems 2010,35(6):615-636

426

A Context Ontology Model for Pervasive Advertising: a Case Study on Pervasive
Displays

Frederico Moreira Bublitz1, Hyggo Oliveira de Almeida2, and Angelo Perkusich2

fredbublitz@uepb.edu.br, hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br
1State University of Paraiba, 2Federal University of Campina Grande

Campina Grande, Brazil

Abstract

Context awareness is a key concept for Pervasive Adver-
tising. However, the literature indicates that there is a lack
of high level abstraction models that enable applications
establish a common vocabulary to share contextual infor-
mation. In this paper we present an ontology model for per-
vasive advertising. The main aspects of this model is that
it is comprehensive and extensible. Its feasibility is demon-
strated in a case study on a pervasive display scenario.

1. Introduction

As a new channel for communication, Pervasive Com-

puting [1] offers the opportunity of delivering advertise-

ments at anytime and anywhere. Once these advertisements

can be delivered through personal devices, this paradigm

enables to achieve a level of audience that was never imag-

ined before. More than a new channel for delivering ad-

vertisements, the most important aspect of Pervasive Ad-

vertising is that it enables the delivering of contextualized

advertisements [2].

An advertisement is contextualized if it is delivered in

accordance with the context of the user to became more ap-

propriated and adapted to the situation. In pervasive com-

puting paradigm, context is defined as any information that

applications can use to provide relevant services or infor-

mation to an entity [3]. In case of advertising applications,

the context is defined as any information used to determine

the relevance of an advertisement for a user. For example,

how an application knows if an advertisement of a happy

hour promotion is relevant to you? To answer this question

the application must know about your preferences, location,

activity, friends, and so on.

The contextual information can be obtained from distinct

and heterogeneous sources. This includes the information

that the user can explicitly provides, and the information

that can be obtained from a device, either by sensors or in-

ferred from other information. In this way, it is necessary

to provide an unified and high level abstraction model to

enable applications to “understand” the meaning of the col-

lected information and also to establish a common vocabu-

lary to share this information [4].

As can be noticed, to be aware of the context is impor-

tant for effective delivery of contextualized advertisements.

However the literature indicates that there is a lack of high

level abstraction contextual models for Pervasive Advertis-

ing. The reason for this absence of effective solutions oc-

curs because it is almost impossible to define a priori what

kind information should be used to represent the context,

once it is closely related the product to be announced. For

example, the body temperature of a person may be a rel-

evant information in order to deliver an advertisement in

health care domain, but it can be unnecessary for determine

the relevance of an announcement of a car.

Notice that this problem is equivalent to the problem of

create a model to represent context in Pervasive Comput-

ing. Several works ware developed over this problem, but

a deeper analysis reveals that this is still an opened prob-

lem. The existent approaches can be comprehensive, but it

is possible to notice that the kind of information modeled in

these works is strongly coupled to some domain of applica-

tion. Other works uses a synthetic set of information that

can be used in most domains of applications, but this is not

efficient in practice [5], see more details in Section 2.

In view of the above, in this paper we present a high level

abstraction model for context in Pervasive Advertising, de-

scribed in Section 3. The main features of this model are:

(i) it is comprehensive; and (ii) it is loose coupled. That is, it

contemplates many domains of information associated with

the products and can be easily extended to contemplate new

concepts.

The feasibility of the model is demonstrated through a

case study on a pervasive display scenario, detailed in Sec-

tion 4. In this scenario, the content of a public display is

selected according to the context of the group of consumers

427

in the vicinity of the display. The information about whom

is in the vicinity of the display is acquired by the detection

of their devices through a symbiotic relation among them.

2. Related Work

Due to the importance of context for Pervasive Comput-

ing as a whole, many works has been carried out with the

intention of represent the contextual information from the

environment. In a general way, these works can be grouped

into two categories: (i) the comprehensive works - where

the authors try to gather the maximum of information for

represent context, but always according with the scope of

some application being developed [6, 7, 8, 9]; (ii) the syn-

thetic works - which try to find a minimal set of information

that can be used in most applications [10, 11, 12].

The problem in adopt these works in Pervasive Adver-

tising is that when the developer adopt a comprehensive

model, add a new concept, or a task ontology, is not pos-

sible, once there is a strong coupling between the existent

classes. Still, if the developer tries to adopt a work that uses

the synthetic approach, the minimal modeling will force

him to extend the solution for contemplate each kind of

product that will be announced, and eventually, when many

concepts are added to the model, the developer will find the

same problem from comprehensive approach.

The main problem with these works is that they cant

be applied to the Pervasive Advertising domain, and adapt

them to this domain is a hard task due to the high level of

coupling of the information. We also detach that still there

are not a comprehensive model created for the Pervasive

Advertising [4], which be able to represent specif informa-

tion of this domain such as the target audience, and the mes-

sage of the ad.

3. The Context Model

To be aware of context is a key concept in order to effec-

tively develop applications in the scope of pervasive com-

puting. A good modeling formalism reduces the complex-

ity of developing context-aware applications by improving

their maintainability and evolvability. Considering that the

growing trend of use the multiagent approach for implement

Pervasive Advertising systems, the need of built-in seman-

tics and expressiveness and the need of computational guar-

antee, we decided to adopt OWL DL Ontologies for model-

ing the contextual information.

The conception of a model for Pervasive Advertising is

not an easy task. Mainly because (i) this model must be

comprehensive, in order to address the different needs of

contextual information of applications; (ii) this model must

be loosely coupled, in order to be extensible, in other words,

the incorporation of new concepts still absent shall be easy.

Notice that there is a trade off between the need of low cou-

pling and comprehensiveness. Once, raising the level of

comprehensiveness increases the coupling, and vice-versa.

To solve this impasse, we did not try to avoid coupling, it

is impossible, but we change the way the coupling occurs to

make it weaker. The key to achieve the result is the associ-

ation of the contextual information with the entities capable

of provide these information. These entities are the users
and the devices, once they are the only entities capable of

produce information.

After identified the sources, it is possible to associate

other concepts to them. In this way, the coupling with these

entities is not a problem anymore, once the information

about them are necessary for any application that uses con-

text in Pervasive Computing paradigm. Following this line

of thought, our model was created using a gradual approach,

and is divided into three layers, they are: the Kernel, Per-
vasive, and Advertising layers following described.

3.1. Kernel Layer

In this layer are represented the entities capable of pro-

vide information in scope of Pervasive Computing, they are

the User and Device. The Figure 1 (yellow boxes) illus-

trates how the context can be represented in terms of users

and devices. It is also possible to notice in this figure that

a user can holds many devices. In this layer there is yet the

representation of location, once this information is directly

associated to the user and device.

It is also common to think in the environment as a source

of information. But, actually the environment is only a rep-

resentation of a location, a place. In this way the infor-

mation about the environment can be obtained through the

devices that are in a specific location. This means that all

the information can be obtained either from the user or the

device. For example, the information about the gender of a

person can be directly provided by him or herself. Or the in-

formation about the temperature of a place can be obtained

by a sensor (device).

Other aspect is the specification of the Device Profile
that can be a hardware or a software profile. The Hard-
ware Profile describes specific characteristics of a device,

such as memory and processor power, battery level, and

screen size. The Software Profile follows the same line of

though, including the characteristics of software of a device

like browser support and characteristics.

3.2. Pervasive Layer

The Pervasive layer gathers the information that can be

relevant for most applications from different domains. That

428

Figure 1. UML view of the model. The yellow boxes represent the Kernel layer and the device
properties; the green box represents the Pervasive layer; and the red boxes represent the Advertising
layer the advertising properties. This model view is simplified containing only the most important
classes and attributes.

is, we believe that is possible to model the contextual in-

formation according to aspects that are useful for many ap-

plication domains instead of focuses in specific domains of

applications. For example, the services available in the lo-

cation is an information useful for applications of different

domains.

Following this point of view, we can think that is possible

to classify the context in classes, as follows:

Group of Users: People usually establish relationships

with other people, either by sharing the same location

(e.g., workplace, city) or because they have common

interests. In this work, a group of users consists of

people who have something in common such as loca-

tion, and interests. Through this concept is yet possi-

ble to deal with the concept of social networking. So-

cial Network is a form of representation of emotional

or professional relationships of human beings among

themselves or among their groups of mutual interests.

The same idea can be applied to the devices, in which

a device can form a group with other devices that have

characteristics in common. For example, a device can

form a group with the devices that are accessible to a

particular user or with the devices needed to supply a

particular service.

Service: in a pervasive environment, it is common that de-

vices act as services providers. This service provision

is related to service-oriented architecture (SOA). By

focusing on functionality, the SOA architecture allows

heterogeneous applications can establish relations be-

tween them. Therefore, it is important for a great

number of applications executing in pervasive environ-

ments be aware of the services that each of the avail-

able devices provides.

Sensor and Actuator: these are special kinds of devices,

and their representation is useful when it is necessary

to deal with the idea of environment. In this represen-

tation the environment is a kind of derivate informa-

tion, which can be obtained when combined with the

location.

Time and Period: the notion of time is useful for applica-

tions once it introduces the concept of period. This is

yet useful yet to establish a chronological order of the

facts, a history.

Activity: the activity of a user is an information very useful

for application that intend to deal with personalization

of services.

In the Figure 1 (green box) these concepts and their re-

lationships are represented. Notice that it is possible to ex-

ist others classes useful for pervasive applications, such as

Event. However, in practical terms it is impossible to cover

all the classes, for this reason we did not make an exhaustive

list. We decide to focuses on the most useful classes, once

the incorporation of new classes can be easily done by ex-

tending the model. What make this model easy of extending

is the way the classes are coupled, notice that none of the

classes on kernel layer make reference to the others layers.

This means that a modification in the Pervasive layer does

not affect the kernel layer.

3.3. Advertising Layer

The advertising layer was created to contemplate

specifics characteristics of Pervasive Advertising. In Fig-

ure 1 (red box) the main concepts related with the advertise-

429

ment task are presented. Following we give a description of

them.

When developing a communication and promotion pro-

gram, marketers must take into account [13]:

• The Message of the advertising campaign: all adver-

tisement must transmit a message to its audience dur-

ing a defined time period (duration). This message is

propagated with a specific objective that can be classi-

fied by primary purpose - whether the aim is to inform,

persuade, or remind.

• The Target Audience: it is important for the success of

a marketing campaign, to define for who it will serve.

This can be done by diving the marketing into seg-

ments of customers (Marketing Segmentation). In this

sense, consumers can be grouped and served in var-

ious ways based on Geographic, Demographic, Psy-
chographic, and Behavioral factors.

The model also contemplates a special kind of device,

the Display, which distinguishes the devices capable of

transmit a message for consumers. Notice yet, that there is

a distinction between the Advertiser and Consumer, which

are both users. This distinction is important to allow appli-

cation to measure the audience.

4. Case Study

Currently, there are environments (e.g., universities, air-

ports and malls) in which public devices (e.g., LCD tele-

visions) are positioned at strategic points such as elevators,

hallways and showcases. These devices are used with the

purpose of promoting products and services, although act-

ing as a form of entertainment to the people who frequent

such environments. This form of ad serving is also known

as Digital Signage.

Although these devices can be able to achieve a lot of

consumers, advertisers have little information from users

who are present in the environment, making difficult the

ads to be more relevant to those users. For example, in a

university is common that things related to education be an-

nounced in these displays. It is also common that class-

mates walk together. So, for a group of students of a com-

puter science course an ad of a product that is related to the

field of dentistry, probably will have no relevance. Hence,

the audience is going to be low.

We believe that the technological resources that enable

this kind of media (i.e., the indoor media) can be improved

so that the advertised products and services can be cus-

tomized to adapt to the context of people who are in the

environment. For this, it is necessary to have information

about the context of the users. It is necessary to know the

location of users, because this can help to know “ who” is

located next to such a display, and the profile of users. In ad-

dition, there must be a treatment of the context of the users,

not only individually, but as a group, where the interests of

individuals no longer prevail in advantage of the interests of

the group.

4.1. Scenario

This case study was carried out in a university where a

series of displays are positioned in strategic points like in

the elevators, library, living room and coffee room. These

displays are used to present cultural programming, to ex-

hibit news about the university, and delivery ads.

In our scenario, the students were encouraged to fulfill

a form with some personal information related to their pro-

file and identifying their bluetooth devices. After this, once

their presence is detected, the system processes what ads are

more suitable to the group of students in the vicinity of the

display, and the ads are exhibited, as illustrated in Figure 2.

Figure 2. Case study scenario: the advertise-
ments are exhibited according to people in
the vicinity of the display.

4.2. Architecture

The designed architecture is showed in the Figure 3. As

can be noticed in this figure, the architecture is divided into

layers, as follows.

Persistence: in the persistence layer we have the server,

which is used to store both advertisement and user in-

formation. Notice that the description of the stored in-

formation is given by the ontology created in this work.

Information Representation: all the dynamic informa-

tion is processed in this layer. This includes the de-
vice context, the user context, and the group context.

430

Figure 3. Architecture for delivering context-aware advertisements on a pervasive display scenario
scenario.

Notice that the formation of the group is made by the

group manager that is responsible by treat the context

of a group of individuals.

Information Reasoning once we have the information

about the users, the ads, and the devices (including

the ones used for ad delivery, i.e., displays) it is possi-

ble now to allocate the content for the displays. This

task is performed by the content manager module and

this task is performed according with the location of

the displays and the users, in what emerges the notion

of environment. The environment represents the sce-

nario, where the display and the group of users are lo-

cated and the content is delivered.

4.3. Implementation

The implementation of this prototype was done by using

an object oriented approach. The chosen language was Java
and some design patterns like Data Access Object (DAO),

Model-View-Control (MVC) and Facade were applied. To

identify the users we adopt the Bluetooth technology, be-

cause it enables a good accuracy in determine the location

of a device.

Through the Bluetooth technology it is possible to de-

termine what users are in the vicinity of a display. This is

done by getting the MAC (Media Access Control) address

of a device which is unique and can be associated with the

user. The searching for devices is done by using the blue-
cove API. In the Listing 1 a piece of code used to search

bluetooth devices.

Listing 1. Search for bluetooth devices.
p u b l i c vo id run (){ / / S t a r t i n g Search

f i n a l O b j e c t i n q u i r y C o m p l e t e d E v e n t = new O b j e c t () ;

D i s c o v e r y L i s t e n e r l i s t e n e r = new D i s c o v e r y L i s t e n e r (){
p u b l i c vo id d e v i c e D i s c o v e r e d (RemoteDevice b tDev ice ,

D e v i c e C l a s s cod) {
d e v i c e = new Device () ;

d e v i c e . setMac (b t D e v i c e . g e t B l u e t o o t h A d d r e s s ()) ;

t r y {
d e v i c e . setName (b t D e v i c e . g e t F r i e n d l y N a m e (t rue)) ;

} catch (IOExcep t ion cantGetDeviceName)

d e v i c e s . add (d e v i c e) ;

}

During the development of the case study, we have some

problems with bluetooth. The main problem is that the de-

vice discovery is quite slow, this means that state used to

generate the group context can be not exactly the real state.

To minimize this problem, we start a new search at the end

of the last advertising, to this we adopt video (similar to the

ones that plays in TVs) so that the gap between the discov-

ery and the playing of the video be minimized.

4.4. Case Study Analysis

The developed case study was conceived to enable more

relevant ads in the context of a university. In this sense,

the profile of the users was defined in terms of gender, age,

431

and course. We made an experimental in order to verify

the hypotheses that the proposed architecture can bring ads

more relevant than a random approach. The hypotheses are

the following:

Null hypothesis - H0: The relevance of the ad (represented

by Φ) offered by this model (this) is, at most equiva-

lent to the random delivery(random).

H0 : Φthis ≤ Φrandom

Alternative hypothesis - The relevance of the ad (repre-

sented by Φ) offered by this model (this) is superior

to the random

H1 : Φthis > Φrandom

During a period of seven days, the ads ware exhibited in

the coffee shop of the university. In this period the same

amount of ads ware displayed using both approaches, the

random and the one here described. The results show that

we achieve a considerable improvement in the relevance of

the ads, confirming the alternative hypothesis. More pre-

cisely, from the total ads sent, our model achieved an accu-

racy rate of 64,18%, versus 36,05% from random.

5. Conclusions

In this work we presented a novel model to represent

context in Pervasive Advertising. The main advantage of

this model is that it defines context in terms of user and

device. The big benefit of this new way of organizing infor-

mation is that it allows that new classes of information are

added to the model without causing major changes, making

the model easy to extend. In other words task ontologies

can be easily added to the model. This is possible because

the coupling occurs from the classes of information to the

source of information, leaving the classes loosely coupled

with each other.

To demonstrate the feasibility of the model, we devel-

oped a case study on a pervasive display scenario. Through

this case study was possible to notice that the model is very

comprehensive. This can be notice because the products

advertised were from many different fields (such as sports,

computing, and beauty) and the model was used without

changes or extensions.

In this case study, was possible also to improve the effec-

tiveness of the advertisements in more that 77%. We notice

yet, that the results could be still more expressives if our

base of advertisements was more comprehensive and if the

bluetooh discovery was not so slow.

As current/future work, we are developing: (i) an appli-

cation for a Digital Signage scenario, that is not intrusive;

(ii) an application for an opportunistic Mobile Advertising

scenario; and (iii) a multiagent approach for Pervasive Ad-

vertising, which contemplates the delivery of advertisement

in both public displays and the mobile personal devices.

References

[1] M. Weiser, “The Computer for the 21st Century,” Scientific
American, vol. 265, pp. 66–75, September 1991.

[2] J. Krumm, “Ubiquitous Advertising: The Killer Application

for the 21st Century,” Pervasive Computing, IEEE, vol. PP,

no. 99, pp. 1–16, 2010.

[3] A. K. Dey, “Understanding and Using Context,” Personal
and Ubiquitous Computing, vol. 5, no. 1, pp. 4–7, 2001.

[4] M. Strohbach, M. Bauer, M. Martin, and B. Hebgen,

Pervasive Advertising, ch. Managing Advertising Context,

pp. 185–205. Springer, 2011.

[5] F. Bublitz, E. Loureiro, H. Almeida, A. Perkusich, and

E. de Barros Costa, “Context-Awareness in Pervasive Envi-

ronments,” in Encyclopedia of Networked and Virtual Orga-
nizations (M. M. Cunha, ed.), vol. 1, pp. 1958–1959, Her-

shey, PA, USA: Idea Group Publishing, 2008.

[6] H. Chen, F. Perich, T. Finin, and A. Joshi, “SOUPA: Stan-

dard Ontology for Ubiquitous and Pervasive Applications,”

in International Conference on Mobile and Ubiquitous Sys-
tems: Networking and Services, (Boston, USA), August

2004.

[7] D. J. Cho and M. W. Hong, “A Design of Ontology Con-

text Model in Ubiquitous Learning Environments,” in IC-
COMP’08: Proceedings of the 12th WSEAS international
conference on Computers, (Stevens Point, Wisconsin, USA),

pp. 844–848, World Scientific and Engineering Academy

and Society (WSEAS), 2008.

[8] A. Esposito, L. Tarricone, M. Zappatore, L. Catarinucci, and

R. Colella, “A Framework for Context-Aware Home-Health

Monitoring,” Int. J. Auton. Adapt. Commun. Syst., vol. 3,

no. 1, pp. 75–91, 2010.

[9] L. Seremetia, C. Goumopoulosa, and A. Kameas,

“Ontology-based Modeling of Dynamic Ubiquitous

Computing Applications as Evolving Activity Spheres,”

Pervasive and Mobile Computing, vol. 5, pp. 574–591,

2010.

[10] F. Bublitz, H. Almeida, A. Perkusich, E. Loureiro, E. Bar-

ros, and L. Dias, “An Infrastructure for Developing Context

Aware Applications in Pervasive Environments,” in SAC ’08:
Proceedings of the 2008 ACM symposium on Applied com-
puting, (New York, NY, USA), pp. 1958–1959, ACM, 2008.

[11] Y. Hu and X. Li, “An Ontology Based Context-Aware Model

for Semantic Web Services,” Knowledge Acquisition and
Modeling, International Symposium on, vol. 1, pp. 426–429,

2009.

[12] C.-H. Liu, K.-L. Chang, J. J.-Y. Chen, and S.-C. Hung,

“Ontology-Based Context Representation and Reasoning

Using OWL and SWRL,” Communication Networks and Ser-
vices Research, Annual Conference on, vol. 1, pp. 215–220,

2010.

[13] P. Kotler and G. Armstrong, Principles of Marketing. Pren-

tice Hall, 12th edition ed., Feb. 2007.

432

Ontology–based Representation of Simulation Models

Katarina Grolinger, Miriam A. M. Capretz
Department of Electrical and Computer Engineering,

Faculty of Engineering
The University of Western Ontario

London, ON, Canada N6A 5B9
{kgroling, mcapretz}@uwo.ca

José R. Marti, Krishan D. Srivastava
Department of Electrical and Computer Engineering,

Faculty of Applied Science
The University of British Columbia
Vancouver, BC, Canada V6T 1Z4

jrms@ece.ubc.ca, kd@interchange.ubc.ca

Abstract—Ontologies have been used in a variety of domains for
multiple purposes such as establishing common terminology,
organizing domain knowledge and describing domain in a
machine-readable form. Moreover, ontologies are the foundation
of the Semantic Web and often semantic integration is achieved
using ontology. Even though simulation demonstrates a number
of similar characteristics to Semantic Web or semantic
integration, including heterogeneity in the simulation domain,
representation and semantics, the application of ontology in the
simulation domain is still in its infancy. This paper proposes an
ontology-based representation of simulation models. The goal of
this research is to make use of ontologies to facilitate comparison
among simulation models, querying, making inferences and reuse
of existing simulation models. Specifically, such models
represented in the domain simulation engine environment serve
as an information source for their representation as instances of
an ontology. Therefore, the ontology-based representation is
created from existing simulation models in their proprietary file
formats, consequently eliminating the need to perform the
simulation modeling directly in the ontology. The proposed
approach is evaluated on a case study involving the I2Sim
interdependency simulator.

Keywords-Ontology; Simulation Model; Ontology-based Model;
Semantic Integration

I. INTRODUCTION
Ontologies are frequently associated with the Semantic

Web where computers are capable of analyzing the content,
meaning and sem antics of the data and performing the
reasoning upon the content. Other ontology applications
include data integration, application integration and
interoperability, knowledge management, machine learning,
information extraction, information browsing and navigation.

Simulation domain exhibits a n umber of similar
characteristics to those fields including heterogeneity in the
simulation domain, vocabulary, representation and semantics.
However, the application of ontology to the field of simulation
is still in its infancy and primarily contained within the research
community.

The simulation heterogeneity is larg ely caused by its
application in a variety of different domains including critical
infrastructures, medicine, learning and chemical engineering.
Consequently, a number of software simulation packages or
simulation engines exist for the support of computer
simulations in those domains [1]. Commonly, simulation

packages are application-oriented, designed for the use in a
specific domain, hence they apply diverse modeling
approaches, different technologies, domain specific
terminologies and store simulation models and results in a
variety of formats. This diversity of application-oriented
simulation engines presents a challenge for comparing
simulation models and results, reusing and sharing existing
models, as well as querying and making inferences.

The objective of this work is to address the following
challenges of the application-oriented simulation approach:

 The extraction of specific information from model files or
from simulation results is not straightforward. Simulation
packages may provide basic information, nevertheless, the
extraction of more detailed or specific summary
information becomes demanding.

 The comparison between models of a single simulation
engine or different engines is difficult. Typically the
comparison relies on the simulation engine to provide the
means for comparing specific pairs of model files.

 The comparison between results of different simulation
runs of the same simulation engine or different engines is a
challenging endeavor. Simulation packages focus on
providing performance measures for a single simulation
run while the comparison between simulation runs often
requires external tools and a significant manual effort.

As a s olution, this paper proposes the representation of
domain simulation models as instances of Simulators’
Ontologies. By using the same formalism to represent various
simulation models, we place them on the same platform, thus
enabling a s implified comparison. Moreover, ontology-based
representation allows for inquiries with ontology querying
languages and inferences with ontology reasoners. The
proposed approach uses existing models in the simulation
engine proprietary file formats as the foundation for the
creation of its ontology-based representation.

The remainder of the paper is organized as follows: Section
II reviews related works, the proposed system is portrayed in
Section III, while Section IV depicts a case study. Finally, the
conclusions and future work are presented in Section V.

II. RELATED WORKS
Ontology can be described as an abstract, machine-readable

model of a phenomenon that identifies the relevant concepts of

433

that phenomenon as w ell as th e relations among them.
Furthermore, ontologies represent a w ay of establishing
common terminology, organizing domain knowledge and
representing this information in a machine-readable form. The
potential use of ontologies in simulation and modeling is
explored by Lacy and Gerber [2]. From the perspective of these
authors, ontologies are beneficial in simulation and modeling
through the formalization of semantics, the ability to query and
inference, and the sharing and reuse of developed models.

Studies that are especially relevant to our research are
related to the use of ontologies to represent real world
scenarios for the simulation purposes such as Tofani et al. [3],
Miller et al. [4] and Silver et al. [5].

Tofani et al. [3] use the ontology framework to model the
interdependencies among critical infrastructures (CI). Their
proposed framework consists of three ontologies: WONT
(World ONTology) contains concepts and relations that are
common across CI domains; IONT (Infrastructure ONTology)
extends WONT to represent the knowledge of specific CIs and
FONT (Federation ONTology) enables modeling relations
among different infrastructures. The CI network is m odeled
twice: as instances of the ontology and in the simulation
language of the domain. The mapping between ontology
representations and simulation models is established manually.

Miller et al. [4] investigate the development requirements
and benefits of ontologies in discrete event simulation (DES),
and consequently, these authors present the Discrete-event
Modeling Ontology (DeMO). The proposed DeMO consists of
four main classes: DeModel, ModelComponent,
ModelMechanism and ModelConcept. DeModel is composed
of ModelComponents and activated by the ModelMechanism,
while the ModelConcepts serve as a terminology upon which
other classes are built. The main challenges in building DeMO,
or a similar ontology for simulation and modeling, are twofold
[6]; firstly, it n eeds to be domain-independent, as a DES can
model any domain. Secondly, since simulation formalisms are
founded in mathematics and statistics, the DES ontology
should be based upon the ontologies of those domains.

Silver et al. [5] represent simulation models as instances of
the extended DeMO PIModel (Process Interaction Model). In
the proposed approach, reality is first represented as instances
of the DeMo PIModel ontology. Subsequently, these DeMo
PIModel instances are transformed to XPIM (Extensible
Process Interaction Markup) instances, which are then
translated to a JSIM (Java-based SIMulation) model.

Benjamin and Akella [7] use ontologies to facilitate
semantic interoperability and information exchange between
simulation applications. The ontology models for each
simulation application domain are extracted from textual data
sources, such as requirements and design documents.
Subsequently, the established ontology mappings represent the
translation rules for the ontology-driven translator, which
facilitates information sharing between simulation applications.

III. SIMULATION MODELS AS INSTANCES OF AN ONTOLOGY
This section describes the fundamentals of the proposed

system: system architecture, relations and model hierarchies

definition, querying ontology-based models and the process of
creating ontology-based simulation models.

A. System Architecture
The ontology-based representation of simulation models

has a layered architecture, as described in Fig. 1.

The top layer consists of the upper ontology, which
contains generic concepts that are common for all simulation
engines.

The next architecture layer, the Simulators’ Ontologies
layer, extends the upper ontology in order to describe specifics
of each simulator. Thus, in this layer, there in an ontology for
each simulator involved. The terminology matches that of the
simulators, facilitating domain experts’ understanding of
ontologies as well as enabling the creation of the ontological
representations from the simulators’ models.

The third layer, the ontology-based simulation model layer,
contains ontology-based simulation models that are represented
as instances of Simulators’ Ontologies. More specifically, each
simulation model, usually contained in a sim ulation engine
proprietary file format, is represented as an ontology-based
model consisting of interconnected instances of the Simulator’s
Ontology. Different simulation models contained in distinct
proprietary files correspond to the various models in this layer.

The bottom architecture layer, or rule layer, is optional and
contains a rule engine. In particular, this layer is intended for
situations when ontology-based specifications are not sufficient
and additional expressiveness is required. Furthermore, this
layer expresses design rules and g uidelines to which the
simulation model should conform.

B. Defining Relations Between Simulation Model Entities
In the ontology-based simulation model, entities are

represented as instances of the Simulator’s Ontology, while the
relations among them are e stablished by means of object
properties. The description of the object properties is found in
the upper ontology and the Simulators’ Ontologies.

Fig. 2 presents a f ragment of the upper ontology in
RDF/XML syntax. In this ontology the cell indicates an entity
that performs a function transforming inputs into outputs,
channel is a mean of transporting entities between cells and/or
controls, while controls are entities responsible for distributing
the flow among channels. The two object properties, hasInput
and its inverse hasEndNode, are included in the ontology

Figure 1. Architecture layers

434

Figure 2. Upper Ontology fragment

fragment shown in Fig. 2. The domain of the hasEndNode
property is the channel while the range includes the cell and the
control. Since the direction of object properties runs from the
domain to the range, the inverse property enables the
expression of relations in both directions. The direction that is
used will be influenced by the manner in which the relation is
expressed in the simulator’s model file.

C. Defining Simulation Model Hierarchies
Frequently, to facilitate modeling of complex systems,

simulation packages provide the ability to divide models into
hierarchies of sub-models [8] as illustrated in Fig. 3. To
represent the model hierarchies in ontology, the proposed
approach uses the parentSystem object property. For each child
model, the parentSystem property links the model to its direct
parent. The set of assigned parentSystem properties establishes
the model hierarchy. A fragment of a hierarchy depicted in Fig.
3 is represented as: modelE.parentSystem(modelB),
modelB.parentSystem(modelA). Since the sub-model entities do
not belong to any of the Simulator’s ontologies classes, we
establish a new class parentSystem to contain entities that serve
as containers for the other entities.

The elements from the parent and the child models are
interconnected since they form a single simulation model. The
relation between elements from different hierarchy levels is
established in the same way as the relation between entities of a
single non-hierarchical model as described in Section III.B.

We considered creating a separate ontology for each sub-
model which would import ontologies of all its child models.
This would establish the ontology hierarchy matching with its
equivalent simulation model hierarchy. Simulation sub-models
can be as simple as two linked entities that would not warrant
the formation of a separate ontology. Nevertheless, simulation
models could contain a large number of sub-models resulting in
a large number of ontologies for a single simulation model and
thus causing maintenance challenges. Therefore, at this stage of
our research, we use one ontology to represent one simulation
model with all its sub-models.

Figure 3. Simulation model hierarchy

D. Querying Ontology-based simulation models
Simulation models represented as instances of Simulator’s

ontologies can be queried using different querying languages.
We explore two different querying language styles: the RDF
querying language, SPARQL [9], and the ontology querying
language, SQWRL [10].

Since SPARQL is the W3C recommendation for querying
RDFs [9] and OWL can be serialized as an RDF, SPARQL can
be used to query ontology-based simulation models. However,
as SPARQL is n ot an ontology querying language, it ignores
inferences imposing limitations on querying, as will be shown
in the case study. This drawback can be overcome by using a
genuine ontology querying language such as S QWRL
(Semantic Query-Enhanced Web Rule Language), which is a
SWRL-based (Semantic Web Rule Language) language for
querying ontologies. Accordingly, in the presented scenario,
we use both the SPARQL and SQWRL approaches, identifying
their advantages and disadvantages in regards to querying
ontology-based simulation models.

E. Creating Ontology-based Simulation Models
In the proposed approach, the simulation models

represented in the domain simulation engine environment serve
as an in formation source for the representation of models as
instances of an on tology. While the approaches proposed by
Tofani et al. [3] and Silver et al. [5] also describe simulation
models as instances of ontologies, these approaches perform
modeling directly in the ontology, which is then mapped or
transformed to a dif ferent representation. In contrast, our
approach uses existing domain simulation models as an origin
for the creation of its own ontology-based representation. The
advantages of this approach include:

 The use of existing, domain-specific models.
 The ability of domain experts to create new models in the

simulation engine to which he/she is a ccustomed rather
than creating models directly as an ontology.

 The use of proven domain simulators for simulation
execution.

 There is no need for manual mapping between simulators
and ontology models.

Fig. 4 portrays our approach for the creation of an
ontology-based simulation model representation. Specifically,
the Transformation Engine inputs consist of the Simulator’s
Ontology and the simulator’s model in the domain simulation
engine representation. The Simulator’s Ontology is simulator-
specific, while the simulator’s models are model-specific, as
each model is stored in a separate file.

The Simulator’s Ontology is read by the Ontology Reader,
which is independent of the simulation engine. While
ontologies are stimulator-specific, they are always represented
using the same ontology language, thus allowing for a
simulator-independent reader. In particular, the Ontology
Reader is responsible for acquiring information about
simulator’s classes and their properties. Classes are relevant
concepts from a specific domain, such as channel and cell; they
can be perceived as sets of individuals, which include actual
objects from the domain, such as a set of all individual

435

Figure 4. Ontology-based model creation from simulator’s model

channels in a distribution network. Although the Simulators’
Ontology does not contain individuals, they will be extracted
by the Transformation Engine. Moreover, the Ontology Reader
is responsible for reading properties, including data properties
and object properties. Data properties connect individuals with
literals; an example of a data property is th e capacity of a
specific storage cell. Conversely, object properties connect
pairs of individuals such as the hasInput property, which links
the cell with the channel in the statement, ‘Cell x hasInput
Channel y’.

The second transformation source, the simulator’s model, is
read by the Simulation Model Reader. Since the format of the
simulator’s model depends on the specific simulator, a separate
Simulation Model Reader has to be created for each simulator
whose model requires transformation to an ontology-based
representation. However, once a Simulation Model Reader is
created for a specific simulator, the reader can be used to
transform any model represented in that format. The
architecture of the Simulation Model Reader depends on the
model being read. For instance, the reader can utilize the
simulator’s API interface, directly read the model file or use
external model readers.

The Integrator uses the data received from the Ontology
Reader and the Simulation Model Reader for creating the
ontology-based model representation. Specifically, the
Integrator receives information about the simulator’s classes
from the Ontology Reader. For each class, the Integrator
obtains knowledge about its individuals from the Simulation
Model Reader. When an Integrator identifies individuals, it
also obtains values for their data properties. After acquiring
information about all in dividuals of all classes and their data
properties, the Integrator proceeds to determine the object
properties. Since object properties connect individuals of the
same or different classes, all individuals must be determined
before the object properties are defined.

Subsequently, the Integrator sends information about
classes, individuals, data properties and object properties to the
Ontology Writer, which writes an ontology-based simulation
model representation. Rather than recreating classes, the output
ontology imports the Simulators’ Ontology to acquire domain-
relevant concepts and properties. Then, individuals and
property values are created from the information received via
the Integrator, and the output is r ecorded in an ontology

language such as OWL. Thus, the Ontology Writer is
simulator-independent, as its purpose is to write ontologies
from the Integrator’s information.

Consequently, the Simulation Model reader is the only
Transformation Engine component that is simulator-dependent.
However, this reader can be replaced with a different
simulator’s reader in order to represent that specific simulator’s
model in an ontology-based representation.

IV. CASE STUDY
This work is part of the CANARIE-sponsored Disaster

Response Network Enabled Platform (DR-NEP) project [11].
The project aims to improve the capability to prepare for and
respond to large disasters. In particular, disaster modeling and
simulation play a major role in the project, with a special focus
on critical infrastructure (CI) interdependency simulation.
Therefore, the proposed ontology-based representation of
simulation models is evaluated using I2Sim [12] infrastructure
interdependencies simulator.

The proposed approach is generic, as it is independent of
any simulation engine; however, its implementation requires
the creation of engine-specific Simulator Ontologies and the
Simulation Model Reader. Therefore, the I2Sim ontology is
created; the ontology design and the mapping to the upper
ontology are presented in [13]. Since I2Sim is based on
MATLAB’s Simulink engine, the Transformation Engine
inputs include the I2Sim ontology and the I2SIm model, which
is stored in the Simulink style .mdl file. The Transformation
Engine was implemented using the following technologies:

 The Ontology Reader and the Ontology Writer are
implemented using Protégé OWL API [14] and Java 1.6.

 OWL is used for the representation of the ontology-based
simulation models.

 The Integrator is implemented using Java 1.6.
 The I2Sim Simulation Model Reader uses the Simulink

Java library from Technische Universität München [15].

A. Ontology-based Representation of Simulation Models
To explore ontology-based simulation models we used the

I2Sim model developed as part of the DR-NEP project for the
investigation of infrastructure interdependencies.

MATLAB’s Simulink engine [8], upon which I2Sim is
built, is an environment for multi-domain simulation and for
dynamic and embedded systems. Simulink provides block
libraries which can be customized to conform to a specific
simulation domain. Complex models are managed by dividing
models into hierarchies of sub-models. Accordingly, I2Sim
builds upon Simulink by customizing Simulink blocks and
providing entities specific for infrastructure interdependency
simulation.

The I2Sim model that we used in this case study consists of
several hierarchy levels. However, before transforming it to the
ontology-based model we were not aware of the number of
layers, the number of blocks or types of blocks used.

First, the I2Sim ontology was created [13] containing only
I2Sim blocks as i llustrated in Fig. 5(a). Subsequently, the

436

I2Sim simulation model was transformed to an ontology-based
representation, which is depicted from the perspective of the
Protégé ontology editor in Fig. 5(b). Specifically, the left part
of the screen shows I2Sim classes, such as i2sim_source, and
production_cell. As the channel class is selected, the middle
part of the screen displays all of the individual channels from
the I2Sim model. On the right side are displayed the object and
data properties for the selected channel, from_fe-
ed_water_pump_1_to_steam_house_3. As the channels are not
named in I2Sim, we have chosen to use from_source-
Node_port_to_targetNode_port as a channel naming pattern.
The object properties hasStartNode and hasEndNode indicate
that the selected channel starts from the feed_water_pump and
ends at the steam_house. In the I2Sim ontology, hasStartNode
and hasEndNode are asserted properties, as the I2Sim model
specifies the channel start and end. The inverse properties,
hasInput and hasOutput, are inferred, allowing for ontology
querying in both directions.

Another significant I2Sim modeling concept for
establishing network topology is th e port concept. I2Sim
entities such as the production cells can have several input and
output ports. Each channel connects to a specific input and
output port as identified by the port number. Therefore, in the
ontology-based representation each channel has hasInPort and
hasOutPort data properties, as illu strated in Fig. 5(b). The
channel selected in the figure connects to the first
feed_water_pump port and the third steam_house port.

Observing the classes from I2Sim ontology, Fig. 5(a), and
from the ontology-based simulation model, Fig. 5(b), it can be
noticed that the ontology-based model contains additional
entries such as minmax, product and fcn. Initially, we expected
the I2Sim model to have only I2Sim blocks. However, when
the model was transformed to its ontology-based
representation, many entities belonged to the other class.

Subsequently, we analyzed those entities and identified that
they are Simulink blocks. Since I2Sim is founded on Simulink
by customizing and extending Simulink blocks, it allows for
the use of Simulink blocks in conjunction with the I2Sim

blocks. Accordingly, our case study of the I2Sim model
actually contained I2Sim and Simulink blocks. Therefore, we
created the non_i2sim class and in the transformation process
we allowed for the creation of non_i2sim sub-classes
representing Simulink blocks categories used in the observed
I2Sim model.

The ontology-based representation of the I2Sim model
hierarchy is portrayed in Fig. 6. On the left part of the screen
the parentsystem class is selected, while the segment to the
right shows all enti ties that act as a container for the other
elements. The selected entity water_pump_1 is a child of the
water_pump_control as indicated with the parentSystem object
property. To simplify the illustration of hierarchies we have
chosen to include the hierarchy chain in the entity name
separating the hierarchy levels with a dash as in steam-house-
water_pump_control-water_pump_1. The maximum number of
hierarchy levels in the observed I2Sim model was three.

B. Querying ontology-based representation
A simulator’s model that is represented as ontology

instances can be queried using querying languages such as
SPARQL or SQWRL. The use of these languages enables the
extraction of specific information from the model. Since the
number of entities in a system is one of the complexity
indicators, after representing I2Sim models as instances of an
ontology, we first wanted to obtain the number of instances in
the ontology-based representation. However, the standard
SPARQL included with Protégé does not support aggregate
functions such as count and avg. Nevertheless, different
implementations that support aggregates exist, such as ARQ
[16]. Instead, we used SQWRL to identify the number of I2Sim
and Simulink entities. I2Sim components are instances of the
component class and its subclasses, while Simulink entities are
instances of non-i2sim class and its subclasses:

simupper:component(?c)→sqwrl:count(?c)
non_i2sim(?c)→sqwrl:count(?c)
Those two queries identified that the observed I2Sim model

consists of 449 I2Sim components and 230 Simulink

 a) I2Sim Ontology b) Ontology-based representation of the I2Sim model

Figure 5. Ontologies from the Protégé editor

Figure 6. The hierarchy levels of the I2Sim model

437

components. Subsequently, since I2Sim model extensively uses
hierarchical modeling, we identified each sub-system together
with the number of elements in each sub-system using the
following query:
owl:Thing(?c)
i2sim:parentSystem(?c,?subsystem)
sqwrl:makeSet(?s, ?c)
sqwrl:groupBy(?s, ?subsystem)
sqwrl:size(?count, ?s) →
sqwrl:select(?subsystem, ?count)
sqwrl:orderByDescending(?count)

The first few rows from this query results with our
ontology-based representation of the I2Sim model are
displayed in Fig. 7. Since the sorting is pe rformed on the
number of entities, the first few rows indicate sub-models with
the highest number of components.

To illustrate the difference of querying ontology-based
simulation models using SPARQL and SQW RL we used a
simple example of finding channels in the steam_house-
boiler_1 sub-model. In SPARQL this query is written as:
SELECT *
WHERE { ?c rdf:type :i2sim.channel.
?c i2sim:parentSystem :steam_house-boiler_1}

While in SQWRL the same query is expressed as:
simupper:channel(?c)
i2sim:parentSystem(?c, steam_house-boiler_1) →
sqwrl:select(?c)

The SPARQL query did not find any entities, while the
SQWRL found the steam_house-boiler_1-water_tank_tube.
This entity belongs to the delay_channel class. However,
although the delay_channel is defined as subClassOf channel,
SPARQL could not infer that delay_channel is also a channel,
and thus, SPARQL did not identity this entity. Since SQWRL
is an on tology querying language, it inferred that
delay_channel is also a channel and therefore properly
identified the entity.

V. CONCLUSIONS
Application-oriented simulation packages vary greatly in

modeling approaches, technologies and vocabularies. However,
this heterogeneity imposes several challenges, including the
difficulty of comparison among simulation models of one or
more simulation engines and the inability to query simulation
models. This work proposes to s olve those issues using
ontology-based representations of simulation models where
domain simulation models are represented as instances of
Simulators’ Ontologies. Existing domain simulation models in
proprietary file formats are a foundation for this ontology-
based representation.

The main benefits of using ontology-based representation

Figure 7. SQWRL query output from Protégé

for simulation models include: models from different
simulation platforms are represented in a common manner, the
models can be queried using ontology querying languages and
inferences can be performed using ontology reasoners.

While we have focused on representing the simulation
model as contained in a model file, this model is only a static
part of the simulation. Accordingly, we plan to explore the
possibility of using ontologies for representing the dynamic
part of the running simulation. Furthermore, we will investigate
the use of proposed ontology-based simulation models to
facilitate reuse, integration and information sharing among
simulators of different domains.

ACKNOWLEDGMENT
Support for this work has been provided by Canada's

Advanced Research and Innovation Network (CANARIE) and
the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

REFERENCES
[1] E. Abu-Taieh and A. El Sheikh. , "Commercial Simulation Packages: A

Comparative Study", International Journal of Simulation, vol. 8, no. 2,
pp. 66-76, 2007.

[2] L. Lacy and W. Gerber, "Potential Modeling and Simulation
Applications of the Web Ontology Language - OWL", Proc. Winter
Simulation Conference, vol. 1, pp. 265-270, 2004.

[3] A. Tofani, E. Castorinia, P. Palazzaria, A. Usovb, C. Beyelb, E. Romeb
and P. Servilloc, "Using Ontologies for the Federated Simulation of
Critical Infrastructures", Proc. International Conference on
Computational Science, vol. 1, no. 1, pp. 2301-2309, 2010.

[4] J.A. Miller, G.T. Baramidze, A.P. Sheth and P.A. Fishwick,
"Investigating Ontologies for Simulation Modeling", Proc. 37th Annual
Simulation Symposium, pp. 55-63, 2004.

[5] G.A. Silver, L.W. Lacy and J.A. Miller, "Ontology Based
Representations of Simulation Models Following the Process Interaction
World View", Proc. Winter Simulation Conference, pp. 1168-1176,
2006.

[6] J.A. Miller and G. Baramidze, "Simulation and the Semantic Web",
Proc. Winter Simulation Conference, pp. 2371-2377, 2005.

[7] P. Benjamin and K. Akella. , "Towards Ontology-Driven
Interoperability for Simulation-Based Applications", Proc. Winter
Simulation Conference, pp. 1375-1386, 2009.

[8] "Simulink - Simulation and Model-Based Design",
http://www.mathworks.com/products/simulink/, 2011.

[9] E. Prud'hommeaux and A. Seaborne. , "SPARQL Query Language for
RDF", http://www.w3.org/TR/rdf-sparql-query/, 2008.

[10] M.J. O'Connor and A. Das. , "SQWRL: A Query Language for OWL",
OWL Experiences and Directions, 6th International Workshop, 2009.

[11] "DR-NEP (Disaster Response Network Enabled Platform) project",
http://drnep.ece.ubc.ca/index.html, 2011.

[12] H.A. Rahman, M. Armstrong, D. Mao and J.R. Marti, "I2Sim: A Matrix-
Partition Based Framework for Critical Infrastructure Interdependencies
Simulation", Proc. Electric Power Conference, pp. 1-8, 2008.

[13] K. Grolinger, M.A.M. Capretz, A. Shypanski and G.S. Gill, "Federated
Critical Infrastructure Simulators: Towards Ontologies for Support of
Collaboration", Proc. IEEE Canadian Conference on Electrical and
Computer Engineering, Workshop on Connecting Engineering
Applications and Disaster Management, 2011.

[14] "Protégé OWL API", http://protege.stanford.edu/plugins/owl/api/, 2011.
[15] "Simulink Library, Technische Universität München",

http://conqat.in.tum.de/index.php/Simulink_Library, 2011.
[16] "ARQ - A SPARQL Processor for Jena",

http://incubator.apache.org/jena/documentation/query/.

438

An ontology-based approach for storing XML data into relational databases

Francisco Tiago Machado de Avelar, Deise de Brum Saccol, Eduardo Kessler Piveta
Programa de Pós-Graduação em Informática, Universidade Federal de Santa Maria - Santa Maria, RS, Brazil

ftiago.avelar@gmail.com, {deise, piveta}@inf.ufsm.br

Abstract

One of the efficient ways of managing information is by
using a relational database (RDB). Several applications use
XML (eXtensible Markup Language) as the standard for-
mat for data storing and processing. However, XML doc-
uments related to a certain domain may present different
structures. Such structural heterogeneity makes harder to
map documents to a specific database (DB) schema. To ad-
dress this issue, our paper assumes an existing ontology that
describes the XML documents. Then the ontology is mapped
to a relational schema and the XML files are stored into the
DB. Considering this scenario, this paper describes a mech-
anism that inserts XML data into the RDB. Specifically, this
paper presents: (1) the definition of mapping rules to trans-
form XML data to the relational format, (2) the definition
of algorithms for solving semantic and structural conflicts,
and (3) the mechanism for generating the SQL scripts to
insert the original XML data into the DB.

1 Introduction

XML is a widely-used format for sharing information

between programs, people, and computers. Many applica-

tions require efficient XML storage, which can be achieved

by using a RDB. One possible way is to map the XML struc-

ture to a collection of relations, and then proceed with the

insertion of the XML data as tuples into the DB.

For mapping the XML structure to a relational schema,

the ideal scenario occurs when the XML files share the same

schema; thus, such schema is translated to a set of tables us-

ing some of the existing mapping approaches [8]. However,

XML files may have different structures, making the map-

ping process to a unique relational schema harder.

To deal with this heterogeneity issue, we group XML

documents into similar knowledge domains. This grouping

can be done by using ontologies, whose purpose is to estab-

lish a common and shared understanding about a domain

between people and computer systems. In such scenario,

searching and managing tasks become simpler.

There are some approaches for dealing with global

schema representation for describing heterogeneous XML

structures. One of these approaches is the X2Rel (XML-to-
Relational) framework [6]. In such framework, the ontol-

ogy is created from a schema integration process (OntoGen
- Ontology Generator component) [7]. Then the ontology

is mapped to a relational schema by using a set of mapping

rules (OntoRel - Ontology-to-Relational component) [6].

After generating the relational schema, the original XML

data can be inserted into the DB.

In this paper, we extend the X2Rel framework by adding

the XMap (XML Mapper) component, a module that pro-

vides mechanisms for inserting the original XML data into

the RDB. We also propose a mechanism for solving struc-

tural and semantical conflicts found in those documents,

such as nomenclature and data types conflicts. Therefore,

the main contributions of this paper are: (1) the categoriza-

tion of structural and semantic conflicts between XML doc-

uments; (2) the definition of algorithms that solve the con-

flicts found in the XML documents; and (3) the definition

of mechanisms that map and insert the XML data into the

existing relational schema.

This paper is organized as follows. Section 2 presents

related work. Section 3 presents the background work,

including the X2Rel components. Section 4 presents the

XMap component, responsible for mapping and inserting

the XML data into the RDB. Section 5 presents a brief cate-

gorization of conflicts and some of the proposed algorithms.

Some experimental issues are described in Section 6. Fi-

nally, conclusions are presented in Section 7.

2 Related Work

There are some approaches [3, 11] that deal with XML

mapping to OWL. The transformation from OWL to SQL

is addressed in [1] and [14]. Direct translation from XML

to SQL [12] uses mapping without the adoption of a OWL

model. Consequently, conflict resolution only have solu-

tions for a certain set of files.

The transformation from XML to SQL format requires

the definition of a mapping schema and it may require a

439

specialist intervention. The work at [10] classifies the con-

flicts during the integration of XML schemas and proposes

a resolution mechanism using XQuery.

The approach in [9] performs a division of mappings.

This technique decomposes the document into sub-trees.

Joint operations are represented by an undirected graph with

acyclic handling algorithms to solve conflicts. An XML

framework proposed in [13] defines data integration based

on the overall schema, a set of XML data and a set of map-

pings. They define an identification function that aims at

globally identifying nodes coming from different sources.

To solve the problem of heterogeneity, this paper

presents a ontology-based approach, which can be used to

improve traditional techniques of XML mapping and stor-

age into RDB. The purpose of using ontologies is to explicit

the resource content regardless of how the information is

structurally stored. This approach adds semantics to the

XML files while reduces unneeded structural information

to map the XML data to the relational format.

3 Background

To avoid submitting different XQuery queries, we pro-

pose to store XML data in a RDB. By mapping the XML

structure to the relational model, only one SQL query is

posed into the DB. To provide this solution, we need to de-

fine a set of transformation rules that map the XML struc-

ture to a collection of tables and columns.

However, XML documents related to the same applica-

tion domain may present different structures, making the

mapping process more difficult. To overcome this issue, the

X2Rel framework provides the following functionalities, as

described in Figure 1:

• Integrate the XML files into a global schema, de-

scribed by a OWL ontology. Provided by the OntoGen
component, this module receives a set of XML files

and produces the ontology (integrated schema) [7];

• Translate the OWL ontology to a relational schema.

Provided by the OntoRel component, this module re-

ceives the ontology and produces the relational schema

(a SQL script with the create table statements) [6];

• Map and insert the original XML files into the RDB.

Provided by the XMap component, this module re-

ceives the XML files, the ontology and the relational

schema and produces the SQL script with a set of in-
sert statements;

• And finally map the original XML queries into equiv-

alent SQL statements. Provided by the QMap com-

ponent, this module receives a XQuery statement and

produces a corresponding SQL statement.

Figure 1. X2Rel framework architecture [6].

The OntoGen and OntoRel components are finished and

published works. The QMap module is an ongoing project.

The focus of this paper is to present the XMap component,

as described in the next section.

4 The XMap Component

The XMap component uses as input the original XML

files, the global ontology generated by OntoGen and the re-

lational schema created by OntoRel. In order to specify the

concept equivalences between the XML documents, the on-

tology and the relational schema, our approch is based on

a mapping document, as later detailed in Section 4.2. The

insertion of XML data into the RDB is structured in five

ascending levels, as described in Figure 2.

Figure 2. The XMap Architecture

The first level associates the input data. The integrated

representation of such documents is responsible for speci-

440

fying the equivalences between concepts, associating them

in those three models. For example: a) the XML element

Writer is equivalent to the OWL concept Author that

is represented by the table Author; b) the XML element

name is equivalent to the OWL concept fullName that is

represented by the column fullName;

The output of the first level is the mapping file (XML

OWL RDB (Relational Database) Mapping). The XML de-

scriptor is an auxiliary file created by the programmer using

the Castor library. Section 6 describes further details.

The third level is in charge of interpreting the mapping

file with the XML descriptor. As a result, objects are cre-

ated in the level 4. The manager is responsible for inter-

preting the XML files according to the mapping objects. If

a conflict occurs, conflict resolution becomes necessary to

resolve the data inconsistency. Section 5 addresses specifi-

cally about the conflicts that can occur between XML files.

With the mapping objects in memory, the manager is re-

sponsible for creating the header objects for the inclusion

into the DB along with the respective tuples, as shown in

Figure 3. Finally, level 5 generates the DML 1 file to insert

the content of XML instances into tables and columns.

Figure 3. Header layout

Next we present the input artifacts produced by OntoGen
(ontology) and OntoRel (relational schema), as well as three

XML documents. These artifacts are important for under-

standing the XMap approach and the remaining paper.

4.1 Input Artifacts

Each XML file can have a particular structure. Figure 4

illustrates three XML files that contains data about authors,

publications and institutions. Although these files belong to

the same application domain (published papers in scientific

events), they have some structural differences, such as:

• On documents “A” e “C” (line 10), the author concept

is <author>; on document “B” (line 10), the same

concept is <writer>;

• On document “A” (line 10), the concept author is lex-

ical 2; on documents “B” e “C” (line 10), this concept

is non-lexical 3;

1DML - Data Manipulation Language.
2Atomic elements directly represented in computer, such as a string.
3Complex element, such as an author composed by name and address.

Figure 4. Sample XML documents

Querying data in such heterogenous structure would re-

quire individual extraction processes that could represent a

bottleneck to the system. To store the content of these files

into a RDB, our work uses a ontology as a global schema to

handle the structural distinctions between the documents.

Figure 5 shows the resulting OWL ontology, considering

the sample XML files as input to the OntoGen component.

Details of the ontology generation are found in [7].

Then the ontology is mapped to a relational schema by

the OntoRel component using some mapping rules:

441

Institution (cod_institution, city, state, name, department);

Paper (cod_paper, title, cod_institution), cod_institution references

Institution;

Writer (cod_writer, name, code, e_mail, age);

Conference (cod_conference, day, title, city, state);

PaperWriter (cod_paper, cod_writer), cod_paper references Paper

and cod_writer references Writer;

ConferencePaper (cod_conference, cod_paper), cod_conference

references Conference and cod_paper references Paper;

Figure 5. Global OWL Ontology

Basically the non-lexical concepts are mapped to tables,

as well as the N:N relationships. The lexical concepts

are mapped to columns in the corresponding tables. The

columns whose cardinality is 1 become not null in the

DB. Details of this mapping are described in [6].

4.2 Mapping Document

In order to describe and track the equivalences between

concepts from the XML files, the ontology and the rela-

tional schema, we have defined a structured artifact named

mapping document, as shown in Figure 6.

To explain the involved transformations for storing the

input XML data into the relational schema, the mapping

process represents the ontology concepts with the element

<concept> (line 3). According to the existing concept

in the global ontology, the XML data sources are identi-

fied by the id attribute of the element <source> (line 4).

The XML content is pointed by the XPath expression in

the element <expression> (line 5). If an XML source

content has not refered to a certain ontology concept, the

<expression> element is empty.

The element <relational> (line 13) indicates where

the data will be stored. For non-lexical concepts, the storage

is done into a table, as shown in <type> element (line 14);

the table name is the <name> element (line 15).

Figure 6. Mapping file

For lexical concepts, the element <relational> has

two internal elements, indicating that the information is

stored into a column. From line 28 on, it is described

that the concept title specified on line 18 is stored as

a column (line 29), whose name is title (line 30) in

conference table (line 31). In this case, it is a lexical

concept represented by a string (line 32).

We used the mapping file presented in Figure 6 for gener-

ating the insert statements. The mapping document is an es-

sential mechanism that allows specifying the equivalences

between the XML data, the ontology and the relational

schema. For better understanding, only conference e

title concepts were demonstrated. The mapping docu-

ment generation is implemented by a semi-automatic tool

named CMap (Concept Mapper).

5 Conflict Classification and Resolution

To store original XML data into the RDB, several con-

flicts have to be detected and solved. Because of space is-

sues, we describe in details only the naming conflicts. Other

conflicts are just mentioned in the end of this section. The

original work (master thesis [5]) describes the full set of

conflicts, as well as all the proposed algorithms, the imple-

mentation and the tests that deal with those conflicts.

The naming conflicts refers to naming inconsistencies in

XML documents. There are two types of naming conflicts:

442

• Homonymy conflicts: occur when the same name is

used for different concepts. For example, <name> of

<writer> (line 11 of document “B”) and <name>
of <institution> in document “A” (line 13).

• Synonymy conflicts: occur when the same concept is

described by distinct names. For example, <writer>
(line 10 of document “B”) and <author> in docu-

ment “C” (line 10).

Each XML file is identified by the id attribute (element

source), as specified in the mapping document (Figure

6). The element contains the XPath <expression> that

points to the content located on the specific file. Exempli-

fying the homonym conflict, the element name has differ-

ent parents in documents “B” (line 11) and “A” (line 13),

meaning the author name and the institution name. Thus, a

homonym conflict is detected. The question is about where

to store such information: either writer or institution table.

The solution of this conflict is based on the mapping

document and it considers the grouping algorithm of non-

lexical concepts (algorithm 1), as described.

Algorithm 1 Grouping non-lexical concepts.

1: nc ← number of < concept > in < mapping >
2: for i ← 1 to nc do
3: concept ← i-th< concept > of < mapping >
4: if non-lexical concept then
5: relational ← < relational > of concept
6: label ← < name > of relational
7: add(label, vector)
8: end if
9: end for

Non-lexical concepts are placed in a vector according

to Algorithm 1. As a result, this vector will contain the

non-lexical concepts that correspond to tables in the RDB.

Reading all the elements in this vector, the Algorithm 3 will

create the insertion structure (header and container) for the

DB. Both for-loops in Algorithm 3 mean that for each non-

lexical concept (outer loop), the associated lexical concepts

will be fetched (inner loop) in the mapping document. Thus,

it is possible to access the content structure and the XML

data (lines 1-3 of algorithm 2) through the mapping docu-

ment in the form of objects.

The loop traverses the XML sources searching for the file

identifier and the Xpath path (lines 5-7 of algorithm 2). If an

expression is non-empty (line 8 of algorithm 2), the XML

content pointed by the XPath expression is read from the

XML file and added to the DynamicVector (lines 9 and 10 of

algorithm 2). If the expression is empty, the content NULL

is added to the vector. Since the insertion has the header, the

table name and the columns are already grouped (as shown

in algorithms 1 and 2). Thus, the tuple composition (line

15 of algorithm 2) produces the insert statement associating

the name of the table, the columns and the content.

The inclusion into the DB occurs directly, as described

in Figure 7.

Algorithm 2 Naming conflict resolution.

1: container ← getContainer(insertion)
2: content ← getContent(container)
3: sourceVector ← getVector(content)
4: for i ← 0 to sourceVector.size− 1 do
5: source ← i-th element of sourceVector
6: file ← attribute id of source
7: expression ← < expression > of source {an XPath path}
8: if expression not empty then
9: value ← read(expression, file)

10: add(value, valueVector)
11: else
12: add(NULL, valueVector)
13: end if
14: end for
15: composeTuples(valueVector)

Algorithm 3 Creating the structure for inserting XML con-

tent in a DB
1: for i ← 0 to vector.size− 1 do
2: label ← i-th element of vector
3: header ← create(label)
4: container ← create()
5: for j ← 1 to nc do
6: concept ← i-th < concept > of < mapping >
7: if non-lexical concept then
8: continue
9: end if

10: relational ← < relational > of concept
11: table ← < table > of relational
12: field ← < name > of relational
13: if table equals to label then
14: add(field, header)
15: sourceVector ← array< source > of < concept >
16: content ← create(sourceVector, relational)
17: add(content, container)
18: end if
19: end for
20: insertion ← create(header, container)
21: add(insertion, insertionVector)
22: end for

Figure 7. Homonymy conflict insert

Because of space issues, only the naming conflicts were

detailed. However, other types of conflicts that are also han-

dled by XMap include:

• Structural conflicts: related to different choices of

constructors. There are two types of structural con-

flicts, named type conflicts and generalization con-

flicts. Type conflict occur when one concept is repre-

sented by different constructors, such as representing

the same information as an attribute and as an element.

Generalization conflicts occur when an element in a

document is a union of other elements, such as a full
name element and first name + surname elements.

443

• Representation conflicts: occurs when an element has

its content represented in a different format required

for the storage into the DB. More specifically, the in-

formation available in XML is not compatible with

the corresponding data type in the relational model.

For example, a date format represented in the RDB as

yyyy-mm-dd and represented in the XML document as

dd/mm/yyyy.

6 Experiments

The XMap component was implemented as an extension

of the X2Rel framework. We used Java as the programming

language (version 1.6.0_25) and Castor library for mapping

file interpretation. We have performed two group of exper-

iments. The XML files of the experiments are found at [2].

This repository also stores the global ontologies created by

OntoGen, the relational schemas created by OntoRel and

the mapping documents (input artifacts for the XMap tool).

The second group of experiments used the files described

in Figure 4, also available at [2]. By running the component,

the tables presented in Section 4.1 were populated with the

extracted data from the original XML files.

7 Final Remarks

This paper focuses on XMap development, a framework

component responsible for mapping and storing XML data

into a RDB. To perform this storage, a series of conflicts are

solved. The solution is based on a mapping document, an

useful artifact to express the equivalences between XML,

ontology and the corresponding relational concepts (table

and column). This document facilitates the mapping dur-

ing data transformations and also the XML data retrieval

through the use of XPath expressions.

So far we assume that the data synchronization process

handles automatically once the XML data are mapped and

stored into the RDB. This mechanism, known as view main-

tenance, is deeply explored in [4]. As a future work, we will

address complementary issues, such as element order and

duplicata elimination.

8 Acknowledgments

This work has been partly supported by SESU/MEC

(PET-Programa de Educação Tutorial) and FAPERGS

(Auxílio Recém Doutor - Process no. 11/0748-6).

References

[1] I. Astrova, N. Korda, and A. Kalja. Storing OWL On-

tologies in SQL Relational Databases. volume 1. IJE-

CES, 2007.

[2] F. Avelar. Repository of experimental data available at

http://www.infovisao.com/xml_data/, 2012.

[3] H. Bohring and S. Auer. Mapping XML to OWL On-

tologies. In Leipziger Informatik-Tage, volume 72 of
LNI, pages 147–156. GI, 2005.

[4] V. P. Braganholo, S. B. Davidson, and C. A. Heuser.

Pataxó: A framework to allow updates through xml

views. ACM Trans. DB Syst., 31(3):839–886, 2006.

[5] F. T. M. de Avelar. XMap: Mapeamento e Armazena-

mento de Dados XML em Bancos de Dados Rela-

cionais. Master’s thesis, Universidade Federal de

Santa Maria, Março 2012.

[6] D. de Brum Saccol, T. de Campos Andrade, and

E. K. Piveta. Mapping OWL Ontologies to Relational

Schemas. IEEE IRI’11, 2011.

[7] D. de Brum Saccol, N. Edelweiss, R. Galante, and

M. R. Mello. Managing application domains in p2p

systems. IEEE IRI’08, 2008.

[8] D. Florescu and D. Kossmann. Storing and querying

xml data using an rdbms. IEEE Data Engineering Bul-
letin, 22(3):27 – 34, 1999.

[9] Z. Kedad and X. Xue. Mapping Discovery for XML

Data Integration. In OTM Conferences (1)’05, pages

166–182, 2005.

[10] K.-H. Leeo, M.-H. Kim, K.-C. Lee, B.-S. Kim, and

M.-Y. Lee. Conflict Classification and Resolution

in Heterogeneous Information Integration based on

XML Schema. IEEE TENCON, 2002.

[11] P. Lehti and P. Fankhauser. XML data integration with

OWL: experiences and challenges. In IEEE/IPSJ’04,

pages 160 – 167, 2004.

[12] P. Martins and A. H. F. Laender. Mapeamento

de Definições XML Schema para SQL: 1999. In

SBBD’05, pages 100–114, 2005.

[13] A. Poggi and S. Abiteboul. XML Data Integration

with Identification. In DBPL, pages 106–121, 2005.

[14] E. Vysniauskas and L. Nemuraite. Transforming on-

tology representation from owl to relational database.

Information Technology and Control, 35(3A):333–

343, 2006.

444

Automatic Generation of Architectural Models From
Goals Models

Monique Soares, João Pimentel, Jaelson Castro, Carla Silva, Cleice Talitha, Gabriela Guedes, Diego Dermeval
Centro de Informática

Universidade Federal de Pernambuco/UFPE
Recife, Brazil

{mcs4, jhcp, jbc, ctlls, ctns, ggs, ddmcm}@cin.ufpe.br

Abstract—The STREAM (Strategy for Transition Between Re-
quirements and Architectural Models) process presents an ap-
proach that allows the generation of early architectural design
described in Acme ADL from goal oriented requirements models
expressed in i*. The process includes activities that defines trans-
formation rules to derive such architectural models. In order to
minimize the effort to apply the process and decrease the possi-
bility of making mistakes it is vital that some degree of automa-
tion is provided. This paper explains in detail the transformation
rules proposed and their corresponding formalization in a model
transformation language.

Requirements Engineering, Software Architecture,
Transformation Rules, Automation.

I. INTRODUCTION
The STREAM (Strategy for Transition between Require-

ments Models and Architectural Models) is a systematic ap-
proach to integrate requirements engineering and architectural
design activities, based on model transformations to generate
architectural models from requirements models [3]. The source
language is i* (iStar) [11] and the target language is Acme [2].

Our proposal is in line with the current MDD (Model-
Driven Development) paradigm, as we support the transfor-
mation of models of higher levels of abstraction to more con-
crete models. The MDD advantages are: greater productivity
and, therefore, a lower development time; increased portability;
increased interoperability; and lower maintenance costs, due to
the improved consistency and maintainability of the code [7].

Currently, the transformation rules defined in the STREAM
approach are informally described and are manually applied.
Hence, their use is time consuming and effortful, as well as
error prone. In order to overcome these shortcomings, we pro-
pose to use an imperative transformation language (QVTO [8])
to properly describe them and to provide tool support.

 The aim of this paper is to automate the vertical transfor-
mation rules proposed in the STREAM. For this, it was neces-
sary to: Define these rules in a proper transformation language;
Make these rules compatible with the IStarTool and
AcmeStudio tools; and illustrate the use of them rules.

The remainder of this paper is organized as follows. Section
2 describes the background required for a better understanding
of this work. Section 3 presents the description and automation

of the vertical transformation rules in QVT. Section 4 presents
an application example. Section 5 presents the related works
and Section 6 discuss the results of this work and future re-
search.

II. BACKGROUND
This section presents an overview on i*, Acme and th e

STREAM process, which are used in our approach.

A. iStar
The i* language is a goal-oriented modeling language able

to represent features of both the organization and of the system
to be acquired/developed by/for the organization. Stakeholders
and systems are represented as actors, which are active entities
able to pe rform tasks, reach goals and provide resources. In
order to achieve their own goals, actors have dependencies with
each other [11].

i* is comprised of two models: a SD (Strategic Dependen-
cy) model describes dependency relationships among actors in
the organization; a SR (Strategic Rationale) model explains
how actors achieve their goals and dependencies.

In a dependency, a depender actor relies on a dependee ac-
tor to achieve something (the dependum). A dependum can be a
goal, which represents the intentional desire of an actor, to be
fulfilled; a softgoal to be satisfied, which is a goal with the
acceptance criterion not so clear; a resource to be pro vided; or
a task to be per formed. Figure 1 presents an excerpt of the i*
metamodel defined for the iStarTool tool [6].

B. Acme
Acme is an ADL (Architectural Description Language) de-

signed to describe the components and connectors (C&C) view
of the system architecture [2]. It relies on six main types of
entities for architectural representation: Components, Connect-
ors, Systems, Ports, Roles, and Representations. Figure 2 pre-
sents the Acme metamodel, based on the AcmeStudio tool [1].

Components represent the primary computational elements
and data stores of a system. Connectors characterize interac-
tions among components. Systems denote configurations of
components and connectors. Each port identifies a point of
interaction between the component and its environment. Roles
define the connector’s interfaces. Representation supports hier-
archical descriptions of architectures. [2].

445

C. STREAM

The STREAM process includes the following activities: 1)
Prepare requirements models, 2) Generate architectural solu-
tions, 3) Select architectural solution, and 4) Refine architec-
ture. In activities 1) and 2), horizontal and vertical rules are
proposed, respectively. Horizontal rules are applied to the i*
requirements models to increase its modularity and prepare
them for early architectural transformation. There are four hor-
izontal transformation rules (HTRs) [9]. Vertical rules are used
to derive architectural models in Acme from modularized i*
models. Non-Functional Requirements are used to select initial
candidate architecture in the 3) activity. Certain architectural

patterns can be applied to allow appropriate refinements of the
chosen candidate architectural solution in 4) activity [5].

In the Vertical Transformation Rules (VTRs), the i* actors
and dependencies are mapped to Acme elements. Thus, an i*
actor is mapped to an Acme component. An i* dependency
becomes an Acme connector. The depender and dependee
actors in a dependency can be mapped to the roles of a con-
nector. In particular, we can distinguish between required ports
(mapped from depender actors) and provided ports (mapped
from dependee actors). Thus, a connector allows communica-
tion between these ports. A component provides services to
another component using provided ports and it requires ser-
vices from another component using required ports.

The four types of dependencies (goal, softgoal, task and re-
source) will define specific design decisions in connectors,
ports and roles that are captured as Acme Attachments. An
object dependency is mapped to a Boolean property. A task
dependency is mapped directly to a port provided. The resource
dependency is mapped to a return type of a property provided
port. A softgoal dependency is mapped to a property with enu-
merated type

These transformation rules were defined in a semi formal
way in [13] and now they need to be precisely specified using a
suitable model transformation language, such as Que-
ry/View/Transformation Operational – QVTO [8]. In doing so,
we can validate them, as well as provide support to (partially)
automate the process, hence enabling the STREAM process to
become a full-fledged MDD approach.

III. AUTOMATION OF THE VERTICAL TRANSFORMATION
RULES

In the STREAM process, the user begins by using i* to
model the problem at hand. Some heuristics can guide the se-
lection of sub-set(s) of candidate elements to be refactored.
Once they are selected, the HTRs can be applied to improve the
modularization of the i* model [5].

Since the vertical transformations do not consider the inter-
nal elements of the actors, we first create an intermediary SD
model from the modular i* SR model. We proceed to apply the
VTRs (see Table I). The first rule (VTR1) maps i* actors to
Acme components, while VTR2 transforms i* dependencies to
Acme connectors. The VTR3 converts the depender actor onto
a required port of the Acme connector. The VTR4 translates
the dependee actor onto a provided port of the Acme connector.

We relied on the Eclipse based tool for i* modeling, the
iStarTool [6], to create the i* model. This model is the input for
the first STREAM activity. This tool generates a XMI of the
modularized i* SD model, which can be read by the QVTO
Eclipse plugin [4], to serve as input for the VTRs execution.

The VTRs described in QVTO are based on the
metamodels presented in Section 2, they are referenced during
the execution of the transformation. The models created with
the VTRs execution are represented as XMI files.

In our work, we were able to automate 3 horizontals
(HTR2-HTR4) and 4 verticals transformation rules [14]. How-
ever, due to space limitation, in this paper, we only discuss how

-name
-value
-type

Property

-name

System

Representation

-name

AcmeElement

Connector
Component

Port Binding

Attachment

Role

acmeElements

acmeElements

properties

pr
op

er
tie

s

attachment*

*

1.
.*

1..*

*

ro
le
s

2.
.*

*
role

port
*

ports

*
secondPort

firstPort

1

1

bi
nd

in
gs

1.
.*

re
pr
es
en

ta
tio

ns
1.
.*

Figure 2. Acme metamodel

ContributionLink

DecompositionTask

MeansEnd

Element

Actor

ActorAssociation
Model

Dependency Link

associations

NodeObject

Link

ac
to

rs
*

lin
ks

*

*

ele
m

en
ts

*

so
ur

ce

ta
rg

et

0.
.1 0.
.1

0.
.1

0.
.1

source

target

source

target 0..1

0..1

source

target

0.
.1

0.
.1

elements

*

*

*

*

meansEnd
decompositionTasks

contributionLinks

0.
.1

0.
.1

so
ur

ce

ta
rg

et

Figure 1. Excerpt of the i* metamodel

446

we dealt w ith the verticals rules. Table 1 illustrates the ele-
ments present in the source model and their corresponding
elements present in the target model.

To map i* actors to Acme components, we need to obtain

the number of actors present in the modularized i* SD model
artifact. So, we create the same amount of Acme components,
giving to this components, the same names of the i* actors. The
XMI file obtained as output of this transformation will contain
the components represented by tags (Figure 6).

In the VTR2 each i* dependency creates two XMI tags, one

capturing the depender to the dependum connection and anoth-
er one captures the dependum to the dependee.

In order to map these dependencies in Acme connectors it
is necessary to recover the two dependencies tags, observing
that have the same dependum. It is necessary not consider the
actor which plays the role of depender in some dependency and
dependee in another. Once this is performed, there are only
dependums left. For each dependum, one Acme connector is
created. The connector created receives the name of the
dependum of the dependency link. Two roles are created within
the connector, one named dependerRole and another named
dependeeRole. The XMI output file will contain the connectors
represented by tags (see Figure 4).

The VTR3 converts a depender actor into a required port

present in the component obtained from that actor (see Figure
5). First, we create one Acme port for each actor depender.
Each port created has a name and a property. The port name is
given at random, just to control them. The property must have a
name and a v alue, so to the property name is assigned "Re-
quired" as we are creating a required port and the value is true.

The XMI output file will contain “ports” tags within the
acmeElement tag of component type. Moreover, since they are
required ports, there will be one property with an attribute
named "Required" whose value is set to "true".

Last but not least, the VTR4 maps all dependee actors to
provided ports in the corresponding components obtained by
those actors. For this, we list all dependee actors in the model.
Every port generated has a name and a property. The port name
is given at random. The port property name is "Provided", the
port type is set to "boolean" and the port value is set to "true".

After creation of the basics Acme elements, it is necessary

to create the Attachment object, element responsible for associ-
ating the connectors to the required and provided ports present
in the components. Therefore, an attachment is created for each
port of a component. Each Attachment has a component as an
attribute, a port, a connector and a role.

Next section presents an example to illustrate our approach.

IV. RUNNING EXAMPLE
MyCourses is a scheduling system that provides, as optimal

as possible, a plan for scheduling courses. It allows universities
to perform tasks, such as checking and listing available lecture
rooms, teachers, students enrolled in any course. It was one of
the project proposals for the ICSE 2011 Student Contest on
Software Engineering [10].

The modularized i* SD m odel for the MyCourses system
(Figure 7) was used as input model for the execution of the
VTRs. These rules have the objective to transform a modular-
ized i* SD model into an Acme initial architectural model.

After the automated application of the VTRs, a XMI model
representing the output model and compatible with the Acme
metamodel, will be generated. Figure 8 shows the graphical
representation of that XMI model for the MyCourses system.

<acmeElements xsi:type="Acme:Component" name="Comp">
 <ports name="port17">
 <properties name="Provided" value="true"
 type="boolean"/>
 </ports>
</acmeElements>

Figure 6. Provided port, component and properties in XMI

while(dependencyAmount > 0) {
 if(self.actors.name->includes(self.links.source-
>at(dependencyAmount).name) and
 self.actors.name-
>at(actorsAmount).=(self.links.source-
>at(dependencyAmount).name)) then {
 ports += object Port{
 name := "port"+countPort.toString();
 properties := object Property {
 name := "Required";
 value := "true"
 };
 };
 } endif;
 dependencyAmount := dependencyAmount - 1;
 countPort := countPort + 1;
};

Figure 5. Excerpt of the QVTO code for VTR3

<acmeElements xsi:type="Acme:Connector" name="Conn">
 <roles name="dependerRole"/>
 <roles name="dependeeRole"/>
</acmeElements>

Figure 4. Connector in XMI

while(actorsAmount > 0) {
 result.acmeElements += object Component{
 name := self.actors.name->at(actorsAmount);
 }
 actorsAmount := actorsAmount - 1;
}

Figure 3. Excerpt of the QVTO code for VTR1

TABLE I. VERTICAL TRANSFORMATION RULES
 Source (i*) Target (Acme)

VTR1

VTR2

VTR3

VTR4

447

V. RELATED WORK
Our work is unique in supporting the STREAM approach.

MaRiSA-MDD [15] presents a strategy based on models
that integrate aspect-oriented requirements, architecture and
detailed design, using AOV-graph, AspectualACME and
aSideML languages, respectively. It defines representative
models and a number of transformations between the models of
each language. The transformation language used was ATL.

Silva et al [16] specify, through a model-driven approach,
the transformations necessary for architectural models de-
scribed in UML, from architectural organizational models de-
scribed in i*. The transformation language used was ATL.

VI. CONSIDERATIONS AND FUTURE WORKS
It this paper, we advocated the use of model transformation

to generate architectural models from requirements models. We
reviewed the STREAM process, which defines and applies
(manually) a set of model transformation rules to obtain Acme
architectural models from i* requirements models.

In order to decrease time and effort required to perform the
STREAM process and minimize the errors introduced by the
manual execution of the transformation rules, we proposed to
use the QVTO language to automatize the execution of these
rules. Our focus was on the automation of the VTRs, responsi-
ble to generate an initial Acme architectural model.
Metamodels of the i* and Acme languages were provided. The
input models of the VTRs are compatible with the iStarTool
and the output models are compatible with Acme metamodel,
supported by the AcmeStudio tool.

Currently, the output of our process is an XMI file with the
initial Acme architectural model. But the AcmeStudio tool
reading files described in Acme textual language. As a conse-
quence, the current architectural model cannot be graphically
displayed. H ence, our plan is to provide new transformation
rules to generate the textual representations. Case studies are
still required to validate our approach.

REFERENCES
[1] ACME. Acme. Acme - The AcmeStudio, 2009. Available in:

<http://www.cs.cmu.edu/~acme/AcmeStudio/>. Accessed in: May 2012.
[2] GARLAN, D., MONROE, R., Wile, D. Acme: An Architecture

Description Interchange Language. In: Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative research
(CASCONʼ97). Toronto, Canada.

[3] LUCENA, M., CASTRO, J., SILVA, C., ALENCAR, F., SANTOS, E.,
PIMENTEL, J. A Model Transformation Approach to Derive
Architectural Models from Goal-Oriented Requirements Models. In: 8th
IWSSA - OTM Workshops 2009. Lecture Notes in Computer Science,
2009, Volume 5872/2009, 370-380.

[4] ECLIPSE M2M. Model To Model (M2M). Available in:
<http://eclipse.org/m2m/>. Accessed in: May 2012

[5] CASTRO, J.; LUCENA, M.; SILVA, C.; ALENCAR, F.; SANTOS, E.;
PIMENTEL, J. C hanging Attitudes Towards the Generation of
Architectural Models. Journal of Systems and Software, 2012.

[6] MALTA, A.; SOARES, M.; SANTOS, E.; PA ES, J.; ALENCAR, F.;
CASTRO, J. iStarTool: Modeling requirements usingthe i* framework.
IStar 11, August 2011.

[7] OMG. Object Management Group. MDA Productivity Study, Juny 2003.
Available in: <http://www.omg.org/mda/mda_files/MDA_Comparison-
TMC_final.pdf>. Accessed in: May 2012

[8] OMG. QVT 1.1. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, January 2011. Available in:
<http://www.omg.org/spec/QVT/1.1/>. Accessed in: May 2012

[9] LUCENA, M.; SILVA, C.; SANTOS, E.; ALENCAR, F.; CASTRO, J.
Applying Transformation Rules to Improve i* Models. SEKE 2009: 43-
48.

[10] SCORE 2011. The Student Contest on Software Engineering - SCORE
2011, 2011. Available in: <http://score-contest.org/2011/>. Accessed in:
May 2012.

[11] YU, E.; GIORGINI, P.; MAIDEN, N.; MYLOPOULOS, J. Social
Modeling for Requirements Engineering. Cambridge, MA: MIT Press.
2011. ISBN: 978-0-262-24055-0.

[12] MENS, T.; CZARNECKI, K.; VAN GORP, P. A Taxonomy of Model
Transformations. In: Proceedings of the Language Engineering for
Model-Driven Software Development. Dagstuhl, Germany 2005.

[13] PIMENTEL, J.; LUCENA, M.; CASTRO, J.; SILVA, C.; SANTOS, E.;
ALENCAR, F. Deriving software architectural models from
requirements models for adaptative systems: the STREAM-A approach.
Requirements Engineering Journal, 2011.

[14] SOARES, M. C. Automatization of the Transformation Rules on the
STREAM process (In Portuguese: Automatização das Regras de
Transformação do Processo STREAM). Dissertation (M.Sc.). Center of
Informatic: UFPE, Brazil, 2012.

[15] MEDEIROS, A. MARISA-MDD: An Approach to Transformations
between Oriented Aspects Models: from requirements to Detailed
Project (In Portuguese: MARISA-MDD: Uma Abordagem para
Transformações entre Modelos Orientados a Aspectos: dos Requisitos ao
Projeto Detalhado). Dissertation (M.S.c). Center for Science and Earth:
UFRN, Brazil, 2008.

[16] SILVA, C.; DIAS, P.; ARAÚJO, J.; MOREIRA, ANA. From
Organizational Architectures in i* Agent-based: A model-driven
approach (De Arquitecturas Organizacionais em i* a A rquitecturas
Baseadas em Agentes: Uma abordagem orientada a modelos). WER'11.

Figure 8. Acme Model from MyCourses

Figure 7. Modularized i* SD model MyCourses

448

Towards Architectural Evolution through Model
Transformations

João Pimentel, Emanuel Santos, Diego Dermeval,
Jaelson Castro

Centro de Informática
Universidade Federal de Pernambuco

Recife, Brazil
{jhcp, ebs, ddmcm, jbc}@cin.ufpe.br

Anthony Finkelstein
Department of Computer Science

University College London
London, United Kingdom
a.finkelstein@ucl.ac.uk

Abstract—The increasing need for dynamic systems, able to adapt
to different situations, calls for underlying mechanisms to
support software evolution. In this sense, model-based techniques
can be used to automate one of the evolution aspects – the
modification of models. However, the use of model-based
techniques is tailored to the specific modeling languages being
used. Thus, efforts to automate the modification of models can be
undermined by the several different modeling languages used in
different approaches for software evolution. Aiming to facilitate
the use of model-driven development in the context of
architectural evolution, we propose an approach to define basic
transformation rules. This novel approach relies on a conceptual
model and a set of basic operations for architectural evolution,
which are used to define transformation rules for a specific
architectural modeling language of interest. We illustrate the
application of our approach by defining transformation rules for
Acme using QVT.

Keywords-software architecture; architectural evolution;
autonomic systems

I. INTRODUCTION

Software evolution has become a key research area in
software engineering [7]. Software artifacts and systems are
subject to many kinds of changes at all levels, from
requirements through architecture and design, as well as source
code, documentation and test suites. Since the abstraction level
of software architecture is adequate for identifying and
analyzing the ramifications of changes [11], it could be one of
the software evolution pillars [17]. As the architecture evolves,
mechanisms are required for supporting these dynamic changes
[1][14][19]. There are several approaches for tackling different
aspects of architectural evolution, often relying in some kind of
model transformation. However, these approaches do not use
of model-driven engineering techniques, which provide
underlying mechanisms for model transformation.

In this paper we present a novel approach for creating basic
transformation rules with the focus of facilitating model-based
architectural evolution. We defined a conceptual model and a
set of basic operations that can be applied to the different
languages used for architectural modeling. We illustrate our
approach by defining transformation rules for architectural
evolution on a specific ADL – Acme [9]. The contribution of
this paper is twofold. On one hand, our basic operations can be
used as a co mmon vocabulary for the different architectural

evolution approaches – f acilitating their integration. On th e
other hand, it can guide the creation of transformation rules for
a specific modeling language.

The remainder of this paper is structured as follows. In
Section 2 we present the background for this work. Our
conceptual framework is d escribed in Section 3. Section 4
illustrates the use of our approach in Acme. Lastly, Section 5
concludes the paper.

II. BACKGROUND

Architectural evolution has been acknowledged as a key
element for achieving software evolution [17]. According to
[6], there are 5 types of software evolution: Enhancive,
Corrective, Reductive, Adaptive and Performance. In the case
of autonomic, self-adaptive or self-managing systems this
evolution is performed at runtime, with some degree of
automation. Architectures that can evolve at runtime are
classified as dynamic architectures. Our approach supports
evolution both at design time and at runtime.

A survey on formal architectural specification approaches,
regarding their ability to enact architectural changes at runtime
is reported on [5]. That survey analyzes the approaches
regarding the type of changes they support: Component
Addition, Component Removal, Connector Addition and
Connector Removal. As result, 9 out of 11 approaches were
found to support all these basic operations: CommUnity,
CHAM, Dynamic Wright, PiLar, Gerel, ZCL, Rapide, as well
as the approaches by Le Métayer and by Aguirre-Maibaum.
Moreover, all these 9 approaches have some kind of support for
composing these operations. The need for structural change is
clear in the architectural deployment view, for example, by
replicating application servers in order to improve the system
performance. Additionally, the use of subtyping mechanisms to
enable architectural evolution has also been suggested [15].
From the 9 architectural description languages analyzed in
[15], 4 show some kind of support for evolution through
subtyping mechanisms: Aesop, C2, SADL and Wright.

As the elements and connectors of an architecture evolve,
their properties may be modified as well. These properties may
be related to the element itself (e.g. performance), or to the use
of the element (e.g. workload). The modification of the
properties may happen at design time or at runtime. For
instance, at runtime, we may consider a connector (in a

449

deployment view) that is r eified in a physical network.
Properties such as reliability and bandwidth of this connector
may be subject to change over time. This kind of changes in
properties of architectural elements is often ignored in the
architectural models. We advocate that the evolution of these
properties should be reflected in the models, as it allows us to
(i) monitor the evolution of these properties, which in turn can
be used to t rigger adaptations, and to (ii) analyze the actual
characteristics of a system using its architectural models. This
alignment between what was designed (the initial model) and
the actual implementation/deployment can help identify and
reduce architectural erosion [15]. A particular research field
that considers the evolution of the properties of architectural
elements is that of service-oriented architectures. For instance
[4][8] match services properties with non-functional
requirements for selecting which services to use.

Some modeling languages that are not considered ADL can
also be used for architectural modeling. Architectural behavior
has been defined in languages such as Statecharts,
ROOMcharts, SDL, Z, Use-Case, Use-Case Maps, Sequence
diagrams, Collaboration diagrams and MSCs [2]. For instance,
Statecharts can be used to describe the different states of a
component, as well the transitions between them; Use-Case
diagrams can express the different activities performed by an
element of a system, from the user’ point-of-view. Thus, when
dealing with architectural evolution, we cannot neglect these
languages. Similarly, the use of goal-based notations such as
Kaos and i* for architectural modeling has been promoted in
some research endeavors [12][18].

III. CONCEPTUAL FRAMEWORK

Based on a review of the architectural modeling approaches
mentioned in the previous section, we devised a framework for
empowering architectural evolution through model
transformations, which can be applied to different modeling
languages. This framework comprises a conceptual model,
used to classify the different constructs of a modeling language,
as well as a set of basic architectural evolution operations
defined upon the conceptual model.

Architectural models are composed of architectural
elements – e.g., components, services, classes and states – and
links that define connections between these elements – e.g.,
connectors, requests, association links and events. Both
elements and links may have properties, which can be used to
provide a detailed description of elements and links. Moreover,
elements may have sub-elements, i.e., elements that are part of
them. Fig. 1 shows a model that represents these concepts.
Using the graph terminology, elements can be considered typed
nodes, links can be considered directed edges and properties
can be considered labels of a node/edge.

This conceptual model can be applied to different
architectural description languages, as well as to other
modeling languages that are used for architectural modeling
(e.g., Statecharts, Sequence diagrams, Use-Case and i*). The
(meta-)metamodel of the VPM language [3] resembles our
conceptual model, being essentially composed by elements
(entities) and links (relations) but neglecting their properties.
That work provides a metamodeling language, whereas our
conceptual model is used to classify the constructs of existing

metamodels in o rder to guide the creation of transformation
rules. Thus, our approach is n ot tied to any particular
metamodeling nor transformation specification language.

A. Basic Architectural Evolution Operations

This conceptual model enabled us to define 7 basic
operations required to s upport architectural evolution with
model transformations: Add Element, Remove Element, Add
Link, Remove Link, Add Property, Remove Property and
Change Property. These operations support the 2 different
types of architectural model changes described in Section 2 –
structural/topology changes and property changes. These
operations are described next.

1) Add Element
Inserts a new element in a model. A particular case is when

the new element is a sub-element of another element. Usually,
an element has a name or an identifier.

2) Remove Element
Deletes an element from a model. Caution should be taken

when removing elements from a model, as it is important to
maintain the integrity of the model. For instance, if an element
is removed, it is most likely that it will also be necessary to
remove the links associated with that element.

3) Add Link
Inserts a new link connecting elements of the model.

4) Remove Link
Deletes a link from a model. Here again caution should be

taken, as elements without links may result in invalid models.

5) Add Property
Inserts a property in an element or in a link. Usually, the

property has a name or an identifier, as well as other attributes
such as value, default value and type.

6) Remove Property
Deletes a property from an element or from a link.

7) Change Property
Modifies the content of an attribute of a property, e.g., the

actual value, or its type. A similar effect could be achieved by
combining the Remove Property and the Add Property
operations. However, as modifying a property is conceptually

Figure 1. Conceptual Model

450

different from replacing it, we decided to define this specific
operation.

We decided against the definition of Change Element and
Change Link operations as they essentially consist of changing
their properties or adding/removing sub-elements.

These operations are similar to the five basic operations for
graph-based model transformations [13]: create node, connect
nodes, delete node, delete edge and set label. Our notion of
property can be seen as an elaborated kind of label, leading us
to defining three different property-related operations.
Moreover, our conceptual model also supports the definition of
sub-elements, which is an important feature in some
architectural modeling languages.

B. Model Transformation Rules

In order to use the power of model-driven development for
architectural evolution, it is necessary to define transformation
rules for a particular modeling language. In order to describe
these rules, the first step is to classify the constructs of the
language based on the conceptual model of Fig. 1 - i.e., to
identify which are the elements, sub-elements, links and
properties of that particular language. Then one can proceed to
instantiate the basic architectural evolution operations for each
element, link and property of the language.

Once all basic operations are defined, the transformation
rules can be developed using a model transformation
framework (such as QVT) or using a general-purpose
programming language. The development of these rules can be
quite straightforward, as presented in the next section.
However, the complexity of the language in focus may pose
some additional challenges.

IV. MODEL TRANSFORMATIONS FOR ARCHITECTURAL
EVOLUTION ON ACME

In this section we illustrate the use of our conceptual
framework to enable architectural evolution on a specific ADL:
Acme [9]. Acme components characterize computational units
of a s ystem. Connectors represent and mediate interactions
between components. Ports correspond to external interfaces of
components. Roles represent external interfaces of connectors.
Ports and roles are points of interaction, respectively, between
components and connectors – they are bound together through
attachments. Systems are collections of components,
connectors and a description of the topology of the components
and connectors. Systems are captured via graphs whose nodes
represent components and connector and whose edges
represent their interconnectivity. Properties are annotations that
define additional information about elements (components,
connectors, ports, roles, representations or systems).
Representations allow a component or a connector to describe
its design in detail by specifying a sub-architecture that refines
the parent element. The elements within a representation are
linked to (external) ports through bindings.

A. Applying the conceptual framework

Considering our conceptual framework, we identified the
basic operations required to evolve an architectural model in
Acme. The Acme elements are Component, Connector, Role,
Port and Representation. Particularly, the last three elements

are sub-elements – Role is a sub-element of Connector, Port is
a sub-element of component and Representation is a sub-
element of both Component and Connector. Please note that
Connector is not an actual link – instead, it is an element that is
(indirectly) linked to Component through Attachment. The only
links in Acme are Attachment and Binding. An attachment
links an internal port of a component to a role of a connector,
while a binding links an internal port to an external port of a
representation. Lastly, Property expresses the properties of
each element or of a System.

Thus, the basic operations for architectural evolution in
Acme were defined: Add Component, Add Port, Add
Connector, Add Role, Add Representation; Remove
Component, Remove Port, Remove Connector, Remove Role,
Remove Representation; Add Attachment, Add Binding;
Remove Attachment, Remove Binding; Add Property; Remove
Property; Change Property. Since all properties in Acme share
the same structure, we did not need to define different property
operations – e.g., there is no benefit in defining different Add
Component Property and Add Connector Property operations.

B. Acme evolution with QVT

In this section we present how the basic operations can be
implemented using a model transformation framework. Here
we are using QVT, which comprises a language for specifying
model transformations based on the Meta Object Facility –
MOF and on the Object Constraint Language – OCL.

Fig. 2 s hows the QVT Operational code for the Add
Component operation. The first line states the metamodel that
will be used in the transformation, which is the Acme
metamodel. The second line declares the Add Component
transformation, informing that the same model (aliased
acmeModel) will be used both as input and as output. Other
than the input models, QVT transformations accept input
through the mechanism of configuration properties. Line 3
presents the input variable of this transformation, which is the
component name. In QVT, the entry point of the transformation
is the signature-less main operation. Our main operation (lines
4-7) calls the mapping of the root object of the model, which is
System. The transformation itself is performed by the Apply
Add Component mapping (lines 8-12), which inserts a new
component. The component constructor is defined in lines 13-
16, it simply assigns the given name to the component.

Fig. 3 presents the mapping of the Remove Port
transformation (the other elements of the transformation are
very similar to that of Fig. 2). In this mapping we traverse all
ports of the model (Line 3), so that when port with the given
name is found (Line 5) it is deleted from the model (Line 7).

Here we have described a straightforward implementation
of the basic architectural evolution operations for Acme.
However, there is room for improvement. For example, where
clauses can be defined for preventing the addition of a
component with an empty name, or the removal of a port that is
still attached to some role.

V. CONCLUSION AND FUTURE WORK

The conceptual framework defined in this paper is generic
enough to allow its application on different architectural

451

modeling languages of different architectural views (e.g.,
module, components and connectors, and allocation views
[10]). By classifying the constructs of the modeling language
according to our conceptual model, and then defining its basic
operations, one can systematically develop transformation rules
for that particular language. These rules can then be used to
automate model transformation, in the context of model-driven
engineering. Moreover, by defining transformation rules based
on a common set of basic operations, the integration of
different architecture evolution approaches can be facilitated. It
is worth noting that our approach is not intended to replace
current approaches for architectural evolution, but instead to
empower them by facilitating the use of model transformations
on the diverse set of modeling languages in use.

One of the limitations of our approach is that it does not
consider architectural evolution as a whole, focusing solely on
the modification of models. In future works we intend to
explore the use of triggers to i nitiate the modification of the
architectural model, as well as the selection of which
modification to perform [20]. Additionally, we intend to
automate the creation of the basic transformation rules for a
given language, based on its m etamodel. Moreover, we will
investigate how this approach can be used in connection with
modeling languages other than architectural ones.

REFERENCES

[1] Allen, R., Douence, R., Garlan, D. Specifying and Analyzing Dynamic
Software Architectures. Proc. of 1998 Conference on Fundamental
Approaches to Software Engineering, Lisbon, Portugal, March, 1998.

[2] Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J. Documenting Software Architecture: Documenting
Behavior. CMU/SEI-2002-TN-001, January 2002.

[3] Balogh, A., Varró, D. Advanced Model Transformation Language
Constructs in the VIATRA2 Framework. ACM SAC, pp. 1280-1287,
France, 2006.

[4] Baresi, L., Heckel, R., Thöne, S., Varró, D. Modeling and validation of
service-oriented architectures: application vs. style. SIGSOFT Softw.
Eng. Notes 28, 5 , pp. 68-77, September 2003.

[5] Bradbury, Jeremy S.; Cordy, James R.; Dingel, Juergen and
Wermelinger, Michel (2004). A survey of self-management in dynamic
software architecture specifications. In: Proceedings of the 1st ACM
SIGSOFT Workshop on Self-managed Systems, November 2004.

[6] Chapin, N., Hale, J., Khan, K., Ramil, J., Than, W.. Types of software
evolution and software maintenance. Journal of software maintenance
and evolution, pp. 3–30, 2001.

[7] Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.) Software
Evolution and Feedback: Theory and Practice, Wiley, Chichester (2006).

[8] Franch, X., Grünbacher, P., Oriol, M., Burgstaller, B., Dhungana, D.,
López, L., Marco, J., Pimentel, J. Goal-driven Adaptation of Service-
Based Systems from Runtime Monitoring Data. In: Proceedings of the
5th International IEEE Workshop on R equirements Engineering for
Services (REFS), Munich, Germany, July 2011.

[9] Garlan D, Monroe R, Wile D (1997) Acme: An Architecture Description
Interchange Language. In: Proceedings of the 1997 co nference of the
Centre for Advanced Studies on Collaborative research (CASCON 97).
Toronto, Canada.

[10] Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P.,
Merson, P. Documenting software architectures: views and beyond, 2nd
ed. Addison-Wesley Professional, 2010.

[11] Garlan, D., Perry, D. Introduction to the Special Issue on Software
Architecture. In: Journal IEEE Trans. on Soft. Eng. Vol. 21, Issue 4
(1995)

[12] Grau, G., Franch, X. On the Adequacy of i* Models for Representing
and Analyzing Software Architectures. Proceedings of the ER
Workshops 2007, LNCS 4802, pp. 296-305 (2007).

[13] Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H. A Systematic
Approach to Metamodeling Environments and Model Transformation
Systems in VMTS. GraBaTs’04.

[14] Magee, J., Kramer, J. Dynamic Structure in Software Architectures.
Proceeding SIGSOFT '96 Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering 1996.

[15] Medvidovic, N. A Classification and Comparison Framework for
Software Architecture Description Languages. Technical Report UCI-
ICS-97-02, University of California, February 1996.

[16] O'Reilly, C., Morrow, P., Bustard, D. Lightweight prevention of
architectural erosion. Proceedings of the Sixth International Workshop
on Principles of Software Evolution (IWPSW), pp. 59-64, September
2003.

[17] Oreizy, P., Medvidovic, N., Taylor, R. Architecture-Based Runtime
Software Evolution. Proceedings of the International Conference on
Software Engineering 1998 (ICSE'98). Kyoto, Japan, April 1998.

[18] Pimentel, J., Franch, X., & Castro, J. (2011). Measuring architectural
adaptability in i* models. In Proceedings of the XIV Ibero-American
Conference on Software Engineering, pp. 115-128, 2011.

[19] Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.
Deriving software architectural models from requirements models for
adaptive systems: the STREAM-A approach. In: Requirements
Engineering Journal, published online, 2011.

[20] Pimentel, J.; Santos, E.; Castro, J. Conditions for ignoring failures based
on a requirements model. In: Proceedings of the 22nd International
Conference on Software Engineering and Knowledge Engineering
(SEKE). p. 48-53, 2010.

Figure 2. QVT code for the Add Component operation

Figure 3. QVT code excerpt for the Remove Port operation

452

Using FCA-based Change Impact Analysis for Regression Testing∗

Xiaobing Sun, Bixin Li, Chuanqi Tao, Qiandong Zhang
School of Computer Science and Engineering, Southeast University, Nanjing, China

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
{sundomore, bx.li, taocq, zhangqd}@seu.edu.cn

Abstract

Software regression testing is one of the most practical
means to ensure software quality during software evolution.
Test case selection and prioritization are two effective tech-
niques to maximize the value of the increasing test cases,
and usually studied independently. In this paper, we inte-
grate these two techniques together, and finish them based
on the impact results predicted by the change impact anal-
ysis (CIA) technique. First, we use formal concept analysis
(FCA) to predict a ranked list of impacted methods from a
set of changed classes. Then, test cases which cover these
impacted methods are included in the new test suite. As
each method predicted by the CIA is assigned with an im-
pact factor (IF) value corresponding to the probability of
this method to be impacted, test cases are ordered according
to the IF values of the individual methods. Initial empir-
ical study demonstrates the effectiveness of our regression
testing approach.

1 Introduction

Software change is a fundamental ingredient of software

maintenance. Changes made to software will inevitably

have some unpredicted and undesirable effects on other

parts of the software, thus may induce some faults to the

modified software. And new faults induced during soft-

ware maintenance can be identified and isolated by software

change impact analysis and regression testing [2, 12, 15].

Change impact analysis (CIA) is an approach to identify

potential ripple effects caused by changes made to soft-

ware [2, 10]. And whether these potential effects inject

∗This work is supported partially by National Natural Science Founda-

tion of China under Grant No. 60973149, partially by the Open Funds of

State Key Laboratory of Computer Science of Chinese Academy of Sci-

ences under Grant No. SYSKF1110, partially by Doctoral Fund of Min-

istry of Education of China under Grant No. 20100092110022, partially

by the Scientific Research Foundation of Graduate School of Southeast

University under Grant No. YBJJ1102.

faults into the software is often checked by software regres-

sion testing. Regression testing is one of the most practical

means of ensuring software quality during software evolu-

tion. It is used to provide confidence that: 1) the modi-

fied parts of the program can run consistently with the new

system, and 2) the unmodified parts are not affected by the

modifications and can behave correctly as before. To date,

a number of different approaches have been studied to re-

gression testing [15], such as test case selection and test

case prioritization. On the one hand, test case selection is

used to reduce testing cost by selecting a subset of test cases

from original test suite that are necessary to test the modi-

fied software [8, 12]. On the other hand, test case prioriti-

zation is used to identify an ‘ideal’ ordering of test cases to

yield benefits such as earlier feedback to testers and earlier

fault detection [11].

While the research community has made considerable

progress in regression testing areas, one important prob-

lem was overlooked, that is, most current regression testing

techniques are proposed standalone, for example, some fo-

cused on test case selection [13, 8] while some on test case

prioritization [4, 5], and they are usually studied indepen-

dently. But in practice, test case selection and prioritization

are performed together to generate a ranked list of test cases

to be directly used. This paper is proposed to address this

lack by combining test case selection and prioritization to-

gether. In our study, we use CIA to support regression test-

ing activity. The CIA computes a ranked list of impacted

methods from a set of changed classes based on the formal

concept analysis (FCA) technique. And each method in the

impact results is assigned with an impact factor (IF) value,

which corresponds to the probability of this method to be

impacted. On the one hand, test cases are selected based on

the coverage information of these impacted methods; on the

other hand, test cases are ordered based on the probability

of the method to be impacted. And these two procedures are

integrated together and performed through only a round.

This paper is organized as follows: in the next section,

we introduce the FCA-based CIA technique. Section 3

presents our regression testing approach. In Section 4, em-

453

pirical evaluation is performed to show the effectiveness of

our regression testing approach. In Section 5, some related

work of regression testing techniques is introduced. Finally,

we conclude and show some future work in Section 6.

2 FCA-based Change Impact Analysis

In this paper, our regression testing is performed based

on the CIA technique. Here we use FCA-based CIA ap-

proach to predict the ripple effects induced by the proposed

changed classes, which we give a simple introduction here.

More details can be referred to our previous work [14].

2.1 Basics for Formal Concept Analysis

Formal Concept Analysis (FCA) is a field of applying

mathematics based on the schematization of concept and

conceptual hierarchy [7]. The input of the FCA process is

the formal context, defined as:

Definition 1 (Formal Context) A formal context is de-
fined as a triple K = (O,A,R), where R is a binary re-
lation between a set of formal objects O and a set of formal
attributes A. Thus R ⊆ O ×A.

With the formal context, concept lattice is generated

based on the lattice constructing algorithm [7]. The con-

cept lattice is composed of a set of formal concepts, defined

as follows:

Definition 2 (Formal Concept) A formal concept is a
maximal collection of formal objects sharing common for-
mal attributes. It is defined as a pair (O,A) with O ⊆ O,
A ⊆ A, O = τ(A) and A = σ(O), where τ(A) = {o ∈
O|∀a ∈ A : (o, a) ∈ R} ∧ σ(O) = {a ∈ A|∀o ∈ O :
(o, a) ∈ R}.

τ(A) is said to be the extent of the concept and σ(O)
is said to be its intent. On the generated concept lattice,

there are relations between these formal concepts, which

forms a partial order on the set of all concepts. We use

the following definition subconcept to denote the relations

between different formal concepts [7]:

Definition 3 Given two concepts Co1(O1, A1) and Co2
(O2, A2) of a formal context, Co1 is called the subconcept
of Co2, provided that O1 ⊆ O2 (or A1 ⊇ A2). we usually
mark such relation as: Co1 � Co2 ⇐⇒ O1 ⊆ O2 ⇐⇒
A1 ⊇ A2

The set of all concepts of a formal context forms a partial

order, and composes a concept lattice, defined as follows.

Table 1. Formal context
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

C1 × × × × ×
C2 × × × × × ×
C3 × × × ×
C4 × ×
C5 × × × ×
C6 × ×

Figure 1. Graphical representation of the con-
cept lattice

Definition 4 (Concept Lattice) The concept lattice L(Co)
is a complete lattice. L(Co) = {(O,A) ∈ 2O ×
2A|O = τ(A) ∧ A = σ(O)}, where infimum and supre-
mum of two concepts (O1, A1) and (O2, A2) are defined
as: (O1, A1) ∧ (O2, A2) = (O1 ∩ O2, σ(O1 ∩ O2)), and
(O1, A1)∨(O2, A2) = (τ(A1∩A2), A1∩A2), respectively.

A formal context can be easily represented by a relation

table, as shown in Table 1. In this table, rows represent

formal objects and columns represent formal attributes. A

cross (×) in row C and column M means that the formal

object C has relationship with formal attribute M . By ap-

plying Galicia tool1 to the formal context in Table 1, the

concept lattice composed of formal concepts are generated.

Figure 1 shows the corresponding graphical representation

of the concept lattice. Each lattice node on the concept lat-

tice indicates a formal concept, and is marked with its intent

(I Set) and extent (E Set). The edges between them repre-

sent the containment relationship between concept intents,

which forms a partial (hierarchical) order on the sets of all

concepts.

2.2 Change Impact Analysis

CIA is an important predictive measurement of the ripple

effects induced by the proposed changes. Here, the input of

1http://www.iro.umontreal.ca/ galicia/

454

Table 2. Impact set of C1, C2, C5 changes
Node IS IF
co5 M2,M3,M5 2.3

co1 M1 2.2

co2 M6 2.2

co7 M7,M9 1.5

co8 M8 1.5

co4 M10 1.5

co3 M4 1.3

the CIA is composed of a set of changed classes, and its

output is a ranked list of potentially impacted methods.

The way to use FCA to support CIA is as follows. First,

we provide a formal context: formal objects are classes, and

formal attributes are methods; the relation between them is

defined as: class c is related to m, if and only if, at least one

of the following conditions is satisfied: 1) m belongs to c,
2) m belongs to any superclass of c, 3) c depends on another

method k calling m, and 4) c depends on another method k
called by m.

With the formal context, concept lattice is generated [7].

As the containment relationship between concept intents

forms a partial order on the sets of all formal concepts,

the generated lattice structures methods into a hierarchical

order. With this observation, impact results are computed

based on two assumptions: (1) upward reachable method-

s are shared by an increasing number of unchanged class-

es, they are expected to be less and less affected by these

changes; and (2) if upward methods are reachable from the

nodes labeled by an increasing number of changed class-

es, these methods are more probably affected by these join-

t classes changes. According to the two assumptions, we

propose an Impact Factor (IFj) metric of the lattice node j,

which is defined as:

IFj = n+
1∑n

i=1 min(dist(j, i)) + 1

In this formula, n is the number of changed classes up-

ward reachable to lattice node j; min(dist(j, i)) is the least

number of edges which need to be traversed straightforward

upward from lattice node i to node j. Although the IF met-

ric is defined on the lattice node, the lattice node is labeled

by method(s). Thus the methods are also labeled by these

IF values.

Through the CIA process, a ranked list of potentially im-

pacted methods is produced, and these methods are ordered

by the IF values showing their probability to be affected.

We give a simple example to illustrate the CIA. Assuming

there is a simple program and the dependencies between

classes and methods have been analyzed. With the class-

es and methods, and their dependencies extracted from the

Figure 2. Overview of the regression testing
approach

program, a formal context is obtained as shown in Table 1.

We apply FCA technique to this formal context and gener-

ate the concept lattice as shown in Figure 1. In addition, we

assume {C1, C2, C5} are the changed classes. CIA is then

performed on this concept lattice to estimate their impact

results. Thus, the IF values of upward reachable concept-

s labeling the potentially impacted methods are computed

based on the above IF formula. Column 1 of Table 2 lists

some lattice nodes reachable from the concepts labeled by

the changed classes, Column 2 shows the impact set (IS),

and Column 3 their corresponding IF values.

3 Regression Testing

In this paper, we propose an approach to perform two

important activities in regression testing: test case selection

and prioritization. Moreover, these two activities are inte-

grated together and performed through only a round. The

overview of our approach is shown in Figure 2.

From Figure 2, we see that regression testing is com-

posed of two parts: change impact analysis (CIA) and test

coverage analysis (TCA). From the CIA part, we obtain the

potential ripple effects induced by the changed classes. We

have presented our FCA-based change impact analysis tech-

nique in the above section. From the TCA part, we obtain

the test coverage information of the test cases. Then through

the results from these two activities, we compute a new or-

dering test suite for the modified program.

Different from previous regression testing techniques

which are studied independently, we combine them togeth-

er. For test case selection, our approach is performed by

selecting the set of test cases which cover the methods po-

tentially impacted by these changed classes; for test suite

prioritization, test cases are ordered according to the prob-

ability of the method to be impacted, i.e., the methods with

higher IF values may be more probably to be impacted by

these changes, thus they are more preferential to be tested

to check their correctness.

Algorithm 1 shows the algorithm of our regression test-

ing approach. For the change set C, the algorithm first cal-

culates a ranked list of impacted methods IS (Line 1). Then

for each method m in the impact set (Loop 2-14), the al-

455

Algorithm 1 RegressionTesting
Input:

P : original program
T : test suite for P
E: a set of executions
C: a set of changed classes

Declare:
m: a method
t: a test case
IS: a ranked list of potentially impacted methods
EXE: a set of methods executed by a test case

Use:
CIA(C): returns a ranked list of methods potentially impacted by the set of
changed classes C.
TCA(t): returns a set of methods covered by test case t.

Output:
A set of ordering test cases T

′

1: IS = CIA(C)
2: for each m in IS do
3: for each test case t in T do
4: if TCA(t) ∩ m == ∅ then
5: continue
6: end if
7: T

′
= T

′ ∪ t
8: T = T − t
9: EXE = TCA(t) ∩ IS

10: if EXE �= ∅ then
11: IS = IS − EXE
12: end if
13: end for
14: end for

15: return T
′

gorithm checks whether the test case t traverses m, if not,

continues to the next test case (Lines 4-6). If t traverses

m, this test case is added to the new test suite T
′

(Line 7).

Then, the methods in IS traversed by this test case are re-

moved (Lines 9-12) because they have been covered by this

test case. When all the methods in IS are processed, the w-

hole regression testing process is finished. And the new test

suite T
′

will traverse all the methods in the impact set, and

the test cases in T
′

are ordered according to the possibility

of the methods to be impacted. Thus, our approach directly

generates a new ordering test suite. In Algorithm 1, there

are two loops to scan the set of test cases and the impact set.

So the time to our approach is O(|T | × |M |), where |T | is

the size of the test suite, and |M | is the size of the impact

set. However, in most cases, the time of our approach is

less because the two loops may end at an earlier time when

some test cases can cover all the methods in the impact set.

We also give an example to exemplify our regression

testing approach. The test coverage information of the

above example program is assumed as Table 3. There are

six test cases to coverage these 10 methods. The
√

in row

T and column M means that the test case can cover the

method. Then, we use the results in Table 2 and Table 3

to generate an ordered test suite. According to Algorith-

m 1, we should first select the test case which covers the

method with highest IF value in the new test suite. As

M2,M3,M5 have the highest IF value and the test case

T1 covers these methods, we should first select T1 into the

new test suite. Then we see which methods in the impact set

Table 3. Test coverage information
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

T1
√ √ √ √ √

T2
√ √ √ √ √ √

T3
√ √ √

T4
√ √

T5
√ √ √ √

T6
√ √

can be covered by this test case. As a result, these methods

{M2,M3,M5,M6,M10} are covered by T1, and should

be removed from the impact set. At this time, we check the

method with the second highest IF value, we identify the

M1 method, and find T2 can cover this method. Thus T2
is added as the second test case in the new test suite. Sim-

ilarly, we again remove all the methods in the impact set

covered by this test case. After this, we select T3 into the

new test suite, and find that there is no method in the impact

set. The whole regression testing process is finished. Ul-

timately, we finish the process in three loops and three test

cases are generated in the new test suite, in which T1 has

the highest prioritization to be run, then T2, and followed

by T3.

4 Initial Empirical Study

4.1 Setup

We use the Java Hierarchical Slicing and Applications

(JHSA) program as our research subject. JHSA is a tool

developed in our group, and used to construct hierarchical

dependence graphs from package level to statement level

[9]. We extracted six versions (V0 to V5) of JHSA from its

CV S repository, along with a test suite used to test the soft-

ware. There are about 13 classes, 121 methods for JHSA.

The test suite contains 72 test cases, which provide 80%
method coverage of the program. In addition, to perform

our study, we require fault data, and we utilized mutation

faults [3] to study the test case prioritization. The average

number of mutation faults of the program is 30.

In our study we use three measures to evaluate the pro-

posed regression testing approach. They are the percentage

of faults that the new test suite can identify (PF), the per-

centage of test cases selected from original test suite (PTS)

and the weighted average of the percentage of faults detect-

ed (APFD) during the execution of the test suite, which is

defined as follows:

APFD = 1− TF1+TF2+...+TFm

nm + 1
2n

In this Formula, n is the number of test cases, m is the

number of faults revealed by T , and TFi is the first test

case which reveals fault Fi. The APFD is a commonly

used metric to evaluate the regression test suite prioritiza-

tion [4]. And higher APFD values imply better fault de-

tection rates.

456

Figure 3. The PF and PTS results for the sub-
ject program

4.2 Results

First, we see the effectiveness of test case selection. Fig-

ure 3 shows the results of the PF and PTS values for the

subject program during its evolution. From the results of

PF , we see that our approach could select the test cases

covering most of the faults in the program. The percentage

of the identified faults can reach 80% above in most cases.

In addition, Figure 3 also shows the percentage of test cases

that were selected for each version of the subject. It illus-

trates that the percentage of selected test cases varies widely

from about 30% to 80%, which is similar to the results from

other studies evaluating test case selection on procedural

programs [13]. The results do not show any obvious dif-

ference that is peculiar to object-oriented paradigm. Hence,

from the results, we see that our approach can select a small

set of test cases which can identify most of the faults.

Second, we see the effectiveness of the test case prioriti-

zation. To evaluate this, we manually interrupted the new-

ly test suite T
′
, and randomly gave another ordering test

suite T
′′

based on T
′
. Then we computed the APFD val-

ue for T
′′

(APFD R). Figure 4 shows the APFD and

APFD R values using our prioritization approach and the

random prioritization approach, respectively. The data il-

lustrates that our regression testing prioritization approach

has higher APFD values than that of random prioritization

approach in all cases. Moreover, in most cases, the APFD
values of our approach are 10% (or above) higher than that

of random prioritization approach. This shows that our pri-

oritization approach is more effective compared to the ran-

dom prioritization for its better ability of early fault detec-

tion.

4.3 Threats to Validity

In this section, we discuss some threats to the validity of

our empirical study. The main external threat is the repre-

Figure 4. The APFD and APFD R results for
the subject program

sentativeness of our subjects and mutation faults. The sub-

ject program is of small size. Thus we cannot guarantee

that the results can be generalized to other more complex

or arbitrary programs. However, it is a real-world program

widely used in our lab [14]. A second concern is the threat

to construct validity. The goal of test case prioritization is

to maximize some predefined criteria by executing the test

cases in a certain order. Here, our focus is to maximize the

rate of fault detection and we used APFD to measure it.

However, APFD is not the only possible measure for fault

detection rate. Some other measures may obtain different

results. Finally, we consider the threat to internal validi-

ty. In our experiment, we utilized mutation faults to study

the test case prioritization. Some other methods to generate

the faults may be better to evaluate our regression testing

approach. However, it is widely used by the academic com-

munity in evaluating test case prioritization [4, 5].

5 Related Work

A number of approaches have been studied to facilitate

the regression testing process. Test case selection and prior-

itization are two effective techniques to conduct regression

testing.

Test case selection attempts to reduce the size of orig-

inal test suite, and focuses on identification of the modi-

fied parts of the program. To date, many regression test

selection techniques have been proposed. Rothermel et al.

proposed a safe and efficient regression test selection tech-

nique based on comparison of differences on the control

flow graph [13]. In addition, regression testing based on

slicing techniques has attracted much attention for a long

time. And Binkley summarized the application of slicing

techniques to support regression testing [1]. Orso et al. al-

so proposed a similar regression testing approach to ours

in this paper, which used the impact results from the CIA

process to support regression testing [12]. They leveraged

457

field data to support various testing activities, i.e., test case

selection, augmentation, and prioritization.

Test case prioritization seeks to find the optimal permu-

tation of the sequence of test cases, and hopes for early max-

imization of some desirable properties, such as the rate of

fault detection [15]. Some work has been proposed to ad-

dress this issue [4, 5]. Elbaum et al. attempted to improve

the rate of fault detection for their prioritization technique

based on statement-level and function-level coverage crite-

ria [4]. In addition, Elbaum et al. proposed a metric, called

average of the percentage of faults detected, to measure the

effectiveness of these prioritization techniques. This met-

ric is also used in this paper to evaluate the regression test-

ing approach in the empirical study. However, this metric

generated better results on two assumptions: all faults are

of equal severity and all test cases have equal costs. To

deal with the problem, they proposed a cost-cognizant met-

ric, which took into account both the percentage of total

test case cost incurred and percentage of total fault severity

detected [5]. Elbaum et al. also conducted some empiri-

cal studies to compare some regression testing prioritization

techniques [6].

Our regression testing approach in this paper is different

from these introduced above. We integrate regression test-

ing selection and prioritization together based on a ranked

list of impact results from the FCA-based CIA process. Our

goal is to first find those methods which are more probably

impacted, and these methods may need suitable operation.

6 Conclusion and Future Work

This paper proposed a novel approach to regression test-

ing, which integrated test case selection and prioritization

together. Test case selection and prioritization were per-

formed based on the impact results from the FCA-based

CIA technique. Initial empirical study on a real-world pro-

gram showed that: 1) the number of selected test cases

ranges from about 30% to 80% of the original test suite,

which can identify more than 80% faults, and 2) the ability

of early fault detection of our approach is better than that of

the random prioritization approach.

In the future, we will focus on a more complete empir-

ical evaluation of our regression testing approach on open

and large-scale programs. In addition, we will attempt to

use different prioritization strategies based on the impact

results to order the test cases, i.e., to prioritize the test cases

according to the sum of impact factor values of the impact-

ed methods covered by the test cases. Finally, we hope to

compare our approach with current test case prioritization

techniques under the same experimental benchmark.

References

[1] D. Binkley. The application of program slicing to regres-

sion testing. Information and Software Technology, 40(11-

12):583–594, 1998.
[2] S. Bohner and R. Arnold. Software Change Impact Analy-

sis. IEEE Computer Society Press, Los Alamitos, CA,USA,

1996.
[3] H. Do and G. Rothermel. On the use of mutation faults in

empirical assessments of test case prioritization techniques.

IEEE Transactions on Software Engineering, 32(9):733–

752, 2006.
[4] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Priori-

tizing test cases for regression testing. In Proceedings of the
International Symposium on Software Testing and Analysis,

pages 102–112, 2000.
[5] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Incor-

porating varying test costs and fault severities into test case

prioritization. In Proceedings of the International Confer-
ence on Software Engineering, pages 329–338, 2001.

[6] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test

case prioritization: A family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159C182,

2002.
[7] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-

matical Foundations. Springer-Verlag, Berlin, 1986.
[8] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and A. Orso.

Regression test selection for java software. In Proceed-
ings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 312–

326, 2001.
[9] B. Li, X. Fan, J. Pang, and J. Zhao. A model for slicing

java programs hierarchically. Journal of Computer Science
& Technology, 19(6):848 –858, 2004.

[10] B. Li, X. Sun, H. Leung, and S. Zhang. A survey

of code-based change impact analysis techniques. Jour-
nal of Software Testing, Verification and Reliability, DOI:
10.1002/stvr.1475, 2012.

[11] Z. Li, M. Harman, and R. M. Hierons. Search algorithms

for regression test case prioritization. IEEE Transactions on
Software Engineering, 33(4):225–237, 2007.

[12] A. Orso and M. J. Harrold. Leveraging field data for impact

analysis and regression testing. In Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing, pages 128–137, 2003.

[13] G. Rothermel and M. J. Harrold. Empirical studies of a safe

regression test selection technique. IEEE Transactions on
Software Engineering, 24(6):401–419, 1998.

[14] X. Sun, B. Li, S. Zhang, C. Tao, X. Chen, and W. Wen.

Using lattice of class and method dependence for change

impact analysis of object oriented programs. In Proceedings
of the Symposium on Applied Computing, pages 1444–1449,

2011.
[15] S. Yoo and M. Harman. Regression testing minimization,

selection and prioritization: a survey. Software Testing, Ver-
ification and Reliability.

458

Forecasting Fault Events in Power Distribution Grids
Using Machine Learning

Aldo Dagnino and Karen Smiley
ABB Corporate Research

Industrial Software Systems
Raleigh, NC, USA

aldo.dagnino@us.abb.com
karen.smiley@us.abb.com

Lakshmi Ramachandran
North Carolina State University

Department of Computer Science
Raleigh, NC. USA
lramach@ncsu.edu

Abstract— Fault events in distribution grids and substations can
cause costly power outages. Forecasting these fault events can
reduce response time and enhance preparedness to repair the
outage, which result in significant cost savings. Identification of
fault events in distribution grids has been mostly a reactive and
manual process with a relatively low level of automation. For this
reason, any tools that can automate the diagnostics or prediction
of fault events in the grid are welcome in the industry. The
objective of the investigation presented in this paper is to develop
machine-learning models capable of predicting fault events and
their location in power distribution grids. Data related to
historical fault events, grid electrical values, types of
infrastructure, and historical weather were combined to create
the forecasting models. A variety of machine learning algorithms
such as Neural Networks, Support Vector Machines, Recursive
Partitioning, and Naïve Bayes were utilized to create the machine
learning models. Neural Network models performed best at
forecasting fault events given certain weather conditions, and
identifying the specific grid zone where a fault occurred. The
Recursive Partitioning models were better at forecasting the
substation and feeder where a fault occurred. An implementation
at a US utility was prototyped to demonstrate the forecasting
capabilities of these models.

Keywords - machine learning, data mining, fault events,
forecasting, power distribution grids, substations, weather.

I. INTRODUCTION

The electrical power utilized in cities, factories, office
buildings, industries, and housing is p roduced in power
generating stations or power plants. Such generating stations
are conversion facilities where heat energy from fuel (coal, oil,
gas, or uranium) and sun, as well as mechanical energy from
wind, or falling water is converted into electricity. The
transmission system transports electricity in large quantities
from generating stations to the consumption areas. Electric
power delivered by transmission circuits and power lines must
be “stepped-down” in facilities called substations, to voltages
more suitable for use in industries, buildings, and residential
areas. The segment of the electric power system that takes
power from a bulk-power substation to consumers, commonly
about 35% of the total plant investment, is called the
distribution system, and inc ludes the power distribution grid,
electrical equipment, and the substations. Based on ABB’s
experience, it is estimated that over half of the power

transmission and distribution infrastructure in the US and other
parts of the western world is over 50 years old. A key issue
currently facing Utilities is to efficiently distribute their limited
maintenance and r epair funding. Studies in th e UK show that
more than 70% of unplanned customer minutes lost of
electrical power are due to problems in the distribution grid
caused by deterioration or weather [8]. According to a survey
conducted by the Lawrence Berkeley National Laboratory,
power outages or interruptions cost the US around $80 billion
annually [7]. Prediction of fault events in distribution grids is
an important capability that helps utilities to reduce outage
costs. For this reason, developing models that can forecast
these fault events and their locations is h ighly desirable. In
many utilities, distribution grid operators rely only on manual
methods and reactive approaches to diagnose outages, and very
limited fault forecasting methods. This makes the dispatching
of repair crews a slow process that can be highly improved by
utilizing more automated diagnostic and fault forecasting
capabilities.

II. SOURCES OF FAULTS IN POWER DISTRIBUTION GRIDS

There are many factors identified in the literature that can
cause fault events in a distribution grid [2] [3] [4] [6] [9] [11]
[12] [14]. Fig 1 presents a summary of these factors.

Figure 1. Factors that can contribute to faults in power distribution grids

459

The investigation described in this paper focuses on
forecasting fault events in a distribution grid utilizing historical
data on fault events that occurred in the grid and their
associated electrical values, data on weather conditions at the
time of the fault, and the type of grid infrastructure, as shown
in the shaded areas in Fig. 1. Although large storms can cause
considerable damage to distribution grids, “relatively normal”
weather conditions can also have a significant impact on faults
in the distribution grid, as shown by the results of this project.
Lu et al. [11] discuss the influence that changing climatic
conditions and weather have on the wear of electric equipment.
Their analyses indicate that during the hot summer months,
when the load on a feeders increase to 60-70%, there is an
over-charge in the lines and assets, which can result in
increased number of faults and reduced voltage of the
distributed power.

III. DATA COLLECTION AND PRE-PROCESSING

The results described in this investigation are associated
with the study of a utility in the US whose identity and name
cannot be revealed due to confidentiality agreements. Hence,
the utility in this study will be referred to as Investor Owned
Utility (IOU).

Several types of historical datasets associated with the IOU
were collected and utilized during this investigation. The
historical dataset types utilized in this investigation include: (a)
fault data and electrical values from the IOU; (b) weather data;
and (c) infrastructure type of the IOU. Fig. 2 shows the dataset
types and their associated data attributes. The fault data from
the IOU was collected utilizing an automated system developed
at ABB. This system consists of in telligent electronic devices
(IED’s) with sensing and analytic capabilities located at the end
of the feeders of distribution lines. These IED’s monitor
electrical values from the distribution lines, and are able to
detect a fault event in the grid soon after it occurs. The
historical fault data utilized includes these electrical values,
which were corroborated with data entries documented by IOU
engineers after restoring service. The weather data was
collected from the US National Weather Service (NWS) and
from the WeatherBug (WBUG) weather services. The NWS
data was collected by their weather station every five minutes
in METAR format. The WeatherBug data were collected from
small weather stations located in various locations close to the
different substations of the IOU. Finally, the lightning data
were also obtained from the WeatherBug weather services
organization. Fig. 1 has three gray rectangles that show the
factors utilized to develop the machine learning algorithms
discussed in this paper. It is e xpected that future studies will
include data associated with the remaining factors in Fig. 1, to
increase the precision and accuracy of the forecasted results.

An essential aspect of any data mining activity is preparing
the data to be util ized for the analyses, or "data pre-
processing". A software utility was developed in this project to
automate the pre-processing of the raw datasets, to generate the
data warehouse used to extract data for analyses, and to
populate the forecasted results. The data pre-processing utility
contains rules that address: (a) weather-fault time zone
alignments; (b) weather-fault distances; (c) weather direction;
and (d) information in free-format comments in the fault

events, among others. Fig. 2 shows a d etailed list of the data
attributes utilized to run the prediction models presented in
Section V.

Figure 2. Primary data attributes utilized by machine learning algorithms

Data pre-processing involved cleaning of the fault, weather,
and lightning data; aligning all of the datasets based on both
time and geographic location; and fusing the various datasets
together. A total of 1725 fault events were obtained over a two-
year period, across eight feeders in four substations (two
feeders per substation). These feeders range from a few miles
apart to 10 miles apart. The main tasks in cleaning and pre-
processing fault data included generation of “mineable”
parameters from the fault comment texts, which described the
equipment involved in the fault and the type of problem (e.g.
animal contact). The fault infrastructure coding in the fault
events was supplemented with information on the power grid
topology, e.g. which feeders were almost entirely underground
(UG) or overhead (OH). Five-minute weather observation data
were obtained from NWS for one airport within 9-25 miles of
the four substations, with 93% completeness (about 100,000
observation records per year). Hourly weather observation data
were obtained from WeatherBug for four local “Earth
Networks” weather stations within varying distances from the
four substations at IOU (about 8000 observation records per
year for a single weather station).

Preprocessing the five-minute airport weather data required
several transformation steps: first, to translate the coded
“METAR” strings to their equivalent text and numeric
parameters; then, to parse and group the weather conditions
into mineable nominal parameters. The hourly WeatherBug
data contained somewhat different parameters than the five-
minute METAR data (e.g., it included sunlight level readings

460

which the airport data did not contain, and it did not have
weather condition comments), but the pre-processing was
otherwise similar. Lightning stroke data was also obtained for
2009 and 2010 from WeatherBug Total Lightning Network
(WTLN) within a five-mile radius of each substation. Since this
lightning stroke data were time-stamped to the micro-second,
preprocessing it for data mining purposes required various
aggregate counts and sums of strokes and amplitudes for both
intra-cloud and cloud-to-ground lightning. These aggregates
were calculated for both five-minute periods and one-hour
periods so the lightning counts could be joined to the weather
data.

To enable selection of the “closest” weather data for each
fault, preparing all o f this data for mining required aligning
both the timestamps and the geographic locations. Calculating
geographic location parameters was also dif ferent for each
dataset. For the airport weather data, the precise (lat, lon) of the
airport weather station was known. For the hourly weather
data, the (lat, lon) values were not available for the weather
stations, so the geographic center of each weather station’s zip
code was used. Since each microsecond-time-stamped
lightning stroke had its own unique (lat, lon), a reference (lat,
lon) was determined algorithmically to tag the five-minute and
one-hour aggregate records. The precise (lat, lon) had not been
recorded for many faults, so the (lat, lon) of the associated
substation was used for all fault records to ensure consistency.

Each fault and weather dataset had a different reference
time zone: some used local time and some used UTC, and
some that used local time reflected Daylight Savings while
others did not. Therefore, our preprocessing included
calculation of a new timestamp parameter for each dataset,
adjusted to the same reference time zone (local standard time
was chosen). The lightning aggregates were then joined to the
five-minute weather data and the hourly weather data.
Approximate ‘Great Circle’ distances were calculated between
each weather station and each substation, and for each lightning
aggregate, the distances to the four substations were calculated.
These distances were used to choose for each fault the “closest”
five-minute and “closest” one-hour weather record, using both
timestamp and distance.

IV. FORECASTING FAULT EVENTS

Several approaches to predicting fault events in a
distribution grid have been proposed. Butler [1] discusses a
failure detection system, which makes use of electrical property
parameters (such as feeder voltages, phase currents,
transformer windings' temperatures, and noise from the
transformer during its operation) to identify failures.
Gulachenski and Bsuner [6] use a Bayesian technique to
predict failures in transformers. Some of the features
considered in these studies include ambient temperature,
varying loads on the transformer, and age-to-failure data of
transformers. Quiroga et al. [12] search for fault patterns
assuming the existence of r elationships between events. Their
approach considers factors such as values of over-currents of
past fault data and the sequence, magnitude, and duration of the
voltage drops. Although the above mentioned approaches are
predictive in nature, they do not consider weather properties to
predict faults. The hypothesis associated with th e work

presented in this paper is that a fault event occurrence is likely
to follow a pattern with respect to weather conditions,
infrastructure type, and electrical values in the distribution grid
at the time of the fault (as seen in Fig. 1).

The objective of the investigation discussed in this paper is
to develop the basis of a Decision Support System (DSS)
using machine learning that forecasts fault events in the power
distribution grid based on expected weather conditions. The
strategy has two primary phases as shown in Figure 4. In the
first phase, the historical data collected (as explained in
Section 3) is utilized to d evelop and train machine learning
models that can foretell fault events using weather forecasts.
During the first phase, four algorithms are utilized to perform
five generic analyses (fault prediction, zone prediction,
substation prediction, infrastructure prediction, and feeder
prediction) and train the models. Four measurements are used
to compare machine learning algorithms: precision, recall,
accuracy, and f-measure. Precision determines the fraction of
records that actually turns out to be positive in the group the
classifier has declared as a positive class. Recall is computed as
the fraction of correct instances among all instances that
actually belong to the relevant subset. Accuracy is the degree
of closeness of the predicted outcomes to the actual ones. The
f-measure is the harmonic mean of precision and recall.

During the second phase, the best performing algorithm is
selected for each of the five analyses, to be uti lized as part of
the DSS for future predictions at the IOU.

V. CREATION OF MACHINE LEARNING MODELS

Supervised classification techniques are utilized to forecast
the occurrence of faults in the distribution power grid of the
IOU. Four supervised classification machine learning
algorithms are utilized to conduct the analyses: Neural
Networks (NN), kernel support vector machines (KSVM),
decision-tree based classification (recursive partitioning;
RPART), and Naïve Bayes (NB). A NN is an interconnected
group of artificial neurons that use a computational model that
allows them to adapt and change their structure based on
external or internal information that flows through the network.
A SVM is a linear binary classification algorithm [1]. Since the
datasets consist of more than two classes, we choose to use
kernel support vector machine (KSVM), which has been found
to work in the case of non-linear classifications. RPART is a
type of decision tree algorithm that helps identify interesting
patterns in data and represents them as a tree. RPART is chosen
because it provides a suitable tree-based representation of any
interesting patterns that ar e observed in the data sets, and also
because it works well with both nominal and continuous data.
NB is a probabilistic classification technique that works well
with relatively small datasets. These four algorithms are
selected because of their distinct properties and their ability to
work with different types and sizes of data, and the objective is
to select the algorithm that performs the best for the type of
prediction being conducted. Five analyses are conducted
utilizing these four algorithms: (a) fault event prediction; (b)
grid zone prediction; (c) substation prediction; (d) type of grid
infrastructure; (e) feeder number prediction. As mentioned
earlier, the primary data attributes shown in the shaded areas of

461

Fig. 1 an d the data elements in Fig. 2 ar e considered when
creating and training the predictive models.

A. Fault Prediction Models
Four models are created to identify weather patterns that are

most likely to result in a fault event using the NN, KSVM,
RPART, and NB algorithms. The models were constructed by
taking weather data points joined to fault events, as well as
random weather data s amples when no fault events were
recorded in the selected IOU substations. Since there were a
large number of weather points for the times at which a fault
did not occur, the random sample of records is taken making
sure that all months and days and hours in the day are covered
in the sample. The dataset contained a t otal of 3471 records
(1725 with faults and 1746 without faults) of which 2430 were
used for training each of the four models and 1041 for testing
the models (see Fig. 3). The selection of records without faults
was done in a random fashion. The best-performing model is
the one created with the feed-forward trained by a multi-layer
perceptron back-propagation NN algorithm (see shaded area in
Fig. 3). This trained model produced an accuracy of 75%, an
average precision of 77%, an average recall of 73%, and an f-
measure of 75%. Table I shows a sample of the results
generated in Rapid Miner for the NN model.

B. Zone Prediction Models
The four zone prediction models were trained by

considering historical fault data from the IOU grid and weather
data. Of the 1725 records with faults and weather data, 70%
were used for training and 30% for testing the trained models.
The output of these models predict in what zone (AMZ, UMZ,
PMZ) on the IOU grid the fault occurred. The best-performing
model was the one created training a Neural Network
algorithm, as shown in the shaded area in Fig. 3. The model
contains one hidden layer with 20 nodes. The model produced
an accuracy of 66%, an average precision of 69%, an average
recall of 68%, and an f-measure of 68%.

C. Substation Prediction Models
The four substation prediction models were trained by

considering historical fault data from the IOU grid and weather
data. Of the 1725 records with faults and weather data, 70%
were used for training and 30% for testing the trained models.
The output of these models predicts the IOU substation ID
where the fault occurred. The best performing model was the
one created with the RPART algorithm, as shown in the shaded
area in Fig. 3. This trained model produced an accuracy of
59%, an average precision of 66%, an average recall of 54%,
and an f-measure of 59%.

D. Infrastructure Prediction Models
The four infrastructure prediction models were trained by

considering historical fault data from the IOU grid and weather
data. Of the 1725 records with faults and weather data, 70%
were used for training and 30% for testing the trained models.
The output of these models predicts the type of infrastructure,
OH (overhead) or UG (underground) on the section of the IOU
grid where the fault occurred. The best-performing model was
the one created training a Neural Network algorithm, as shown
in the shaded area in Fig. 3. The model produced an accuracy

of 77%, an average precision of 62%, an average recall of 52%,
and an f-measure of 57%.

Figure 3. Machine Learning Models

TABLE I. NEURAL NETWORK OUTPUT OF FAULT PREDICTION MODEL

E. Feeder Prediction Models
The four feeder prediction models were trained by

considering historical fault data from the IOU grid and weather
data. Of the 1725 records with faults and weather data, 70%
were used for training and 30% for testing the trained models.
The output of these models predicts the IOU Feeder where the
fault occurred. The best-performing model was the one created
with the recursive partitioning algorithm, as shown in the
shaded area in Fig. 3. This trained model produced an accuracy
of 74%, an average precision of 79%, an average recall of 70%,
and an f -measure of 74%.

F. Comparative f-measures of Predictive Models
Fig. 4 displays a graph with the average f-measure values

from the four different models created for each analysis. The f-
measure is calculated as the harmonic mean of precision and
recall, using the formula given in Eq. 1. Precision pertains to
the fraction of classified set of data points that have been
correctly classified. Precision can be viewed also as the
probability that a (randomly selected, using the uniform
distribution) retrieved data point is relevant. Recall is the
fraction of the actual set of data points that have been correctly

Weather_Lightning_
Fault_No_Fault

Table

Fault
Prediction

Models

Faults
Predicted

Zone
Prediction

Models

Substation
Prediction

Models

Infrastructure
Prediction

Models

Weather, Lightning,
Infrastructure, date, time

table (only faults)

Historical
substation data
table joined to

the weather and
other properties

Feeder
Prediction

Models

Zone
Predicted

Substation
Predicted

Infra-
structure
Predicted

Feeder
Predicted

No Faults
Predicted

NN
KSVM

RPART
NB

Models

NN
KSVM

RPART
NB

Models

NN
KSVM

RPART
NB

Models

NN
KSVM
RPART

NB

Models

NN
KSVM

RPART
NB

Models

NN
KSVM
RPART

NB

Models

462

0
10
20
30
40
50
60
70
80

RPART f-measure

NB f-measure

KSVM f-measure

NN f-measure

classified. Recall is the probability that a (randomly selected)
relevant data point is retrieved in a search. Precision and recall
are calculated using the formulas in Eq. 2 and Eq. 3
respectively. measure = 2 () (1)

= # # (2)

= # # (3)

Figure 4. Performance Comparison of Machine Learning Models

Based on the highest f-measure of the trained models for
each analysis, the following selections were made to become
the basis for the IOU Decision Support System:

a) NN model was selected to predict faults based on
weather;

b) NN model was selected for prediction of the zone in
the grid where a fault may occur;

c) RPART model was selected to predict the substation
where a fault may occur;

d) NN model was selected to predict if the fault occurs in
the overhead or underground lines;

e) RPART model was selected to predict the feeder
where a fault may occur in the grid.

VI. FORECASTING FAULT EVENTS AT IOU
The analytic models developed in thi s project and

summarized in Section V formed the basis for the development
of a decision support system (DSS) at IOU to forecast fault
events in their power distribution grid. The analytic models
have been trained using historical data which is pertinent to the
IOU infrastructure and weather patterns in the r egions where
their distribution grid is located. Fig. 5 depicts the modular
view of the architecture of the fault event forecasting DSS, and
the output types that are expected from the trained machine
learning models. Given a certain weather forecast or forecasts,
the Forecast Prediction NN model identifies if o ne or more

fault events are expected. If a fault event is expected, then the
remaining trained algorithms will determine in what zone,
substation, and feeder the fault is expected to occur, and also if
the fault will occur in an overhead or underground line. The
modules presented in Fig. 5 form the basis for the DSS for
forecasting fault events in the power distribution grid.

Figure 5. Machine Learning Models as Basis for DSS

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a machine learning approach to
forecast fault events in a p ower distribution grid. The
investigation developed and summarized in this paper was
conducted as an applied research project utilizing real-life
historical data from a power distribution utility (referred as
IOU) in the US. The data from IOU dates as far back as 2008,
and includes historical data on fault event occurrences, the
electrical values from the grid at the time that the fault event
occurred, as well as data associated with the topology of the
grid (overhead and underground lines). Historical weather
records collected from the US National Weather Service
(NWS) and from the WeatherBug (WBUG) weather service
during the time period when the fault events occurred were also
included in the datasets employed to train the machine learning
models. An additional historical dataset on lightning, also
provided by WBUG, was included as part of the weather data.
The fields used to fuse fault event data and weather data were
the location and time stamp associated with the fault event. In
situations when readings of weather are taken over certain
intervals of time, a decision has to be made about what weather
reading will be associated with a specific time stamp. In our
study, the weather reading utilized was the one closest after the
fault time stamp reading, since that weather reading covered
the observation interval just ended which encompassed the
fault time. However, an alternate approach would be to use a
weather reading preceding the time stamp reading.

463

Once all datasets were collected, all these data points were
aligned using the closest reading to the location and time stamp
at which the fault event occurred in a power line, to create an
analysis dataset. Moreover, a random selection of weather data
points with no faults was also included in the datasets utilized
to train and test the machine learning models. A total of 1725
faults occurred during the study period. The dataset then
consisted of fault-related data and weather corresponding to the
1725 fault events as well as 1746 weather entries when no
faults occurred.

The machine learning algorithms evaluated for creating the
prediction models include neural networks, kernel support
vector machines, recursive partitioning, and Naïve Bayes. The
f-measure was utilized to evaluate the overall performance of
the machine learning algorithms; the average f-measure value
for the selected prediction models was 67%. The models that
performed the best included neural networks and recursive
partitioning, which were selected to become the basis for th e
fault prediction decision support system (DSS). If we were to
pick only one machine learning algorithm that performed the
best across all five prediction areas, it is the neural network
algorithm. The authors believe this is because the inputs to the
model are well understood (we understood which data
attributes were likely to be important for prediction, but did not
know how to combine them). Moreover, the predicted data
attributes were clearly defined. Another reason was that we had
enough examples to be able to train the neural network
algorithms.

 It is the authors’ expectation that including data such as
physical properties of the power grid (e.g. pole foundation
characteristics, materials of poles and cables, types of
connectors) to train the machine learning algorithms in the DSS
can result in better predictive models. Similarly, including
historical data on maintenance (such as rate o f cable breaks,
equipment replacement history, and specific maintenance
history) can also enhance the predictive capability of the
models. Also, including component degradation data such as
insulator integrity levels, cable zinc coating degradation,
overhead cable sagging, cable strand fatigue, age of assets, etc.,
can also positively contribute to better-performing predictive
algorithms.

Other areas of future work include extending this study in
multiple dimensions. First, adding more years of both fault and
weather data for these substations can improve the training of
the algorithms. Second, having more precise (lat, lon) locations
will enable a closer alignment of faults with weather data.
Third, including data from more substations and from utilities
which face substantially different climatic conditions can help
enhance the capabilities of the DSS algorithms.

It is the belief of the authors, based on the investigation
conducted and presented in this paper, that the use of machine
learning algorithms to help forecast fault events in the power

distribution grid has the po tential of reducing the ti me and
effort in restoring electrical power in the grid after a fault event
has occurred.

ACKNOWLEDGMENTS

The authors wish to recognize and thank the WeatherBug
organization for sharing a portion of the historical weather data
that was utilized for the analyses conducted in this work. The
positive results of th is project were enhanced by the data and
help provided by the WeatherBug weather services.

REFERENCES

[1] I. Berg, H. Lobl, S. Grossman, and F. Golletz, “Thermal behaviour of
network components depending on o utdoor weather conditions”,
CIRED, 20th International Conference on Electricity Distribution,
Prague, June 8-11, 2009, paper no. 0568.

[2] J. S. Bowers, A. Sundaram, C. L. Benner, and B. D. Russell, “Outage
avoidance through intelligent detection of incipient equipment failures
on distribution feeders", in IE EE Power and Energy Society General
Meeting - C onversion and Delivery of E lectrical Energy in the 21st
Century, 2008, pp. 1-7.

[3] K. Butler, “An expert system based framework for an incipient failure
detection and predictive maintenance system”, Int. Conf. ISAP 1996,
1996, pp. 321 – 326.

[4] M. Chow, L. S. Taylor, “Analysis and prevention of ani mal-caused
faults in power distribution systems”, IEEE Transactions on Power
Delivery, vol. 10, no. 2, 1995, pp. 995-1001.

[5] C. Cortes and V. Vapnik, “Support-vector networks”, Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[6] E.M. Gulachenski and P.M. Bsuner, “Transformer failure prediction
using bayesian analysis”, IEEE Trans. on Power Systems, vol. 5 no. 4,
1990, pp. 1355 - 1363.

[7] K. Hamachi LaCommare, and J. Eto, “Understanding the cost of power
interruptions to U.S. electricity consumers”, September 2004 report.

[8] J. Hamson, “Urban network development”, Power Engineering Journal,
pp. 224-232, 2011.

[9] P. Heine,J. Turunen, M. Lehtonen, A. Oikarinen, “Measured Faults
during Lightning Storms”, Proc. IEEE Power Tech 2005, Russia, 2005,
pp.1- 5.

[10] G. F. Linoff and M. J. A. Berry, Data Mining Techniques, third edition,
Wiley, 2011.

[11] N. Lu, T. Taylor, W. Jiang, C. Jin, J. Correia, L. Leung and P.C. Wong,
“Climate change impacts on residential and commercial loads in the
western U.S. Grid”, IEEE Transactions on Power Systems, vol. 25, No.
1, pp. 480 – 488, 2010.

[12] O. Quiroga, J. Meléndez, and S. Herraiz, “Fault-pattern discovery in
sequences of vo ltage sag events”, 14th International Conference on
Harmonics and Quality of Power (ICHQP), 2010, pp. 1 – 6.

[13] D. L. Rudolph, “A systematic approach to the replacement of an aging
distribution system”, IEEE Industry Applications Magazine, May-June
1988, pp. 32-36.

[14] R. H. Stillman, “Power line maintenance with minimal repair and
replacement”, Proceedings of the Annual IEEE Reliability and
Maintainability Symposium, 2033, pp. 541-545.

[15] S. Yokoyama and A. Askawa ‘’Experimental Study of Response of
Power Distribution Lines to Direct Lightning Hits’’, IEEE Transactions
on Power Delivery, 1989, Vol. 4, No. 4.

464

Testing Interoperability Security Policies ∗

Mazen EL Maarabani 1 César Andrés 2 Ana Cavalli 1

1 TELECOM & Management SudParis
CNRS UMR Samovar, Evry, France

e-mail: {mazen.el maarabani, Ana.Cavalli}@it-sudparis.eu
2 Dpto de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain
e-mail: c.andres@fdi.ucm.es

Abstract

Testing is one of the most widely used techniques to in-
crease the quality and reliability of complex software sys-
tems. In this paper we present the notion of testing interop-
erability security rules in virtual organizations. In partic-
ular, we incorporate mechanisms to test those interactions
among the organizations of the business communities when
the resources are shared. In order to apply our technique to
increase the confidence on the correctness of these systems,
we need to obtain a set of tests compiling the relevant prop-
erties of the interoperability security policies. We present a
model based testing approach for checking the correctness
of these policies in this environment.

In addition to provide the theoretical framework, we
show how this formalism, based on extended finite au-
tomata, has been used to test a hospital scenario. This ex-
ercise convinced us that a formal approach to test systems
can facilitate some of the development phases. In particu-
lar, how to choose which tests to apply, is simplified since
tests are automatically extracted from the specification.

Keywords: Integrity, Testing, Quality, Interoperability
Security Policy.

1. Introduction

Among those areas where the development of Computer
Science has changed our society during the last years, the
relevance of the collaboration among different information
systems is remarkable [2]. In particular, there is a strong
demand for access control of distributed shared resources
in Virtual Organizations, in short VO [8] where the classi-
cal notion of client server architecture is obsolete and use-

∗Research partially supported by the ISER project and the TESIS
project (TIN2009-14312-C02-01). The work was carried out while the
second author was visiting TELECOM SudParis.

less. In particular, a VO is composed of several organiza-
tions and their employees, where they share some services
or resources among them. Cross-organizational interoper-
ability is a major challenge to VO applications [6]. To be
able to specify not only the functional aspect of a VO but
also those aspects that guarantee the interoperability secu-
rity policies is an industrial necessity [12]. Currently, we
cannot dissociate the functional aspect of a system from its
security consideration. Let us remark that security policies
restraint the behavior of a system in order to guarantee a cer-
tain level of security. Moreover, it is possible that a security
policy adds new behaviors to the system such as obligation
actions in the case where these actions are not supported by
the system. Therefore, checking only the functional part of
a system is not sufficient to guarantee that a system behaves
as required and provides the intended services, this process
requires the application of sound techniques.

Formal methods refer to techniques based on mathemat-
ics for the specification, development, and verification of
software and hardware systems. The use of formal meth-
ods is especially important in reliable systems where, due to
safety and security reasons, it is important to ensure that er-
rors are not included during the development process. For-
mal methods are particularly effective when used early in
the development process, at the requirements and specifica-
tion levels, but can be used for a completely formal devel-
opment of a system. One of the advantages of using a for-
mal representation of systems is that it allows to rigorously
analyze their properties. In particular, it helps to establish
the correctness of the system with respect to the specifica-
tion or the fulfillment of a specific set of requirements, to
check the semantic equivalence of two systems, to analyze
the preference of a system to another one with respect to a
given criterion, to predict the possibility of incorrect behav-
iors, to establish the performance level of a system, etc. In
this line, formal testing techniques [10] can be used to test
the correctness of a system with respect to a specification.

465

It is worth to point out that in recent years, there has been
a new emphasis on applying formal testing to check local
security policies [3, 11].

It has been argued, usually with very good arguments,
both that formal methods are very appropriate to guide the
development of systems and that, in practice, they are use-
less since software development teams are usually not very
knowledgeable of formal methods in general, and have no
knowledge at all of what academia is currently developing
(see, for example, [9, 1] among many others). To solve
this, in this paper we present our formal testing method-
ology [11] in an informal way. We present the modeling of
the specification, the test architecture, and the test case gen-
eration using our experiences obtained from the application
of our methodology in real systems. Moreover, we present
a complete case study where the net of two hospitals orga-
nizations is tested.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the environment where we apply the test-
ing task. In Section 3 our methodology to test virtual or-
ganizations is introduced. Next, in Section 4 a complete
case study where our methodology is applied is presented.
Finally, in Section 5 we present the conclusions and some
lines of future work.

2. Testing Hypothesis in a Organization to Or-
ganization Environment

In this Section we present the Organization to Organiza-
tion, in short O2O, environment that we are going to test in
order to list a set of assumptions that we can assume during
the testing task. We introduce the basic principles of O2O
presenting our running example. This example is depicted
in Figure 1. There are represented two organizations A and
B that might share resources. Each organization has its local
set of security policies that defines the roles and the access
for its employees. This fact is graphically represented by
“orgA” and “orgB” respectively. When there is an exchange
of information between different organizations, the notion
of local policies must be extended.

According to O2O, each organization defines its own Vir-
tual Private Organization, in short VPO. A VPO is asso-
ciated with an interoperability security policy that admin-
istrate the access of external users to the organization re-
sources. In Figure 1 we represent these VPOs as “VPOA2B”
and “VPOB2A” respectively. In particular, VPOA2B is asso-
ciated with a security policy that manages how employees
from organization A, called O-grantee in O2O, may have an
access to the resources of organization B, called O-grantor
in O2O.

An important notion in O2O is the concept of authority
sphere. This sphere restricts the scope of every security rule
to the organization in which the rule is applied. Each orga-
nization has its own sphere, as we can observe in Figure 1.

Figure 1. Interaction in O2O.

Thus, in this paper we focus in testing each authority sphere.
In each authority sphere O2O uses context [7] to express dif-
ferent types of extra conditions or constraints that control
the activation of rules expressed in the access control pol-
icy. There are several types of context defined for O2O. For
instance the temporal context that depends on the time at
which the subject is requesting for an access to the system
or the special context that depends on the subject location.

Taking into account the information provided by the con-
texts of the security rules, we can assume the following
testing hypothesis. We are provided with a global clock to
check the temporal contexts. This fact allow us to describe
the scenarios for the tests using time restrictions in an easy
way. We can monitor into logs at most this information: the
software and the hardware architecture, the subject purpose,
the system database, and the historical interactions.

Each organization that belongs to a net O2O has associ-
ated a set of security policies for local employees and sev-
eral VPOs, one for each organization that belongs to the net.
Finally, the interoperability security policies of the VPOs are
considered provided by experts in a formal way. Moreover,
security policy properties such as completeness and consis-
tency are considered verified. In particular, we say that a
security policy is complete if it computes at least one deci-
sion for every incoming request, and it is consistent if for
any request the policy computes at most one decision.

3. Testing Approach

In this Section we present our testing approach. Our
main goal is to generate test cases to stimulate the O-grantee
to send specific requests to the O-grantor. These requests
target the security rules to be tested. We assume that we
have only access to the O-grantee system. For each re-
quest sent from the O-grantor one and only one security rule
can be involved1. After applying the test case, we check
that the set of received outputs conforms with the test case

1Let us remark that the interoperability security policy is consistent and
decision complete.

466

Figure 2. Overview of the Test Generation
Framework.

only if the conditions of context are satisfied. Following
we present an overview of our tests suite generation frame-
work for O2O. Graphically, it is represented in Figure 2.
The process of “Automatic test case generation” receives
two inputs parameters. On the one hand the specification
of the system by using a formal model based on Extended
Finite Automata. This model represent the joint behavior of
the two systems (the O-grantor and the O-grantee). In par-
ticular, the O-grantor model describes the functional aspect
of the system and the interoperability security policy [11].
On the other hand the test objectives specifying the security
properties to be tested. Regarding the hole approach, these
are the main concepts that allow us to describe it in detail:

1. The test architecture,

2. the systems behaviors using a formal specification lan-
guage,

3. the test objectives and the test case generation, and

4. the test execution and test verdict.

Let us focus in the first topic 1, by means the test archi-
tecture. Our system consists of two systems: a system that
represents the O-grantee and the other one that represents
the O-grantor. On the one hand, the access is done by the
users of the O-grantee so the unique control point should
be placed at the user side of the O-grantee that initializes
the interaction between the two systems. On the other hand
we have a set of compulsory minimum set of points of ob-
servation to attach to the architecture, but we are allowed
to define higher number of points of observations where the
exchanged data can be collected at runtime. Note that in our

approach it is necessary to attach the following points of ob-
servations: those points that allow us to collect the interac-
tions of the O-grantor with its information system which in
charge of managing the security policies contexts, and those
interactions between the O-grantor and the O-grantee when
the information of a context are managed by the O-grantee.

Now, let us focus on 2, that is the systems behaviors us-
ing a formal specification language process. The descrip-
tion shows the behavior of the communicating system by
taking in consideration the test architecture, the interoper-
ability security policy, and the different actions that inter-
vene in the correct behaviors of the service. In our approach
each system behavior is modeled with an Extended Finite
Automaton in IF language. The extended automaton that
covers the joint-behavior of the two systems is built from
the automata of these systems.

Next we present the following concept, by means 3: the
test objectives and test generation. This task is based on
selecting a set of tests according to a given criteria. These
criteria are defined with respect to the security requirements
to be tested. We formally define a test objective as a list
of ordered conditions. This means that the conditions have
to be satisfied in the order that is given by the test objec-
tive. The test case generation is guided by the set of these
test objectives. The inputs of the generated test case stim-
ulate the system O-grantee that sends specific requests to
the system O-grantor. Whereas, the outputs of the test cases
represent the expected behavior of the system when the se-
curity rules hold. In this step we have also to check the
activation of the security rules. We define for each security
rule of the interoperability security policy a test objective.
Thus, we generate at least for each security rule a test case
to check if the O-grantor conforms this rule. The test cases
are generated from the extended automaton that covers the
joint-behavior of the two systems. When we generate test
cases from the extended automata (in 2) it is necessary to
use some methodologies based on partial generation of the
reachability graph to obtain the tests [4]. In these methods
the test case generation process is guided by the test archi-
tecture and a predefined set of test objectives.

Finally, to automatize the process of tests generation pre-
sented in Figure 2 we use the TestGen-IF tool [5]. This
tool is open source and it accepts systems modeled with the
IF language. In Figure 3 the architecture of this tool is pre-
sented. The tool allows to build tests sequences with high
fault coverage and to avoid the state explosion and deadlock
problems encountered respectively in exhaustive or exclu-
sively random searches. Let us remind that in the architec-
ture of this tool the test coverage considers a complete test
generation if all set of chosen properties are specified in the
test objectives.

Following we present the last notion, by means 4: test
execution and test verdict. In order to execute the test
cases generated with TestGen-IF in an O2O scenario, it

467

Figure 3. Architecture of TestGen-IF.

is mandatory to instantiate them. The instantiation of an
abstract test case is composed of two sub-processes: the
concretization (addition of details) and the translation to ex-
ecutable scripts. The final test case is a script that contains
details of the implementation such as the real values of vari-
ables and the signals of the test case. This script will be
executed in the O-grantee system to stimulate this system
generating specific request to the O-grantor.

Regarding the verdict, when we apply the inputs of the
test case on the O-grantor system, the generated set of out-
puts has to be conform with respect to the test. However, a
rule can be only checked when the rule holds. Thus, in the
case where the security rule is constrained by a context, an
additional information that gives the state of this context is
needed in the tests.

The test verdict is built based on the information on the
security rule context and the behavior related to the execu-
tion of the test case. Following we present the test verdict
after executing a test case.

Verdict = ¬(Test case ⊕ context) (1)

Remark that the global verdict, that is the verdict after
performing all the test cases, has the form of a conjunction
of the verdicts produced for each test case. Therefore if the
verdict of one test case is false the global verdict is also
false.

4. Case Study

In this Section we present our testing methodology ap-
proach through a hospital network case study. A hospital
network is a network or group of hospitals that work to-
gether to coordinate and deliver a broad spectrum of ser-
vices to their community in an O2O scenario. We considered
the case where the hospital network consists of two hospi-
tals, hospital A and hospital B. It was assumed that each

hospital had its local security policy to manage the privi-
leges of its local users. We also assumed that the follow-
ing roles existed in the two hospitals: doctor, nurser, aduser
(an user in the administrative staff), and ITuser (a user in
the information technology staff), and that in both hospi-
tals a patient had a medical report, data related for payment
and sensitive data which was related to personal informa-
tion such as previous medical report, insurance company,
etc.

In this case study we only focus on one interaction way:
from hospital A to hospital B. Therefore, the resources to
be accessed are located in hospital B and the VPO will be
VPOA2B .

4.1. Modeling the System Under Test

Next we introduce the interoperability security policy
objectives that describe the privileges of employees of the
hospital A in B and belong to VPOA2B . These interoperabil-
ity security policies represent a set of objectives that hos-
pital B must respect when it is accessed by the employees
of hospital A. The complete interoperability security pol-
icy is composed of 11 objectives. Due to space limitations
following we only describe 3 of them.

The first one focus on the following situation. A doc-
tor from Hospital A has accessed to restricted and sensitive
information of a patient of Hospital B after filling a non
release form. The second one represents that the system
must notify to any doctor when one of his/her patient’s med-
ical reports is edited by another doctor. In particular if it is
edited by a doctor of a different hospital. Finally, the last
one focus on the nurse role. A nurse from hospital A is not
allowed to create, drop or edit any data of a medical report.

After defining the objectives, the interoperability secu-
rity policy objectives are modeled according to the O2O

model. As a result we got in this case study 53 different
security rules.

Next, both hospitals were modeled within extended au-
tomata using the IF language. Note that these models, do
not specify the complete behavior of the hospitals but a par-
tial one which is related to the interoperability security pol-
icy that we have to test.

We integrated the O2O rules in the automata applying the
methodology described in [11]. This integration process in-
crease the number of states and transitions of the original
automata. Following we present some metrics of the inte-
gration process.

States # Transitions # Signals

Before int. 3 10 15

After int. 4 12 17

468

Figure 4. Testing Architecture.

4.2. Test Generation and Results

The system under test consists of the information sys-
tems of hospitals A and B. The Figure 4 illustrates the test
architecture. As we mentioned before, there is only one
control point in the interface between the tester and the in-
formation system. It is denoted by “UI2”.

Next we generated the test cases using the
TestGen-IF tool. The tool performed the follow-
ing sequence of actions to generate the test cases. It
computed a partial accessibility graph of the specification.
The partial graph was constructed using a breath first
search, where the depth of the partial graph was specified
in the tool input parameters. For this running example
we applied depth = 100. After this, the tool performed a
local search from the current state in a neighborhood of the
partial graph. If a state was reached and one or more test
objectives were satisfied, the set of test cases was updated
and a new partial search was conducted from this state.

Next we defined the test objectives for this net of hospi-
tals. A test objective is described as a list of ordered con-
ditions. This means that the conditions have to be satisfied
in a given order. A condition is a conjunction of: a process
instance constraint, a state constraint, an action2 constraint
and a variable constraint. In particular, a process instance
constraint indicates the identifier of a process instance, and
and action constraint describes how to send or receive the
messages.

In our case study the test case generation algorithm im-
plemented in the tool checked whether the properties in the
reachability graph that described the joint-behavior of the
two systems held. When the property was satisfied, the al-
gorithm generated the path for this property. This path was
transformed to an executable test case to be applied later to
the system implementation.

Let us remark that the use of this tool is friendly.
For instance, Figure 5 presents a test objective and its

2In this context an action represents any input or any output.

Objective

tp ←
⎧⎨
⎩

∧
1≤i≤5

ci

⎫⎬
⎭

c1 ← (process : instance == {hospitalB})
c2 ← (state : source == “sign”)
c3 ← (state : target == “idle”)
c4 ← (action : input == “access file{6, 65}”)
c5 ← (action : output == “access grant”)

Test Case

Figure 5. Example of objective and test case
in TestGen-IF.

test case, generated by the tool. The test objective de-
scribes that “a doctor (with an id = 6) of the hospital
A is allowed to access sensitive information of a pa-
tient (with an id = 65) of hospital B”. The generated
test case shows that the tester has to send two inputs.
A first input, namely signe NDF REQ{6,55}, is to
sign a non divulgation form. The second input, namely
access file REQ{6,65}, is to check that if this doc-
tor request to access the sensitive information the hospital
B will grant the access. Following we report some relevant
data of the use of this tool after performing this task.

469

Objectives Partial
graph

Depth
limit

Visited
states

Time to
generate

generation the test
cases

53 BFS 100 12855 28 min
and 2 s

The next step in the testing process was the test case ex-
ecution. It was performed on a web based prototype im-
plementation and we used three different tools to get the
results:

1. The execution of the test cases was per-
formed by using the ACS-Automated-testing
tool (http://openacs.org/xowiki/
acs-automated-testing).

2. The tclwebtest (http://tclwebtest.
sourceforge.net/) framework to describe
the executable test cases for web applications.

3. The Wireshark (http://www.wireshark.
org/) tool was also used to capture the interaction of
the hospitals within their information systems.

After the execution of each test case we extracted from
the collected traces the contexts of the hospitals. Within
this set of contexts information we verified if the security
rule presented in the test case held. According to the equa-
tion 1 we said that the verdict after executing this test case
was positive: a) if rule held in this context and the verdict
provided by ACS-Automated-testing was positive, or b) if
the rule did not hold in this context and the verdict provided
by the ACS-Automated-testing tool was negative. As a re-
sult of this experiment we got with a positive verdict 48 test
cases meanwhile we got with a false verdict for 5 test cases.
For instance, one of the detected problems was that the sys-
tem of an hospital did not notify to the doctors of the other
hospital when a shared report was modified.

5. Conclusion and Future Work

In this paper we have presented our formal methodology
to check interoperability security policies in an informal
way. We have tried to describe our experience while test-
ing complex environments by using our formal approach. In
this paper we present our specification formalism. In partic-
ular, we focus on representing the interoperability security
policies of these systems. Next, we show how we can auto-
matically extract a finite set of tests from the specification
and how these tests are run again the system under test in
order to get a verdict.

In addition with our testing framework, in this paper we
have shown a case study in a controlled environment where

the interoperability security rules were checked. We con-
sider that the use of this testing methodology is very positive
and encouraging as to support the use of formal methods.

As future work we would like to add some extra (prob-
abilistic) information in our tests in order to increase their
coverage in a virtual organization environment.

References

[1] J. Bowen and M. G. Hinchey. Ten commandments of formal

methods ... Ten years later. Computer, 39(1):40–48, 2006.
[2] J. Cao, J. Chen, H. Zhao, and M. Li. A policy-based autho-

rization model for workflow-enabled dynamic process man-

agement. Journal of Network and Computer Applications,

32(2):412–422, 2009.
[3] A. Cavalli, A. Benameur, W. Mallouli, and K. Li. A passive

testing approach for security checking and its practical us-

age for web services monitoring. In 9th Conf. Int. sur Les
NOuvelles TEchnologies de la REpartition, NOTERE 2009.

ACM, 2009.
[4] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaı̈di. Hit-

or-Jump: An algorithm for embedded testing with appli-

cations to IN services. In Formal Description Techniques
for Distributed Systems and Communication Protocols (XII),
and Protocol Specification, Testing, and Verification (XIX),
pages 41–56. Kluwer Academic Publishers, 1999.

[5] A. Cavalli, E. M. D. Oca, W. Mallouli, and M. Lallali. Two

complementary tools for the formal testing of distributed

systems with time constraints. In 12th IEEE/ACM Int. Sym-
posium on Distributed Simulation and Real-Time Applica-
tions, DS-RT’08, pages 315–318. IEEE Computer Society,

2008.
[6] C. Coma, N. Cuppens-Boulahia, F. Cuppens, and A. Cav-

alli. Interoperability of context based system policies using

O2O contract. In 4th Int. Conf. on Signal-Image Technology
& Internet-based Systems, SITIS’08, pages 137–144. IEEE

Computer Society, 2008.
[7] F. Cuppens and N. Cuppens-Boulahia. Modeling contextual

security policies. International Journal of Information Se-
curity, 7(4):285–305, 2008.

[8] U. Franke. Managing virtual web organizations in the 21st
century. IGI Publishing, 2002.

[9] M. Gogolla. Benefits and problems of formal methods. In

9th Ada-Europe Int. Conf. on Reliable Software Technolo-
gies, Ada-Europe’04, LNCS 3063, pages 1–15. Springer,

2004.
[10] R. M. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland,

J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,

P. Krause, G. Luettgen, A. Simons, S. Vilkomir, M. Wood-

ward, and H. Zedan. Using formal methods to support test-

ing. ACM Computing Surveys, 41(2), 2009.
[11] M. E. Maarabani, I. Hwang, and A. Cavalli. A formal

approach for interoperability testing of security rules. In

6th Int. Conf. on Signal-Image Technology & Internet-based
Systems, SITIS’10, pages 277–284. IEEE Computer Society,

2010.
[12] R. Salay and J. Mylopoulos. The model role level: a vision.

In 29th international conference on Conceptual modeling,
ER’10, pages 76–89. Springer, 2010.

470

A New Approach to Evaluate Path Feasibility and Coverage Ratio of EFSM
Based on Multi-objective Optimization*

Rui Yang1,2, Zhenyu Chen1, Baowen Xu1,2+ , Zhiyi Zhang1 and Wujie Zhou3
1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2 Computer Science and Technology, Nanjing University, Nanjing, China
3 School of Computer Science and Engineering, Southeast University, Nanjing, China

+ Corresponding author: bwxu@nju.edu.cn
Abstract—Extended Finite State Machine (EFSM) is a popular
model for software testing. Automated test generation on
EFSM models is still far from mature. One of the challenges is
test case generation for a given path and the path may be
infeasible. This paper proposes a novel approach to solve the
path ordering problem by the Multi-objective Pareto
optimization technique. Two fitness functions are designed to
obtain the Pareto-optimal solutions of path sequence, such that
test cases could be generated more effectively. The
optimization process is to find the path set, with trade-off path
length, coverage criterion and path feasibility. An experiment
was designed with four popular EFSM models. The
experimental results show that our approach is more effective
by comparing it to previous techniques.

Keywords- path feasibility evaluation, Multi-objective
optimization, test case generation, EFSM model-based testing

I. INTRODUCTION
Automated testing usually derives the test case via

creating a model of the software which represents the real
system and employs the model to generate test case that can
be applied to the system implementation. The generated test
cases are utilized to verify whether the implementation meets
the specification.

 In model-driven testing, Finite State Machine (FSM) and
Extended Finite State Machine (EFSM) are widely used for
the purpose of generating test case. There are several issues
that limit the application of FSM-based testing. The main
issue is that FSM can only represent the control part of a
system. However, Many complex systems include not only
control parts but also data parts. Extended Finite State
Machine (EFSM),which consists of states, variables and
transitions among states can express both control flow and
data flow of system, can be considered as an enhanced model
of FSM [1]. T here have been lots of research works on
FSM-based test sequence generation, whereas test case
generation for the EFSM model is still a challenge .

In general, the steps of automated test case generation
from an EFSM model including: (1)Generate state
identification sequence. (2)Generate test paths for specified
coverage criterion. (3)Generate test data to trigger the test
paths. (4)Create test oracle.

The difficulty of automated testing on EFSM models
since the fact that the EFSM models may contain infeasible
paths due to the existence of conflict between predicates and
assignment statements in transitions. Moreover, the detection
of an infeasible path is generally undecidable [2].

In terms of state identification sequence generation,
many methods have already been proposed in the literature
[3][4][5]. There also exist a few studies address the problem
of infeasible path even test data generation of EFSM
models[6][7][8][9][10]. However, automated EFSM-based
testing is still far from mature. In our previous work[11], an
approach that combines static analysis and dynamic analysis
techniques is presented to address the problem of path
infeasibility in the test case generation process on EFSM
model. A metric is presented in order to find a path set that
has fewer paths, longer path length and goodness feasibility
to meet specified coverage criterion since previous study
shown that the test suite with small number of longer test
cases improves fault-detection efficiency compared to
shorter ones[12]. This metric is designed carefully to trade-
off path length and feasible evaluation value, since a longer
path has higher probability of infeasible due to the fact that a
longer path may contains more conflict conditions among
transitions. However, the formula is still not precise enough.

Therefore, this paper presents a new approach that
overcomes aforementioned problems by Multi-objective
Pareto optimization technique to explore the relationship
between path length and path feasibility. Multi-objective
optimization is app ropriate for solving problems when the
solutions need to meet several conflicting objectives. By
using this technique, we transform the aforementioned
problem into a bi-objective optimization problem. The
optimization process is given to find a path set to achieve the
trade-off between path length and path feasibility to meet the
specified test criterion(longer paths may contain more
transitions to achieve specified coverage criterion). In
addition, we present detailed experimental study to evaluate
the efficiency by applying our approach to four popular
EFSM models.

The main contributions of this article are embodied in the
following three aspects:

1. A new Multi-objective approach is presented to find a
optimized path set with small number of longer feasible
paths to generate test data and meet the test criterion.

2. We present two fitness functions of an in dividual to
solve the path ordering problem of EFSM models. The idea
also can be extended to other path ordering problems in
path-oriented testing.

3. An experiment is designed and we apply the proposed
approach to four popular EFSM models. The experimental
results confirm that the approach is more effective by
comparing it to our previous metric.

 The rest of this paper is organized as follows: Section II
introduces the basic concept of an EFSM model; Section III

*The work described in this article was partially supported by the National Natural Science Foundation of China (90818027, 61003024, 61170067).

471

introduces our previous research of test case generation
process; The experiment is described in Section IV; Section
V reviews related work; Section VI concludes this paper and
provides some possible opportunities for future research.

II. PRELIMINARIES
An EFSM can be formalized as a 6-tuple M=(S, s0, V, I,

O, T), where S represents a finite set of state; s0 S
represents the initial state of the EFSM; V represents a finite
set of context variables; T represents finite set of transition; I
represents a set of inputs of transition and O represents a set
of outputs. Each transition t T is also a 6-tuple T= (si, sj, Pt,
At, it, ot), where si represents the start state of transition t; sj
represents the end state of transition t; Pt represents the
predicate operation on context variables(known as Gu ard)
and At represents the operation on current variables(known
as Action); it I represents an input parameter and ot O
represents output results.

At first, the EFSM model is at an initial state s0 with
vector x0 of initial variable values. After some transitions
occurred, the EFSM move to the state si with the current
vector xi of variable values. If EFSM model receiving input
event or input parameter it, and xi is valid for predicate
operation Pt, then the transition t will be triggered and state
of EFSM moves to sj. A self-loop transition is a transition
that has the same start state and the end state (see Figure 1).
When a transition is triggered, action At changes the current
variable values, and output events or output results may also
be produced. Some transitions are difficult to be satisfied
since it may have complex conditions, while some transitions
may have no predicate conditions. A transition path is
infeasible if associated predicate conditions of the transition
never be satisfied. The existence of infeasible paths creates
difficulties for automated test case generation for EFSM. In
addition, some models are free of exit state, while others
contain both initial state and exit state.

If any group of transition has the same input that
transforms a state, and the guards of more than one transition
cannot be satisfied at the same time in this transition group,
then the EFSM is deterministic[13]. Otherwise the EFSM
model is non-deterministic. In this paper, we assume that the
initial state of EFSM is always reachable from any state
through Reset operation, and only deterministic EFSM
model is considered.

III. IMPLEMENTATION

3.1 Test Case Generation Process of Previous Research
For the sake of clarity, we first describe our previous

work[11][29], the process of our approach to generate test
cases(including feasible paths, test data and oracle
information) from an EFSM can be split into following steps:
Step1: Candidate Path Set Generation Algorithm

Firstly, a candidate path set is generated from the initial
state to other states on an EFSM model in order to satisfy the
test adequacy criterion. Then, some paths which have highest
likelihood of feasibility are selected to generate test data. The
transition paths in candidate path set contain loops (including
self-loops). The generated paths would infinite if the infinite
loops are contained in transition paths. Therefore, a
constraint condition that just contains loops or self-loops
only one time is imported to generate paths by means of
candidate path set generation algorithm named Path-
Gen(detail described in [11]). The paths that contain a certain
number of loops (self-loops) can be also generated
conveniently by expanding aforementioned algorithm.
Step2: Feasibility Evaluation Strategy

The existence of infeasible paths on EFSM model, which
is due to the variable interdependencies among the actions
and conditions, has become a c hallenging problem of path-
oriented test case generation. In order to evaluate the
feasibility of paths that generated in the Step1, a metric is
presented through static analysis to evaluate the path
feasibility of the EFSM and achieve all-transitions coverage
criterion. Afterwards, paths in the candidate set are sorted by
the evaluation value to assist test data generation in Step3.
However, in some cases, static analysis cannot detect the
infeasible path thoroughly. Therefore, we present a dynamic
analysis method in order to detect infeasible paths in the test
data generation process. In order to find a path subset with
the property that has fewer paths, longer path length and
goodness feasibility to achieve all-transitions criterion, the
metric is presented as follows:

0)(||0

0)(
||

)(

0

0

0

k

i
i

k

i
id

k

i
i

dfvIfTP

dfvIf
TP

dfv

f (1)

where k represents the number of definition-p-use
transition pairs in a path; idf represents the definition-p-use
transition pair in a pa th and)(idfv represents its
corresponding penalty value; |TP| represents the path length,
and d is a value used to tune the weight of path length in the
metric(detail described in [11]). Denominator |TP| is the
trade-off between path length and penalty value since a
longer path may contains more definition-p-use transition
pairs, which has higher probability that it can result in a
larger penalty value of a transition path. However, if

Figure 1. EFSM model of Automated Teller Machine [15]

t7
t15-t16

t11-t14

t17-t20

t21-t22

t9
t8

t10
t23

t4

t3

t2

t1
t5-t6

s0 s1

s2

s8

s3

s4

s6

s5

s7

472

0)(
0

k

i
idfv , it means that there is n o definition-p-use

interdependence among transitions, and this path has best
feasible probability. In this case, the penalty value is
assigned ||0 TP due to a l onger path should get a lower
penalty value to cover more transitions. Thereafter, the
transition path set is sorted by f in ascending order.
However, the final feasible path subset which attempt to
achieve all-transitions criterion or other coverage criteria will
be generated in the test data generation process dynamically.
Step3: Test Data Generation Process

In this step, a dynamic analysis method, which is based
on meta-heuristic search algorithm, is proposed to detect
infeasible paths in the test data generation process. In general,
a common strategy of dynamic analysis is to limit the depth
or iterations of search. We build an executable model by
expressions semantic analysis technique, therefore the
dynamic run-time feedback information can be collected as a
fitness function and scatter search algorithm is introduced to
guide the test data generation process directly. In addition,
the corresponding expected outputs of the generated test data
are also calculated to construct the oracle information
automatically. Finally, feasible path subset, test data and
oracle information are combined into complete test cases.

3.2 Multi-objective Optimization Approach
The formula 1 is designed carefully to trade-off path

length and feasible evaluation value, since a longer path has
higher probability that it contains more conflict Guards and
Actions which can result in a path infeasible. However, the
formula 1 is still not precise enough. Therefore, in this study,
the multi-objective optimization approach is presented to
find a path set which achieves the trade-off between path
length and path feasibility to meet the specified coverage
criterion(longer paths may contain more transitions to
achieve specified coverage criterion). In brief, we present a
Multi-objective Optimization approach to improve the path
feasibility evaluation strategy.

3.2.1 Solution Encoding and Fitness Functions Design
The important issues of multi-objective optimization

problem are the encoding of the solution and the design of
the fitness function. Before a Multi-objective optimization
algorithm can be applied to solve the problem, we need to
encode potential solutions to that problem in a certain form
which can be processed. In addition, the fitness function has
an important influence on finding the final solution to meet
the requirements. The fitness value of a solution is evaluated
by the fitness function. A solution with better fitness value is
selected for next iteration in the Pareto evolution process.
In context of our approach, the fitness values is the
measurement that whether a path set w ith certain path
ordering can facilitate test data and oracle information
generation.

In this study, we use the permutation encoding method,
therefore, the paths in a set are encoded as a sequence of
integer. In permutation encoding, the individuals in the
population are the string of numbers. Thus, for a given

transition path set, every transition path is encod ed as a
different number(named path ID). Please note that, when
using permutation encoding, the evolution process cannot
generate any new number in the individual but change its
ordering. In addition, the property of a transition path, such
as path length and count of distinct transitions, can be obtain
by its ID. The individual structure is described in Figure 2.

Figure 2. Individual structure of a population
For ordering the path set that generated by candidate path

set generation algorithm to obtain Pareto front, we designed
two fitness functions f1 and f2, where f1 is utilized to find the
path ordering to obtain a path subset with small number of
longer paths and higher coverage ratio, and f2 is utilized to
find the path ordering to obtain a feasible path subset more
efficiently in dynamic process(Step 3 in section 3.1). the
fitness functions are designed as follows:

1

0 2

1
1

)1()1(

n

j jnC
Cf (2)

1

0

0

1
2

)1()1)((

n

j
k

i
i jndfv

Cf (3)

where n is the count of the paths, j represents the position
of a path in path set, is the count of the distinct transitions

in a path,
k

i
idfv

0
)(is same as formula 1. Number C1 and C2

as numerator are constant value since smaller fitness value
means better solution in selection process. In our study, C1
and C2 are assigned 1000 and 100, respectively. In general,
according to the fitness function f1, the longer paths with
more distinct transitions will be arranged in the front of path
set, this kind of path o rdering has better fitness. In terms of
f2 , the paths with better feasible probability will be arranged
in the front of path set, this kind of path ordering has better
fitness.

3.2.2 Multi-objective GA Algorithm
For implementing our method, the non-dominated sorting

genetic algorithm II (NSGA-II) presented by Deb et al. [14]
is utilized. NSGA-II uses an elitist approach and a crowed
comparison mechanism, improving both quality and
diversity of Pareto solutions. Hence, in our case, NSGA-II is
used to solve the problem of multi-objective optimization.

In every generation, NSGA-II utilizes crossover and
mutation to create a new population. The next generation is
given by a Pareto-optimal selection from both the new
offspring and their parents. Therefore, NSGA-II is elitist. In
this study, NSGA-II was given two fitness function:f1 and f2.

At the beginning, a population P0 is created by means of
stochastic method. The population is sorted based on the

t1 t2 t3 t4 t6 t5 t4 t9

2 4 0 5 1 3

Individual of the population

Transition sequence of a path

Path ID

473

1085 1090 1095 1100 1105 1110 1115

192

193

194

195

196

160 180 200 220 240 260

80

85

90

95

100

105

250 300 350 400 450 500 550 600
190

200

210

220

230

240

250

260

270

280 300 320 340 360 380 400 420

200

220

240

260

280

300

Pareto front of ATM Pareto front of SCP

f2
f2

f2
f2

f1

Pareto front of CLASS 2 Pareto front of INRES

f1

f1 f1
Figure 3. The front of Pareto–optimal solutions of four EFSM models

non-domination. To fit the permutation encoding method, we
adopt the BinaryTournament selection, TwoPointsCrossover
and SwapMutation operators to create a offspring population
Q0 (size is N).

After that, the algorithm enters into iteration process:
first the population Rt=Pt Qt (Rt size is 2 N) is formed by
combination method. Afterwards, the population of Rt is
sorted according to non-domination, and the ranks are
assigned to each Pareto front with fitness Fi. Then, from
Pareto front of fitness F1, each Pareto front is added to new
population Pt+1 until it reaches the size N. The new
population Pt+1 will be used for selection, crossover and
mutation to create the new population Qt+1. The above
process is repeated until all individuals are assigned to a pare
to front.

IV. EXPERIMENTAL STUDY
In this section, in order to determine whether test case

generation with specified coverage criterion for an EFSM
can benefit from proposed multi-objective optimization
technique, we present a detailed experimental study. More
specifically, the study is designed to get the final Pareto
fronts of the transition path ordering of the EFSM models.
Thereafter, Pareto-optimal solution is used to test data
generation process to find whether this approach is more
effective than our previous metric.

Four popular EFSM models are utilized for our
experimental study: Class 2 transport protocol[3], Automated
Teller Machine (ATM)[15], INRES protocol[16], and SCP
protocol[17]. Class 2, INRES and SCP model are free of exit
states while ATM contains both a start and exit state. For

generality, in our experiment, we do not considered that the
path must end in an exit state in the model with exit state.

4.1 Experimental Setup
In order to achieve the experiment fairly, the experiment

environment and the main configurations of test data
generation algorithm are same as our previous work [11].

 The main parameters configuration of NSGA-II
algorithm we set in this study are listed as follows:

1. population size =128;
2. Max Evaluations times=20000;
3. Crossover Operator= TwoPointsCrossover;
4. Crossover probability=0.9;
5. Mutation Operator= SwapMutation;
6. Mutation probability=0.2;

Since permutation encoding method is utilized in this
study to solve path ordering problem. The individuals in the
population are the string of numbers that represent a path ID
in a sequence. When crossover and mutation operation are
used to create the new population, the operation cannot
generate any new path ID in the individual but change its
ordering. That is to say, the elements of a individual remain
unchanged, crossover and mutation operation only change
the ordering of the elements of an individual. Therefore,
special crossover and mutation operator are needed. In this
study, TwoPointsCrossover operator and SwapMutation
operator are adopted to achieve permutation encoding
method. Crossover probability is 0. 9 where Mutation
probability is 0.2. The population size for evolution is 128.
While generation count reached Max iteration times, NSGA-
II algorithm stopped.

474

TABLE I. TEST GENERATION RESULTS WITH DIFFERENT TECHNIQUES

Model & Method Subject Model Executed Path
Number FTP Number Iteration Times Execute

Time(sec.)

Feasibility Evaluation
Using Formula 1

ATM 17 16 1600 4
CLASS 2 30 16 2016 57
INRES 10 10 7650 2

SCP 10 2 816 13

Multi-objective
Optimization

ATM 15 14 1400 4
CLASS 2 26 12 3456 58
INRES 11 9 20936 9

SCP 10 2 1126 14

4.1 Experimental Results
In this section, the experimental results of the path

ordering problem on four EFSM models are presented.
Figure 3 shows the front of Pareto–optimal solutions of four
EFSM models. In the figure, Y-axis represents the fitness
value of the path sequence that calculated by fitness function
f2. The number of X-axis represents the fitness value of the
path sequence that calculated by fitness function f1. That is to
say, a dot in the coordinate plane represents a kind of path
sequence that has fitness value f1 and f2. The count of dot less
than or equals to 128 since population size equals 128. The
special case in the figure is that the dot of ATM model
relative few as a r esult of this model has relative simple
transition correlation, also the Pareto-optimal solutions is
relative few.

In order to evaluate the efficiency of our approach, we
need to choose a solution in Pareto–optimal front(an ordering
path set), this path set is used to generate test data,
meanwhile, a subset of feasible path which achieves all-
transitions coverage strategies will be generated dynamically
in this process. In the experiment, the solution with
minimum value of f1+f2 is selected to generate test data.

 Since the execution time of the test data generation of
the same model exists tiny difference, the program is
executed 30 times for every model and calculate its average
execution time for the purpose of illustrating the
experimental results precisely. In order to illustrate the
advantage of this approach, the results of test data generation
are used to compare with previous results in the[11]. The
comparison results are listed in Table I, where Executed
Path Number is the count of transition path that be chosen to
generate test data. FTP Number is the feasible transition path
number that are selected for test data generation to achieve
all-transitions coverage. Iteration Times is th e sum of the
Iteration Times of every feasible path. It shows that the final
feasible path number(FTP Number) reduced obviously
compared with previous technique.

In the mass, the count of transition path that be chosen to
generate test data(executed path number) also decreases.
More infeasible paths are avoided in the process of test data
generation(the value of Executed Path Number minus FTP
Number of a model means the count of infeasible path that
encountered in the process of test data generation). In the
other hand, Iteration Times of test data generation increased
in some degree, Execute Time is the same as Iteration Times.
The reason is that the feasible transition paths become longer
and more difficult to generate test data to traverse these paths.

Through observing, we found that the longer path contains
more correlation among transitions, and test data generation
process becomes more difficult, even th e path becomes
infeasible. However, we think that the quality of test paths
and test data is more important than iteration times. Hence,
this approach is more effective by comparing it to previous
metric.

V. RELATED WORK
In terms of EFSM-based testing, some test sequence

generation methods of EFSM models have been proposed in
[18][19]. In these methods, test sequence generation with
data flow criteria is considered, and control flow testing is
ignored or considered separately. Duale et al.[7][21]
transformed an EFSM to one that has no infeasible paths, the
approach converted a EFSM into consistent EFSM, and they
utilized simplex algorithm to solve the infeasible problem.
However, this method only can be utilized for EFSMs in
which all operations and guards are linear. In addition, there
are some other methods used FSM-based techniques to test
an EFSM model[16][20], however, these methods may suffer
the state explosion problem. In order to generate feasible test
paths from EFSM models, Derderian et al.[8] gave a fitness
function to estimate how easy it is to trigger a path. Kalaji et
al.[9] proposed a GA-based approach to generate feasible
transition paths that are easy to trigger. However, the path
length should be de termined in advance and all paths have
same length. In terms of test data generation on EFSM,
Lefticaru et al.[22] first introduced the genetic algorithm to
derive test data from a FSM. The design of fitness function is
based on literature [23]. Yano et al .[24] presented a multi-
objective evolutionary approach for test sequence generation
from an EFSM. However, the generated test data may have
redundancy. Kalaji et al.[25] used a genetic algorithm whose
fitness function is based on a combination of a branch
distance function[23] and approach level [26] to generate
test data for specified path. J. Zhang et al.[27] proposed a
method to obtain a deterministic EFSM from a p rogram
written in a subset of C program, and they attempted to find
test data by means of the symbolic execution technique. Ngo
et al.[28] proposed a heuristics-based approach for code-
based testing to detect infeasible path for dynamic test data
generation by the observation of some common properties of
program paths. J. Zhang et al.[29]presented the detail of test
data generation from EFSM by using scatter search and
execute information feedback technique. The method
showed good effectiveness by the experiments of comparing
with the random algorithm.

475

VI. CONCLUSIONS AND FUTURE WORK
This paper presents a new approach that utilizes Multi-

objective Pareto optimization technique to explore the
relationship between path length and path feasibility on
EFSM models. Two fitness functions of an individual are
designed to solve the path ordering problem. The
optimization process is given to f ind a path set which
achieves the trade-off between path length and path
feasibility to meet the specified test criterion. This idea also
can be extended to other path ordering problem in path-
oriented testing. An experiment was designed with four
popular EFSM models. The experimental results show that
the approach is more effective by comparing it to previous
metric.

In our future study, we intend to improve design of the
fitness function to get better quality of test case by further
exploring the property in the transition path. The tuning of
the parameters and operators of multi-objective optimization
algorithm to get higher efficiency also will be implemented.

VII. ACKNOWLEDGMENTS
The work described in this article was partially supported

by the National Natural Science Foundation of China
(90818027, 61003024, 61170067). The authors would like to
thank anonymous reviewers for their valuable comments.

REFERENCE
[1] A. Petrenko, S. Boroday and R. G roz, “Confirming configurations in

EFSM,” FORTE, pp.5-24, 1999.
[2] D. Hedley and M. A. Hennell, “The Causes and Effects of Infeasible

Paths in Computer Programs,” ICSE, pp. 259-266, 1985.
[3] T. Ramalingom, K. Thulasiraman, and A. Das, “Context independent

unique state identification sequences for testing communication
protocols modelled as extended finite state machines,” Computer
Communications, Vol. 26(14), pp. 1622-1633, Sep 2003.

[4]C.M. Huang, M.Chiang, and M.Y.Jang. “UIOE: A protocol test sequence
generation method using the transition executability analysis (TEA), ”
Computer Communications, vol.21(16), pp.1462-1475, 1998.

[5] A. Petrenko, S. Boroday and R. G roz, “Confirming configurations in
EFSM testing,” IEEE Transactions on Software Engineering, Vol.30(1),
pp.29-42, 2004.

[6] S. T. Chanson and J. Zhu, “A unified approach to protocol test sequence
generation,” In Proceedings of the International Conference on
Computer Communications , IEEE INFOCOM , pp. 106-114, 1993.

[7] A. Y. Duale and M. Ü. Uyar, “A Method Enabling Feasible
Conformance Test Sequence Generation for EFSM Models,” IEEE
Transactions on Computers, Vol. 53(5), pp. 614-627, 2004.

[8] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo, “Estimating the
feasibility of transition paths in extended finite state machines,”
Automated Software Engineering, Vol. 17(1), pp. 33-56, Nov 2009.

[9]A. S. Kalaji, R. M. Hierons, and S. Swift, “Generating Feasible
Transition Paths for Testing from an Extended Finite State Machine
(EFSM),” ICST, pp. 230-239, Apr 2009.

[10]T. Yano, E.Martins, and F.L.Sousa. “Generating Feasible Test Paths
from an Executable Model Using a Multi -objective Approach,” ICST
Workshops, pp.236-239, 2010.

[11]R. Yang, Z. Chen, B. Xu, W. Eric Wong, and J. Zhang “Improve the
Effectiveness of Test Case Generation on EFSM via Automatic Path
Feasibility Analysis,” IEEE HASE, pp.17-24, 2011.

[12]G. Fraser and F. Wotawa. “Redundancy Based Test-Suite Reduction,”
Lecture Notes in Computer Science, 4422, pp. 291-305, 2007.

[13] C. Shih, J. Huang, and J. Jou, “Stimulus generation for interface
protocol verification using the non-deterministic extended finite state
machine model,” IEEE HLDVT, pp. 87-93, 2005.

[14]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, Vol. 6(2), pp. 182–197, 2002.

[15]B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing of state-based
models,” ICSM, pp. 34-43, 2003.

[16]C. M. Huang, M. Y. Jang, and Y. C. Lin, “Executable EFSM-based
data flow and co ntrol flow protocol test sequence generation using
reachability analysis,” Journal of the Chinese Institute of Engineers,
Vol. 22(5), pp. 593-615, Jul 1999.

[17]A. Cavalli, C. Gervy, and S. Prokopenko, “New approaches for passive
testing using an Extended Finite State Machine specification,”
Information and Software Technology, Vol. 45(12), pp. 837-852, Sep
2003.

[18]H. Ural and B. Yang, “A Test Sequence Selection Method for Protocol
Testing,” IEEE Transactions on Communication,Vol.39(4), pp.514-523,
1991.

[19]R. Miller and S. Paul, “Generating Conformance Test Sequences for
Combined Control and Data Flow of Communication Protocols,” In
Protocol Specifications, Testing and Verification, pp.13-27, 1992.

[20]R.M.Hierons, T.H.Kim, and H.Ural, “Expanding an extended finite
state machine to aid testability,” COMPSAC, pp.334-339, 2002.

[21]M. Ü. Uyar and A. Y. Duale, “Test generation for EFSM models of
complex army protocols with inconsistencies,” 21st Century Military
Communications. Architectures and Technologies for Information
Superiority, Vol 0(C), pp. 340-346, 2000.

[22]R. Lefticaru and F. Ipate, “Automatic State-Based Test Generation
Using Genetic Algorithms,” SYNASC 2007, pp. 188-195, Sep 2007.

 [23]N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” ASE, pp. 285-288, 1998.

[24]T. Yano, E.Martins, and F.L.Sousa, “MOST: A Multi-objective
Search-Based Testing from EFSM, ” ICST Workshops, pp.164-173,
2011.

[25]A. S. Kalaji, R. M. Hierons, and S. Swift, “An integrated search-based
approach for automatic testing from extended finite state machine
(EFSM) models,” Information and Software Technology, Vol.53,
pp.1297 - 1318, Dec 2011.

[26]P. McMinn and M. Holcombe, “Evolutionary testing of s tate-based
programs,” GECCO, pp.1013-1020, 2005.

[27] J. Zhang, C. Xu and X. Wang, “Path-Oriented Test Data Generation
Using Symbolic Execution and Constraint Solving Techniques,” SEFM,
pp.242-250, 2004.

[28]M. Ngo, and H. Tan, “Heuristics-based infeasible path detection for
dynamic test data generation,” Information and Software Technology,
Vol. 50(7-8), pp. 641-655, Jun 2008.

[29]J. Zhang, R. Yang, Z. Chen, Z. Zhao and B. Xu, “Automated EFSM-
Based Test Case Generation with Scatter Search,” ICSE Workshop
AST, Accepted, 2012.

476

Structural Testing for Multithreaded Programs:
An Experimental Evaluation of the Cost, Strength and Effectiveness

Silvana M. Melo, Simone R. S. Souza, Paulo S. L. Souza
ICMC/USP, University of São Paulo

São Carlos, São Paulo, Brazil 668–13.560-970
{morita, srocio, pssouza}@icmc.usp.br

Abstract

Concurrent program testing is a complex activity, due
to factors do not present in sequential programs, such as
non-determinism. In this context, techniques related to
static analysis are proposed, but its applicability is not of-
ten proven through theoretical or empirical study. This pa-
per aims to contribute in this direction, by presenting the
results of an experimental study to evaluate cost, effective-
ness and strength of structural test criteria defined for mul-
tithreaded programs, implemented with Pthreads (POSIX
Threads). The ValiPThread testing tool was used to sup-
port the experiment. The programs were selected consid-
ering the benchmarks Inspect, Helgrind and Rungta pro-
grams, that are commonly used to evaluate techniques and
testing criteria in the context of concurrent software. The
results indicate that is possible the development of an in-
cremental strategy for application of these testing criteria
with low application cost and high effectiveness.

1 Introduction

Empirical studies have been developed in context of se-

quential programs, showing information about the effective-

ness, cost and strength of sequential testing criteria, where

the results indicate that structural testing criteria are effec-

tive to find faults in programs [3, 8]. The effectiveness is

measured calculating the amount of faults revealed for each

testing criterion in relation to injected faults. The applica-

tion cost of the testing criteria can be measured in terms of

the test set size and the number of required elements. The

strength of a testing criterion C1 in relation to C2 is mea-

sured evaluating the coverage of a test set T , adequate to

C2, in relation to C1. If the coverage of T in relation to C1

is low, it means that C1 has a high strength in relation to C2.

Otherwise, if the coverage of T in relation to C1 is high, it

means that, in a practical way, C2 includes C1.

Concurrent programming became an essential paradigm

to reduce the computational time in many application do-

mains. However, concurrent applications are inevitably

more complex than sequential ones and, in addition, all

concurrent software contains features such as nondeter-

minism, synchronization and inter-process communication

which significantly increase the difficulty of testing.

Several works have proposed structural criteria to test

concurrent applications, demonstrating that is promising to

translate sequential testing criteria to the context of concur-

rent programs [1, 10, 2, 11]. In the same vein, we have de-

veloped structural testing criteria for the validation of con-

current programs, applicable to both message-passing soft-

ware [6] and multithreaded software [5].

The empirical evaluation of the testing criteria for con-

current programs is an important activity to find evidences

about the cost and effectiveness of these testing criteria.

This paper contributes in this scenario, where we present an

experimental study to evaluate the effectiveness, cost and

strength of a set of testing criteria for multithreaded pro-

grams, defined by Sarmanho et al. [5]. Considering this

objective, the following research question were defined:

Which is the effectiveness, the application cost and
the strength of the testing criteria for multithreaded pro-
grams?

Based on the research question, the study hypotheses are:

Null Hypothesis 1 (NH1): The application cost is the

same for all structural testing criteria analyzed.

Alternative Hypothesis 1 (AH1): The application cost

is different for at least one structural testing criterion for

multithreaded programs.

Null Hypothesis 2 (NH2): The effectiveness is the same

for all structural testing criteria analyzed.

Alternative Hypothesis 2 (AH2): The effectiveness is

different for at least one structural testing criterion for mul-

tithreaded programs.

Null Hypothesis 3 (NH3): In relation to strength, there

is not one multithreaded testing criterion that subsumes an-

other.

477

Alternative Hypothesis 3 (AH3): There is at least one

multithreaded testing criterion that subsumes another.

This paper is organized as follows. In Section 2 is de-

scribed the structural testing for multithreaded programs

studied in this paper. In Section 3 is presented the plan-

ning and conduction of the experimental study. Section 4

discusses the results obtained with the experimental study

and, finally, in Section 5 is presented the conclusions and

future work.

2 Structural Testing of Concurrent Pro-
grams

In this section, we present the structural testing criteria

for multithreaded programs investigated in our experimen-

tal study. More details about the definition of these testing

criteria are presented in Sarmanho et al. [5].

Based on previous work, the definition of the structural

testing for multithreaded programs uses a test model that

captures relevant information for the testing, such as data,

control, synchronization and communication flow. A Par-
allel Control Flow Graph for Shared Memory (PCFGsm)

is proposed to represent the information flow of the multi-

threaded program under test, composed of a Control Flow

Graph for each thread and edges related to syncrhonization

among threads. In this model the communication happens

implicitly, by means of shared variables and the synchro-

nization happens explicitly by means of semaphores. Based

on this test model and on the sequential testing criteria, the

following testing criteria were defined:

All-nodes: requires the execution of all nodes of the

PCFGsm;

All-p-nodes: requires the execution of all nodes thats

contains the synchronization primitive post;

All-w-nodes: requires the execution of all nodes thats

contains the synchronization primitive wait;

All-s-edges: requires the execution of all edges

thats contains synchronizations instructions related to

semaphores;

All-edges: requires the execution of all edges of the

PCFGsm.

All-def-comm: requires the coverage of definition-clear

paths that execute all definitions of shared variables associ-

ated for at least one communicational use;

All-def: requires the coverage of definition-clear paths

that execute all definition of shared and local variables asso-

ciated for at least one use (computational, communicational

or predicative use).

All-comm-c-uses: requires the execution of definition-

clear paths that execute all computational uses of each defi-

nition of shared variable;

All-com-p-use: requires the execution of definition-

clear paths that execute all predicative uses of each defi-

nition of shared variable;

All-c-uses: requires the execution of definition-clear

paths that execute all computational uses of each definition

of local variable;

All-p-uses: requires the execution of definition-clear

paths that execute all predicative uses of each definition of

local variable;

All-sync-uses: requires the execution of definition-clear

paths that execute synchronization uses for all definition of

semaphore variable.

A testing tool, named ValiPThread, was implemented to

support these test model and testing criteria[5]. This tool

is configured to test PThreads/ANSI C programs, allowing

the following functionalities: static analysis, generation of

required elements from multithreaded program, execution

of test cases, controlled execution of test cases and evalu-

ation of the test cases coverage. This tool was used in the

experimental study described in the next section.

3 Experimental Study: Description and
Planning

The experimental study was performed according to the

Experimental Software Engineering Process, proposed by

Wholin et al. [9]. Considering this process, the subjects of

the experiment are the structural testing criteria for multi-

threaded programs (Section 2). The goal is the evaluation

of three factors: application cost, effectiveness and strength.

Aiming this goal, the programs were selected consider-

ing some benchmarks commonly used for the evaluation of

testing criteria in the context of concurrent software. We

have selected programs from three different benchmarks:

Inspect (12 programs), Helgrind (12 programs) and Rungta

benchmark (4 programs) [12, 7, 4]. Furthermore, we have

selected more five programs that implement solutions to

concurrent classical problems.

Each program was executed in the ValiPThread tool fol-

lowing a similar strategy: 1) generation and execution of

the test cases; 2) analysis of the coverage in relation to each

criterion; 3) generation of new test cases until to obtain the

maximum coverage, where the maximum coverage corre-

sponds to execute all feasible required elements of the test-

ing criterion; 4) analysis of the required elements to deter-

mine those infeasible. An element is infeasible if there is no

set of values for the parameters (considering the input and

global variables) that cover that element.

After the application of this strategy, we obtained an ade-

quate test set for each testing criterion. These adequate test

sets are used to evaluate the strength of the criteria. This

analysis is performed by applying each test set T , adequate

for a given criterion, to other criteria, evaluating the cover-

age obtained for T . The strength is a measure that evaluate

the difficulty to satisfy one given criterion with a test set

478

adequate to another criterion. This measure is important to

evaluate empirically the inclusion relation among criteria.

During the generation of test cases was observed the

effectiveness of each criteria to reveal the existent faults.

Some programs of the benchmarks Inspect, Helgrind and

Rungta have injected fault. If a test case belonging to an

adequate test set is able to reveal fault, this criterion is con-

sidered effective to reveal this kind of fault.

4 Experimental Study: Results

The analysis and interpretation of the results are made

based on principles of the descriptive statistics and hypoth-

esis testing. Using the analysis of variance (ANOVA) [9], it

was verified whether it is possible to reject the null hypoth-

esis based on collected data set and statistical tests. The

descriptive analysis is useful to describe and to show graph-

ically interesting aspects of the study. There are different

perspectives to evaluate the cost of a testing criterion. In

this study we choose the size of the adequate test set and

the number of required elements. Table 1 presents informa-

tion of cost for some programs of the experiment, showing

the size of the adequate test set and the number of feasi-

ble required elements for each testing criterion. The cost

data obtained for all programs of the experiment can sug-

gest an order to apply these criteria, considering initially

the criteria with minor cost: All-w-nodes (ANW), All-p-

nodes (ANP), All-p-uses (APU), All-c-uses (ACU), All-

nodes (AN), All-comm-c-uses (ACCU), All-comm-p-uses

(ACPU), All-sync-uses (ASU), All-s-edges (AES) and All-

edges (AE).

Criteria MMult Lazy01 Jacobi Stateful06 Effectiveness

All-nodes 12/340 2/26 4/260 1/26 75%

All-p-nodes 12/54 1/11 2/31 1/7 50%

All-w-nodes 12/49 1/9 3/27 1/6 50%

All-edges 52/425 5/19 11/149 2/13 100%

All-s-edges 52/328 5/15 11/75 2/8 100%

All-c-uses 12/247 1/3 2/67 1/8 50%

All-p-uses 12/209 - 2/64 1/6 66%

All-sync-uses 52/270 4/9 - 2/6 75%

All-comm-c-uses 24/320 2/2 6/100 1/1 75%

All-comm-p-uses - 4/6 7/61 - 100%

Table 1. Costs and effectiveness for some
programs in the experiment.

The test set size was used to evaluate the cost and to per-

form the hypothesis testing. Based on the ANOVA analysis,

the null hypothesis (NH1) is rejected because the p-value
obtained for a pair of different criteria was 0.0009, less than

the significance level of 0.05. This result suggests that there

exist differences among the costs of these testing criteria. In

this case, the alternative hypothesis (AH1) is accepted.

The effectiveness is calculated by the following equa-

tion:

effectiveness =
number of faults found

number of faults injected
∗ 100

In this analysis was considered the programs with in-

jected faults, totaling 23 programs. The results are pre-

sented in Table 1. The criteria ACPU, AE and AES are the

most effective to reveal the faults, however there are some

kind of faults that are revealed for few testing criteria and,

in some cases, testing criteria with less effectiveness are

responsible to identify specific kind of faults. The results

of the ANOVA analysis suggest that is possible reject the

null hypothesis (NH2) and accept the alternative hypothe-

sis (AH2), because the p-value obtained is 0.007, less than

0.05. These results indicate that there is a considerable dif-

ference of effectiveness among the testing criteria.

The equation below is used to calculate of strength of a

criterion C1:

strengthC1
=

Number of elements covered by TC2

Total of required elements − infeasible elements

Data analysis related to the strength was performed using

the statistical method of cluster analysis in order to identify

if there is an inclusion relation among the criteria. Dendro-

gram charts are used to illustrate the results about inclusion

relation among criteria. If a criterion C1 includes another

criteria C2 by applying the adequate test set TC1, these cri-

teria are at same level in the graph. Analysing the Dendo-

gram 1 we can conclude that the ACCU criterion includes

the ANW criterion because both are at the same level in

the graph. Based on this result the null hypothesis (NH3)

can be rejected and the alternative hypothesis (AH3) is ac-

cepted, indicating that the criteria can be complementary.

Figure 1. Dendrogram to All-comm-c-uses cri-
terion.

The cluster analysis for the remaining criteria indicates

479

the following inclusion relation among the criteria: ACCU,

APU, AE, AES include the ANW criterion; the APU crite-

rion includes the ACU criterion and the ANW includes the

ACU criterion. These results suggest a test strategy to ap-

ply these testing criteria: 1) generate test cases adequate to

ACCU criterion; 2) in the sequence, select new test cases to

cover the APU criterion and 3) since there is not relationship

between the other criteria pairs, it can be used information

about the cost and effectiveness to generate new test cases,

assuring that relevant aspects of the application under test

will be properly tested.

4.1 Threats to Validity

The external validity of the experiment refers to the abil-

ity to generalize the results. Since the programs used are

small, they may not be representative of the population.

However these benchmarks are largely used to compare

other testing techniques for multithreaded programs and

they include programs that contain faults commonly found

in these applications. The generalization can be achieved

if the experiment is replicated considering other domain of

concurrent applications.

The construct validity threats concern the relationship

between theory and observation. In our case, this threat is

related to knowledge about the used programs and inserted

faults, where this knowledge can influence the application

of the testing criterion. To avoid this threat, the order of

application of the criteria was different for each program,

preventing that the knowledge of the programs and inserted

faults would influence in the generation of test cases.

5 Conclusion

This paper presents an experimental study to evaluate a

family of structural testing criteria for multithreaded pro-

grams, where the objective was to find evidence about the

cost, effectiveness and strength of these testing criteria, aim-

ing to define a testing strategy to apply them.

The results of hypothesis analysis indicate that the test-

ing criteria present different cost and effectivess. The com-

parison among the sequential criteria: AN, AE, ACU and

APU, and the respective concurrent criteria: ANP and

ANW, AES, ACCU and ACPU, resulted that the sequen-

tial criteria sequential are the most expensive in terms of

application cost. In respect to effectiveness, the sequencial

testing criteria obtained better results, where only the AES

criterion had effectiveness similar to the AE criterion. The

results related to the strength indicated the complementary

relationship among the testing criteria.

According to Wohlin et al. [9], an experiment will never

provide the final answer to a question, hence, it is important

to facilitate its replication. In this sense, we are packing the

material used and generated in this experiment to provide a

lab package, which it is available for public access 1. We be-

lieve that is important to evaluate these aspects considering

other testing criteria for multithreaded programs, but using

the same benchmarks to allow the comparison between the

results obtained.

Acknowledgment

The authors would like to thank FAPESP, Brazilian

funding agency, for the financial support (process number:

2010/04042-1).

References

[1] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and

S. Ur. Framework for testing multi-threaded java programs.

Concurr. Comput.: Pract. Exper., 15:485–499, 2003.
[2] P. V. Koppol, R. H. Carver, and K. C. Tai. Incremental inte-

gration testing of concurrent programs. IEEE Trans. Softw.
Eng., 28:607–623, June 2002.

[3] N. Li, U. Praphamontripong, and J. Offutt. An experimental

comparison of four unit test criteria: Mutation, edge-pair,

all-uses and prime path coverage. In ICSTW09 - Interna-
tional Conference on Software Testing, Verification and Val-
idation Workshops, pages 220 –229, april 2009.

[4] N. Rungta and E. G. Mercer. Clash of the titans: tools

and techniques for hunting bugs in concurrent programs. In

Proc. of PADTAD ’09, pages 9:1–9:10, New York, NY, USA,

2009. ACM.
[5] F. S. Sarmanho, P. S. Souza, S. R. Souza, and A. S.

Simão. Structural testing for semaphore-based multithread

programs. In Proc. of ICCS ’08, pages 337–346, Berlin,

Heidelberg, 2008.
[6] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simão,

and A. C. Hausen. Structural testing criteria for message-

passing parallel programs. Concurr. Comput. : Pract. Ex-
per., 20:1893–1916, November 2008.

[7] Valgrind-Developers. Valgrind-3.6.1. http://valgrind.org.

Accessed: jun/2011.
[8] E. J. Weyuker. The cost of data flow testing: An empirical

study. IEEE Trans. Softw. Eng., 16:121–128, February 1990.
[9] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,

and A. Wesslén. Experimentation in software engineering:
An Introduction. Kluwer Academic Publishers, 2000.

[10] W. E. Wong, Y. Lei, and X. Ma. Effective generation of test

sequences for structural testing of concurrent programs. In

ICECCS, pages 539–548, 2005.
[11] C. S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path

coverage for parallel programs. SIGSOFT Softw. Eng. Notes,

23:153–162, March 1998.
[12] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A run-

time model checker for multithreaded C programs. Techni-

cal report, 2008.

1http://stoa.usp.br/silvanamm/files

480

481

482

483

484

485

486

A Tiny Specification Metalanguage
Walter Wilson, Yu Lei

Dept. of Computer Science and Engineering,
The University of Texas at Arlington

Arlington, Texas 76019, USA
wwwilson1@sbcglobal.net, ylei@cse.uta.edu

Abstract— A logic programming language with potential software
engineering benefit is described. The language is intended as a
specification language where the user specifies software
functionality while ignoring efficiency. The goals of the language
are: (1) a pure specification language – “what, not how”, (2) small
size, and (3) a metalanguage – able to imitate and thus subsume
other languages. The language, called “axiomatic language”, is
based on the idea that any function or program can be defined by
an infinite set of symbolic expressions that enumerates all
possible inputs and the corresponding outputs. The language is
just a formal system for generating these symbolic expressions.
Axiomatic language can be described as pure, definite Prolog
with Lisp syntax, HiLog higher-order generalization, and “string
variables”, which match a string of expressions in a sequence.

Keywords- specification; metalanguage; logic programming;
Prolog; HiLog; Lisp; program transformation

I. INTRODUCTION
Programming languages affect programmer productivity.

Prechelt [1] found that the scripting languages Perl, Python,
Rexx, and Tcl gave twice the productivity over conventional
languages C, C++, and Java. A factor of 4-10 productivity gain
has been reported for the declarative language Erlang [2]. Both
studies showed that lines of source code per hour were roughly
the same, regardless of language.

With current programming languages programmers
generally keep efficiency in mind. Even in the logic program-
ming field, which is supposed to be declarative, the
programmer must understand the execution process in order to
write clauses that terminate and are efficient. Program
transformation potentially offers a way of achieving the goal of
declarative programming where one can write specifications
without considering their implementation and then have them
transformed into efficient algorithms. One may thus ask what
kind of programming language would we want if we could
ignore efficiency and assume that a smart translator could
transform our specifications?

This paper describes a logic programming language called
“axiomatic language” [3] that is in tended to be such a
programming/specification language. T he goals of the
language are as follows:

1) a pure specification language – There are no language
features to control program execution. T he program-
mer writes specifications while ignoring efficiency and
implementation. P rogram transformation is thus
required. We assume that a translator can be built that

can transform the specifications into efficient
programs.

2) small, but extensible – The language should be as
small as possible with semantics as simple as possible.
Nothing is built-in that can be defined. T his means
that arithmetic would not be built-in. (We assume the
smart translator can “recognize” the definitions of
arithmetic and replace them with the corresponding
hardware operations.) Of course, any small language
must also be highly extensible, so that those features
which are not built-in can be easily defined and used
for specification as if they had been built-in.

3) a metalanguage – There are many ways in which one
might want to specify software: first-order logic, set
operations, domain specific languages, even a
procedural language, etc. An ideal language would be
able to define within itself other language features and
paradigms, which the user could then use for software
specification. With such a metalanguage capability,
one could not only define functions, but also define
new ways of defining functions.

We also have the goal of beauty and elegance for the language.

Axiomatic language is based on the idea that the external
behavior of a program – even an interactive program – can be
specified by a static infinite set of symbolic expressions that
enumerates all possible inputs – or sequences of inputs – along
with the corresponding outputs. Axiomatic language is just a
formal system for defining these symbolic expressions.

Section II defines the language and section III gives
examples. Section IV shows how symbolic expressions can be
interpreted as the input and output of real programs. Section V
discusses the novel aspects of the language and section VI
gives conclusions. This paper extends an earlier publication [4]
with syntax extensions and higher-order examples.

II. THE LANGUAGE
This section defines axiomatic language, which is intended

to fulfill the objectives identified in the introduction. Section A
introduces the language informally with examples. The
semantics and syntax of the core language are defined in
section B, and section C gives some syntax extensions.

A. An Overview
Axiomatic language can be described as pure definite

Prolog with Lisp syntax, HiLog [5] higher-order generalization,

487

and “string variables”, which match a string of expressions in a
sequence. A typical Prolog predicate is re presented in
axiomatic language as follows:
 father(sue,X) -> (father Sue %x)

Predicate and function names are moved inside the parentheses,
commas are replaced with blanks, “expression” variables start
with %, and both upper and lowercase letters, digits, and most
special characters can be used for symbols.

Clauses, or “axioms” as they are called here, are essentially
the same as in traditional logic programming, as shown by the
following definitions of natural number operations in successor
notation:
 (number 0). ! set of natural numbers
 (number (s %n))< (number %n).

 (plus 0 % %)< (number %). ! addition
 (plus (s %1) %2 (s %3))< (plus %1 %2 %3).

 (times 0 % 0)< (number %). ! multiplication
 (times (s %1) %2 %3)< (times %1 %2 %x),
 (plus %x %2 %3).

The symbol < replaces the Prolog symbol :- and comments
start after !. These axioms generate “valid expressions” such as
(number (s (s (s 0)))) and (plus (s 0) (s (s 0)) (s (s (s 0)))),
which are interpreted as the statements “3 is a number” and “1
+ 2 = 3”, respectively.

The two main features of axiomatic language in comparison
to Prolog are its higher-order property and st ring variables.
The higher-order property comes from the fact that predicate
and function names can be arbitrary expressions, including
variables, and that variables can represent entire predicates in
axioms. Section III.A gives some higher-order examples.

The other major feature of axiomatic language is its string
variables. A string variable, beginning with $, matches zero or
more expressions in a sequence, while an expression variable
%... matches exactly one. String variables enable more concise
definitions of predicates on lists:
 (append ($1) ($2) ($1 $2)) ! concatenation

 (member % ($1 % $2)). ! member of sequence

 (reverse () ()). ! reversing a sequence
 (reverse (% $) ($rev %))<
 (reverse ($) ($rev)).

Some example valid expressions are (append (a b) (c d) (a b
c d)) and (member c (a b c)). St ring variables can be
considered a generalization of Prolog's list tail variables. For
example, the Prolog list [a, X | Z] would be represented in
axiomatic language as the sequence (a %X $Z). But string
variables can occur anywhere in a sequence, not just at the end.
Note that sequences in axiomatic language are used both for
data lists and term arguments. This single representation is
convenient for representing code as data.

B. The Core Language
This section gives the definitions and rules of axiomatic

language, while the next section gives some syntax extensions.
In axiomatic language, functions and programs are specified by

a finite set of “axioms”, which generate a (usually) infinite set
of “valid expressions”, analogous to the way productions in a
grammar generate strings. An expression is

an atom – a primitive, indivisible element,
an expression variable,
or a sequence of zero or m ore expressions and string
variables.

The hierarchical structure of expressions is inspired by the
functional programming language FP [6].

Atoms are r epresented syntactically by symbols starting
with the backquote: `abc, `+. (The non-variable symbols
seen previously are not atoms, as section C explains.)
Expression and string variables are represented by symbols
beginning with % and $, respectively: %expr, %, and $str,
$1. A sequence is represented by a string of expressions and
string variables separated by blanks and enclosed in
parentheses: (`xyz %n), (`M1 $ ()).

An axiom consists of a conclusion expression and zero or
more condition expressions, in one of the following formats:
 conclu < cond1, …, condn. ! n>0
 conclu. ! an unconditional axiom

Axioms may be written in free format over multiple lines and a
comment may appear on the right side of a line, following an
exclamation point. Note that the definition of expressions
allows atoms and expression variables to be co nclusion and
condition expressions in axioms.

An axiom generates an axiom instance by the substitution
of values for the expression and string variables. An
expression variable can be replaced by an arbitrary expression,
the same value replacing the same variable throughout the
axiom. A string variable can be replaced by a string of zero or
more expressions and string variables. For example, the axiom,
 (`a (%x %y) $1)< (`b %x $w), (`c $w %y).

has an instance,
 (`a ((` %) `y))< (`b (` %) () `v),
 (`c () `v `y).

by the substitution of (` %) for %x, `y for %y, the string ‘()
`v’ for $w and the empty string for $1.

The conclusion expression of an axiom instance is a valid
expression if all the condition expressions of the axiom
instance are valid expressions. By default, the conclusion of an
unconditional axiom instance is a v alid expression. For
example, the two axioms,
 (`a `b).
 ((%) $ $)< (% $).

generate the valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b
`b), etc. Note that the semantics of axiomatic language is based
on definitions that enumerate a set of hierarchical expressions
and not on the operation of a resolution algorithm. Note also
that valid expressions are just abstract symbolic expressions
without any inherent meaning. Their association with real
computation and inputs and outputs is by interpretation, as
described in section IV.

488

C. Syntax Extensions
The expressiveness of axiomatic language is enhanced by

adding syntax extensions to the core language. A single
printable character in single quotes is syntactic shorthand for an
expression that gives the binary code of the character:
 ’A’ = (`char (`0 `1 `0 `0 `0 `0 `0 `1))

This underlying representation, which would normally be
hidden, provides for easy definition of character functions and
relations, which are not built-in.

A character string in single quotes within a sequence is
equivalent to writing the single characters separately:
 (… ’abc’ …) = (… ’a’ ’b’ ’c’ …)

A character string in double quotes represents a sequence of
those characters:
 ”abc” = (’abc’) = (’a’ ’b’ ’c’)

A single or double quote character is repeated when it occurs in
a character string enclosed by the same quote character:
”’””” = (’’’”’)=(’’’’ ’”’).

A symbol that does not begin with one of the special
characters ` % $ () ’ ” ! is equivalent to an
expression consisting of the atom ` and th e symbol as a
character sequence:
 abc = (` ”abc”)

This is useful for hi gher-order definitions, decimal number
representation, and for defining inequality between symbols,
which is not built-in.

Other syntax extensions might be useful, such as in-line
text, macros, or indentation-based syntax. Any syntax exten-
sion that has a clear mapping to th e core language could be
considered as an addition to the language. We view the
definitions and rules of the core language as fixed and
permanent, but its syntactic realization and any syntax
extensions are open to refinement and enhancement.

III. EXAMPLES
This section gives some examples of axiomatic language

and discusses its features. Section A gives examples of higher-
order definitions and section B shows the metalanguage
capability of the language.

A. Higher-Order Definitions
In axiomatic language, variables can be used for predicate

names and for entire predicates. These higher-order constructs
can be powerful tools for defining sets and relations. For
example, a predicate for a finite set can be defined in a single
expression, as follows:
 (%set %elem)<(finite_set %set ($1 %elem $2)).
 ! used to define finite sets:
 (finite_set day
 (Sun Mon Tue Wed Thu Fri Sat)).

These axioms generate valid expressions such as (day Tue).
Similarly, instead of defining facts in separate axioms, as

would be done in Prolog, we can generate them from a single
expression, as follows:
 % < (valid $1 % $2).
 ! specify multiple facts in one expression:
 (valid (father Sue Tom)
 (father Bill Tom)
 (father Jane Bill)).

From this we get valid expressions such as (father Jane Bill).

The higher-order capability allows valid expressions to be
combined into a single expression. The following axioms form
lists of expressions that are all valid:
 (all_valid).
 (all_valid % $)< % , (all_valid $).
 ! all expressions in list are valid:
 (grandparent %x %z)<
 (all_valid (parent %x %y) (parent %y %z)).

This expression represents the conjunction of valid expressions.
We can also have a condition that asserts that at least one
expression in a list is valid:
 (one_valid $1 % $2)< % .
 ! at least one expression in list is valid:
 (parent %x %y)<
 (one_valid (mother %x %y) (father %x %y)).

This represents valid expression disjunction.

Axioms themselves can be represented as expressions. We
can represent a single axiom in an expression as follows:
 %conclu < (axiom %conclu $conds),
 (all_valid $conds).
 ! specify axiom in a single expression:
 (axiom (sort %1 %2)
 (permutation %1 %2) (ordered %2)).

This is easily extended to represent a set of axioms in a single
expression:
 (axiom $axiom)< (axiom_set $1 ($axiom) $2).
 ! a set of axioms in a single expression:
 (axiom_set ((length () 0)) ! sequence length
 ((length (% $) (s %n)) (length ($) %n))).

This last axiom generates valid expressions such as (length (a b
c) (s (s (s 0)))).

The mapping of a relation or function to lists of arguments
is easily defined. First we need a utility that generates
sequences of zero-or-more copies of an expression:
 (zero_or_more % ()).
 (zero_or_more % (% $))< (zero_or_more % ($)).

We also need a utility that distributes a sequence of elements
over the fronts of sequences:
 (distr () () ()). ! distr elems over seqs
 (distr (%el $els) (($seq) $seqs)
 ((%el $seq) $seqsx))<
 (distr ($els) ($seqs) ($seqsx)).

Now we make use of symbol representation to map previously-
defined functions and relations to sequences of arguments:
 ((` ($rel ’*’)) $nulls)< ! empty arg seqs
 (zero_or_more () ($nulls)).

489

 ((` ($rel ’*’)) $argseqsx)< !non-empty seqs
 ((` ($rel ’*’)) $argseqs),
 ((` ($rel)) $args), ! relation to map
 (distr ($args) ($argseqs) ($argseqsx)).

The expression (` ($rel)) matches the symbol for the relation
name and (` ($rel '*')) represents that symbol with an asterisk
appended. T hese axioms generate valid expressions such as
(day* (Sat Tue Tue)) and (append* ((a b) ()) ((c) (u v)) ((a b c)
(u v))). Note that our mapping definition automatically applies
to predicates of any arity. T he higher-order property of
axiomatic language is essentially the same as that of HiLog.
That is, the language has higher-order syntax but the semantics
are really first-order.

B. Metalanguage Examples
The higher-order property and string variables along with

the absence of commas give axiomatic language its
metalanguage property – its ability to imitate other languages.
In this section we define the evaluation of nested functions in
Lisp format. First we need decimal number representation:
 (finite_set digit ”0123456789”). ! digits
 (index %set %elem %index)< ! index for elems
 (finite_set %set ($1 %elem $2)),
 (length ($1) %index).
 ! -> (index digit ’2’ (s (s 0)))
 (dec_sym (` (%digit)) %value)<
 (index digit %digit %value).
 ! -> (dec_sym 1 (s 0)) -- single digit
 (dec_sym (` ($digits %digit)) %valuex)<
 (dec_sym (` ($digits)) %value),
 (index digit %digit %n),
 (length (* * * * * * * * * *) %10),
 (times %value %10 %10val),
 (plus %10val %n %valuex). ! multi digits

These axioms generate valid expressions, such as (dec_sym
325 (s (s … (s 0)…))), which give the natural number
value for a symbol of decimal digits. We use the length
function to hide the representation for the natural number 10.
Now we define the evaluation of nested expressions:
 (eval (quote %expr) %expr). ! identity fn
 (eval %dec_sym %value)< ! decimal num
 (dec_sym %dec_sym %value).
 (eval (%fn $args) %result)< ! eval func
 (eval* ($args) ($results)), ! eval args
 (%fn $results %result). ! func result

These axioms turn some of the previously-defined predicates
into functions which can be applied in a Lisp-like manner:
 (eval (times (length (append (quote (a b c))
 (reverse (quote (e d)))))
 (plus 3 17)
) %value)

When this expression is used as a c ondition, the variable
%value will get instantiated to the natural number
representation for 100. Of course, these nested expressions
only make sense when formed from predicates that are
functions that yield a single result as the last argument.

A contrasting procedural-language example can be found in
the original paper [4].

IV. SPECIFICATION BY INTERPRETATION
We want to s pecify the external behavior of a program

using a set of valid expressions. A program that maps an input
file to an output file can be specified by an in finite set of
symbolic expressions of the form
 (Program <input> <output>)

where <input> is a sy mbolic expression for a possible input
file and <output> is th e corresponding output file. For
example, a text file could be represented by a sequence of lines,
each of which is a sequence of characters. A program that sorts
the lines of a text file could be defined by valid expressions
such as the following:
 (Program (”dog” ”horse” ”cow”) ! input
 (”cow” ”dog” ”horse”)) ! output

Axioms would generate these valid expressions for all possible
input text files.

An interactive program where the user types lines of text
and the computer types lines in response could be represented
by valid expressions such as
 (Program <out> <in> <out> <in> …
 <out> <in> <out>)

where <out> is a sequence of zero or more output lines typed
by the computer and <in> is a single input line typed by the
user. Ea ch Program expression gives a possible execution
history. Valid expressions would be generated for all possible
execution histories. This static set of symbolic expressions is
interpreted to represent real inputs and outputs over time. This
is a completely pure approach to the awkward problem of
input/output in declarative languages [7] and av oids Prolog's
ugly, non-logical read/write operations. Example programs can
be found at the language website [3].

V. NOVELTY AND RELATED WORK
This section discusses some of the more novel aspects of

axiomatic language in comparison to P rolog and other
languages:

(1) specification by interpretation – We specify the external
behavior of programs by interpreting a static set of symbolic
expressions. Even languages with "declarative” input/output
[9] have special language features, but axiomatic language has
no input/output features at all – just interpretation of the
generated expressions.
(2) definition vs. computation semantics – Axiomatic language
is just a formal system for defining infinite sets of symbolic
expressions, which are then interpreted. Prolog semantics, in
contrast, are based on a model of computation.
(3) Lisp syntax – Axiomatic language, like some other logic
programming languages (MicroProlog [10], Allegro [11]), uses
Lisp syntax. This unified representation for code and data
supports metaprogramming.
(4) higher-order – P redicate and function names can be
arbitrary expressions, including variables, and entire predicates
can be represented by variables. This is the same as in HiLog,
but with Lisp syntax. The XSB [12] implementation of HiLog,

490

however, does not allow variables for head predicates in
clauses [13]. H igher-order programming can be done in
standard Prolog, but requires special features, such as the ‘call’
predicate. [14]
(5) non-atomic characters – Character representation is not
part of the core language, but defined as a syntax extension.
There are no built-in character functions, but instead these
would be defined in a library.
(6) non-atomic symbols – Non-atomic symbols eliminate the
need for built-in decimal numbers, since they can be easily
defined through library utilities.
(7) flat sequences – Sequences in axiomatic language are
completely "flat" compared with the underlying head/tail “dot”
representation of Prolog and Lisp.
(8) string variables – T hese provide pattern matching and
metalanguage support. String variables can yield an infinite set
of most-general unifications. For example, ($ a) unifies with (a
$) with the assignments of $ = '', 'a', 'a a',
(9) metalanguage – T he flexible syntax and higher-order
capability makes axiomatic language well-suited to meta-
programming, language-oriented programming [15], and
embedded domain-specific languages [16]. T his language
extensibility is sim ilar to that of Racket [17], but axiomatic
language is smaller.
(10) no built-in arithmetic or other functions – The minimal
nature and extensibility of axiomatic language means that basic
arithmetic and other functions are provided through a library
rather than built-in. But this also means that such functions
have explicitly defined semantics and are more amenable to
formal proof.
(11) explicit definition of approximate arithmetic – Since there
is no built-in floating point arithmetic, approximate arithmetic
must also be defined in a library. But this means symbolically
defined numerical results would always be identical down to
the last bit, regardless of future floating point hardware.
 (12) negation – In axiomatic language a form of negation-as-
failure could be defined on encoded axioms.
(13) no non-logical operations such as cut – This follows from
there being no procedural interpretation in axiomatic language.
(14) no meta-logical operations such as v ar, setof, findall –
These could be defined on encoded axioms.
(15) no assert/retract – A set of axioms is s tatic. Modifying
this set must be done “outside” the language.

VI. CONCLUSIONS
A tiny logic programming language intended as a pure

specification language has been described. T he language
defines infinite sets of symbolic expressions which are
interpreted to represent the external behavior of programs. The
programmer is expected to write specifications without concern
about efficiency.

 Axiomatic language should provide increased programmer
productivity since specifications (such as the earlier sort
definition) should be smaller and more readable than the

corresponding implementation algorithms. Furthermore, these
definitions should be more general and reusable than
executable code that is c onstrained by efficiency. N ote that
most of the axioms of this paper could be considered reusable
definitions suitable for a library. Axiomatic language has fine-
grained modularity, which encourages the abstraction of the
general parts of a solution from specific problem details and
minimizes boilerplate code. The metalanguage capability
should enable programmers to define a rich set of specification
tools.

The challenge, of course, is the efficient implementation of
the programmer's specifications. [18] Higher-order definitions
and the metalanguage capability are powerful tools for software
specification, but make program transformation essential. The
difficult problem of transformation should be helped, however,
by the extreme simplicity and purity of the language, such as
the absence of non-logical operations, built-in functions, state
changes, and in put/output. Future work will address the
problem of transformation.

REFERENCES
[1] L. Prechelt, “An empirical comparison of seven programming

languages,” IEEE Computer, vol. 33, no. 10, pp. 23-29, October 2000.
[2] U. Wiger, “Four-fold increase in productivity and quality”, Ericsson

Telecom AB, 2001.
[3] http://www.axiomaticlanguage.org
[4] W. W. Wilson, “Beyond Prolog: software specification by grammar,”

ACM SIGPLAN Notices, vol. 17, #9, pp. 34-43, September 1982.
[5] W. Chen, M. Kifer, D. S. Warren, “HiLog: a foundation for higher-order

logic programming,” in J. of Logic Programming, vol. 15, #3, pp. 187-
230, 1993.

[6] J. Backus, “Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs,” CACM, vol. 21, #8, pp.
613–641, August 1978.

[7] S. Peyton Jones, “Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell”,
Engineering Theories of Software Construction, ed. T. Hoare, M. Broy,
R. Steinbruggen, IOS Press, pp. 47-96, 2001.

[8] A. Pettorossi, M. Proietti, R. Giugno, “Synthesis and transformation of
logic programs using unfold/fold proofs,” J. Logic Programming, vol.
41, 1997.

[9] P. Wadler, “How to declare an imperative,” ACM Computing Surveys,
vol. 29, #3, pp. 240-263, September, 1997.

[10] K. L. Clark, Micro-Prolog: Programming in Logic, Prentice Hall, 1984.
[11] Allegro Prolog, http://www.franz.com/support/documentation/8.2/doc/

prolog.html.
[12] The XSB Research Group, http://www.cs.sunysb.edu/~sbprolog/

index.html.
[13] D. S. Warren, K. Sagonas, private communication, 2000.
[14] L. Naish, “Higher-order logic programming in Prolog,” Proc. Workshop

on Multi-Paradigm Logic Programming, pp. 167-176, JICSLP’96, Bonn,
1996.

[15] M. Ward, “Language oriented programming”, Software Concepts and
Tools, vol. 15, pp. 147-161, 1994.

[16] P. Hudak, “Building domain-specific embedded languages,” ACM
Computing Surveys, vol. 28, #4es, December 1996.

[17] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, M. Felleisen,
“Languages as Libraries”, PLDI’11, 2011.

[18] P. Flener, Achievements and Prospects of Program Synthesis, LNAI
2407, pp. 310-346, 2002.

491

SciprovMiner: Provenance Capture using the OPM
Model

Tatiane O. M. Alves, Wander Gaspar, Regina M. M.
Braga, Fernanda Campos

Master's Program in Computer Science
Department of Computer Science

Federal University of Juiz de Fora, Brazil
{tatiane.ornelas, regina.braga,

fernanda.campos}@ufjf.edu.br, andergaspar@gmail.com

Marco Antonio Machado, Wagner Arbex
National Center for Research in Dairy Cattle

Brazilian Enterprise for Agricultural Research -
EMBRAPA

 Juiz de Fora, Brazil
{arbex, machado}@cnpgl.embrapa.br

Abstract—Provide historical scientific information to deal with
loss of knowledge about scientific experiment has been the focus
of several researches. However, the computational support for
scientific experiment on a large scale is still incipient and is
considered one of the challenges set by the Brazilian Computer
Society for the period 2006 to 2016. This work aims to contribute
in this area, presenting the SciProvMiner architecture, which
main objective is to collect prospective and retrospective
provenance of scientific experiments as well as apply data mining
techniques in the collected provenance data to enable the
discovery of unknown patterns in these data.

Keywords-web services; ontology; provenance; OPM; OPMO;
data mining.

I. INTRODUCTION

The large-scale computing has been widely used as a
methodology for scientific research: there are several success
stories in many domains, including physics, bioinformatics,
engineering and geosciences [1].

Although scientific knowledge continue to be generated in
a traditional way, in-vivo and in-vitro, in recent decades
scientific experiments began to use computational procedures
to simulate their own execution environments, giving origin to
in-virtuo scientific experimentation. Moreover, even the
objects and participants in an experiment can be simulated,
resulting in in-silico experimentation category. These large-
scale computations, which support a scientific process, are
generally referred to as e-Science [1].

The work presented in this article, SciProvMiner, is part of
a project developed in Federal University of Juiz de Fora
(UFJF), Brazil, with emphasis on studies to building an
infrastructure to support e-Science projects and has as its main
goal the specification of an architecture for the collection and
management of provenance data and processes in the context
of scientific experiments processed through computer
simulations in collaborative research environments
geographically dispersed and interconnected through a
computational grid. The proposed architecture must provides
an interoperability layer that can interact with SWfMS
(Scientific Workflows Management Systems) and aims to
capture retrospective and prospective provenance information
generated from scientific workflows and provides a layer that

allows the use of data mining techniques to discover important
patterns in provenance data.

The rest of the paper is structured as follows: In Section 2
we present the theoretical foundations that underpin this work.
Section 3 describes some related work. Section 4 presents the
contributions proposed in this work, the architecture of
SciprovMiner is detailed, showing each of its layers and
features. Finally, section 5 presents final considerations and
future work.

II. CONCEPTUAL BACKGROUND

Considering scientific experimentation, data provenance
can be defined as information that helps to determine the
historical derivation of a data product with regards to its
origins. In this context, data provenance is being considered an
essential component to allow reproducibility of results, sharing
and reuse of knowledge by the scientific community [2].

Considering the necessity of providing interoperability in
order to exchange provenance data, there is an initiative to
provide a standard to facilitate this interoperability. The Open
Provenance Model (OPM) [3] defines a generic representation
for provenance data. The OPM assumes that the object (digital
or not) provenance can be represented by an annotated
causality graph, which is a directed acyclic graph, enriched
with notes captured from other information related to the
execution [3].

In the OPM model, provenance graphs are composed of
three types of nodes [3]:

• Artifacts: represent an immutable state data, which
may have a physical existence, or have a digital
representation in a computer system.

• Processes: represent actions performed or caused by
artifacts, and results in new artifacts.

• Agents: represent entities acting as a catalyst of a
process, enabling, facilitating, controlling, or affecting
its performance.

Figure 1 adapted from [3], illustrates these three entities
and their possible relationships, also called dependencies. In
Figure 1, the first and second edge in the right column express
that a process used an artifact and that an artifact was
generated by a process. These two relationships represent data

492

derivation dependencies. The third edge in the right column
indicates that a process was controlled by an agent. Unlike the
other two mentioned edges, this is a control relationship. The
first edge in the left column is used in situations where we do
not know exactly which artifacts were used by a process, but
we know that this process has used some artifact generated by
another process. Thus, it can be said that the process is
initialized by another process.

Figure 1. Edges in OPM: origins are effects and destinations are causes

[adapted from [3]]

Similarly, the second edge in the left column is used in
situations where we do not know what process generated a
particular artifact, but we know that this artifact was derived
from another artifact. These last two relationships are
recursive and can be implemented considering inference rules.
So, from them, it is possible to determine the sequence of
execution of processes or the historical derivation that
originated a data.

Some provenance models use Semantic Web technology to
represent and to query provenance information. Semantic Web
languages such as RDF and OWL provide a natural way to
model provenance graphs and have the ability to represent
complex knowledge, such as annotations and metadata[7].
One of the benefits of the semantic web approach is the ability
to integrate data from any source in the knowledge base.

In [3] is defined an OWL ontology to capture concepts in
OPM 1.1 version and the valid inferences in this model.
Furthermore, this OWL ontology specifies an RDF
serialization of the OPM abstract model. This ontology is
called Open Provenance Model Ontology (OPMO).

III. RELATED WORKS

Recently, some works have been conducted to address
challenges in data provenance considering scientific domain.

In [5], the author proposes an architecture for data
provenance management called ProvManager. The
SciProvMiner architecture as well as ProvManager is focused
on capturing provenance in workflows orchestrated from
heterogeneous and geographically distributed resources based
on the invocation of web services. However SciProvMiner
provides an infrastructure based on semantic web for
provenance metadata representation and query. This feature
gives to SciProvMiner a greater power of expression to infer
new knowledge. ProvManager collects both prospective and
retrospective provenance. SciProvMiner also collects
prospective and retrospective provenance, with the differential
that it uses OPM model to capture both retrospective and
prospective provenance. The advantage of this approach is the
interoperability of captured data, since it uses a standard

model. Considering the data mining layer of SciProvMiner,
ProvManager does not have.

In [4] is proposed an extension to OPM in order to model
prospective provenance, in addition to retrospective
provenance already supported in the native OPM model. The
SciProvMiner also uses an OPM extension for supporting
prospective provenance, however, the proposed architecture in
[4] does not provide infrastructure based on semantic web -
RDF, OWL ontologies, and inference engines, as
SciProvMiner. This feature allows that the query engine of
SciProvMiner can provides results that combine the power of
data mining techniques together with inference engines acting
over ontologies.

In [6] the authors present a mining method based on
provenance data for creating and analyzing scientific
workflows. SciProvMiner also uses mining methods applied to
provenance data, but the focus is on unexpected knowledge
discovery. Also, SciProvMiner uses ontologies together with
data mining techniques.

IV. SCIPROVMINER- SCIENTIFIC WORKFLOW PROVENANCE

SYSTEM MINER

In the context of e-Science, the emphasis on the conception
and construction of SciProvMiner architecture consists of
using semantic web resources to offer to researchers an
environment based on interoperability for heterogeneous and
distributed provenance management and query.

The SciProvMiner architecture representation considering
a typical scenario is presented in Figure 2. In a collaborative
environment interconnected through a computational grid, the
experiments can be conducted jointly by groups of scientists
located on remote research centers.

 Within this scenario, researchers can model scientific
workflows from different SWfMS and whose execution
requires access to heterogeneous repositories and distributed
in a computational grid. In this environment, the information
stored lack mechanisms that contribute to a better
interoperability between the data and processes generated and
orchestrated within collaborative research projects. The
SciProvMiner aims to provide the necessary infrastructure to
make this interoperability possible.

The initial responsibility of SciProvMiner is to provide an
instrumentation mechanism for the several components of the
scientific workflow involved in conducting the collaborative
experiment whose provenance data need to be collected for
further analysis. In this context, an instrumentation mechanism
is implemented using web services technology and manually
configured for each component whose provenance must be
collected. This mechanism aims to capture information
generated during the workflow execution and send the
metadata to a provenance repository managed by
SciProvMiner.

493

Figure 2. SciProvMiner Architecture

Considering Figure 2, "Provenance Graph Generation and
Visualization Layer" has several interrelated tasks. From the
relational database, the information persisted according to
OPM model are processed in order to obtain an in-memory
representation of the provenance graph corresponding to each
execution of the scientific workflow and also of the execution
models of this workflow. This layer allows the construction of
a visual representation of the generated provenance graph,
considering both retrospective and prospective provenance.
The “Provenance Graph Query Layer” is intended to provide a
mechanism and an interface for the user to formulate queries.
This layer is associated with the OPM ontology and with the
ontology of the studied domain (for example, dairy cattle and
its parasites domain). This resource gives to SciProvMiner the
possibility to process queries using inference machines that
provides the capability to make deductions about
SciProvMiner’s knowledge bases and gain important results
considering that it extracts additional information beyond
those that are explicitly recorded in the generated provenance
graphs.

The “Data Provenance Mining Layer” performs the search
for unknown and useful patterns in provenance data using data
mining techniques together with the ontologies and inference
mechanisms. With this layer we aim to achieve a higher
quality of provenance data, identifying possible errors and
increasing the reliability of the results in the execution of an
experiment.

A. Provenance Capture

As emphasized, the SciProvMiner presents an approach for
managing provenance data independently of SWfMS. This
implies that SciProvMiner is responsible for gathering of
generated provenance data. An important feature of the
instrumentalization model of SciProvMiner refers to the
adoption of a single web service to wrap any original
component of an experiment modeled from a scientific
workflow. The SciProvMiner web service can be invoked one
or more times for each component of the original workflow. In
a typical scenario, a first instance of the web service is
configured to gather the input data (artifacts, according to the
OPM model) to be processed on the original component. In a
second instance, it can capture information related to the
original component (a process, according to the OPM model)
such as start and end of the run, causal dependencies related to
input and output artifacts (needed for the explicit
characterization of which component used the input data and
generated the output data).

It is important to observe that can be used a greater number
of instrumentalization web service instances for the same
original component, depending on the need to collect other
entities and causal dependencies of the OPM model identified
in a workflow. By hypothesis, the instrumentalization in the
form adopted by this work is possible in any Scientific
Workflow Management System that supports web services
based on SOAP standard.

Starting from an approach of provenance collection at a
process level (component), it opens the possibility of control
over the data granularity to be captured. In the domain of
scientific experimentation, may be important for the researcher
to analyze information and prepare data lineage queries at
various levels of detail. In this scenario, it becomes important
that the provenance model may be able to deal with
provenance information at different levels of granularity. (The
OPM provides this resource in a convenient from the entity
called "description" (account).

It can also be observed that different provenance
descriptions relating to the same execution of a scientific
workflow, represent varied lineage semantics. Therefore, by
provenance data collection at different levels of granularity is
possible to make analyzes and queries over the provenance
data, according to the particularities of the research in
progress. In this scenario, it should be noted that the strategy
of provenance collection and management at various levels of
abstraction can be considered as an important differential of
our work allowing the parameterization of the provenance
query according to the specific focus of research.

Figure 3. Composite component modeled in SWfMS Kepler

Taking an example of a workflow modeled in Kepler and
the capture of retrospective provenance, shown in Figure 3,
the instrumentation mechanism built manually can be used to
capture the provenance data according to the OPM model in a
specific level of granularity, defined according to the interests
of the researcher or of the research group involved with the
scientific experiment under study.

If the scientific workflow is instrumentalized in more than
one level of granularity from different descriptions, the
subgraph for each account (description) is displayed in a
different color in the generated provenance graph.

Considering the prospective provenance context and the
importance to obtain all necessary information about
provenance, the SciProvMiner architecture uses an OPM

494

model extension as proposed in [6]. With this extension
becomes possible to collect information such as the
description of the workflow, the computational tasks that are
part of the workflow, the subtasks of a task, the agent who
performs a task and the input and output ports of a task, where
the output port of a task can be connected to input port of
another task, characterizing the flow of data. These
informations are persisted in Relational Database Management
System (RDBMS), together with information about
retrospective provenance.

Due to the fact that one of the main features of
SciProvMiner is the use of Semantic Web resources for
representation and query of provenance data, an extension of
the OPMO ontology that includes prospective provenance is
currently being detailed.

V. DATA MINING

The task of data mining seeks to extract information that are
hidden in large databases, which are previously unknown and
potentially useful. Generally, the knowledge discovered by data
mining processes is expressed in the form of rules and patterns.

According to [6], mining processes in scientific workflows
are very valuable, because of scientific experiments are
exploratory in nature and changes are constant.

Considering the context of SciProvMiner, data mining
techniques can be applied for the following categories:

• Descriptive: whose objective is to find patterns that
describe characteristics of a segment or a group of
data. The main descriptive tasks are Extraction of
Association Rules and Clustering, In the context of the
prospective provenance data, this category is useful in
order to help in the validation of workflow models and
assist in the replacement of workflow models that
follow similar pattern in the context of a given
experiment.

• Predictive: make inferences about the existing data to
build models that will be used as predictive tools.
Classification and Regression may be cited as the
main predictive tasks. This category is particularly
interesting in the context of retrospective provenance,
considering the OPMO ontology and the possibilities
of connection between the data.

In this context, data mining layer of SciProvMiner acts
regarding as these two categories, providing a query
mechanism where data mining techniques are considered,
together with OPMO and inference mechanisms. Currently,
OPMO ontology is being extended to encompass specific
needs of data mining techniques in order to improve data
treatment.

Whereas provenance in scientific experimentation is
important to help the scientist to evaluate the quality of the
data, the validity of the results and allow reproducibility of the
experiments, it is important to provide tools to scientist that
offers more knowledge about the experiments.

VI. FUTURE WORK

In 1995, Embrapa Dairy Cattle has initiated a research
project that has as main objective to obtain, by means of
biological approaches, zootechnical statistics and more
recently, through bioinformatics, genetic markers that, among
other things, explain the existence of genetically resistant
parasites and also seeking information about genetic
characteristics that confer low-irritability to animals.

These studies are motivated by the importance they have
and the expected production of these animals, since they are
responsible for phenotypical characteristics related to animal
behavior, and also the influence of this behavior on their
production.

In tropical areas, the infestation of bovine animals by endo
and ectoparasites causes a reduction in the productivity of
animals, leading, in extreme cases, to the death of them. This
issue is particularly important for Brazil, since the country has
the largest commercial cattle in the world, recording in 2010
about 209 million cattles [8].

In this context, it is indispensable the collection and
management of provenance data and processes of scientific
experiments which will assist in the perception of historical
data derivation, being necessary to the reproducibility of
results obtained.

This way, the use of SciProvMiner is being inserted into
this project because it is considered important to assist in the
management and discovery of new patterns considering the
data generated by the project.

REFERENCES
[1] S. C. Wong, S. Miles, W. Fang, P. Groth, and L. Moreau, “Provenance-

based Validation of E-Science Experiments,” In: 4th International
Semantic Web Conference (ISWC), Galway, Ireland, 2005, pp. 801-
815.

[2] J. Freire, D. Koop, E. Santos, C. T. Silva,”Provenance for
Computational Tasks: A Survey”, Computing in Science and
Enginnering, vol. 10, n. 3, pp. 11–21, 2008.

[3] L. Moreau et al, “The Open Provenance Model core
specification (version 1.1)”, Future Generation Computer
Systems, vol. 27 Issue 6, pp.743 –756, 2011.

[4] C. Lim, S. Lu, A. Chebotkot, F. Fotouhi,”Prospective and retrospective
provenance collection in scientific workflow environments”,
Proceedings - 2010 IEEE 7th International Conference on Services
Computing, SCC 2010, art. n. 5557202, pp. 449-456, 2010.

[5] A. Marinho et al., “Integrating Provenance Data from Distributed
Workflow Systems with ProvManager”, in International Provenance and
Annotation Workshop - IPAW, Troy, NY, USA, pp. 0-3, 2010.

[6] R. Zeng, X. He, J. Li, Z. Liu, V.D. Aalst, “A Method to Build and
Analyze Scientific Workflows from Provenance through Process
Mining”, 3rd USENIX Workshop on the Theory and Practice of
Provenance, 2011.

[7] W. Gaspar, R. Braga, R. Campos, “SciProv: An architecture for
semantic query in provenance metadata on e-Science context”, 2nd
International Conference on Information Technology in Bio- and
Medical Informatics, ITBAM 2011, Toulouse, pp 68-81, 2011.

[8] IBGE,http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?c=73&z=t&o=
24, 2011.

495

Engineering Graphical Domain Specific Languages to
Develop Embedded Robot Applications

Daniel B. F. Conrado and Valter V. de Camargo
Computing Department – Federal University of São Carlos (UFSCar)

São Carlos, Brazil
{daniel_conrado,valter}@dc.ufscar.br

Abstract—Over the last years, little attention has been paid in
software engineering techniques for improving the productivity
of embedded robot application development. The complexity of
these applications has been continuously growing and they are
presenting challenges that are uncommon to information systems'
development. Therefore, any technique that can support their
development is a great contribution. Domain specific languages
(DSLs) are one technique that aims at improving productivity by
reusing concepts and abstractions from a specific domain. In this
paper we present a DSL engineering process for embedded robot
applications. The aim is to make the activity of creating DSLs to
this domain more systematic and controlled. As a result, one can
build embedded robot applications in a more productive way. An
important characteristic of our process is that it asks for just one
application to reach a first version of a running DSL. We also
present a generic language model that may serve as a foundation
for future DSLs. In order to validate our process, we have
applied it to the development of a DSL from an aisle monitoring
robot application.

Keywords-component; Domain-Specific Languages; Mobile
Robots; DSL Engineering

I. INTRODUCTION
Domain-specific languages (DSLs) are small programming

languages which targets a specific domain. This domain may
be vertical, i.e. application domains like healthcare,
engineering, home security, etc. or horizontal, that is, technical
domains that provide structures to build applications, like
persistence, signal processing, security, among others [1].

One of the main advantages of DSLs is the possibility of
writing applications using domain expressions instead of
programming languages’ constructs. It raises the abstraction
level and also improves code reuse. DSLs can be differentiated
by their appearance (textual or graphical) and their origin
(internal or external). The difference between external and
internal DSLs is that the latter are embedded into another
general purpose language (GPL) called the host language, and
that’s why such DSLs are often called embedded languages.

In general, DSLs increases expressiveness significantly
when compared to a GPL [3]. It allows the developers to write
applications with fewer instructions that are easier to
comprehend. DSLs are also used in the context of Model-
Driven Development (MDD) by specifying high-level models
that are transformed into source code artifacts (Model-to-Code
transformation) or detailed models (Model-to-Model
transformation) [1,4].

Robots are electromechanical machines that perform
repetitive and/or dangerous tasks in an environment. They
extract environment’s information using sensors; calculate
actions based on that information by means of processing units
and perform those actions with end effectors (devices like
gripper and arm). In short, robots are composed by sensors,
actuators and processing units. The latter generally are a
platform-specific software embedded into one or more
microcontrollers [6,7,8].

In this context, one may note that the way the robot wheels
are configured, its sensors, microcontrollers, physical structure
and even its environment influences its programming.
Furthermore, there are a lot of non-functional properties that
must be considered such as power consumption, response time,
safety, among others. As we said, most of these issues are
uncommon to or quite different from information systems.

Although there are some processes to build DSLs
[3,9,10,11], we didn’t find one that takes into consideration
specific characteristics of mobile robots. With this lack, these
processes may yield poorly designed DSLs which compromises
the quality of generated applications. Using DSLs in the
context of robot applications may enhance their overall
development, since robotics is a complex domain and high-
level representations combined with model/code generation
would contribute for better understanding and code reuse.

In this paper we present a process for building DSLs which
target to the r obot application domain. Moreover, although
domain engineering is generally performed by analyzing at
least three applications of a certain domain, there may be
situations where there is an interest in building DSLs even
though such applications don’t exist yet. In this context, our
aim is to c ontribute to robotic software development with an
alternative process that provides guidelines for building initial
DSLs based on a single application. The main idea is that such
initial DSLs may eventually be evolved to the extent that new
applications are developed and new abstractions are identified.
As a proof of concept, we developed a DSL based on security
applications implemented with a LEGO Mindstorms kit and the
LeJOS API [5].

This paper is organized as follows: section II presents our
process; section III presents our proof of concept; section IV
presents related works, and section V concludes the paper.

496

II. A PROCESS FOR ENGINEERING DSLS
In this section we present our process, which has five

activities. We detail them below. The process overview can be
seen as a SADT diagram in Fig. 1. The main focus of this paper
is on the second and third activities because of space
limitations.

Pick or build an application. In this activity, the domain
engineer shall builds a robot application or take an existi ng
one. He/she must have knowledge about its requirements and
the software libraries used in the implementation.

 Identify domain abstractions. This activity is divided in
two steps which are explained below.

Extract domain abstractions from requirements. In this
step, the domain engineer shall analyze the application’s
requirements to extract domain abstractions, which will
comprise the DSL abstractions. This activity consists of
structuring the application’s requirements as a tree, as can be
seen in Fig. 2, where the first node represents the application’s
main objective. The first level of children nodes is called
“What to do” level, since they state what the robot must
perform in order to achieve the main objective. The second
level is called “How to do” level and its nodes describe what
the robot does to perform what is stated in their parent nodes.
The “How to do” nodes shall be created considering how
actuators and sensors are utilized to perform such action. For
example, if the main objective is following a wall, there may be
a first level node stating “walk near the wall”, and it could have
children nodes stating “walk” and “keep parallel to wall”. A
node may also have children nodes in the same level.

After creating this tree, which is the resulting artifact from
this activity, the domain engineer shall choose which
abstractions will comprise the intended DSL. If he/she chooses
the leaf nodes, the resulting DSL will be more flexible but
more verbose and less related to the application domain. But if

the “What to do” nodes is chosen, the DSL will be closely
related to the application domain and will be more expressive
but too rigorous and limited. It’s also possible to choose
abstractions from different node levels—usually, the more
abstract ones results in less flexible DSL elements.

Classify domain abstractions into concerns. In this step,
one shall create a table categorizing the chosen abstractions
into concerns. These concerns must be related to the mobile
robots’ domain. The most common concerns are domain-
independent, for example, Movement, Communication and
Recognition. However, the domain engineer can elect domain-
specific concerns as well. For example, abstractions that state
the robot must move, like following a line or a path, should
belong to Movement concern, yet abstractions such as finding
the best path should be classified into the Planning concern,
and so on. The resulting artifact of this activity is called Table
of Domain Abstractions and it is the input for the next activity.

Create language model. In this activity, the domain
engineer shall iterate the concerns and for each of them he/she
identifies common and variant parts of its abstractions. Then
these parts are added to t he Language model. Here, the
engineer must know the APIs used in the implementation of the
application, as we mentioned earlier. It is important to know
how the physical parts of the robot, such as sensors and motors,
are programmatically represented, because the Language
Model should be aware of implementation details, even though
they will not be visible to developers. These details are
important for code generation issues.

As a r esult of our study, we created a generic language
model that could be used as a foundation for new mobile robot
DSLs. That is, the domain engineer could simply extend our
generic language model to fit his/her needs.

Our generic language model is shown in Fig. 3. The main
entity is Robot. It contains behaviors, belief states, sensors and
variables. This model is based on the Behavior model [6] and
its way of programming robots consists roughly of specifying
behaviors for the robot, and each of them has a condition to be
executed. Just one behavior will run at a time—the one whose
condition is satisfied at the moment. In our model, the
conditions are specified as belief states; the expression property
is intended to contain comparisons of sensors’ data and
variable values. The expression may use functions of sensors
and variables. For example, an ultrasonic sensor may have the
“distance” function which returns a float value. The domain

Figure 1. The process for engineering DSLs for mobile robot applications

Figure 2. Illustration of requirements structured as a tree

497

engineer may also create other specialized entities having
algorithms such as th e Gaussian filter, Proportional-Integral-
Derivative (PID) controller, etc.

A DSL may have multiple diagram kinds. When creating
the language model, the domain engineer must know what kind
of diagrams the DSL should have. The engineer should look at
the Language Model in order to analyze if all entities can be
addressed into only one diagram. If some entities cannot stay
together, either because they are totally independent from each
other or they could yield polluted diagrams, then the domain
engineer should separate them into different diagrams. When
separating entities into diagrams, there should be a balance
between correlated entities and diagram pollution.

Create code generation templates. In this activity, the
domain engineer shall implement templates that are roughly
fixed code with variation points. A domain framework could be
created as well. It serves as a foundation for the generated code
and provides artifacts that are common to all applications that
can be generated.

The process’ control flow may go back to the prior activity
“Create Language Model”, because changes may be required in
the language model depending on the code generation
technology used. In Java Emitter Templates framework (JET),
for example, a model is traversed as a graph. Commands that
traverse instances of a pa rticular entity cannot guarantee the
order they are processed. If the order is a must, the engineer
should change the language model to assure it, for example, by
adding an initial node that connects to the first instance and
adding a relationship between instances that specifies the next
to be processed. The process’ control flow may also go back to
the activity “Identify domain abstractions”, because during
template confection, it is common to n ote missing or even
incorrect domain abstractions.

Create language notation. The language notation is its
concrete syntax, that is, how it visually represents its elements,
relationships and properties. These representations must be
meaningful to the users of the DSL. Choosing the most
appropriate visual representations contributes significantly to
the DSL success; however, this is beyond the scope of this
paper.

III. PROOF OF CONCEPT: A DSL FOR THE LEGO
MINDSTORMS

In this section, we describe how we conducted our process
to create a DSL that generates code for LEGO Mindstorms.

Pick or build an application. Our mobile robot application
has the following requirements: i) It must seek for opened
doors along an aisle; ii) a sound alert shall be played when it
finds one; and iii) when it reaches the end of the aisle, the robot
should turn back and begin seeking again. We implemented our
application using the LeJOS API [5].

Identify domain abstractions. We extracted the domain
abstractions and built the tree shown in Fig. 4. We divided the
main objective into three nodes: “walk along aisle”, “detect
open doors” and “sound alert if door is open”.

After extracting the domain abstractions, we shall choose
which ones will comprise the DSL. As mentioned before, one
could pick abstractions from different levels—at the bottom
lies the less abstracted ones and hence more flexible. We chose
all from the “How to do” level but the “play sequence of
tones”. Instead we chose its parent node. The next step is to
categorize the chosen abstractions into concerns. We classified
into Movement those that manipulate the motors, and into
Detection those that use the sensors. The one that left was
classified into the Communication concern since its goal is to
notify someone about an opened door.

Create language model. We created the language model
shown in Fig. 5. There is the generic language model extended
with our DSL entities, which are in bold. We also added
properties to the generic entities, which are underlined.

Create code generation templates. We used the Java
Emitter Templates Framework (JET) to create the templates for
code generation. The model built with the DSL is passed as an
input to the templates and their tags traverse its elements to
extract and process information, producing application’s code.
We also created a domain framework that implements all the
behaviors, for the generated code only instantiates and
configures what is m odeled. The process of creating the
domain framework reuses a significant part of the application
developed in the first activity.

Create language notation. In this activity, we created the
notations of the DSL. To make it simple, choosing the best
notations is out of the scope of our proof of concept.

IV. RELATED WORK
Günther et al. [9] show an agile and lightweight process for

engineering DSLs embedded in dynamic languages. The
process is divided into three phases: Domain Design, Language
Design and Language Implementation. They also present
several DSL-engineering patterns to be used in the last phase,
which are strongly related to the following DSL engineering
concerns: Language Modeling (what language constructs
implement domain concepts), Language Integration (how to
easily integrate the DSL with other components) and Language
Purification (how to optimized e.g. readability).

Robert et al. [10] define a lightweight process for designing
UML profiles. The process has three activities: Problem
description, Refinement restriction and Profile definition. Their
resulting artifacts are respectively a Problem model, a Domain
model and a Profile. There are two actors: the domain expert
and the language expert. The former is responsible for the first
activity, and the latter, for the last one; they both work in the

Figure 3. The generic language model

498

remaining (middle) activity. The proposed process also
employs a set of predefined heuristics to automatically generate
an incomplete profile from the domain model. This profile is
then optimized using several guidelines defined by the authors.
These guidelines are intended to ensure the correctness of
profiles and to optimize them.

Based on the experience gained from multiple different
DSL development projects and prototyping experiments,
Strembeck and Zdun [11] have proposed a systematic DSL
development process composed by a set of activities and sub-
activities. The process has four main ones: Defining the DSL’s
core language model, Defining the behavior of DSL language
elements, Defining the DSL’s concrete syntax(es) and
Integrating DSL artifacts with the platform/infrastructure.
These activities typically outputs the following artifacts,
respectively: the core language model, the behavior definition,
the concrete syntax(es) and the transformation rules. The first
three artifacts compound the DSL while the last one is related
to the development platform. Those activities have sub-
activities and they all have (not rigidly) defined control flows.
They also present activities to tailor the process to “fit into the
corresponding organization’s standard development approach”,
relating project type, involved people, budget, among other
factors.

The main differences between our work and those
described above are twofold: our work focuses on graphical
and external DSLs instead, and it is specific to mobile robots
domain. Moreover, the aforementioned processes are too
generic regarding to application domains.

V. FINAL REMARKS
In this paper we present our efforts towards a process for

engineering DSLs in the context of mobile robots. The
resulting DSLs are initial running version since the process
input is just one application. However, such DSLs are powerful
enough to model other different ones. As long as a DSL is in
use, missing abstractions may be identified, and they could be
added to the language model. We also provide a g eneric
language model, where the domain engineer can simply extend
by adding entities representing (possibly domain specific)
behaviors, specialized functions to sensors, among others. As
our generic language model is based on the well-known
Behavior model, the created DSLs may evolve easily.

Finally, we present a proof of concept where we applied our
process to obtain a DSL for developing robot applications to
the LEGO Mindstorms platform. We believe our DSL is more
expressive than code since the developer does not need to be
aware of implementation details, like libraries, unity
conversion, programming languages issues, etc.; he/she just
manipulates concepts from the target domain.

As a future work, we are aiming to improve the process by
applying it on different applications implemented in different
robotic platforms. The next step will be to implement different
applications into the Pioneer 3-DX mobile robot platform, and
then emerge DSLs with our process. We are aiming to improve
the identification of abstractions to address more mobile robot
concepts. Another future work is to design a consistent process
or adapt the existing one to address the evolution of those
initial DSLs while they are in use and new abstractions arise.

REFERENCES
[1] S. Kelly and J. P. Tolvanen, Domain-specific modeling. IEEE Computer

Society, 2008.
[2] OMG, “SysML: Systems Modeling Language”, www.omgsysml.org.
[3] M. Mernik, J. Heering and A. M. Sloane, “When and how to develop

domain-specific languages”, ACM Computing Survey, 2005.
[4] T. Stahl and M. Völter, Model-Driven Software Development. Wiley,

2006.
[5] LeJOS, “LeJOS, Java for Lego Mindstorms”, lejos.sourceforge.net.
[6] R. C. Arkin, Behavior-based robotics. Series: Intelligent robots and

autonomous agents. MIT Press, 1998.
[7] T. Bräunl, Embedded robotics: mobile robot design and applications

with embedded systems. 3rd ed. Springer, 2006.
[8] R. Siegwart and I . Nourbakhsh, Introduction to autonomous mobile

robots. MIT Press, 2004.
[9] S. Günther, M. Haupt and M. Splieth, “Agile engineering of internal

domain-specific languages”, In: “Proceedings of the fifth international
conference on software engineering advances”, 2010.

[10] S. Robert, S. Gérard, F. Terrier and F. Lagarde, “A lightweight approach
for domain-specific modeling languages design”, In: “Proceedings of the
35th Euromicro conference on software engineering and advanced
applications”, 2009.

[11] M. Strembeck and U. Zdun, “An approach for the systematic
development of domain-specific languages”, “Software: Practice and
Experience”, vol. 39, pp.1253-1292, 2009.

Figure 5. The Language Model of the DSL for LEGO Mindstorms

Figure 4. The abstractions extracted from the applications’ requirements

499

Dynamically recommending design patterns
S. Smith, D. R. Plante

Department of Mathematics and Computer Science
Stetson University

421 N. Woodland Boulevard
DeLand, FL 32723, USA

Email: sarahgrace89@gmail.com, dplante@stetson.edu

Abstract—Recommendation Systems for Software Engineering
are created for a variety of purposes, such as recommending
sample code or to call attention to bad coding practices (code
smells). We have created a system to recommend the use of
design patterns. While many programmers have knowledge of
design patterns, whether rushed to meet deadlines, inexperienced
in their implementations, or unaware of a particular pattern,
pattern implementation may be overlooked. We have developed
a tool to dynamically search for signs that a programmer would
benefit by using a particular design pattern and make the
appropriate recommendations to the programmer during code
development.

I. INTRODUCTION

Code reuse is a common practice used to improve the devel-
opment process by providing well tested elements which the
programmer can incorporate into his or her system. Similarly,
design patterns encourage the reuse of object oriented ideas
[6]. They provide design solutions to common problems, but
must be implemented specif cally for each project.

Anti patterns attempt to prevent common mistakes which
can degrade the quality of an object oriented system [2]. Each
pattern def nes a “bad way” of structuring code and suggests
methods for refactoring. Anti patterns are not directly related
to design patterns in that there are not necessarily refactorings
for the anti patterns that turn them into design patterns. The
suggestions simply create more object oriented code.

Design pattern and anti pattern discovery assists program-
mers in the software development process and is currently
an active area of research. By identifying design patterns in
a developed system, future programmers are encouraged to
maintain those patterns. Discovering anti patterns can alert
programmers to problem areas so that they can be f xed.

We have developed a tool which, instead of f nding instances
of either type of pattern, recommends the use of design
patterns based on an unf nished project. We determine that
a programmer is trying to solve a common problem in a way
that could be improved using a design pattern and dynamically
make recommendations. We have created a framework for
detection and a format of storing requirements for each of
these anti design patterns. The requirements will then be
processed and our tool, developed as an Eclipse plugin, will
search for instances within the current project. The plugin
will also determine what to make recommendations about
and when to make them. Although the current tool only

recommends a few patterns, it is designed so that the set can be
easily expanded when new “anti design patterns” are included.

II. RELATED WORK

A. Design Pattern Detection

Brown [1] made the f rst attempt at automatically detecting
design patterns. Since then, research has focused on both
def ning design patterns in a manner that is programmatically
useful and identifying matches in source code. Some methods
only look for structural characteristics, such as the relation-
ships between classes, while others focus more on specif c
behaviors and how the classes actually interact. Dong et al.
[11] provide an excellent review of design pattern mining
techniques presently implemented. As noted previously, we
focus on matching anti patterns.

B. Anti Pattern and Code Smell Detection

Anti patterns were originally def ned by Brown et al. [2] as
recurring solutions to common problems which have negative
consequences. Similarly, Fowler [5] informally def nes code
smells, which are also examples of bad programming but with
less complexity. Searching for anti patterns (or any type of
code “smells”) is very useful to programmers who do not have
the time or resources to analyze large systems.

Most anti pattern detection methods use metrics. Once the
metrics are def ned for a specif c pattern, objects in a system
are tested and potential matches are returned. Marinescu
[14][15] created detection strategies for f nding anti patterns.
However, a strategy was created separately for each pattern,
making it diff cult to expand to new patterns. Munro [16]
formally def ned rule cards for nine design f aws and tested
each one. Salehie et al. [21] found “hot spots,” in addition to
known anti patterns, when certain metric values were outside
the range found in good code. These areas could either match
to specif c design smells or be indicators of a problem that
was not formally def ned. Moha et al. [19] also developed a
system of rule cards and tested it on four anti patterns.

Exact matching using metrics does not allow for a high
level of f exibility and leaves the software analyst with a list
of possible design anti patterns and no method of prioritizing
which to consider f rst. Khomh et al. [4] investigated the
use of Bayesian belief networks for anti-pattern detection.
This produced a probability that a given class or set of
classes followed an anti pattern, which was a more realistic

500

way to detect something which could not be exactly def ned.
Similarly, Oliveto et al. [20] used B-splines to detect anti
patterns and gave results in terms of probabilities.

These methods focus on metrics of individual classes and
do not take into account the relationships between classes
or specif c behavior. This is logical for the anti patterns
described by Brown, as the majority of them ref ect a failure to
follow object-oriented standards, and therefore have minimal
relationships to consider.

C. Recommendations Systems for Software Engineering

Recommendation systems for software engineering aim
to assist programmers in the software development process
by making recommendations based on written code and/or
dynamic analysis [18]. They can make recommendations dy-
namically or by the request of the programmer. These systems
offer assistance on a variety of topics, from what to consider
changing next [23] to examples of and suggestions for what
call sequence to make [8][22]. Guéhéneuc et al. [7] created
a design pattern recommender based on words chosen to
describe the programmer’s needs.

III. METHODS

Any code pattern can be def ned in terms of three charac-
teristics: structure, behavior, and semantics [11]. The structure
refers to the types of classes and relationships between them.
A UML class diagram, for example, contains mostly structural
information about a system, specifying the inheritance, associ-
ation, and other relationships between classes. These relation-
ships are found by looking for certain types of references; for
example, a f eld declaration is an aggregation, an “extends” in
the class signature is a generalization, and any other reference
is considered to be an association.

The behavioral characteristics used to def ne a pattern are
more complex and often abstract. They def ne how objects are
created, methods are invoked, and information is shared. They
describe what a piece of code actually does, not just the type of
relationships or objects. We match behavioral characteristics
by def ning specif c ways they could be implemented and
searched for similar code structures.

The actual choice of names for classes, methods, and other
parts of a system make up the semantic data. Semantic data can
be used to look for repetition of names or the use of actual
words and their synonyms to name or describe parts of the
system. Our system does not use semantic data in searching
for matches as we are not matching design patterns but rather
anti patterns.

In order to limit recommendations to code which the
programmer is currently working on, our matching algorithm
is triggered when a class has been modif ed, using only the
modif ed class and the classes “close” to it. Here we def ne
classes to be “close” to the modif ed class if they may be
reached by traversing at most N relations from it, where N

is chosen by the developer as a conf guration setting. We f rst
look for a structural match to a given anti pattern. If we f nd
a match, we then test the behavioral characteristics for those

classes. If all the behavioral requirements are met, we make a
recommendation to the programmer.

A. Intermediate Code Representation

As noted by Dong et al. [11], rather than working with
source code directly, most pattern search algorithms use some
form of intermediate code representation. The Abstract Syntax
Tree (AST) is a directed acyclic graph, where each node
represents a programming element and its children are the
elements which are part of it [13]. The Abstract Semantic
Graph (ASG) is a higher level representation where nodes
represent source code entities and edges represent relationships
between them. It is similar to the AST but, for example, instead
of a node with the name of the referenced object, the ASG
contains an edge from the f rst node to the referenced node [3].
A matrix may be used to provide a simplif ed representation
of the relationships between classes, as will be described later.

For this work, we use the Eclipse JDT’s ASTParser to
create an Abstract Syntax Tree [13]. Each Java f le is parsed
and each element traversed by the ASTVisitor. To catch
elements we are interested in, we must extend ASTVisitor
and override the visit() methods for each type and store
the node information in a data structure.

B. Structural Matching

For structural matching of anti patterns, we use the matrix
representation developed by Dong et al. [10], with prime
numbers encoding relationships between classes. The use of
prime numbers allows multiple relations to be encoded and
decoded unambiguously. With the mapping def ned in Table I,
we note that the UML class diagram shown in Figure 1 may
be represented by the matrix given in Figure 2.

Fig. 1. Three classes and the relationships between them, shown using UML.

TABLE I
PRIME NUMBER VALUES FOR DIFFERENT RELATIONSHIPS

Relationship Prime Number Value
Association 2

Generalization 3
Aggregation 5

The process of actually searching for an instance of the
pattern matrix within the (larger) system matrix is a relative
of the subgraph isomorphism matching problem in graph

501

⎛
⎝

A B C

A 0 0 0
B 3 0 0
C 0 2 0

⎞
⎠

Fig. 2. The matrix for Figure 1 using prime numbers.

theory. We explore both a brute force algorithm and a second
algorithm which is similar to a breadth-f rst search. Before
using either of these techniques, we reduce the size of the
search space by including only classes “close” to the modif ed
class.

1) “K-Steps” shrinking: A developer working with a large
system comprised of many classes will often only work with
a few classes at a time. Only those classes being modif ed,
along with those “close” to them, should be examined for
pattern matches. When the relationships between all classes
in the system are found, we can think of the entire system
as a graph where each class is a node and each relationship
an edge. We def ne the distance between two classes as the
distance in the graph, ignoring the direction of the edges. In
order to limit matching, we start from the edited class and
f nd all classes within k steps, where k is the max distance
between any two classes in the pattern we want to match.

2) Permute-and-Match: We f rst consider a brute force
method which checks for every permutation of the nodes in
the graph and whether or not it matches the anti pattern matrix.
Since the system is usually larger than the pattern, we must
f rst f nd all the subsets of the graph before permuting their
order to perform matching. Also recall that multiple types
of relationships can be stored in this single graph by using
different values for different types of relationships. So when
matching the relationship values, the system value must be
divisible by the pattern value in order to be considered a
match. For example, if the pattern requires a generalization
relationship (given the value 3) and the system relationship
we are matching has a value 6, this is still considered a match
because 6 = 2 ∗ 3 and therefore it has both a generalization
and an association relationship. Because of this, a sub matrix
which has extra relationships is still considered a match.

Figure 3 shows a graph and representative matrix for a
pattern, and likewise Figure 4 represents the system we are
matching to. (A dash for cell i, j indicates that there is no
relationship from i to j. Internally this is stored as the value
one). This process will f nd that the relationships between the
set of vertices {U,W,V,Y}, in that order, will create a match
to the matrix in Figure 3.

Finding every permutation and matching it to the pattern
is very ineff cient. It requires the value of P (m,n) where
m is the number of classes in the system and n is the
number of nodes in the pattern. If our basic operation is the
array comparison during matching, then in the worst case this
algorithm will require

⎛
⎜⎜⎝

A B C D
A − − − −
B 3 − − −
C 3 − − −
D − − 2 −

⎞
⎟⎟⎠

Fig. 3. An example pattern

⎛
⎜⎜⎜⎜⎝

U V W X Y Z
U − − − − − −
V 3 − − − − −
W 3 − − − − −
X − − − − − −
Y − 2 − 2 − −
Z − − − − 2 −

⎞
⎟⎟⎟⎟⎠

Fig. 4. An example system to which the pattern in Figure 3 is matched.

m!

(m− n)!
∗ n2

operations, which approaches order O(m! ∗ n2) for m ≈ n.
With the help of the K-Steps algorithm (Section III-B1), the
system matrices are relatively small, but even for a system
matrix reduced to 7 nodes and a pattern of size 4, the worst
case will require over 13,000 comparisons.

3) Tree Matching: Consider a situation where the pattern
has a class with two classes inheriting from it, while the system
has a matching class but with three classes inheriting from it.
The permute-and-match process will f nd a match for each
permutation of two of those three classes. Firstly, this results
in multiple matches which are essentially the same match.
Secondly, we may actually want to know about all three of
these inheriting classes, even if the pattern only requires two.
In order to recognize which classes are part of a set def ned
in the pattern and pass them on for behavioral matching, we
developed an algorithm to perform matching in a way similar
to a breadth-f rst search.

We choose a node in the pattern tree and try to match it
to every one of the nodes in the system tree as described in
Algorithm 1. For example, in Figures 3 and 4, we would try
to f nd a match for pattern node A by f rst comparing it to the
system node U. The algorithm looks both at the relationships
from A and to A, checking if there are a suff cient number
of like relationships to and from U. If it f nds a matching
relationship, for example that V inherits from U, it recursively
checks V for the required relationships before determining that
U actually matches the pattern.

C. Behavioral Matching

Structural information can def ne a large part of any pattern.
However, in order to match an element of a pattern, it is often

502

Algorithm 1: Algorithm to recursively check if there is a
match between a pattern element and a particular class.
Data: patternIdxCheck, uncheckedPatternIndices,

systemIdxMatch,
unmatchedSystemIndices,currentMatch

Result: A boolean representing whether there was a
match found. currentMatch will be updated

1 for pattIndex in uncheckedPatternIndices do
2 if there is a relationship between patternIdxCheck

and pattIndex then
3 numMatchesFound = 0
4 for sysIndex in unmatchedSystemIndices do
5 if there is a matching relationship between

systemIdxMatch and sysIndex then
6 aMatch = a node representing this match
7 if match(pattIndex, uncheckedPat-

ternIndices.remove(pattIndex), sysIndex,
unmatchedSystemIndices.remove(sysIndex)
then

8 currentMatch.addChild(aMatch)
9 numMatchesFound++

10 end
11 end
12 end
13 if numMatchesFound ≥ required number of

matches then
14 continue
15 end
16 else
17 return false
18 end
19 end
20 return true
21 end

necessary to def ne not only the categorized relationships to
other elements but also how they relate. Therefore, once a
structural match is found, behavioral matching is performed
on each of those elements.

Each behavioral requirement will be stored as a tree with
a root node to specify the pattern element that should contain
it, element nodes which match to certain types (i.e. switch
statements, object instantiations, etc.), and references to other
pattern elements. For example, if the pattern element named
Client should contain a switch statement with references to all
of the Product elements, the behavioral def nition stored in the
f le would be

ROOT:Client {
ELEM:SwitchStatement {

REF:Product
}

}

Our algorithm steps through each root node def ned in the

pattern and pulls out the class that is paired with it during
structural matching. In our case, using an AST representation,
it then searches for the f rst element, a SwitchStatement,
using an ASTVisitor object which stores only that type.
Each matched ASTNode is then revisited, using a new
ASTVisitor, and the process continues until the entire
tree has been matched. Before beginning this process, each
behavior node is passed a list of all pairings so that the
references can be set to actual class names in the current
system. Therefore, when a REF node is matched, it searches
for references to the appropriate class names. This structure
allows for considerable f exibility in def ning elements to
search for. By def ning requirements in a tree-like fashion,
references can be searched for within constructors and method
calls, or more generally within if and switch statements.

Finally, we must consider that behavioral information need
not always be def ned by specif c syntax. We want to allow a
pattern to be def ned in terms of different options (such as a
switch statement or a series of if-then-else statements). There-
fore, after def ning several different behavioral structures, the
pattern also contains a statement declaring what is required and
what is optional. For example, a pattern with three different
behavioral structures could state that element three is required,
along with either one or two:

3 AND (1 OR 2)

This logic sentence is converted into postf x using Dijkstra’s
Shunting-yard algorithm [9] and then evaluated with each
index replaced by the boolean result of that behavioral match.

D. Pattern Definition Format

Each of the patterns created is def ned in its own f le and
stored with the other patterns. As shown in Figure 5, a series
of parameters are set, followed by labels for each element.
If a particular class can be matched to multiple elements
(e.g., we are looking for all the inheriting children of a
particular class), the minimum number of required elements
is listed with the class. The next part of the f le specif es
the matrix representing the relationships between elements.
Following this is a list of behavioral descriptions, made into
tree structures and indexed in order starting at zero, and a
logic phrase to specify which are required (the & symbol is
used for AND and | for OR). Finally, each f le contains a
paragraph to display to the user about the recommended De-
sign Pattern. Note that in Figure 5, ElementLabel1 should
match to one element, ElementLabel2 to at least one
element, and ElementLabel3 to two or more. Also, when
ElementLabel3 is listed as a reference in the behavioral re-
quirements, this means that all matches to ElementLabel3
should be referenced.

E. Dynamic Recommendations

Happel et al. [12] discuss the issues of what and when
to recommend in a recommendation system for software
engineering. For a programmer working on a large system, it
would be useless to recommend the use of a design pattern in

503

Name of Pattern
NUM_CLASSES = <number classes in pattern>
NUM_BEHAVIOR = <number behavioral elements>
MAX_STEPS = <max number steps

between any two classes>
ElementLabel1
ElementLabel2(1)
ElementLabel3(2)
. . .
ElementLabelN
1 1 2 . . . 1
3 1 1 . . . 1
1 1 1 . . . 1

. . .

. . .

. . .
1 1 1 . . . 1
ROOT:ElementLabel1{

ELEM:<ASTNode type>{
REF:ElementLabel3

}
}
ROOT:ElementLabel1 {

. . .
}
ROOT:ElementLabel2 {

. . .
}
. . .
(0 | 1)&2
Paragraph explaining design pattern that
will be recommended to the user.

Fig. 5. The conf guration for f les def ning anti design patterns.

a package they are not working on and are not responsible for.
Therefore, in addition to being able to detect these patterns,
it is important to consider where to search for them and how
often to make recommendations. A programmer who is con-
stantly interrupted with suggestions is likely to begin ignoring
them or turn off the tool. Therefore, once a recommendation
has been ignored, a dynamic recommendation system must
remember and not revisit it.

Every time a user makes a modif cation to a f le, our tool
checks to see if there has been a change in relationships
between that class and the others in the system. Because our
tool only looks for matches when there is a change, the user
will only receive recommendations about the part of code
which he is currently editing. Once a match is discovered,
the tool presents it to the user automatically and without
requiring the user to make any requests, as suggested by
Murphy-Hill et al. [17]. The plugin has its own window, where
current recommendations will be displayed. When the user
sees that there is a recommendation, he can click on it to
obtain more information, which is in the form of a popup
describing the recommended pattern and pointing out which
f les are involved.

F. Sample Definition of Singleton Pattern

In this section we provide the def nition of the Singleton
creational pattern. We explain the pattern and also the indica-

tors that a programmer should use it.
The Singleton design pattern is used when only one instance

of an object is to be created during a particular execution. The
Singleton object keeps track of one instance of itself. Instead
of instantiating it with the new keyword, a getInstance()
method is called each time it is needed by another object.

A programmer who is not following this design pattern
may attempt alternative implementations to accomplish the
same goal, which are the rules we are looking for in order to
recommend the use of the Singleton design pattern. To discuss
these “bad” solutions, we will refer to the “single” class (the
class which should have only one instantiation) and the using
class or classes.

Many times a Singleton pattern is needed when the single
class may or may not be instantiated, depending on whether
certain code fragments are reached. In the anti pattern, in order
to guarantee that it is only instantiated once, the programmer
may set up a conditional check before instantiating the single
class with the new operator.

Singleton
NUMCLASSES = 2
NUMBEHAVIOR = 1
MAXSTEPS = 2
User(2)
1,1
5,1
ROOT:User {

ELEM:IfStatement {
ELEM:ClassInstanceCreation {

REF:Single
}

}
}

Fig. 6. Whether or not the object exists is checked before instantiating the
single class.

The structural tests are very simple; if two or more objects
have an aggregation with another object (the singleton), it
f ts the structural requirements. The behavioral check involves
looking for an existence of a conditional containing an in-
stantiation which refers to the single class. This is specif c but
f exible enough to allow for either checking if the object equals
null or some boolean value set up by the programmer. The
structural and behavioral def nition is shown in Figure 6.

IV. CONCLUSIONS AND FUTURE WORK

We have focused on developing a framework for def n-
ing and detecting anti design patterns and making dynamic
recommendations to the programmers. We have developed
a format for representing both the structural and behavioral
requirements of these patterns.

In order to expand the patterns that our system can recom-
mend, future work requires the determination and inclusion
of more anti patterns to provide recommendations for more
design patterns. One possibility for doing so would be to

504

obtain the input of experts on design patterns who have the
experience to know what the common design mistakes are
that developers make. Of particular utility would be a corpus
of examples to test and perfect not only our system but those
of other researchers in this f eld. We hope that future research
in this area will encourage the development of such examples.

As we are working from the idea of proof of concept,
our format is f exible but somewhat limited in the types of
behaviors and even structures that it can check. Due to the
tree nature of our matching algorithm, we are not able to deal
with cyclical structures. Subgraph isomorphism matching is a
similar problem and research in this area may provide more
insight, but any solution to the basic graph problem would
need to be modif ed for our situation, due to the existence of
different edge types in our model.

Since behavioral matching can only f nd a matching node
and then drill down into it, there are certainly more compli-
cated structures which cannot be def ned. It would also be
useful to understand the uncertainty of a particular match,
and tell the user this information. Better behavioral matching
and uncertainty would require looking for multiple matching
to certain behavioral constructs and a method of probabilistic
reasoning (such as Bayes reasoning).

Finally, an advanced version of this plugin could help
programmers refactor their code into the recommended design
pattern. However, this would require a much more extensive
programmatic understanding of each design pattern and its anti
pattern.

REFERENCES

[1] K. Brown, “Design Reverse-Engineering and Automated Design
Pattern Detection in Smalltalk,” Technical Report TR-96-07,
Dept. of Computer Science, North Carolina State Univ., 1996.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray, emphAnti Patterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis. John Wiley and Sons,
1st edition, March 1998.

[3] P.T. Devanbu, D. S. Rosenblum, A.L. Wolf. “Generating Testing
and Analysis Tools with Aria”, ACM Transactions on Software
Engineering and Methodology, vol 5 no. 1, January 1996.

[4] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A Bayesian Approach for the Detection of Code and Design
Smells,” in 2009 Ninth International Conference on Quality
Software, qsic, pp.305-314, 2009.

[5] M. Fowler, Refactoring – Improving the Design of Existing
Code, 1st ed. Addison-Wesley, June 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[7] Y.-G. Guéhéneuc and R. Mustapha. “A simple recommender
system for design patterns”, in Proceedings of the 1st EuroPLoP
Focus Group on Pattern Repositories, July 2007.

[8] R. Holmes, R.J. Walker, and G.C. Murphy, “Approximate
Structural Context Matching: An Approach for Recommending
Relevant Examples,” in IEEE Trans. Software Eng., vol. 32, no.
1, 2006, pp. 952970.

[9] E. W. Dijkstra, “Making a Translator for ALGOL 60,” in APIC-
Bulletin, no. 7, 1961.

[10] J. Dong, D. S. Lad, and Y. Zhao, “DP-Miner: Design Pattern
Discovery Using Matrix,” in 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS’07). (Tuscon, Arizona, March 26-29,
2007, pp.371-380).

[11] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern min-
ing techniques,” International Journal of Software Engineering
and Knowledge Engineering (IJSEKE), vol. 19, no. 6, pp. 823-
855, 2009.

[12] H.-J. Happel and W. Maalej, “Potentials and challenges of rec-
ommendation systems for software development”, in Proceed-
ings of the 2008 international workshop on Recommendation
systems for software engineering, (Atlanta, Georgai, November
09-15, 2008, pp.11-15).

[13] T. Kuhn and O. Thomann, “Abstract Syntax Tree,”
Eclipse Corner Articles, 20 Nov 2006. [Online]. Available
WWW:http://www.eclipse.org/articles/article.php?f le=
Article-JavaCodeManipulation AST/index.html.

[14] R. Marinescu, “Detection Strategies: Metrics-Based Rules for
Detecting Design Flaws,” in 20th IEEE International Conference
on Software Maintenance (ICSM’04), (September 11-14, 2004,
pp.350-359).

[15] R. Marinescu, “Measurement and Quality in Object-Oriented
Design,” 21st IEEE International Conference on Software Main-
tenance (ICSM’05), (Budapest, Hungary, September 25-30,
2005, pp.701-704).

[16] M. J. Munro, “Product metrics for automatic identif cation of
’bad smell’ design problems in java source-code,” in Proceed-
ings of the 11th International Software Metrics Symposium,
(September 19-22, 2005, pp.15).

[17] E. Murphy-Hill and A. P. Black, “Seven habits of a highly ef-
fective smell detector”, inProceedings of the 2008 international
workshop on Recommendation systems for software engineering,
(Atlanta, Georgia, November 9-15, pp.36-40).

[18] M. Robillard, R. Walker, T. Zimmermann, “Recommendation
Systems for Software Engineering,” IEEE Software, vol. 27, no.
4, pp. 80-86, July/Aug. 2010.

[19] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“DECOR: A method for the specif cation and detection of
code and design smells,” Transactions on Software Engineering
(TSE), vol.36, no.1, pp.20-36, 2009.

[20] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc,
“Numerical signatures of antipatterns: An approach based on
b-splines”. In Proceedings of the 14th Conference on Software
Maintenance and Reengineering. IEEE Computer Society Press,
March 2010.

[21] M. Salehie, S. Li, L. Tahvildari, “A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws,” in 14th
IEEE International Conference on Program Comprehension
(ICPC’06), (Athens, Greece, June 14-15, 2006, pp.159-168).

[22] S. Thummalapenta and T. Xie, “PARSEWeb: A Programming
Assistant for Reusing Open Source Code on the Web,” in Proc.
IEEE/ACM International Conference on Automated Software
Eng. (ASE 07), (Atlanta, GA, November 5-9, 2007, pp. 204213).

[23] T. Zimmermann, P. Weißgerber, and S. Diehl “Mining Version
Histories to Guide Software Changes,” in IEEE Trans. Software
Eng., vol. 31, no. 6, 2005, pp. 429445.

505

Towards a Novel Semantic Approach for Process
Patterns’ Capitalization and Reuse

Nahla JLAIEL
RIADI Research Laboratory

National School of Computer Science
La Manouba, Tunisia

Nahla.Jlaiel@riadi.rnu.tn

Mohamed BEN AHMED
RIADI Research Laboratory

National School of Computer Science
La Manouba, Tunisia

Mohamed.Benahmed@riadi.rnu.tn

Abstract—Process patterns are widely used by the software
engineering’s community as an excellent mechanism for
communicating software development knowledge (experiences
and best practices) that has proven to be effective in practice. As
a consequence, several description languages and formats have
been proposed in the literature dealing with process patterns, in
which patterns are described with different terminologies and
reused in informal manner. These disparities make capitalization
and/or reuse of process patterns, difficult to be achieved. This is
why, in this paper, we propose a new semantic approach for
process patterns capitalization and reuse, named SCATTER,
which aims to disseminate software process best practices by
making process patterns described in a unified and formal form.
The proposed approach is based on two main processes namely,
process patterns warehousing and process patterns mining.

Keywords-software process patterns; patterns capitalization;
patterns reuse; patterns unification; patterns warehousing; patterns
mining; ontologies; information extraction; text mining;
ontologies’ population

I. INTRODUCTION
Nowadays, patterns are increasingly being recognized by

software development communities, as an effective method to
reuse knowledge and best practices gained during software
development processes [1] [2].

In fact, software patterns now exist f or a wide range of
topics including process patterns, requirement, analysis, design,
implementation or code patterns, test patterns and even
maintenance patterns.

Concerning process patterns, whose main role is to
capitalize good specifications or implementations of a method
to be followed to achieve a goal [3], they become commonly
used by software development communities as an excellent
medium to share software development knowledge that is often
encapsulated in experiences and best practices [4] [5] [6].

Indeed, process patterns are growingly being adopted by
different development processes such as A gile processes [7],
Object-oriented Software Development processes [8],
Component Based Software Development processes [9],
Service-Oriented Development processes [10] as well as
Aspect-oriented Development processes [11]. As consequence
to the huge proliferation of the process patterns practice, these
latter are being used in an informal manner, through traditional

textbooks or better with modest hypertext systems providing
weak semantic relationships. In addition to the huge number of
process patterns that are available in books or Web-based
resources [2], they significantly differ in format, coverage,
scope, architecture and terminology used [12].

All of these observations conspire to create barriers to the
efficient use of process patterns. In fact, patterns users are
expected to investigate different patterns resources such as
books, magazines, papers and Web collections to find the most
appropriate patterns. This investigation really needs cognitive
efforts, abilities and time to identify, understand, select, adapt
and apply relevant ones.

For these reasons, we argue that efforts are needed to more
formally capitalize patterns knowledge in order to help
software development communities use, reuse and create
process patterns during any given software development
process. The overall goal of our research is to build up an
intelligent framework supporting process patterns capitalization
and reuse. Process patterns capitalization should enable
patterns’ integration, validation, evolution and/or creation
through patterns’ reuse. In other words we aim to cr eate a
framework for process patterns’ knowledge management

In this paper, we outline the proposed approach SCATTER,
acronym for “SemantiC Approach for sofTware process
paTErns capitalization and Reuse” which is a new knowledge
management approach [13] adapted for software process
patterns.

The remainder of this paper is organized as follows: section
II deals with the context and motivation of our research work.
Section III provides background information on the process
patterns’ literature review that we carried out and the resulting
meta-model forming the building block of the proposed
approach. Section IV gives details on how the proposed
approach is performed to better disseminate knowledge and
best practices within software development communities.
Section V concludes the paper by giving a discussion of our
contributions as well as an overview of our work in progress.

II. CONTEXT AND MOTIVATION
This section is devoted to a brief description of our research

context in a first subsection and then to the illustration of our
research motivation as a second subsection.

506

A. Pattern Reuse
In patterns reuse state of the art and practice, there are two

complementary processes: a process for the reuse and a process
by the reuse [14]. The software engineering process for re use
concerns patterns engineering and aims to identify, specify and
organize patterns that should be used during the process. The
software engineering process by reuse is devoted to patterns
engineering allowing the search, selection, adaptation and the
integration of patterns for software engineering.

As conclusion to the literature review that we carried out on
patterns reuse, we noted that a great deal of interest is
addressed to product patterns and more precisely design
patterns in research as well as in industry. In addition, we
derived that most of the deployed efforts to improve pattern
reuse are specific to design patterns and could not be adopted
or adapted for other pattern types. Among these, we cite the
efforts deployed by [15] to automatically detect design
patterns’ problem.

On the other hand, process patterns are increasingly being
described within software development communities but in
different forms. In fact, in our literature review, we identified
eleven process patterns’ description models that are being
adopted separately and independently. In other words, every
community creates and manages its own patterns’ collection or
system. This would in our view, cripple patterns’ knowledge
reuse especially when we find communities using different
models to describe their patterns. As a consequence, patterns’
users could only have access to patterns that are maintained by
their own community.

So, we argue that a holistic approach is required to better
reuse and capitalize process patterns’ knowledge. This latter
should support the two complementary processes mentioned
above, namely: patterns for reuse and patterns by reuse

B. Motivating Example
To motivate our position, we try to state the problem of

model diversity with regard to process patterns description by
showing some patterns’ samples. Figure 1 illustrates this by
presenting three different process patterns. Pattern A, proposed
by Störrle [16], deals with requirements administration using
its own vocabulary to describe patterns attributes such as Intent
to express the pattern’s problem. Pattern B, described by
Dittman [17], handles the technical review process using the
term subproblem as a pattern’s problem. Pattern C which is
created by Gnatz [18], deals with task analysis and employs
another different vocabulary such as Pros and Cons Pros to
express pattern’s discussion.

As far as we can see, these patterns are not only informally
and differently defined but also described in an unstructured
manner. We believe that all of these observations conspire to
create barriers to patterns share and reuse. This matter of fact
leads us to think to unify and to formalize pattern descriptions
in order to make them machine- processable so as to more
efficiently share and capitalize them.

Section III presents the unification meta-model that we
created to express process patterns knowledge after the
mapping efforts that we made on the different patterns
description models.

Figure 1. Heterogeneity of process patterns’ descriptions.

III. BACKGROUND
This section is intended to provide background information

for the proposed approach. The first subsection is devoted to
sum up results of the study that we carried out in order to
assess process patterns representation and reuse within
software development communities. The next subsection will
exhibit the general structure of the proposed process pattern
meta-model as the building block of the proposed approach.

A. Process Patterns Literature: Review’s Results
Different works have been carried out in the literature of

patterns dealing with process patterns’ description and
formalization. These are classified into description models such
as Ambler [8], RHODES[19], Gnatz [18], P-Sigma [3], Störrle
[16] and other as languages, such as PROMENADE [20],
PPDL [5], PROPEL [21], PLMLx [22], UML-PP [6] and PPL
[23].

Based on eleven evaluation criteria that we fixed in a
previous work [24], we assessed the aforementioned works and
revealed several lacks, detailed in [12] and [24], creating
barriers to patterns’ knowledge capitalization and reuse.
Among these, we notice the lacks of architectural as well as
terminological consent in patterns descriptions.

 The lack of architectural consent means that different
process pattern descriptions have been proposed using
disparate architectures. In fact, when comparing the
eleven selected works from the literature, we identified
eleven different pattern description facets, namely:

Pattern A

Pattern B

Pattern C

507

identification, classification, problem, context,
solution, role, artifact, relationship, guidance,
management and evaluation [12]. In addition, these are
differently covered by process patterns descriptions as
it is shown in Fig. 2 most of them pay attention to the
four main facets: context, solution, problem and
relationships (15%, 14% and 13%).

 The lack of terminological consent refers to the
problems of polysemy and synonymy addressed in
labels used to describe patterns. Indeed, we find terms
such as Consequences used to express a Resulting
Context in PPL as well as a Guideline in Gnatz.
Moreover, others different terms are being used to
address the same concept such as Intention in
RHODES to describe a pattern Problem, instead, the
term Intent is used in Störrle.

B. Unified Conceptualization of Process Patterns
To overcome these lacks, a first step was to create a unified

conceptualization of process patterns. Mappings efforts [12]
were necessary to achieve this goal leading to a process
patterns’ meta-model unifying patterns knowledge
representations.

Fig. 3 provides an abstract view of the meta-model
structure in which we consider a process pattern information
description from six facets:

 The identification facet encapsulates a set of properties
identifying a pa ttern such as pattern name, author(s),
keywords, pattern’s classification (type, category,
abstraction level, and aspect) as well as pattern origin
(project and participants) and pattern artifacts (used
and/or produced).

 The core information is the main pattern facet
embodying details about the well-known triplet:
problem, context and solution.

 The relationships facet expresses how a pattern could
interact with other patterns (e.g. similar patterns,
refinement patterns, subsequent patterns, and anti-
patterns)

 The guidance facet refers to the support level provided
by a pattern to be comprehended and used (e.g. known
uses, example, literature, illustration, etc.)

 The evaluation facet provides feedbacks on pattern
application (e.g. discussion, confidence, maturity, etc.)

 The management facet provides general information
about a given pattern (e.g. version, creation-date)

In order to validate the proposed meta-model, we adopted
an ontology-based approach providing common and shared
architecture and terminology for better patterns’ capitalization
and reuse. The proposed ontology [12], named MetaProPOS
and acronym for Meta Process Patterns’ Ontology for Software
Development, aims to unify all th e proposed process patterns
descriptions, providing thus semantic interconnection and
composition of relevant and unified bodies of patterns
knowledge.

 Figure 2. Architectural dissent in patterns descriptions [12].

Figure 3. Abstract view of a unified process pattern.

Because of space limitations, we could not give details of
all the modeled facets. So we choose to illustrate this work by
the relationships facet which is quiet important for the pattern
reuse process. Fig. 4 shows the relationship hierarchy
considered by the proposed meta-model. An alternative pattern
is a pattern that could be applied as an alternative solution
which can be different from a similar pattern. A refinement
pattern should give details to an a bstract one. A consequent
pattern is a pattern that is implied or that could be applied after
a given pattern. An anti-pattern is a pattern that could not be
applied with another given pattern.

Figure 4. The relationship’s facet.

Problem
13%

Context
15%

Solution
14%

Classification
8%

Identification
11%

Relationship
13%

Role
6%

Artifact
4%

Guidance
11%

Evaluation
3%

Management
2%

508

IV. SCATTER
In order to enhance patterns capitalization and reuse, a first

step in this direction was to build up a unified
conceptualization of process patterns via the proposed ontology
MetaProPOS, as it is stated before. The next step is to
demonstrate how it can be performed to fulfill our goal through
the proposed approach SCATTER which, as the name implies,
aims to help improve process patterns’ knowledge
dissemination by means of a formal and semantic technique of
patterns’ capitalization and reuse. As illustrated by Fig. 5,
SCATTER comprises two major processes:

A. Terminological, Semantic and Architectural Unification
Process
Given different collections of process patterns forming a

patterns’ corpus, this main process consists of a tr iple
unification effort.

1) Terminological unification: It aims to map between
terms used as labels for a given pattern and the corresponding
meta labels i n the proposed meta model. This is ensured by
means of MetaProPOS on the one hand, and a text mining tool
on other. The purpose of this phase is to recogn ize the
terminology employed by a given pattern through key terms
extraction. The unification’s result is an annotated pattern
whose format is XM L. In order to reach th is target, we
adopted a text mining approach. Indeed, there are already tools
that are well recognized for their mastery in Natural Language
Processing (NLP) namely: Open NLP [25], UIMA
(Unstructured Information Management Architecture [26] and
GATE (General Architecture for Text Engineering) [27].
Thus, we do not need to reinvent the wheel by rebuilding one
from the scratch. This is why we choose to reuse, among these
latter, GATE since it is open source and very well documented
as well as used in research and industry. In this regard it
should be n oted that the terminological unification phase is
performed using the information extraction open source
component of GATE which is ANNIE acronym for A Nearly-
New Information Extraction system [28].

We should notice that in addition to GATE configuration,
we have made a considerable extension to ANNIE’s system by
adding Gazetteer lists such as “problem.lst”, “context.lst”,
“relationship.lst and so on in order to help ANNIE’s system
recognize key terms and concepts used in patterns’
descriptions. However, the use of these lists is necessary but
insufficient to detect patterns segments, for this reason we
added Jape rules such as “identification.jape” to capture the
pattern’s identification facet in a pattern description,
“guidance.jape” to identify the pattern’s guidelines, etc.

As it is illustrated by Fig. 6, we used in a first step, the
Sentence Splitter and the Tokeniser to perform a morphological
analysis of unstructured patterns allowing the extraction of
sentences and basic entities. Then in a next step, the POS
Tagger is p erformed to associate grammatical category to
tokens allowing thus recognition of various entities. The last
step consists in patterns tagging by extracting pattern concepts.

Figure 5. Functional architecture of SCATTER.

This step has recourse to previously generated results and
uses the NE Transducer to extract named pattern’s entities
(problem, context, solution, relationship, etc.) through new
JAPE rules and Gazetteer lists. The components implied to
achieve these steps are described as follows:

a) Tokeniser: This component identifies various symbols
in text documents (punctuation, numbers, symbols and
different types). It applies basic rules to input text to ident ify
textual objects.

MetaProPOS
Ontology

Unified Architecture
+

Unified Terminology
+

Semantic Annotations

WolF WordNet

Terminological, Semantic and Architectural
Unifications

 MetaProPOS
Ontology

Java code + JENA+
ANNIE + JAPE Rules

Ambler
pattern

P-Sigma
pattern

Störrle
pattern

Gnatz
pattern

PPDL
pattern

PROPEL
pattern

UML-PP
pattern

PROMENADE
pattern

RHODES
pattern

PLMLx
pattern

Patterns’ corpus

Patterns Warehouse
(patterns + annotations)

Converted patterns
Format: .owl

Unified
Form

Java code + Mining tool

 Patterns Mining

Similar
Patterns

Anti-
Patterns

Mega
Patterns

509

b) Gazetteer: This component creates annotation to offer
information about entities (persons, organizations, etc.) using
lookup lists.

c) POS tagger: This component produces tags to words
or symbols.

d) Sentence splitter: This component identifies and
annotates the beginning and the end of each sentence.

e) NE transducer: This component applies JAPE (Java
Annotations Pattern Engine) rules [29] to input text in order to
generate new annotations.

f) Semantic tagger: This component contains rules which
act on annotations assigned earlier, in order to produce outputs
of annotated entities.

2) Semantic unification: This unification level concerns
the content of patterns’ labels. It co nsists in a te xt mining
process, extracting terms and / or concepts that are most
representative for the different patterns fields’ content. These
latter (terms, concepts) are weighted according to their
occurrence number in the content and then, sorted according to
their weight representing thus, a sem antic annotation for the
concerned features. The patterns’ fields might also be enriched
by synonyms extracted from the WordNet [30] ontology for
the English as well as the WolF [31] ontology for the French
language, contributing thus, to th e enrichment of these
semantic annotations. The semantic unification phase is
performed using the GATE framework on structured patterns
produced by the first phase. It adds semantic annotations to
patterns content to form what we have called semantic process
patterns (c.f. Fig. 7).

3) Architectural unification: This phase aims to
normalize the description of an y given process pattern by
converting it from XML to OWL (Ontology Web Language).
In other words, this unification level should allow the autmatic
population of the proposed OWL ontology, named
MetaProPOS with individuals based on a given patterns
corpus. In order to ach ieve this, we use the Jena framework
[32] to implement a Java component for ontology’s population
based on the produced semantic process pattern s of the two
previous unification phases as well as some extraction rules
established for this purpose (c.f. Fig. 8). For inf ormation
purpose, Jena is a Java framework for building Semantic Web
applications. It provides a collection of tools and Java libraries
as well as an ontology’s API for handling OWL ontologies in
order to help develop semantic web applications [32].

B. Patterns Mining Process
Since the overall goal of our research work is to build up a

semantic and intelligent framework enhancing software process
patterns capitalization and reuse, we adopted a process patterns
warehousing and mining technique. As mentioned earlier, the
pattern warehousing process is ensured by the three unification
levels detailed above. As regards the pattern mining process, it
consists on a reasoning process performed on the unified
patterns in the warehouse based on MetaProPOS and the key
ontolgy’s concept Relationship. Indeed, this main concept
would allow a better search of related patterns.

Figure 6. Terminological unification.

Figure 7. Semantic unification.

Figure 8. Architectural unification.

Semantic Unification Process
patterns

WordNet

WolF

Semantic
process
patterns

ANNIE’s
Processing
Ressources

MetaProPOS

Architectural
Unification

Semantic
Process
patterns

OWL ontology’s
Jena API

<Meta>

Annotations

Ontology’s
instances

Format: Pdf,
Html, Doc, Txt
 Form: PPL,
UML-PP,
Ambler, etc.

Format :
XML
Form :
unified

ANNIE

Un-
structured
patterns

Structured
patterns

1. Morphological
Analysis

2. Key Terms
Recognition

3. Pattern
Tagging

Tokeniser

Sentence Splitter

POS Tagger

Extended ANNIE

NE Transducer

Gazetteer
Lists

JAPE
Rules

Semantic Tagger

510

These latter would be clustered according to the
relationship kind (c.f. Fig. 4). Consequently, a patterns’ algebra
is created allowing rigorous and automatic patterns processing
providing better search of similar patterns through the Similar
and Alternative relations as well as efficient guidance for
patterns composition and aggregation through the Refinement,
Consequent and Anti-pattern relations. Furthermore, process
patterns could be clustered according to the software
development phase or activity. So, a mega process pattern
could be built as an aggregation and / or a composition of
different process patterns for a given context or problem.

In order to reach this objective, we propose to combine the
use of MetaProPOS with a mining tool such as Weka [33]
which consists in a collection of machine learning algorithms
for data mining tasks containing tools for data pre-processing,
classification, regression, clustering, association rules, and
visualization.

V. CONCLUSION AND WORK IN PROGRESS
The most valuable contribution of this paper is the general

overview of targeted approach SCATTER which aims to
provide a s emantic framework for process patterns
warehousing and m ining given different patterns collections.
This research work mediation implies terminological, semantic
as well as architectural mediation efforts ensured by the three
proposed unification levels. The process patterns’ mining
process would improve process pattern’s capitalization and
reuse quality.

However, SCATTER has not been completely finalized for
implementation and is subject to refinement and validation,
which remains our work in progress. Indeed, we should expand
the proposed approach to annotate figures described through
Petri nets to cover workflow process patterns [34] as well as
UML activity diagrams. In this direction, we plan to combine
the use of the UIMA plug-in and ANNIE to deal with image
analysis and structuring in addition to text since GATE does
not support this kind of information.

REFERENCES
[1] Buschmann, F., Henney, K., and Schmidt, D.C., “Pattern-oriented

Software Architecture: On Patterns and Pattern Languages”, Wiley &
Sons, 2007.

[2] Henninger, S., Corrêa, V., “Software pattern communities: current
practices and challenges”, 14th International Conference on Pattern
Languages of Pr ogramming, pp. 1--19. ACM Proceedings, New York,
2007.

[3] Conte, A., Fredj, M., Giraudin J.P., and Rieu, D., “P-Sigma: a formalism
for A unified representation of patterns (in French), 19ème Congrès
Informatique des Organisations et Systèmes d'Information et de
Décision, pp. 67--86. Martigny, 2001.

[4] Hagen, M., “Support for t he definition and usage of p rocess patterns”,
7th European Conference on Pattern Languages of Programs, Dortmund,
2002.

[5] Hagen, M., and Gruhn, V., “Process patterns - a m eans to describe
processes in a flexible way”, 5th International Workshop on Software
Process Simulation and Modeling, ICSE Workshops, pp. 32--39.
Scotland, 2004.

[6] Tran, H.N., Coulette, B., and Dong, B.T., “Modeling process patterns
and their application”, 2nd International Conference on Software
Engineering Advances, pp. 15--20, IEEE Proceedings, Cap Esterel,
2007.

[7] Tasharofi, S., and Raman, R., “Process patterns for agile
methodologies”, Situational Method Engineering: Fundamentals and
Experiences, Proceedings of the IFIP WG 8.1 Working Conference, pp.
222--237,Springer, Switzeland, 2007.

[8] Ambler, S.W.: Process Patterns: Building Large-Scale Systems Using
Object Technology. Cambridge University Press/SIGS Books,
Cambridge, 1998.

[9] Kouroshfar, E., Yaghoubi Shahir, H., and Ramsin, R., “Process patterns
for component-based software development”, CBSE 2009, LNCS 5582,
pp. 54--68, 2009.

[10] Fahmideh, M., Sharifi, M., Jamshidi, P., Feridoon, S., and Haghighi, H.,
"Process patterns for service-oriented software development",
proceedings of the 5th IEEE International Conference on Research
Challenges in Information Science (RCIS’2011), pp. 1--9, 2011.

[11] Khaari, M., and Ramsin, R., “Process patterns for aspect-oriented
software development”, ECBS, pp. 241--250, England, 2010.

[12] Jlaiel, N., and Ben Ahmed, M., “MetaProPOS: a meta-process patterns
ontology for soft ware development communities”, KES Proceedings,
Part I. LNCS 6881, pp. 516--527 Springer, Germany, 2011.

[13] Jlaiel, N., and Ben Ahmed, M., “Ontology and ag ent based model for
software development best practices’ integration in a knowledge
management system”, OTM Workshops, OntoContent 2006, LNCS
4278, pp. 1028 -- 1037, Springer, France, 2006.

[14] Gzara, Yesilbas, L., Rieu, D., and Tollenaere, M., “Patterns approach to
product information systems engineering”, Requirement. Engineering,
vol. 5(3), pp. 157--179, 2000.

[15] Bouassida, N., and Ben-Abdallah, H., “A new approach for pattern
problem detection”, CAiSE, LNCS, Tunisia, pp.150--164, 2010.

[16] Störrle, H.,”Describing process patterns with UML”, 8th EWSPT,
LNCS, vol. 2077, pp. 173--18, Springer, Witten, 2001.

[17] Dittmann, T., Gruhn, V., Hagen, M.: Improved Support for the
Description and Usage of Process Patterns. In: 1st Workshop on Process
Patterns, 17th ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications, pp. 37--48. Seattle, 2002.

[18] Gnatz, M., Marschall, M., Popp, G., Rausch, A., and Schwerin, W.:
“Towards a tool support for a living software development process”, 8th
EWSPT 2001. LNCS, vol. 2077, pp. 182--202. Springer, Witten, 2001.

[19] Coulette, B., Crégut, X., Dong, T.B., Tran, D.T., “RHODES, a process
component centered software engineering environment”, 2nd
International Conference on Enterprise Information Systems, pp. 253--
260, Stafford, 2000.

[20] Ribó, J.M., and Franch X., “Supporting Process Reuse in
PROMENADE”, Research report, Politechnical University of Catalonia,
2002.

[21] Hagen, M., and Gruhn, V., “Towards flexible software processes by
using process patterns”, 3rd IASTED Conference on Software
Engineering and Applications, pp. 436--441, Cambridge, 2004.

[22] http://www.cs.kent.ac.uk/people/staff/saf/patterns/diethelm/plmlx_doc
[23] Meng, X.X., Wang, Y.S., Shi, L., and Wang, F.J., “A process pattern

language for agile methods”, 14th Asia-Pacific Software Engineering
Conference, pp. 374--381, Nagoya, 2007.

[24] Jlaiel, N., and Ben Ahmed, M.,”Reflections on how to improve software
process patterns capitalization and reuse”, IKE, pp 30--35, USA, 2010.

[25] http://opennlp.apache.org/
[26] http://uima.apache.org/
[27] http://gate.ac.uk/
[28] http://gate.ac.uk/sale/tao/splitch6.html#chap:annie
[29] http://gate.ac.uk/sale/tao/splitch8.html#chap:jape
[30] http://wordnet.princeton.edu/
[31] http://alpage.inria.fr/~sagot/wolf-en.html
[32] http://incubator.apache.org/jena/
[33] http://www.cs.waikato.ac.nz/ml/weka/
[34] Van der Aalst, W.M.P., Ter Hofstede, A. H.M., Kiepuszewski, B., and

Barros, A.P., “Worflow patterns”, Distributed and parallel Databases,
14(3), pp. 5--51, 2003.

511

DC2AP: A Dublin Core Application Profile to
Analysis Patterns

Lucas Francisco da Matta Vegi, Jugurta Lisboa-Filho, Glauber Luis da Silva Costa,
Alcione de Paiva Oliveira and José Luís Braga

Departamento de Informática
Universidade Federal de Viçosa
Viçosa-MG, Brazil, 36570-000

lucasvegi@gmail.com, jugurta@ufv.br, glaubercosta@gmail.com, alcione@dpi.ufv.br, zeluisbraga@ufv.br

Abstract—Analysis patterns are reusable computational artifacts,
aimed at the analysis stage of the process of software
development. Although the analysis patterns can facilitate the
work of analysts and programmers adding value through reuse of
proven useful and tested ideas, the access to them is still very
poor because of the way they are usually described and made
available. In order to reduce these deficiencies, supporting
cataloging and encouraging the reuse of analysis patterns, it was
proposed the Analysis Patterns Reuse Infrastructure (APRI).
This infrastructure comprises a repository of analysis patterns
documented through a specific metadata profile and accessed via
web services. Based on the proposal of APRI, this article presents
the specific metadata profile to the documentation of analysis
patterns called Dublin Core Application Profile to Analysis
Patterns (DC2AP).

Keywords- Analysis Patterns; Reuse; Metadata Standards;
Dublin Core.

I. INTRODUCTION
Correction of errors made during the encoding of a software

is usually more costly than the correction performed during the
stages of analysis and design. The costs for correction of errors
increase on each stage and in advanced stages they can be up to
100 times higher than in the early stages [1].

Due to the needs of companies, programmers and analysts
are constantly pressured to deliver encoded projects of software
as soon as possible, and the analysis stage is often left in the
background [2]. This common situation in companies ends up
generating software errors identified too late, thus burdening
the costs of the final product.

According to Fernandez and Yuan [2], analysis patterns can
make the analysis stage faster and more accurate for
developers, thus preventing that this important stage of
development is ignored. The analysis patterns are reusable
computational artifacts, aimed at the analysis stage of the
process of software development. According to Fowler [3], the
analysis patterns are ideas proved useful in a given practical
context and that may be useful in other contexts.

Although the analysis patterns can facilitate the work of
analysts and programmers adding value through reuse of
proven useful and tested ideas, the access to them is still very
poor [4]. So far there is n o template to specify the analysis
patterns that is widely accepted making each s et of analysis

patterns is specified according to the preferences of its authors.
In addition to not having a pattern specification, the analysis
patterns are normally provided in scientific books and papers
which are restricted access means and do not allow the efficient
retrieval of patterns performed, for example, through a search
tool [4].

In order to minimize these problems of specification and
retrieval of analysis patterns, it w as proposed the Analysis
Patterns Reuse Infrastructure (APRI) [5]. This infrastructure,
which was inspired by the Spatial Data Infrastructure (SDI) [6],
consists of a repository of analysis patterns, documented in a
specific metadata profile and accessed via web services.

This article proposes a specific metadata profile to the
documentation of analysis patterns compatible with the APRI
[5]. The metadata profile is based on the Dublin Core metadata
standard [7] and on the template proposed in [8] and [9] to
specify analysis patterns.

The remainder of this paper is organized as follows: Section
2 describes related works to documentation of analysis patterns
and to the Dublin Core metadata standard. Section 3 describes
the proposed metadata profile. Section 4 presents an example
of analysis pattern specified with the proposed metadata profile
and Section 5 presents some conclusions and possible future
works.

II. RELATED WORK

A. Documentation and Organization of Analysis Patterns
Documentation of analysis patterns is an important way for

contextualizing the reuse scope of a pattern and for enabling
the sharing of knowledge among designers. However, this
documentation is performed in a heterogeneous manner among
the authors, since there is no standardized way to specify
analysis patterns [4]. There are many approaches to specify
analysis patterns, ranging from non-formalized textual
descriptions to formalized descriptions based on templates.

Some analysis patterns specified in a n on-formalized
textual manner can be found in [3] and [10]. This little formal
way of describing a analy sis pattern affects reuse, because it
makes harder for designers to quickly understand the
contextual scope of patterns, and, mostly, it limits the retrieval
of analysis patterns through computerized search engines. Thus
important detailed information for designers may not be

512

described or even r etrieved, thus limiting the spread of these
patterns and thereby their potential for reuse.

Analysis patterns have also been described through the use
of templates, which are st ructures with predetermined topics
similar to those used to describe design patterns [11]. Usually a
template is composed of essential topics such as context,
problem, motivation and solution [3], combined with other
specific topics defined by their authors.

Some analysis patterns documented through templates can
be found in [12] and [13]. Meszaros and Doble [14] present in
their work a template composed of topics: name, problem,
context, motivation, solution, participants and related patterns.
This template was used in [12]. Pantoquilho, Raminhos and
Araujo [8] and Raminhos et al. [9] present in their work a
proposal of detailed template specifically for documentation of
analysis patterns. This template combines common topics used
previously by several authors, with new topics aimed at
describing the analysis patterns more broadly.

Besides adequate documentation, another important factor
to increase the potential for reuse of analysis patterns is th e
way they are organized and therefore available because before
a pattern is applied to a project, the designer needs to know of
its existence and then select it [4]. Usually analysis patterns are
organized together forming collections of patterns, and in one
collection, usually the patterns are documented homogeneously
by the same author, although this is not a rule.

The collection of analysis patterns can have different
formats, such as books, articles and websites, and they can still
be classified as pattern languages and pattern catalogues [4].
The pattern languages are basically collections of analysis
patterns aimed at solving a specific problem. In a pattern
language, the patterns are related to each other and must follow
application rules, for example, the order in which they must be
applied to solve the problem in question [4]. The pattern
catalogues are collections of analysis patterns not necessarily
related, but organized based on criteria in common and
searchable. Fowler's book [3] is an example of an analy sis
pattern catalog, because the organization of the patterns
described in that book was obtained from groups of patterns
with application domains in common and they may be found
by potential users through a table of contents [4].

B. Dublin Core Metadata Initiative
Metadata are data about data, i.e., information that makes it

possible to know the resources of the data. They can be used to
standardize data representation based on the description of their
authors, quality levels, application domains and other elements,
thereby encouraging the appropriate reuse of data [6].

The metadata standards are metadata structures used to
describe the data. According to the domain of the data to be
described, these description structures may have variations
compared to other domains due to peculiarities of each of them.
Thus, several metadata standards have already been proposed
in order to meet the specific needs of some domains. Examples
of metadata standards for specific domains can be found in [15]
and [16].

The Dublin Core metadata standard [7] appeared in 1995
from a workshop held in Dublin city in the U.S. state of Ohio.
This event brought together professionals from several fields of
knowledge in order to establish a generic metadata standard
composed of a small set of recurring elements in all areas [17].
This metadata standard has two levels, Simple Dublin Core and
Qualified Dublin Core.

The Simple Dublin Core consists of fifteen elements, as the
Qualified Dublin Core has seven additional elements that allow
more detailed descriptions of data. Beyond the twenty-two
elements that compose the levels of the Dublin Core standard,
it has many element refinements that can be used to specialize
the semantics of an element in certain situations and thus
facilitate the discovery of the data [18].

A major advantage of the Dublin Core standard is its
versatility. Although it is ve ry simple and does no t provide
enough resources to describe data of complex domains [17], it
can be specialized from the creation of application profiles for
specific domains [6].

Coyle and Baker [19] describe in their work the basic steps
for creating a Dublin Core application profile. An example of a
Dublin Core application profile for specific domain can be
found in [20].

III. A DUBLIN CORE APPLICATION PROFILE TO ANALYSIS
PATTERNS

The Dublin Core Application Profile to Analysis Patterns
(DC2AP) was developed based on the template proposed in [8]
to specify analysis patterns. The main objectives of DC2AP are
to improve retrieval and reuse of analysis patterns by means of
a description that allows a more precise treatment performed by
a computer, providing detailed information about the analysis
patterns that were not retrieved by search engines.

A. Mapping between Dublin Core Metadata Elements and
Pantoquilho’s Analysis Pattern Template
In contrast to the Dublin Core metadata standard, which is

generic and therefore aimed to document resources of several
domains, the template proposed in [8] by Pantoquilho et al. is
designed specifically for the documentation of analysis
patterns, so it is rich in specific details of this domain. Due to
such level of detail, this template was chosen to be used as a
basis for the creation of DC2AP.

An important task for the creation of DC2AP was the
realization of a mapping between the elements proposed by the
Dublin Core and elements of the template proposed in [8]. In
this mapping process, elements of both structures were
compared and classified based on their semantic
correspondences and some conceptual conflicts were identified.
These conflicts are characterized by similar concepts that are
expressed differently by each of the mapped structures. After
identifying and r esolving the existing conceptual conflicts
between structures it became possible to combine the elements
of Dublin Core and Pantoquilho’s template, thus creating a
single structure free of redundancies and semantic
inconsistencies. Table 1 shows the result of the mapping
between the Dublin Core standard and Pantoquilho’s template.
Although Table 1 sho ws only the mapping between the

513

elements of Simple Dublin Core and the Pantoquilho’s
template, the elements contained in Qualified Dublin Core
were also considered in this comparative process, but none of
them had equivalents in the template used.

Several mappings between elements of the Dublin Core and
elements of other structures have already been performed and
made available in the literature. An example of such mapping
is presented in [21].

B. Addition of New Metadata Elements and Creation of
Application Rules
From the mapping described above, all equivalent elements

have been identified and combined, thereby allowing that the
Pantoquilho’s template to be merged with Dublin Core, giving
rise to the basic structure of the DC2AP.

Most elements of the Pantoquilho’s template that had direct
equivalent mapping became element refinements of others
from the Dublin Core. This happened because Dublin Core
elements are generic and therefore require specializations to
compose an application profile for a specific domain. These
necessary specializations were made by the elements of the
chosen template [8].

During the merge process of the structures in question, two
elements from Pantoquilho’s template were discarded. The
element "Applicability" was discarded because it has semantics
very similar to the element "Problem" and therefore was
considered redundant. The element "Structural adjustments"
was discarded for not fitting in the context of an application
profile of metadata, where application rules are well defined,
not being necessary to document structural adjustments
performed during use of the profile.

Following the fusion of structures, some elements have
undergone semantic adjustments and new ones were proposed
to complete the set of elements that composes DC2AP. Table 2
presents all the elements that make up the profile proposed by
this work.

TABLE I. MAPPING DUBLIN CORE TO PANTOQUILO’S ANALYSIS
PATTERN TEMPLATE

Simple Dublin Core element Pantoquilho’s Template element

Title 1. Name
2. Also Known As

Creator 3. History *
Subject 7. Context

Description

5. Problem
6. Motivation
7. Context
8. Applicability
14. Examples *
18. Known Uses *

Publisher No equivalent
Contributor 3. History *
Date 3. History *
Type No equivalent
Format No equivalent
Indentifier 1. Name *

Source 15. Related Patterns *

Language No equivalent

Simple Dublin Core element Pantoquilho’s Template element

Relation
13. Anti-Patterns Trap *
15. Related Patterns *
16. Design Patterns *

Coverage No equivalent

Rights No equivalent

No equivalent

4. Structural adjustments
9. Requirements

9.1. Functional requirements
9.2. Non-functional requirements
9.3. Dependencies and
contributions
9.4. Conflict identification &
guidance to resolution
9.5. Priorities
9.6. Participants

10. Modelling
10.1. Structure

10.1.1. Class diagram
10.1.2. Class description

10.2. Behaviour
10.2.1. Collaboration or
sequence diagrams
10.2.2. Activity diagrams
10.2.3. State diagrams

10.3. Solution Variants
11. Resulting context
12. Consequences
17. Design guidelines

* Partly equivalent.

As shown in Table 2, DC2AP has some elements for
version control of documented patterns and others for the
sharing of experiences of use. These features were incorporated
into this profile to allow the creation of dynamic collections of
analysis patterns, where new improved versions of the patterns
can be proposed from the collaboration of experience of usage
of them. Moreover, all the versions of the analysis patterns may
be related to each other, thereby providing the creation of a
repository of analysis patterns rich in details. These resources
allow potential users to retrieve the version that best meets their
needs more efficiently. All these characteristics are consistent
with the proposal of the APRI [5].

The analysis patterns usually have rules controlling their
application. After defining the elements that compose DC2AP,
it was proposed rules on the obligation, occurrence and type of
value of each of the proposed elements. These rules are
presented in Table 2 by acronyms, described at the table end.

Due to limited space, the semantic description of each of
the elements that compose DC2AP, as well as some details of
the rules for applying them are not presented in this paper.
However a detailed technical description of this application
profile can be obtained at [22].

TABLE II. DC2AP ELEMENTS AND APPLICATION RULES

DC2AP Element and their Application Rules New

1. Identifier [M] [S] [UNS]

2. Title [M] [S] [St] 2.1. Alternative Title[O] [Mu] [St]

3. Creator [M] [Mu] [St]

514

DC2AP Element and their Application Rules New

4. Subject [M] [Mu] [St]

5. Description
 [M] [S] [N]

5.1. Problem [M] [S] [St]

5.2. Motivation
 [M] [Mu] [St]

5.2.1. Example
 [M] [Mu] [St]

5.2.2. Known Uses**
 [O] [Mu] [St]

5.3. Context [M] [S] [St]
6. Publisher [O] [Mu] [St]
7. Contributor [Cd] [Mu] [St]

8. Date [M] [S] [N] 8.1. Created [M] [S] [D]
8.2. Modified [Cd] [S] [D]

9. Type [M] [S] [US] 9.1. Notation [M] [S] [St] YES
10. Format [M] [Mu] [US]
11. Source [Cd] [S] [UNS]
12. Language [M] [S] [US]

13. Relation
 [Cd] [S] [N]

13.1. Is Version of [Cd] [S] [UNS]
13.2. Is Replaced by* [Cd] [Mu] [UNS]
13.3. Replaces* [Cd] [Mu] [UNS]
13.4. Is Part of [O] [Mu] [UNS]
13.5. Has Part [O] [Mu] [UNS]
13.6. Is Designed with** [O] [Mu] [UNS] YES
13.7. Should Avoid** [O] [Mu] [UNS] YES
13.8. Complemented by** [O] [Mu] [UNS] YES
13.9. About[Cd] [S] [St]

14. Coverage [O] [Mu] [St]
15. Rights [Cd] [Mu] [US]

16. History*
 [M] [Mu] [N]

16.1. Event Date [M] [S] [D] YES
16.2. Author [M] [Mu] [St] YES
16.3. Reason [M] [S] [St] YES
16.4. Changes [Cd] [S] [St] YES

17. Requirements
 [M] [S] [N]

17.1. Functional Requirements
 [M] [Mu] [St]

17.2. Non-functional Requirements
 [O] [Mu] [St]

17.3.
Dependencies
and Contributions
[M] [S] [St]

17.3.1.
Dependency Graph
[M] [S] [U]

YES

17.3.2.
Contribution Graph
[Cd] [S] [U]

YES

17.4.
Conflict identification & Guidance to
Resolution [Cd] [Mu] [St]

17.5. Priorities Diagram [M] [S] [U]
17.6. Participants [M] [Mu] [St]

18. Modelling
 [M] [S] [N]

18.1. Behaviour
 [M] [S] [N]

18.1.1.
Use Case Diagram
[M] [S] [U]

YES

18.1.2.
Collaboration/
Sequence Diagrams
[M] [Mu] [U]

18.1.3.
Activity/State
Diagrams
[O] [Mu] [U]

YES

18.2. Structure
 [M] [S] [N]

18.2.1.
Class Diagram
[M] [S] [U]

18.2.2.
Class Descriptions
[M] [S] U]

18.2.3.
Relationship
Descriptions
[M] [Mu] [St]

YES

18.3. Solution Variants** [O] [Mu] [U]

DC2AP Element and their Application Rules New
19. Resulting Context** [O] [Mu] [St]
20. Design Guidelines** [O] Mu] [St]
21. Consequences
 [M] [S] N]

21.1. Positive [M] [Mu] [St] YES
21.2. Negative [M] [Mu] [St] YES
Rules’ Acronyms

Obligatoriness Occurrence Value Type

[M] Mandatory
[O] Optional
[Cd] Conditional

[S] Single
[Mu] Multiple

[St] String
[D] Date
[U] URI
[N] Null
[UNS] URI, number or string
[US] URI and string

* Version Control element.
** Experiences Collaboration element.

IV. EXAMPLE
In order to demonstrate the application of metadata profile

proposed in this work, Table 3 presents an example that uses
DC2AP to specify the well-known Fowler’s analysis pattern
called Organization Hierarchies, proposed in [3]. Not all
DC2AP elements are presented in this specification, since some
necessary information for these elements are absent in the
original specification made by Fowler.

TABLE III. ORGANIZATION HIERARCHIES PATTERN SPECIFICATION

Example of use DC2AP
1. Identifier: OrganizationHierarchies-v1
2. Title:
Organization Hierarchies

2.1. Alternative Title:
Hierarquias de organização

3. Creator: Martin Fowler
4. Subject: Companies, Hierarchy, Organizational Structure, Sudsidiaries

5.
Description

5.1. Problem: There are many systems where we need to
manage the hierarchy of a n organization, registering its
subsidiaries and linking them in accordance with the rules of
hierarchy. How can we represent this process in a general
and abstract way?
5.2. Motivation:
- An organizational hierarchy has
subdivisions like Operating Units,
Regions, Divisions and Sales
Offices.
- Operating Units are divided into
Regions.
- Regions are divided into
Divisions.
- Divisions are divided into Sales
Offices.
- We need to provide a solution
easy to be changed because
organizations undergo changes in
its hierarchy over the course of
time.

5.2.1. Example:
- A management
system of a
multinational company,
for example, Microsoft.

- A management
system of a na tional
company that has
several branches
scattered throughout
the territory of a
country.

5.3. Context: This pattern is valuable to institutions or
companies that have any subsidiaries. In some cases
institutions may have more than one hierarchical
organizational structure, but this is not a rule.

6. Publisher: Lucas F. M. Vegi

7. Contributor: Lucas F. M. Vegi

8. Date 8.1. Created: 1997
8.2. Modified: 2012-01-15

9. Type: Analysis Pattern 9.1. Notation: UML
10. Format: JPEG and XMI
11. Source: Party Pattern [3]
12. Language: English

515

Example of use DC2AP

13.
Relation

13.2. Is Replaced by: Organization Structure Pattern [3]
13.4. Is Part of: Organization Structure Pattern [3]
13.8. Complemented by: Party Pattern [3]
13.9. About: This analysis pattern can be replaced by Structure
Organization pattern, because it contains the pattern Hierarchies
Organization specialized with a hi gher level of d etails, and thus
to more complex organizational hierarchies the analysis patter
Organization Structure may be more suitable. The Organization
Hierarchies pattern can be complemented by Party pattern
because an Organization can be a specialization of Party, as well
as the user of the system responsible for registering and changing
the hierarchy can also be like that. Thus the Party pattern can be
used as a complement of Hierarchies Organization pattern.

15. Rights:This analysis pattern was originally published in [3].

16.
History

16.1. Event Date: 1997
16.2. Author: Martin Fowler
16.3. Reason: Criation of this analysis pattern.

16.
History

16.1. Event Date: 2012-01-15
16.2. Author: Lucas F. M. Vegi
16.3. Reason: Specification of this analysis pattern with the
DC2AP metadata profile.
16.4. Changes: Structuring the analysis pattern proposed by
Fowler in a metadata profile. Within this process new diagrams
referring to the solution presented by this pattern were proposed
and the initial ideas of Fowler were reorganized into a structure
that promotes its retrieval and subsequent reuse.

17.
Requirements

17.1. Functional Requirements:
(R1) Create Organizational Hierarchy - The user should be
able to register the hierarchical levels of a n organization
for all its units.
(R2) Alter Organizational Hierarchy - The user should be
able to change the hierarchical levels of a n organization
whenever necessary, because as time goes on, with the
expansion or contraction of it, such changes will certainly
happen.
17.2. Non-functional Requirements:
(R3) Facility - User must make changes in the hierarchy of
an organization in a fast and simple way .
(R4) Security – Only users should be a llowed to register
and make changes in the hierarchy.

17.3.
Dependencies
and Contributions:
R2 depends on R1
because only
registered
hierarchies can be
changed.
R1 and R2 depends
om R3 and R4
because it is desired
that all these
processes are being
made only by
authorized users,
and in a simple way.

17.3.1. Dependency Graph

17.3.2. Contribution Graph

17.5. Priorities Diagram

17.6. Participants: User

Example of use DC2AP

18. Modelling

18.1.
Behaviour

18.1.1. Use Case Diagram

18.1.2. Collaboration/Sequence Diagrams

18.1.3. Activity/State Diagrams

18.2.
Structure

18.2.1. Class Diagram

18.2.2. Class Descriptions:
- Organization: This class holds all the
attributes common to all possible types of
subsidiaries of an organization.
- Operating Unit: This class represents the
highest hierarchical level of an
organization.
- Region: This class represents a
hierarchical level of an organization. This
is the level immediately below an
Operating Unit in a hierarchy.
- Division: This class represents a
hierarchical level of an organization. This
is just below a Region in a hierarchy.
- SalesOffice: This class represents a
hierarchical level of an organization. This
is just below a Division in a hierarchy.
18.2.3. Relationship Descriptions:
The self-relationship between the
Organization class, super-class of all
hierarchical levels, represents that the
hierarchical levels communicate with each
other. To correctly obey the hierarchical
structure, there are restrictions establishing
what hierarchical level each of them can
communicate directly with.

516

Example of use DC2AP
18.3. Solution Variants:

21.
Consequences

21.1. Positive:
- This analysis pattern represents an organizational
hierarchy easy to change, thus making it useful in different
contexts.
- To change the hierarchical structure of an organization of
this pattern, it is not necessary to change the model
structure, but the subtypes and restrictions of the pattern.
This makes the pattern flexible and reusable.

21.2. Negative:
- This pattern supports only a single organizational
hierarchy, thereby limiting some contexts of use.
- If restrictions are not well established for the context of
use of this pattern, the self-relationship in it can be
dangerous, allowing some hierarchical levels relate
directly improperly.

V. CONCLUSIONS AND FUTURE WORK
DC2AP allows a d etailed specification of the analysis

patterns, since it was developed specifically for this domain.
This profile was developed to be integrated into the proposal of
Analysis Patterns Reuse Infrastructure (APRI) [5]. Thus it aims
to solve the problem of documentation, organization, search
and access to analysis patterns.

The use of DC2AP in an APRI allows the creation of digital
collections of analysis patterns in the form of pattern
catalogues and pattern languages. Through web services
proposed by APRI, the analysis patterns specified with DC2AP
can be retrieved more quickly and ef ficiently, offering to
potential users an easier access to well-documented analysis
patterns, and consequently, with greater potential for reuse.

Because it is a generic metadata standard, Dublin Core
allows interoperability between data of different domains, so
DC2AP, being an application profile of Dublin Core, can be
combined with future works aimed at creating new Dublin
Core application profiles to document other types of reusable
computational artifacts.

As future works, it is intended to align current description
of DC2AP to the Singapore Framework. This framework is a
set of descriptive components recommended to document an
application profile [23]. With this alignment, DC2AP will fit in
the concept of machine-processable application profile and thus
can serve as basis for the definition and implementation of web
services proposed in APRI for search, visualization, application
and contribution of use experience of analysis patterns.

ACKNOWLEDGMENT
This work is partially financed by Brazilian funding

agencies: FAPEMIG, CNPq and CAPES. The authors also
acknowledge the financial support of the company Sydle.

REFERENCES
[1] B. Boehm, and V. Basili, “Software defect reduction top 10 list,” IEEE

Computer, vol. 34, n. 1, January 2001.
[2] E. B. Fernandez, and X. Yuan, “Semantic Analysis Patterns,” Proc. of

the 19th Int. Conf. on Conceptual Modeling (ER 2000), LNCC vol.
1920. Springer, pp. 183-195, 2000.

[3] M. Fowler, Analysis Patterns: reusable object models. Addison-Wesley
Publishing, 1997.

[4] N. Blaimer, A. Bortfeldt, and G. Pankratz, “Patterns in object-oriented
analysis,” Working Paper No. 451, Faculty of Business Administration
and Economics, University of Hagen (Germany), 2010.

[5] L. F. M. Vegi, D. A. Peixoto, L. S. Soares, J. Lisboa-Filho, and A. P.
Oliveira, “An infrastructure oriented for cataloging services and reuse of
Analysis Patterns,” Proc. of BPM 2011 Workshops (rBPM 2011),
LNBIP vol. 100, Part 4. Springer, pp. 338 – 343, 2012.

[6] J. Nogueras-Iso, F. J. Zarazaga-Soria, and P. R. Muro-Medrano,
Geographic information Metadata for Spatial Data Infrastructures:
resources, interoperability and information retrieval. Springer, 2005.

[7] DCMI - Dublin Core Metadata Initiative. [Online]. Avaiable:
http://www.dublincore.org

[8] M. Pantoquilho, R. Raminhos, and J. Araújo, “Analysis Patterns
specifications - filling the gaps,” Proc. of the 2nd Viking PLoP. pp. 169-
180, 2003.

[9] R. Raminhos, M. Pantoquilho, J. Araújo, and A. Moreira, “A systematic
Analysis Patterns specification,” Proc. of the 8th International
Conference on Enterprise Information Systems (ICEIS). pp. 453-456,
2006.

[10] D. C. Hay, Data Model Patterns: convention of thoughts. Dorset House
Publishing: New York, USA, 1995.

[11] E. Gamma, R. Helm, R. J ohnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Publishing, 1994.

[12] J. Lisboa-Filho, C. Iochpe, and K. A. Borges, “Analysis Patterns for GIS
data schema reuse on urban management applications,” CLEI Electronic
Journal, vol. 5, n. 2. pp. 01-15, 2002.

[13] E. B. Fernandez, X. Yuan, “An Analysis Pattern for invoice processing,”
Proc. of the 16th Conference on Pattern Languages of Programs (PLoP).
pp. 01-10, 2009.

[14] G. Meszaros, and J. Doble, “A pattern language for pattern writing,” in
Pattern languages of program design 3, R. C. Martin, D. Riehle, and F.
Buschmann, Eds. Addison-Wesley: Boston, USA, 1997, pp. 529-574.

[15] U.S. Library Of Congress, “MARC standards,” Network Development
and MARC Standards Office. 2004. [Online]. Avaiable:
http://www.loc.gov/marc/

[16] ISO, Geographic information - Metadata. ISO 19115:2003, International
Organization for Standardization. 2003.

[17] NISO U.S. - National Information Standards Organization, The Dublin
Core Metadata element set: an American national standard. NISO Press,
2001.

[18] DCMI - Dublin Core Metadata Initiative, “Using Dublin Core - Dublin
Core Qualifiers”. 2005. [Online]. Avaiable:
http://dublincore.org/documents/usageguide/qualifiers.shtml

[19] K. Coyle, and T. Baker, “Guidelines for Dublin Core Application
Profiles.” 2009. [Online]. Avaiable:
http://dublincore.org/documents/profile-guidelines/

[20] DCMI - Dublin Core Metadata Initiative, “Dublin Core Collections
Application Profile.” 2004. [Online]. Avaiable:
http://dublincore.org/groups/collections/collection-application-profile/

[21] U.S. Library Of Congress, “Dublin Core to MARC Crosswalk,”.
Network Development and MARC Standards Office. 2008. [Online].
Avaiable: http://www.loc.gov/marc/dccross.html

[22] L. F. M. Vegi, “Technical description of Dublin Core application profile
to Analysis Patterns (DC2AP)”. 2012. [Online]. Available:
http://purl.org/dc2ap/TechnicalDescription

[23] M. Nilsson, T. Baker, and P. Johnston, “The Singapore Framework for
Dublin Core Application Profiles.” 2008. [Online]. Avaiable:
http://dublincore.org/documents/singapore-framework/

517

Bridging KDM and ASTM for Model-Driven Software Modernization

Gaëtan Deltombe
Netfective Technology Software

32, avenue Léonard de Vinci
33600 – Pessac, France

g.deltombe@netfective.com

Olivier Le Goaer, Franck Barbier
University of Pau

Avenue de l’université
64000 – Pau, France

{olivier.legoaer, franck.barbier}@univ-pau.fr

Abstract

Standardizing software modernization techniques has
lead to the KDM (Knowledge Discovery Metamodel). This
metamodel represents several application aspects (code, ar-
chitecture, etc.), while transforming them into renewed ver-
sions. On the other hand, ASTM (the Abstract Syntax Tree
Metamodel) has been recently released. It focuses on the
parsing of text-based files written in a given language. In
practice, KDM and ASTM are intended to be used jointly
when modeling source code with formal links to other soft-
ware features like components, user interfaces, etc. How-
ever, the link between ASTM and KDM is often fuzzy, or
even unestablished since KDM is in charge of synthesizing
all captured software artifacts. This has negative effects on
the attainable level of automation and on the completeness
of a software modernization project. To overcome this limi-
tation, this paper introduces SMARTBRIDGE as a means to
reconcile both standards.

1. Introduction

Modernization is at the heart of many software organiza-

tions that seek to migrate from obsolete or aging languages

and platforms to more modern environments. Moderniza-

tion projects have historically focused on transforming tech-

nical architectures; that is, moving from one platform to an-

other and / or from one language to another [2]. This is

achieved through code translation or various refactoring ex-

ercises such as restructuring, data definition rationalization,

re-modularization or user interface replacement.

Meanwhile, model-driven development (MDD) is gain-

ing increasing acceptance; mainly because it raises the

level of abstraction and automation in software construc-

tion. MDD techniques, such as metamodeling and model

transformation, not only apply to the creation of new soft-

ware systems but also can be used to help existing systems

evolve [7, 1]. These techniques can help reduce software

evolution costs by automating many basic activities, includ-

ing code manipulation.

There is currently great activity addressing model-driven

modernization issues, for which the OMG’s task force on

modernization [16] plays a major role. It aims at making

precise inventories of various kinds of legacy artifacts in or-

der to propose more or less automatic model-driven migra-

tions of applications by means of interoperable tools. This

way, all discovered artifacts are considered as full-fledged

models. This is an important shift compared to classical ap-

proaches, which do not consider abstract representations as

perennial and reusable assets.

The context of this paper is rooted in the research work

conducted by the European REMICS (www.remics.eu)

project [11]. This project seeks an end-to-end model pro-

cessing chain to transform legacy applications/information

systems into services in the Cloud. Several modeling lan-

guages are operated in the project, within both reverse and

forward engineering activities. To define and support this

chain in tools, modeling language semantic gaps must be

fulfilled. More specifically, the reverse engineering activ-

ity must be committed to go from the source code towards

technologically-neutral UML models, which can then be

consumed by a wide range of third-party MDD tools. The

forward engineering activity starts from UML models and

next uses SoaML (www.soaml.org) and CloudML (a forth-

coming OMG standard that is currently specified within

REMICS). So, between reverse and forward, a suite of mod-

els conforming to (i.e., instances of) OMG standard meta-

models are involved, each aiming at representing the initial

source code at different levels of abstraction, along with var-

ious refinements/quality levels [8]. The general idea is that

a portfolio of metamodels and transformation chains are

pre-implemented in a tool to support an intelligible seam-

less reverse and forward engineering process. Because of

its industrial impact, REMICS complies to worldwide stan-

dards. Nonetheless, these standards lack large-scale exper-

imentation, thus requiring adaptations in their core to re-

ally achieve a high degree of automation when targeting a

518

Legacy2Cloud logic. In this scope, this paper stresses re-

verse engineering activity, by showing and illustrating how

modeling language can be rationally treated.

In reverse engineering, top-down approaches promote

a recovery process that is conducted through architectual

knowledge. On the other hand, bottom-up approaches

[4] are more pragmatic, since reverse engineering activ-

ities lean on source code that is undoubtedly the most

rich, self-contained and straightforwardly available mate-

rial. REMICS focuses on the latter due to the dispersion,

or even absence of knowledge. So, model transformations

amount to inferring such knowledge from model details and

from the expressiveness of their associated modeling lan-

guages. Risks occur when the knowledge in models has to

move from one language formalism to another. For turn-

ing code written in a given programming language into a

language-agnostic model, the OMG’s task force on mod-

ernization puts forward two metamodels: the ASTM [13],

which is a metamodel dedicated to syntax trees, and the

KDM [12], which is a more global metamodel where the

sub-parts deal with a wider spectrum of program-level el-

ements (i.e., user interfaces, data, functions/services, run-

ning platform). Unfortunately, KDM and ASTM are not

clearly linked to each other. They aim at being complemen-

tary but practice shows an unsound, ill-formalized depen-

dency between them. To bridge this gap, this paper dis-

cusses, develops and illustrates an intermediary metamodel

called SMARTBRIDGE, which allows a roundtrip relation-

ship between KDM and ASTM and hence supports multiple

iterations during the reverse engineering activity.

The remainder of the paper is organized as follows: in

Section 2 we describe the motivations and the various spec-

ifications that gave birth to KDM and ASTM respectively.

The SMARTBRIDGE is then detailed in Section 3, including

an enumeration of the metaclasses and metarelationships in-

volved in the junction of ASTM and KDM. To make these

ideas more concrete, we provide in Section 4 a demonstra-

tion of SMARTBRIDGE on a tiny COBOL snippet. Section

5 gives an overview of the related works on model-driven

modernization. We conclude this paper in Section 6.

2. Problem of Interest

Recently, MDD standardization has stressed moderniza-

tion with the special objective of providing new concepts,

tools and processes when moving legacy software to re-

newed applications/information systems running on top of

the most up-to-date technologies. The idea behind that is to

switch between different technical spaces [10] by underesti-

mating the purely ”grammarware” approach in favor of the

”modelware” approach. Beyond traditional code-to-code

approaches, model-centric approaches are those promoted

by MDD in general: (a) conformance to well-defined meta-

Application
Src code

SASTM
model

GASTM
model

KDM
model

GS
mP T T

ASTM model

P TModel
(conforms to a metamodel)

Parser
(injector/discoverer)

Transformation
(Model-to-model)

Figure 1. Reverse Engineering process ac-
cording to the OMG’s task force on modern-
ization.

models, (b) powerful transformation techniques, (c) easier

integration of various concerns. Standards in this area also

emphasize wider interoperability. In this case, standard-

compliant models should be exchangeable between tools in-

volved in the migration chain. These tools process software

elements having different shapes. These shapes include

the lowest levels (code), as well as the highest: business

rules process extraction and interpretation, dealing with the

software architecture and components, exhibiting services

(business functionalities), etc.

2.1. MDD-based Reverse Engineering

A modernization process encompasses two stages: re-

verse engineering and forward engineering. The for-

ward engineering stage starts from a Platform-Independent

Model (PIM) that serves as the basis for code generation.

The reverse engineering stage extracts elements from legacy

code and data description, rendering them into a Platform-

Specific Model (PSM). KDM is the support candidate for

representing PSMs by using ASTM as sub-support for the

precise and comprehensive representation of a software sys-

tem. The creation of PIMs (or technology-neutral models)

is favored by the construction of formal mappings between

KDM/ASTM on one side and UML (for PIMs) on the other

side. More generally, metamodeling fosters the description

of discrete steps to show how, at the very beginning, the

rough code may be interpreted and analyzed in terms of ar-

chitectural incidence: operating system adherences, busi-

ness value discovery strategies, etc.

In this article, KDM is the pivot metamodeling language

for representing entire enterprise software systems; includ-

ing source code of course, but not exclusively. As a com-

mon intermediate representation for existing software sys-

tems, KDM is a good support for refactoring, the derivation

of metrics and the definition of specific viewpoints. Figure

1 depicts the full reverse engineering process promoted by

MDD modernization standards.

519

Figure 2. KDM consists of 12 packages ar-
ranged into 4 layers

2.2. MDD technologies for modernization

The concomitant use of KDM and ASTM requires a

clear understanding of their current capabilities.

2.2.1 Knowledge Discovery Metamodel (KDM)

The architecture of KDM is arranged into four layers,

namely the Infrastructure Layer, Program Elements Layer,

Runtime Resources Layer and Abstractions Layer (Figure

2). Each layer is dedicated to a particular viewpoint of an

application. In this paper we are only interested in the two

main layers: the Runtime Resources Layer and the Program

Element Layer. These layers allow one to represent the user

interfaces, data and code of the legacy application.

The KDM Runtime Resources Layer The Runtime Re-

source Layer is composed of several packages (Data, UI,

Event and Platform). However, we will concentrate on

the Data and UI packages herewith. The first one is used

to represent the organization of persistent data, especially to

describe complex data repositories (e.g., record files, rela-

tional schemas, . . .). The second one is used to represent the

structure of user interfaces and the dependencies between

them in terms of interactions and sequences.

The KDM Program Elements Layer Special attention

is paid to the Program Elements Layer, whichis concerned

with program-level artifacts. The Program Elements Layer

is composed of the Code and Action packages. The

Code package represents programming elements as deter-

mined by programming languages (data types, procedures,

classes, methods, variables, etc.), while the Action pack-

age describes the low-level behavior elements of applica-

tions, including detailed control and data flows resulting

from statement sequences. In this scope, KDM is recog-

nized as a way of representing the source code, if only at

the execution flow level.

2.2.2 Abstract Syntax Tree Metamodel (ASTM)

As a complement, ASTM has been developed in accor-

dance with the theory of languages to support the repre-

sentation of source code. In fact, ASTM is composed of

the GASTM (Generic Abstract Syntax Tree Metamodel),

a standardized language-independent metamodel and the

SASTM (Specific Abstract Syntax Tree Metamodel), a

user-defined metamodel closely connected with a particu-

lar language (Java, COBOL and so on).

Generic Abstract Syntax Tree Metamodel (GASTM)
GASTM enables the representation of the code without any

language specificity. GASTM contains all of the common

concepts of existing languages in the form of metatypes.

Parsing some files means instantiating these metatypes

along with creating links in order to model semantic de-

pendencies between text pieces. The goal of GASTM is to

provide a basis for SASTM in order to later help users to de-

fine the domain-specific features of the code to be parsed.

The key achievement is to avoid an unintelligible separation

(especially in terms of representations) between the generic

and specific characteristics of the code. Besides, the (anno-

tated) distinction in models between generic versus specific

parts, is highly valuable at processing time (see below).

Specific Abstract Syntax Tree MetaModel (SASTM)
SASTM is constructed through metatypes/metarelation-

ships on the top of GASTM. This task is assigned to ASTM

practitioners. It first leads to constructing a metamodel from

scratch that is compatible with the legacy language/technol-

ogy to be dealt with. The main goal of SASTM is to rep-

resent code peculiarities. Next, parsing the code amounts

to distinguishing between generic and specific aspects, and

thus instantiating GASTM or SASTM. The formal interre-

lation between the two metamodels ensures that models (or

their respective instances which represent a given business

case) are also consistently linked together based on (fully

explicit) comprehensive links.

2.3. Realizing modernization

OMG provides a set of standard specifications for soft-

ware modernization but fails to provide a guideline for the

practitionners. As such, we experimented on the aforesaid

technologies while endeavoring to adhere to the – somewhat

idealized – process depicted in Figure 1.

520

2.3.1 Complementarity of MDD technologies

The complementarity of KDM and ASTM resides in the

possible code level representations and the different opera-

tions that can be applied. On one hand, ASTM permits one

to represent a given code source at procedure level, in the

form of a syntax-tree whose production has involved a user-

defined SASTM: code specificities are taken into account.

On the other hand, KDM is used to represent the code at

flow level (e.g., data inputs, data outputs, sequences). In

fact, a flow level representation provides a direct support

for flow analysis and the refactoring strategies thereof. In

addition, any reverse engineering process relying on KDM

models is reusable, whatever the source technology may be.

So, ASTM deals with common parsing issues, while KDM

deals with another viewpoint; thus creating the link with

other facets like user interfaces, components and so on.

2.3.2 Discretization of the process

The modernization process proposed in this paper is divided

into three codified steps:

1. The first step consists in the abstraction of data, code

and user interfaces from the legacy material. This is

transformed into several technology-specific models.

Practically speaking, for each artifact we define its own

parser. The parsing outputs are concrete syntax trees

(CSTs). Next, these CSTs are transformed into ASTs,

each conforming to predefined SASTM metamodels.

Starting from chunks of text and ending up as mod-

els, this global process is often called ”Injection” in

the MDD jargon.

2. This second step consists in the transformation of

SASTM models into KDM models, with respect to

user interfaces, data and code packages. The goal of

this model transformation is to eliminate all techno-

logical specificities of the input code model. For that

purpose, a reformulation is sometimes required.

3. The third step consists in transforming the code-related

and data-related KDM models into UML models, thus

generating models in a widely accepted format with

their associated graphical notation. There are no tech-

nical difficulties except that of choosing between the

(existing) concurrent UML-like Java representations

that are tolerated by today’s modeling tools.

2.3.3 Current limitations

Our experience has led us to conclude that a moderniza-

tion project is not a straightforward process, but instead a

strongly iterative process, including the re-examination of

the models’ parts and their mutual enrichment. We thereby

advocate roundtrip capability as to enable information ex-

change and knowledge propagation within the process, at

any level or step. At least two reasons explain this.

First, real modernization requires incorporating addi-

tional or derived knowledge into models, either automati-

cally or manually. The most prominent examples are the

following:

• Detection of code patterns. The purpose is to recog-

nize sets of object codes that will facilitate refactor-

ings, especially when targetting a completely new ar-

chitecture.

• Determination of components fate (and the traceability

thereof). In accordance with application experts, the

purpose is to stamp components that will be migrated

and those that will be instead replaced by off-the-shelf

components.

• Extraction of business rules. The purpose is to gain a

better comprehension of the business logic that under-

lies a huge amount of lines of code.

• Multi-view modeling. The purpose is to set up the right

semantic relationships between the interrelated views

of the system that is being reversed (such as user inter-

face, business code and those data structures used for

persistence).

Secondly, the strict discretization of the modernizing

process envisioned by OMG is not realistic when aim-

ing at providing a modernization CASE tool with a good

user-experience level. Indeed, the way a user perceives

the computer-aided modernization is an important question,

from a tooling viewpoint. Typically, the new knowledge

must be impacted to the code model and showed to the

user. Thus, some code blocks within a code editor will be

highlighted as patterns, while some others will be tagged

as “to be replaced”, etc. In other words, the new knowl-

edge derived from the KDM-level must be brought up to

the ASTM-level.

3. Proposed research

The observations above stress the necessity to take ad-

vantage of the two worlds, while providing roundtrip ca-

pability. This means preserving the support for architec-

ture, data, user interfaces (even metrics) that is provided

by KDM; as well as achieving the level of details allowed

by ASTM. Therefore, we suggest that ASTM and KDM

could be interrelated thanks to a bridge that we have dubbed

SMARTBRIDGE. This bridge will ensure inter-relationships

as well as intra-relationships. The former deal with links

between two distinct metamodels: KDM and ASTM. The

521

latter deal with links between the layers that belong to the

KDM metamodel itself.

Building SMARTBRIDGE has led us to focus on three

important features:

1. interfacing KDM and ASTM via joint points

2. ensuring navigability between them

3. mapping the different KDM layers: code, data and user

interface

3.1. Interfacing

The linkage between the low level code representation

allowed by ASTM and the more abstract level allowed by

KDM is not natively provided. To overcome this issue,

SMARTBRIDGE interposes a number of meta-classes that

are showed in table 1.

ASTM SMARTBRIDGE KDM

TypeDefinition EDataType DataType

DataDefinition EDataElement DataElement

TypeDeclaration EDataType DataType

AggregateTypeDefinition EDataType RecordType

AggregateTypeDeclaration EDataType RecordType

FunctionDeclaration EControlElement CallableUnit

FunctionDefinition EControlElement CallableUnit

VariableDeclaration EDataElement StorableUnit

VariableDefinition EDataElement StorableUnit

Statement EActionElement ActionElement

Table 1. Meta-classes for interfacing ASTM
and KDM

Achieving this interfacing calls for an extension point.

It turns out that such an extension point was provided

in the KDM specification by way of the meta-class

CodeElement which belongs to Code package. Figure

3 shows how SMARTBRIDGE exploits this extension point

in order to introduce the required metaclasses to bridge to-

ward ASTM.

Based on the KDM CodeElement meta-class,

SMARTBRIDGE defines several meta-classes which

are sub-classes of EElement. These meta-

classes are ECodeElement, EActionElement,

EDataElement, EControlElement and

EDatatype. Figure 4 presents an interfacing ex-

ample between an ASTM Statement and its KDM

corresponding representation.

3.2. Navigability

We decided to provide a bidirectional navigation capa-

bility between KDM and ASTM in order to be able to ob-

Figure 3. CodeElement extension point

Figure 4. EActionElement meta-class

tain an ASTM code representation from an abstract code el-

ement representation, and conversely. The navigability im-

plemented in SMARTBRIDGE is inspired by the relationship

mechanism used in the KDM specification [12]. The KDM

code package provides a natural extension point for this re-

lationship mechanism through the CodeRelationship
meta-class (Fig. 5). SMARTBRIDGE specializes this ex-

tension point in two metaclasses: ERelationship and

EAggregateRelationship.

3.2.1 ERelationship

The ERelationship meta-class defines the navigability

between KDM meta-classes and the SMARTBRIDGE meta-

classes. An ERelationship instance is used in order

to navigate from a KDM CodeElement to a SMART-

BRIDGE EElement and vice versa. This relationship is ex-

clusively used for a one-to-one relationship, like a function

representation (ASTM FunctionDefinition), which

corresponds exactly to one abstract representation (KDM

CallableUnit).

522

3.2.2 EAggregateRelationship

The EAggregateRelationship meta-class defines

the navigability one-to-many between a KDM element and

many SMARTBRIDGE elements. This one-to-many rela-

tionship is useful in order to represent KDM abstract ele-

ments (like KDM ActionElement) using many concrete

ASTM ones (like Statement metatype).

Figure 5. CodeRelationship extension point

3.3. Mapping

The need to provide a mapping between the type defini-

tion contained in the legacy source code and the data def-

inition in a database or in the user interface is extremely

strong. The KDM meta-model does not provide the con-

cept of specific mapping between the different layers: code,

data and user interface. For this reason SMARTBRIDGE in-

troduces this lacking concept through a new package: the

Mapping package. It defines the link between the source

code and the UI from one side and the source code and the

data from the other side. The package introduces a new

KDM code model called MappingModel (c.f. Figure 6).

This model contains the existing mapping set representing

the data structures, the UI and the source code.

SMARTBRIDGE includes the mapping concept through

the abstract meta-class MappingElement. Thereby

two concrete meta-classes are defined to map the KDM

code package element with the KDM data package ele-

ment DataMapping and the KDM ui package element

UIMapping (Fig. 7).

Thanks to these three important features, i.e. navigabil-

ity, interfacing and mapping, SMARTBRIDGE fills the gap

between the KDM and the ASTM metamodels. This is es-

sential to reach a suitable level of abstraction which enables

a better understanding of the legacy source code, and hence

an easier modernization activity.

Figure 6. Mapping Model

Figure 7. Focus on UI Mapping

4. Working example

This section provides an illustration of SMARTBRIDGE

for the modernization of the COBOL legacy code. This il-

lustration especialy focuses on the benefits of interfacing

KDM and ASTM. For the sake of simplicity, the follow-

ing illustrations are based on the tiny COBOL code snippet

below:

MOVE "sample error" Error-Message
PERFORM FERROR

The modernization process is based on the three follow-

ing steps:

1. Text to Model transformation (aka. Injection)

2. Interfacing

3. Abstraction refining

4.1. Injection

The first step in the modernization process as discussed

in Section 2.3.2, is to obtain an abstract syntax tree con-

forming to the ASTM metamodel. This step is crucial in

523

extracting relevant information contained in the code. Thus

to build this ASTM model, a COBOL grammar must be

used to parsing the legacy source code. The result of this

parsing phase is then used to obtain the SASTM (Right part

on Fig. 8).

The obtained SASTM model contains specificities

closely related to the COBOL programming language like

MOVE, PERFORM, etc. In order to obtain more abstract ele-

ments, the transformation of this model into a GASTM one

is required (not showed here).

4.2. Interfacing

This second step aims at interfacing between ASTM and

KDM by using our SMARTBRIDGE metamodel in order to

progressively raise the abstraction level and also to itera-

tively enrich the target KDM model. This interfacing is il-

lustrated in Figure 8.

Figure 8. Interfacing example

4.3. Abstraction refining

The third and last step of our modernization process aims

at reaching a first abstraction level and at enriching the ini-

tial model. In order to accomplish this step, a true source

code comprehension is necessary. In fact the MOVE in-

struction (see COBOL code sample) initializes the value

Error-Message. This field represents the parameter.

The KDM representation of the PERFORM statement is a

CallableUnit call with a parameter value of ’sample er-
ror’. Figure 9 shows the KDM representation obtained us-

ing SMARTBRIDGE.

5. Related Works

In this section, we study other works that address mod-

ernization issues through model-driven technologies. Log-

ically, we pay a special attention to those focusing on the

code level of legacy applications. In contrast with KDM-

compliant approaches, approaches relying on proprietary

metamodels, tailored for particular usages do exist.

Figure 9. Abstraction refining example

5.1. KDM-uncompliant

Reus et al. in [15] propose a MDA process for software

migration where they parse the text of the original system

and build a model of the abstract syntax tree. This model

is then transformed into an intermediate langage dubbed

GenericAST that can be translated into UML.

In [6], the authors summarize the use and impact of the

TGraph technology in Reverse Engineering. TGraphs [5]

are directed graphs whose vertices and edges are typed, at-

tributed, and ordered. In fact, representing source code as

a typed graph can be rephrased as representing code as a

model conforming to a metamodel. From this point of view,

metamodels used by parsers are designed from scratch.

Izquierdo and Molina developed the Gra2MoL approach

[3], where a model extraction process is considered as a

grammar-to-model transformation, so mappings between

grammar elements and metamodel elements are explicitly

specified. Beyond the technical aspects of the proposed

transformation language, one may notice that the target

metamodels are user-defined.

Fleurey et al. describe in [9] a model-driven migration

process in an industrial context. For that purpose, a tool

suite for model manipulation is used as a basis for automat-

ing the migration. The reverse engineering step moves from

a code model (output of the parsing) to a PIM, which is

implemented by model transformations from a legacy lan-

guage meta-model (e.g., COBOL) to a pivot metamodel.

The pivot metamodel is called ANT and contains packages

to represent data structures, actions, UIs and application

navigation.

5.2. KDM-compliant

In [14], Perez-Castillo et al. propose a technique that

recovers code-to-data links in legacy systems based on re-

lational databases and enable one to represent and man-

age these linkages throughout the entire reengineering pro-

524

cess. The proposal follows the ADM approach by lever-

aging KDM, especially the code package of the Program

Elements Layer where SQL sentences have been modeled

through a KDM extension. In this case, it is not an actual

metamodel, it is a profile one instead.

MoDisco (Model Discovery) [1] is the model ex-

traction framework part of the Eclipse GMT project

(www.eclipse.org/gmt). This framework is currently under

development and provides a model managing infrastructure

dedicated to the implementation of dedicated parsers (”dis-

coverers” in MoDisco terminology). A KDM-based meta-

model, a metamodel extension mechanism and a methodol-

ogy for designing such extensions are also planned.

6. Conclusion

ASTM and KDM complement each other in modeling

software systems’ syntax and semantics. In this article,

we propose to fill the gap between the two by introducing

SMARTBRIDGE in order to remain in the scope of ADM and

hence ensure the interoperability of the outputs of MDD re-

verse engineering activities.

Gluing ASTM and KDM aims at overcoming the main

flaw of a strict discretization of the modernization process,

thus enabling roundtrip engineering. It also balances out the

purely low-level representation of the legacy material sup-

ported by ASTM and the higher abstraction level supported

by KDM. Hence, SMARTBRIDGE has been implemented

within BLUAGE R© (www.bluage.com) and has been proven

to better represent code, while maintaining good architec-

tural representation; rather than using KDM and ASTM

separately. As such, we have demonstrated – in a tooling

purpose – that SMARTBRIDGE supplies a practical answer

to the traceability from end-to-end issue, along with knowl-

edge propagation at every step.

We are currently improving SMARTBRIDGE with addi-

tional features. Indeed, similarly to the glue ASTM-KDM,

we plan to fill the gap with further OMG ADM meta-

models like SPAP (Software Patterns Analysis Package),

SMM (Software Metrics Metamodel), etc. These new re-

lationships will make it possible to handle the different as-

pects of a legacy system as a cohesive whole.

Acknowledgements

This work has been funded by the European Commission

through the REMICS project (www.remics.eu), contract

number 257793, within the 7th Framework Programme.

References

[1] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. Modisco:

a generic and extensible framework for model driven reverse

engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10,

pages 173–174, New York, NY, USA, 2010. ACM.
[2] E. J. Chikofsky and J. H. Cross II. Reverse engineering and

design recovery: A taxonomy. IEEE Softw., 7:13–17, Jan-

uary 1990.
[3] J. Cnovas Izquierdo and J. Molina. A domain specific

language for extracting models in software modernization.

In R. Paige, A. Hartman, and A. Rensink, editors, Model
Driven Architecture - Foundations and Applications, volume

5562 of Lecture Notes in Computer Science, pages 82–97.

Springer Berlin / Heidelberg, 2009.
[4] S. Ducasse and D. Pollet. Software architecture reconstruc-

tion: A process-oriented taxonomy. IEEE Trans. Softw.
Eng., 35:573–591, July 2009.

[5] J. Ebert and A. Franzke. A declarative approach to graph

based modeling. In Proceedings of the 20th International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, WG ’94, pages 38–50, London, UK, 1995. Springer-

Verlag.
[6] J. Ebert, V. Riediger, and A. Winter. Graph technology in re-

verse engineering: The tgraph approach. In Workshop Soft-
ware Reengineering, pages 67–81, 2008.

[7] L. Favre. Model Driven Architecture for Reverse Engineer-
ing Technologies: Strategic Directions and System Evolu-
tion. Premier Reference Source. Igi Global, 2010.

[8] F.Barbier, G.Deltombe, O.Parisy, and K.Youbi. Model

driven reverse engineering: Increasing legacy technology in-

dependence. In The 4th India Software Engineering Confer-
ence, Thiruvanantpuram, India, February 2011. CSI ed.

[9] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M.

Jézéquel. Model-driven engineering for software migration

in a large industrial context. In MoDELS, pages 482–497,

2007.
[10] I. Kurtev, J. Bézivin, and M. Aksit. Technological spaces:

An initial appraisal. In CoopIS, DOA 2002 Federated Con-
ferences, Industrial track, 2002.

[11] A. S. F. B. Mohagheghi Parastoo, Berre Arne Jrgen and

G. Benguria. Reuse and migration of legacy systems to inter-

operable cloud services - the remics project. In Proceedings
of Mda4ServiceCloud’10 at the Sixth European Conference
on Modelling Foundations and Applications, ECMFA ’10,

June 2010.
[12] OMG). Knowledge discovery metamodel - version 1.3.

http://www.omg.org/spec/KDM/1.3, 2011.
[13] OMG. Syntax tree metamodel - version 1.0.

http://www.omg.org/spec/ASTM/1.0, 2011.
[14] R. Perez-Castillo, I. G.-R. de Guzman, O. Avila-Garcia, and

M. Piattini. On the use of adm to contextualize data on

legacy source code for software modernization. Reverse En-
gineering, Working Conference on, 0:128–132, 2009.

[15] T. Reus, H. Geers, and A. van Deursen. Harvesting software

systems for mda-based reengineering. In ECMDA-FA, pages

213–225, 2006.
[16] W. Ulrich. A status on omg architecture-driven moderniza-

tion task force. In Proceedings EDOC Workshop on Model-
Driven Evolution of Legacy Systems, Monterey, California,

USA, 2004. IEEE Computer Society.

525

Modal ZIA, Modal Refinement Relation and
Logical Characterization

Zining Cao1,2,3

1 College of Computer Science and Technology

Nanjing University of Aero. & Astro., Nanjing 210016, P. R. China
2 Provincial Key Laboratory for Computer Information Processing Technology

Soochow University, Suzhou 215006, P. R. China
3 National Key Laboratory of Science and Technology on Avionics System Integration

Shanghai 200233, P. R. China

Email: caozn@nuaa.edu.cn

Abstract—In this paper, we propose a specification approach
combining modal transition systems, interface automata and Z
language, named modal ZIA. This approach can be used to
describe temporal properties and data properties of software
components. We also study the modal refinement relation on
modal ZIAs. Then we propose a logic MZIAL for modal ZIAs
and give a logical characterization of modal refinement relation.
Finally, we present a sublogic of MZIAL, named muZIAL, and
give a model checking algorithm for finite modal ZIA.

Index Terms—interface automata; Z notation; modal transition
systems; refinement relation; modal logic; model checking

I. INTRODUCTION

Modern software systems are comprised of numerous com-

ponents, and are made larger through the use of software

frameworks. Such software systems exhibit various behavioral

aspects such as communication between components, and

state transformation inside components. Formal specification

techniques for such systems have to be able to describe all

these aspects. Unfortunately, a single specification technique

that is well suited for all these aspects is yet not available.

Instead one needs various specialized techniques that are very

good at describing individual aspects of system behavior. This

observation has led to research into the combination and

semantic integration of specification techniques.

Interface automata is a light-weight automata-based lan-

guages for component specification, which was proposed in

[1]. An interface automaton (IA), introduced by de Alfaro and

Henzinger, is an automata-based model suitable for specifying

component-based systems. IA is part of a class of models

called interface models, which are intended to specify con-

cisely how systems can be used and to adhere to certain well-

formedness criteria that make them appropriate for modelling

component-based systems.

Z [15] is a typed formal specification notation based on

first order predicate logic and set theory. The formal basis

for Z is first order predicate logic extended with type set

theory. Using mathematics for specification is all very well

for small examples, but for more realistically sized problems,

things start to get out of hand. To deal with this, Z includes

the schema notation to aid the structuring and modularization

of specifications. A boxed notation called schemas is used

for structuring Z specifications. This has been found to be

necessary to handle the information in a specification of any

size. In particular, Z schemas and the schema calculus enable

a structured way of presenting large state spaces and their

transformation.

Modal transition systems [11], i.e., can be modelled as

automata whose transitions are typed with may and must

modalities. A modal transition system represents a set of

models; informally, a must transition is available in every

component that implements the modal transition system, while

a may transition needs not be. In [14], a unification of interface

automata and modal transition systems was presented.

In this paper, we present a new specification language which

combines modal transition systems, interface automata and Z

language. Interface automata are a kind of intuitive models for

interface property of software components. We combine modal

transition systems, interface and Z to describe modal property,

temporal property and data property in a unifying model. We

give the definition of modal ZIA. Roughly speaking, a modal

ZIA is in a style of modal interface automata but its states

and transitions are described by Z language. Furthermore, we

define the modal refinement relation between modal ZIAs and

give some propositions of such modal refinement relation.

Then we present a logic for modal ZIA and give a logical

characterization of modal refinement relation. Finally, we give

a model checking algorithm for finite modal ZIA.

This paper is organized as follows: Section 2 gives a brief

review of modal transition systems, interface automata and Z

language. In Section 3, we propose a specification language-

modal ZIA. Furthermore, the modal refinement relation for

modal ZIA is presented and studied. In Section 4, we present a

logic MZIAL for modal ZIA and give a logical characterization

of modal refinement relation. In Section 5, we present a

sublogic of MZIAL, named muZIAL. Then we give a model

checking algorithm for finite modal ZIA. The paper is con-

cluded in Section 6.

526

II. OVERVIEW OF MODAL TRANSITION SYSTEMS,

INTERFACE AUTOMATA AND Z LANGUAGE

In this section, we give a brief review of modal transition

systems, interface automata and Z language.

Modal transition systems have been proposed in [11]. A

refinement relation and a logical characterization of refinement

were also given in [11]. For a set of actions A, a modal

transition system (MTS) is a triple (P,−→�,−→♦), where

P is a set of states and −→�,−→♦⊆ P×A×P are transition

relations such that −→�⊆−→♦ . The transitions in −→� are

called the must transitions and those in −→♦ are the may

transitions. In an MTS, each must transition is also a may

transition, which intuitively means that any required transition

is also allowed.

An interface automaton (IA) [1], introduced by de Alfaro

and Henzinger, is an automata-based model suitable for spec-

ifying component-based systems. An IA consists of states,

initial states, internal actions, input actions, output actions and

a transition relation. The composition and refinement of two

IAs are proposed in [1].

Z was introduced in the early 80’s in Oxford by Abrial as

a set-theoretic and predicate language for the specification of

data structure, state spaces and state transformations. A boxed

notation called schemas is used for structuring Z specifications.

Z makes use of identifier decorations to encode intended

interpretations. A state variable with no decoration represents

the current (before) state and a state variable ending with a

prime (′) represents the next (after) state. A variable ending

with a question mark (?) represents an input and a variable

ending with an exclamation mark (!) represents an output. In

Z, there are many schema operators. For example, we write

S ∧ T to denote the conjunction of these two schemas: a new

schema formed by merging the declaration parts of S and T
and conjoining their predicate parts. S ⇒ T (S ⇔ T) is similar

to S∧T except connecting their predicate parts by ⇒ (⇔). The

hiding operation S\(x1, ..., xn) removes from the schema S the

components x1, ..., xn explicitly listed, which must exist. The

hiding operation S\(x1, ..., xn) removes from the schema S the

components x1, ..., xn explicitly listed, which must exist. For-

mally, S\(x1, ..., xn) is equivalent to (∃ x1 : t1; ...; xn : tn • S),
where x1, ..., xn have types t1, ..., tn in S. The notation ∃ x : a•S
states that there is some object x in a for which S is true. The

notation ∀ x : a • S states that for each object x in a, S is true.

For the sake of space, more details of Z can be refereed to

some books on Z [15].

III. MODAL INTERFACE AUTOMATA WITH Z NOTATION

This paper is based on modal ZIA, a specification language

which integrates modal transition systems, interface automata

and Z. Modal ZIA is defined such that apart from enabling one

to deal with the modal properties, behavioral properties and

the data properties of a system independently. In this section,

we combine modal transition systems, inference automata and

Z language to give a specification approach for software com-

ponents. We first give the definition of such model. Then we

define the modal refinement of modal ZIA. Furthermore, we

propose and prove some properties on the modal refinement

of modal ZIA.

A. Model of Modal ZIA

Interface automata provide a specification approach for in-

terface behavior properties. But this approach can not describe

data structures specification of states. On the other hand,

Z can specify the state of a system, but is not suitable to

behavioral properties. This section describes modal ZIA as a

conservative extension of both interface automata and Z in

the sense that almost all syntactical and semantical aspects of

interface automata and Z are preserved.

In the original interface automata, states and transitions

are abstract atomic symbols. But in modal ZIA, states and

transitions are described by Z schemas.

In the rest of this paper, we use the following terminology:

(1) A state schema is a schema which does not contain any

variable with decoration ′.
(2) An input operation schema is an operation schema which

contains input variables.

(3) An output operation schema is an operation schema

which contains output variables.

(4) An internal operation schema is an operation schema

which contains variables with decoration ′.
Intuitively, a state schema is assigned to a state which

may contain many variables, this state schema describes the

constraint of variables in the state. A variable with decoration
′ denotes a variable at next state. So a state schema does

not contain any variable with decoration ′. An input (output)

operation schema is assigned to an input (output) action

which may contain many input (output) variables, this input

(output) operation schema describes the constraint of variables

in the input (output) action. So an input (output) operation

schema is an operation schema which contains input (output)

variables. An internal operation schema is assigned to an

internal action, this internal operation schema describes the

change of variables after performing the internal action. So

an internal operation schema is an operation schema which

contains variables with decoration ′.
In the rest of paper, given an assignment ρ and a schema A,

we write ρ |= A if ρ assigns every variable x in the declaration

part of A to an element of its type set, which satisfies the

predicate part of A; we write |= A if ρ |= A for any assignment

ρ.

Let S to be a Z schema, we use VI(S) (VO(S), VH(S)) to

denote the set of input variables (output variables, internal

variables) in S.
Definition 1. A modal interface automaton with Z notation

(modal ZIA) P = 〈SP, Si
P, AI

P, AO
P , AH

P , VI
P, VO

P , VH
P , FS

P, FA
P ,

GIA
P , GOA

P , A�
P , A♦

P , V�
P , V♦

P , TP〉 consists of the following

elements:

(1) SP is a set of states.

(2) Si
P ⊆ SP is a set of initial states. If Si

P = ∅ then P is

called empty.

(3) AI
P, AO

P and AH
P are disjoint sets of input, output, and

internal actions, respectively. We denote by AP = AI
P∪AO

P ∪AH
P

527

the set of all actions.

(4) VI
P, VO

P and VH
P are disjoint sets of input, output, and

internal variables, respectively. We denote by VP = VI
P ∪VO

P ∪
VH

P the set of all variables.

(5) FS
P is a map, which maps any state in SP to a state schema

in Z language. Intuitively, for any state s, FS
P(s) specifies the

data structure properties of all the variables in the state s.
(6) FA

P is a map, which maps any input action in AI
P to an

input operation schema in Z language, and maps any output

action in AO
P to an output operation schema in Z language, and

maps any internal action in AH
P to an internal operation schema

in Z language. Intuitively, for any action a, FA
P(a) specifies the

data structure properties of all the variables before and after

performing action a.

(7) GIA
P is a map, which maps any input action in AI

P to a

set of input variables. Intuitively, an input action a inputs all

the input variables in GIA
P (a). For any input action a, GIA

P (a) ⊆
VI(FA

P(a)).
(8) GOA

P is a map, which maps any output action in AI
P to a

set of output variables. Intuitively, an output action a outputs

all the output variables in GOA
P (a). For any output action a,

GOA
P (a) ⊆ VO(FA

P(a)).
(9) A�

P , A♦
P ⊆ AI

P∪AO
P , where A�

P is the set of must actions,
and A♦

P is the set of may actions.

(10) V�
P , V♦

P ⊆ VI
P ∪ VO

P , where V�
P is the set of must

variables, and V♦
P is the set of may variables.

(11) TP is the set of transitions between states, TP ⊆ SP ×
AP × SP. If (s, a, t) ∈ TP then ((FS

P(s)∧FA
P(a))\(x1, ..., xm) ⇔

FS
P(t)[y′

1
/y1, ..., y′n/yn]) is a tautology, where {x1, ..., xm} is

the set of the variables in FS
P(s), {y1, ..., yn} is the set of the

variables in FS
P(t), the set of variables in FA

P(a) is the subset

of {x1, ..., xm} ∪ {y′
1
, ..., y′n}.

An action a ∈ AP is enabled at a state s ∈ VP if there

is a step (s, a, s′) ∈ TP for some s ∈ SP. We indicate by

AI
P(s), AO

P (s), AH
P (s) the subsets of input, output and internal

actions that are enabled at the state s and we let AP(s) =
AI

P(s) ∪ AO
P (s) ∪ AH

P (s).
In the following, we call a a must (may) action if a ∈ A�

P
(a ∈ A♦

P), and call x a must (may) action if a ∈ V�
P

(a ∈ V♦
P). A must action (variable) can be regarded as a

necessary action (variable), i.e., an action (a variable) which

must be included in the implementation, and a may action

(variable) can be regarded as a possible action (variable), i.e.,

an action (a variable) which may be or may not be included

in the implementation. Another usefulness of must actions

(variables) and may actions (variables) is in the abstraction

of systems. In general, abstraction in model checking falls

into three types, depending on the approximation relations

between concrete and abstract models and property preserva-

tion relations for temporal properties. One type is abstraction

methods that support both verification and refutation of pro-

gram properties in the same framework, which we refer to

as exact-approximation. In the over-approximation abstraction

framework [6], an abstract model contains more behaviors than

the original program. The dual of this framework is under-

approximation [13]. In this case, an abstract model contains

less behaviors than the original one. In the following definition

of modal refinement relation of modal ZIAs, must actions

(variables) provide the over-approximation method of actions

(variables), and may actions (variables) provide the under-

approximation method of actions (variables).

B. Modal Refinement Relation

The modal refinement relation aims at formalizing the

relation between abstract and concrete versions of the same

component, for example, between a specification and its im-

plementation.

Roughly, a modal ZIA P refines a modal ZIA Q if all the

must actions of P can be simulated by Q and all the may

actions of Q can be simulated by P. To define this concept,

we need some preliminary notions.

In the following, we use V♦(A) to denote the set of may

variables in Z schema A, V�(A) to denote the set of must

variables in Z schema A, and V⊗(A) to denote the set of other

variables in Z schema A.

In order to define the modal refinement relation between Z

schemas, we need the following notation.

Definition 2. Consider two Z schemas A and B with

V♦(A) = V♦(B), V�(A) = V�(B) and V⊗(A) = V⊗(B) = ∅.

We use the notation A ≥ B if one of the following cases holds:

(1) If V♦(A) �= ∅ and V�(A) �= ∅ then given an assignment

ρ on V♦(A), for any assignment σ on V�(A), ρ ∪ σ |=
A implies ρ ∪ σ |= B, and given an assignment σ on V�(A),
for any assignment ρ on V♦(A), ρ∪σ |= B implies ρ∪σ |= A,
where ρ |= A means that A is true under assignment ρ, ρ ∪ σ
is the union of ρ and σ.

(2) If V♦(A) �= ∅ and V�(A) = ∅ then for any assignment

ρ on V♦(A), ρ |= B implies ρ |= A.
(3) If V♦(A) = ∅ and V�(A) �= ∅ then for any assignment

ρ on V�(A), ρ |= A implies ρ |= B.
(4) V♦(A) = ∅ and V�(A) = ∅.
Intuitively, A ≥ B means that schemas A and B have the

same may variables and the same must variables, and schema

B has bigger domains of must variables but smaller ranges of

may variables than schema A. This means that must variables

can be regarded as the over-approximation of variables, and

may variables can be regarded as the under-approximation of

variables.

For example, A=̂[x♦ : R; y� : N | y� = 2�x♦�] ≥ B=̂[x♦ :
N; y� : R | y� = 2x♦], where x♦ is a may variable, y� is a

must variable, N is the set of natural numbers, R is the set of

real numbers, and �x♦� is the largest natural number that is

not larger than x♦.
Now we give the modal refinement relation between Z

schemas, which describe the modal refinement relation be-

tween data structures properties of states. Roughly speaking,

for two Z schemas A and B, we say that B refines A if the may

variables and the must variables in A are also in B, and schema

B has bigger domains of these may variables but smaller ranges

of these must variables than schema A.

Definition 3. Consider two Z schemas A and B, we use the

notation A � B if

528

(1) V�(A) ⊆ V�(B), V♦(A) ⊆ V♦(B).
(2) A\(x1, ..., xm) ≥ B\(y1, ..., yn), where {x1, ..., xm} =

V(A)−V�(A)−V♦(A), {y1, ..., yn} = V(B)−V�(A)−V♦(A).
For example, A=̂[x♦ : R; y� : N | y� = 2�x♦�] � B=̂[x♦ :

N; u♦ : R; y� : R; v� : R; z : N | y� = 2x♦; v� = z ∗ u♦],
where x♦, u♦ are may variables, y�, v� are must variables.

So intuitively, A ≥ B describes the modal refinement of

data properties of schemas A and B if schemas A and B have

the same may and must variables. A � B describes the modal

refinement of data properties of schemas A and B in the general

case, i.e., schemas A and B may have different may and must

variables.

The precise definition of modal refinement must take into

account the fact that the internal actions of P and Q are

independent. For this, we need some following preliminary

notions.

We now give the following definition which describes the

set of states after performing a sequence of internal actions

from a given state.

Definition 4. Given a modal ZIA P and a state s ∈ SP, the

set ε − closureP(s) is the smallest set U ⊆ SP such that (1)

s ∈ U and (2) if t ∈ U and (t, a, t∗) ∈ TH
P then t∗ ∈ U.

The environment of a modal ZIA P cannot see the internal

actions of P. Consequently if P is at a state s then the

environment cannot distinguish between s and any state in

ε − closureP(s).
The following definition describes the set of states after

performing several internal actions and an external action from

a given state.

Definition 5. Consider a modal ZIA P and a state s ∈ SP.
For an action a, we let

ExtDestP(s, a) = {s∗ | ∃(t, a, t∗) ∈ TP.t ∈ ε − closureP(s)
and s∗ ∈ ε − closureP(t∗)}.

In the following, we give a modal refinement relation

between modal ZIAs. For modal ZIAs, a state has not only

behavioral properties but also data properties. Therefore this

modal refinement relation involves both the modal refinement

relation between behavioral properties and the modal refine-

ment relation between data properties.

Definition 6. Consider two modal ZIAs P and Q. A binary

relation �m⊆ SP × SQ is a modal refinement from Q to P if

for all states s ∈ SP, there exists t ∈ SQ such that s �m t the

following conditions hold:

(1) FS
P(s) � FS

Q(t).
(2) For any action a ∈ A�

P , if s∗ ∈ ExtDestP(s, a), then

there is a state t∗ ∈ ExtDestQ(t, a) such that FS
P(s∗) � FS

Q(t∗)
and s∗ �m t∗.

(3) For any action a ∈ A♦
Q , if t∗ ∈ ExtDestQ(t, a), then there

is a state s∗ ∈ ExtDestQ(s, a) such that FS
P(s∗) � FS

Q(t∗) and

s∗ �m t∗.
Intuitively, must actions (variables) represents the over-

approximation of actions (variables), and may actions (vari-

ables) represents the under-approximation of actions (vari-

ables). The modal refinement relation describes the both over-

approximation and under-approximation for transitions and

variables for modal ZIAs.

We say that modal ZIA P is refined by modal ZIA Q if for

some initial states s in P and t in Q, s is refined by t.
Definition 7. The modal ZIA Q refines the modal ZIA P

written P �m Q if:

there is a modal refinement �m from Q to P, a state s ∈ Si
P

and a state t ∈ Si
Q such that s �m t.

The above definitions of modal refinement relations can be

extended to the definitions of bisimulation relations by adding

the symmetric condition of relations.

The following lemma states that � is a partial order (i.e.,

reflexive and transitive).

Lemma 1. (1) A � A.
(2) If A � B and B � C, then A � C.
The following proposition means that �m is a partial order.

Proposition 1. (1) P �m P.
(2) If P �m Q and Q �m R, then P �m R.

IV. A LOGIC FOR MODAL ZIAS

Providing a logical characterization for various refine-

ment/equivalence relations has been one of the major research

topics in the development of automata theory and process

theories. A logical characterization not only allows us to

reason about behaviors of systems, but also helps to verify

the properties of systems. For modal transition system, a logic

for modal refinement relation was proposed and a logical

characterization was given in [3]. For convariant-contravariant

simulation of labelled transition systems, a logical charac-

terization for convariant-contravariant simulation relation was

given in [8]. In this section, we give the similar result for

modal ZIAs. In the following, we give a logic for modal ZIAs

named MZIAL and give a logical characterization of modal

refinement relation �m .

A. Syntax of MZIAL

Throughout this paper, we let MZIAL be a language which

is just the set of formulas of interest to us.

Definition 8. The set of formulas called MZIAL, is given

by the following rules:

(1) � ∈ MZIAL.
(2) ⊥ ∈ MZIAL.
(3) If ϕ is in the form of p(x�

1
, ..., x�n), then ϕ ∈ MZIAL,

where x�
1

, ..., x�n are may or must variables, i.e., x�i is in the

form of x♦
i or x�

i , p is a n − ary prediction.

(4) If ϕi ∈ MZIAL for any i ∈ I, then ∧i∈Iϕi ∈ MZIAL.

(5) If ϕi ∈ MZIAL for any i ∈ I, then ∨i∈Iϕi ∈ MZIAL.

(6) If ϕ ∈ MZIAL, then (∀ x♦)ϕ ∈ MZIAL.

(7) If ϕ ∈ MZIAL, then (∃ x�)ϕ ∈ MZIAL.

(8) If ϕ ∈ MZIAL, then [[a♦]]ϕ ∈ MZIAL.

(9) If ϕ ∈ MZIAL, then 〈〈a�〉〉ϕ ∈ MZIAL.

B. Semantics of MZIAL

We will describe the semantics of MZIAL, that is, whether

a given formula is true or false.

The satisfaction relation |= is given recursively by the

following definition, where (P, s) |= ϕ means that state s of

modal ZIA P satisfies formula ϕ.

529

Definition 9. Semantics of MZIAL
(1) (P, s) |= �.
(2) (P, s) �|= ⊥.
(3) (P, s) |= p(x�

1
, ..., x�n) iff p(x�

1
, ..., x�n) � FS

P(s).
(4) (P, s) |= ∧i∈Iϕi iff (P, s) |= ϕi for any i ∈ I.
(5) (P, s) |= ∨i∈Iϕi iff (P, s) |= ϕi for some i ∈ I.
(6) (P, s) |= (∀ x♦)ϕ iff (P, s) |= ϕ{v/x♦} for any v ∈ T,

where x♦ ∈ V♦
P , T is the type of x♦.

(7) (P, s) |= (∃ x�)ϕ iff (P, s) |= ϕ{v/x�} for some v ∈ T,
where x� ∈ V�

P , T is the type of x�.

(8) (P, s) |= [[a♦]]ϕ iff a♦ ∈ A♦
P , and for any state t ∈

ExtDestP(s, a♦), (P, t) |= ϕ.
(9) (P, s) |= 〈〈a�〉〉ϕ iff a� ∈ A�

P , and there exists a state

t, such that t ∈ ExtDestP(s, a�) and (P, t) |= ϕ.

C. Logical Characterization of Modal Refinement Relation

Now we give the definition of logical refinement relation.

Intuitively, for a state s in modal ZIA P, and a state t in modal

ZIA Q, we say t refines s if the collection of MZIAL formulas

satisfied by s is included in the collection of MZIAL formulas

satisfied by t.
Definition 10. (P, s) �l (Q, t) iff (P, s) |= ϕ ⇒ (Q, t) |= ϕ

for any ϕ in MZIAL.
In the following, we give the logical characterization of

modal refinement relation which means that �m is equivalent

to �l.

Proposition 2. (P, s) �m (Q, t) iff (P, s) �l (Q, t).

V. MODEL CHECKING MUZIAL FOR FINITE MODAL ZIAS

In this section, we will study the model checking problem

for modal ZIA. But in MZIAL, there exist infinite length

formulas since there are indexed disjunction ∨i∈I and indexed

conjunction ∧i∈I . Hence MZIAL itself is not suitable for model

checking. In this section we present a logic named muZIAL. It

is well known that μ operator and ν operator can be rewritten

into indexed disjunction ∨i∈I and indexed conjunction ∧i∈I ,

therefore muZIAL is a sublogic of MZIAL. Then we give an

algorithm model checking muZIAL for finite modal ZIAs, i.e.,

modal ZIAs with finite state space and finite domains for all

variables. The model checking problem for modal ZIAs asks,

given a state s of a modal ZIA P and a muZIAL formula ϕ,
whether (P, s) |= ϕ.

A. Syntax of muZIAL

Throughout this paper, we let muZIAL be a language which

is just the set of formulas of interest to us.

Definition 11. The set of formulas called muZIAL, is given

by the following rules:

(1) � ∈ muZIAL.
(2) ⊥ ∈ muZIAL.
(3) If ϕ is in the form of p(x�

1
, ..., x�n), then ϕ ∈ muZIAL,

where x�
1

, ..., x�n are may or must variables, p is a n − ary
prediction.

(4) If X ∈proposition variables set PV , then X ∈ muZIAL.
(5) If ϕ1, ϕ2 ∈ muZIAL, then ϕ1 ∧ ϕ2 ∈ muZIAL.

(6) If ϕ1, ϕ2 ∈ muZIAL, then ϕ1 ∨ ϕ2 ∈ muZIAL.

(7) If ϕ ∈ muZIAL, then (∀ x♦)ϕ ∈ muZIAL.

(8) If ϕ ∈ muZIAL, then (∃ x�)ϕ ∈ muZIAL.

(9) If ϕ ∈ muZIAL, then [[a♦]]ϕ ∈ muZIAL.

(10) If ϕ ∈ muZIAL, then 〈〈a�〉〉ϕ ∈ muZIAL.

(11) If ϕ(X) ∈ muZIAL, then νX.ϕ(X) ∈ muZIAL.
(12) If ϕ(X) ∈ muZIAL, then μ X.ϕ(X) ∈ muZIAL.
It is well known that νX.ϕ(X) (μ X.ϕ(X)) can be rewritten

into an “unfolded” form ϕ[νX.ϕ(X)/X] (ϕ[μ X.ϕ(X)/X]), and

this “unfolding” proceeding can be continued. Intuitively,

νX.ϕ(X) (μ X.ϕ(X)) can be “unfolded” to a formula in MZIAL
by using indexed disjunction ∨i∈I (indexed conjunction ∧i∈I).
Thus muZIAL can be regarded as a sublogic of MZIAL.

B. Semantics of muZIAL

We will describe the semantics of muZIAL, that is, whether

a given formula is true or false.

Formally, a formula ϕ is interpreted as a set of states in

which ϕ is true. We write such set of states as [[ϕ]]eP, where P
is a modal ZIA and e: V → 2S is an environment. We denote

by e[X ← W] a new environment that is the same as e except

that e[X ← W](X) = W. The set [[ϕ]]eP is defined recursively

as follows:

Definition 12. Semantics of muZIAL
(1) || � ||eP= SP, where SP is the set of states in modal ZIA

P.
(2) || ⊥ ||eP= ∅.
(3) || p(x�

1
, ..., x�n) ||eP= {s | p(x�

1
, ..., x�n) � FS

P(s)}.

(4) || X ||eP= e(X).
(5) || ϕ1 ∧ ϕ2 ||eP=|| ϕ1 ||eP ∩ || ϕ2 ||eP .
(6) || ϕ1 ∨ ϕ2 ||eP=|| ϕ1 ||eP ∪ || ϕ2 ||eP .
(7) || (∀ x♦)ϕ ||eP= ∩v∈T || ϕ{v/x♦} ||eP, where x♦ ∈ V♦

P , T
is the type of x♦.

(8) || (∃ x�)ϕ ||eP= ∪v∈T || ϕ{v/x�} ||eP, where x� ∈ V�
P ,

T is the type of x�.

(9) || [[a♦]]ϕ ||eP= {s | for any state t, such that t ∈
ExtDestP(s, a♦) and t ∈|| ϕ ||eP}.

(10) || 〈〈a〉〉ϕ ||eP= {s | there exists a state t, such that

t ∈ ExtDestP(s, a�) and t ∈|| ϕ ||eP}.
(11) || νX.ϕ(X) ||eP= ∪{W ⊆ SP | W ⊆|| ϕ(X) ||e[X←W]

P }.
(12) || μ X.ϕ(X) ||eP= ∩{W ⊆ SP | || ϕ(X) ||e[X←W]

P ⊆ W}.
Given a modal ZIA P, we say that ϕ is valid in P, and write

P |=muZIAL ϕ, if s ∈ [[ϕ]]eP for every state s in P, and we say

that ϕ is satisfiable in P, and write P, s |=muZIAL ϕ, if s ∈ [[ϕ]]eP
for some s in P. We say that ϕ is valid, and write |=muZIAL ϕ,

if ϕ is valid in all modal ZIAs, and that ϕ is satisfiable if it

is satisfiable in some modal ZIA. We write Γ |=muZIAL ϕ, if ϕ
is valid in all modal ZIAs in which Γ is satisfiable.

C. Model Checking Algorithm

In this section, we give a model checking algorithm over

modal ZIAs with finite domain. We denote the set || ϕ ||eP by

Eval(ϕ, e), where e is an environment which maps each pre-

diction variable to a closed formula. The function Sub, when

given a formula ϕ, returns a queue of syntactic subformulas of

ϕ such that if ϕ1 is a subformula of ϕ and ϕ2 is a subformula

of ϕ1, then ϕ2 precedes ϕ1 in the queue Sub(ϕ).

530

Suppose P = 〈SP, Si
P, AI

P, AO
P , AH

P , VI
P, VO

P , VH
P , FS

P, FA
P , TP〉

is a ZIA with finite domain, s is a state of P, ϕ is a formula

of μ ZIAL, the algorithm to verify s |= ϕ is given as follows:

For each ϕ′ in Sub(ϕ) do

case ϕ′ = � : Eval(ϕ′, e) := SP;
case ϕ′ = ⊥ : Eval(ϕ′, e) := ∅;
case ϕ′ = p(x�

1
, ..., x�n) : Eval(ϕ′, e) := {s |

p(x�
1

, ..., x�n) � FS
P(s)}, where Z schema FS

P(s) is regarded as

a first order logical formula;

case ϕ′ = X : Eval(ϕ′, e) := e(X);
case ϕ′ = θ1 ∧ θ2 : Eval(ϕ′, e) := Eval(θ1, e) ∩

Eval(θ2, e);
case ϕ′ = θ1 ∨ θ2 : Eval(ϕ′, e) := Eval(θ1, e) ∪

Eval(θ2, e);
case ϕ′ = (∀ x♦)θ : Eval(ϕ′, e) := ∩v∈T

Eval(θ{v/x♦}, e), where T is the type of x♦;

case ϕ′ = (∃ x�)θ : Eval(ϕ′, e) := ∪v∈T

Eval(θ{v/x�}, e), where T is the type of x�;

case ϕ′ = [[a♦]]θ : Eval(ϕ′, e) := {s | for any

t, t ∈ ExtDestP(s, a♦) implies t ∈ Eval(θ, e)}, where

ExtDestP(s, a♦) is computable since the state space SP is

finite;
case ϕ′ = 〈〈a�〉〉θ : Eval(ϕ′, e) := {s | for some t, t ∈

ExtDestP(s, a�) and t ∈ Eval(θ, e)}, where ExtDestP(s, a�) is

computable since the state space SP is finite;
case ϕ′ = νX.θ :

Sval := SP

repeat

Sold := Sval

Sval := Eval(θ, e[X ← Sval])
until Sval = Sold

Eval(ϕ′, e) := Sval

end case

case ϕ′ = μ X.θ :
Sval := ∅
repeat

Sold := Sval

Sval := Eval(θ, e[X ← Sval])
until Sval = Sold

Eval(ϕ′, e) := Sval

end case

return Eval(ϕ, e)
Partial correctness of the model checking algorithm can

be proved induction on the structure of the input formula ϕ.
Termination is guaranteed, because the state space SP is finite.

Therefore we have the following proposition:

Proposition 3. The model checking algorithm given in the

above terminates and is correct, i.e., it returns the set of states

in which the input formula is satisfied.

VI. CONCLUSIONS

This paper proposed a specification approach of software

components which is suitable to specify the modal behavior

and data structures properties of a system. There are several

other works for such topic. Some examples are LOTOS and Z

[7], CSP-Z [9], CSP-OZ [10], Circus [16], and modal interface

[14]. In this paper, we define a combination of modal transition

systems, interface automata and Z called modal ZIA, which

can be applied to specify modal properties, behavioral proper-

ties and data structures properties of a system. We also define

the modal refinement relation for modal ZIA. The properties of

the modal refinement relation for modal ZIA are also studied.

Modal ZIA is well suited for specification and development

of software components. It provides powerful techniques to

describe modal properties, data structures and control aspects

in a common framework. Furthermore, we present a logic

MZIAL for modal ZIA and give a logical characterization of

modal refinement relation. Finally, we present a sublogic of

MZIAL, named muZIAL, and give a model checking algorithm

for finite modal ZIA.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China under Grant No. 60873025, the Founda-

tion of Provincial Key Laboratory for Computer Information

Processing Technology of Soochow University under Grant

No. KJS0920, the Natural Science Foundation of Jiangsu

Province of China under Grant No. BK2008389, and the Avi-

ation Science Fund of China under Grant No. 20085552023.

REFERENCES

[1] Luca de Alfaro, Thomas A Henzinger. Interface Automata. In the
Proceedings of the 9th Annual ACM Symposium on Foundations of
Software Engineering (FSE), 2001.

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. Computer Networks and ISDN Systems, 14(1): 25-
59, 1987.

[3] G. Boudol and K. G. Larsen. Graphical versus logical specifications.
Theoretical Computer Science, 106(1):3-20, 1992.

[4] Z. Cao. Refinement Checking for Interface Automata with Z Notation. In
Proceeding of Software Engineering and Knowledge Engineering 2010.
399-404. 2010.

[5] Z. Cao and H. Wang: Extending Interface Automata with Z Notation.
In FSEN 2011, 359-367.

[6] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, 1994.

[7] J. Derrick, E. Boiten, H. Bowman and M. Steen. Viewpoint consistency
in Z and LOTOS: A case study. In FME’97, 644-664. Springer-Verlag,
1997.

[8] I. Fabregas, D. de Frutos-Escrig, and M. Palomino. Logics for contravari-
ant simulations. In Proceedings of FORTE 2010, lncs 6117, 224-231,
2010.

[9] C. Fischer. Combining CSP and Z. Technical report, TRCF-97-1, Uni-
versity of Oldenburg, 1996.

[10] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In
FMODDS’97, Chapman Hall, 1997.

[11] K. G. Larsen. Modal specifications. In Automatic Verification Methods
for Finite State Systems, 232-246. Springer, 1989.

[12] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1991.

[13] C. Pasareanu, R. Pelanek, and W. Visser. Concrete Model Checking with
Abstract Matching and Refinement. In Proceedings of CAV05, 52-66.
Springer, 2005.

[14] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and
R. Passerone. A Modal Interface Theory for Component-based Design.
Fundamenta Informaticae, 2010 1-31.

[15] J. M. Spivey. The Z Notation: A Reference Manual. Sencond Edition.
Prentice Hall International (UK) Ltd. 1998.

[16] J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of circus. In
ZB 2002: Formal Specification and Development in Z and B, 184-203.
Springer-Verlag, 2002.

531

Towards Autonomic Business Process Models

Karolyne Oliveira, Jaelson Castro
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

{kmao, jbc}@cin.ufpe.br

Sergio España, Oscar Pastor
Centro de Investigación en Métodos de Producción de

Software
Universitat Politècnica de València

Valencia, Spain
{sergio.espana, opastor}@pros.upv.es

Abstract - In many organizations business process models (BPM)
play a central role by capturing the way activities are
performed. However, in the dynamic circumstances often
encountered in today's business world, the processes are
becoming increasingly complex and heterogeneous.
Unfortunately, most of the current approaches to BPM are too
inflexible and unresponsive to change. This calls for Autonomic
Business Process (ABP) aimed at self-management and self-
adaptation in dynamic environments. However, a key challenge
is to keep the models understandable and scalable in
increasingly complex scenarios. In our work we rely on the
principle of separation of concerns and modularization in order
to properly represent autonomic features in Business Process
Models. We argue that Communication Analysis can help to
indicate mission-critical activities that must be treated in
autonomic manner. We outline a process that helps to define the
granularity of the Business Process Models, indicating where the
system needs to be instrumented. This novel approach provides
four well-defined levels of abstraction: Communicational Level,
Technological Level, Operational Level and Service Level. A
real example is used to illustrate our proposal.

 Keywords - Business Process Modeling; Autonomic Computing;
Self-Adaptation; Communication Analysis

I. INTRODUCTION
Analysts and researchers in Information Technology and

Communication (ITC) management have forecasted an
unavoidable collapse, imposed by the sheer scale and complexity
of the new systems. Hence, complexity and size have driven ITC
management to consider less human-dependent solutions, such
as Autonomic Computing (AC), aimed at developing computer
systems capable of self-management [1].

An autonomic system must know itself, be able to self-
configure and recon figure when faced with unforeseen
circumstances. Moreover, it s hould look for optimizations,
to be able to self-heal as well as to self-recover from critical
failures and protect itself. Hence, it must understand the
environment and the context around the activities.

In our work, we are co ncerned about the use of
principles of autonomic computing in the management of
business processes. Our goal is to help organizations to
survive in d ynamics environments. More specifically we
want to face an open challenge which is to promote

modularization and separation of concerns (SoC) in
Autonomic Business Process Models [2].

The paper proposes a proce ss that exploits the high
variability in service-oriented system environment by the
use of contexts and autonomic adaptations by
operationalizations of Non-Functional Requirements (NFR).
In order to im prove modularity and promote the use of
different levels of abstractions in Autonomic Business
Process we investigate the use of Communication Analysis
Principles. The benefits are manifold and include addressing
scalability problems and improving the understandability of
ABP in complex scenarios [3].

A MAPE cycle (Monitor-Analyze-Plan-Execute), was
utilized considering both as pects: system (self) and t he
instrumented BPM (context).

In order t o illustrate our proposal we describe a real
example which presents mission-critical activities often
managed through BPM.

In the next sections, we present concepts related to this
work, our approach and conclusions respectively.

II. BACKGROUND AND RELATED WORKS
In this section, we introduce self-adaptation and the use

of business process modeling as well some relevant work on
using these models to provide autonomic computing
characteristics to software.

A. Autonomic Computing / Self-Adaptation
Self-adaptive software is expected to fulfill its

requirements at run-time in response to changes. This
objective can be achieved through monitoring the software
system (self) and its environment (context) to detect changes,
make appropriate decisions, and act accordingly. Certain
characteristics, known as self-* properties are expected: (i)
Self-configuration; (ii) Self-healing; (iii) Self-optimizing;
and, (iv) Self-Protecting [4], [5]. Figure 1 shows the
hierarchy of the self-* properties according [6].

Figure 1. Hierarchy of the Self-* Properties, adapted from [6]

532

Adaptive software should basically determine when and
where a change is required, how it can be changed, and what
the impacts of a change are on system attributes. These
dimensions (when, where, what, and how) are highlighted in
the taxonomy of evolution [7]. When corresponds to temporal
properties; Where refers to the object of change and describe
which artifact needs to be chang ed; What relates to system
properties (qualities attributes); How refers to change support
(change models and the formality).

We advocate the use of feedback control (or closed loop
control)[8], as the mechanism to su pport autonomic
characteristics into a busin ess process. We argue that self-
adaptive software is a clo sed-loop system with feedback
from the self and th e context. The Autonomic Computer
System’s building block, n amed autonomic manager,
constantly interacts with managed element in order t o
maintain its equilibrium in face of incoming perturbations.
The MAPE cycle (Monitor-Analyze-Plan-Execute),
represented in Figure 2, is an implementation of the
classical feedback control technique [4].

Figure 2. Closed Loop Control Mechanism

In a service-based mission-critical system, adaptation is
an activity with the objective of delivering an
acceptable/guaranteed service based on SLA (Service Level
Agreement). Basically, SLA is a service contract between a
customer and a service provider that specifies t he
forwarding service a custo mer should receive. One of the
key components in SLA is SLO (Service Level Objective)
which specifies QoS (Quality of Service) metrics governing
service delivery. Each SLA may include several SLOs, each
corresponding to a sin gle QoS parameter related to quality
factors. An example SLO is keeping the end-to-end response
time in a specific ran ge. For example, how a s ubstituted
method, replaced using an aspect weaving/unweaving
operation, will violate or sati sfy a co ndition on the system
throughput [8].

In this paper, we claim that self-adaptive features must
be aligned with Business Processes.

B. Business Process Modeling and Autonomic Computing
Systems
Business Processes and Business Process Management

(BPM) are essential in many modern enterprises. They constitute
organizational and operational knowledge and often
perpetuate independently of personnel and infrastructure change
[9]. Autonomic Computing principles can be adapted to hel p

organizations survive in dynamic business scenarios. Process that
can be able to answer to AC principles are designated Autonomic
Business Process (ABP) [10].

Autonomic Business Process (or autonomic workflow)
must have the capability to adjust to environment
variations (context). If one component service node (self)
becomes unavailable, a m echanism is needed to ens ure a
business process exec ution is not interrupted [11]. ABP
differs from traditional workflow as it relie s on autonomic
techniques to manage adjustments during its execution.
Therefore, it enab les dynamic and auto matic configuration
of its definition, activities and resources. It also allows self-
optimization and self-healing. Furthermore, autonomic
workflow must have intelligence to anal yze situations and
deduce adaptations at run-time.

There is a b elief that self-* properties are related to
software quality factors. For example, Salehie and Tahvildari
discuss the potential links between these properties and
quality factors [12].

We argue that in logical level of business process model
the adaptations must result in qu ality attributes defined
according NFR Framework [13]. In order to demonstrate
such relationships, it is better to analyze how a well-known
set of quality factors defined in the ISO 9126 -1 quality
model [14] are lin ked to m ajor and prim itive self-*
properties. Considering aspects discussed in [15], TABLE I
presents a consolidation of NFR and Autonomic Computing
Principles.

TABLE I. NFR AND AUTONOMIC COMPUTING PRINCIPLES

NFR
Autonomic Computing Principles

Self-
Configuring

Self-
Healing

Self-
Optimize

Self-
Protect

Maintainability X X

Functionality X X X

Portability X

Usability X

Realiability X X X

Efficiency X

The benefits related to th e use of NFR joined with BPM

have been acknowledged in the last years. NFRs have been
applied to help in th e design of bu siness process models
through extensions of business process modeling languages,
allowing for richer analysis and operation alizations of the
process model. However, many works do n ot consider the
variability in their solutions [16]. On the other hand, the
context of a b usiness process is the set o f environmental
properties that affect business process execution. Therefore,
these properties s hould be taken into account when
designing a bu siness process. If context is analyzed when
modeling a bu siness process, then identification of all its
variants (relevant states of the world in which the business

Instrumented System

Monitor

Analyzer Planner

Actuator

533

process is e xecuted) and def inition of how the business
process should be executed in them are facilitated [17].

Typically, self-adaptive systems have MAPE control loop
and they conform to the principle of separation of concern
(SoC) [18], i.e. a daptation implementation is e ncapsulated
and separated from business logic. Considering this
characteristic, we extend and ref ine Business Process
obtained with Communication Analysis Principles and
indicate abstraction levels to support AC features.

C. Communication Analysis
Communication Analysis proposes undertaking information

system analysis from a com municational perspective [19]. It
offers a req uirements structure and several modeling
techniques for BPM and requirements specification. Among
these techniques, the Communicative Event Diagram and
the Event Specification Templates are pri mary for
conceptual model derivation. The Communicative Event
Diagram is in tended to descr ibe business processes from a
communicational perspective. A communicative event is a
set of actions related to i nformation (acquisition, storage,
processing, retrieval, and/or distribution), that are carried
out in a complete and uninterrupted way, on the occasion of
an external stimulus. Business process model modularity
is guided by unity criteria, method described in [20]. For
each event, the actors involved are identified, as well as the
corresponding communicative interactions and the
precedence relations among events.

III. OUR APPROACH
In the sequel we present our Autonomic Business

Process Model approach, which consists of well-defined
abstraction levels (i.e. Com municational Level;
Technological Level; Operational Level and Service Level).
It relies on a closed-loop mechanism to provide system
adaptation (see Figure 3). Our framework considers both
instrumented BPM (context) and Services (self).

Figure 3. Framework overview

A running example will be used to illustrate our approach.
We examine the CAGED (General Register of Employed and
Unemployed), a proj ect under the Ministry of Labour and
Employment of Brazil (MTE) and governed by law 4923/65.
It supports the submission of monthly declarations of
change of company’s employees due to dismissal or
admittance (CAGED movements). The deadline for
submission is th e 7th day of every month. The data
submitted is relate d to previous month (i.e. i ts
competence). The declarations are processed to g enerate
operational data, statistical data for the ministry of labor
and employment.

In figure 4 we depict a pr ocess to h elp to def ine the
appropriate BPM granularity and t he required
instrumentation of system. It consists of 7 stages: (i) Step S1
– Define Business Process with Communication Analysis
Principles; (ii) Step S2 – Define Autonomic Processes; (iii)
Step S3 – Link Services with Autonomic Processes; (iv)
Step S4 – Define contextualization; (v) Step S5 – Define
Services QoS; (vi) Step S6 – Monitor System at Run-Time;
(vii) Step S7 – Choose Autonomic Processes.

We use Communicative Event Diagram and BPMN to
model a simplified version of it. Note that due to lack of
space we do not capture all context variations required for
self-configuration, self-healing and self-protection. For the
sake brevity, this paper focuses on the self-optimization
feature of the “Declarant submits a declarat ion” event
(detailed in Figure 6).

Figure 4. Process to define BPM granularity and to instrument the system1

Instrumented
BPM

Services with
QoS Attributes

Log
Database

Monitoring Diagnosis Planner

Actuator

534

A. Step S1 – Define the Business Process having in mind
Communication Analysis Principles
According to the principles of Communication Analysis, a

Communicative Event Diagram provides a notation to
indicate the Communicational Level of a business process. At
this level, it is assumed that business processes are immune to
changing technologies and present the essentials of the
business behavior. Event triggers an activity that receives an
incoming message, processes it and provides an output.

Communicational Level is an important abstraction level in
our approach which can present the critical events that must be
monitored and refined. It supports the modularization of
Autonomic Business Process by providing a level which presents
critical events that must be refined. In this sense, we extended
Communicative Event Diagram to incorporate an annotation of
Critical Events. Figure 5 presents the Communicational Level of
Business Process of CAGED, where we highlight the critical
event “CAG2 - Declarant submits declaration”.

CAG1
MTE OPENS

COMPETENCE

MTEMTE CGET STAFF

COMPETENCE

DECLARANT

CAGED MOVEMENTS

MINISTER

PREVIOUS DATA

OPERATIONAL DATA

MTE STAFF

CAG2
DECLARANT

SUBMITS
DECLARATION
DECLARANT

CAGED RECEIPT

MTE CGET STAFF

COMPETENCE
CAG3

MTE OPENS
PROCESSING

RECEIPT FILES
MTE

CAGED EXTRACT

DECLARANT

CAG4
MTE CLOSES
COMPETENCE

MTE
MTE CGET STAFF

CAG5
STAFF CLOSES
PROCESSING

MTE
OPERATIONAL STAFF

MINISTER,
RESEARCHERS,

MTE STAFFS

STATISTICAL DATAS
CAG6

STAFF STARTS
STATISTICAL
PROCESSING

OPERACIONAL STAFF
OPERATIONAL STAFF

STATISTICAL
PROCESSING
PARAMETERS

LEGEND

ACTOR PRECEDENCE
RELATION

COMMUNICATIVE
EVENT

OUTGOING
COMMUNICATIVE

INTERACTION

INGOING
COMMUNICATIVE

INTERACTION
START END“OR”

MERGE CRITICAL
EVENT

Figure 5. S1 - Communicational Level of Business Process of CAGED

B. Step S2 - Defining Autonomic Business Processes
In order to specify mission-critical events according to

the logical level of business process model
(Communicational Level), we defined a new level, named
Technological Level. It expresses different activities that
reflect the system behavior and the Operational Level to
present the operationalizations related to NFR and

Autonomic Computing Principles (see Figure 6, S2 box).
The necessary steps to build the technological and
operational level of critical events are explained as follows.

1) Define Technological Level: Technological Level
represents the sub-division of an event processing to indicate
important aspects that impact on software adaptation, such as:

 Present different alternatives to perform an activity:
It is n ecessary to in dicate possible reconfiguration, i.e.

changes in business flow, as a result of deviation to certain
metrics values. In our example, the operation of capture a
CAGED file can be done in different manner: (i) Generate
CAGED File; (ii) Generate Analyzed CAGED File; and (iii)
Generate Short Analyzed CAGED File. If one of these activities
became unavailable, another alternative can be e xecuted to
guarantee the system operability until all processes return to an
optimum state.

 Indicate external dependences:
External dependences are important to be expressed as

they can lead to interoperability problems and impact on
self-healing principle. Figure 6 presents that the task
“Receive CAGED Receipt” is impacted if “Receive CAGED
File” is unavailable.

 Highlight monitorable activities:
Some events are too complex and have to be processed by

different kind of components. Hence, some are monitorable
and others not. For example the “Generate analyzed CAGED
File” task is executed out of MTE dominium by an offline
desktop tool that is not expressed in SLA as m onitorable
module. In our example the monitored tasks, such as
“Receive CAGED File” are depicted in gray.

 Define the autonomic characteristics and symptoms
of monitorable activities:

Indicate the autonomic principles that will be considered to
monitor the activities. The SLA document is a good source of
information. In the running example, we only consider the self-
optimization (SO) principle to all monitorable activities.

2) Define Operational Level: Operational Level must
express all t he tasks that must be performed if some
deviation in the NFR defined in SLA occur:

 Operationalizations according to NFR
Characteristics:

In our running example, we defined Self-Optimization
(SO) as the desired autonomic principle. As previously
noted, SO is related to the efficiency NFR, which in turn can
be decomposed into others characteristics such as Response
Time and Space Utilization. In this example, we deal only
with Response Time attribute.

In order to treat Response Time deviations that may be
related to the performance of the “Receive CAGED File”
activity, we defined in Figure 6 (S2 box) three different
activities (operationalizations): (i) Increase resource; (ii)
Decrease Resource; and (iii) Analyze deviation.

C. Step S3 - Linking Autonomic Business Processes and
Services
When providing software adaptation we define the link

between Business Processes with their respective services,
presented in the Service Level (Figure 6, box S3).

535

Figure 6. Steps S1, S2, S3, S4 and S5 of our approach considering the event “CAG2 - Declarant submits declaration”

Both monitorable and operationalizations tasks should be
linked with system services. Operational services have the
objective of return the system to an optimal state in an
autonomic manner. For example, the “Receive CAGED File”
activity is linked to “Service5”

D. Step S4 – Define Contextualization
Both contextualization and NFR are i mportant factors

to be cons idered as they can guide the execution of
operational tasks that must provide autonomic adaptations
in the system in order to return the equilibrium in face of
incoming perturbations [16]. Hence in this step we define:
(i) Variation Point; (ii) V ariants; (iii) Context; and (iv)
NFR attributes values. The 3 contexts (C1, C2 and C3)
present in Figure 6 (box S4 are defined in TABLE
II.

In this activity we state metrics to be monitored, i.e. we
delimit the environment context that influences the choice of
the system adaptation. In this sense, given that in our running
CAGED there is a deadline for declaration submission, it is
important to measure the daily reception. As observed in
Figure 7, the reception rate peaks during the first seven days
of the month. This trend has to be considered in case of a
correct adaptation.

TABLE II. CONTEXTUALIZATION OF AUTONOMIC BUSINESS PROCESS

Task
Contextualization

Variation
Point Variants Context NFR

Receive
CAGED
File

Response
Time

Deviation

Increase
Reception

Rate

C1: ReceptionTrendIsOK=
true and

LastThreeCycleIncreasing=
true

Response
Time >=
220ms

Decrease
Reception

Rate

C2:ReceptionTrendIsOK=
true and

LastThreeCycleDecreasing=
true

Response
Time <=
110ms

Deviation
Reception

Rate

C3:ReceptionTrendIsOK=
false and

LastThreeCycleIncreasing=
true

Response
Time >=
220ms

E. Step S5 – Define Service QoS
All defined and linked services, represented as ServiceID

in Figure 6, box S5, must be instrumented according to SLO.
The definition of QoS is based on NFR attributes and
represents the characteristics that must be guaranteed by each
monitorable business activity. Considering the four send
activities and one reception activity of our running example,
the system must provide a Response Time less than 220ms to
each one.

536

F. Step S6 – Monitor at Run-Time
The monitoring component collects indicators provided

by the system from time to time (cycle) and saves them in a
Log Database. In our approach, monitor must consider
metrics obtained by the system (all monitored services
based on monitored activities), selects the relevant data and
passes it to the diagnostic component for analysis.

G. Step S7 – Choose Autonomic Process and Service
The main theme of software adaptation, considering

autonomic features, is also mapped to this concept by adding an
internal feedback loop to software. In our approach, this step has
the objective of diagnose, plan and actuate. Considering the
metrics obtained by the monitor, the diagnostic component
checks the contexts expressed in the Business Process Model. In
case of some deviation, the planner selects the appropriate
autonomic activities and the actuator executes the Autonomic
Services expressed in the Figure 6. According to the reception
data (see Figure 7) for a given competence, the system must first
execute AService1 (increase of resources during the first days of
the month) then perform AService2 (decrease of resource after
the reception has peaked during the first days of the month) and
later AService3 (deviation detected from the expected maximal
220ms response time and out of peak period). p p p)

Figure 7. CAGED Reception Rate

IV. CONCLUSIONS
The expressiveness of Autonomic Computing features in

Business Process Model is still a poorly explored issue.
Our aim is to provide more expressivity, scalability and
understandability in auto nomic scenarios. For that matter
we have presented an approach which relied on well-known
principles such as separation of concern, modularity [3],
contextualization [17], use of non-functional attributes to
drive configuration [16] and Communication Analysis [20].

In particular we have argued that Communication
Analysis provided a well-defined level of modularization of
Business Process Model, helping to indicate mission-critical
activities that must be treated in autonomic manner.

Our approach consists of four well-defined levels of
abstraction: Communicational Level, Technological Level,
Operational Level and Service Level. These levels provide
aspects to properly express important autonomic features such as
variability by the use of contexts and operationalizations of NFR.

We also outlined a process that helps to define granularity
of the Business Process Models, indicating where the

system need to be instrumented. A real example was used to
illustrate the use of the approach.

The presented aspects were supported by a M APE
mechanism that considered both context and measurement
of certain key performance indicators. System metrics were
critical for the monitoring, diagnosing deviations, planning
and executing adaptations.

As future work, we plan to develop the remaining MAPE
components as well as to perform a formal evaluation.

REFERENCES
[1] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of

Information Technology,” IBM Corporation, vol. 15. IBM, pp. 1-39, 2001.
[2] L. D. Terres, J. a. R. Nt, and J. M. D. Souza, “Selection of Business Process

for Autonomic Automation,” 2010 14th IEEE International Enterprise
Distributed Object Computing Conference, pp. 237-246, Oct. 2010.

[3] H. A. Reijers and J. Mendling, “Modularity in Process Models :,” Review
Literature And Arts Of The Americas, pp. 20-35, 2008.

[4] J. O. Kephart and D. M. Chess, The vision of autonomic computing, vol. 36,
no. 1. IEEE, 2003, pp. 41-50.

[5] O. Babaoglu, “Self-Star Properties in Complex Information Systems:
Conceptual and Practical Foundations,” Selfstar properties in complex
information systems conceptual and practical foundations Ozalp Babaoglu
ed, vol. 3460. Springer, 2005.

[6] M. Salehie and L. Tahvildari, “Self-Adaptive software: Landsacape and
research challenges,” in ACM Transactions on Autonomous and Adaptive
Systems TAAS, 2009, vol. 4, no. 2, pp. 1-40.

[7] J. Buckley, T. Mens, and M. Zenger, “Towards a taxonomy of software
change,” Journal of Software, pp. 1-7, 2005.

[8] M. Salehie, S. Li, R. Asadollahi, and L. Tahvildari, “Change Support in
Adaptive Software: A Case Study for Fine-Grained Adaptation,” in 2009
Sixth IEEE Conference and Workshops on Engineering of Autonomic and
Autonomous Systems, 2009, pp. 35-44.

[9] D. Greenwood and G. Rimassa, “Autonomic Goal-Oriented Business
Process Management,” Management, p. 43, 2007.

[10] J. A. Rodrigues Nt, P. C. L. Monteiro Jr., J. D. O. Sampaio, J. M. D. Souza,
and G. Zimbrão, “Autonomic Business Processes Scalable Architecture,” in
Proceedings of the BPM 2007 International Workshops BPI BPD CBP
ProHealth RefMod semantics4ws, 2007, pp. 1-20.

[11] T. Yu and K.-jay Lin, “Adaptive algorithms for finding replacement services
in autonomic distributed business processes,” in Proceedings Autonomous
Decentralized Systems 2005 ISADS 2005, 2005, vol. 2005, pp. 427-434.

[12] M. Salehie and L. Tahvildari, “Autonomic computing: emerging trends and
open problems,” Architecture, vol. 30, no. 4, pp. 1-7, 2005.

[13] L. Chung, B. A. Nixon, E. Yu, and J . Mylopoulos, Non-Functional
Requirements in Software Engineering, vol. 5600, n o. 1999. Kluwer
Academic Publishers, 2000, pp. 363-379.

[14] ISO/IEC 9126-1, “ISO/IEC 9126-1: Software engineering — Product
quality — Part 1: Quality model,” 2001.

[15] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing
era,” IBM Systems Journal, vol. 42, no. 1, pp. 5-18, 2003.

[16] E. Santos, J. Pimentel, D. Dermeval, J. Castro, and O. Pastor, “Using NFR
and context to deal with adaptability in business process models,” 2011 2nd
International Workshop on Requirements@Run.Time, pp. 43- 50, Aug.
2011.

[17] J. Luis, D. Vara, R. Ali, F. Dalpiaz, J. Sánchez, and P. Giorgini, “Business
Processes Contextualisation via Context Analysis,” Context, pp. 1-6, 2010.

[18] P. K. McKinley, S. M. Sadjadi, E . P. Kasten, and B. H . C. Ch eng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56-64, 2004.

[19] S. Espana, A. Gonzales, and P. Oscar, “Communication Analysis : a
Requirements Engineering,” Proceedings of the 21st International
Conference on Advanced Information Systems Engineering CAiSE 2009, pp.
1-15, 2007.

[20] González, A., S. España, and Ó. Pastor, Unity criteria for Business Process
Modelling: A theoretical argumentation for a So ftware Engineering
recurrent problem., in Third International Conference on Research
Challenges in Information Science (RCIS 2009). 2009,. p. 173-182.

537

Interoperable EMR Message Generation:
A Model-Driven Software Product Line Approach

Deepa Raka and Shih-Hsi Liu
Department of Computer Science

California State University, Fresno
Fresno, CA, USA

deeparaka123@mail.fresnostate.edu, shliu@csufresno.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

marjan.mernik@uni-mb.si

Abstract—This paper introduces a model-driven approach to
extend Feature-Oriented Domain Analysis applied to
heterogeneous Electronic Medical Records (EMRs) represented
in XML format. Six new feature relationships are introduced to
specify the structure differences among a set of XML messages
conformed to different healthcare standards. Our EMR case
study, applied to HL7 CDA and openEHR healthcare standards,
shows that the proposed approach offers a flexible solution to
model and generate an XML product line, which may be
interoperated between HL7 CDA- and openEHR-based HISs.

Keywords - Electronic Medica l Records; HL7; OpenEHR;
Feature Models; Model-Driven Engineering; Product Lines.

I. INTRODUCTION
Healthcare Information Systems (HISs) [7] are for

healthcare institutes to store and m anage medical,
administrative and financial reco rds, called Electronic Medical
Records (EMRs) [7] usually in XML format. Although XM L
may offer advantages of comprehensibility and interoperability,
extra care is still needed to m ap and transform between
heterogeneous XML messages when such messages are
requested to transfer between HISs whose EM Rs conform to
different healthcare standards.

Model-driven software product lines [3] are a combination
of Model-Driven Software Development (M DSD) and
Software Product Line Engineeri ng (SPLE) [3] that advocates
concurrently developing a set of software products sharing
commonalities and v ariabilities. Feature-Oriented Domain
Analysis (FODA) [5] is a classic approach for commonality
and variability analysis. T his approach consists of feature
models that define features and associated dependencies,
represented by feature diagrams in a hierarchical manner. In
order to further enhance FODA, a number of extensions have
been introduced. For exam ple, feature and group cardinalities
[2], consist-of and is-generation-of relationships between
features [1], feature priorities [1], and feature m odularization
[2] that represents a special leaf node by a separate feature
diagram to address the comb inatory explosion problem.
However, when FODA i s applied to EMRs, represented in
XML, in different standards, not only leaf nodes (i.e., atom ic
XML elements or attributes represented as <tag …>…</tag>,
where no other XM L element is em bedded between starting
and ending tags) but also intermediate/composite nodes (i.e.,
XML elements that em bed other XM L elements between

starting and ending tags) should be analyzed. To o ur best
knowledge, there has been no exi sting FODA ext ension that
can handle this kind of structures and complexities.

This paper introduces a model-driven software product line
solution to address how to utilize FODA and newly introduced
extensions to analyze EM Rs represented in XM L and how to
concurrently generate XM L messages conformed to different
standards. Our project starts with introducing a metamodel
using the Generic M odeling Environment (GM E) 1 . The
metamodel defines the syntax and static semantics of EM Rs.
Additionally, six new feature relationships (i.e., Fold, Inverse,
Add, Remove, Add_Remove, and Make_Tag) that specify the
structural differences between EM Rs in different standards are
introduced. Models are then introduced, acting as instances that
conform to the metamodel. M ost importantly, an interpreter is
created to interpret m odels and then generate a set of
interoperable EMRs conformed to different standards in
parallel. In addition, the inte rpreter solves three challenges
regarding XML tree structures: (1) For each X ML element,
after specifying its feature relationships and their depende ncies
using the classic FODA [5], the interpreter needs to correctly
record each XM L element’s tree level and its structural
relationship with other elements (e.g., parent-child and sibling)
and then generate a set of XM L product line members
accordingly; (2) The six new feat ure relationships may change
the structures and levels of existing X ML elements, which
should be addressed by the interpreter; and (3) Unlike an XM L
message represented graphically in a tree structure, each XM L
element represented in text form at has a closing tag. Inserting
the closing tag of each XML element at the correct location and
indent is also a responsibility of the interpreter.

This paper is organized as follows. Section 2 describes the
project in m ore details w ith a case study follow ed by
conclusion in Section 3.

II. OUR APPROACH
This section introduces the approach step by step.

A. STEP 1: Metamodel Level
Because EMRs are represented in XM L, a m etamodel

needs to specify the structure of an XM L message and the
feature relationships of/between XML elements/attributes. In

1 http://www.isis.vanderbilt.edu/Projects/gme/

538

Figure 1, a metamodel defines an XM L message
(Project_Root) that consists of atomic (Child) and/or composite
(Parent) XML elements. Each element may contain 0..*
attributes (Attributes) and 0..1 value (Tag_Text within Parent
and Child). operation is a connection type in GM E that are
used to define the relationship between Elements. For example,
the six new feature relationships are described as follows:

• Fold implies that the source of the connection becomes the
parent of the destination. Suppose that if the first to-be-
generated message (i.e., core asset) looks like:

<P>
 <A>

</P>
Fold will also concurrently generate a second m essage

shown as follows, if the connection is applied from A to B:

<P>
 <A>

</P>
Fold can be also applied to a chain of elements such as A -

B-C-D. Then <A> will embed , <C>, and then <D > in a
hierarchical manner.

Figure 1. The metamodel.

• Inverse is the opposite of Fold – the destination of a
connection becomes the parent of the source of the
connection.

• Add (called Add_Remove when dealing w ith attributes)
implies that the elem ent that is m issing in the first to-be-
generated message will appear in the second to-be-
generated message. For example, if the first to-be-
generated message looks like:

<P>
 <A>

</P>

and if the second to-be-generated message looks like:

<P>
 <P1> </P1>
 <A>

 <C> </C>

</P>
This can be specified by adding extra elements <P1> and

<C> at the desired levels and connecting them by Add.

• Remove implies that an elem ent appears in the first to-be-
generated message should be removed in the second to -be-
generated message.

• Make_Tag is similar to Add but applied to Attributes. If the
first to-be-generated message is as follows:

<P A1=”V1” A2=”V2”>
 <A>
</P>
and the second to-be-generated message looks like:

<P A1=”V1”>
 <A2> V2 </A2>
 <A>
</P>
Make_Tag can be applied to A2 with false value so that A2
becomes an element in the second to-be-generated message.

Additionally, these new feature relationships can also work
together. For example, suppose the first to-be-generated
message is the same as the firs t to-be-generated message
described in Fold, and the second to-be-generated message is
as follows:

<P>
 <P1>
 <A>

 </P1>
</P>
It means that <P1> w ill require tw o kinds of connections:

<P1> self-connects Add to itself; and <P1> connects two Folds
to <A> and to .

In addition to the extensions, Type in Figure 1 defines
FODA relationship among Elements in an XM L tree structure.
Namely, Types are used t o specify FODA’s mandatory,
optional, one-of, and more-of feature relationships. If an XM L
element selects m andatory/optional, it m eans that the elem ent
is mandatory/optional to its parent/com posing XML element.
Similarly, if a set of XML elements with the same parent XML
element selects one-of/more-of, one/more of the elem ents will
be selected to construct a product line.

539

B. STEP 2: Model Level
This section introduces a model as a simple case study that

specifies the structure, com monalities, and variabilities of tw o
types of XM L messages respectively conformed HL 7 CDA2
and openEHR standards 3. An XML product line then w ill be
generated after the model is interpreted by the inte rpreter
described in Section 3.C-F. Fi gure 2 shows the summary of an
EMR product line modeled by FODA. For space consideration,
please find model examples at [8].

Figure 2. Summary of an HL7-CDA-and-openEHR product line.

C. STEP 3:Interpreter Level -- Create Data Structures
In order to keep track where each XM L element is located

and its relationships to other elements before and after applying
feature relationships, tw o 4 two-dimensional vectors are
introduced (For space consideration, Table 1 consists of two
vectors which are distinguished by Columns 3 and 4). Column
2 stores a list of Element objects, each of which contains its
feature relationship to its parent elem ent, (i.e. m andatory,
optional, one-of, or more-of). Columns 3 and 4 respectively
store the parent indices of ele ments of two standards. Note that
Column 3 has three integers. It is because Indices 3 to 8 should
only be included in the openEHR message by using Add. When
the six newly introduced feature relationships are identified in
the model, Column 4 should be updated accordingly. For
example, Add, Fold, Make_Tag, and Add_Remove with
Add_Attr value may increase an element’s parent level if the
structure is changed; and Inverse and Remove may decrease an
element’s parent index. The table not only assists in updating
elements’ properties and relationships but also finding where to
insert ending tags. Due to space consideration, please refer to
[8] for the algorithm of creating data structures.

D. STEP 4: Interpreter Level -- Create FDL Files

Feature Description Language (FDL) [6] is a domain-
specific language that describes feature models. Hence, STEP 4
is to generate FDL programs based on the results of STEP 3
(i.e., properties stored in Table 1) so that the FDL Rule Engine
[6] in STEP 5 can execute the FDL programs. The interpreter
starts from the root element and then retrieves those elements

2 Health Level 7. http://www.hl7.org.
3 openEHR. http://www.openehr.org.
4 There could be more than two vectors. The reason “two” are created is

because the product line conforms to two standards.

TABLE I. VECTORS TO STORE XML ELEMENET PROPERTIES.

Index Element Parent Index Parent Index

0 ObservationEvent -1 -1

1 code 0 5

2 Value 0 0

3 Name - 0

4 Mappings - 3

5 Target - 4

6 terminology - 5

7 match - 4

8 value - 3

whose parent index indicates that they are the child elem ents of
the current element being processed. Then depending on the
parent-child feature relationshi p stored in the elements, the
interpreter generates the textual representation for the elem ent.
The processes are repeated for each element.

E. STEP 5: Interpreter Level -- Execute FDL Rule Engine

The FDL Rule Engine [6] is used to normalize and generate
all the possible com binations of XML elements from a given
FDL program. The output is a comma-separated list of XM L
elements for each unique possible combination.

F. STEP 6: Interpreter Level -- Generate an XML Product Line

The outputs from the FDL Rule Engine show all the
possible combinations of XM L elements based on feature
relationships, both newly introduced and FODA’ s. However,
there is no w ay to relate X ML elements to their parent
elements from the outputs, as they do not show parent
elements at all. Such outputs do not offer any idea of the levels
at which each element is present either. All this information is
necessary in order to generate a valid XM L product line that
conforms to HL7 CDA and openEHR. In order to solve this
challenge, the vectors generated in STEP 3 are used. The
interpreter parses one com bination of elements at a time. It
traverses a vector and checks if an element is present in the
current string of the combination of elements being
considered. If yes, it adds all the child elem ents and attributes
for the current element. Thus, the parent elements are added to
the message. The interpreter then checks if any attribute is
supposed to be converted into an element by checking
Make_Tag property value and converts it into the element
form and appends it to the m essage. It also checks if any
attribute is to be added or removed using Add_Remove. The
process is recursively repeated for every entry in the vector
and an X ML message is then generated. T he interpreter
continues to generate the rest of the XM L messages based on
the number of combinations from the FDL Rule Engine.

G. A Case Study
This section introduces a m ore complicated case study that

consists of all the feature relati onships mentioned in the paper.

540

Figure 3 is a feature diagram that illustrates the case study.
Note that the black ones in the case study conform to HL7
CDA and the black and red ones conform to openEHR
standard. We use black ones (HL7 -CDA) as a core asset in a
product line and generate a XML product line in parallel.

In Figure 3, “observation” is the root element. “Event”,
“BloodPressure”, “Patient”, and “type” are mandatory, and
“Visitors” is optional. Child elements “systolic” and “diastolic”
of “BloodPressure” are alternative, and child elements “Name”
and “ID” of “Patient” are more-of. There is a Fold from
“Event” to “Patient”, which i ndicates that “Event” should be
the parent element of “Patient” in openEHR product line
members. Inverse between “examiner” and “type” implies that
“examiner” should be a child elem ent of “type”. A dditionally,
“examiner” has an Add, whic h means “examiner” should be
present as a child element of “type” in openEHR XM L product
line members. “SSN” is connected by Remove, so it should not
be present in openEHR but should be a child element of
“Patient” in HL7. “Fname” and “Lname” attributes should be
converted to child elements of “name” in openEHR as they
have the Make_Tag property set to 1. Note that “Lname”’s
Add_Remove is set to Add_Attr (true), which implies that it
should not appear as an element in any openEHR message. For
space consideration, we again skip the model snapshot.

Figure 3. A case study.

The interpreter will then first create an internal table to
store the positions of tags of each element. Then an FDL
program will be autom atically generated. T he internal FD L
Rule Engine then generates 12 messages for HL7 and 12
messages for openEHR are generated. Figure 4 shows two
selected HL7 and two selected openEHR messages generated
by the interpreter. The differences that are done by applying
some of the feature relations hips shown in Figure 3 are
highlighted too.

III. CONCLUSION
As EMRs are getting m ore attention and ultim ately will be

pervasively required in healthcare domain, there is a need to
solve the interoperability issue am ong EMRs conformed to

different standards. This paper offers a flexible solution to
address such an i ssue. Our work reproduces FODA’s four
main feature relationships a nd introduces six new feature
relationships to tackle the structure changes among different
XML messages. The results show that an interoperable EM R
product line in XM L format can be generated concurrently,
which may reduce processing tim e, especially when patients
are under emergent situations.

Figure 4. Selected XML product line members.

REFERENCES
[1] K. Czarnecki et al., Generative Programming and Active

Libraries. Generic Programming. 25-39, 1998.
[2] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration

through Specialization and Multilevel Configuration of Feature Models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143 -
169, 2005.

[3] K. Czarnecki et al., “Model -driven Software Product Lines,” 20th
OOPSLA Companion, pp. 126-127, 2005.

[4] A. Ducrou, “Complete Interoperability in Healthcare: Technical,
Semantic and Process Interoperability through Ontology Mapping and
Distributed Enterprise Integration Techniques ,” Doctoral Thesis,
University of Wollongong, 2009.

[5] K. C. Kang, et al., “Feature-Or iented Domain Analysis (FODA)
Feasibility Study,” Tech. Report. Carnegie Mellon University, 1990.

[6] T. Kosar, et al., “A Preliminary Study on Various Implementation
Approaches of Domain-Specific Language. Information & Software
Technology,” vol. 50, no. 5, pp. 390-405, 2005.

[7] J. Luo, “Electronic Medical Records. Primary Psychiatry,” vol. 13, no. 2,
pp. 20-23, 2006.

[8] D. Raka. “A Product Line and Model Driven Approach for Interoperable
EMR Messages Generation,” Master Project, California State
University, Fresno, Dec. 2010.

541

A data collaboration model for collaborative design
based on C-net

 Xin Gao, Wenhui Hu, Wei Ye, ZHANG Shi-kun
School of Electronics Engineering and Computer Science,

National Engineering Research Center for Software
Engineering Key laboratory of High Confidence Software

Technologies (Ministry of Education)
Peking University

Beijing, China
gaoxin54@gmail.com

 Xuan Sun
Key Lab of Universal Wireless Communications, MOE

Wireless Network Lab
 Beijing University of Posts and Telecommunications

Beijing, China
E-mail: sunxuanbupt@gmail.com

Abstract—Process modeling is the base of complex product
collaborative design, and the requirements of data collaboration
in collaborative design process challenge at the aspects of
parameter flow, concurrency, multi-versioning, repeat design and
so on. To specify the data collaboration between design processes
based on parameters, this paper provides a dataflow-oriented
process collaboration model based on C-net model. Through the
analysis of the data collaboration between design processes, we
conclude some process collaboration patterns, including level
task interaction, concurrent task interaction and repeat task
interaction. Then provide the structure descriptions for these
patterns, and explain the application scenes of theses patterns in
collaborative design. At last, define the collaborative unit for each
pattern and describe the data collaboration mechanism of
process collaboration patterns by their element and relationship.

Keywords- collborative design; data collaboration; C-net

I. INTRODUCTION
In the process of complex product design, the way of

collaborative product design and development is the advanced
cooperation model, which organizes the distributed team into a
group to develop the product collaboratively so as t o improve
the efficiency of development [1]. Comparing to traditional
product design process, collaborative design process has the
features of concurrency, distribution, dynamism and
collaboration. In workflow, collaborative design process
mainly depends on data collaboration based on parameter
exchange. So how to implement the modeling for data
collaboration of design process effectively becomes an
important research topic, and at the same time it presents
critical challenge to workflow modeling, which includes
following aspects:

 Support iteration of design process

 Support the expression of data flow and control flow

 Support data collaboration in different scope

From these facts, we can see that collaborative design
actually is the complex distributed parallel interaction process,
which execute data collaboration mainly in the form of data
exchange. So traditional control flow oriented business

workflow can’t describe complex data relationship and data
exchange process, and need to take the idea and method of
science workflow which mainly focus on data flow. Comparing
to business workflow, science workflow can describe complex
process and large-scale data exchange and transformation. At
the same time, traditional business workflow can’t deal with
the alterations of process collaboration which are caused by the
changeability of design requirements at runtime. Meanwhile
science workflow support breakpoint setting, and iterative
execution, which can improve the flexibility of data
collaboration among processes.

Based on these features of collaborative design workflow,
this paper takes the advantage of business workflow and
science workflow, expresses dataflow oriented, constraint,
parallel and iterative execution by C-net model. Then conclude
a set of process collaboration model by analyzing the features
of collaborative design workflow. At last, provide the
construction mechanism of collaboration model based on C-net,
so that the data collaboration model for collaborative design
can ensure the workflow based on this model to effectively
implement data collaboration process.

II. RELATED WORK

A. Workflow modeling
To the research of workflow modeling, currently there are

still no uniform modeling standard. From current work, the
modeling methods mainly include flow chart, state diagram,
activity network, IDEF, ECAA, event driven process model,
Petri net and so on. Among these modeling methods, Petri net
is the most widely used modeling method [2].

To implement the parallel execution, collaboration and
optimization between the workflows of related design teams, it
needs to build the model which can reflect the relationships
between upstream and downstream of design organizations,
and process modeling is t he important base of parallel
execution. Traditional Petri net can’t effectively support the
expression of the combination of data flow and control flow,
data collaboration, iterative execution. So C-net model which
presents by doctor Yuan[3] is used in this paper to describe
data collaboration among collaborative design workflows,

542

because the system of C-net model is qu antification structure
which is similar with net system. “C” stands for computing and
communication. C-net describes token and variable separately
based on the basic principles of Petri net, so that C-net is
suitable to describe collaborative design workflow.

B. Collaboration mechanism description
To the description of coarse collaboration mechanism,

paper [4] integrates the branch of workflow and the object of
software engineering into Petri net, and builds the invoking
relationship, in which collaborate unit nets are collaborated
around process net. Paper [5] presents a m ethod of multi-
workflow interaction and coordination based on bus. The
research direction of these works is t o build coarse
collaboration mechanism to implement data translation and
progress control among processes, but it can’t reflect the
collaboration between tasks because its element is not task.

To the description of fine grit collaboration mechanism,
paper [6] presents the solution of workflow collaboration by
combing agent technology with ontology. Paper [7] describes
workflow based on Petri net, and uses an annotation language
to describe data exchange and process schedule between
processes. Both of these two works present the description of
fine grit collaboration mechanism, but they use different
modeling methods to describe the workflow and the
collaboration mechanism between workflows.

The inconsistency between workflow model and
collaboration mechanism model brings complexity to analysis
of the dynamic process data and execution state of workflow,
and there are also some researches on the unified formalization
of collaboration design process. Paper [8] uses Pi-Calculus
technology to formally define the inter-organizational business
process structure, and use the special mechanism of Pi-
Calculus to describe parallel processes and their
communication. But its problem is th at the process model
based on Pi-Calculus is too complex and abstract to let designer
understand the process and conduct the implementation of
specific design process. Paper [9] provides a set process
modeling mechanism of pub/sub system based on color net,
which adopts Petri net model to describe pub component so as
to realize process collaboration and only focus on the
description of control flow. So according to the feature of
collaborative design, it n eeds a k ind modeling method which
can describe both design process and design collaboration of
collaborative design by the data exchange of fine grit task level.
The collaboration at task level asks for more requirements to
process modeling, which mainly is reflected in the description
of the process and collaboration between processes.

III. DATA COLLABORATION DESCRIPTION OF
COLLBORATIVE DESIGN

Through C-net model, we can describe the basic process of
dataflow oriented collaborative design, and we conclude three
main process collaboration patterns in the scene of data
collaboration between collaborative design processes. Then we
use C-net to build model for process collaboration patterns.

A. C-net model
The formal definition of C-net is as follow:

Definition 1 Use , , ; , , rCN P V T F R W to stand for
C_net and , t ,x V T p P . P, V and T separately stand
for the token set, variable set and transition set of CN and F,
R and Wr separately stand for flow relationship, read
relationship and write relationship.

It is critical to realize the communication between
processes by the collaboration between tasks and support the
description of parameters exchange between tasks and
constraints between parameters in collaborative design. C-net
support parameters passing of collaborative design, because C-
net introduces variable set which can make some
corresponding extensions so as to provide the description of
data flow and control flow between design tasks.

B. Data collaboration model of collaborative design
According the features of collaborative design, including

inter-organization, data flow oriented, parallel and iterative
execution, we conclude three major parameter interaction
patterns to describe the complex data collaboration between
design processes, including task interaction between superior
process and subordinate process, task interaction between
parallel processes and task interaction between iterative
processes.

 Pattern 1 : task interaction between superior process
and subordinate process

In this pattern, the relationship between superior process
and subordinate process are reflected into parameter passing
from one or more tasks of subordinate process to the task of
superior process. This pattern often is used in the level
structure to describe the interaction between the tasks which
belong to the processes of different level. These interactions
include the monitoring, collection, statistics and analysis of
superior process to subordinate process, and the specific
abstract process is as follow:

Figure 1. Task interaction pattern between superior and subordinate process

In figure 1, transition T strands for the task of superior
process which implements the interaction with subordinate
process. It shows that T collects parameters from T2, T3 and Ti.

 Pattern 2 : task interaction between parallel processes

In this pattern, the tasks of different parallel processes
interact with each other based on parameters, which is reflected
into two scenes: one is that some tasks can pass parameters to
multi tasks from other parallel processes; the other is that some
tasks can receive parameters from multi-tasks from other
parallel processes. In collaborative design process, this pattern
is mainly used to describe data collaboration process in the
form of parameter which is c aused by the dependence of the
design contents among different design teams. This pattern also
describes the parameter interaction caused by multidisciplinary

T

T2

T3

Ti

Tj

543

optimization which can improve multidisciplinary design. The
specific abstract process of pattern 2 is as figure 2:

r1 r2 r3

k1 k2 k4

k3

T1

T3T2

T6

T5T4

Figure 2. Task interaction pattern between parallel processes

In figure 2, transition T3 separately reads parameters sets of
r1 and k3, and transition r2 and k2 also read parameters set
produced by T2. They together produce complex parameter
passing route, but these scattered data flows can’t reflect the
synchronous relationship between the transition which executes
write operation and the transition which executes read
operation. At the same time, the parameters sets of these
parameter passing flows always cause the redundancy of data
transition because of the common design contents.

 Pattern 3 : task interaction between iterative processes

This pattern is reflected into the scene that one or more
transitions of iterative circuit pass parameters to the transitions
of other parallel design processes. This pattern mainly
describes the complex data exchange problem which is caused
by multi-version process parameters produced by the iterative
execution of Repeat. The multi-version property of Repeat will
affect the parallel execution of other processes which exchange
parameters with Repeat, and the specific abstract process of
pattern 2 is as figure 3:

T1

T3T2

T6

T5T4

r1 r2 r3

k1 k2 k4

k3

Ti TjTr

Figure 3. Task interaction pattern between iterative processes

Figure 3 describes a scene that a task Tr of iterative process
Repeat(i,j) publishes parameters to the tasks of other parallel
processes, including a2, r2 and t4. The difference between
pattern 2 and 3 is that the parameter passing will execute more
than one times and produce the process data of different
versions, which makes collaboration process more complex.

C. Process collaboration based on C-net
According to the features of these process collaboration

patterns, we provide their model building based on C-net.

 Model building for pattern 1

In pattern 1, if we set V element for each parameter passing
flow to stand for corresponding parameter set, it can’t unified
the interaction in the form of parameter collection between

superior process and subordinate process and will cause the net
system too complex to implement and ana lyze. So we use an
unified middle data set variable to stand for the summarized
parameters, and add the corresponding P-occurrence
mechanism, which is called as DX-U, just the abbreviation of
the collaboration unite of unidirectional summarization of data,
just as figure 4.

T

T2

T3

Ti

Tj

d[0]
d[1]

d[l]

Figure 4. The C-net description of task interaction pattern between superior

process and subordinate process

In DX-U, it uses the unified set d of parameter variables to
collect the parameter set of the related tasks, just as follow:

2. . .d T params Ti params Tj params
 Model building for pattern 2

The pub/sub model can be used to extend unidirectional
data passing to describe complex parameter exchange between
transitions effectively, and the ability of expression for
parameter subscription directly affects flexibility of data
collaboration between transitions. Now there are mainly two
kinds of pub/sub model: the model based on theme and t he
model based on content. For parameter passing of the pub/sub
model based on theme, the expression by C-net is as follow:

Pub-T

Sub-T Sub-T Sub-T

r1 r2 r3

k1 k2 k4

k3

T1

T3T2

T6

T5T4

P/S-U

Figure 5. The C-net description of pattern 2 based on theme

Considering the feature of task interaction of parallel
processes, we extend the process collaboration based on
publish transition centered, and the operations include:

1) Set corresponding published parameter set called
PubParams for each transition that executes read operation, so
that let PubParams store the parameter set transited at runtime;

2) Add the data flow of write operation and read operation
of PubParams;

3) Add P element to realize th e occurrence right of
parameter passing process f rom publish transition to
subscription transition, which will build a P-occurrence unit of
pub/sub model based on th eme, as the content of dotted line
box in figure 5(a), called as P/S-U. According the above steps,
we take the publish transition T4 for example, in which the
token of Pub-t in P/S-U comes from T4, just as figure 5(b), and
we can deal with r1 and k3 in figure 5 by the same way.

544

Tc

Sub-TTc

Pub-T

Sub-T

Figure 6. The C-net description of pattern 2 based on content

Though theme can mark the exchanged parameters, its
expression to parameter is weak because theme can’t reflect the
constraint of subscription task to parameters, and its adaptation
to the change of parameter constraints is also very weak.
Meanwhile, the pub/sub model based on content allows
subscription task to express their subscription by the value of
related parameters, which has stronger ability of expression and
more flexible ability of adaptation. So we extend the workflows
by the C-net elements around publish transition, and the
additional steps are as follow:

1) Add corresponding parameter set called as
PrivateParams for each subscription transition to store all th e
parameters to be received, and add the data f low of read
operation from each subscription transition to PrivateParams;

2) Add P element to realize the delivery of the right of
occurrence from publish transition to subscription transition.

After these steps, it builds the collaboration unit of the
pub/sub model based on content, just as th e content of blue
dotted line box in figure 6, called as Content-P/S-U.
Comparing to P/S-U, Content-P/S-U has two more transitions
Tc which are mainly used to check if the parameters of
PubParams satisfy the corresponding requirements.

Pub-T

Sub-T Sub-T Sub-T

T T

a)

Pub-T

Sub-T

T

T
Tm

Sub-TTm

Sub-TTm

T

b)
Figure 7. The Subject-P/S-U and Repeat-P/S-U solutions of pattern 3

 Model building for pattern 3

In figure 7(a), it is a scene that a task of iterative circuit
publishes parameters which are passed to the tasks of other
parallel processes. If we use Subject-P/S-U to deal with the
data exchange as figure 7(a), there will be two problems: fist,
the publish transition will execute more than one times publish
operations. So Sub-T always can’t consume the corresponding
token in its preorder place called as Ps in time, which will be
accumulated. And there will be repeated read operations to the
same parameter set when Sub-T carries out read operation,
which decreases the efficiency of the execution of net systems.
Second, subscription transition will do more than one times
read operations. As the parameters passing way of figure 7(a),
there isn’t any method to control the read operations of Sub-T
to the following data.

For these two reasons, we extend Subject-P/S-U into the
collaboration unit for iterative circuit pattern, called ad Repeat-
P/S-U. The extension mainly is to add the consume mark place
Pr to indicate if Sub-T has read the parameter set and the judge
transition (called as Tm) between Ps and Sub-T to decide if
Sub-T has consume the parameters that are read, just as figure
7(b). The initial value of Pr is one token, which means the first
active read operation of Sub-T to the published data. After the
first read, the second publication of Pub-T provides Ps another
token, but the occurrence of transition Tm still need the right of
occurrence of Pr which depends on the end of all the
operations to the last set of parameters. So Tm can only inform
Sub-T the advent of new parameters after all the operations of
Sub-T, so that it prevents Sub-T to do loop detection and read
operation.

IV. CONCLUTION
In this paper, we support the model building for the data

collaboration of collaborative design based on C-net, which can
satisfy the features of process collaboration, like parallel,
iterative and dataflow oriented. We c onclude collaboration
pattern and provide a set collaboration unit model to describe
these pattern, so that all complex collaboration mechanism can
be hidden into these unite. Next step, we will prove the liveness
and safety of collaborative unit, which can validate the
rightness of data collaboration process.

ACKNOWLEDGMENT
This work was supported by the National Natural Science

Foundation of China under Granted No. 60903001

REFERENCES
[1] Hao Bo Qiu, Y. Wang, Ping Jiang, Liang Gao. Research on Workflow

Modeling Methods for Collaborative Product Development, Advanced
Materials Research, vol 46, pp. 247-252, 2008.

[2] Guoyin Jiang, Lihong Dong, Overview of Workflow Modeling Theory,
COMPUTER SYSTEMS & APPLICATIONS, vol 3, pp.90-93, 2006.

[3] Chongyi Yuan, Principles and Applications of Petri net.
Beijing:Publishing house of Electronics Industry(PHEI), 2005.

[4] A N Yi-sheng , L I R en-hou, Analysis of cooperative design process
using object-based extended Petri nets, Control and Decision, 2008,
29(3), pp.1004-1010.

[5] Yong Shi, Geert Dick Albada, Jack Dongarra, Peter M.Sloot, Towards a
formal foundation for aggregating scientic workows, Proceedings of the
7th international conference on Computational Science, Springer-Verlag
Berlin,2007, pp.216-219.

[6] Jiangbo Dang, Jiangbo Dang, Michael N. Huhns, Workflow
Coordination for Servi ce-Oriented Multiagent Systems, Proceedings of
the 6th international joint conference on Autonomous agents and
multiagent systems, ACM New York, NY,2007, pp.1049-1052.

[7] Kamel Barkaoui, Awatef Hicheur, Towards Analysis of Flexible and
Collaborative Workflow Using Recursive ECATNets, Proceedings of
the 2007 international conference on Business process management,
Springer-Verlag Berlin,2008, pp.232-244.

[8] PAN Xiao-hua, FENG Zhi-lin, YIN Jian-wei, ZHENG Zheng-ping,
DONG Jin-xiang, Modeling Method for Inter-Organizational Workflow
Based on Pi-Calculus, APPLICATION RESEARCH OF COMPUTERS,
2006, 23(1), pp.63-65.

[9] Hens, Pieter, Snoeck, Monique, Poels, Geert and De B acker, Manu, A
Petri Net Formalization of a Publish-Subscribe Process System,
http://ssrn.com/abstract=1886198

545

Working and Playing with SCRUM

Erick Passos - IFPI - Teresina - PI - Brazil

erickpassos@ifpi.edu.br

Danilo Medeiros - Infoway - Teresina - PI - Brazil

danilomedeiros@infoway-pi.com.br

Wandresson Araújo - Infoway - Teresina - PI - Brazil

wan@infoway-pi.com.br

Pedro Santos Neto - UFPI - Teresina - PI - Brazil

pasn@ufpi.edu.br

Abstract—Software development is sometimes considered a
boring task. To avoid this fact we propose an approach based on
the incorporation of game mechanics into SCRUM framework,
in order to change its use to a more amusing task, by taking
advantage of the gamification trend. Gamification is applied to
non-game applications and processes, trying to encourage people
to adopt them. This work shows a suggestion of SCRUM gami-
fication together with an evaluation of the proposed approach
in a preliminary evaluation of a software house. The use of
this concept can help the software industry to increase the team
productivity in natural way.

I. INTRODUCTION

A software process is a set of activities with the goal of

developing a software product. In general, software projects

that are large, complex, poorly-specified, and involve unfamil-

iar aspects, are still particularly vulnerable to unanticipated

problems. The software processes help to deal with these

situations, anticipating alternatives and exposing all the tasks

until the product completion. However, developers want more

freedom. They do not desire to be guided by a bureaucratic

process. They argue that this practice can limit their creativity.

This fact was one motivation for the development of the

Manifesto for Agile Software Development [2].

The Agile Manifesto motivates the creation of several

software processes. Scrum, for instance, is one of the most

used agile approach nowadays [3]. Scrum is a framework

for project management commonly used as an agile software

development model based on multiple small teams working in

an intensive and interdependent way [4].

But many developers, even using Agile Methodologies, have

dififculties to follow the required prescriptions. The problem

related to this question is another: developing software is

a challenging activity that is seldom regarded as fun. Just

like many other types of activities, it can be organized as

a set of hierarchical and partially ordered challenges that

must be overcome, often requiring several different skills from

developers, and lots of teamwork effort. Surprisingly, this is

very similar to an abstract definition for games: activities

in which a player must learn new skills, use and combine

them to overcome challenges, getting rewards or punishments,

depending on success or failure, respectively.

In this work we propose the inclusion of game design

concepts into the Scrum framework, in order to try to change

the software development guided by Scrum in a fun task.

We show that software development using Scrum is closely

related to a game when the governing rules of both activities

are concerned.

We also present results from a preliminary evaluation from

a real software development team, and a prototype of a tool

to incorporate immediate feedback and game design features

to Scrum-based project management tool. We understand that

knowledge from the game academic community can contribute

to other areas of applied research, and expect this work can

inspire others to try this approach with different types of

approaches.

A. Contributions of the Paper

The main contribution of the paper is to show that game

design theory can be applied to other important real-world

problems, such as Scrum framework. After a small survey

about the important concepts related to this work, we present

our contributions, which are summarized bellow:

• A gamification approach to Scrum framework;

• Results from a preliminary evaluation: we designed and

evaluated individual and group achievements against his-

torical data of a Scrum-based real-world development

team;

• A proposal for a Scrum-based tool that incorporates

game design elements, such as immediate feedback and

achievements.

B. Related Work

According to Takahasi [5], gamification is a trend nowadays.

The technique can encourage people to perform chores that

they ordinarily consider boring, such as completing surveys,

shopping, or reading web sites. In this paper, we propose going

beyond with the gamification concept, applying it not only to

interactive media, but to real-world activities, in this particular

case, in the software development guided by Scrum.

An example of gamification in the software development

context is the RedCritter Tracker1 system. It is a software

development task management tool that applies some mech-

anisms, like rewards and skill badges, after task accomplish-

ments are achieved. Our proposal goes beyond the gamification

of a tool, aiming to transforming the actual software develop-

ment process into a game.

1http://www.redcrittertracker.com

546

Visual Studio Achievements, a Visual Studio2 plug-in,

enables developers to unlock badges and compete against

anothers developers for a place on a leader board based on

the code they write, its level of sophistication, and the Visual

Studio capabilities they used. This is another example of

gamification applied to software development close to our

approach. However, we extend it by suggesting not only a tool

gamification, but also a process gamification and a preliminary

evaluation analysing a real team.

The idea of incorporating gamification concepts into the

software development has started when we proposed the

inclusion of game mechanics directly into a general software

development process [8]. We have also specified a task man-

agement tool based on this proposal. Now we are specializing

the approach to deal with a specific software process: Scrum.

It is important to highlight that there are personal pages, like

blogs, considering Scrum as a gamification of software devel-

opment. This work is completely different: we are interested

in the proposal of a formal Scrum gamification, together with

a specification of a tool to support this task, and associated

with a preliminary evaluation of the proposal in a real software

development scenario.

II. SCRUM

Scrum is an agile framework for completing complex

projects. Scrum originally was formalized for software devel-

opment projects, but works well for any complex, innovative

scope of work [4].

When using Scrum, requirements specified with the help of

the Product Owner, generate a Product Backlog. This backlog

is broken down into small features that can be delivered as

working software during short development iterations, called

Sprints. Work is pulled from the Product Backlog into a

Sprint Backlog during a Sprint Planning Meeting. The Team
must conclude the backlog during the sprint. Daily the team

performs the Daily Scrum activities, including the updating of

the Burndown chart. The sprint ends with a sprint Review and
Retrospective, guided by the Scrum Master. The outcome of a

sprint is a deliverable that, ideally, can be released immediately

after acceptance by the product owner at the sprint review

meeting. Part of these tasks are presented in Figure 1.

III. GAME DESIGN CONCEPTS

The ultimate goal while transforming an activity into a game

is to make it challenging and fun at the same time. Well

designed game mechanics are the atoms that differentiate a

fun game from other leisure activities such as reading. There

are many definitions for game mechanics, but we’ll use the

one proposed by game designer Daniel Cook [9], which is in

turn based on Raph Kosters Theory of Fun [10], for the scope

of this work:

”Game mechanics are rule based systems / simulations

that facilitate and encourage a user to explore and learn

the properties of their possibility space through the use of

feedback mechanisms.”

2http://www.microsoft.com/visualstudio/

Fig. 1. Scrum framework.

In the process of designing gameplay rules, one has to

consider that the challenges must be well balanced, since the

brain stops enjoying challenges that are either too difficult or

too easy to surpass. In this context, another element of game

design that we wanted to bring to Scrum framework is the

challenge-punishment-reward loop, which is closely related to

the aforementioned definition of game mechanics.

A. Achievements

Achievements are a secondary scoring mechanism that

measures the use of skills to solve the same type of challenge

(normally a low level one). Often, achievements are computed

using two approaches: repetition or rate.

Repetition achievements are defined as the number of times

the player uses a certain skill to solve the same type of

challenge such as killing a certain type of enemy. Eq 1 shows a

formula for this type of achievement, where n denotes the total

number of times challenge c was tried, and f(c) is the value

for its succeed function. Rate achievements are constrained to

a scope, either the container challenge or a defined time slice,

and normally measure the rate between succeeded against total

attempts for a particular challenge. Eq 2 defines a formula for

computing rate achievements.

rep =
n∑

i=1

f(c) (1)

rate =

∑n
i=1 f(c)

n
(2)

Repetition achievements are often awarded based on an ap-

proximate logarithmic scale, rendering each subsequent level

increasingly more difficult to earn. For rate achievements, there

are multiple levels as well, normally following a linear scale

of thresholds, often rewarding the player with a medal: either

a bronze, silver or gold, depending on the threshold reached.

They are also cumulative, meaning that the player can collect

more medals for subsequent scopes.

B. Immediate Feedback

A key aspect of (specially electronic) games is the use of

immediate feedback to keep the player aware of his progress

(or failures) through the challenges. It is desirable that this

547

Project (main challenge)

Sprint 1 Sprint 2

Release 3 (Detailed)
Sprint 3

Release 1 Release 2 Release 3

T1 T2

T3
T4T5

Fig. 2. Mapping of Scrum build blocks into a hierarchical challenge graph

feedback is given in real-time, increasing the feeling of im-

mersion and also the perception that the player is the sole

responsible for the outcome. Ideally, any activity that is suit-

able to using game design ideas should consider incorporating

immediate feedback, as it is mandatory to maintain the sense

of urge.

IV. MAPPING GAME MECHANICS TO SCRUM

In order to create a game-like mechanics/rules to Scrum,

the first concept one needs to map is the challenge-graph. The

fundamental goals of Scrum must be adapted as challenges to

compose the nodes. Figure 2 shows a mapping of Scrum to a

challenge graph.

The leaf-nodes in this graph are the team tasks. Each

team member must use their skills in requirements, design,

programming and testing to succeed. The evaluation of the

completion for these tasks is normally made by a PO, and

logs indicating this are registered in the Burndown Chart. The

major goal is to deliver a release, but this can be split in several

inner goals, like to acomplish the sprints.

A. Metrics to Achievements

Besides the straightforward mapping of a software develop-

ment project usign Scrum hierarchy into a challenge-graph,

many companies also define and use a fairly large set of

numeric metrics to either measure or even reward the best

developers and teams. These metrics are commonly based on

the developers performance in task planning and execution,

programming, testing or other activities.

Each of these metrics have specific meanings in the Scrum

context, but simply measuring and exposing them is not com-

pelling because they lack reference goals and sense of com-

petition. In order to convert metrics into desirable challenge,

we propose the design of individual and team achievements.

Individual achievements can be based in any individual metric,

even if it includes tasks from more than one project. Team

achievements are bounded to projects, and ideally should be

based in team-grade metrics.

Any of these metrics can be converted in achievements,

either repetition or rate based. However, it is important to

carefully design and balance the levels (for repetition achieve-

ments) and thresholds (rate ones), in order to make them inter-

esting. The first level and lowest grade medal (bronze) must

be very easy to achieve, while the others must be rendered

increasingly challenging. In Section V we show a preliminary

evaluation of both solo and collective achievements.

V. PRELIMINARY EVALUATION

We have done a preliminary evaluation of our proposal

involving real-world scrum teams. Infoway3 is a medium-sized

software house with 28 developers, split in four teams, which

has been successfully using agile processes for six years, and

using Scrum since 2008.

Infoway has a Scrum-based project management system

that does not implement gamification in its behavior. But

the system has information about some Scrum cerimonies,

including planning, review and retrospective. There is also

information about the backlog and estimated and actual time

spent to accomplish tasks, grouped by sprints and projects. We

used these information to evaluate our proposal in a real case.

In this section we describe the achievements designed

to Scrum framework together with the evaluation of these

achievements using the Infoway historical database. The pre-

liminary evaluation comprises the design of ten game achieve-

ments and the evaluation of four game achievements based on

measured metrics.

A. Achievements

As discussed before, achievements are representation of

having accomplished something. Achievements can be easy,

difficult, surprising, funny, accomplished alone or as a group.

In this section we describe the achievements directly related to

Scrum. The main idea related to the above described achieve-

ments is to keep all staff informed about the accomplishments.

It is important to emphasize that all the achievements are

related to a project. A project is a temporary endeavor with

a defined beginning and end. During a project, several sprints

could be acomplished. This is the time box used to account

the proposed achievements in a organization.

1) Role Achievements:
• Super Scrum Master (SSM): A Super Scrum Master is

an individual repetition achievement that accounts for the

number of sprints that all the Scrum prescriptions were

followed entirely. The achievement has 3 levels: Level 1

(>=1); Level 2 (>=3); and Level 3 (>=10).

• PO Presence (POPr). PO Presence is a repetition

achievement that accounts for the number of sprints

which the PO participated of planning and review cer-

emonies. The achievement has 3 levels: Level 1 (>= 1);

Level 2 (>= 3); and Level 3 (>= 10).

• PO Partner (POPa). It is a rate achievement that ac-

counts for the number of sprints which the PO partici-

pated of planning and review ceremonies compared with

the total number of planning and reviews performed in

3http://www.infoway-pi.com.br

548

the project. This achievement has three thresholds/medals

defined to the percentual of acceptance: Bronze

(50%); Silver (75%); and Gold (100%).

2) Artifact Achievements:
• Sprint Backlog Completion (SBC). SBC is a repetition

achievement that accounts for the number of sprints

where all the item in the Sprint Backlog were developed.

The achievement has 3 levels: Level 1 (>= 1); Level 2

(>= 3); and Level 3 (>= 10).

• Sprint Review Acceptance (SRA). SRA is a team rate

achievement that accounts for the number of accepted

items by the PO in a review meeting compared to the

total of items from the backlog of the current sprint. For

this achievement three thresholds/medals were defined to

the percentual of acceptance: Bronze (50%); Silver

(75%); and Gold (100%).

3) Cerimony Achievements:
• Clockwork Developer (CD). CD is a rate individual

achievement that accounts for the number of tasks a

developer finished compared to the total number of tasks

in an sprint. For this achievement three thresholds/medals

were defined to the percentual of acceptance: Bronze

(50%); Silver (75%); and Gold (100%).

• Clockwork Team (CT): CT is a repetition team achieve-

ment that accounts for the number of tasks finished by the

team in a Sprint, on the planned time (with difference up

to 20%). The achievement has 3 levels: Level 1 (>= 1);

Level 2 (>= 3); and Level 3 (>= 10). The Clockwork

Developer and Clockwork Team achivements are clas-

sified as cerimony achievements because the success to

accomplish a task on the planned time is associated to a

well done planning.

• Daily Scrum Developer Presence (DSDP). DSDP is an

indivual rate achievement that accounts for the number

of participations of each developer at standups during a

Sprint compared to the total of days of each Sprint. For

this achievement three thresholds/medals were defined to

the percentual of acceptance: Bronze (50%); Silver

(75%); and Gold (100%).

• Daily Scrum Team Realization (DSTR). DSTR is a

team rate achievement that accounts for the number of

days that a daily scrum meeting was performed by the

team compared to the total number of days of a Sprint.

For this achievement three thresholds/medals were de-

fined to the percentual of acceptance: Bronze (50%);

Silver (75%); and Gold (100%).

• Sprint Latency (SL). SL is a repetition achievement

that accounts for the number of sprints started after a

sprint end within a maximum time gap of 24 hours.

The achievement has 3 levels: Level 1 (>= 1); Level

2 (>= 3); and Level 3 (>=10).

B. Results and Analysis
The evaluation performed has considered four achieve-

ments: one rate achievement for individual developers and

three repetition team achievements.

As mentioned before, we used historical data to compute the

aforementioned achievements and award a selection of four

project teams, comprising a total of 16 developers, during a

time frame of seven months, which encompasses from nine

to twelve Sprints from these four projects. The difference in

the total amount of sprints for each project exists because

each team can eventually work with different time boxes, also

having time gaps among iterations.

The result of the clockwork developer achievement award

is shown in Table I. There is the indication of the number

of medals that would be earned by each developer, according

with his project. The developers could have earned up to ten

gold medals in the considered period. From the analysis, we

can observe that an individual developer would win earn up

to seven medals. At least one medal will be earned for each

developer.

Clockwork Developer
Project Developer Medals

Project I Developer A

Project I Developer B

Project I Developer C

Project I Developer D

Project I Developer E

Project II Developer F

Project II Developer G

Project III Developer H

Project III Developer I

Project III Developer J

Project III Developer K

Project IV Developer L

Project IV Developer M

Project IV Developer N

Project IV Developer O

Project IV Developer P

Project IV Developer Q

TABLE I
INDIVIDUAL RESULTS FOR THE CLOCKWORK DEVELOPER ACHIEVEMENT,

GROUPED BY PROJECT: TOTAL MEDALS EARNED BY EACH DEVELOPER

DURING THE SPRINTS CONSIDERED IN THE PRELIMINARY EVALUATION.

Table II shows the levels registered for each team consid-

ering the Clockwork Team achievement. All project teams

reached at least the Level 1. This means that all teams

completed at least one sprint on time. Projects II and III

completed two sprints on the time among nine and twelve

sprints respectively, but this fact did not assure a level update.

Only Project I reached Level 2, since it has completed six

sprints on time.

Table III shows the levels registered for Sprint Backlog

Completion achievement. Only Project IV did not reach the

Level 2. The Project II team completed all the sprint backlog

six times, from nine possible times. It is the best team in this

criteria, however it did not reach the Level 3.

Table IV shows the levels registered for Sprint Latency

549

Clockwork Team
Project Level

Project I Level 2 (6/9 sprints)
Project II Level 1 (2/9 sprints)
Project III Level 1 (2/12 sprints)
Project IV Level 1 (1/10 sprint)

TABLE II
TEAM RESULTS FOR THE CLOCKWORK TEAM ACHIEVEMENT: LEVELS

ACHIEVED FOR EACH PROJECT AND TOTAL NUMBER OF SPRINTS FINISHED

ON TIME.

Sprint Backlog Completion
Project Level

Project I Level 2 (3/9 sprints)
Project II Level 2 (6/9 sprints)
Project III Level 2 (3/12 sprints)
Project IV Level 1 (2/10 sprint)

TABLE III
TEAM RESULTS FOR THE SPRINT BACKLOG COMPLETION: LEVELS

ACHIEVED FOR EACH PROJECT AND TOTAL NUMBER OF SPRINTS FINISHED

ON TIME.

achievement. Only Project I did not reach the Level 2. The

Project III and IV teams have started five sprints without time

gaps. They are the best ones in this criteria. However they did

not reach the Level 3.

Sprint Latency
Project Level

Project I Level 1 (1/9 sprints)
Project II Level 2 (3/9 sprints)
Project III Level 2 (5/12 sprints)
Project IV Level 2 (5/10 sprint)

TABLE IV
TEAM RESULTS FOR THE SPRINT LATENCY: LEVELS INDICATING THE

SPRINTS WITHOUT TIME GAP AMONG THEM.

Figure 3 shows a comparison among projects, considering

achievements evaluated. It is possible to notice that projects

are in a similar stage. Project I is the best in two achievements,

buts it is not so far from the others projects. Project IV

has second bigger average number of Clockwork Developer,

however it has the worse grades for two team achievements.

This fact reveals an abnormal behavior.

Interestingly, due to this apparent inconsistency, the com-

pany decided to do further investigations to understand the

reasons behind this behavior. This investigation lead to the

conclusion that the use of achievements not only may help

engage teams into doing their work, but can also help monitor,

control and improve the development using Scrum process as a

whole. Given the results obtained, all team members that we

talked to became interested in further developments of this

work. Gamification stimulates the team, and the achievements

together with the immediate feedback help all the involved

people to be aware with their work.

Of course, it is possible that the inclusion of achievements

Fig. 3. Comparison of project teams using the proposed achievements.

could stimulate some undesirable behavior, like the high

competitiveness level of the individuals, affecting the team

performance. However, we will apply a long term evaluation in

order to analyze this effect together with another possibilities.

VI. RUPGY: A SUPPORTING TOOL FOR SCRUM

GAMMIFICATION

The mapping of the proposed achievements in Scrum

framework makes clear for us that the idea related to Scrum

gamification could be useful in order to turn the software

development in a amusing task. Based on this belief we

propose here a set of RPG-like features to be integrated into

a scrum-task-management tool.

The goal is to include the game design features as an add-

on, implementing as many feedback mechanisms as possible,

making the developers always aware of these mechanics.

Firstly, we will list the standard features required from a task-

management software to make it eligible to incorporate the

RUPGY elements. In Subsection VI-B, we suggest how the

RPG concepts and features may be implemented and added to

such software.

A. Standard ScrumFeatures Required

In this section we present only requirements related to

a project management tool commonly used in Scrum-based

software houses. The main goal of this tool is normally to

register planning and to acomplish the sprints. Requirements

are presented as a simple list of expressions, illustrating the

concepts required, followed by an explanation that details the

requirement and its use.

• Project, backlog, release, sprints, and task containers.

A software house must keep in touch all the information

about the projects in execution. A project has several re-

quirements, represented by the backlog, to be delivered in

several iterations, each one composed of several tasks. All

these relationships among the project, backlog, release,

sprint and tasks must be recorded, since the achievements

550

proposed in this work requires the analysis of them in

their own scope and branches to give immediate feedback.

• Fine-grained logs for tasks (developer, time, require-
ment, discipline). It is fundamental to record the de-

veloper assigned to each task, the time spent for this

execution, associated requirements, and the nature of the

task (discipline). It must be easy to start, stop, pause

and finish a task. Additionally, it is also important to

create functions to help the developers remember doing

this actions.

• Scrum ceremonies. The Scrum framework is intensively

based on ceremonies. These events have to be registered,

in order to allow the achievements evaluation. It is

necessary to register when, what, why, who, how and

how many time.

B. RUPGY Game-based Proposed Features

RUPGY is a proposal to incorporate RPG-like mechanics to

the everyday use of Scrum. The goal is to make the developer

more aware of his programming character, creating emotional

bonds with this virtual persona, and thus better engaging in

his daily duties. In this section we list the desired features for

RUPGY.

• Character Attributes Engine. In RUPGY, the skills

used to solve challenges are the software engineering

disciplines (requirements, analysis, design, implementa-

tion, testing, project management) and since each task is

related to one of these, the goal is to have the system

compute the amount of experience the developer gains

after finishing his assigned task.

• Class Engine. Given that attributes are not chosen, the

character class must also be automatically inferred based

on the most used disciplines for each developer (program-

mer, tester, Scrum master, Product Owner). Similar to

repetition achievements, each class must have a threshold

scale of minimum experience point to reach different

levels.

• Achievements Engine. In our preliminary evaluation, we

mined the achievements directly onto the task database.

For the RUPGY tool, this feature must be automated, in

order to give immediate feedback whenever an achieve-

ment is earned.

• Immediate Feedback. Developers update the state of

their tasks all the time. Sometimes, an update generate

a status change in the related task, or even project. The

system should give immediate feedback, both visual and

audible, of this changes in the character attributes, level

and achievements.

• Character Profile Screen. The aforementioned character

data must be available to the developer in a character

profile screen, with historical information in graphical

form.

VII. CONCLUSION

The Software Engineering has over 40 years of existence.

There are advances in many directions but we are still

researching and creating tools to solve the same problems

registered 40 years ago, like projects running over-budget,

projects running over-time and software often did not meet

requirements.

As mentioned by Brooks [1], there is no silver bullet. But

it is necessary to change this activity in something that can

engage developers more effectively. In this paper we showed

that game mechanics can be applied to Scrum framework. This

approach has the main goal of turning software development

with Scrum in a more amusing task, like a game. In order

to allow this we presented several achievements that can

be incorporated to a Scrum, together with the mapping of

challenge-graph from games to Scrum framework.

We also presented a preliminary evaluation from a real

software house. Some of the proposed achievements were

evaluated against historical data. The results from this analysis

showed that achievements can be an interesting metric to

measure performance in this context, also helping to stimulate

competition among developers. The feedback obtained from

the team was encouraging (from informal inteviews), as ev-

erybody was impressed with the results and enthusiastic about

the idea of incorporate even more mechanics into their activity.

The next step in this research is the development of a

Scrum-based project management tool incorporating all the

suggestions made here. After this will be possible to run a

long term experiment with even more development teams.

REFERENCES

[1] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987. [Online].
Available: http://dx.doi.org/10.1109/MC.1987.1663532

[2] M. Fowler and J. Highsmith, “The Agile Manifesto,” In Software De-
velopment, Issue on Agile Methodologies, http://www.sdmagazine.com,
last accessed on March 8th, 2006, Aug. 2001.

[3] “State of Agile Development,”
http://www.versionone.com/state of agile development survey/10/default.asp
[last accessed: 2011-04-04], VersionOne, 2010. [Online]. Available:
http://www.versionone.com/state of agile development survey/10/default.asp

[4] K. Schwaber, Agile Project Management With Scrum. Redmond, WA,
USA: Microsoft Press, 2004.

[5] D. Takahashi, “Gamification gets its own conference,”
http://venturebeat.com/2010/09/30/gamification-gets-its-own-
conference/, September 2010.

[6] A. Baker, E. O. Navarro, and A. V. D. Hoek, “Problems and program-
mers: An educational software engineering card game,” in In ICSE
03: Proceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, 2003, pp. 614–619.

[7] A. Baker, E. O. Navarro, and A. van der Hoek, “An experimental
card game for teaching software engineering processes,” Journal
of Systems and Software, vol. 75, no. 1-2, pp. 3 – 16, 2005,
software Engineering Education and Training. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121204000378

[8] E. Passos, D. Medeiros, P. S. Neto, and E. Clua, “Turning real-world
software development into a game,” in In SBGAMEs 2011: Proceedings
of the X Simpósio Brasileiro de Games e Entretenimento DIgital,
Salvador, BA, Brazil, November 2011.

[9] D. Cook, “What are game mechanics?”
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html,
October 2006.

[10] R. Koster and W. Wright, A Theory of Fun for Game Design. Paraglyph
Press, 2004.

[11] D. Cook, “What activities can be turned into games?”
http://www.lostgarden.com/2008/06/what-actitivies-that-can-be-turned-
into.html , June 2008.

551

Follow-the-Sun Software Development:
A Controlled Experiment to Evaluate the Benefits of

Adaptive and Prescriptive Approaches
Josiane Kroll, Alan R. Santos, Rafael Prikladnicki, Estevão R. Hess, Rafael A. Glanzner, Afonso Sales,

Jorge L. N. Audy, Paulo H. L. Fernandes
Computer Science School

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Porto Alegre, Brazil

{josiane.kroll, alan.ricardo, estevao.hess, rafael.audy}@acad. pucrs.br, {rafaelp, afonso.sales, paulo.fernandes, audy}@pucrs.br

Abstract— Follow-the-Sun (FTS) has been used in the context of
global software development projects in order to take the
advantages of temporal differences between several productions
sites located in different time zones. However, the lack of FTS
experience in the software industry is observed as the main
barrier for its adoption. Recent studies suggest that FTS is more
suitable for adaptive approaches (e.g. agile methodologies). For
this reason, we designed and executed a controlled experiment to
investigate the benefits of adaptive and prescriptive approaches
for FTS. We used fictional maps with teams distributed in two
sites. Each site had two teams representing software designers
and developers. Our results indicate that the use of adaptive
approaches increases the speed, but not the accuracy and the
quality of the work.

Keywords- Global software development; follow-the-sun;
adaptive approach; prescriptive approach; software engineering.

I. INTRODUCTION
Many software development companies are looking for

costs reduction and the increase of productivity [1]. Follow-
the-Sun (FTS) is a software development strategy where
several productions sites are located in different time zones in a
way that work can be done in a twenty-four hour basis per day,
seven days per week. The main goal of FTS is to reduce the
time-to-market, or increase the development speed [2].

FTS is not easy and many challenges have been reported in
the literature, such as communication difficulties, process
coordination, team management and cultural diversity [3].
Carmel et al. say that few FTS success cases are reported in the
literature [4], and several authors discuss that the use of
adaptive approaches for software development is a promising
way to make FTS work [2] [5] [6].

Adaptive approaches or adaptive methods (e.g. agile
methods and iterative development) are aimed to rapidly adapt
to the changing reality. An adaptive approach emphasizes
communication and collaboration in an iterative process [7,
16]. On the other hand, prescriptive approaches or methods
(e.g. waterfall lifecycle) aimed at future plans in detail. The

team works in linear-sequential planned activities, and usually
struggle to deal with change [2]. For this reason, we conducted
a research in order to investigate adaptive and prescriptive
approaches for FTS. We performed a controlled experiment
with students from a postgraduate Computer Science program
PUCRS, a p rivate University in the south of Brazil. We u sed
fictional maps and simulated distributed teams in two sites.
Each site had two teams representing software designers and
developers. We collected and compared data about speed,
accuracy and quality of the work developed by the teams in
each approach.

This paper is structured as follows: in Section 2 we present
some background about Follow-the-Sun (FTS). In Section 3,
our research questions and hypothesis are presented. In Section
4, we present the experimental design and explain the
experiment execution. In Section 5, we present the results
obtained in this experiment. In Section 6, we discuss the results
and Section 7 concludes the paper.

II. FOLLOW-THE-SUN SOFTWARE DEVELOPMENT
One of the main purposes of FTS is the reduction of

software development cycle duration [2]. FTS software
development teams are globally distributed across different
time zones and production locations [8]. When a team finishes
its own regular hours of work, another team located in another
site and another time zone will receive the tasks to start its
workday. Daily production handoffs are performed by teams
following to the next production site that will be in a different
time zone and will continue the work of the previous teams [2]
[9].

In FTS, tasks are handed off from one team to another in
the end of a working day in a specific site [4] [8]. A handoff is
then the transition between teams and can be defined as a
check-in of a work unit to the next production site [4]. In the
context of FTS, handoffs are conducted on a daily basis, at the
end of each site shift. However, daily handoffs coordination is
very difficult and requires different practices to reduce
coordination costs [2].

552

FTS is an important research area, but so far, it is relatively
understudied within Software Engineering. The success cases
of FTS usage in industry are still small. Carmel, Espinosa and
Dubinsky (2009) claim that there are few documented success
cases in industry and many difficulties in applying FTS
practices [4]. There are several challenges related to
communications, process coordination, team’s management,
cultural differences and geographic differences [10].

III. THE EXPERIMENT
Our goal in this study is to investigate the use of the

adaptive and prescriptive approaches in the context of FTS. We
have defined the following research questions (RQ):

RQ1: Are teams using adaptive approaches faster than
teams using prescriptive approaches for software development
in the context of FTS?

RQ2: Do teams using adaptive approaches deliver more
accurate work than teams using prescriptive approaches for
software development in the context of FTS?

RQ3: Do teams using adaptive approaches deliver more
quality than teams using prescriptive approaches for software
development in the context of FTS?

A. The Study Design
Our experimental design was inspired in the laboratory

study conducted by Espinosa, Nan and Carmel [12]. The
authors executed an experiment to check the impact of time
zone overlap on speed and accuracy. The teams used simple
fictional map that consist of a background image, with various
objects and colored arrows styles. The maps production was
done in using PowerPoint© slides. Participants worked in pairs
and the objective was to complete the maps according to the
defined requirements. We borrowed from the authors the tasks
performed by the teams during the development of our
experiment. The maps design task was also used in another
study [8]. In this study, the goal was to check the impact of
increasing the number of sites in the FTS cycle on the quality
of the work that was delivered at the end.

To conduct the experiment with teams working on FTS, we
chose the context of a university with students from a computer
science postgraduate program at PUCRS. In this environment,
the experiment was simulated with the definition of distributed
teams. The experiment dimensions are defined as:

 Process: in vitro, with the participants located in a
controlled environment. This experiment was executed
by the development of experiment activities as part of a
post graduation class in two isolated labs.

 Participants: the experiment was executed with
postgraduate students.

 Scenario: the studied problem was an academic task,
and it was represented by the execution of t asks in a
fictional task map [12].

 Generality: the experiment was specific and it is valid
only in the scope of this study.

Selection of participants: We invited by convenience 12
students from Computer Science postgraduate program at
PUCRS.

Type of experiment and experimental units: The experiment
was performed using one factor and two treatments. We used
the following notation:

 vAdp: Maps developed using the adaptive approach.

 vPre: Maps developed using the prescriptive approach.

In this experiment, the factor was represented by
developing maps and the treatments were prescriptive and
adaptive approaches (Table 1).

TABLE I. EXPERIMENTAL UNITS DISTRIBUTION

#Participant vAdp vPre

S1 X

S2 X

S3 X

S4 X

S5 X

S6 X

S7 X

S8 X

S9 X

S10 X

S11 X

S12 X

The participants’ distribution to setup the teams was
randomly defined between the factors adaptive and
prescriptive. It was defined two designers and two makers for
adaptive group and four designers and four makers for
prescriptive group because the prescriptive group required two
designers or two makers per shift.

The experiment was planned to have five shifts of 1 5
minutes each (representing one workday). For each approach
(adaptive and prescriptive) the participants were organized in
two sites where each site had two teams. We used FTS with no
time-zone overlap between the distributed teams.

Figure 1. Distribution of each team

The members of each team could play the following roles:
Map Designer (D) or/and Map Maker (M). As proposed by

553

Espinosa, Nan, and Carmel [12] these roles are similar to that
of a software designer who needs to communicate the design
specifications to a programmer. Each map designer (D) had a
set of 13 maps while each map maker had a set of 13 blank
PowerPoint© slides.

B. Instrumentation, Training & Execution

The experiment was executed in two isolated labs to avoid
outside interference. Table II presents the instruments used to
perform this experiment.

TABLE II. DETAILED INSTRUMENTATION

Type Description When How When

Experimental
Unit

Prescriptive Experiment Maps
Development

Execution

Adaptive Experiment Maps
Development

Execution

Document Experiment
guide

Experiment Experiment
preparation

Preparation

Handoff
form

Experiment Collecting
data from
maps
development

Execution

Guide Training Pre-
experiment

To present the
experiment
context and
motivation

Preparation

Metric Report Post-
experiment

Data was
gathered using
a manual
report.

Conclusion

To prepare the experiment execution, the following aspects
were observed [11]:

 Experiment consensus: Participants were provided
the required knowledge about the experiment, and
clarification about the experiment goals;

 Sensitive results: Participant’s names are anonymous
throughout the experiment description.

All variables and resources were carefully defined before
the experiment execution. We applied one treatment for each
group (Prescriptive and Adaptive), contextualizing the
objectives, motivation and technical procedure for the
experiment.

Fig. 2 illustrates how the participants were distributed in the
isolated labs.. Map designers (D) were in Lab1 and map makers
(M) were in Lab2. A map designer’s task was to provide
instructions to the map makers about how to replicate the maps.
Each map was composed by one background picture, five
arrows and two extra icons. The joint of the arrows composing
the path and icons in the background picture was executed by
the map makers.

Teams that were working within the same shift (adaptive
approach) had the possibility to use a communication tool. For
this experiment we used GTalk [18]. Participants could “chat”
with their teammates whenever they wanted. For the
prescriptive approach the participants could only add
instructions and comments in text log files from one shift to the
next. Those text files were named as handoff files. GTalk logs

helped us to rule out potential confounding effects of media
richness [12]. The experiment execution had five shifts of 15
minutes each. Each team had 15 minutes to perform their tasks.

Adaptive Prescriptive

Figure 2. Labs division.

Fig. 3 p resents the map designer perspective. In the
designer perspective, the idea of the task execution is to
describe to makers a path composed by five joint arrows and
the addition of two extra icons in a background picture. The
designer must define the color (blue, green or red) of the
arrows, the start and the end position of each arrow, as well as
if these arrows are solid or dashed. Regarding the extra icons,
the designer must precisely describe where these icons must be
placed in the background picture. In the maker perspective, the
successof a task depends on the accurate description done by
the designer, and the correct interpretation done by the maker.
The maker receives a set of steps that describe where the extra
icons must be placed and the type and color of arrows, as well
as where each arrow must be set in the figure in order to
compose the path of a rrows. At the end, it was possible to
create an experiment structure that could simulate adaptive and
prescriptive software development using activities with
fictional maps. During the experiment execution, researchers
were available for clarification of questions from participants..

Figure 3. Map Designer perspective [11].

554

C. Dependent Variables and Measures
RQ1 checks the speed obtained by one team using an

adaptive approach and another team using a prescriptive
approach. The metric associated to RQ1 is calculated for each
team dividing the amount of maps delivered (md) by the total
number of maps (tm).

Speed = md / tm

RQ2 checks the accuracy of the maps delivered in each
approach. The metric is calculated by dividing the amount of
points from correct elements in each map (ce) by the number of
total points (tP).

Accuracy = ce / tp

RQ3 verifies the quality the project delivered in each
approach. The metric for quality is calculated by the sum of
total accuracy points (ap) divided by the total number of maps
delivered (md) by each team.

Quality = ap / md

To conduct the experiment we have formulated some
hypotheses. We co nsider null and alternative hypothesis as
following:

1. The speed obtained in the adaptive and prescriptive
approaches are the same.

Null Hypothesis, H0: Speed obtained by the team using
the adaptive approach is the same as the speed obtained by a
team using the prescriptive approach.

 Metrics: We calculated the speed as following:

SP – Represents the speed obtained by the team using a
prescriptive approach.

SA – Represents the speed obtained by the team using an
adaptive approach.

H0: SP = SA

Alternative hypothesis, H1: Teams using the adaptive
approach are faster than teams using the prescriptive approach.

H1: SP < SA

Alternative hypothesis, H2: Teams using the prescriptive
approach are faster than teams using the adaptive approach.

H2: SP > SA

We have also collected information and tested similar
hypotheses for accuracy and quality of the work delivered by
the teams in each one of the approaches.

IV. RESULTS
After five shifts, adaptive teams produced six out of thirteen

maps and prescriptive teams produced four out of t hirteen
maps. Adaptive teams obtained 16% more speed than
prescriptive teams. This result was obtained using the metric
associated to RQ1:

Adaptive: 6/13 = 0.46

Prescriptive: 4/13 = 0.30

The following conditions were applied in order to check the
accuracy obtained: Each map was composed by one
background image plus two icons plus five arrows. It was the
same composition used by Solingen and Valkema [8]. We
measured the accuracy using the metric associated to RQ2. In
addition, we also considered if map elements (arrows and
icons) were in the right position. The maximum points per map
are 12. Each accuracy criteria is described in details next:

 Background image = 1 point;
 Arrow color = 1 point;
 Arrow style = 1 point;
 First icon= 1 point;
 Second icon= 1 point;
 Position of each arrow = 1 point if the position

match and 0.5 point when within the limit of 1
inch;

 Position of each icon= 1 point if the position match
and 0.5 point when within the limit of 1 inch.

The results are described in Table 3. Seven maps were not
produced (N/P) by adaptive teams and nine maps were not
produced by prescriptive teams.

TABLE III. MAP ACCURACY IN DETAIL

 Adaptive Prescriptive
Map 1 0.75 0.58
Map 2 0.63 0.92
Map 3 0.96 0.96
Map 4 0.71 N/E
Map 5 0.54 N/E
Map 6 0.58 N/E
Map 7 N/E N/E
Map 8 N/E 0.92
Map 9 N/E N/E
Map 10 N/E N/E
Map 11 N/E N/E
Map 12 N/E N/E
Map 13 N/E N/E
Total 4.17 3.38

N/E = Task not executed.
In Fig. 4, we present a comparison of the results presented

in Table III regarding map accuracy.

Figure 4. Map accuracy analysis.

The results indicate that teams using an adaptive approach
produced more maps than teams using a prescriptive approach.

0.00 0.20 0.40 0.60 0.80 1.00

Map 1
Map 2
Map 3
Map 4
Map 5
Map 6
Map 7
Map 8
Map 9

Map 10
Map 11
Map 12
Map 13

Adaptive Prescriptive

555

However, when we observed the total points of correct
elements for each map, prescriptive teams have more accuracy.
We also computed the quality metric, associated to RQ3:

Adaptive: 4.17/6 = 70%

Prescriptive: 3.38/4 = 85%

Our findings indicate that teams using adaptive approach
had 15% less quality; in contrast, these teams had 16% more
speed. This means that there is a trend showing that teams
using adaptive approaches might have less quality but more
speed. However, we did not have enough data points to support
statistical analysis.

V. DISCUSSION
FTS is a r esearch area with many important aspects to

investigate [3] [4] [13]. In theory, the use of FTS can
significantly reduce the duration of the software development
lifecycle [14]. In this study, we investigated the difference and
benefits of u sing prescriptive and adaptive approaches in the
context of FTS.

The speed obtained by teams using an adaptive approach is
higher than the speed obtained by teams using a p rescriptive
approach. The percentage obtained by adaptive teams was 30%
higher than the speed obtained by prescriptive teams.
Phalnikar, Deshpande and Joshi [15] argue that agile teams are
able to produce software faster, and Smite, Moe and Agerfalk
[16] state that adaptive approaches such as agile methodologies
aim to increase productivity of software teams [16]. Thus,
adaptive approaches could benefit FTS by reducing the project
cycle time. Moreover, FTS aims to reduce time-to-market [4],
which it seems that can be obtained using adaptive approaches.

The accuracy obtained by teams in the delivered tasks was
better in two tasks performed by prescriptive teams when we
compare the first three tasks. On the other hand, when
comparing the average accuracy of delivered tasks, adaptive
teams are better than prescriptive teams. Teams using adaptive
approaches are able to implement more requirements than
teams using prescriptive approaches. This result shows that
adaptive approaches may accelerate communication between
teams and thus increasing the productivity, but we observed a
lack of formal protocols to check the accuracy of the work.

The number of sites interacting in a development cycle may
cause a small impact on the average accuracy [8]. We observed
that the perception in relation to a task delivered is also a factor
that affects the accuracy of the work. Our findings showed that
students had less perception on task accuracy using adaptive
approaches.

Quality is also an important factor for project success [5].
We observed this factor verifying the total accuracy points and
the total number of maps delivered by each team. Results
obtained showed that adaptive teams had 15% less quality than
prescriptive teams. Carmel, Espinosa and Dubinsky [4]
obtained similar result in their quasi-experiment. The
decreasing of quality in maps delivered by teams using
adaptive approaches could be caused by the lack of
participant’s perception in relation to the quality criteria
required for each task.

Based on the results found, our experiment suggests that
adaptive approaches could perform better than prescriptive
approaches in the context of FTS. This is also claimed by
Carmel, Espinosa, and Dubinsky [4] and Gupta [17], and
should be deeply investigated in the future, with experiments
also executed in real software development settings.

VI. THREATS TO VALIDITY
One of the key issues in experimentation is evaluating the

validity of the results [11]. In this section we discuss the
potential threats that are relevant for our study and how they
are addressed.

A. Construct Validity
Construct validity concerns the degree of accuracy to which

the variables defined in the study measure the constructs of
interests. In this study, we have followed the constructs defined
in the two original FTS experiments [8] [12].

B. Internal Validity
Threats to internal validity influence the conclusions about

a possible causal relationship between the treatment and the
outcome of a study. We identified a couple of s uch kind of
threats.

 Skill to perform the task: selected students had
different skills and could potentially influence tasks
performance. We randomly select students for each
approach to minimize this threat.

 Experiment unit: we used an experimental condition
different from a real scenario of s oftware
development. Students’ iteration included additional
tasks, which are not usually done in a typical “real”
iteration.

 Measures: our measures can be imperfect, since we
simulate a full day work with only few minutes. We
acknowledge that, but observe that any experiment
would need to drastically reduce effort to represent a
full day in an experimental setting.

 The type of task: participants manipulate maps and do
not carry out real programming tasks. In this case, we
refer to the original experiments where the authors
indicate that they “decided in favor of a fi tional map
task instead to eliminate possible confounds due to
differences in the software programming abilities of
the participants” [8] [12].

C. External Validity
External validity describes the study representativeness and

the ability to generalize the results outside the scope of the
study. For any academic laboratory experiment the ability to
generalize results to industry practice is restricted by the usage
of students as study participants. Although the students may not
be representative of the entire population of s oftware
professionals, it has been shown that the differences between
students and real developers may not be as large as assumed by
previous research [19].

556

D. Conclusion Validity
Conclusion validity is concerned with the relationship

between the treatment and the outcome. We acknowledge that
the small number of data points is not ideal from the statistical
point of vi ew. Small sample sizes, especially when the key
experimental unit is at th e team level, are a k nown problem
difficult to overcome.

VII. CONCLUSION AND FUTURE WORK
In this paper, we executed an experiment in order to

investigate both the adaptive and prescriptive approaches in the
context of FTS software development. We found that the usage
of adaptive approaches increases the speed, but they do not
always enhance accuracy and quality of the work done by
distributed sites. We believe that this experiment has important
findings that contribute to the literature on global software
engineering and follow the sun software development.

For future work, we suggest new studies in order to
replicate this experiment with more participants and different
shifts scenarios (e.g. some time-zone overlap). We also suggest
the replication of this experiment with industry participants.

ACKNOWLEDGMENT
The authors are funded by the PDTI program, funded by

Dell Computers of Brazil Ltd. (Law 8.248/91). The third author
is also funded by Ci&T and CNPq (projects 483125/2010-5
and 550130/2011-0. The authors thank all the students who
participated in the experiment and Alberto Espinosa, Ning Nan
and Erran Carmel for providing us the material used in their
experiment.

REFERENCES
[1] P. Sooraj, P. K. J. Mohapatra, "Modeling the 24-h software

development process". Strategic Outsourcing: An International
Journal, 122-141, 2008.

[2] E. Carmel, J. Espinosa, Y. Dubinsky, "Follow the Sun Workflow
in Global Software Development,” Journal of Management
Information Systems Vol. 27 No. 1, 2010, 17 – 38.

[3] J. Kroll, E. Hess, J. L. N. Audy, and R. Prikladnicki,
“Researching into Follow-the-Sun Software Development:
Challenges and Opportunities,” In: 6th International conference
on Global Software Engineering (ICGSE), 2011, Helsinki,
Finland.

[4] E. Carmel, A. Espinosa, Y. Dubinsky, “Follow The Sun
Software Development: New Perspectives, Conceptual
Foundation, and Exploratory Field Study,” 42nd Hawaii
International Conference on System Sciences, Proceedings,
2009.

[5] R. Jabangwe, I. Nurdiani, “Global Software Development
Challenges and Mitigation Strategies: A Systematic Review and
Survey Results”. Master´s program in Software Engineering,
Blekinge Institute of Technology, OM/School of Computing,
2010.

[6] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, B. Fitzgerald,
“Global Software Development Challenges: A Case Study on
Temporal, Geographical and Socio- Cultural Distance”.
Proceedings of the IEEE international conference on Global
Software Engineering (ICGSE '06). IEEE Computer Society,
Washington, DC, USA, 2006, 3-11.

[7] M. Yap, "Follow the sun: distributed extreme programming
development," Agile Conference Proceedings, 2005, 218- 224.

[8] V. R. Solingen, M. Valkema, “The Impact of Number of Sites in
a Follow the Sun Setting on the Actual and Perceived Working

Speed and Accuracy: A Controlled Experiment”. Global
Software Engineering (ICGSE), 5th IEEE International
Conference,165- 174, 2010.

[9] C. Visser, R. V. Solingen, “Selecting Locations for Follow-the-
Sun Software Development: Towards A Routing Model”. Fourth
IEEE International Conference on Global Software Engineering,
2009.

[10] E. Hess, and J. L. N. Audy, “FTSProc: a Process to Alleviate the
Challenges of Projects that Use the Follow-the-Sun Strategy,”
In: 7th International conference on Global Software Engineering
(ICGSE), 2012, Porto Alegre, Brazil, in press.

[11] C. Wohlin, “Experimentation in Software Engineering: An
Introduction”, International Series in Software Engineering,
Kluwer Print, 2000.

[12] J. A. Espinosa, N. Nan, E. Carmel, "Do Gradations of Time
Zone Separation Make a Difference in Performance? A First
Laboratory Study," Global Software Engineering, 2007. ICGSE
2007. Second IEEE International Conference on , pp.12-22, 27-
30 Aug. 2007.

[13] J. Kroll and J. L. N. Audy "Mapping Global Software
Development Practices to Follow-the-Sun Process," In: 7th
International conference on Global Software Engineering
(ICGSE), 2012, Porto Alegre, Brazil., in press

[14] R. M. Czekster, P. Fernandes, R. Prikladnicki, A. Sales, A. R.
Santos, and T. Webber "Follow-The-Sun Methodology in a
Stochastic Modeling Perspective". In 6th IEEE International
Conference on Global Software Engineering (ICGSE): Methods
and Tools for Project/
Architecture/Risk Management in Globally Distributed Software
Development Projects (PARIS), pages 54–59, Helsinki, Finland,
August 2011.

[15] R. Phalnikar, V. S. Deshpande, S. D. Joshi, "Applying Agile
Principles for Distributed Software Development," Advanced
Computer Control, 2009. ICACC '09. International Conference
on, pp.535-539, 22-24 Jan. 2009.

[16] D. Šmite, N. B. .Moe, P. J.Ågerfalk, Agility Across Time and
Space: Implementing Agile Methods in Global Software
Projects. 1st Edition., 2010, XXXVI, 341 p. 37 illus.

[17] A. Gupta, “Deriving mutual benefits from offshore outsourcing,”
Communications of the ACM, v.52 n.6, 2009.

[18] GTalk. Google talk. Available at http://www.google.com/talk/.
[19] M. Höst, B. Regnell, B. and C. Wohlin. “Using Students as

Subjects - A Comparative Study of Students and Professionals in
Lead-Time Impact Assessment.” Empirical Software
Engineering, Vol. 5, No. 3, 2000, pp. 201-214.

557

Software Process Monitoring using Statistical Process Control
Integrated in Workflow Systems

Marília Aranha Freire, Daniel Alencar da Costa, Eduardo Aranha, Uirá Kulesza
Programa de Pós-Graduação em Sistemas e Computação

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Campus Universitário, Lagoa Nova – 59.078-970 – Natal, RN – Brazil
{marilia.freire, danielcosta}@ppgsc.ufrn.br,{uira, eduardo}@dimap.ufrn.br

Abstract— This paper presents an approach that integrates
statistical process control techniques with workflow systems in
order to achieve software process monitoring. Our approach
allows: (i) software process monitoring through the automated
metrics collection; and (ii) the statistical process control of
software process aided transparently by statistical tools. The
use of workflow systems to this integration adds the benefits of
statistical process control without the additional effort to
integrate and use statistical tools. Our proposal allows project
managers to identify problems early during the process
execution, enabling quickly reactions (process improvements,
training, etc.) to reduce costs and ensure software quality.

Keywords: Software Process Monitoring, Statistical Process
Control, Workflow Systems

I. INTRODUCTION
The increasing complexity of modern software systems

has required more well-defined software development
processes utilization. Software Process Modeling Languages
– SPML support the definition and modeling of software
processes, providing functionalities to create and edit the
activities flow of their various disciplines, addressing the
elements that define a software process, such as tasks, steps,
artifacts, and roles [1] [2] [3]. In addition to the benefits and
advantages brought by process modeling languages, several
recent studies have emphasized the importance of providing
mechanisms and tools to support the execution of software
processes in order to enable the tracking and monitoring of
their activities. Monitoring software projects is important to
assess productivity and detect problems that may be
occurring and thus promote continuous process
improvement.

One approach to support software processes execution is
the use of workflow systems. These kinds of systems have
been consolidated over the past few years on the business
process management domain. The Business Process
Execution Language (BPEL), for example, is one of the main
industrial results developed by this community. Some recent
studies have promoted the integration of approaches and
languages for processes modeling and execution [4] [5] [6].

Process control and monitoring is a concept that has been
explored and adopted in the industrial scenario. Some
decades ago, emerged a statistical technique called Statistical
Process Control (SPC) [7] that aims to monitor and quickly
detect problems in process execution, allowing fast
corrective responses, increasing the quality and productivity
of the production processes. This technique has been widely
used in industry in general, and its concepts are already

being employed in the software industry over the past years
[8] [9] [10]. When using this technique, upper and lower
control bounds are established for relevant attributes of
production processes (time, cost, output quality, etc.), usually
based on historical data. Then, if attribute values collected
during the process execution are out of the range, these
values are called as outliers and they are highlighted for
investigation, since they may be caused by problems
occurred during the process execution.

This paper presents an approach for integrating statistical
process control techniques and workflow systems for
monitoring the execution of software processes. Our
approach supports: (i) the monitoring of process execution
through an automated support for metrics collection and (ii)
the statistical process control deployed in workflow systems.
As benefits, the approach promotes the monitoring of
process stability – ability to be predictable, and process
capability – ability to meet specifications, as well as quick
responses to outliers, supporting the analysis and decision-
making to continuous software process improvement.

The remainder of this paper is organized as follows.
Section 2 presents the foundations of process monitoring and
statistical process control. Section 3 presents an overview of
our approach, which an im plementation is presented in
Section 4. Section 5 details the approach while illustrating its
application and section 6 des cribes the related works.
Finally, Section 7 co ncludes the paper and p rovides some
directions for future work.

II. BACKGROUND

A. Software Process Monitoring
The automated support for the software development

process definition is a c oncrete reality today. Several
approaches have been proposed to facilitate not only the
process definition, but also to provide better ways to specify
software processes customizations [2] [1] [3]. They provide a
set of tools, formalisms and mechanisms used for modeling
processes together or even specialize them. M oreover,
others research approaches have being proposed, such as
DiNitto [11], PROMENADE [12], Chou [13] and
UML4SPM [14].

While methodologies, tools and techniques for software
processes definition are already consolidated, the
environments supporting such software processes execution
are still in the process of ripening. The integration of
techniques for software processes definition, execution and
monitoring has emerged as a way to su pport the automatic
process monitoring, allowing the estimation of activities and

558

evaluation of team productivity, quality control and process
management, which eventually contribute to continuous
software process improvement. Software process monitoring
is a complex activity that requires the definition of metrics to
be collected during execution. The metrics collected at
runtime can help the manager during the analysis of the
project progress, facilitating the decision-making.

Freire et al [15] presents an approach for software
processes execution and monitoring. In that approach,
software processes are specified using the Eclipse Process
Framework (EPF), which can be automatically transformed
into specifications written in the jPDL workflow language
[16]. These specifications in jPDL can then be instantiated
and executed in the jBPM workflow engine [17]. In addition
to supporting the automatic mapping of EPF process
elements in workflow elements, the approach also: (i)
supports the automatic weaving of metrics collection actions
within the process model elements, which are subsequently
refined to actions and events in the workflow; and (ii) refines
the workflow specification to generate customized Java
Server Faces (JSF) web pages, which are u sed during
workflow execution to collect important information about
the current state of the software process execution.

Such an approach has been implemented using existing
model-driven technologies. QVTO and Acceleo languages
were used to support model-to-model and model-to-text
transformations, respectively. The approach proposed in this
paper is developed based on the work presented in [15].

B. Statistical Process Control
The Statistical Process Control (SPC) is a set of strategies

to monitor processes through statistical analysis of the
variability of attributes that can be observed during the
process execution [18] [10] [19] [20]. In terms of SPC, the
sources of variations in the process are encompassed in two
types: (i) common source of variation and (ii) special source
of variation.

The difference between the common and special source
of variation is that the former always arises, as a part of the
process, while the later is a cause that arises due to special
circumstances that are not linked to the process. For
example, a common variation on development productivity
could be caused by differences in programming experience
between developers. On the other hand, a special variation
could be caused by a lack of training in a new technology.
As special sources of variation are usually unknown, their
detection and elimination are important to keep the quality
and productivity of the process.

Control charts, also known as Shewhart charts, are the
most common tools in SPC used to monitor the process and
to detect variations (outliers) that may occur due to a special
source of variation. The use of control charts can classify
variations due to common or to special causes, allowing the
manager to focus on variations from special causes. The
control chart usually has thresholds at which a metric of the

process is considered as an outlier. Those thresholds are
called Upper Control Limit (UCL) and Lower Control Limit
(LCL). One pair of UCL and LCL are defined based on the
statistical analysis of historical data or based on expert
opinion, being used to identify the outliers. However, other
pairs can be defined to highlight, for instance, limits that
should be respected due to client requirements, such as
process productivity (function points implemented per week,
etc.) or quality (number of escaped defects, etc.).

Despite the known benefits of using SPC to monitor
software processes in order to detect problem during process
execution, this task in practice is still very arduous. The
software project manager needs to know not only the
statistical foundation, but also understand and manipulate
statistical tools for the generation of graphics and
information necessary for monitoring the processes. To
reduce these problems in using SPC, the approach suggested
here minimizes the work of the project manager by
transparently integrating the use of statistical tools for
monitoring the process execution in a workflow system.
Furthermore, this automatic control enables continuous
recalibration of the control limits, according to the changes
occurring in the process performance, and ensures the correct
use of statistical techniques.

III. SOFTWARE PROCESSES MONITORING USING SPC
INTEGRATED IN WORKFLOW SYSTEMS

A. Approach Overview
The approach proposed in this paper promotes the

monitoring of software processes integrating workflow
systems and S PC. This integration promotes the collection
and analysis of metrics quickly and automatically, simplifies
the use of the s tatistical process control t echnique and
enables the automatic recalibration of the control limits used.
This section is organized in six steps, as shown in Figure 1

and detailed next..
1) Process Modelling and Definition

The first approach step is directly related to the software
process definition. At this stage one should use a process
modeling language (SPL) to specify the process to be
monitored. As described in Section IV, the current
implementation of our approach provides support to the
process definition using the EPF framework. EPF offers
features and functionalities for the process definition and
modeling through the us e of the UMA process modeling
language (Unified Method Architecture) [21], which is a
variant of the SPEM (Software Process Engineering Meta-
Model) [22]. Existing process frameworks such as OpenUP
[23] (available in the EPF repository) can be reused and
customized to define new software process, reducing the
costs of this activity.

2) Metrics Modelling and Definition

559

After the process modeling and definition, it is necessary
that process engineers specify the metrics to be collected and
monitored during the process execution. Each metric must be
defined and associated with one or more activities of the
monitored process. The definition of this association is
accomplished by specifying the activities that produces each
metric, which are modeled using the following meta-model
[15].

3) Workflow Generation
To enable the process execution in a workflow system,

supporting the automatic collection of defined metrics, a
model-to-model (M2M) transformation is performed to
generate the JPDL workflow elements from EPF process
elements. This transformation is responsible for the
generation of actions that allows the automated collection of
metrics during the execution of the process activities in the
workflow system. In addition, the transformation also
generates web pages that will be used for interaction with the
process users.

4) Workflow.Deployment and Execution
After generating the workflow and other configuration

files, the jBPM workflow engine is used to support the
software process execution. It allows project managers to
visualize the process execution in real-time and be aware of
what is happening during the project development in order to
take decisions. They can know, for instance, what activity
each member of the project is pe rforming, as well as the
status of project activities (performance, quality, etc.) based
on the collected metrics.

5) Automatic Activities Monitoring
Monitoring software processes in an automated manner

allows greater control of the process by the project manager.
This approach, as presented in [15], allows the project
manager to automatically monitor the project's progress by
viewing web pages and exploring information about the
previously defined metrics. These pages provide status
information of the process and also the values of the metrics
collected dynamically. During the workflow execution, at the
end of each task defined in the metrics model, its duration is

calculated by performing an action fired after an end-task
event, and this value is stored and displayed to the project
manager.

The project manager can use the collected data to support
continuous process improvement and contingency actions,
avoiding the occurrence of future problems. Examples of
information that can be provided by such metrics are: the
execution time of each task step; which task step has a longer
duration in the timeline; what is the estimation accuracy;
quality or productivity benchmarks, such as function point or
use case point per man-hour.

6) Statistic Process Control in Workflow Systems
 Our approach promotes the integration of statistical

process control into workflow systems. To enable automatic
monitoring using SPC, at the end of each monitored task in
the workflow, the new value obtained is compared to the last
ones in order to determine if it is w ithin the expected range
defined for the statistical control. In other words, the
observed value for the metric is compared to the LCL and
UCL values. If the observed value is lower than the LCL or
greater than the UCL, a warning message is issued for the
project manager to analyze the cause of this outlier (values
significantly different from the expected).

To calculate and implement the control limits, one
possible way is the following (other procedures can also be
implemented):

(a) If there are not historical data, expertise can be used
to set limits on changes expected for each metric;

(b) If there are historical data, calculates the range as
follows:

(i) If the data distribution follows the normal distribution
(as verified by statistical tool integrated with monitoring),
uses a number of standard deviations, which by default is
3 (includes approximately 99.7% of the population data)
and that can be changed by the user to increase or
decrease the range. Increasing the range is meant to
include more extreme values that could be the problem
and will not generate warning. On the other hand,
increasing the range reduces the amount of false-positive
(indicating problems that are not a problem);
(ii) if the system does not identify the normal
distribution, uses the Chebyshev's theorem to calculate
the number of standard deviations to cover the same
99.7% of the population data;
In both cases (i) and (ii), the user can make adjustments
to the number of standard deviation to be considered.
Based on that, the tool indicates the percentage of data
encompassed (expected/normal values) according to data
distribution observed. The user can also indicate a
percentage of interest and the number of standard
deviations that should be used will be calculated by the
tool.
To facilitate the monitoring and visualization of attributes

being monitored, an X chart is updated on the screen of the
project manager after each new collected value. The outliers
are shown in red color in the graphic, representing a possible
anomaly.

After the collection of new values, they become part of
the historical basis of the process, contributing to the

Figure 1 Approach Overview

560

adjustment of LCL and UCL values, the known dynamically
tuned monitoring sensibility promoted by SPC. Outliers
representing problems occurred in the process are not
considered for this adjustment, since other occurrences
should also be detected.

IV. APPROACH IMPLEMENTATION
The implementation of our approach was accomplished

through the integration of the JBPM workflow engine with
the computational statistics tool R [24]. This integration is
implemented with the API Java/R Interface (JRI) [25] that
enables R function calls within Java code, which is th e
language used by JBPM. Figure 2 illustrates the approach
implementation.

During the M2M and M2T transformations, events an d
actions handlers are generated and they are responsible for
collecting data during workflow execution according to the
metrics defined in the model. These action handlers call the
R statistical functions to build process control charts
(Shewhart, Cusum etc.). However, these functions return
specific R charts implementations that need to be treated in
the Java code in order to be displayed by jBPM. To enable
the Java interpretation of these graphics, an R l ibrary called
Java Graphics Device (JavaGD) [26] is used. This library
provides Java canvas objects equivalent to the graphics
produced by R. Once the canvas objects are obtained, they
can be treated and transferred to a view framework such as
the JavaServer Faces (JSF) [27] used by jBPM.

V. APPROACH IN ACTION
 To illustrate the approach proposed in this paper, we

present the modeling of a software process and its metrics
according to the approach depicted in [15]. The following
subsections will describe the approach in action following its
respective steps presented in Figure 1.

1) Process and Metrics Modelling (Steps 1 and 2)
The process modeled to illustrate the approach is an

OpenUP based process and it is presented in Figure 3. The

metrics were modeled to monitor the highlighted activities
identify and refine requirements and develop solution
increment, aiming collecting the time spent in each activity.

2) Workflow Generation and Execution (Steps 3 and 4)
 Once the two model transformations were held and the

workflow was deployed in the jBPM engine, the workflow
may be calibrated with historical organizational information
regarding the metrics before starts the process execution. For
example, if the metric is about implementation, then the
calibration information would be the time developers take to
implement simple or complex functionalities. Also, the limits
must be specified and may attend the project requirements of
quality or productivity. This is an im portant step as the
approach intends to alert deviations along the process
execution and needs to know if a collected metric value is a

Figure 2 Approach Implementation

Figure 4: Requirement Elicitation Metric Collection

Figure 3: Process Fragment Example

561

deviation indeed.
3) Automatic Monitoring and Statistical Process

Control (Steps 5 and 6)
At this stage, the X chart is generated and the value of the

attribute is graphed on the project manager screen at the end
of each monitored activities instances. In the graphic, the x-
axis represents the activities instances and the y-axis
represents the attribute values collected. Figure 4(a) depicts
the first collection of the time spent per use case metric after
the calibration step. Note that the new collected value fits in
the Upper Control Limit (about 6 days) and the Lower
Control Limit (about 13 days). One can also include new
limits to represent specific user quality requirement. During
the process execution, the limits (UCL and LCL) can be
recalculated including the value of the last execution to
reflect adjustments made possible in the process at runtime.
Figure 4(b) illustrates a case where the collected value
supersedes the upper control limit. This fact could be
explained, for example, as a case when the development
company is eliciting requirements to a new business that was
not explored in previous projects. In that case, the workflow
can trigger a warning notification to interested stakeholders
(e.g. an e-mail to a project manager) in order to help
planning scope, resources or deadline changes and avoid
unwanted situations such as iteration or deployment delays.

Figure 5(a) and Figure 5(b) depict the collect values for
the implementation time per use case metric. In contrast to
Figure 4(b), Figure 5(b) shows one case that the value is
beyond the lower control limit. This could happen, for
example, because of the development of a new functionality

that is very simple compared to the functionalities previously
developed (e.g. the implementation of a simple CRUD or a
simple login functionality), or a case when the developer did
not perform other related fundamental activities like testing
or documentation. In some cases the metric value is just
suffering a natural change and the control limits may be
adjusted accordingly. For example, the chart is often
graphing values outside the LCL when the development time
metric is collected. Those occurrences may not be just
outliers but they may happen because of a training course the
development team received about technologies being used
and so the time spent decreased considerably. In those cases,
the project manager may decide if the new values collected
may represent a new trend in the process and adjust the
limits to handle accordingly. Figure 6 shows an example of
limits adjustment in which the LCL and UCL were updated
to handle the new values of the metric.

The current implementation presented in this work
supports only the X charts, but the integration between other
control charts (e.g. CUSUM) and workflows is also possible.

VI. RELATED WORK
Several studies have been proposing and discussing the

use of SPC in software process management to promote
continuous improvement. Baldassarre et al [18] discuss the
use of SPC from the results found after empirically use this
technique in the industry. The paper discusses four
synthesized major problems encountered in the software
process monitoring showing how SPC can answer each one.
It contributes for guiding practitioners towards a more
systematic adoption of SPC. Komuro [20] describes
experiences of applying SPC techniques to software
development processes showing several real examples. The
paper points out issues that need to be addressed in order to
apply SPC and shows that the key for the successful process
improvement is the alignment with business goal.

However, these related works mainly emphasize how to
adapt SPC to control software projects and also point out its
advantages and disadvantages. None of them focuses on the
automated support for monitoring of software processes. Our
approach provides support to the automatic and statistical
monitoring of software processes in w orkflow systems
through the generation and customization of software
processes in workflow systems. The automatic monitoring
using SPC transparently during the execution of the process
in workflow systems contributes directly to minimizing the

Figure 6: Development production shift

Figure 5: Development Time Metric Collection

562

complexity issues traditionally involved in work with
statistical tools in software projects.

VII. CONCLUSION
In this paper, we have proposed an approach that

integrates statistical process control with workflow systems
to monitor software processes. The use of workflow systems
to our integration promotes the collection and analy sis of
metrics quickly and automatically, adds the benefits of
statistical process control without the additional effort to
integrate and use statistical tools, and enables the automatic
recalibration of the control limits used. Our proposal allows
project managers to identify problems early during the
process execution, enabling quickly reactions (process
improvements, training, etc) to reduce costs and ensure
software quality, in other words, allows the fast monitoring.
In addition, it also reduces the effort to use automatic
monitoring and SPC in an integrated manner.

Currently, our model-driven framework is being increased
and adapted to also support process monitoring of software
engineering experimental studies. The process monitoring in
this domain is fundamental to identify problems that could
invalidate all the collected data and study conclusions. If the
problem is i dentified early, actions can be performed to
correct the problem, avoiding the loss of all data and giving
to the software researcher a chance to better understand the
software engineering technique, method or process under
investigation.

ACKNOWLEDGMENT
This work was partially supported by the National

Institute of Science and Technology for Software
Engineering (INES), funded by CNPq, grants 573964/2008-4
and PDI - grandes desafios, 560256/2010-8, and by
FAPERN.

REFERENCES

[1] IBM. (2010) Rational Method Composer. [Online]. [Online].
http://www-01.ibm.com/software/awdtools/rmc

[2] Eclipse Foundation. (2009) Eclipse. [Online].
http://www.eclipse.org/epf/

[3] IBM. Rational solution for Collaborative Lifecycle Management.
[Online]. https://jazz.net/projects/rational-team-concert/

[4] R. Bendraou, J.M. Jezequel, and F. Fleurey, "Achieving process
modeling and execution through the combination of aspect and
model-driven engineering approaches," in J. of Softw. Maintenance
and Evolution: Research & Practice Preprint., 2010.

[5] R. Bendraou, J.M. Jezequel, and F. Fleurey, "Combining Aspect and
Model-Driven Engineering Approaches for Software Process
Modeling and Execution," in Proc.Intl. Conf. on Softw. Process.
Vancouver, Canada, 2009, pp. LNCS, vol. 5543, pp. 148-160.

[6] Rita Suzana Pitangueira Maciel, Bruno Carreiro da Silva, Ana
Patrícia Fontes Magalhães, and Nelson Souto Rosa, "An Integrated
Approach for Model Driven Process Modeling and Enactment," in
XXIII Simpósio Brasileiro de Engenharia de Software, 2009.

[7] W.A. Shewhart, Statistical Method from the Viewpoint of Quality
Control. Mineola, New York: Dover Publications, 1986.

[8] J C Benneyan, R C Lloyd, and P E Plsek. (2012, Feb.) Statistical
process control as a tool for research and. [Online].
http://qualitysafity.bmj.com

[9] F ZORRIASSATINE and J. D. T. TANNOCK, "A review of neural
networks for statistical," Journal of Intelligent Manufacturing, pp.
209-224, 1998.

[10] Monalessa Perini Barcellos, Ana Regina Rocha, and Ricardo de
Almeida Falbo, "Evaluating the Suitability of a Measurement
Repository for Statistical Process Control," International
Symposium on Empirical Software Engineering and Measurement ,
2010.

[11] E. Di Nitto, A. Fuggetta G. Cugola, "The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS," IEEE Trans. Softw. Eng., vol. 27, pp. 827-850, 2001.

[12] X. Franch and J. Rib, A Structured Approach to Software Process
Modelling.: in Proceedings of the 24th Conference on
EUROMICRO - Volume 2, 1998, pp. 753-762.

[13] S.-C. Chou, A process modeling language consisting of high level
UML diagrams and low level process language.: Journal of Object-
Oriented Programming, vol. 1, no. 4, pp. 137-163, 2002.

[14] R. Bendraou, M-P. Gervais, and X. Blanc, "UML4SPM: An
Executable Software Process Modeling Language Providing High-
Level Abstractions," 10th IEEE EDOC, pp. 297-306, 2006.

[15] Marília Freire, Fellipe Aleixo, Kulezsa Uira, Eduardo Aranha, and
Roberta Coelho, "Automatic Deployment and Monitoring of
Software Processes: A Model-Driven Approach," in SEKE, 2011.

[16] JBOSS. jBPM Process Definition Language (JPDL). [Online].
http://docs.jboss.org/jbpm/v3/userguide/jpdl.html

[17] JBOSS. JBoss jBPM. [Online]. http://www.jboss.org/jbossjbpm/

[18] Maria Baldassarre, Nicola Boffoli, Giovanni Bruno, and Danilo
Caivano, "What Statistical Process Control can really do for
Software Process Monitoring: lessons from the trench," in
Trustworthy Software Development Processes.: Springer Berlin /
Heidelberg, 2009, pp. 11-23.

[19] Nicola Boffolli, G. Bruno, D. Caivano, and G Mastelloni,
"Statistical process control for software: a systematic approach.," in
ESEM, 2008, pp. 327-329.

[20] Mutsumi Komuro, "Experiences of applying SPC techniques to
software development processes,"28th ICSE, New York, NY, USA,
2006, pp. 577-584.

[21] Eclipse. Eclipse EPF Project. [Online].
http://epf.eclipse.org/wikis/openupsp/base_concepts/guidances/conc
epts/introduction_to_uma,_94_eoO8LEdmKSqa_gSYthg.html

[22] OMG. Software Process Engineering Meta-Model. [Online].
http://www.omg.org/technology/documents/formal/spem.htm

[23] IBM Corp. (2009) OpenUP Process Version 1.5.0.4. [Online].
http://epf.eclipse.org/wikis/openup/

[24] Wien, Institute for Statistics and Mathematics of the WU. (2012,
Fevereiro) R project. [Online]. http://www.r-project.org/

[25] RForge.net. (2012, Fevereiro) JRI - Java/R Interface. [Online].
http://www.rforge.net/JRI/

[26] S. Urbanek. (2012, Fevereiro) JavaGD. [Online].
http://rosuda.org/R/JavaGD/

[27] Java Community. (2012, Fevereiro) JavaServer Faces. [Online].
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-
139869.html

[28] Weller, E.F.; Bull HN Inf. Syst., Phoenix, AZ , "Practical
applications of statistical process control [in software development
projects] ," Software, IEEE, vol. 17, pp. 48-55, May/Jun 2000.

[29] Eclipse. Acceleo. [Online]. http://wiki.eclipse.org/Acceleo

[30] Geppert A, Tombros D, "Event-based distributed workflow
execution with EVE," Middleware’98 Workshop, 1998.

563

Model Transformation for Frameworks using
Logical Planning

Guilherme A. Marchetti, Edson S. Gomi
Department of Computer Engineering,

School of Engineering, University of São Paulo, São Paulo, Brazil.
Email : {guilherme.marchetti, gomi}@usp.br

Abstract—Frameworks are an important tool for current
software development methods. However, due to frameworks
complexity, the time required to learn how to use them increases.
In order to help developers use new frameworks, a model to
model transformation method named Model Transformation for
Frameworks is developed. It is based on a logical planner that
automatically identifies components from the target framework
that will be added to the target application model.

I. INTRODUCTION

Reducing cost and time to develop systems is one of
the goals of software engineering. One important concept in
software engineering that helps reduce them is reusability. By
reusing elements, either code or models, it is possible to reduce
the cost and time for implementing solutions.

One of the most used reuse technique is the framework.
Frameworks are a reusable set of components, forming an
incomplete application, which can be specialized to create new
solutions [1], usually targeted to specific domains, such as user
interfaces or smartphone software development. But despite
being a useful approach, the use of frameworks also incurs
costs [2]. One of the costs associated with a framework is the
time required to learn it before being able to use it.

Also trying to reduce development costs, in 2001 the Ob-
ject Management Group (OMG) launched the Model Driven
Architecture (MDA) initiative. The main goal of this initiative
is to obtain an executable code from high level models of the
system, through various transformations.

These transformations are called Model Transformations,
and can be divided into two groups [3]: model-to-model
and model-to-code. The first group, model-to-model trans-
formations, contains techniques that range from refining a
model through the different abstraction layers used during the
specification of a system[4], to the transformation between
different meta-models [5], for example transforming models
described in UML to Entity-Relationship models for databases.
The second group, model-to-code transformations, focuses
mainly on ways to generate executable codes from models. For
example, in this group, techniques to create JAVA code from
Collaboration Diagrams [6] or from State-Machine Diagrams
[7] can be found.

But, even with all the existing model transformation tech-
niques, the use of a framework still requires a programmer to
learn which services it provides, and how to use them.

In this paper we present a model-to-model transforma-
tion method that identifies which components from a de-
sired framework should be used to meet the application re-
quirements. Our transformation method requires a framework
model as one of the inputs. This model should describe the
abstract services it provides. These services are described

through class and sequence diagrams. The second input re-
quired is the application model containing the description of
the desired behavior. These models are used by a logical
planner that identifies which methods and classes from the
framework should be used. Once the required framework
components are identified, all the sequence diagrams necessary
to describe the use of the framework are built and all the
framework classes used are added to the application class
diagram.

To create all the sequence diagrams that describe framework
services, and to choose or to create all the necessary classes,
we use a logical planner, based on the Strips [8] and NONLIN
[9] approaches.

This paper is organized as follows: in section II we describe
how a framework should be modeled in order to make it
suitable to be converted to a logical representation. Section
III shows how to create the logical representation of the
framework. In section IV, we show how the logical planner
creates service sequence diagrams. In section V, we show how
our method compares with similar works and our conclusion
is presented in Section VI.

II. MODELING THE FRAMEWORK

In this section, we show how a framework is modeled
so that it can be transformed into a logical representation.
The framework model must contain at least a Class Diagram
containing interfaces (or services) it provides to the user.
Also, the model may contain one or more Sequence Diagrams
representing the methods that will be implemented by the user
in order to access the framework services.

If an interface has no method description, we assume that
the interface is executed whenever an object of this type is
created. Besides the services, the class diagram must also
show all the methods the user can access. These methods are
identified as constructors or static. Using the method signature,
it is possible to identify the types of the input argument, as well
as the return type, if any, of the method. Regarding the names
given to the relationships of the classes, we assume that if
one of the input objects or the return object of the method has
the same name of one of the classes attribute or relationship,
then it is the same object and, therefore, a relationship exists
between these two objects.

The Sequence Diagrams are used to describe any internal
behavior of the framework, also called mechanisms. These
diagrams should describe any service of the framework that
requires the use of callbacks. The callback function that must
be provided by the user, either by implementing an interface
or overwriting an existing method, is identified by an empty
behavior description in the diagram.

564

Fig. 1: Swing Framework Class Diagram

As an example, we present the use of JAVA SWING. This
framework is used to create user interfaces for JAVA programs.
A simplified model of the framework presented in Figure 1
(Class Diagram), and in Figure 2 (Sequence Diagram).

In the class diagram, it is possible to identify several
services, such as “Create Window” and “Choose File”. Each
service is associated with a class, enabling the identification of
which class provides each interface. The services descriptions
also describe which method from the class should be invoked
in order to use that service. For example, the interface “Create
Window” is provided by the class “JFrame” through the
method “setVisible”. In this diagram, it is also possible to
identify constructors methods, through the label “create” (such
as the method “JFrame”, from the “JFrame” class), and the
static methods (represented as underlined methods), such as
the method “readImage” from the class “ImageIO”.

Fig. 2: Swing Framework Sequence Diagram

The Sequence Diagram of figure 2 contains the methods
associated with updating a screen. To initiate the update
process, the user has to call the method “validate” from the
“JFrame” class, which will, in turn, call another method also
called “validate”, but from the “Container” class, to finally
call the method “paint” from the “Panel” class. Using the
information in this diagram, a user could draw elements
on a Swing window by specializing the “Panel” class and
overwriting its “paint” method. After this, he must make sure
this new object is reachable by a “JFrame” object and call the

“validate” method of the object. The reason for going through
these steps is to obtain a “Graphics”-type object, and to access
its methods, since this class has no constructor visible to the
user; thus the only way to obtain an object of this type is
within the “paint” method from the “Panel” class, and letting
the framework construct the object.

III. LOGICAL REPRESENTATION OF THE FRAMEWORK

In order to use a logical planner, the framework model
must be represented using logical propositions. A logical
proposition describes a fact about the state of the world being
worked on. It is composed of a predicate and its variables,
in which the predicate represents a “fact” and the variable
indicates in which element(s) the “fact” is true. In the case
presented herein, the world represents which elements of the
framework exist and are being used at a given moment. To
describe a given state, the following 5 predicates are used:

• object(Type) : represents the existence of an object of
Type;

• interface(Interface) : represents that the Interface has been
executed;

• sequence(Name) : represents that the sequence with Name
was initiated;

• link(Class1, Class2) : represents the existence of a link
between an object from Class1 and an object from Class2;

• specialization(Class) : represents the existence of a Class
specialization

These predicates represent the state of the world. For the
world to change between states, it must be possible to execute
actions on it. Since it is through the use of methods that a soft-
ware state is changed, each action, also called operator, will
represent a framework method. Each one of these operators
has the form:

Name :
PreCondition :
Effect:

where Name is the name of the operator, PreCondition is
the set of propositions that must be true in the current state so
that the operator is usable, and Effect is the set of propositions
that will become true after the execution of the operator.

It is now possible to translate the information contained in
the framework model into a set of operators. The framework

565

model has two types of diagrams: the Class Diagram and
Sequence Diagrams. Each of these is translated in a different
way, since they contain different types of information, even
though some information is shared between them. We will
begin with the class diagram translation.

In the class diagram, it is possible to identify all the
methods the framework makes available to the user. For each
of these methods, a different operator will be made. The
name of the operator will contain the name of the method
being used and, in order to allow methods with the same
name in different classes, the operator name will also contain
the class name. The resulting operator name will then be
“ClassName.MethodName”.

Following the name, the set of preconditions is built. This
set contains all the elements required to use the method. This
set will contain one proposition “object(Object Type)” if the
method is from an object, that is, the method requires an object
to be used, as opposed to constructors and static methods
that can be used without creating objects first. Next, one
proposition “object(Argument Type)” is added to the set for
each input argument the method has, in which the Argument
Type will be replaced by the corresponding object type. To
conclude this set, a proposition “interface(Used Interface)” is
added if the method requires any interface to be called before
it can be used, and these interfaces are identified by the “use”
dependency relationship.

It is worth noting that, if a method does not have one of
these elements, the respective rule can just be ignored. It may
happen that, in some cases, such as some constructors, the
Precondition set will be empty.

To complete the operator, the Effects set must be built. This
set will contain all the propositions that will become true once
the operator is used. This set will contain one proposition
“object(Return Type)” should the method return any object.
A proposition “interface(Name)” is added to the set if the
method is responsible for implementing a service. The set will
also contain a proposition “link(Type1, Type2)” if the method
creates a link between objects of Type1 (the object that has
the method being used) and Type2 (the second object). This
link can be “created” either with the input argument, as in
the “set” methods of objects, or if it returns an object already
associated with the target object, “get” methods for example.
Lastly, a proposition “sequence(Name)” is added if the method
starts any of the Sequence Diagrams.

To exemplify this process, let us use the class “JFrame”
from the SWING framework, shown in figure 3.

Fig. 3: JFrame Class from the SWING framework

Starting by the “JFrame” constructor method, we get that
the operator name should be “JFrame.JFrame”, since it is
composed of both class and method names. Since this is a
constructor, that has no input argument and does not require
any other interface, its precondition set will be empty. The

effect set will be composed only of its return type, a “JFrame”
object. This will result in the following operator:

Name : JFrame.JFrame
Precondition (PC) : {}
Effect (E) : object(JFrame)

Next, using the “setVisible” method, we get an operator
named “JFrame.setVisible”. Its precondition set will include
one proposition “object(JFrame)”, since this is an object
method (neither static or constructor). Although this method
does not return an object, it is responsible for the inter-
face “Create Window”, and a proposition “interface(Create
Window)” is added to the effect set. This will result in the
following operator:

Name : JFrame.setVisible
PC : object(JFrame)
E: interface(Create Window)

As a last example, let us use the “validate” method. As the
method used before, this method has no input argument and is
an object method, so the precondition set will be composed of
the proposition “object(JFrame)”. This method has no return
type and it is not responsible for any interface, but it starts
the “Update Screen” mechanism, shown in figure 2. Hence
the effects will include one proposition “sequence(Update
Screen)”, resulting in the operator:

Name : JFrame.validate
PC : object(JFrame)
E : sequence(Update Screen)

This process is repeated for each method described in the
Class Diagram, with each of them generating one operator.
To complete the set of operators representing the framework,
those created from any Sequence Diagram included in the
model must be included. These diagrams contain information
on functionalities that should be accessed through specialized
classes and overwritten methods.

Each Sequence Diagram will be inspected in order to
identify which of the methods it contains can be overwritten.
It is assumed that those methods that do not invoke any other
methods inside their behavior description can be overwritten
without introducing errors in the behavior of the framework.
Once the method to be overwritten is identified, an operator
named “overwrite:ClassName.MethodName” is created.

The precondition set for this operator will be composed
of one proposition “specialization(Class)”, in which Class
represents the class that has the method to be overwritten. The
set also contains a proposition “link(Type1, Type2)” where
Type1 is the type of object that starts the mechanism and Type2
is the type of object being overwritten, and a proposition “se-
quence(Mechanism)”, indicating that the Sequence Diagram
must be used for the method to be called.

The effect set of the operator will include one proposition
“interface(Name)”, if the method is responsible for any in-
terface and one proposition “object(Argument Type)” for each
input argument the method has. The argument type is included
in the effect set, instead of the precondition set like the other
operators, because when overwriting a method, it is possible
to use the input methods, instead of having to supply them
when calling a method.

Then, for each “overwrite” operator made, one additional
operator is included. This operator will be named “special-

566

ize:Class”, with an empty precondition set, and with the only
effect being the proposition “specialization(Class)”, where
Class is the name of the class that contains the method being
overwritten.

Let us use the Diagram from figure 2 as an example. This
diagram represents the sequence for updating a screen in the
SWING framework. To use this function, it is necessary to
overwrite the method paint of a class that specializes a “Panel”.
Then this mechanism must be started by the method “validate”
from a “JFrame” object. Once overwritten, it is possible to use
an object of the type “Graphics”. Using this information, the
following operators are made:

Name : overwrite:Panel.paint
PC : sequence(Update Screen),
link(JFrame, Panel), specialization(Panel)
E : object(Graphics)

Name : specialize:Panel
PC : {}
E : specialization(Panel)

IV. CREATING SEQUENCE DIAGRAMS

To make the sequence diagrams, a partial order planner
is used. The planner requires three inputs: a set of possible
operators, a goal state and an initial state. The possible
operators are the ones constructed based on the framework
model. The goal state will be a state composed of a proposition
“interface(Target Interface)”, representing the interface that the
user wishes to execute and an empty initial state will be used,
so that it is considered that no element of the framework is
currently being used.

Fig. 4: Plan for the goal “interface(Create Window)”

Using these inputs, the planner will generate a sequence
of operators that will allow the correct use of the desired
interface. Using this plan, a sequence diagram is made in such
a way that the methods it contains reflect the order of the
operators used in the plan.

For example, let us consider a user that wishes to use
the interface “Create Window” from the SWING framework.
First, all the operators from the framework would be extracted,
following the steps described in section III. Next, the planner
would be initialized with an empty state, the framework op-
erators and the goal “interface(Create Window)”. This would
result in the plan shown in figure 4. Next, based on this plan,
the sequence diagram shown in figure 5 can be constructed.

This is a very simple example of how this method can
be used. It becomes more interesting when a sequence of
interfaces is desired, using it as the description for the behavior
of an application.

Suppose, then, a simple application for visualizing images.
One possible way to model this application behavior is by the

Fig. 5: Sequence diagram resulting from the plan from figure 4

Activities Diagram shown in figure 6. This diagram shows the
application needs to first create a window, then ask the user to
choose an image file, then print the selected file in the screen.

Fig. 6: Activity Diagram of the Image Viewer Application

To complete this application model, let us use a simple Class
Diagram, composed of only one class with a single method,
responsible for the sequence of actions. Such diagram is shown
in figure 7.

Fig. 7: Class Diagram of the Image Viewer Application

Using the activities described in figure 6 as the goals
for the application, we get the sequence of propositions:

567

interface(Create Window), interface(Choose File) and inter-
face(Draw Image). After presenting each of these goals to the
planner, a tree representing the plan is obtained (fig. 8).

Fig. 8: Tree representing the plan obtained using the application goals

Since this tree has an “overwrite” operator, it will have to be
broken down into three pieces. Each of these pieces will make
a different sequence diagram. The nodes below the “overwrite”
operator, in this case only the “Graphics.drawImage” operator,
will compose the sequence diagram describing the overwritten
method. The nodes besides the “overwrite” operator and their
parents, in this case the operators “ImageIO.readImage” and
“JFileChooser.getSelectedFile”, will form the constructor of
the new specialized class. The other operators will form
the main sequence diagram, the one that will be invoked
by the application. The resulting “main” sequence diagram,
the constructor sequence diagram and overwritten method
sequence diagram are shown in figures 9, 10, 11 respectively.

Fig. 9: Main Sequence Diagram

Fig. 10: New Constructor

After all the Sequence Diagrams are built, it is possible to
alter the initial Class Diagram of the application, to include the
used classes from the framework, as well as the new classes
made. The resulting class diagram is shown in figure 12.

568

Fig. 11: Overwritten Method

Fig. 12: Altered application Class Diagram

With the model obtained, it is possible to implement the
desired application using the SWING framework.

This is only a simple model. The framework model could
be refined, adding more classes and services to allow more
complex applications, although, currently, the method only
supports applications with a linear sequence of activities, that
is, loops and branches are not yet supported. But the pos-
sibility of reusing a framework model, specially considering
that different software engineers can use the same model in
multiple projects, presents an opportunity to reduce the costs
of using frameworks.

V. RELATED WORKS

This works is based on the web-service composition area.
This area seeks a way to automatically create new Service
Oriented systems, using as input a set of available web-
services, usually described in BPEL.

In [10] the authors describe a way to use model-checking
based planning to build new systems, using as input a set
of BPEL descriptions of web-services, while [11] uses a

knowledge based approach to a similar problem. Another
approach is found in [12], where the authors show a method
that can create a finite state machine representation of the
desired system, based on the behavior description of the
available services.

There is an advantage when working with web-services,
instead of object-oriented systems, because web-services are
well encapsulated components, that can more easily be chained
together than their object-oriented counterparts. Moreover,
the services provided can be considered black-boxes, that is,
only their input and output have to be considered during
development, making possible to ignore the internal workings
and state of the service during usage, which is not true when
working with frameworks.

Frameworks frequently have strict conditions under which
their functionalities can be used. The method presented herein
not only identifies which components from the framework
must be used, but also creates a sequence of methods that
ensure those components will be in the correct state at the
time of their invocation.

Other works have also addressed the reusability problem.
For instance, in [13], a method to identify which parts of
a system can be reused is designed, but it focus more on
identifying ’which’ components can be used, as opposed
to ’how’ to reuse already available components, as is the
case with frameworks. There is also [14], which addresses
the problem in an algebraic manner. The paper presents an
interesting approach, but since it predates the rise of the UML,
it does not address the use concepts of classes, objects and the
exchange of messages.

VI. CONCLUSION

A model-to-model transformation method is presented that
identifies which components from a desired framework should
be used to meet the application requirements.

This method allows for applications to be described as a
sequence of services executions, identifying how to combine
them to implement the desired solution. The aim of this
method, is to make easier to reuse high level models, both
framework and application models. The same application
model could be used several times, with different framework
models, in the same way as the framework model could be
used with several applications.

This method has limitations in its current implementation.
The model generated by the transformation, albeit correct, is
not complete. It lacks the description of how to initialize the
frameworks, using the example shown; for instance, it does
not include a “main” method, which is required in any JAVA
application to be correctly initiated.

Another restriction concerns the input model. The frame-
work should be modeled in a very precise manner, in order
not to introduce errors in the logical planner, and a non-
standard way of using the sequence diagrams to describe the
method that can be overwritten without introducing errors in
the framework behavior. The models, both framework and
application, are also very dependent on the use of fixed names
to describe the interfaces (for the framework) and activities
(for the application). In the current state, the application model
is also constrained in the Activity description, in which it is
not currently possible to use loops or branches.

Finally, the model generated through this transformation
process does not consider some of the best practices of

569

software design, such as decoupling of elements or ease
of maintenance. The final model will, most likely, be very
different from the one created by a person. Yet, apart its
limitations, this is a novel approach to framework use, in
which a transformation method identifies how the framework
can be used by an application. It allows the reuse of framework
knowledge by different people, since once modeled, the frame-
work can be used by any other person in different projects.

Future work will focus on ways to remove, or at least
reduce, the limitations described above. We also plan to
investigate what impacts the use of more complex planners
may have on the transformed models. Another question that
will need to be addressed in the future is the use of multiple
frameworks. The use of multiple frameworks is common
enough in software development for it not to be ignored,
but it brings its own set of problems [15], such as possible
architectural incompatibilities for instance. Future versions of
this method will seek ways to identify incompatibility between
frameworks, and ideally, ways to circumvent them.

REFERENCES

[1] M. E. Fayad and D. C. Schmidt, “Object-Oriented Application Frame-
works,” Communications of the ACM, vol. 40, no. 10, pp. 32–38, 1997.

[2] R. E. Johnson, “Frameworks = Patterns + Components,” Communica-
tions of the ACM, vol. 40, no. 10, pp. 39–42, 1997.

[3] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture. Citeseer,
2003, pp. 1–17.

[4] S. Schönberger, R. K. Keller, and I. Khriss, “Algorithmic support
for model transformation in object-oriented software development,”
Concurrency and Computation: Practice and Experience, vol. 13, no. 5,
pp. 351–383, 2001. [Online]. Available: http://dx.doi.org/10.1002/cpe.
555

[5] D. Varró and Z. Balogh, “Automating model transformation by
example using inductive logic programming,” in Proceedings of the
2007 ACM symposium on Applied computing, ser. SAC ’07. New
York, NY, USA: ACM, 2007, pp. 978–984. [Online]. Available:
http://doi.acm.org/10.1145/1244002.1244217

[6] G. Engels, R. Hucking, S. Sauer, and A. Wagner, “UML Collaboration
Diagrams and Their Transformation to JAVA,” pp. 473–488, 1999.

[7] T. Behrens and S. Richards, “StateLator - Behavioral Code Generation
as an Instance of a Model Transformation,” in Advanced Information
Systems Engineering, ser. Lecture Notes in Computer Science,
B. Wangler and L. Bergman, Eds. Springer Berlin / Heidelberg, 2000,
vol. 1789, pp. 401–416. [Online]. Available: http://dx.doi.org/10.1007/
3-540-45140-4\ 27

[8] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to
the application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3-4, pp. 189–208, 1971. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/0004370271900105

[9] A. Tate, “Generating project networks,” in Proceedings of the 5th
international joint conference on Artificial intelligence - Volume 2. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1977, pp. 888–
893.

[10] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition of Web
services via planning in asynchronous domains,” Artificial Intelligence,
vol. 174, no. 3-4, pp. 316–361, Mar. 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0004370209001489

[11] E. Martı́nez and Y. Lespérance, “Web service composition as a planning
task: Experiments using knowledge-based planning,” in Proceedings of
the ICAPS-2004 Workshop on Planning and Scheduling for Web and
Grid Services, 2004, pp. 62–69.

[12] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Automatic service composition based on behavioral descriptions,”
International Journal of Cooperative Information Systems, vol. 14, no. 4,
pp. 333–376, 2005.

[13] G. Caldiera and V. R. Basili, “Identifying and qualifying reusable
software components,” Computer, vol. 24, no. 2, pp. 61–70, 1991.

[14] F. Parisi-Presicce, “A rule-based approach to modular system design,”
in Software Engineering, 1990. Proceedings., 12th International Con-
ference on, Mar. 1990, pp. 202–211.

[15] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch: Why
Reuse Is Still So Hard,” Software, IEEE, vol. 26, no. 4, pp. 66–69, 2009.

570

Investigating the use of Bayesian networks as a
support tool for monitoring software projects

Fábio Pittoli1, Abraham L. R. de Sousa1, 2
1Centro Universitário La Salle - Unilasalle

Canoas, Brazil
{fabio.pittoli@gmail.com, rabelo@unilasalle.edu.br}

Daltro J Nunes2

2Instituto de Informática
Universidade Federal do Rio Grande do Sul - UFRGS

Porto Alegre, Brazil
{rabelo, daltro@inf.ufrgs.br}

Abstract— The monitoring of software development is one of the
most important activities of software projects management. In
this context, this paper proposes a Bayesian approach integrated
with a software process management environment. The aim is to
investigate how this probabilistic approach can be used for
projects monitoring. Preliminary results indicate that the use of
Bayesian networks brings the power of quantitative and
qualitative evaluation of some common scenarios of project
management, leading to the manager a greater power of decision
making.

Software Development Process; Bayesian Network; Project
Management

I. INTRODUCTION
One of the main challenges of any project manager is trying

to ensure that software development project will be concluded
within the constraints of time, cost, scope, and quality.
Establishing these constraints means working with estimates.
But the software development is an inherently uncertain
endeavor, because there is no way to ensure that during the
progress of the project delays will not occur, will not lack
resources, or the scope will not change. Within this context of
reasoning under uncertainty arise the Bayesian networks
[1][2][3] that are used in situations where there are causal
relations, but our understanding of what is really happening is
incomplete, requiring probabilistic description for a better
understanding. This type of network can be used for different
types of reasoning, as predictive analysis, to investigate the
impact of changes (cause and effect), and support decision-
making. The main goal of this paper is to s how the
preliminaries results of a study that aims to integrate an
environment for project management with Bayesian networks
during the monitoring of software development projects. In this
sense, the manager interacts with a Bayesian model to identify
potential behaviors of the project and thereafter, decisions are
made.

II. THEORETICAL GROUNDING
Estimated time and cost development is an activity that

requires attention and that has great influence in the process of
software development. It’s the estimation definition which
ensures that a project will succeed or not during its execution.
Effort estimates are useful for clients and developers. [5].
Based on these estimates, the organization that wants to hire

the project can assess and monitor the implementation costs,
evaluate proposals, and develop realistic budgets and
schedules.

Whichever method you choose to run estimates, it is always
important to observe that the estimation process is a complex
domain where the causal relationship among factors are non-
deterministic and with an inherently uncertain nature [6]. For
example: we can assume that there is a cl ear relationship
between development effort and team experience, and that
when team experience increases, the effort decreases, although,
there are no concrete data proving that. So, would be correct to
say that handle estimates, necessarily, result in dealing with
uncertainties.

A. Bayesian Networks
Bayesian networks (BN) were developed in the early ‘80s

to facilitate the task of predicting and diagnosing in Artificial
Intelligence (AI) systems [1]. The name Bayesian Network
derives from the use of the mathematical formula for the
calculation of probabilities established in 1763 by Thomas
Bayes. According to [2], the BN allow us to express complex
cause-effect relationships based on the problem investigated.
The graphical representation of a Bay esian network is
composed of nodes that represent random variables that assume
discrete values or continuous. The arches represent the causal
relationships among nodes. For example, we can consider a
classic case of BN presented by [7] about a new burglar alarm.
This alarm is very reliable; however, it can also trigger if an
earthquake occurs. Two neighbors, John and Mary, pledged to
call if the alarm is ringing. John always calls when he hears the
alarm, but, sometimes confuses the alarm with the phone and
call also in these cases. Maria, however, likes to listen to loud
music and sometimes does not hear the alarm. Fig. 1 shows the
defined the network topology to this case and tables of
conditional probabilities to each node. This form of
representation can be used to represent discrete variables or the
continuous variables. Each of the lines in the table contains the
conditional probability for each conditional case parent nodes.
A conditional case represents a possible combination of values
for the parent nodes [8].

B. Related Work
Within several studies that use BN to support software

process development, we tried to divide the references among

571

some of the key areas of management and software
development, such as: risk management, predicting failures and
effort estimation.

Figure 1. Bayesian network with the conditional probabilities

 Risk Management: the study presented in [9] proposes a
standard architecture for risk identification called Risk
Identification Pattern model. The use of Bayesian networks
as the main component of the model made it possible to
represent the relationships among risk factors present in
web projects.

 Predicting Failures: in [12] is presented a review of the use
of BN for predicting faults and software reliability. Beside
this, it proposes an approach that allows us to use dynamic
discretisation algorithms for continuous nodes.

 Effort Estimate: stands out the comparative study of models
of Bayesian networks focused on the effort estimation in
web projects presented in [6] that disseminates the results
of an investigation where eight Bayesian network models
were compared for their accuracy in estimating effort for
web projects. The results showed that the Bayesian
networks represent a suitable approach for the treatment of
effort estimates.

III. BAYESIAN NETWORKS AS A TOOL TO SUPPORT
MONITORING OF PROJECTS

Monitoring software projects using mechanisms to detect
changes during its progress contributes to that unexpected
events do not deviate the planning. If this happens, it is
possible to m ake changes in order to adapt to new reality
imposed a l ess traumatic and fastest possible. Unlike other
approaches used to make estimates that use parametric
measure, the use of BN suggests a statistical value (approx).

The following are the main software components used to
compose the monitoring model proposed. After this, is shown a
conceptual model of the proposed solution, which seeks to
provide how will the interaction among the tools that form the
solution, besides the characteristics and details of
implementation:

 WebAPSEE[14]: through this environment is possible to
model a de velopment process, defining the activities, the
sequence among them, the papers involved, and the
execution time. The environment allows its execution
through a machine that coordinates the activation of

activities and agenda of the developers. It was chosen as a
supportive environment for project management because
allows a r igorous control over the variables that form a
software process.

 Bayesian networks tool: in this study we used GeNIe1 ,
developed by Decision Systems Laboratory, from
Pittsburgh University. The GeNIe software was used to
model the Bayesian networks for the evaluation of the
proposed model, because of its ease of use and that the free
version has no restrictions on the maximum possible size
for a BN.

A. Presentation of the monitoring model scenarios
For better understanding of the monitoring and control

model proposed, it is necessary to presentation and analysis of
scenarios where the model will work and to observe the pre and
post conditions required for proper operation. Fig. 2 presents
the scenario 1 that handles the BN configuration required for
the correct functioning of the model. As prerequisites, it is
necessary a previous modeled process in the WebAPSEE;
furthermore, the topology of the network should already be set
according to the aspect that you wish to monitor in the process
(time, cost, quality,etc.). From this, is shown a web interface
through which you can select relevant data from the running
process according to the aspect that you wish to monitor. For
example: considering that you want to monitor the process on
the aspect of time, would be possible to select items such as
“number of agents involved” and “total hours remaining” and
so on. From this, the selected data will be extracted from the
running process. After extraction of this information, a table
containing the information extracted is generated
automatically. Through this table will be possible to identify
information used to configure the evidence in the BN, which is
the post condition of the scenario 1.

The scenario 2 refers to the monitoring process. As a
prerequisite for proper functioning of scenario 2 we have the
fact that the process is running and the BN is configured.
Initially, it is necessary to identify changes of state in the
running process. Thus, a Windows Service has been developed
in order to monitor the data involved in the process. This action
of checking changes in the process is done in time intervals
previously established. So, it make possible to use the latest
data from running process directly in the web interface. After
this, we can update the BN, spreading the current state of the

1 http://genie.sis.pitt.edu/

 Figure 2. Bayesian network configuration

572

process for the network. Thus, this is the post-condition
required for scenario 2.

B. Prototype developed
After the presentation of the scenarios observed, it is

necessary to present a prototype of the proposed model. It is
essential that, at first, we have a software process modeled and
running in the WebAPSEE tool. Another important aspect
concerns the selection of the network model to be u sed by
software components modeling Bayesian networks GeNIe. For
example: if the aspect which you want to monitor in the
process is the Time, it is necessary that the model of Bayesian
network analysis has some node with characteristics related to
Time. The same analogy applies when you want to monitor
other aspects of the process, as Cost, for example. From this it
becomes possible to b egin the process of monitoring and use
the web interface developed. The Fig. 3 shows the web
interface developed.

This web interface is organized basically as follows: a)
Characteristics of the process: at the top of the page are
various HTML controls type radio, where each identifies and
makes it able to be selected each of the different characteristics
relate to a software process, as Time, Cost and Quality; b) Data
related: after selecting a f eature, are displayed in the field
below, various controls type checkbox where eache of them
with respect to a given related to the selected feature. It is
possible to select various data related to the same
characteristic; c) Generate data file: control type button whose
essential function is to confirm the selection of parameters and
initiate the process of generation of the file containing the
process data, subsequent display of data in the informative
table containing the data evidence and boot the Windows
Service responsible for monitoring the database process and
update the data file; d) Informational message: if everything
went as expected and without occurrence of errors, the data file
was created/updated correctly, the Windows Service was
successfully started and the following message is displayed:
“File created/updated successfully. Monitoring service
initialized correctly”. However, if na error occurs during
generation of the data file or during Windows Service boot, the
following message is displayed: “An error occurred while
attempting to generate the file. The monitoring service was not
initialized”; and e) Table containing the data from the
monitored process: after the creation / update of the file
containing the data from the monitored process, a table in the
web interface is responsible for listing the data. This update is
always done periodically and is performed after each Windows

Service execution. The goal is to ensure the ability to view
directly in the table the latest data from the process to enable
the identification of evidence and use them in their Bayesian
network used in software GeNIe or Netica.

IV. MODEL EVALUATION
In the evaluation is modeled a development process in the

WebAPSEE software. The idea is that this process be as similar
as possible with a specified process to model the development
of a real software project, but, being a procedure evaluation for
a model created for proof of concept, the process used is
simplified, containing only features that are fundamental to the
proposed assessment and with reference to the tasks defined by
the RUP (Rational Unified Process) for small projects
methodology. Some Bayesian network models present in the
literature were used and adapted to make them in accordance
with the data that is extracted from the process and are present
in the data file generated by the web interface developed. So,
independent of the chosen characteristic to be monitored , the
Bayesian network defined will allow a true representation of
the running process in the WebAPSEE. The evaluation seeks to
answer some key questions of project managers referring to
changes in estimates that are recur in software projects.

A. Software process
In order to evaluate the proposed model, a process has

modeled considering some of the main activities defined in the
RUP for Small Projects methodology. Using the WebAPSEE
software as a tool for process modeling, aimed to organize the
activities by disciplines, according to what is proposed by
methodology. The used disciplines by the process were:
Requirements, Project Management, Analysis, Implementation,
Tests, Change Management. It is also important to mention that
this is an iterative and incremental process [15], in other words,
each stage is executed several times during the development
process. This allows that our understanding about the problem
increases through successive refinements, making an effective
solution is obtained after many iterations.

B. Bayesian networks models
The modeling of Bayesian networks used for

implementation and evaluation of the evaluated scenarios were
constructed based on the model known as MODIST [16],
which cares about the quality of predictions and wi th risk
management in large software projects. The MODIST project
is based on Bayesian network and it tries to produce
development models and testing process that take into account
statistical concepts missing in traditional approaches to
development. It was decided to develop a Bayesian network to
monitor the Requirements activities set, especially, taking into
account the aspect of time. One reason for having been chosen
by the requirements lies in fact that is in requirements, which
normally has the main problems with estimates. It is also
important to mention that it is completely feasible that new
networks are designed to monitor other aspects and set of
activities, such as Tests, Change Management or Analysis, for
example. Furthermore, could also consider the monitored
process as whole as a single activity and, so, develop a single
network responsible for taking care of all aspects. Since the

Figure 3. Web interface for data collection

573

goal is, from the Bayesian network, can to answer some key
questions of project managers in relation to possible changes in
estimates, it has searched divide the evaluation scenarios,
where each will show different situations in relation to
requirements and, from the results indicated by the network,
will be suggested a response to pointed questioning.

C. Evaluated Scenarios
To make the inference of Bayesian network for the

subsequent definition and identification of evidence, in each of
the evaluated scenarios the network was initially trained with
historical data from 100 completed projects and that have some
similarity with the process analysis. The historical data base
used is constituted by data from laboratory simulation and
purpose of the scenarios is to simulate real situations that may
occur during a monitoring a software process. Is shown, a step
by step example of a scenario used to verify the efficiency of
the developed model: A software process that has the following
characteristics: A high degree of novelty in what will be
developed (Novelty); b) High Complexity (Complexity); c) Big
size (Size); d) Team with a low degree of experience (Staff
Experience); and e) High estimated effort (Estimated Effort).
Questioning: the inclusion of more experienced professional in
the project will make the effort required to complete the project
decrease?

After configuring the situations mentioned above, where in
the modeled Bayesian network will be the evidence, shows
that, when we h ave a situation as described above, there is a
high probability (51%, in this case) that the Required Effort
(Required Effort) to complete the project is high (High). The
Fig. 4 demonstrates the behavior of the Bayesian network after
setting evidence. The question asked about this scenario
concerns the possible reduction of required effort if they are
allocated to the process new professionals who possess a
greater degree of experience.

The inclusion of more experienced professionals in the
monitored process made the Required Effort continue high,
but, it decreases from 51% to 47%. Furthermore, the Accuracy,
that identifies how close the estimates are in relation to the
actually required, also improved, from 53% to 54%. Thus, we
can understand that on large projects and have a high degree of
complexity and are also completely new in terms of technology
or segment, considering an inexperienced team initially, by
including in that team new professionals with a high level of
experience in relation to the proposed problem, the required
effort, still continuing high, have experienced a decrease.

V. FINAL CONSIDERATIONS
This paper presented a probabilistic approach to support the

monitoring of software development projects. From the model
here presented, becomes possible to develop a series of other
experiments and improvements. For future work, we can
mention the possibility of checking and measuring the impact
that changes in estimates during the progress of the project will
have on the quality of the final product. Another point that
could be further explored in future concerns the possibility to
centralize in one place both the data collection process
monitored and the graphical display of Bayesian networks for
the subsequent configuration of inferences, allowing ease of
use of the model. Furthermore, new Bayesian networks can be
developed in order to monitor activities of other groups of a
given project, different from those that have been mentioned
here and presented. It is important to mention that the model
presented here is constantly evolution, because it can be
improved and adapted to the software process used according
with the models of Bayesian networks used, can be more or
less complex depending of aspect that want to evaluate and
depending on the number of variables that will be involved in.

REFERENCES
[1] Charniak, E. Bayesian Networks Without Tears. AI MAGAZINE, v. 12,

n. 4, p. 50-63, 1991.
[2] Fenton, N. E.; Neil, M. A C ritique of Software Defect Prediction

Models. IEEE Transactions on Software Engineering, v. 25, p. 675-689,
1999.

[3] Stamelos, I. et al. Estimating the development cost of custom software.
Inf. Manage., v. 40, p. 729-741, 2003.

[4] Mendes, E.; Mosley, N. Bayesian Network Models for Web Effort
Prediction: A C omparative Study. IEEE Transactions on Software
Engineering, v. 34, p. 723-737, 2008.

[5] Russell, S. J.; Norvig, P. Artificial intelligence: a mo dern approach.
[S.l.]: Prentice-Hall, Inc., 1995. 415-429 p.

[6] Marques, R. L.; Dutra, I. Redes Bayesianas: o que são, para que servem,
algoritmos e exemplos de aplicações. Universidade Federal do Rio de
Janeiro. [S.l.]. 2000.

[7] Al-Rousan, T.; Sulaiman, S.; Salam, R. A. A r isk identification
architecture pattern based on Bayesian network. [S.l.]: [s.n.]. 2008. p. 1 -
10.

[8] Jeet, K. et al. A Tool for Aiding the Management of Schedule Overrun.
IEEE 2nd I nternational Advance Computing Conference, v. 2, p. 416 -
421, 2010.

[9] Xiaocong, H.; Ling, K. A risk management decision support system for
project management based on bayesian network. 2nd IEEE International
Conference on Information Management and Engineering, v. 2, p. 308-
312, 2010.

[10] Fenton, N. E.; Neil, M.; Marquez, D. Us ing Bayesian Networks to
Predict Software Defects and Reliability. [S.l.]: [s.n.]. 2007.

[11] Sanchez, A. J . Software maintenance project delays prediction using
Bayesian Networks. Expert Syst. Appl., v. 34, p. 908-919, 2008.

[12] Ambiente WebAPSEE. Simpósio Brasileiro de Engenharia de Software
Florianópolis: Informática-UFSC, v. 1, p. 1-6, 2006.

[13] Kruchten, P. The Rational Unified Process: An Introduction. 3. ed. [S.l.]:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[14] Modist. Models of Uncertainty and Risk for Distributed Software
Development. EC Information Society Technologies Project IST-2000-
28749. [S.l.]. 2003.

Figure 4. Bayesian network with evidence of the scenario

574

Reuse of Experiences Applied to Requirements
Engineering: An Approach Based on Natural

Language Processing

Adriano Albuquerque, Vládia Pinheiro
Programa de Pós-Graduação em Informática Aplicada

University of Fortaleza - UNIFOR
Fortaleza, Brazil

{adrianoba,vladiacelia}@unifor.br

Thiago Leite
Programa de Pós-Graduação em Informática Aplicada

University of Fortaleza - UNIFOR
Fortaleza, Brazil

thiagolcarvalho81@gmail.com

Abstract— Concerning software development projects, it is
known that many of the problems originating from the phase of
Requirements Engineering are recurring, and happen repeatedly
within the same project or in different projects. Given this
context, we defined a process to support the reusability of
previous experiences that is based on Artificial Intelligence
approaches - Case Based Reasoning and Natural Language
Processing. This paper presents the proposed approach and the
initial results obtained in a proof of concept.

Keywords- Requirements Engineering, Knowledge
Management, Experiences reuse, Natural Language Processing.

I. INTRODUCTION

In software development projects, many commonly
reported problems involve recurring situations, especially
problems originating in the phases of Requirements
Engineering (RE). Although this fact is known and expected by
all those involved in a development process, the reuse of
previous experiences to solve new problems is not a reality at
IT (Information Technology) companies. Inefficiency in the
management of knowledge about the cause of problems, and
about the solutions applied in RE, leads companies to
deviations of lead-times and costs in their projects.

Pereira [1] and Standish [2] identified the most important
causes of the most commonly recurring problems in RE. We
argue that, for most of the problems addressed in the literature,
the representation and retrieval of similar problems and
suggestions for application of solutions already experimented
in such cases are able to minimize the impact on project
indicators (lead-time, effort, cost, etc.) and enable the
dissemination of knowledge among the various projects of an
IT company. In this regard, we propose an approach for the
reuse of experiences in RE that uses techniques from the area
of Artificial Intelligence (AI): Case Based Reasoning (CBR)
and Natural Language Processing (NLP).

A distinguishing feature of the proposed approach is the
possibility of representing and retrieving cases (problems and
solutions) described in natural language, for example: in the

Portuguese or English language. Traditional approaches in
CBR use the form of description of cases by attribute-value,
whereby structured fields will abstract aspects of the cases
restricting their characterization and representation a priori.
The description of a case in the form of text makes the
representation thereof more natural and complete, because
users become freer to express themselves about the case, and
specific aspects of a case can be made explicit. In contrast to
the ease and completeness in the textual description of cases,
one has difficulty in retrieving similar cases, since the
computational treatment of non-structured representations such
as natural language text is not trivial. Related to this, we
support the reuse of experiences using techniques from the area
of Natural Language Processing (NLP), such as
morphosyntactic analysis and similarity analysis.

This paper is organized as follows. Initially, we present
studies that utilized reuse of experiences in Software
Engineering. In the second section, the process of supporting
the reuse of experience in RE is presented. In the third section,
we present the methodology for evaluating the proposed
process and we analyze the results. Finally, we conclude our
study and present possibilities for future work.

II. RELATED WORKS

In general, CBR systems are commonly used in Software
Engineering to support activities such as CRM, help desk,
assessment tools, etc. Joshi and McMillan [3] defined a tool
called MESCA (MEnu BrowSer using Case bAsed reasoning)
that enables the creation and/or reuse of graphical interface for
applications. MESCA focuses on the reuse of code that
supports the software implementation phase and applies
primarily to user-developers. Gabineski and Lorenzi [4]
defined a tool to support project management, which is
responsible for controlling the number of activities assigned to
a person, as well as control the execution of these activities.
Jani and Mostafa [5] proposed a tool called SRSQAS (Software
Requirement Specification Quality Analysis System), whereby
it is possible to measure the quality of requirement
specifications based on 11 items. Basically this tool compares a

575

requirement specification with the case base and gauges the
level of quality thereof. Praehofer and Kerschbaummayr [6]
defined a tool called CASA (Computer Aided Systems
Architecting) focused on reusing artifacts of Requirements
Engineering. The similarity calculation method takes into
account the structural organization of the documents.
Similarities are thereby found between an input artifact and the
Artifacts Base, to find the artifacts that are structurally similar
to the input artifact. Based on this, the tool tries to reuse similar
structures to create new artifacts. In most of the approaches that
use CBR in the activities and phases of Software Engineering,
we identified the single and prevalent use of the attribute-value
formalism for representation and retrieval of similar cases
previously stored in the case base.

III. AN ARTIFICIAL INTELLIGENCE APPROACH FOR REUSE

OF EXPERIENCES IN REQUIREMENTS ENGINEERING

Intelligent Systems that use techniques of Case Based
Reasoning (CBR) are based on the simple idea that, in similar
problems, similar solutions apply. CBR is an approach to
problem solving and experience-based learning, solving
problems by retrieving and adapting past experiences – called
cases – stored in a Case Base [7]. Specifically in the Software
Engineering community, there is a consensus that most
problems are recurring, therefore managing cases from
previous projects enables the implementation of successful
solutions in several new projects, avoiding waste of resources
to address repeating situations.

The knowledge base of a CBR system is represented in the
form of cases, a Case Base, that describe concrete experiences
of problems that have occurred and the solution(s) that were
applied. In this paper, we propose a hybrid formalism for
representation of a case: object-oriented and natural language.
Figure 1 shows a class diagram in UML for the representation
of a case. A case is described by a Problem and one or more
objects of the Solution class.

The basic attributes of a problem are: (i) project — name of
project where the case was verified; (ii) phase — phase of
software engineering where the problem occurred, for example:
“Requirements”; (iii) sub-phase — sub-phase where the
problem occurred, for example: “Requirements Elicitation,”
“Requirements Analysis,” etc.; (iv) artifact — artifact where
the problem was found, for example: “Use Case,” “Business
Rules,” etc.; (v) causer — who or what caused the problem, for
example, “Person,” “Technology,” “Process,” etc.; (vi) cause
— cause(s) of the problem. Some examples include: “usage
case scenario unspecified,” “business rule unspecified,”
“change in business rule unspecified,” “traceability matrix
incomplete,” etc.

These basic attributes serve as an initial qualification of the
problem. However, they are not enough to express it fully and
with all the specificities necessary for possible reusability.
Additionally, in order to enable a complete and natural
representation of a problem, we propose the attribute called
description that contains a textual report on the problem related
to the case.

Additionally, the basic attributes of a solution are: (i) action
— description of what was done to solve the problem; (ii)

executor — who performed the action; (iii) artifact — artifacts
to be changed to the solution to be implemented; and (iv)
involved — people, processes or organizations who have been
affected by the deployment of the solution.

FIGURE 1. CLASS DIAGRAM OF THE CASE BASE, IN UML.

The process proposed to support the reuse of experiences in
RE using techniques of CBR and NLP is shown in Figure 2 and
detailed below.

 FIGURE 2. ARCHITECTURE OF THE PROCESS TO SUPPORT THE REUSE OF
EXPERIENCES IN ER.

1

2
3

4

6
5

576

Step 1: To start the process, the user (requirements
engineer, requirements analyst, project manager, developer,
etc.) enters basic information about the new problem. Figure 1
shows the UML class diagram of the representation of a
problem.

Step 2: In the “CBR Component” component, the data of
the new problem are compared with the Case Base. The
Attribute-Value pairs of the problem object are compared with
the various cases existing in the Case Base, aimed at an initial
selection of similar cases. The similarity between two cases c1
and c2 is calculated by the formula below, based on
Wangehheim [7, p.112], which defines the similarity by the
weighted average of the similarity between the values of each
index of c1 and c2:

SimA(c1,c2) = n(Vsi x Pi) (1)
Pi

Where,
• n: number of discriminatory attributes of a case

(indexes)

• Vsi: similarity between the values of index i in c1 and
c2, which is attributed per parameter.

• Pi: weight of index i, attributed per parameter.

For each index i, must be set a weight Pi, which defines the
importance of the index in the calculation of similarity between
cases, and a value of similarity Vsi between the possible values
of each index. In this work, in order to define the values of
similarity between the possible values of each index, specialists
in engineering requirements of a company from the federal
government of Brazil analyzed the level of relationship or
dependence between each value. For example, in Table 1 we
present the similarity values (Vs) defined by specialists for
index Artifact: the artifact “Use Case” is related – from the
highest to lowest level –to the artifacts “Use Case” (100%),
“Business Rule” (80%), “Functional Requirements” (70%),
“Non-Functional Requirements” (30%), “Traceability Matrix”
(30%) and “Technology” (0%). It is important to point out that
these values were used in the evaluation of this proposed
approach, but may be customized for each company or
situation of use.

TABLE 1. SIMILARITY BETWEEN THE POSSIBLE VALUES OF THE INDEX
ARTIFACT.

CU = Case of Use | RN = Business Rule |
RF = Functional Requirements|
RNF = Non-Functional Requirements|
DV = Vision Document | MR = Traceability Matrix

In this work, the indexes are artifact, causer and cause.
These were chosen because they are more discriminatory of a
case. After all, a cutoff value must be applied to select similar
cases. To illustrate the calculation of similarity, let us suppose
the following values for the indexes of a new problem (case
c1): Causer = “Organization” (OR); Artifact = “Business Rule”
(RN); Cause = “Wrong Business Rule Specified” (RNEE).
Considering the following values for a case c2, existing in the
Case Base: Causer = “Process” (PR); Artifact = “Traceability
Matrix” (MT); Cause = “Wrong Traceability Matrix Specified”
(MREE). Applying the values in formula (1), we have the
following:

SimA(c1,c2) = (VsOR.PR x 1) + (VsRN.MR x 3) + (VsRNEE.MREE x 5)
 9

SimA(c1,c2) = (0.5 x 1) + (0.3 x 3) + (0 x 5) = 0,15

 9

Step 3: If no similar case is returned in step 2, the input
case is a new case and will be stored in the Case Base.

Step 4: In this step, the Cases Initially Similar are refined
through using NLP techniques. Actually, the “NLP
Component” defines the cases for reuse based on the number of
words in common between the textual description of the input
problem and the description of the pre-selected cases in step 2.
For this, the Vector Space Model technique and the
morphosyntactic analysis are applied to the texts in question. In
detail, the frequency of each word in the “Noun” and “Verb”
word classes, contained in the texts is calculated and those
cases with m (defined by parameter) words in common with the
input case are defined for reuse. The word classes “Noun” and
“Verb” were chosen because they express things and actions,
respectively, and therefore are the words that matter most to the
semantic value of the text [8]. For example, Figure 3 shows the
morphosyntactic analysis [9] of the descriptive text of one of
the cases from the Case Base (pre-selected in step 2).
Considering the description of the input problem “Search
functionality defined in wrong fields.” [Funcionalidade de
pesquisa definida com campos errados], the words (nouns and
verbs in Portuguese) of the input case are {funcionalidade,
pesquisa, campo}, all with a frequency of 1. In the pre-selected
case (Figure 3) the words are {campo, pesquisa}, all with a
frequency of 1. Two words were identified as being in common
between the cases.

FIGURE 3. MORPHOSYNTACTIC ANALYSIS OF THE DESCRIPTION OF A PRE-
SELECTED CASE.

577

Step 5: In this step, the user adapts the solutions of similar
cases, defined in step 4, for the new problem.

Step 6: Finally, the new case adapted is stored in the Case
Base.

IV. PROOF OF CONCEPT

Table 2 shows the experimental results of our approach
when two new real input problems were compared with a Case
Base containing 46 cases, occurring in software projects of a
company run by the federal government of Brazil. The retrieval
of cases by attribute-value similarity, processed by CBR
component, decreases the universe of cases to be processed by
the NLP component. For Case 1, we had a 29% decrease and
for Case 2, we had a 75% decrease. Furthermore, it was
possible to corroborate that the selection by similarity of the
descriptive texts of the problem is what, in fact, determines the
similar cases for reuse of solutions. Case 2 was, in fact, a new
case and refining process performed by the NLP component
correctly not selected any of the seven cases initially similar for
reuse. However, it is noteworthy that the initial search by
attributes, although not a determining factor, is important when
the Case Base is large. This experiment also allowed us to
identify a point of improvement in the NLP component: one of
the three cases selected for reuse in Case 1 was a false positive
case.

The parameters used in this experiment were: PArtifact = 1,
PCauser = 3 e PCause = 5 (Step2); Cutoff value for measure SimA
= 50% (Step 2); m = 2 (number of words in common) (Step 4).
Iterations of this experiment were carried out by randomly
varying the values of these parameters and, for the Case Base
in question, the aforementioned values were those that
presented the best results.

TABLE 2. RESULTS OF USAGE OF THE EXPERIENCE REUSE TOOL.

Case Attributes Process
Component

Selected
Cases

1

Artifact: Business Rule
Causer: Person
Cause: Wrong Business Rule
Specified

CBR
Component

33

Description: Search
functionality specified in wrong
fields

NLP
Component

3

2

Artifact: Vision Document
Causer: Technology
Cause:Vision Document
changed

CBR
Component

7

Description: Changes in
functionality made it
impossible to use technology
previously chosen

NLP
Component

0

V. CONCLUSION

This paper presents an ongoing approach to support the
reuse of experiences in RE. The distinguishing feature of the
approach is the use of AI techniques, specifically, Case Based
Reasoning and Natural Language Processing techniques. The
latter enables the representation of cases to take place in a more
natural and complete manner, that is, by describing the case in
natural language, whereby it is possible to make explicit the
essence and details of each case. We executed experiments that
corroborate our argument that the similarity by the textual
description of the cases is more determining than the attribute-
value similarity, making the process of reuse of solutions more
effective and useful. As an evolution of this proposal, we are
working on incorporating the semantic analysis of texts through
a common-sense conceptual base in the Portuguese and English
languages – InferenceNet [8], thus improving the accuracy of
the proposed approach.

REFERENCES

[1] Pereira, S. C. (2007) “Um estudo Empírico sobre Engenharia de

requisitos em Empresas de Produtos de Software”. Dissertação de
Mestrado em Ciências da Computação. Centro de Informática,
Universidade Federal de Pernambuco.

[2] Standish, Standish Group. (1994) The Chaos Report.
http://www.standishgroup.com/sample_research/chaos_1994_1.php

[3] Joshi, S.R., McMillan, W.W. (1996). Case Based Reasoning Approach
to Creating User Interface Components. Proceedings of the CHI '96
conference companion on Human factors in computing systems:
common ground

[4] Gabineski, R., Lorensi, F. (2007) Sistemas Multiagente Baseados em
Casos de Apoio á Gerência de Projetos. VIII Salão de iniciação
Científica e Trabalhos Acadêmicos.

[5] Jani, H. M., Mostafa, S. A. (2007) Implementing Case-Based Resorsing
Technique to Software Requirement Specifications Quality Analysis.
International Journal of Advancements in Computing Technology.
Volume 3, Number 1.

[6] Praehofer, H., Kerschbaummayr, J. (1999) Case-Based Resorsing
techniques to support reusability in a requirement engineering and
system desing tool. University Linz, departement os systems theory and
information technology. Institute of Systems Science. Austria.

[7] Wangehheim, C.G., Wangehheim, A. (2003) Raciocínio Baseado em
Casos. Editora Manole. 1º edição.

[8] Pinheiro, V., Pequeno, T., Furtado, V., Franco, W. (2010)
InferenceNet.Br: Expression of Inferentialist Semantic Content of the
Portuguese Language. In: T.A.S. Pardo et al. (eds.): PROPOR 2010,
LNAI 6001, pp.90-99. Springer, Heidelberg.

[9] Bick, E. The Parsing System “Palavras”. (2000) Automatic Grammatical
Analysis of Portuguese in a Constraint Grammar Framework. Aarhus
University Press. http://beta.visl.sdu.dk/visl/pt/index.php

578

Specification of Safety Critical Systems with
Intelligent Software Agent Method

Vinitha Hannah Subburaj
Computer Science Department

Texas Tech University
Lubbock, Texas 79409

vinitha.subburaj@ttu.edu

Joseph E. Urban
Industrial Engineering Department

Texas Tech University
Lubbock, Texas 79409
joseph.urban@ttu.edu

Manan R. Shah
Computer Science Department

Texas Tech University
Lubbock, Texas 79409
manan.r.shah@ttu.edu

Abstract — Specifying and developing critical components using
intelligent software agent technology has been recent practice
employed with aircraft software systems. There are approaches
used in developing aircraft software components that face the
problem of inconsistency and unreliability. This paper addresses
the need for using an automated intelligent software agent
method and a formal specification language to specify the
components of aircraft software systems for developing reliable
software. Formal methods in specification of a system and their
advantages over the traditional software development process in
context to current real-time safety critical systems have been
addressed in this paper. The Descartes specification language, an
executable specification language, is used to address the need for
the use of formal methods in safety critical systems and the
advantages over traditional approaches of development. The
Descartes specification language was designed for use throughout
the software life cycle. Descartes is used to describe concrete
architectures of intelligent software agents with structure details
and the operation of such agents. Properties of intelligent
software agents that include learning, planning, past history of
experience, and knowledge-level are specified using the Descartes
specification language. The application of such formally specified
intelligent software agents in the development of aircraft
software system components is addressed in this paper.

Keywords-component; aircraft software; formal specification
language; intelligent software agents;

I. INTRODUCTION

Aircraft development is a complex, dynamic, and
fascinating process which gives the descriptions of aircraft and
component design [1]. The development methods usually deal
with the ai rcraft conceptual, preliminary, and detail
development activities. The introduction of conflicting
requirements in aircraft development gives a view to improve
understanding and t he integration of sound overall
development. The structures and propulsion, airframe systems,
avionics, flight control, and weapons describe the interiors of
aircraft. The aircraft system interiors range from structures to
weapon systems through airframe systems, avionics systems
and landing gears. Usually the aircraft costs much due to t he
areas of acquisition and operating costs. Also, the importance
of good reliability and maintainability makes the cost high.

The Belief – Desire – Intention (BDI) architecture has been
applied in thi s research effort to describe critical aircraft

software components that involve intelligence [2]. The BDI
architecture involves reasoning, deliberation, and means-ends
reasoning. The reasoning aspect of the system helps to identify
the action th at needs to be performed while carrying out the
goals of a system. A major concern that needs to be addressed
is that diffe rent agents operate in dif ferent environments and
hence require different reasoning strategies. C onsidering
aircraft software component design also addresses the same
issues of components operating in different environments.

The architectures have roots in understanding practical
reasoning which consists of two parts, deciding what goals to
achieve and how to ac hieve the goals. The decision process
begins by trying to underst and what options are available.
After generating the alternatives, a choice needs to be made
between the alternatives and co mmit to one of the chosen
alternatives. The chosen options become intentions which
determine an agent’s actions. Intentions are crucial in the
practical reasoning process. Intention has a major role i n the
BDI model. The basic components of a BDI architecture are
beliefs, desires, intentions, and functions that represent its
deliberations. A major issue is in st riking a balance between
the committed to and over committed to one’s intentions. The
BDI model is attractive for several reasons as int uitive and
clear functional decomposition. The main difficulty is
knowing how to efficiently implement these functions.

The remainder of the paper is organized as follows. Section 2
briefly describes the related work carried out in the area of
specifying aircraft software components using formal
methods. Section 3 gives the description of the Descartes
specification language a nd the extensi ons made to the
Descartes specification langua ge for specifying the BDI
architecture for i ntelligent software agents. The aircraft
software components that were developed along with their
specification details using the extended Descartes specification
language is described in Section 4. Section 5 provi des a
summary and future research.

II. RELATED WORK

Salas and Townsend [3] conducted a study that examined
four existing frameworks against the requirements obtained
from the Multidiscip linary Optimization Branch (MDOB) at

579

the National Aeronautics and Space Administration (NASA).
The Framework for Interdisciplinary Design Optim ization
(FIDO) project [3] investigated the use of a distributed,
heterogeneous computing system to enhance com munication,
apply computer automation, and introduce parallel computing.

A major limitation in FIDO as determ ined by Salas and
Townsend [3] was that it was used for a specific application.
Hence, the sequences of processes become hard t o code a nd
difficult to m odify. The lack of documentation makes FIDO
inaccessible for the use of researche rs. Salas and Townsend
[3] identified the necessary frameworks during the evaluation
process and the relevant MDO framework requirements were
also briefly described in the paper.

Heitmeyer and Jeffords [4] translated software requirements of
mission critical components for three NASA systems to
specification, which were useful throughout the syste m life
cycle; using a method called Software Cost Reduction (SCR).
The automation process of a flight c ontrol system (AFCS),
must meet strict fault tolerance requirements. Gobbo and Milli
[5] describe formal specification for an analytical redundancy
based fault tolerant flight c ontrol system. The specifications
for the De Havilland DHC-2 general aviation aircraft was
developed using relational a lgebra as t he formal framework.
The requirements are decomposed on a functional basis into
elementary specification a nd then composition operators of
relational algebras are used to build higher level requirements
to develop the whole specifications. Requirem ents can be
interpreted as a relationship among some relevant quantities.

The next section describes the Desc artes specification
language, a form al specification language that is exec utable.
Existing work done on extending the Descartes specification
language to specify complex systems has been described in the
next section.

III. THE DESCARTES SPECIFICATION LANGUAGE AND THE
EXTENSIONS

The Descartes specification language was designed to be
used throughout the software life cycle. Th e relationship
between the input and the output of a system is fun ctionally
specified using this s pecification language [6]. Descartes
defines the input data and output data and then relates them in
such a way t hat output data becomes a function of input data.
The data structuring m ethods used with this langua ge are
known as Hoare trees. These Hoare trees use three structuring
methods namely direct product, discriminated union, and
sequence. Direct product is t he default and pr ovides for the
concatenation of sets of elements. Discriminated union is
denoted by a plus sig n (+) suffixed to the node name.
Sequence is indicated by an asterisk (*) suffixed to the node
name. By definition of Hoare trees, a sequence node is
followed by a subnode. A single node ca n accommodate a
sequence of direct product or a sequence of discriminated
union.

Specifying reactive agents using the extended Descartes
specification language was the first attempt made to specify
agents using the Descartes specification language [7] [8].
Extensions to the Descartes specification langua ge for
supporting intelligent software agents were given by Subburaj
and Urban [9]. The new constructs introduced by Subburaj and
Urban capture the requirem ents of intelligent software agents
using the Descartes specification language. Real t ime
semantics can be specified using the Descartes specification
language by the extensions introduced by Sung and Urban [8].
Some of the basic extensions alr eady made to the Descartes
specification language to specify intelligent software agents
[7] that a re also used to specify the aircraft s oftware
components are as follows:

1. estate;
2. astate; and
3. action

The above existing constructs are used in this paper to give a
complete specification of intelligent software agents. In this
paper, extensions to t he Descartes specification language are
based on the concrete BDI architecture proposed by
Wooldridge [2]. The BDI architecture works on the principle
of practical reasoning, wherein the actions to be performed are
decided momentarily in order to achieve the goal. The motive
to specify a nd develop critical aircraft s oftware components
can be realized using the e xtensions made to t he Descartes
specification language. The extended constructs to specify
intelligent software agents based on the BDI architecture
include:

1. belief;
2. belief revision function (brf);
3. option generation function (options); and
4. current options;

1) Belief
In order to represent an a gent’s current environment,

belief has been used. The extensions already m ade to the
Descartes specification language [7] were used to represent
agents environmental states. The reserved word ‘estate’ will
be used to s pecify the different possible environment states.
Based on the agent state and environment state, the next action
will be triggered. The following specification describes the
cruise control to be in one of the two states eith er active or
passive.

agent (CRUISE_CONTROL)_AGENT
 CRUISE_CONTROL
 ‘file’
 estate+
 ACTIVE
 PASSIVE

The agent and environment state information is im portant
while specifying intelligent software agents.

2) Belief revision function
The second extension to Descartes is a new primitive,

“belief revision function”, which uses the inputs given and the

580

current belief of agents in order to realize a new set of beliefs
for the system. The belief revision function allows a user to
refine and c ome up with a concrete set of beliefs to spe cify
intelligent software agents. The belief desire function is based
on the inputs passed on to the system and the a gent’s current
information on its en vironment. The following example
illustrates the belief revision function. The subnode that comes
along with the belief revision function is astate th at contains
the agents environment information.
agent(AIRCRAFT SOFTWARE_INPUTS)_AGENT

 …
 belief _desire _function
 input
 …
 astate
 …

The above example gives t he structure of a belief desire
function in a n agent system. Analysis and synt hesis trees
follow the decision construct to specify the intelligent agent
system completely and correctly.

3) Option generation function
An option generation function is used to generate options,

in other words, desires of the system based on environmental
state and set of intentions. Intentions are nothing but the set of
options that the syste m intends to achieve in the near future.
An option generation function is s pecified under the “ogf”
reserved word. This new exten sion to Descartes allows for
specifying the option generation function i n accordance with
the environmental states. Consider the following example:

ogf
 list_of_options_for_the_agent_system
 …
 estate
 ‘S0’
 ‘S1’
 ‘S2’
 intentions
 ‘I1’
 ‘I2’
 ‘I3’

The output from the “ogf” constr uct will be the set of options
in accordance with the beliefs and set of intentions.

4) Current options
Current options represent t he list of act ions that are

expected from an agent. Actions are the set of actions that an
agent can perform based on an a gents environmental state,
desires, and intentions. Th e reserved word “action” was
already added to the Descartes specification language to derive
a specific acti on that an int elligent software agent performs
under a certain circumstance. Based on the current
environment, the set of beliefs framed, and the set of
intentions, the corresponding action is taken . In th is way of
specification of an in telligent agent system, the environment
states which holds the information of agents from the past, is

used to re spond to the s urroundings in t he form of actions .
Action is represented through a serie s of a nalysis and
synthesis trees. Consider the following example:

action
 ACTION_BASED_ON_ENVIR_STATE

IV. AIRCRAFT SOFTWARE COMPONENT SPECIFICATION

The extensions made to the De scartes specification
language introduced in Section 4 ha ve been used to write
sample specifications for aircra ft software components. The
requirements described for Federal Aviation Regulation (FAR)
climb in a m ultiengine aircraft [5] has been converted into
specifications written using the extended Descartes
specification language. T he BDI a rchitecture for specifying
intelligent agent structures ha s been used to write
specifications for the ai rcraft design using the e xtended
Descartes constructs. An aircraft climb management system
follows to meet the Federal Aviation Regulations.

1) Sample specification 1
In sample specification 1, using extended Descartes

constructs, an aircraft climb management system is specified.
Operations are divided i nto two m ain categories na mely
takeoff climb, and landing. A Ho are tree structure that uses
analysis and s ynthesis trees, specifies the first se gment of
takeoff climb where the aircraft speed will be in Liftoff (LOF)
mode with gear down and flaps in the takeoff position. The
input and output to specifications 1 and 2 are described as
follows. Input to the two specifications are the values of the
current positions of the parameters of the aircraft management
system and the output of t he system will be the next position
the aircraft needs to take based on the intelligent agent
decisions.
agent (TURBINE_ENGINE_AIRCRAFT)_AGENT
 TURBINE_ENGINE_AIRCRAFT
 aircraft _sensors_input_signals *
 in put
 speed +
 FLOAT
 LOF
 flap +
 takeoff
 up
 approach
 landing
 num ber_engine
 INTEGER
 m in_climb_gradient
 FLOAT
 landin g_gear +
 up
 down

estate
 estate_name
 ‘Vs0’
 ‘Vs1’
 ‘Vs2’

581

belief_revision _function
 INPUT
 SPEE D
 FLAP
 NUMBER _ENGINE
 MIN_CLIMB_GRADIENT
 LANDI NG_GEAR
ogf +
 aircraft_on_air
 …
 aircraft_on_land
 …
action +
 takeoff +
 first_se gment
 success _or_failure +
 success
 text
 failure
 text
 second_se gment
 …
 third_segm ent
 …
 landing +
 go _ard_in_aprch_conf
 success _or_failure +
 success
 text
 failure
 text
 go _ard_in_landig_conf
 …
return
 TAKEOFF +
 FIRST _SEGMENT

 SUCCESS_OR_FAILURE +
 SUCCESS
 TEXT
 FAILURE
 TEXT

 SECOND_SE GMENT
 …
 THIR D_SEGMENT
 …

LANDING +

GO_ARD_IN_APRCH_CONF
 …

GO_ARD_IN_LANDIG_CONF

 …

V. SUMMARY AND FUTURE RESEARCH

Applying formal methods while specifying aircraft
software components that are safety critical, is an em erging
field of science. This research effort has introduced extensions
to the Descartes specification language using the BDI
architecture for specifying aircra ft software components. The
extended Descartes allows specifying sophisticated systems
like the aircraft software systems using the intelligent software
agent architecture. Descartes, being an e xecutable
specification language, has been used in this research effort to
analyze the input and ou tput of sample aircraft co mponent
development. Application of formal methods to s pecify
components during development of a component will result in
a safe, reliable system outcome. The extensions made to the
Descartes specification language ha ve been justified to be
appropriate for aircra ft software development by writing
specifications for such a c omponent in t his paper. From an
engineering standpoint, this research effort will lead t o future
incorporation of formal methods in s oftware development.
Also, the future directi ons from this research will be an
automated conversion of the low level specifications written
using Descartes into high level development specifications
using AUML. This transition will introduce a new perspective
in the field of software engineering while designing and
developing software products.

REFERENCES

[1] Raymer, D. P., Aircraft Design: A Conceptual Approach, 4th ed.: AIAA
Education Series, 2006.
[2] Wooldridge, M., "Intelligent Agents," in A Modern Approach to
Distributed Artificial Intelligence.: MIT Press, 1999, pp. 27-78.
[3] Salas, A. O., and Townsend, J. C., "Framework Requirements for MDO
Application Development," in 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St.Louis, MO, 1998.
[4] Heitmeyer, C. L., and Jeffords, R. L., "Applying a Formal Requirements
Method to Three NASA Systems: Lessons Learned," in Proceedings of IEEE
Aerospace Conference, 2007.
[5] Gobbo, D. D. , and M ili, A., "“Re-engineering Fault Toler ant
Requirements: A Case Study in Sp ecifying Fault Tolerant Flight Control
Systems," in Proceedings of the 5th IEEE International Symposium on
Requirements Engineering, Toronto, Canada, 2001, pp. 236-247.
[6] Medina, M. A., and Urban, J. E., "An Approach to Deriving Reactive
Agent Designs from Extensions to the Descartes Specif ication Language," in
Proceedings of the 8th International Symposium on Autonomous
Decentralized Systems, Sedona, Arizona, 2007, pp. 363-367.
[7] Subburaj, V. H., and Urban, J. E., "Issues and Ch allenges in Building a
Framework for Reactive Agent Systems," in Proceedings of the 3rd
International Workshop on Frontiers in Complex Intelligent and Software
Intensive Systems, 2010.
[8] Sung, K. Y., and Ur ban, J. E., "Real-time Descartes: a Real- time
Specification Language," in Proceedings of the 3rd Workshop on Future
Trends of Distributed Computing Systems, 1992, pp. 79-85.
[9] Subburaj, V. H., and U rban, J. E. , "Intelligent S oftware Agent De sign
Issues with Extensions to the Descartes Specification Language," in
Proceedings of the 22nd International Conference on Software Engineering
and Knowledge Engineering, 2010, pp. 668-671.

582

Using the Results from a Systematic Mapping Extension to Define a
Usability Inspection Method for Web Applications

Luis Rivero and Tayana Conte
Instituto de Computação, Universidade Federal do Amazonas (UFAM)

Manaus, AM - Brazil
{luisrivero,tayana}@icomp.ufam.edu.br

Abstract— Usability is one of the most crucial factors in Web
applications, allowing the successful usage of such systems. Many
Usability Inspection Methods (UIMs) have been proposed to
guarantee that Web applications provide a friendly, direct and
easy to understand interface to their users. Nevertheless, some of
these methods are not being used due to the lack of information
about them. In this paper we describe the actual state of UIMs
for Web applications through the extension of a systematic
mapping study about Usability Evaluation Methods. Besides
providing background knowledge to UIMs, our results showed
that in order to meet the actual needs of the software
development industry, emerging UIMs should: (a) find problems
in early stages of the development process; (b) find specific
problems and suggest solutions; and (c) provide automation.
Using these features and usability criteria from other UIMs, we
developed the Web Design Usability Evaluation (Web DUE)
technique. The Web DUE aims to improve the quality of Web
applications by allowing the usability evaluation of paper based
prototypes by using pieces of Web pages called Web page zones.
We have provided a proof of concept of the Web DUE by
evaluating a paper based mock-up of a real Web application.

Keywords-Usability Inspection Methods; Web Applications;
Systematic Mapping Extension

I. INTRODUCTION
In recent years, Web applications development demand has

grown considerably [1]. These applications are currently the
backbone of business and information exchange, and are being
used to present products and services to potential customers
[2]. According to Matera et al . [6], the acceptability of such
applications is determined by their degree of usability. If a
Web application possesses poor usability, it will be quickly
replaced by a mo re usable one as soon as its existence
becomes known to the target audience [7].

Usability Inspection Methods (UIMs) have emerged as a
cost-effective way to improve the usability of such systems
[14]. According to Matera et al. [6], the software development
industry has been investing in the development of a variety of
UIMs to address Web usability issues. Nevertheless,
companies are not using these methods [4]. This lack of usage
can be the cause of low quality regarding the usability aspect
within Web applications [9].

In [12], we extended a systematic mapping study on
usability evaluation methods for Web applications by selecting
and thoroughly analyzing the papers that addressed new
UIMs. This systematic mapping extension allowed us to

identify the state of art of UIMs for Web applications and to
provide researchers and practitioners with a knowledge
background for choosing a determined UIM.

In this paper, we have used the findings presented in [12]
to suggest a set of desirable features that a new UIM should
possess in order to meet the actual needs of the software
development industry. Based on these features, we have
proposed the Web Design Usability Evaluation (Web DUE)
technique. This technique aims to guide inspectors through the
evaluation of paper based prototypes by dividing Web pages
into Web page zones. According to Fons et al. [3], Web page
zones are pieces of Web pages with specific types of contents.
We crafted the Web DUE by selecting usability criteria from
UIMs within the studies in [12] and relating them to the Web
page zones. Furthermore, this paper also presents a proof of
concept of the Web DUE technique by using it to evaluate the
usability of a prototyped Web page of the Journal and Event
Management System (JEMS1).

This paper is organized as follows. Section II presents the
background to Usability Inspection Methods. In Section III we
summarize the planning and execution of the systematic
mapping extension on UIMs for Web applications. Section IV
shows the results from this extension, our findings and
suggests a set of desirable features for emerging UIMs for
Web applications. In Section V we show the Web DUE
technique proposal, while Section VI provides a proof of
concept by using it to evaluate the usability of a paper based
prototype of a r eal Web application. Finally, Section VII
presents our conclusions and future work.

II. USABILITY INSPECTION METHODS
The term usability is defined in the ISO 9241-11 [5] as

“the extent to which a product can be used by specified users
to achieve specific goals with effectiveness, efficiency and
satisfaction in a specified context of use”. Regarding Web
applications, usability is one of the most relevant quality
aspects because of its own features, as cited in [10]: “Web
applications are interactive, user-centered, hypermedia-based
applications, where the user interface plays a central role”.

Many usability evaluation methods (UEMs) have been
proposed in the technical literature in order to improve the
usability of different kinds of software systems [4]. According
to Rocha and Baranauska [14], UEMs are procedures

1 https://submissoes.sbc.org.br/

583

composed by a set of well-defined activities that are used to
evaluate the system’s usability. UEMs are divided into two
categories: (a) user testing, in which empirical methods,
observational methods and question techniques can be used to
measure usability when users perform tasks on the system; and
(b) inspections, which make use of experienced inspectors to
review the usability aspects of the software artifacts [2]. In this
research, we focus on usability inspections as they can lower
the cost of finding usability problems since they do not need
any special equipment or laboratory [14].

The main generic UIMs that can be used to increase the
system’s usability and therefore its quality are: the Heuristic
Evaluation [8], the Cognitive Walkthrough [11], and the
Perspective-based Usability Inspection [15].

The Heuristic Evaluation, proposed by Nielsen [8], assists
the inspector in usability evaluations using guidelines. The
evaluation process consists of a group of e valuators who
examine the interface using heuristics, which are rules that
seek to describe common properties of usable interfaces.

The Cognitive Walkthrough, proposed by Polson et al.
[11], is a method in which a set of reviewers analyze if a user
can make sense of interaction steps as they proceed in a pre-
defined task. In order to identify usability problems the
inspectors ask questions to answer if: (a) the action is
sufficiently evident; (b) the action will be connected with what
the user is trying to do; and (c) if the user will understand the
system’s response.

According to Zhang et al. [15], it is difficult for an
inspector to detect all kind of problems at th e same time.
Consequently, they proposed a u sability inspection technique
based on perspectives (Usability Based Reading - UBR). In
the UBR, the inspector focuses in a s ub-set of questions
according to the usability perspective to find problems.

In the following Section we show how we carried out the
extension of the systematic mapping on UIMs for the Web.

III. EXTENSION OF THE SYSTEMATIC MAPPING ABOUT
UIMS FOR WEB APPLICATIONS

Fernandez et al. [2] presented a systematic mapping on
UEMs for Web applications. However, in order to thoroughly
describe how UIMs for the Web had been applied, it was
necessary to independently analyze them. In this Section, we
briefly explain the planning and execution of the extension of
the systematic mapping in [2]. In this extension, we extracted
specific information from [2] regarding the new UIMs for
Web applications. We used the obtained results to answer the
following research question: “What new Usability Inspection
Methods have been employed to evaluate Web artifacts and
how have these methods been used?” Readers must take note
that a thoroughly described version of the execution process of
this extension can be found in [12].

Selection Process: Fernandez et al. [2] analyzed 206
papers about usability evaluation methods for Web
applications and classified them into categories. We have used
this classification as a starting point in the selection of papers.
We selected papers that, according to [2], described new

inspection methods for Web applications. From this initial set
of papers we only selected the studies that thoroughly
described UIMs at a mature stage. Consequently, we discarded
papers that met at least one of the following exclusion criteria:

 Papers presenting usability problems and no
methodology to identify them.

 Papers describing only ideas for new research fields.
 Papers presenting techniques with no description of

their execution process.

Categorization of Studies: We cr eated a set of research
sub-questions to better address the state of a rt of U IMs for
Web applications. We used the answers to these sub-questions
to categorize the analyzed papers. Table I shows our research
sub-questions, their motivation, and the possible answers that
can be obtained when analyzing a selected research paper.

TABLE I. RESEARCH SUB-QUESTIONS, POSSIBLE ANDSWERS AND
MOTIVATIONS FROM THIS SISTEMATYC MAPPING EXTENSION.

Research Sub-Questions and
Answers

Motivation

Q1. Theoretical Basis Method:
 (a) Heuristic Evaluation
 (b) Cognitive Walkthrough
 (c) Perspective Based
 (d) Other Basis

To discover whether the Usability
Inspection Methods for the Web have
been developed considering well known
Generic Usability Inspection Methods or
whether they have been using new basis.

Q2. Type of Evaluated Artifact:
 (a) HTML code
 (b) Model
 (c) Application/Prototype

To discover which is the most commonly
evaluated artifact in Usability Inspection
Methods for the Web.

Q3.- Type of Application
Evaluated by the Inspection
Method:
 (a) Generic
 (b) Specific

To discover whether the Usability
Inspection Methods for the Web have
been crafted to find generic usability
problems or usability problems of a
specific type of Web application.

Q4.- Use of Inspectors in the
Inspection Process:
 (a) Yes
 (b) No

To discover whether the Usability
Inspection Methods for the Web have
been automated to a point where
inspectors are no longer necessary.

Execution: Fig. 1 shows how we executed this systematic
mapping extension. From the initial set of 206 pa pers in
Fernandez et al. [2], we selected 37 papers that, according to
the classification in [2], presented new usability inspection
methods for Web applications. However, as 5 p apers were
unavailable for download, we reduced the initial set to 32.

Figure 1. Execution process of this Systematic Mapping Extension.

After reading each study, we discarded 6 studies for
meeting the exclusion criteria we defined in the selection
process stage. The Selected Primary Studies List in this paper
shows the 26 selected papers that we analyzed in this literature
review. In the next Sections we explain how we used the data

584

obtained from the categorization of studies, to address the
current stage of UIMs for the Web and suggest a new UIM.

IV. RESULTS DISCUSSION AND IMPLICATIONS FROM THE
SYSTEMATIC MAPPING EXTENSION

This Section summarizes the principal findings from the
analysis of the results of this literature review. Furthermore,
we used these findings to propose a set of d esirable features
for emerging UIMs seeking to meet the actual needs of the
software development industry.

A. Results and Principal Findings
Table II shows the classification of p rimary studies

according to the research sub-questions we defined above.
Readers must take note that the summation of the percentages
of sub-questions Q1 and Q2 is over 100% as a paper can be
classified in one or more answers. In this sub-section we will
discuss our findings regarding each of the sub-questions.

Q1 - Theoretical Basis Method: Around 60% of t he
reviewed papers based the new UIM for Web applications on
already known usability inspection methods. UIMs based on
Nielsen’s [8] Heuristic Evaluation (27%), mainly focused on
better describing or self explaining how or in which situation
each heuristic could be applied. Regarding the use of the
Cognitive Walkthrough (19%), two new inspection methods
were developed: Blackmon’s CWW described in papers S06,
S07 and S08; and Filgueiras’ RW described in S14. Studies
S09, S12, S23 and S25 (15%) made use of perspectives to help
focus on each usability attribute when carrying out the
inspection. Moreover, the remaining techniques (58%) are
being based on heuristics specifically proposed for the Web.

UIMs for the Web are based on: (a) generic usability
inspection methods; and (b) new specific evaluation criteria
for the Web. However, none of them can address all
circumstances and types of Web artifacts. A combination of
these methods can be used to enhance the evaluation results.

Q2 - Type of Evaluated Artifact: Around 77% o f the
reviewed papers reported UIMs analyzing prototypes/systems.
Inspectors carry out the evaluation process by analyzing the
interaction provided by the prototype or product while
executing a task on it. Moreover, 15% (S02, S21, S23 and
S26) of the analyzed papers describe automated techniques in
which HTML code was verified. Regarding Model analysis,
15% (S04, S18, S21 and S23) of the studies evaluated if the
model met interaction rules within the Web domain.

The main artifacts used during the inspection process are:
models, HTML code and prototype/application. Our results
show that prototype/application is the most common evaluated
artifact. However, the evaluation is being held with functional
prototypes, which means that the cost of correcting usability
problems is high. Therefore, there is a shortage of UIMs for
the Web able to identify usability problems during the initial
stages of the development process.

Q3 - Type of Web Application Evaluated by the
Inspection Method: The results revealed that around 88% of
the UIMs could be applied to any Web application. The
remaining studies (S01, S05 and S24), around 12% of the

selected UIMs, focused on a specific type of Web application.
Allen et al. (S01) describe a paper based technique for medical
Web applications. Basu (S05) proposes a new framework to
evaluate e-commerce applications. In paper S24, Thompson
and Kemp evaluated Web 2.0 applications.

Generic UIMs focus on finding usability problems that can
be applied to every Web application. However, most of them
do not provide feedback on how to treat a violation of
usability. On the other hand, UIMs that evaluate specific types
of Web applications provide evaluators with more data
regarding that type of application. Our results show that there
is a higher number of UIMs for generic Web applications
compared to the number of UIMs for specific Web
applications; and that there is a need for UIMs that suggest
solutions for the identified problems.

TABLE II. RESULTS OF THE CLASSIFICATION ANALYSIS.

Q1 Q2 Q3 Q4

Paper a b c d a b c a b a b
S01 X X X X
S02 X X X X
S03 X X X X
S04 X X X X
S05 X X X X
S06 X X X X
S07 X X X X
S08 X X X X
S09 X X X X X
S10 X X X X
S11 X X X X
S12 X X X X X
S13 X X X X
S14 X X X X
S15 X X X X
S16 X X X X
S17 X X X X
S18 X X X X
S19 X X X X
S20 X X X X X
S21 X X X X X
S22 X X X X
S23 X X X X X X
S24 X X X X
S25 X X X X X
S26 X X X X

Total
Studies 7 5 4 15 4 4 20 23 3 24 2

% 26.9 19.2 15.4 57.7 15.4 15.4 76.9 88.5 11.5 92.3 7.7
Categorization of Primary Studies
Q1.- Theoretical Basis Method: (a) Heuristic Evaluation
(b) Cognitive Walkthrough (c) Perspective Based (d) Other Basis
Q2.- Type of Evaluated Artifact: (a) HTML code (b) Model
(c) Application/Prototype
Q3.- Type of Application Evaluated by the Inspection Method:
(a) Generic (b) Specific
Q4.- Use of Inspectors in the Inspection Process: (a) Yes (b) No

Q4 - Use of Inspectors in the Inspection Process: Our
results show that the automation of the inspection process is
not yet possible in techniques involving judging and human
interaction. Consequently, techniques using model and
prototype analysis are not being automated (92%), but
enhanced by using tools to provide inspectors with means of
reducing evaluation effort. However, 8% of the reviewed
studies described UIMs that did not use any inspectors at all.

585

There is a relationship between the UIM’s evaluated artifact
and the degree of automated process. UIMs evaluating HTML
code are being fully automated. Nevertheless, their evaluated
usability aspects are less than the usability aspects of UIMs
that make use of inspectors.

B. Meeting the needs of the Software Development Industry
We used the sub-questions from this systematic mapping

extension to suggest three features an emerging UIM should
possess in order to meet the actual needs of the software
development industry. We did not consider sub-question Q1
(Theoretical Basis Method) because its goal was to explore the
bases of new UIMs for Web applications, rather than
identifying research opportunities. We p resent three features
and their relationship to our research sub-questions as follows:

Feature 1 - Ability to find problems in early stages of
the development process: The results for sub-question Q2
indicated that there is a need for UIMs evaluating the usability
of artifacts related to the early stages of the development
process. Co nsequently, in order to reduce the cost of
correcting usability problems new UIMs should be able to
evaluate models or prototypes.

Feature 2 - Ability to find specific problems and suggest
solutions: Research sub-question Q3 indicated that most
Generic UIMs do not provide feedback on how to treat a
usability problem once it is found. Consequently, emerging
UIMs should be able to aid in both the identification and
solution of usability problems.

Feature 3 - Automation: Our results for sub-question Q4
indicated that there is a s hortage of automated UIMs.
Therefore, in order to enhance the performance of the
evaluation, new UIMs should be automated or provide
assistance by means of a to ol. Automated UIMs reduce the
cost of carrying out inspections. Nevertheless, not every UIM
can be automated. In this case, the UIM should provide means
to reduce the inspector’s effort.

V. USING FINDINGS TO DEFINE A NEW UIM
The Web Design Usability Evaluation (Web DUE)

technique is an inspection method that proposes to meet the
needs of the software development industry regarding UIMs
for Web applications. Therefore, the Web DUE technique was
crafted by adopting the suggested features obtained from this
systematic mapping extension. In this Section, we relate each
of the characteristics of the Web DUE technique to the
suggested features.

The Web DUE technique evaluates the usability of paper
based low-fidelity prototypes (or mock-ups). This means
that the evaluation can be carried out in the early stages of the
development process (Feature 1).

The Web DUE technique guides the evaluation through
Web page zones. Web page zones are pieces of Web pages
with specific types of contents [3]. Table III shows the Web
page zones used by the Web DUE technique and their
contents. For each of the Web page zones we crafted a set of
usability verification items based on the Heuristic Evaluation
[8] and the Web Design Perspectives-Based Usability

Evaluation – WDP [1] technique. The purpose of this usability
verification items is to address usable characteristics within
each of the Web page zones. Some of these verification items
are shown in Table IV. Readers must note that the usability
verification items also include examples in order to aid
inspectors in the identification and solution of the identified
problems. The complete list of the usability verification items
per Web page zone can be found in [13].

Once the inspector verifies which Web page zones are
contained within the paper based prototypes, he/she uses the
usability verification items to find specific problems affecting
the Web page zones that are related to the evaluated Web
application (Feature 2). Furthermore, the inclusion of the
violated usability verification items within the paper based
prototypes can aid in the correction of the encountered
usability problems.
TABLE III. WEB PAGE ZONES USED BY THE WEB DUE TECHNIQUE BASED

ON [3].

A simplified version of the evaluation process of the Web
DUE technique can be seen in Fig. 2. Initially, inspectors must
divide the provided mock-ups into their respective Web zones
(Stage 1). For each Web page zone the inspector verifies if the
application meets usability rules by checking the technique’s
usability verification items (Stage 2). Finally, the non
conformity of any verification item implies in a usability
problem (Stage 3). In order to correct usability problems, the
Web application must consider including the violated items.

Figure 2. Simplified inspection process of the Web DUE technique.

Another important feature is that the Web DUE technique
makes use of tools to reduce inspectors’ effort. As it
involves inspectors’ judgment in order to identify usability
problems, the Web DUE is not fully automated. However, it
aids inspectors during the evaluation process by using a tool

Zone Contents
Navigation Navigation Links
System’s State Information about the application's state and how we got

there.
Information Information from the application's data base.
Services Access to functionalities related to the information zone.
User Information Information about the logged user.
Institution Information about the institution that is responsible for

the Web application.
Direct Access Common Web functionalities (Login, Logout, Home).
Data Entry Provides a form to input data to execute certain

operations.
Custom Domain-independent content
Help Information about how to use the application and how it

works.

586

that automatically presents the usability verification items
checklists to aid inspectors during the inspection of paper
based prototypes (Feature 3).

VI. APPLYING THE WEB DUE TECHNIQUE
In this Section we provide a proof of concept by evaluating

the usability of a paper based prototype using the Web DUE
technique. Readers must take note that we only show part of
the example due to lack of space.

Part 1 of Fig. 3 shows the paper based prototype of a Web
page of the Journal and Event Management System (JEMS).
This Web page is used in the JEMS system to edit user data. In
Fig. 3 part 2 we have identified all Web page zones: System’s
State Zone, Data Entry Zone and Navigation Zone. In Fig. 3
part 3 we have also zoomed in some of the components within
the Web page zones of the mock-up. These components have
been augmented because they represent usability problems
within the paper based prototype of the Web page.

Figure 3. Example of the Web DUE’s Evaluation Process using a Mock-up.

In Table IV we present some of the usability verification
items of the Web DUE technique and their corresponding Web
page zones. These verification items are nonconformities
regarding the evaluated mock-up in Fig. 3. In other words, the
paper based prototype of the Web page has not met these
usability verification items. If we look at Fig. 3 part 3 and
Table IV simultaneously, we can relate the nonconformity of
the usability verification items in Table IV with the augmented
elements A, B and C in Fig. 3. part 3. Readers must take note
that we have shown one augmented element per Web page
zone. We will address each of the encountered usability
problems as follows.

In the System’s State zone, the usability verification item
01 indicated that, despite showing the actual state of the
system, the prototype does not show it logically (see Fig. 3
part 3 element A). In other words, the prototype does not show
how the user reached that state. Furthermore, in the Data Entry
zone, we identified nonconformity 02. This usability
verification item indicates that the mock-up does not request
data in a logical way. Asking for a country’s state (even if this
input data must be filled only for members from the US)

before filling the user’s country does not follow a logical order
(see Fig. 3 part 3 element B). Finally, in the Navigation zone
we encountered nonconformity 03. This verification item
indicates that the symbols used within the navigation zone are
difficult to understand. A user would find it difficult that the
“globe” symbol would leave to the JEMS portal (see Fig. 3
part 3 element C).

TABLE IV. USABILITY VERIFICATION ITEMS THAT THE EVALUATED
MOCK-UP DOES NOT MEET WITHIN THE WEB DUE TECHNIQUE.

N° Web Page Zone Usability Verification Items
01 System’s State The System’s State is naturally and

logically presented to the user. For
example, when visualizing the system’s
state the user must be able to understand
what path led him to that state.

02 Data Entry The data to be input by the user are
requested in a natural and logical order. In
other words, when inputting data the
sequence of input data must be logical.

03 Navigation It is easy to understand the words and
symbols used in the system. In other words,
the user must be able to link the
information being showed (labels or
images) with what he/she is trying to do.

We have shown the simplified inspection process of the
Web DUE technique by evaluating a low fidelity prototype of
a real Web page. Readers must note that in order to evaluate
the entire Web application, all Web pages within the Web
application must be evaluated. Furthermore, in order to correct
these problems, the prototype must integrate the violated
verification items from Table IV.

VII. CONCLUSIONS AND FUTURE WORK
This paper has discussed the results from a systematic

mapping extension addressing UIMs for the Web. The
analysis of 26 s tudies from [2] showed that in order to meet
the actual needs of t he software development industry,
emerging UIMs should posses the following features: (a) find
problems in early stages of t he development process; (b) find
specific problems and suggest solutions; and (c) provide
automation or assistance to reduce the inspector’s effort.

We used these features to propose the Web DUE technique
that guides inspectors through the inspection process using
Web page zones. The Web DUE also seeks to evaluate
usability attributes in early stages of the development process
by evaluating paper based prototypes. We have presented a
proof of concept by evaluating a mock-up of a real Web page.

We hope that our findings will be useful to provide an
outline to which usability evaluation methods can be applied.
We also hope that the set of d esirable features for emerging
UIMs become adopted in new UIM proposals for Web
applications. Moreover, as future work, we pretend to carry
out empirical studies in order to evaluate the feasibility of the
Web DUE technique, and verify if the tool support influences
in a positive way in the results of the evaluation. Furthermore,
we pretend to use the results of the studies to refine the
technique and understand how it will be used by inspectors in
the context of a real development environment.

587

ACKNOWLEDGMENTS
We would like to acknowledge the support granted by

CAPES process AEX 4982/12-6.

REFERENCES
[1] T. Conte, J. Massollar, E. Mendes and G. Travassos, “Web usability

inspection technique based on d esign perspectives,” IET Software,
Volume 3, Issue 2, 2009.

[2] A. Fernandez, E. Insfran and S. Abrahao, “Usability evaluation methods
for the Web: A systematic mapping study,” Information and Software
Technology, Volume 53, Issue 8, 2011.

[3] J. Fons, V. Pelechano, O. Pastor, P. Valderas, and V. Torres, “Applying
the OOWS model-driven approach for developing Web applications:
The internet movie database case study,” In: G. Rossi, D. Schwabe, L.
Olsina and O. Pastor, Web Engineering: Modeling and Implementing
Web Applications, Springer, 2008.

[4] E. Insfran and A. Fernandez, “A Systematic Review of Usability
Evaluation in Web Development,” Proc. Second International Workshop
on Web Usability and Accessibility, New Zealand, 2008, pp. 81-91.

[5] International Organization for Standardization, ISO/IEC 9241-11:
Ergonomic Requirements for Office work with Visual Display
Terminals (VDTs) – Part 11: Guidance on Usability, 1998.

[6] M. Matera, F. Rizzo and G. Carughi, “Web Usability: Principles and
Evaluation Methods,” In: E. Mendes and N. Mosley, N, Web
Engineering, Springer, 2006.

[7] E. Mendes, N. Mosley and S. Counsell, “The Need for Web
Engineering: An Introduction. Web Engineering,” In: E. Mendes and N.
Mosley, Web Engineering, Springer, 2006.

[8] J. Nielsen, “Finding usability problems through heuristic evaluation,”
Proc. CHI’92, UK, 1992, pp. 373-380.

[9] J. Offutt, “Quality attributes of Web software applications,” IEEE
Software: Special Issue on Software Engineering of Internet Software,
Volume 19, Issue 2, 2002.

[10] L. Olsina, G. Covella and G. Rossi, “Web Quality,” In: E. Mendes and
N. Mosley, Web Engineering, Springer, 2006.

[11] P. Polson, C. Lewis, J. Rieman and C. Wharton, “Cognitive
walkthroughs: a method for theory-based evaluation of user interfaces,”
International Journal of Man-Machine Studies, Volume 36, Issue 5,
1992.

[12] L. Rivero and T. Conte, “Characterizing Usability Inspection Methods
through the Analysis of a Systematic Mapping Study Extension,” Proc.
IX Experimental Software Engineering Latin Workshop, Argentina,
2012.

[13] L. Rivero and T. Conte, “Web DUE technique: Usability Verification
Items per Web Page Zone,” Technical Report RT-USES-2012-001,
2012. Available at: http://www.dcc.ufam.edu.br/uses/index.php/
publicacoes/cat_view/69-relatorios-tecnicos.

[14] H. Rocha and M. Baranauska, “Design and Evaluation of Human
Computer Interfaces,” (Book), Nied, 2003. (in Portuguese)

[15] Z. Zhang, V. Basili and B. Shneiderman, “Perspective-based Usability
Inspection: An Empirical Validation of Efficacy,” Empirical Software
Engineering, Volume 4, Issue 1, 1999.

SELECTED PRIMARY STUDIES LIST
[S01] M. Allen, L. Currie, S. Patel and J. Cimino, “Heuristic evaluation of
paper-based Web pages: A simplified inspection usability methodology,”
Journal of Biomedical Informatics, Volume 39, Issue 4, 2006.
[S02] D. Alonso-Rios, I. Vazquez, E. Rey, V. Bonillo and B. Del Rio, “An
HTML analyzer for the study of Web usability,” Proc. IEEE International
Conference on Systems, Man and Cybernetics, USA, 2009, pp. 1224-1229.
[S03] C. Ardito, R. Lanzilotti, P. Buono, and A. Piccinno, “A tool to support
usability inspection,” Proc. Working Conference on Advanced Visual
Interfaces, Italy, 2006, pp. 278-281.
[S04] R. Atterer and A. Schmidt, “Adding Usability to Web Engineering
Models and Tools,” Proc. 5th International Conference on Web Engineering,
Australia, 2005, pp. 36-41.

[S05] A. Basu, “Context-driven assessment of commercial Web sites,” Proc.
36th Annual Hawaii International Conference on System Sciences, USA,
2003, pp. 8-15.
[S06] M. Blackmon, P. Polson, M. Kitajima and C. Lewis, “Cognitive
walkthrough for the Web,” Proc. SIGCHI Conference on Human Factors in
Computing Systems, USA, 2002, pp. 463-470.
[S07] M. Blackmon, M. Kitajima and P. Polson, “Repairing usability
problems identified by the cognitive walkthrough for the Web,” Proc. SIGCHI
Conference on Human Factors in Computing Systems, USA, 2003, pp. 497-
504.
[S08] M. Blackmon, M. Kitajima and P. Polson, “Tool for accurately
predicting Website navigation problems, non-problems, problem severity, and
effectiveness of repairs,” Proc. SIGCHI Conference on Human Factors in
Computing Systems, USA, 2005, pp. 31-40.
[S09] D. Bolchini and F. Garzotto, “Quality of Web Usability Evaluation
Methods: An Empirical Study on MiLE+,” Proc. International Workshop on
Web Usability and Accessibility, France, 2007, pp. 481-492.
[S10] C. Burton and L. Johnston, “Will World Wide Web user interfaces be
usable?,” Proc. Computer Human Interaction Conference, Australia, 1998, pp.
39-44.
[S11] J. Chattratichart and J. Brodie, “Applying user testing data to UEM
performance metrics,” Proc. of the Conference on Human Factors in
Computing Systems, Austria, 2004, pp. 1119-1122.
[S12] T. Conte, J. Massollar, E. Mendes and G . Travassos, “Web usability
inspection technique based on design perspectives,” IET Software, Volume 3,
Issue 2, 2009.
[S13] M. Costabile and M. Matera, “Guidelines for hypermedia usability
inspection,” IEEE Multimedia, Volume 8, Issue 1, 2001.
[S14] L. Filgueiras, S. Martins, C. Tambascia, and R. Duarte, “Recoverability
Walkthrough: An Alternative to Evaluate Digital Inclusion Interfaces,” Proc.
Latin American Web Congress, Mexico, 2009, pp. 71-76.
[S15] P. Fraternali, and M. Tisi, “Identifying Cultural Markers for Web
Application Design Targeted to a M ulti-Cultural Audience,” Proc. 8th
International Conference on Web Engineering, USA, 2008, pp. 231-239.
[S16] Y. Habuchi, M. Kitajima and H. Takeuchi, “Comparison of eye
movements in searching for easyto-find and hard-to-find information in a
hierarchically organized information structure,” Proc. Symposium on Eye
Tracking Research & Applications, USA, 2008, pp. 131-134.
[S17] S. Kirmani, “Heuristic Evaluation Quality Score (HEQS): Defining
Heuristic Expertise,” Journal of Usability Studies, Volume 4, Issue 1, 2008.
[S18] F. Molina and A. Toval, “Integrating usability requirements that can be
evaluated in design time into Model Driven Engineering of Web Information
Systems,” Advances in Engineering Software, Volume 40, Issue 12, 2009.
[S19] M. Moraga, C. Calero and M. Piattini, “Ontology driven definition of a
usability model for second generation portals,” Proc. 1st International
Workshop on Methods, Architectures & Technologies for e-Service
Engineering, USA, 2006.
[S20] A. Oztekin, A. Nikov and S. Zaim, “UWIS: An assessment
methodology for usability of Web-based information systems,” Journal of
Systems and Software, Volume 8, Issue 12, 2009.
[S21] L. Paganelli and F. Paterno, “Automatic reconstruction of the
underlying interaction design of Web applications,” Proc. 14th International
Conference on Software Engineering and Knowledge Engineering, Italy,
2002, pp.439-445.
[S22] P. Paolini, “Hypermedia, the Web and Usability issues,” Proc. IEEE
International Conference on Multimedia Computing and Systems, Italy, 1999,
pp. 111-115.
[S23] O. Signore, “A comprehensive model for Web sites quality,” Proc. 7th
IEEE International Symposium on Web Site Evolution, Hungary, 2005, pp.
30-36.
[S24] A. Thompson and E. Kemp, “Web 2.0: extending the framework for
heuristic evaluation,” Proc. 10th International Conference NZ Chapter of the
ACM’s Special Interest Group on Human-Computer Interaction, New Zeland,
2009, pp. 29-36.
[S25] L. Triacca, A. Inversini and D. Bolchini, “Evaluating Web usability
with MiLE+,” Proc. 7th IEEE International Symposium on Web Site
Evolution, Hungary, 2005, pp. 22-29.
[S26] J. Vanderdonckt, A. Beirekdar, and M. Noirhomme-Fraiture,
“Automated Evaluation of Web Usability and Accessibility by Guideline
Review,” Proc. 4th International Conference on Web Engineering, Munich,
2004, pp. 28-30.

588

Improving a Web Usability Inspection Technique
through an Observational Study

Priscila Fernandes, Tayana Conte
Grupo de Usabilidade e Engenharia de Software (USES)

Universidade Federal do Amazonas
Manaus, Brazil

{priscila.fernandes, tayana}@icomp.ufam.edu.br

Bruno Bonifácio
Nokia Institute of Technology - INdT

Manaus, Brazil
{bruno.bonifacio}@indt.org.br

Abstract— Given the growth in the usage of Web Applications,
the usability of these applications has become a key success
factor. Several technologies have been developed to evaluate and
improve this quality factor. However, the usability inspections
results still depend on the inspector’s experience. We have
proposed a Web usability inspection approach, called WE-QT
(Web Evaluation – Question Technique), a question based
technique that aims to reduce the difficulties of inspectors with
little knowledge of usability. We are following an
experimentation-based methodology to support its development
and improvement. This paper presents an observational study,
aimed at eliciting how inspectors apply the WE-QT technique.
We discuss the quantitative and qualitative results and their
impact on improving the WE-QT. Results indicated that our
technique assists novice inspectors uncovering usability problems
effectively; despite qualitative data indicate the need for
improvement.

Keywords – web application, usability evaluation, inspection
technique; observarional study; qualitative analysis

I. INTRODUCTION
The increasing popularity of Web applications has allowed

an intensive use of these applications in current society [1]. The
success of Web applications can be determined by two
features: their fast evolution and their usability [2]. Usability is
considered to be one of the most important quality factors for
Web applications, along with others such as reliability and
security [3].

The acceptability of Web applications relies strictly on the
usability of the applications [4]. Web applications with poor
usability will be quickly replaced by other ones more usable, as
soon as its existence becomes known to the target audience [5].
Still, users often face errors while using these applications,
caused by the not intuitive interfaces [6]. Therefore, improving
usability of Web application can substantially minimize the
users’ interaction difficulty and improve the quality of these
applications [7].

The challenge of developing Web applications with more
intuitive interface has made the usability evaluation of these
applications an important research area. Several methodologies
to ensure a good usability specific for Web applications have
been proposed, some of them based on user testing and others
based on inspections performed by experts [8]. However,
usability evaluations on Web development processes are often

avoided by developers or companies due to their lack of
experience in the field. Despite the high demand for usability
evaluations of Web applications, developing methods to assist
novice inspectors detecting defects without compromising the
inspection result is not a simple task. According to Conte et al.
[9], inspectors’ skills such as experience on usability and
inspection can affect the outcome of the inspection.

For this reason, we have proposed a new usability
inspection technique, called WE-QT (Web Evaluation
Question-Technique) [10]. The WE-QT technique was
specifically tailored for usability evaluation of Web
applications for novice evaluators. It uses a question based
approach to guide the inspectors uncovering usability
problems. The main goal of our solution is to minimize the
difficulties and efforts of software developers with little
knowledge in usability when executing inspections.

To support the development and validation of the WE-QT
technique, we adopted the experimental methodology presented
in [11]. This methodology comprises four stages: 1) feasibility
studies to determine the usage possibility of the technology; 2)
observational studies to improve the understanding of the
technology, that aims to answer the question “Do the steps of
the process make sense?”; 3) case studies in real lifecycle to
characterize the technology application during a real lifecycle,
and; 4) case studies in industry to identify if technology
application fits into the industrial setting. Following this
methodology, Fernandes et al. [10] presented an overview of
the development of our technique and the feasibility study
results, including discussions on how the methodology guided
this phase of its development.

This paper describes the conducted observational study,
aimed at eliciting how inspectors apply the WE-QT technique.
We analyzed the qualitative data using coding procedures [12].
We discuss the results of the quantitative and qualitative data
analyses and their impact in the improvement of the WE-QT
technique. The results show that our technique assists novice
inspector detecting usability defects effectively.

The remainder of this paper is structured as follows:
Section 2 presents some background information on Web
usability evaluation. Section 3 pr esents our technique, as th e
results of a feasibility study aimed at improving the technique.
In Section 4, the observational study to evaluate our technique

589

is discussed in detail, including our goals and experimental
design. In Section 5 and 6 the results obtained by a quantitative
and qualitative analysis are presented, respectively. Finally, our
conclusions and future work are given in Section 7.

II. RELATED WORK
According to Offutt [3], one of the three quality criteria on

the dominant Web development is usability. ISO 9241 standard
[13] defines usability as “the extent to which a product can be
used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context
of use”. Although a lot is known concerning the development
of usable Web applications, many of these applications still do
not meet most customers’ usability expectations [8].

Due to the importance of usability, the software
development industry is in vesting in techniques and methods
for the design and evaluation of web applications aiming at
improving the interaction quality [4]. Usability evaluation
methods can be divided into two categories [14]: Usability
Inspections, evaluation methods based on experts’ analyses;
and Usability Tests, in which usability defects are discovered
by observation and interaction with users while they perform
tasks or provide suggestions about the interface design [4].

According to Fernandez et al. [8], most of the published
studies concerning Web usability evaluation are based on user
participation, while inspections methods are being less applied,
even being naturally less expensive, since it does not need any
special equipment [4]. This scenario indicates some research
opportunities on usability inspections techniques, aiming to
reduce the cost of evaluations and encouraging a more frequent
usage of usability evaluation in the industrial environment.

Several usability inspection techniques specific to web
applications have been proposed [6, 9, 15, 16, 17, 18, 19, 20].
Conte et al. [9] proposed the WDP technique (Web Design
Perspective-Based Usability Evaluation Technique). Despite
the feasibility of the WDP technique to detect usability defects
on web applications, novice inspectors had difficulties using
the technique caused by lack of skills such as experience on
usability and inspection, which can affect the outcome of the
inspection [9]. Aiming to guide novice inspectors uncovering
usability problem, Gomes et al. [6] proposed the WDP-RT
(Web Design Perspectives-based Inspection – Reading
Technique). The results of empirical studies to evaluate the
WDP-RT technique indicated that, despite the WDP-RT
technique helping novice inspectors finding usability problems
efficiently and effectively, the inspectors still have difficulty on
applying it [21].

The need to provide an easier usability inspection approach
for novice inspectors motivated our research. Therefore, we
proposed a new usability inspection technique for inspectors
with little knowledge on usability and inspections. Our
technique is called WE-QT (Web Evaluation Question
Technique), and we present it in the next Section.

III. WE-QT (WEB EVALUATION – QUESTION TECHNIQUE)
In order to p rovide an ea sier and effective usability

inspection approach for novice inspectors, we evolve the WDP-

RT technique into another type of inspection technique: the
question based approach, WE-QT [10].

The WE-QT technique consists of a set of questions that
guide inspectors uncovering usability problems. The question
based approach provided by WE-QT simplifies the inspection
process, aiming to r educe the difficulties of the novice
inspectors executing the inspection. Our technique does not
require training on usability, inspection or on the technique
itself before utilizing it. The WE-QT technique hides the Web
perspective concepts used on WDP-RT, as w ell as any other
information that is not being needed at a certain time of the
inspection, aiming not to confuse the inspectors with irrelevant
information. The questions that compose our technique were
developed extracting the main goal from the instructions of
WDP-RT and converting them into questions (Fig. 1).

Figure 1. Mapping: WDP-RT’s instructions into the WE-QT’s questions

The questions are classified into Decision Questions (DQ)
and Sub-Questions (SQ). The DQs are responsible for verifying
the elements existence, while SQs are responsible for the
evaluation of these elements [10]. Item (a) of Fig. 1 illustrates
the mapping from an instruction of the WDP-RT technique into
a DQ of the WE-QT. Once we mapped a DQ, the features that
must be evaluated regarding the element of DQ were extracted
and turned into a SQ (item (b) of Fig. 1). Depending on the
inspector’s answers to the questions, according to the mapping
of WE-QT, the DQs define if the SQs will be displayed.
Therefore, the inspection is customized by the elements of the
application, due to the adaptive flow of the questions. This
process is automated by a support the tool [10]. Table I shows
an extract of the first version of the WE-QT technique.

TABLE I. EXTRACT OF THE WE-QT TECHNIQUE - FIRST VERSION

Id Question Mapping
Yes No

0 Does the page show any messages? 1 10
1 Can you easily see the messages? 2 2
2 Can you easily understand the messages? 3 3
3 Are the messages consistent with the local culture? 4 4
4 Do the messages follow the visual pattern of the application? 5 5
⁞ ⁞ ⁞ ⁞

10 Does the page inform you in which part of the application
you are at? 11 13

11 Can you easily see this information? 12 12
12 Can you easily understand this information? 13 13

13 Are the information and options provided by the page
displayed in a natural and logic order? 14 14

590

Following the experimental methodology (see Section 1),
we executed a feasibility study in September 2010 to evaluate
the first version of our technique [10]. Its goal was observe the
feasibility of the WE-QT technique regarding efficiency (the
ratio between the number of detected defects and the time spent
in the inspection process); effectiveness (the ratio between the
number of detected defects and the total number of existing);
and inspectors’ perception of our technique. Subjects were 12
undergraduate students attending a S oftware Engineering
course at the Federal University of Amazonas. The results
suggested that the WE-QT technique is feasible to assist novice
inspectors detecting usability defects. The feasibility study is
detailed in [10]. The results of this study were also used as
input to further improve the WE-QT technique, resulting in its
second version (WE-QT v2). Summarizing, the improvements
made in the technique were: (1) grouping questions related to
the same object by transforming them into multiple answer
questions; (2) removing redundant questions; (3) allocating
certain questions to be displayed only once during the
inspection flow; and (4) detailing certain terms of the
technique. Table II shows an extract of the WE-QT v2.

TABLE II. EXTRACT OF THE WE-QT TECHNIQUE - SECOND VERSION

Set Question Mapping
Yes No Next

1 Does the page show any messages (error, warning
messages,...)? 2 7 ---

2

Regarding the messages:

--- --- 3
I cannot see the messages easily
I cannot understand the messages easily
The messages do not follow the visual pattern of the
application (same colors, text fonts,…)

7

The page:

--- --- 8
Is not what I expected
Does not have a pleasurable interface, in general
Has texts, images, buttons that I cannot easily see

8 Does the page inform you in which part of the application
you are at? 9 10 ---

9
Regarding your location:

--- --- 10 I cannot see this information easily
I cannot understand this information easily

10

The page:

--- --- 11

Does not emphasize important information to reach my
goal
Emphasizes irrelevant information to my goal
Does not support frequent performed tasks
Does not provide an option to return to the previous page
(do not consider the browser option)
Does not provide an option to return to the home page

11

Regarding the contents of the page:

--- --- 12

The information, options and menus of the page are not
displayed in a natural and logic order
The words, texts, figures and symbols from the page are
not easy to be understood
The page does not provide the definition of images,
symbols and unusual words where they are displayed
The language of the page is not in accordance with its
topic

IV. THE OBSERVATIONAL STUDY
Since the results obtained from the visibility study indicated

the WE-QT’s feasibility, we went one step further on following
the experimental methodology, in order to elicit the process
used by the usability inspectors when applying the technique
during a usability evaluation. With this purpose we performed
an observational study in October 2011 using the second
version of the WE-QT technique. Our aim was to understand
deeply the WE-QT process, so we did not compare the WE-QT
with any other technique. The observational study is d etailed
below:

A. Study Planning
The goal of this observational study, presented using the

GQM paradigm [22], can be formalized as:
Analyze: Web Evaluation Question-Technique (WE-QT v2)
For purpose of: understanding
With respect to: how the inspectors apply the WE-QT
technique
From the point of view: of Software Engineering researchers
In the context of: the evaluation of the usability of a real Web
application by undergraduate and postgraduate students.

In this study, we gathered two types of qualitative data:
observational and inquisitive data. The observational data was
collected during the inspection process, we used the Think-
Aloud Method that is an observation technique in which the
user is asked to 'think out loud' and describe the activities
he/she is performing as th ey are undertaken. This technique
helps understanding the difficulties experienced by the user and
also how they apply the technique [23]. We also used a
usability testing tool to capture the inspection section of each
inspector and to assist the collection of the perceptions of each
inspector during the evaluation. Inquisitive data was gathered
at the completion of inspection using follow-up questionnaires.

Despite the main goal of this study being eliciting the
process used by the inspectors when applying our technique,
we decided that executing quantitative analysis would provide
us with useful data. Therefore we used the effectiveness and
efficiency indicators, defined as: effectiveness (ratio between
the number of detected problems and the total of existing
problems); and efficiency (ratio between the number of
detected problems and the time spent in the inspection). These
indicators have been employed in other studies to evaluate Web
application usability inspection methods as well [9, 10, 24].

The object of this study was the Graduate student Portal
(www.ppgi.ufam.edu.br) of Federal University of Amazonas.
This application is used to support M.Sc. and PhD students as
well as teachers with academic matters. Three relevant use
cases were defined: (1) User authentication; (2) Registration in
two offered courses; and (3) Update personal data. Seven
subjects participated in the study, one undergraduate student
and six M.Sc. students. According to Nielsen [25], three to five
inspectors from each user profile are enough to detect most of
the usability defects.

During the planning stage we also elaborated the Inspection
Guide; the Consent Form; the Post Inspection Questionnaire to
collect the inspectors’ opinion about the technique; and the
Characterization Form to characterize subjects’ experience in

591

inspection and in usability. Table III shows the data obtained
from Characterization Form.

B. Study Execution
The inspection phase was carried out with each subject

individually. They were provided with the instruments to
accomplish the inspection and received instructions about the
evaluation by the moderator. Once the inspector understood the
procedures, the inspection process began. One researcher acted
as the observer, being responsible for conducting the detection
phase. It is worth to mention that the subjects did not receive
training on WE-QT technique, usability or inspections.

At the end of the inspection phase, a meeting attended by
the researchers and a control group formed by usability
specialists took place. A list of all usability problems identified
by the subjects was discriminated to classify these problems
into real defects or false positives. The authors of the technique
did not influence the discrimination.

V. QUANTITATIVE DATA ANALYSIS
As a result of the inspection, we identified a total of 85

usability defects. We computed the number of detected defects,
time spent during the inspection phase, efficiency and efficacy
for each inspector. Table III presents these results including
and their experience level.

TABLE III. SUMMARY OF THE INSPECTION RESULTS PER SUBJECT

N° Usability
Experience

Inspection
Experience Defects Time

(hours)
Defects
/Hours

% Founds
Defects

01 None None 25 1,85 13,51 29,41

02 None None 48 0,77 62,61 56,47

03 Low Low 26 0,67 39,00 30,59

04 Low None 27 0,92 29,45 31,76

05 Medium High 22 0,72 30,70 25,88

06 Low Medium 21 0,87 24,23 24,71

07 Medium Low 35 1,47 23,86 41,18

Table IV shows the averages for the time, and effectiveness
and efficiency indicators. Regarding the efficiency indicator,
inspectors detected an average of 31.91 defects per hour using
the WE-QT technique.

TABLE IV. DISCREPANCIES AND DETECTION TIME

Total Known
Defects

Effectiveness
Average Indicator

(%)

Average Time
(Hours)

Efficience Average
Indicator

85 34,29% 1,04 31,91

Regarding the effectiveness indicator, each inspector found
an average of 34.29% of known defects. Considering the time

of inspection, each inspector spent an average of 1.04 hours (or
62 minutes) detecting the usability problems.

As mentioned before, despite the goal of this study being
eliciting the process used by the inspectors when applying our
technique, the quantitative analysis results provide an important
opportunity to evaluate the performance of the technique.
Considering the effectiveness indicator in the last study [10],
the WE-QT technique resulted in 29,37%, while the new
version of WE-QT technique resulted in 34,29% (see Table
IV). These results are an indication that the WE-QT v2 is more
effective than its first version. Still considering this indicator,
we compared our results to the results of a study presented in
[6]. According to Gomes et al. [6], the effectiveness indicator
of the WDP technique resulted in 13% and WDP-RT technique
resulted 29%. This indicates that our technique is considerably
more effective than WDP and lightly more effective than
WDP-RT. As the number of usability defects depends on the
application, it is not recommended to compare the efficiency
indicator with previous studies.

VI. QUALITATIVE DATA ANALYSIS
 We analyzed the inquisition data using coding procedures

[12] in order to understand the subjects’ perception about the
technique. We a lso merged the inquisition data with the
observational data.

At the end of this analysis, the coding processes produced
altogether 21 codes which were associated to 3 categories:
Positive Aspects of the technique, Negative Aspects of the
technique and Improvements Suggestions. Although the
study’s goal was to identify how the inspectors apply our
technique, the Post Inspection Questionnaire had questions
about the appropriateness and ease of use of the technique,
which was useful to provide us with the subjects’ perception of
the technique.

Regarding the category “Positive aspects of the technique”,
we identified codes as: “It is simple and easy to apply the
technique”; “Using the technique contributes to detect a greater
number of usability problems” and “I would use and
recommend the WE-QT technique”.

Concerning the category “Negative aspects of the
technique” (Fig. 2) we identified the code “The questions have
ambiguous items”, we observed that the subject had doubt with
38% of the questions of the WE-QT technique. Another cited
code is “There is no reference to pop-ups and some elements
present in Web applications”, the observation data show that
the technique also does not cover elements such as logins
authentication, despite this element being evaluated as regular
data forms, there is n o specific evaluation criteria for its
features. The code “It was not trivial knowing what kind of
answer to provide to the questions” was considered as a delay
factor, and it also indicates that the technique requires more
guidance. The code “Using the technique is a little tiring” was
considered a harm factor to the inspector enjoyment when
using our technique.

592

Figure 3. Improvements suggestions

Figure 2. Negative aspects of the technique

About the category “Improvements suggestions” (Fig. 3)
we identified the code “The technique should have an option so
the user could visualize the symbol that represents the
mandatory fields”, indicating the need for more
exemplification. Even the items being described on the
questions, it was not enough to assist novice inspectors to
identify the elements to be evaluated; it strengthens the need
for more efficient ways to exemplify the items, as cited in the
code “The technique should provide examples that would help
understanding each question”. Another code identified in this
category was “An improvement should be made on how to
apply the technique, so it does not result in lack of attention
when detecting problems”, we observed that applying the
technique was the main cause of doubts among the subjects.
Information on the inspection flow was provided to the
subjects, however all of them had difficulty executing the
inspection.

Knowing that problem detection must be executed for every
page of the application, answering the questions of the
technique and in parallel observing the interface; the main
flows we identified were: complete the task and evaluate only
the last page; complete the task and execute a single evaluation
to all the pages; and explore different pages (ignoring the tasks)
and answer each question to each visited page. This shows that
the WE-QT technique is not applied correctly by the inspectors
and indicates that the inspection flow must be better explained
and detailed.

This observational study provided us with information on
how the inspectors apply the WE-QT technique. That allowed
us not only to elicit how inspectors apply our technique but to
deeply identify flaws and w eakness in it. We obtained

important feedback to improve the WE-QT technique, as it
pointed out specific problems in the technique.

Threats to Validity

As in all studies, there were various threats that could affect
the validity of our results. In this Section, we discuss those
threats; break them down into the following categories [26]:
internal, external, conclusion and construct.

Internal validity: in our experiment, we considered two
main threats that represent a risk for an improper interpretation
of the results: experience classification and subject observation.
The experience classification was based on the number of
experiences with inspection and usability. When subjects are
observed, they might act differently as if they were not under
observation, we tried to minimize this threat by encouraging
them to see themselves as collaborators and freely criticize the
evaluation object and the technique.

External validity: even though experiments using students
as subjects and running on an academic environment are
valuable as a way to characterize or understand aspects of new
proposals, two issues must be taken into consideration: (1)
probably students are not good substitutes for real world
inspectors; and (2) usually, academic environments are far
from simulating the existing conditions in industrial
development environments. However, the Graduate student
Portal represents a real application. Despite students not
representing the entire population of software professionals, it
has been shown that the differences between students and real
developers may not be as large as assumed by previous
research.

593

Conclusion validity: the small number of data points is not
ideal from the statistical point of view, however small sample
sizes are a known problem difficult to overcome.

Construct validity: we measured efficiency and
effectiveness using the same approach proposed in [27]. These
two measures are often used in studies that investigate defect
detection techniques [27], which is also our case.

VII. CONCLUSION AND FURTHER WORK
This paper described an observational study aimed at

eliciting how the usability inspectors apply the WE-QT
technique, a usability inspection technique specifically tailored
for novice inspectors. Both quantitative and qualitative results
of this study provided us with important feedback to improve
the WE-QT technique further.

The quantitative analysis showed that the effectiveness
indicator computed for WE-QT v2 was higher than the
effectiveness measured in the feasibility study. However, other
factors may have influenced this outcome besides the
improvement of WE-QT technique.

Despite the positive result of the quantitative data, the
qualitative analysis showed that novice inspectors still have
difficulties understanding determined questions of the
technique. In addition, the way subjects applied the WE-QT
technique did not correspond to the natural/correct inspection
flow, indicating that the inspection process is not well defined
in the technique. Therefore, according to the adopted
methodology, it is necessary to improve our technique and
execute another observational study.

Future work include: (1) improvement of the technique
based on a detailed analysis of the influence of each
verification in the final list of detected defects; (2) the
replication of the experiment in an industrial environment, and,
at last, (3) further studies comparing the WE-QT technique
with other inspection techniques specific for evaluate Web
applications usability.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support granted by
CAPES process AEX 4982/12-6.

REFERENCES
[1] G. Kappel, B. Proll, W. Retschitzegger, W. Schwinger, "Customization

for ubiquitous web applications: a comparison of approaches",
International Journal of Web Engineering and Technology, v. 1, pp. 79-
111, 2003.

[2] E. Luna, J. Panach, J. Grigera, G. Rossi, O. Pastor, "Incorporating
usability requirements in a test/model-driven web engineering
approach", Journal of Web Engineering, v. 9, n. 2, pp. 132-156, 2010.

[3] J. Offutt, “Quality Attributes of Web Software Applications”, IEEE
Software, v. 19, n. 2, pp. 25-32, 2002.

[4] M. Matera, F. Rizzo, G. T. Carughi, “Web Usability: Principles and
Evaluation Methods”, E. Mendes, N. Mosley, (eds), Web Engineering,
Spinger Verlag, 2006.

[5] E. Mendes, N. Mosley, S. Counsell, “The need for web engineering: an
introduction”, Mendes E., Mosley N. (eds.): ‘Web engineering’
Springer, pp. 1-26, 2006.

[6] M. Gomes, D. Viana, L. Chaves, A. Castro, V. Vaz, et al., "WDP-RT: A
usability inspection reading technique for web applications". VI

Experimental Software Engineering Latin American Workshop, v. 1, pp.
124 - 133, 2009. (In Portuguese).

[7] B. Bonifácio, D. Santos, C. Araújo, S. Vieira, T. Conte, " Applying
Usability Inspection Techniques for Evaluating Web Mobile
Applications". IX Brazilian Symposium of Human Factors on Computer
Systems, v. 1., pp. 189-192, 2010. (In Portuguese).

[8] A. Fernandez, E. Insfran, S. Abrahão, "Usability evaluation methods for
the web: A systematic mapping study", Journal Information and
Software Technology, v. 53, n. 8, pp. 789-817, 2011.

[9] T. Conte, J. Massolar, E. Mendes, G. H. Travassos, “Web Usability
Inspection Technique Based on Design Perspectives”, IET Software
Journal, v. 3, n. 2, pp. 106-123, 2009.

[10] P. Fernandes, L. Rivero, B. Bonifácio, D. Santos, T. Conte, " Evaluating
a New Usability Inspection Approach: a Quantitative and Qualitative
Analysis”. VIII Experimental Software Engineering Latin American
Workshop, v. 1, p. 67-76, 2011. (In Portuguese)

[11] F. Shull, J. Carver, G. H. Travassos, “An empirical methodology for
introducing software processes”, ACM SIGSOFT Software Engineering
Notes, v. 26, n. 5, pp. 288-296, 2001.

[12] A. Strauss, J. Corbin, “Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory”, 2ed., SAGE
Publications, 1998.

[13] ISO (1997). ISO 9241-11: Ergonomic requirements for office work with
visual display terminals (VDTs). Part 11 — Guidelines for specifying
and measuring usability. Gènève: International Organisation for
Standardisation.

[14] H. Rocha, M. Baranauskas, “Design and Evaluation of H uman-
Computer Interfaces”, M.C.C., 1. ed. Campinas: Emopi Publisher and
Graphic, v. 1, p. 244, 2003. (in Portuguese).

[15] M. Costabile, M. Matera, "Guidelines for Hypermedia Usability
Inspection", IEEE Computer Society Press, v. 8, n. 1, pp. 66-69, 2001.

[16] L. Triacca, A. Inversini, D. Bolchini, "Evaluating Web usability with
MiLE+". VII IEEE International Symposium on, pp. 22-29, 2005.

[17] M. Blackmon, P. Pols on, M. Kitajima, "Cognitive walkthrough for the
web". Conference on Human Factors in Computing Systems, v. 5, pp.
463 – 470, 2002.

[18] L. Filgueiras, S. Martins, C. Tambascia, R. Duarte, "Recoverability
Walkthrough: An Alternative to Evaluate Digital Inclusion Interfaces".
Latin American Web Congress, pp. 71-76, 2009.

[19] M. Allen, L. Currie, S. Bakken, V. Patel, J. Cimino, "Heuristic
evaluation of paper-based Web pages: A simplified inspection usability
methodology", Journal of Biomedical Informatics, v. 39, n. 4, pp. 412 –
423, 2006.

[20] A. Oztekin, A. Nikov, S. Zaim, "UWIS: An Assessment Methodology
For Usability Of Web-based Information Systems", Elsevier Science
Inc., v. 82, n. 12, pp. 2038-2050, 2009.

[21] M. Gomes, F. Santos, D. San tos, G. Travassos, T. Conte, “Evolving a
Usability Evaluation Technique through In Vitro and In Vivo Studies”.
IX Brazilian Symposium on Software Quality, v. 1, pp. 229 – 244, 2010.
(In Portuguese)

[22] V. Basili, H. Rombach, “The tame project: towards improvement-
oriented software environments”, IEEE Transactions on Software
Engineering, v. 14, n. 6, pp. 758 –773, 1988.

[23] A. Dix, J. E. Finlay, G. D. Abowd, R. Beale, “Human-Computer
Interaction”, 3rd Edition, Prentice-Hall, Inc., 2003.

[24] A. Fernandez, S. Abrah, E. Insfran, "Towards to the validation of a
usability evaluation method for model-driven web development", IV
International Symposium on Empirical Software Engineering and
Measurement, pp. 54, 2010.

[25] J. Nielsen, “Heuristic evaluation”, In: Jakob Nielsen, Mack, R. L. (eds),
Usability inspection methods, Heurisitic Evaluation, John Wiley & Sons,
Inc, 1994.

[26] C. Wöhlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wessl,
“Experimentation in software engineering: an introduction”, Kluwer
Academic Publishers, 2000.

[27] C. Denger, R. Kolb, “Testing and Inspecting Reusable Product Line
Components: First Empirical Results”, V International Software Metrics
Symposium, 2006.

594

Identification Guidelines for the Design of Interfaces
in the context of ECAs and ADHD

 Sandra Rodrigues Sarro Boarati
FACEN

Methodist University of Piracicaba
Piracicaba, SP

srsarro@unimep.br

Cecília Sosa Arias Peixoto
FACEN

Methodist University of Piracicaba
Piracicaba, SP

cspeixot @unimep.br

Abstract— The HCI (Human-Computer Interaction) aims to seek
a friendly interaction between man and computer. To
demonstrate it, it was studied in this paper the Cognitive Styles of
Learning and users suffering from attention deficit disorder
aiming at improvements in software development. The user
population is diverse, there is a mixture of multiple profiles of
users who need to somehow get their needs met and so this is why
the system interface should be created in accordance with the
diversity of users. Realizing this gap, this study examined the
learning styles and attention deficits, allowing to generate a series
of recommendations, guidelines, which are best suited to specific
characteristics of the profiles of users. These recommendations
could be applied in the construction of new interfaces that will be
adjusted to different user profiles, and the use of these
recommendations will contribute to greater user satisfaction
respecting the different characteristics between them.

Keywords - Human-Computer interaction; Cognitive Users
Profiles; Guidelines for design interfaces.

I. INTRODUCTION
The HCI (Human-Computer Interaction) is a “discipline

that concerns with the design, evaluation and implementation
of interactive computing systems for human use and the study
of major phenomena surrounding them. The goals of HCI are
to produce usable systems, safe and functional "[1]. The
interaction between man and machine takes place through the
computer interface [2]. In the quest to bring the user interface,
cognitive engineering, which is the process by which one
acquires knowledge, is used in order to improve software
development.

During the design phase of the interface are necessary to
incorporate recommendations in order to build highly usable
interfaces. Plasaint and Shneiderman [3] reported that a
successful interface design should be based on
recommendations from the project, called guidelines. For
Nielsen [4], guidelines are list of principles to be followed in
the development project. Nielsen proposes the use of a phase
specifies guidelines (Guidelines and heuristic evaluation) life
cycle, focusing on interface design, called Usability
Engineering Lifecycle [4], given the importance of the
recommendations during the design of an interface.

Authors such as Nielsen [6], Shneiderman and Plaisant [3]
reported several design guidelines in their work and make
several recommendations on how the interfaces should be for

children, elderly, etc. However most of the recommendations
touch only isolated aspects of the characteristics of users. Then
there is a large gap in this area. There is more than one skill or
characteristic to be understood and it stimulate the
development of this study of the Cognitive Styles of Learning
(CSL) from the perspective of Souto [7] and attention deficit,
allowing to study a series of recommendations, guidelines for
the design of interfaces and to consider more deeply the users
profile or their skills.

To build the user profile is necessary first the diagnosis of
the model user needs, as well as their cognitive, cultural and
physical situations. This information is useful to provide the
best interaction between the various information systems [8].

This research focused on adding guidelines and rules of
selecting to the expert system GuideExpert from Cinto and
Peixoto [5], just an area where researches are fairly recent and
not yet cataloged in a joint manner. The GuideExpert system
has the function to suggest and propose guidelines for
interface design. This paper is organized into five sections:
Section 1 presents the introduction. Section 2 presents the user
and their role in the requirements specification; the interface;
the diversity of users and the identification of learning styles.
Section 3 presents the system GuideExpert, which is a tool
that has the function to suggest and propose guidelines for
interface design in its previous version and new
recommendations suggested to improve the tool. Section 4
presents the analysis and implementation of some
recommendations, guidelines of this work, sites for children
and elderly users. Section 5 presents the conclusions.

II. THE USERS AND THEIR DIVERSITY OF PROFILES
The user population is not a system composed of only one

type of user. In general, there is a mixture of multiple profiles
of users who need to somehow get their needs met [2].

Speaking of users interacting with computers, we refer to
the user’s knowledge that should be taken into account in the
design of a n HCI. Below are some features that must be
observed during the interface design [6], [3]:

• The presence of an internationalized system or used in
more than one country or region. Each country or
region has its own peculiarities. Dialects, cultures,
ethnicities, races, etc. All these elements end up
generating needs that to be satisfied;

595

• These characteristics are considered common in a
traditional interface, may not correspond to those
made for children. They have unique needs for their
age. Beyond these specific needs for the children users
the designers need to deal with the dangers that are
usually present in a web environment, such as
pornography and violent or racist content;

• The existence of elderly among the users should be
checked for these and needs met;

• People with special needs are another installment of
the user community of the system and need
adjustments in the system to operate in the
environment without difficulty.

For the CSLs we used the basis of the research article:
Project Tapejara from Souto [7]. The CSLs refer the subject’s
characteristic way of learning new concepts or even to
generate elaborations of prior knowledge. According to
Madeira, Wainer, Verdin, Alchieri, Diehl [11], the CSLs are:
Analogue-Analytical (AA), Concrete-Generic (CG),
Deductive-Evaluative (DA), Relational-Synthetic (RS) and
Synthetic-Evaluative (SA).

Users rated AA-style may require more time for learning
because when they were confronted with new information they
tend to get a considerable depth on the subject through intense
reflection. Users with CG-style tend to be pragmatic and
careful in their learning situation. The learning objectives,
evaluation criteria and feedback must be clear to this style
because then he can work towards the goals. The DA-style can
get to disregard a lot of concrete examples when they believe
they have already understood the logical pattern underlying
the new information. For the RS-style users are easy mental
work with pictures and they appreciate the use of charts,
diagrams and demonstrations. Efficient reading of charts and
mind maps [7].

We relate the CSLs with users with attention deficit
disorder and hyperactivity (ADD and ADHD). The people
with ADD and ADHD do not develop the scholar knowledge
as expected for their ages. The diagnostic in the scholar age is
common because in this period can be found the difficulties of
attention and remain silent as the studies of Siqueira and
Gusgel Giannetti [9], Poeta and Rosa Neto [10].

III. THE PROJECT´S GUIDELINES
The GuideExpert system was initially developed

containing in its knowledge base three hundred and twenty six
classified guidelines and 10 meta-guidelines, which is the
result of gr ouping guidelines, this allows you to search for
more targeted features of i nterface design that is being
modeled [5].

The system consists of four elements are: user interface,
expert system (inference engine and working memory),
knowledge base and database. Figure 1 shows the architecture
of the expert system which demonstrates the elements through
their organization in layers and modules.

Figure 1 – System Architecture Specialist GuideExpert

Layer 2 is the expert system, which, when executed,
accesses the layer 3 containing the knowledge base, and thus
carries the knowledge rules. The first module of the user
interface has been assessing the requirements of the HCI with
the designer, if executed. After obtaining the information, is
provided to the expert system and soon after is analyzed. The
database is accessed at layer 3, for the meta-guidelines
requested. The second module of user interface aids in
heuristic evaluation [5].

This research contributed to the tool GuideExpert
incorporating new knowledge items to it, enabling the groups
of users with different learning styles (CSLs) and users
suffering from attention deficit disorder (ADD and ADHD)
obtain special guidelines.

The metaguidelines were increased by more than 18
categories and 18 new rules are created according to the
surveys [9], [10], [11] and [12]. The selection rules help the
designer to automatically select the most appropriate
metaguidelines. For this project we raised through the
literature one hundred thirty-six new guidelines.

A. Representation of Guidelines
The knowledge basis of G uideExpert consists in the

“WHEN-THEN” rules, who help to select the appropriate
metaguidelines for the interface being designed. This study
adds to the base already built the 18 selected rules that were

596

created according to the preview research and follow the same
syntax, is shown in the Figure 2.

Figure 2 – Rule Selection

As example is shown in Figure 3, the rule knowledge base
for people with ADD related to children and elderly people. It
was increased to the knowledge base tool.

Figure 3 – Rule Knowledge Base - People with ADD - Children – Elderly

For the construction of the selection rules we cross
information of users of ECAs with ADD and ADHD disorders
and other characteristics, we used the parameter age (child and
adult). The resulting guidelines for the rule R1, for example, is

shown in the Figure 4, which was selected set of guidelines for
users with ADD and set of guidelines for user-child.

Figure 4 – Guidelines - People with ADD - Children

B. New Interfaces for User´s Profile Selection
We recommend changes to the GuideExpert interfaces

because of the addition of new metaguidelines. The changes
were suggested in the items: task analysis (because it not allow
user to choose the user “child” and also the to choose the
needs of the users); context analysis (new items of graphical
user interface were added); evaluation of interface design (new
items of choices were added for the visual deficient, special
needs, ADD, ADHD and others).

IV. ANALYSIS AND APPLICATION GUIDELINES
In this section we analyze two websites, one designed for

child-user “Kids Channel” and one for adult-user
“Government Portal of the State of São Paulo”. The aim was
to determine if the websites could be used for the project of
interaction. After this analysis we propose improvements to
the interfaces using the GuideExpert that recommends
appropriated guidelines for their users. The analysis evaluates
the interface in accordance with the guidelines identified from
the literature. Based on this evaluation, you choose the desired
criteria in the tool. Indicates the criteria of a design tool to
formulate, develop appropriate interfaces for user profiles.

GUIDELINES
1. Guideline: Use blinking displays 2-4 Hz with great
care and in limited areas [1].
 2. Guideline: Use up to three sources to draw attention
[1].
 3. Guideline: Use the inverse staining [1].
 4. Guideline: Use up to four color standards [1].
 5. Guideline: Use only two levels of intensity [1].
 6. Guideline: Children approve the use of animations
and sound [2].
 7. Guideline: Avoid using scrolling for children [2]

REFERENCES
[1] SHNEIDERMAN, B. Designing the User
Interface: Strategies for Effective Human-computer
Interaction. 3. ed. Boston: Addison Wesley Longman,
Inc., 1998.

[2] NIELSEN, J. Children's Websites: Usability Issues
in Designing for Kids. Alertbox: september 13, 2010.
Disponível em: <http://www.useit.com/alertbox/
children.html>. Acesso em: 24 nov. 2011.

R1: When carriers_ADD == child

 Then meta-guideline = help_add; user_child

R2: When carriers_ADD == elderly

 Then meta-guideline = help_add;
ld l

R1: When carriers _ADD == child
 Then meta-guideline = help_add; user_child
R2: When carriers _ADD == elderly
 Then meta-guideline = help_add; user_elderly
R3: When carriers _ADHD == child
 Then meta-guideline = help_adhd; user_child
R4: When carriers _ADHD == elderly
 Then meta-guideline = help_adhd; user_elderly
R5: When carriers _ colorblindness== child
 Then meta-guideline = help_ colorblindness; user_child
R6: When carriers _ colorblindness == elderly
 Then meta-guideline = help_ colorblindness; user_elderly
R7: When carriers_visual_impairment == child
 Then meta-guideline = help_ visual_impairment; user_child
R8: When carriers _ visual_impairment == elderly
 Then meta-guideline = help_ visual_impairment;
user_elderly
R9: When carriers_special_need == child
 Then meta-guideline = help_ special_need; user_child
R10: When carriers_ special_need == elderly
 Then meta-guideline = help_special_need; user_elderly
R11: When eca_aa == child
 Then meta-guideline = eca_aa; user_child
R12: When eca_aa == elderly
 Then meta-guideline = eca_aa; user_elderly
R13: When eca_cg == child
 Then meta-guideline = eca_cg; user_child
R14: When eca_cg == elderly
 Then meta-guideline = eca_cg; user_elderly
R15: When eca_da == child
 Then meta-guideline = eca_da; user_child
R16: When eca_da == elderly
 Then meta-guideline = eca_da; user_elderly
R17: When eca_rs == child
 Then meta-guideline = eca_rs; user_child
R18: When eca_rs == elderly
 Then meta-guideline = eca_rs; user_elderly

597

A. Analysis of the Website Canal Kids for Children
Looking at the children´s website “Kids Channel” 1, we

can saw it has several children learning and fun items, as
shown in Figure 5.

Figure 5 – Site Kids Channel / Home

The initial homepage “Home” use many pictures and

colors to draw the attention of the child user. The website
makes use of colors, sounds and color changing on the top
banner and it draws the attention of children with ADD, as
recommended below:

• Children approve the use of animations and sound [13];

• Use different types of sounds and visual effects [14].

After examination of the website home page, we found it is
not developed appropriately for the target audience. Thus, if
the user is a child and has the attention deficit disorder (ADD)
the selection rule R1 will be started by the GuideExpert
system resulting sets of guidelines for the appropriate user –
child-user, ADD-user.

In the games item, as shown in the Figure 6, the content is
very extensive and it should be avoided. Children find it
difficult to read large blocks of text, especially when the text
was written above their reading level. And the kids do not
have the option on that page to read the entire contents using
the arrow keys to move down.

 Figura 6 – Site Kids Channel / Games

1 Site available in Kids Channel:
http://www.canalkids.com.br/portal/index.php.

The Games page at the Kids Channel was not developed
properly. Thus, if the user is a child with the cognitive profile
learning Deductive-Evaluative (DA), the selection rule R15
will be selected by the GuideExpert system resulting sets of
guidelines suitable for child-user with AD profile as
recommended: presentation of the concept using figures
schema [7].

Analyzing the Kids Channel website, we selected seventy-
three guidelines.

B. Analysis of the Website Government Portal of the State of
São Paulo
During the browsing on the Kids Channel website, we can

choose the option “Brazil Teaches”, where appears a link to
the “Government Portal of the State of São Paulo”. On this site
we analyzed the use of guidelines for the aged user, and if they
are in agreement with the recommendations of the HCI. When
we select the image we are directed to the “Government Portal
of the State of São Paulo” 2 as shown in Figure 7.

Figure 7 - Site Government Portal of the State of São Paulo

This page of the website is consistent with suggested
recommendations for aged-user. In the top menu there are
options to increase the font size, change the contrast and not
use commercial banners. According to the recommendations:
watch the size of fon ts, screen contrast and audio volume [2];
and the font size used in the texts should be at least 12 points
using buttons to increase and decrease the types, for example,
AA-A+, not to use banner advertising or auxiliary window or
animations. If these resources were used they should be in full
screen and the user must be able to disable them easily. Don’t
use icons, buttons, links and small characters.

Despite the good website presentation, the links at the top
menu are fixed and have too small fonts for elderly users.
After all many aged persons have some type of visual
impairment.

2 Site available in Government Portal of the State of São Paulo:
http://www.saopaulo.sp.gov.br.

598

In our analysis, the “Government Portal of the State of São
Paulo” needs to properly develop some tools for aged-user and
the visually impaired. Thus, if the user is old and visually
impaired, the GuideExpert system select the R8 rule resulting
in sets of guidelines for these kind of users.

At tab “Meet São Paulo”, as shown in the Figure 8, we find
an extensive report. Again many users can not read the text
because they lost interest. According to the cognitive style AA
(Analogue-Analytical), the use de concepts and examples with
text comparative schemes, schemes with comparative figures,
i.e., combining text and image facilitates the analytical process
and analogous relations [11].

Figure 8 – Site Government Portal of the State of São Paulo – Meet São
Paulo

Looking at the page tab “Meet São Paulo”, we found that
were not properly developed for aged-user. Thus if the user is
old with cognitive style Analogue-Analytical (AA),
GuideExpert system select the R12 rule resulting i n sets of
guidelines for aged-user and the Analog-Analytic cognitive
style (AA).

In the analysis of the “Government Portal of the State of
São Paulo” were selected a total of sixty-seven guidelines.

By the extension of the GuideExpert it will be possible to
specialize more and more recommendations; it will help the
designer to automate a way of selection of guidelines that will
guide the design or evaluation of interfaces.

V. CONCLUSION
We note that throughout this work, searching for

references related to the proposed theme, we found renowned
authors as Nielsen and Shneiderman, who make several
recommendations for design of interfaces for children, old
people, etc.

However most of the recommendations are about isolated
or general aspects of the characteristics or skills of the users.

We noticed a large gap in this area in order to relate more than
one feature. Considering these problems we examined the
learning styles and attention deficits, which allowed us to
unveil a series of recommendations and guidelines who suit
the specific characteristics of the users profiles.

It was possible to create sets of selection rules according to
the different user profiles and their learning styles, resulting in
several sets of recommendations and guidelines according to
each profile. These recommendations were incorporated into
the GuideExpert tool and subsequently applied in the analysis
of sites for children and seniors.

REFERENCES
[1] H. V. da Rocha, M. C. C. Baranauskas. Design e Avaliação de

interfaces Humano-Computador. Campinas: Unicamp, 2003, pp. 14,
17.

[2] A. A. de Oliveira Netto. IHC: Modelagem e Gerência de Interfaces
com o Usuário. Florianópolis: Visual Books, 2004.

[3] B. Schneiderman, C. Plaisant. Designing the user interface. Strategies
for effective human-computer interaction. 5th Ed. Boston: Addison-
Wesley Longman, Inc, 2010.

[4] J. Nielsen. The Usability Engineering: life Cycle. Computer, vol.25,
march. 1992, pp. 12-22.

[5] T. Cinto, C. S. A. Peixoto. Guidelines de Projeto de Interfaces
Homem-Computador: Estudo, Proposta de Seleção e Aplicação em
Desenvolvimentos Ágeis de Software. Relatório Científico
PIBIC/FAPIC, UNIMEP, Piracicaba, Brazil, 2010.

[6] J. Nielsen. Usability Engineering. Boston: Academic Press, 1993.
[7] M. A. M. Souto. Diagnóstico on-line do estilo cognitivo de

aprendizagem do aluno em um ambiente adaptativo de ensino e
aprendizagem na web: uma abordagem empírica baseada na sua
trajetória de aprendizagem. 2003. 147f. Tese (Doutorado em Ciência
da Computação) – Universidade Federal do Rio Grande do Sul, Porto
Alegre, 2003.

[8] L. F. da Costa. Usabilidade do portal de periódicos da capes. 2008.
236f. Dissertação (Mestrado em Ciência da Informação) - Universidade
Federal da Paraíba, João Pessoa, 2008.

[9] C. M. Siqueira, J. Gurgel-Giannetti. Mau desempenho escolar: uma
visão atual. Revista da Associação Medica Brasileira. 2011, vol.57,
n.1, pp. 78-87. ISSN 0104-4230.

[10] L. S. Poeta, F. Rosa Neto. Prevalência de escolares com indivíduos de
transtorno de déficit de atenção/hiperatividade (TDA/H). Temas sobre
desenvolvimento, 2005-6; 14(83-84) dez-jan/2005 e jan-fev/2006, pp.
57-62.

[11] F. Bica, M. A. M. Souto, R. M. Vicari, J. P. M de Oliveira, R. Zanella,
G. Vier, K. B. Souza, A. A. Sonntag, R. Verdin, M. J. P. Madeira, S. B.
Charczuk, M. Barbosa. Metodologia de construção do material
instrucional em um ambiente de ensino inteligente na web. XII
Simpósio Brasileiro de Informática na Educação SBIE – UFES,
Vitória, ES, Brazil, 21-23 November, 2001, vol. 1, pp. 374-383.

[12] M. J. P. Madeira, R. Wainer, R. Verdin, J. C. Alchieri, E. K. Diehl.
Geração de estilos cognitivos de aprendizagem de negociadores
empresariais para adaptação de ensino tutorializado na web. Paidéia,
2002, vol. 12, issue 23, pp. 133-147.

[13] J. Nielsen. Children's Websites: Usability Issues in Designing for
Kids. Alertbox: september 13, 2010. <http://www.useit.com
/alertbox/children.html>.

[14] A. P. da Silva, H. Martucci Neto, T. A. Scardovelli, H. A. D. de
Oliveira, A. F. Frerè. Auxilio ao letramento de crianças com
hiperatividade via internet. International Association for Development
of the Information Society, Conference IADIS, Ibero-Americana WWW
INTERNET, Madrid, Spain, October, 2004, pp 258-260.

599

Measuring the effect of usability mechanisms on
user efficiency, effectiveness and satisfaction

Marianella Aveledo M., Diego M. Curtino, Agustín De la Rosa H., Ana M. Moreno S.
Facultad de Informática

Universidad Politécnica de Madrid
Madrid, Spain

Abstract—In this paper we present the results of two
experiments designed to evaluate the impact of
particular usability mechanisms on software system
usability attributes. It focuses on mechanisms that
human computer interaction (HCI) and software
engineering (SE) researchers regard as having a
major impact on software development, like undo/
cancel or provide feedback. The experiments were run
using two different software applications that we
developed specially for the purpose. From the results,
we conclude that the inclusion of different usability
mechanisms has a positive impact on the usability
attributes of efficiency, effectiveness and satisfaction.

Keywords: usability, usability testig, usability attributes

I. INTRODUCTION
Usability is a software quality attribute listed in most

classifications [1][2]. According to ISO/EIC[3], usability is
an attribute of software system quality of use and is
defined as “The extent to which a product can be used by
specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified
context of use”. Usability means how well a product meets
stakeholders’ needs and achieves specified effectiveness,
efficiency and satisfaction goals in a specified context of
use. It is not surprising then that usability is increasingly
recognized as one of the critical factors for software
system acceptance [4].

It has been demonstrated that usability has implications
that go beyond the user interface and affect the system as a
whole [5][6]. In this context, Juristo, Moreno and Sánchez-
Segura [7] identify particular usability mechanism with a
major impact on the software functionality. They are:
progress feedback, system status feedback, warning, global
undo, abort, cancel, structure text entry and help.

Our aim is to study the effect of incorporating such
mechanisms in particular usability attributes like
efficiency, effectiveness and satisfaction. For that aim we
have conducted a literature review of the field of usability
evaluation and have found usability testing approaches
proposed by several authors [8][9][10][11] [12]. We have
studied the different approaches and proposals and found
that they all focus on the use of the continuous evaluation
of the designed interfaces in usability testing throughout

the iterative development of a software system. The goal
appears to be to reach the implementation stage with a
fairly mature interface model specifying the different
usability features established through the iterative
evaluation process. The different proposals evaluate a set
of ergonomic software criteria and/or usability features that
a well-designed user interface should have, such as, visual
clarity, consistency, compatibility and appropriate
functionality. Note that post-delivery evaluation proposals
focus on improving upcoming product releases. [9].

Several tools designed and developed for usability
testing have been reported in the literature since the 1990s
[13][14][15][16][17][18][19]. Notably, none introduce
methodological and/or tool proposals designed to evaluate
the software system interface from the viewpoint of how
mechanisms for improving different usability attributes can
benefit the system, considering effectiveness, efficiency
and satisfaction as usability attributes [2][3].

Recently we have designed two experimental
applications called EasyTheatre and EasyFlight. These
applications have been developed to capture data that
facilitate the measurement of the above impact [20]. These
applications are used to take quantitative and qualitative
measurements that provide sufficient data for calculating
the impact of the mechanisms on the attributes. The
quantitative measures taken are time to complete the task
and number of clicks or equivalent navigational actions.
The time to complete tasks is useful for measuring the
efficiency attribute, whereas the number of clicks and/or
equivalent actions is useful for measuring the impact on
relative efficiency [21][22]. The qualitative data that we
gather provide information on subjective user issues that
are used to calculate the impact on the satisfaction attribute
[21][23][24] through the mechanism/question/attribute
relationship [20]. So, the test performed can be defined as
summative [25], that is, a test whose goal is to perform a
competitive analysis to learn how much better (if any) the
application is perceived to be by users when the usability
mechanisms are implemented. Finally, the impact on the
effectiveness attribute is measured through information
supplied by users on whether or not they completed the
task successfully [2].

600

In the following, we present the results of the
experiments run using the tools that we developed.

II. EXPERIMENTS
A.Pilot test using the EasyTheatre tool

First we ran a pilot test using the EasyTheatre
application [26]. EasyTheatre is an e-commerce
application for booking theatre tickets. One of the key
characteristics of the application is that it includes a
usability dashboard. Users can use the dashboard to enable
and disable functions corresponding to specific usability
mechanisms.

Apart from correctly capturing data, the goal of this
pilot study was to establish the soundness of the
application, as well as the type of data to be collected and
the reliability of the experimentation process.

We ran two experiments in which we tried to measure
the impact of global undo, help, system status feedback
and warning mechanisms on the efficiency and satisfaction
attributes.

The experiments were run with 2011 Universidad
Politécnica de Madrid Master in Software Engineering
students and 2010 Universidad Simón Bolívar Master in
Systems Engineering students. A total of 24 subjects
participated in the experiment. They were divided into two
groups: a control group (CG) that did not use usability
mechanisms and a test group (TG) that used built-in
usability mechanisms. Users were given use scenarios and
administered questionnaires used to collect the data in
writing. Users had to use the application to execute the
respective scenarios and then answer the survey questions
about the execution. The only difference between the
scenarios given to students belonging to the control and
test groups was that the control group members were not
asked to enable the mechanisms to be measured (global
undo, help, system status feedback and warning
mechanisms), whereas the test group members were. The
questionnaires were the same for both groups. Divided into
quantitative data: task time in minutes reported by users in
writing and qualitative data: responses on a 1-to-5 Likert
scale for each mechanism graded from Never to Always
[10][24][27].

Note that we use the difference (increase) in the data for
the test group compared with the control group in order to
measure the impact.

Data analysis

The datasets were analyzed depending on the type of
data they contained. The quantitative data were analyzed
using the Microsoft Excel. and SPSS 16 (Statistical
Package for the Social Sciences) [28] software tools,

whereas the qualitative data were analyzed using SPSS 16
only. SPSS was used to perform the non-parametric Mann-
Whitney U test [29] to check whether the differences
between the variables are statistically significant, at 95%
confidence level.

The aim of the experiment was to determine whether
the mechanisms have an impact on the already mentioned
usability attributes. The Mann-Whitney U test determines
whether there is a statistically significant difference
between the data reported by the CG and the TG. Not until
this statistical significance has been determined can we
infer the effect of each mechanism on the usability
attributes.

Quantitative data analysis

Table I lists the mean times used by the control and the
test group for each mechanism.

The results of the Mann-Whitney U test applied to the
gathered quantitative data show that the difference between
the mean times to complete a task in the test and control
groups was not statistically significant in any case. The
reasons for this could be any, all or a combination of the
following:

• Homogeneous group: all users were studying for a
computing-related master’s degree and had a
computing-related background.

• There were fewer than 20 subjects per group.
• Users reported time manually in minutes.

Although the Mann-Whitney U test results are
inconclusive, note that, in all cases except for the global
undo mechanism, there was a positive difference between
the means of the time indicator in minutes in the test and
control groups.

There is an explanation for result with respect to the
global undo mechanism, namely, users cannot undo actions
if the mechanism is not enabled. Control group users
cannot find a button to undo the action, so they
immediately give up. Accordingly, when we analyzed user
responses to the control group survey associated with this
mechanism, we found that all the users of this group
responded that it is never possible to undo actions.

TABLE I. MEAN TEST DURATION (MINUTES)

MECHANISM CG TG Difference Increase (%)

Global Undo 3.36 3.88 -0.52 -15,4
Help 4.0 2.91 1.09 27,25
Warning 2.41 1.7 0.71 29,46
System Status Feedback 4.3 2.3 2.0 46,51

601

Qualitative data analysis

The Mann-Whitney U test applied over the
questionnaire responses, revealed that the differences in the
satisfaction attribute of both groups were statistically
significant at 95% confidence level.

The results show that the differences between the mean
responses to all the questions concerning the warning
mechanism are statistically significant. This applies to the
system status feedback indicators as well. But, the data for
the other mechanisms were not always significant. The
help mechanism indicators show that three out of the five
survey questions were statistically significant, whereas
only two out of the four questions for global undo were
statistically significant.

We analyzed the survey questions for these
mechanisms and concluded that this was a foreseeable
result because some of the questions were worded in such
a manner as not to signal the functionality that the
mechanisms actually provide.

Removing the incorrectly worded questions, we can
calculate the mean increase in user satisfaction [24] with
respect to the inclusion of each mechanism. Table II shows
the results. These results show that system status feedback
is the mechanism that has the great impact on the
satisfaction attribute

B. Experimental test using EasyFlight tool

As a result of the lessons learned in the pilot study, we
took corrective measures in order to gather more, and more
accurate and reliable data. So, we designed another
scenario-driven software application with automated
quantitative data capture to prevent any errors caused by
human task performance timing. We also implemented the
automatic capture of number of clicks or equivalent
navigational actions functionality. We revised and
corrected the survey questions associated with the different
mechanisms and automated survey-taking. Users of this
new application do not choose which mechanism to enable,
that is, the application automatically enables the
mechanism when they select which scenario to execute.

TABLEII. MEAN INCREASE IN SATISFACTION

MECHANISM Increase (%)
Warning* 161.43
Global Undo* 213.99
Help* 223.01
System Status Feedback* 256.58

* Statistically significant

Thanks to the features added to the new application, the
experiment can now be run without the physical presence
of the participant users. This means that we can test many
more subjects from a heterogeneous group.

The new application developed was the EasyFlight
[30]. It had the following functionalities: perform airport
administration (i.e., add/edit airports), list and optionally
purge the list of expired bookings, check available flights
for an airline route or book a flight.

Recruiting process

The people that participated in the experiment were
recruited by email. Around 75 requests were sent, and 46
acceptances were received. Of the 46 participants, 24 were
categorized as general users (GU) and 22 as computing-
related users (CRU). This categorization is necessary
because computer literate users might perform better than
general users, as they are likely to have frequent exposure
to controls and procedures that software applications
usually provide such as calendars, dropdown lists,
warnings and abort mechanisms and/or go back controls.
The categorized users were assigned to either the control or
test group. Each one of these two groups was composed of
23 people: 12 GU and 11 CRU. We assumed that response
time was random and considered it unnecessary to set up
any other randomization process to select the elements of
each group. To populate the control group, we went down
the list and picked the first 12 GU and the first 11 CRU.
We populated the test group similarly.

Task assignments

All 46 participants were given the same tasks related to
Global Undo, Progress Feedback, Structured Text Entry
and Go Back mechanisms. The tasks are “Undo airport
addition”, “Get list of expired bookings”, “Get flight
information” and “Book flight tickets”.

All participants were set the same set of four tasks.
Details on how to login into the system were provided
along with these tasks. Figure 1shows an example of some
of the steps of the scenario for the task “Book Flight
Tickets” and Figure 2 illustrates the corresponding
questionnaire.

Data analysis

As with EasyTheatre, the datasets were analyzed
depending on the type of data they contained. The detailed
results of these analysis can be found in [31].

602

USE SCENARIO

The application VuelosFácil is an e-commerce web application
developed for the acquisition of low cost airlines flight tickets. Task
description: Assume that you are a person visiting the airline’s website
because you are interested into book flight ticket as long as they fit
on your vacations plans.
In this particular case, from the available flights you are interested into
booking 2 tickets from Barcelona to Granada on the date November,
11th 2011 at 10:30 AM. However, at choosing the flight you make a
mistake and select the one at 6:00 a.m. Thus, you want to modify the
flying time before submitting the booking.
You shall:

1. Once logged in, select scenario “Escenario #14” from the
scenarios’ list that is available at the upper left corner of the
screen.

2. Click on “Iniciar”.
3. Click on “Usuarios”.
4. Choose the flight at 6:00 horas from Barcelona to Granada on

November, 11th 2011. To do so:
a. Input “BCN-00” as source airport.
b. Input “GRX-92” as destination airport.
c. Input ”2011-11-11” as flight date
d. Input 2 as the number of passengers.

5. Click on “Mostrar vuelos” button.
…….

Figure 1. Scenario for the task “Book flight tickets”

Figure 2. Questionnaire for task “Book flight tickets”

Collected data

Both quantitative and qualitative data were collected on
each participant. Quantitative data are composed of the
time taken to perform the task, and the number of click for
performing the task. These data were collected
automatically without participant intervention. Qualitative
data are participant responses to each task survey. There
was no means of collecting these data without participant
involvement. The data were collected by the developed
web application and stored in a database.

Quantitative data analysis

We calculated the following indicators for each
quantitative dataset:1) the mean number of click equivalent
actions and 2) The mean time to complete the task in
milliseconds. The Mann-Whitney U test [29] was used to
check whether the differences between the mean variables
for the control, and test group are statistically significant.

The corresponding usability attributes were measured
as following: 1) Efficiency: difference between the means
time in milliseconds to complete the task calculated as a
CG/TG ratio value expressed as a percentage and 2)
Relative Efficiency: Difference between the number of
clicks per group with respect to the minimum number of
clicks required to complete the task.

Table III below shows the results for the increase in the
efficiency attribute due to each mechanism. Notice that for
all mechanisms but go back, the efficiency in the control
and test group is statistically significant.

A similar procedure was used to calculate relative
efficiency, where 100% task efficiency was equivalent to
the minimum number of clicks required to complete the
task. Table IV lists the relative efficiencies of each group.
As Table IV shows, we cannot assess the impact of the go
back mechanism, as it is not statistically significant.

We find, on the other hand, that the progress feedback
and structured text entry mechanisms have a positive
impact on the efficiency attribute, where structured test
entry is the mechanism with the biggest impact. Regarding
the relative efficiency attribute for the global undo
mechanism, we can only calculate the relative efficiency of
the test group, as it is impossible to undo operations if the
mechanism is disabled, and once again the structure text
entry mechanism is the one with the biggest impact.

Qualitative data analysis

We also calculate the mean values for each question in
the questionnaire and group. We can calculate the mean
response to each question, as the survey questions were
rated on a 1-to-5 Likert scale [27]. We used these values to
calculate the means.

Question #1, Were you able to complete the task?, was
the same in all surveys. This question was designed to
measure the impact of each mechanism on the
effectiveness attribute. It is justified by the fact that,
according to [20], effectiveness can be measured according
to user perceptions, and one such measure is “percentage
of users successfully completing a task”.

Table V shows the results for Question #1 of the survey
for each evaluated mechanism. The impact of the progress
feedback mechanism is inconclusive, as it is not
statistically significant. We find that the global undo,
structured text entry and go back mechanisms have a
positive impact on effectiveness, where structured text
entry has the biggest impact.

603

The Mann-Whitney U test of the qualitative data
(survey responses) revealed that the mean difference in the
responses to all the questions, for all mechanism, were
statistically significant. Table VI shows the mean increases
for all the mechanisms.

We infer from these data that most mechanisms more
than double, and progress feedback almost triples, user
satisfaction. This means that users are on average twice as
satisfied with the applications that provide usability
mechanisms.

TABLE III.RESULTS FOR THE IMPACT OF EACH MECHANISM ON THE
EFFICIENCY ATTRIBUTE.

Mechanism Increase (%)

Global Undo * 46.98

Progress Feedback * 34.15

Structure Text Entry * 62.7

Go Back 14
*Statistically significant.

TABLE IV.RESULTS FOR THE IMPACT OF EACH MECHANISM ON THE
RELATIVE EFFICIENCY ATTRIBUTE.

Mechanism TG relative
efficiency

CG relative
efficiency

Increase (%)

Global Undo 87.3% #

Progres Feed.* 100% 40% 60

Structured TE * 86% 25% 61

Go Back 72% 68% 4
* Statistically significant

This system implementation is unable to undo an operation unless the mechanism has been
enabled

TABLEV. RESULTS FOR IMPACT ON EFFECTIVENESS ATTRIBUTE

Mechanism CG users that
complete the

task

TG users that
complete the

task

Increase
(%)

Globla Undo * 60.9 % 95.7 % 35.7

Progress Feedback 95.7 % 100 % 4.3

Structure Text Entry* 86.96 % 4.4 % 82.56

Go Back * 70 % 18 % 52
*Statistically significant.

TABLE VI. RESULTS FOR THE IMPACT OF EACH MECHANISM ON THE
SATISFACTION ATTRIBUTE

MECHANISM MEAN INCREASE (%)

Global Undo* 82.28

Progress Feedback* 294.08

Structured Text Entry* 251.50

Go Back* 205.75

*Statistically significant.

III. CONCLUSIONS

The conclusions of this paper refer to the results of the
experiment on the EasyFlight application, as they are much
more reliable than the results for the EasyTheatre
application. The findings from the results analysis were:

• The structured text entry mechanism was
statistically significant in all cases. It also had a
high impact, over 60%, on all usability attributes.

• The progress feedback mechanism did not have a
statistically significant impact on the effectiveness
mechanism. The reason is that users always
manage to complete the tasks, irrespective how
much information they have on the progress of
the task.

• Note that control group users cannot complete the
task if global undo is disabled. On this ground, we
cannot calculate that relative efficiency of this
mechanism.

• The go back mechanism was not statistically
significant for calculating the efficiency and
relative efficiency attributes. A possible reason is
that the browser go back functionality was
enabled. This will be corrected in future
experiments.

We intend to continue testing the EasyFlight tool for
other mechanisms: system status feedback, abort, cancel,
warning and help.

Note that the two software applications used in this
experiment have similar features. Both are e-commerce
transaction systems. Obviously, we have to check the
results of this research on other software application types
in order to generalize the results. To do this, we have now
developed an event-driven home automation application
which we will use to run a similar experiment in the very
near future.

REFERENCES
[1] “ISO/IEC Std. 9126-1: Software engineering – Product quality,”

2001.
[2] “ISO/IEC Std. 9241-11: Ergonomic requirements for office

work with visual display terminals. Part11: "Guidance on
Usability",” 1998.

[3] “ISO/IEC Std. 25010-3: Systems and software engineering:
Software product quality and system quality in use
models,” 2009.

[4] Cysneros, L.; Wemeck, V.; Kushniruk, A., “Reusable
Knowledge for Satisficing Usability Requirements”.
Proceedings of the 2005 13th IEEE International Conference on
Requirements Engineering.

[5] Juristo, N.; Moreno, A.M.; Sanchez-Segura,M., “Analysing the
impact of usability on Software Design” Journal of Systems and
Software, Vol. 80,Issue 9,2007,pp.1506-1516.

[6] Bass, L.; Bonnie, J.; Kates, J., “Achieving Usability Through
Software Architecture”. Technical Report MU/SEI-2001-TR-005
ESC-TR-2001-005, (2001)

[7] Juristo, N.; Moreno, A.M.; Sanchez-Segura M., “Guidelines for
eliciting usability Functionalities”. IEEE Transactions on
Software Engineering, Vol. 33, N°. 11, November 2007, pp.
744-758.

604

[8] Mayhew, D., “The Usability Engineering Lifecycle” Morgan
Kaufman Publishers Inc. 1999.

[9] Nielsen, J., ”Usability Engineering” Morgan Kaufman
Publishers Inc. 1993.

[10] Radven, S.;Graham, J., “Evaluating Usability of Human
Computer Interfaces: A Practical Method” Ellis Horwood
Limited 1989.

[11] Rosson, M; Carroll, J., ”Usability Engineering” Morgan
Kaufman Publishers Inc. 2002.

[12] Florian B., Solarte O.; Reyes,J., “Propuestsa para Incorporar
Evaluación y Pruebas de Usabilidad dentro de un Proceso de
Desarrollo de Software” Revista EIA,ISSN 1794-1237
Número13,p.123-141, Julio 2010.

[13] Macleod M.; Rengger R., “The Development of DRUM : A
Software Tool for Video-assisted Usability Evaluation,”
Methods, People and Computers VIII: proceedings of HCI 93,
Loughborough, p. 293, 1994.

[14] Ivory,M.; Hearst M., “The state of the art in automating usability
evaluation of user interfaces,” ACM Computing Surveys, vol.
33, pp. 470–516, Dec. 2001.

[15] National Institute of Standards and Technology, “NIST Web
Metr ics Testbed.” Onl ine. Avai lable f rom: ht tp: / /
zing.ncsl.nist.gov/WebTools/. [Accessed: February 2, 2012],
2005.

[16] UsableNet Inc., “Lift Machine.” Online. Available from:
http://lfd.usablenet.com/usablenet_liftmachine.html. [Accessed:
February 2, 2012].

[17] Clearleft Ltd “Silverback 2.0 - Guerrilla usability testing
software for designers and developers.” Online. Available from:
http://silverbackapp.com/. [Accessed: January 6, 2012], 2011.

[18] Microsoft Corporation, “Expression Encoder 4 Pro.” Online.
Available from:
h t t p : / / w w w. m i c r o s o f t . c o m / e x p r e s s i o n / p r o d u c t s /
EncoderPro_Overview.aspx.
[Accessed: 06 January 2012], 2010.

[19] Techsmith Corporation, “Morae. Usability testing and market
research software”. Online. Avai lable from:ht tp: / /
www.techsmith.com/morae.asp.
[Accessed: 06 January 2012]., 2011.

[20] Aveledo, M., Curtino, D., De la Rosa, A.; Moreno,A., “Avoiding
laboratories to collect usability data: two software applications”.
Accepted in CISTI 2012.

[21] Frøkjær, E., Hertzum, M.; Hornbæk, K, “Measuring usability:
are effectiveness, efficiency, and satisfaction really correlated?,”
in Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’00, (New York, NY, USA), pp. 345–
352, ACM, 2000

[22] Seffah,A.,Donyaee, M., Kline,R.; Padda, H., “Usability
measurement and metrics: A consolidated model,” Software
Quality Journal, vol. 14, pp. 159–178, June 2006.

[23] Sauro,J.; Kindlund, E., “A Method to Standardize Usability
Metrics Into a Single Score” CHI 05 Proceedings of the SIGHI.
Available from: www.measuringusability.com/.../p482-
sauro.pdf
[Accessed : February 27, 2012] , 2005.

[24] Bevan, N.; Macleod, M., “Usability measurement in context”.
Behaviour and Information Technology 13,132-145, 1994.

[25] Scriven M., “Evaluation Thesaurus” 4th ed. Newbury Park,
C.A.. Sage Publications Inc. ,1991.

[26] De la Rosa, A., “TeatroFácil.” Online. Available from: http://
www.grise.upm.es/tf
[Accessed: February, 28 2012], 2009

[27] Brooke, J., “A quick and dirty usability scale” Available from
www.itu.dk/courses/U/E2005/litteratur/sus.pdf
 [Accessed: February , 28 2012],1996

[28] Pérez, C., “Técnica de análisis de datos con SPSS” Pearson
Prentice Hall, 2009

[29] Nadim,N., “The Mann-Whitney U: A test for assessing whether
two independent samples come from de same distribution”
Tutorials in Quantitative methods for psychology 2008, vol. 4(1)
pp. 13-20.

[30] Curtino, D., “VuelosFácil”, Online Available from: http://
www.fingflights.com
[Accessed : March 6, 2012], 2011.

[31] Curtino, D., “Usability Mechanisms and Their Impact on
Usability Attributes: A First Advance ”, Online Avaible from:
http://www.fingflights.com/MasterThesis.pdf
[Accesed : March 11, 2012], 2011.

605

Automatic Generation of Web Interfaces From User
Interaction Diagrams

Filipe Bianchi Damiani
Departament of Informatics and Statistics (INE)

Federal University of Santa Catarina
Florianópolis, Brazil
fbd.sk8@gmail.com

Patrícia Vilain
Departament of Informatics and Statistics (INE)

Federal University of Santa Catarina
Florianópolis, Brazil
vilain@inf.ufsc.br

Abstract—This paper presents the development and validation of
a tool for mapping UIDs (User Interaction Diagrams) to JSF
(Java Server Faces) web pages. Based on the characteristics of
UID elements and JSF components, we designed a tool with a set
of rules that automates the process of mapping UIDs to a web
based user interface. This tool was developed in Java and its
validation was performed by having automatically generated
pages compared against pages that were created by designers of
an e-commerce website.

Keywords-User interaction m odeling; User interface design;
Automatic software generation

I. INTRODUCTION
At the early stages of a system development, one of the

software engineering tasks is to gather the functional
requirements. Modeling the interaction between the user and
the system aims to facilitate this task by pointing out the
information that is exchanged across these entities. T hat
interaction can be described in a textual form, using techniques
like scenarios and use cases [1], or aided by diagrammatic
representations, such as U IDs (User Interaction Diagrams) [2]
[3].

UIDs have the purpose of graphically represent the
interaction between a user and a system where the exchange of
information is intense. T hey can also help with identifying the
necessary navigation in web-centered methodologies such as
OOHDM (Object-Oriented Hypermedia Design Method) [4].

UIDs also facilitate the design of us er interfaces for w eb
systems. Generally speaking, UID elements that represent user
inputs can be mapped to input components of web pages, while
UID elements representing the system outputs can be mapped
to output components of web pages.

In this work, we present a set of rules that m ap functional
requirements represented in UIDs to a set of dynamic web
pages. We also describe the development of a tool that
automatically generates these web pages by applying such rules
to a set of input files with the descr iption of the given UIDs .
The code generated for the w eb pages utilizes Java Server
Faces (JSF), a framework for developing web applications
using Java technology [5].

The paper is organized as follows. Section 2 revisits the
diagrammatic notation of UIDs. The JSF framework is
presented in section 3. Section 4 presents the rules that m ap
UIDs to JSF pages. Section 5 de scribes the tool developed to
automate the generation of web pages from UIDs based on
those mapping rules. Section 6 de monstrates the generation of
web pages from UIDs that model the user interaction w ith an
existing website. It also compares the actual webpages against
the generated ones. Finally, section 7 concludes this work.

II. USER INTERACTION DIAGRAMS
A User Interaction D iagram (UID) is a diagram matic

notation that represent s the interaction between user s and a
system [2] [3].

While gathering functional re quirements, one should avoid
influencing the description provided by the user. UIDs serve
this purpose by providing a si mple notation easily understood
by both the software engineer and the user that is only
concerned about representing the exchange of information
between the user and the system , without considering specific
aspects of user interface design or content navigation. UIDs can
also assist the definition of the conceptual modeling [3].

As defined in [6], a UID is composed by a set of interaction
states that are connected by transitions. Interaction states
represent the inform ation that is exchanged betw een the user
and the system, while transitions are responsible for changing
the focus of the interaction from one state to another. An
interaction state is considered the focus of the interaction when
it contains the information that is being exchanged between the
user and the system at any given time. The exchange of
information is represented w ithin the interaction states,
although user selections and op tions may be associated to
transitions. Transitions are usually triggered w hen the user
enters or selects some information.

The UID in Fig. 1 represents the interaction between a user
and a system during the task Buy a CD based on a name, where
the user must provide the name for a given CD and the system
returns a set of all CDs that match the name provided. Users
can then include in the basket those CDs they wish to buy later.
For clarity, the name of each notation element utilized in Fig. 1
is included in highlighted rectangles.

606

…CD (title, artist name, year, price,
 availability, álbum cover, country,
 type of music, record company)

1..N (add to the
shopping basket)

CD title
User Entry

Set

Interaction State Transition

Interaction State

Structure

Data Item

System Output

Element Selection

Option Selection

Figure 1. UID Example [6]

III. JAVA SERVER FACES (JSF)
Java Server Faces (JSF) is a framework for developing web

applications using the Java t echnology. It follows the design
pattern MVC (Model-View-Control) and its m ost important
differential is the separation between the business model and
the visualization [5].

The FacesServelt class is the JSF controller and every
request submitted to the system must to be sent to it. For each
HTML page instantiated, its com ponents are stored in a tree
called View ID. Theses trees, in their turn, are stored in a
FacesContext object, which m aintains all the inform ation the
framework needs in order to manage the components of a page.

Each JSF page usually contains a Java object representing
its state that is called Managed Bean. The Managed Bean stores
the values of each page field and is responsible for binding the
model to the view.

As each JSF visual component has a direct representation in
a HTML component, the fram ework supports the direct
rendering of HTM L pages from JSF components. M oreover,
the framework also supports th e implementation of renderers
that create interfaces in other languages, increasing even more
the flexibility of the application.

The JSF components relevant to this work are:

• form: represents a form for sending data through the
JSF servlet;

• panelGrid: produces a table to provide an organized
arrangement of the elements grouped in it;

• panelGroup: groups a set of JSF elements. W hen it is
converted to HTML it is mapped to a SPAN or a DIV
element;

• column: represents a column of a table;

• dataTable: shows a collection of objects organized as a
table;

• outputText: represents a simple text returned by the
system;

• outputLabel: represents a label corresponding to a field
of a user input;

• inputText: represents a field of a text entry;

• outputLink: produces a hyperlink that takes the user to
another page, or another part of the current page,
without producing an action event;

• commandLink: it also produces a hyperlink, however
it produces an action event and/or the calling of a
method of the ManagedBean object;

• commandButton: has the same functionality as the
commandLink, but it has the appearance of a button;

• selectManyCheckbox: represents a set of checkboxes
from which the user can select a subset;

• selectOneRadio: represents a set of radio buttons from
which the user can select only one.

Other components defined in the JSF HTM L Tablib (such
as outputFormat, message, messages, graficImage,
inputTextArea inputSecret, i nputHidden, selectManyMenu,
selectBooleanCheckbox, selectManyListbox, selectOneMenu,
and selectOneListbox) were not utilized here either because
they have similar functionality to the previous com ponents or
because they do not have a direct relation to UID elements.

IV. MAPPING RULES
During the definition of rules for m apping UID elements to

JSF components, our initial idea was to divide the process in
two steps: first m ap the U ID elements to abstract w idgets, as
defined in [7], and then to map abstract widgets to JSF
components. The abstract widgets that would be used in this
mapping belong to the Abstract Widget Ontology defined in
[8]. This ontology is used to specify abstract interfaces that
show the inform ation exchange between the user and system,
with no reference to technologies neither to the appearance of
navigational objects. However, we r ealized that a l ot of the
relevant information available in UIDs had been lost after
mapping UID elements to abst ract widgets. Such loss of
information compromised the autom atic mapping of U ID
elements to JSF components ma inly because a particular
abstract widget could end up being represented by different JSF
components.

We realized w e needed to define rules that m ap UID
elements directly to JSF components. These rules are presented
in Table 1. They were based on the mapping of UIDs elements
to abstract widgets, the possi ble representations of JSF
components as abstract widgets, and the relevant information
available in UIDs.

TABLE I. MAPPING FROM UIDS ELEMENTS TO JSF COMPONENTS

UID Elements JSF Components

text outputText;

data item (system
output)

if the data item is the source of any
transition, it is m apped to a
commandLink;
otherwise, it is mapped to an
outputText;

Structure (system
output)

if the structure is not the source of any
transition and does not contain
elements, it is mapped to an outputText;

607

UID Elements JSF Components
if the structure is the source of a
transition and does not contain
elements, it is m apped to a
commandLink, ;
if the structure contains elements, it is
mapped to a panelGrid with an
outputLabel. Each element within the
structure is mapped according to its
type;

set of data items
(system output),
set of structures
(system output)

if the set is not the source of any
transition, it is mapped to a dataTable;
otherwise, its mapping is done as in the
mapping of a transition;

data item (user
entry) inputText;

structure (user
entry)

panelGrid with an outputLabel. Each
element within the structure is m apped
according to its type and the resulting
JSF components are included into the
panelGrid (mapping rules are
recursively applied to nested elements);
if the structure does not have elements ,
it is mapped to an inputText with an
outputLabel;

set of data items
(user entry)

if the set has an upper limit (0..*), it is
mapped to an inputText with an
outputLabel;
otherwise, inputText components must
be replicated up to the number of
required entries;

set of structures
(user entry)

if the set has an upper limit and the
structure does not contain elements, its
mapping is done as in a set of data
items;
if the set has a relatively small upper
limit, it is m apped to a dataTable and
each element to a column;
if the set has no upper limit, it is
mapped as a single structure;

enumerated user
entry

if only one item can be chosen, it is
mapped to a selectOneRadio;
if more than one item can be chosen, it
is mapped to a selectManyCheckbox;

selection
between two data
items (or)

selectManyCheckbox;

selection of a
data item (xor) selectOneRadio;

interaction state it is m apped to a form . The JSF
components that correspond to the
elements of the interaction state are
added to the form. Note that a single
form component can implement more
than one interaction state;

Sub-State form;
Transition with
the Selection of
an Option

if the source is a data item, ignore it (its
mapping was done as part of mapping
the data item);
if the source is a structure, it is m apped
to a commandLink added to the
panelGrid obtained from mapping the
structure;

UID Elements JSF Components
if the source is an interaction state or
sub-state, it is m apped to a
commandLink added to the form that
was obtained from mapping the input
elements in that state or sub-state;

transition with
selection of
elements

if the source is a set of data item s and
just one element can be selected, the set
is mapped to a dataTable with a column
containing commandLinks around the
items;
if the source is a set of data items and
more than one element can be selected,
the set is m apped to
selectmanyCheckbox and the transition
is mapped to a commandLink;
if the source is a set of structures and
just one structure is selected, the set is
mapped to a dataTable with an
additional column containing
commandLinks around the selected
option;
if the source is a set of structures and
more than one structure is selected, the
set is mapped to a dataTable and a
column containing a
selectManyCheckbox to represent the
selection and a commandLink added to
the form where the dataTable appears.

Call of another
UID, Call from
another UID,
pre-conditions,
post-conditions,
parameters and
notes

ignored as there are no matching JSF
components

V. JSF PAGE GENERATION TOOL
We developed a tool that automates the application of the

UID-to-JSF mapping rules shown in the previous section. This
tool reads UID information st ored in one or more XM L
(Extensible Markup Language) documents 1 and generates JSF
pages. The tool was developed for JSF version 2.0.

A. Requirements List
We identified 32 requirements for our tool: 18 requirements

related to the im plementation of the m apping rules, 13
requirements related to the im plementation of a method that
returns the string declarati on of each of the target JSF
components, 1 requirement rela ted to the module responsible
for reading UID files, and 1 requirement related to the
development of an interface between UID files and the
generation of JSF pages . The details related to these
requirements are out of the scope of this paper.

1 UID diagrams are stored as XML to facilitate its interchange across different
applications.

608

B. Component Model
Fig. 2 show s the com ponent model utilized in JSF pages

that are automatically generated by the tool. According to the
mapping rules defined, the generated JSF page can include any
of the JSF components explaine d in Section 3, i.e., Form,
OutputText, OutputLabel, OutputLink, CommandLink,
InputText, PanelGrid, DataTable, Column,
SelectManyCheckbox, SelectOneRadio, SelectItem, and
SelectItems.

Figure 2. Component model for automatically generated JSF Pages

C. Iterations
Our mapping tool was developed in three iterations. During

the first iteration, we developed the requirements Integration of
the Module for Reading the UID Files followed by the
requirements Mapping the Interaction State and Initial
Interaction State and Mapping the Sub-State of an Interaction
State. In the second iteration, we developed the mapping of all
UID elements. Finally, in the third iteration w e developed the
remaining requirements.

VI. RUNNING EXAMPLE
In order to validate the rules that m ap UIDs to JSF pages, a

set of JSF pages automatically generated by our mapping tool
was compared against actual web pages available at
www.amazon.com for the common task of buying a CD from
the results of an advanced search. The corresponding use case
for this task is shown below.

Use Case: Buying a CD from an Advanced Search
Description:
1. The user enters som e keywords, artist’s nam e, CD title or
record label, and chooses ‘CD’ as the media format.
2. The system returns a set of C Ds that match the entries. For
each CD listed, the following data are given: CD title, artist’s
name, year, recommendation, stock price, stock quantity, price
of a new one (from a reseller) , and price of a used one (from a
reseller).
3. The user selects one CD from the set and the system shows
the specific information about that CD, including the CD title,
artist’s name, recommendation, stock price, stock quantity,
price of a new one, price of a used one and artist’s biography.
5. If the user wants to buy that CD or has interest on it, he or
she can instantly proceed w ith the purchase (one-click
ordering), add it to the shopping cart to buy it later or instead
simply add it to a wishing list.

Fig. 3 shows the UID corresponding to the use case above.
This UID was used as the input to our mapping tool . Next, we
analyze and compare the actual web pages against the ones
automatically generated by our tool . It is important to note that
the UIDs utilized as input must be complete in their notation in
order to guarantee a proper generation of the target JSF pages.
More specifically, one needs to m ake sure that the state
transition options are given (i.e. the options users m ust select
that will cause a transition to fire), structure and data item
cardinalities are specified and also that the nam es given to data
items are consistent throughout all UIDs.

…CD (title, artist, recommendation, price,
stock, price-new, price-used)

(add to wish list)

(search)

Artist

CD (title, artist, recommendation, price,
stock, price-new, price-used, artist
biography)

1 (select)

(1 click ordering)

(add to cart)

Title

Label

Keyword

0..1 Format [CD, Audio
Cassete, DVD Audio, Vinyl]

UID Add to
Wish List UID One Click

Ordering

UID Add to
Shopping Cart

Figure 3. UID: Buying a CD from an Advanced Search

The actual web page corresponding to the initial interaction
state of the UID from Fig. 3 is shown in Fig. 4, while the page
generated by the mapping tool is presented in Fig. 5. Both
pages are similar in that they pr ovide four text entry fields for
entering keywords, artist nam e, CD title and record label.
However, the selection of a media format in the actual page
(Fig. 4) is accomplished by selecting an item from a list, while
in the automatically generated page (Fig. 5) the available media
formats appear mapped as a set of radio buttons. Another
difference is that the Search button in the actual page was
mapped to a link named Search in the generated page.

Figure 4. Advanced search web page

609

Figure 5. Page automatically generated for the initial interaction state of the
UID ‘Buying a CD from an Advanced Search’

Fig. 6 shows the original web page containing the results of
an advanced search for CDs where ‘AC/DC’ was given as the
artist’s name. The media format had to be set to ‘CD’, while
remaining fields in the form were left blank. T he same search
was carried out through the automatically generated page and
the resulting page is shown in Fig. 7.

Figure 6. Advanced search results web page

As observed in Fig. 7, the initial interaction state and the
second interaction state were mapped into the same JSF page,
thus keeping both the advanced search input form and the
advanced search results in the same page. That differs from the
navigation implemented in the original w eb site, where search
results will appear in a separate page . Regarding the
presentation of the results, our tool mapped the resulting list of
CDs (in the second interaction state of the given UID) to a table
where each result appears in a different row having its data
separated in columns (Fig. 7), following the rule that maps a set
of structures of a system output (if the set is not the source of
any transition, it is mapped to a dataTable). The results shown
by the actual page (Fig. 6) are also presented in a table that,
despite some visual design differe nces, is similar in content to
the generated page.

Both the generated and actual results page s allow the user
to select a C D in order to see the data associated to it by
clicking on a link. In the actual page, clicking on the CD cover
or title activates that link, w hile in the autom atically generated
page the user must click on Select in order to follow the
corresponding link. Navigating that link corresponds to
transitioning to the third interaction state of the U ID showed
earlier in Fig. 3.

Figure 7. Page automatically generated from the second interaction state of
the UID ‘Buying a CD from an Advanced Search’

Fig. 8 shows the actual page that corresponds to the third
interaction state of the given UID. In this page, the user can add
the selected CD to the shopping cart, buy the CD with one click
ordering or add the CD to the wish list.

Figure 8. CD detail web page

The automatically generated page that corresponds to the
third interaction state of the U ID is shown in Fig. 9. The main
difference here is that the actual page (Fig. 8) contains labels
that identity the details presented about the CD that w as
selected (for exam ple, there is the label Price with the value
$9.99) whereas such labels are not included in the generated
page.

610

Figure 9. Page automatically generated from the third interaction state of the
UID ‘Buying a CD from an Advanced Search’

VII. CONCLUSIONS
This paper presented a set of mapping rules for generating

web pages from user interaction diagrams, a technique that
models the exchange of information between users and
systems. It also presented the re sults of a prototypical tool that
automates the generation of JSF pages by applying those rules.

As a way to validate our tool, the resulting pages were
compared to the ones available in an actual website . This
comparison showed that the mapping rules can generate JSF
pages consistent with the orig inal user task modeled through
UIDs.

The first im portant contribution of this w ork is that
generated pages can be utilized as a good starting point for
mapping user functional requireme nts to their im plementation.
More specifically it can help user interface designers by
providing an initial prototype w ith all the com ponents needed
so that users can exchange information with the target
application.

The second contribution of this work is that the generated
pages can be utilized during requirements gathering to m ore
easily engage end users in the process of validating those
requirements. A num ber of user s may feel more comfortable
with validating requirements th rough a functional prototypical
user interface than by looking at diagrams or abstract models.

The UIDs we utilize as input are created by a graphical
editor available separately as an ID E plug-in (available at
http://www.uid.inf.ufsc.br/). This editor stores X ML files that
are then passed in to the JSF generation tool. As a future
improvement, we intend to integrate the JSF generation
functionality with the editor so that a given UID can be directly
run as JSF page from within the graphical editor pane.

As a continuation of our research work, we intend to use
the MDD approach as a basis for m apping UIDs into concrete
user interfaces, similarly to what is done in [9, 10, 11]. Existing
work [12, 13] provides a good analysis about MDD tools
applicable to user interface generation. Our idea is, instead of
using a set of fixed mapping rule s, to choose a transformation
language that can be utilized for that purpose.

REFERENCES

[1] I. Jacobson, “The U se-Case Construct in O bject-Oriented
Software Engineering”, Scenario-Based Design: Envisioning
Work and Technology in System Development, John W iley &
Sons, 1995, pp. 309-337.

[2] P. Vilain, D. Schwabe, and C.S. de Souza, “A Diagrammatic
Tool for Representing User Interaction in UML”, UML 2000
Conference, 2000, pp. 133-147.

[3] P. Vilain, User Interaction Modeling in Hypermedia
Applications, PhD Thesis, PUC-Rio, 2002. (in Portuguese)

[4] N. Güell, D. Schwabe, and P. Vilain, “Modeling Interactions and
Navigation in W eb Applications”, Second International
Workshop on the W orld Wide Web and Conceptual M odeling
(WCM2000), 2000, pp. 115-127.

[5] JavaServer Pages Technology, http://www.oracle. com/
technetwork/java/javaee/jsp, December 2011.

[6] P. Vilain, Implementation of a Framework to Support the
Representation of Functional Requirements in the Software
Process, Final Project Report, Federal University of Santa
Catarina, 2003. (in Portuguese)

[7] L.P. Remáculo, Customization of User Interaction Diagrams
and Mapping to Abstract Widgets Ontology, BSc. Thesis,
Federal University of Santa Catarina, 2005. (in Portuguese)

[8] S.S. Moura, Development of Ontology Driven Interfaces for
Semantic Web Applications, Master Thesis, PUC-Rio, 2004. (in
Portuguese)

[9] J. Vanderdonckt, “A M DA-Compliant Environment for
Developing User Interfaces of Information Systems”, 17th
international conference on Advanced Information Systems
Engineering (2005), 2005, pp. 16-31.

[10] J.-S. Sottet, G . Calvary, J. Coutaz, J.-M . Favre, “A Model-
Driven Engineering A pproach for the U sability of Plastic U ser
Interfaces”, Proc. of Engineering Interactive Systems, 2007, pp.
22-24.

[11] J.I. Panach, S. España, A. M oreno, Ó. Pastor, “Dealing with
Usability in M odel Transformation Technologies”, 27th
International Conference on Conceptual M odeling (ER 2008)
(ER), 2008, pp. 498-511.

[12] R.Schaefer, “A Survey on Transformation Tools for Model
Based User Interface Development”, 12th International
Conference on Human-Computer Interaction: Interaction Design
and Usability (HCI) 2007, pp. 1178-1187.

[13] J.M.G. Calleros, A. Stanciulescu, J. Vanderdonckt, J.P. Delacre,
and M. W inckler, “A Comparative Analysis of Graph
Transformation Engines for User Interface Development”, 4th
International Workshop on M odel-Driven Web Engineering
(MDWE), 2008, pp. 16-30.

611

Semantic Technology Recommendation Based on
the Analytic Network Process

Filip Radulovic
Ontology Engineering Group

Facultad de Informática, Universidad Politécnica de Madrid

Madrid, Spain

fradulovic@fi.upm.es

Raúl Garcı́a-Castro
Ontology Engineering Group

Facultad de Informática, Universidad Politécnica de Madrid

Madrid, Spain

rgarcia@fi.upm.es

Abstract—Semantic technologies have become widely adopted
in recent years, and choosing the right technologies for the
problems that users face is often a difficult task. This paper
presents an application of the Analytic Network Process for the
recommendation of semantic technologies, which is based on a
quality model for semantic technologies. Instead of relying on
expert-based comparisons of alternatives, the comparisons in our
framework depend on real evaluation results. Furthermore, the
recommendations in our framework derive from user quality
requirements, which leads to better recommendations tailored to
users’ needs. This paper also presents an algorithm for pairwise
comparisons, which is based on user quality requirements and
evaluation results.

I. INTRODUCTION

Semantic technologies provide new ways to express in

machine processable formats knowledge and data that can be

exploited by software, and we have seen an exponential growth

of these technologies in recent years.

One of the characteristics of semantic technologies is the

existence of several different types of technologies. It is often

the case that when solving certain problems, users have to use

various semantic technologies that belong to different types.

In some cases, especially for less experienced users, selecting

the right technologies for solving a problem can be a difficult

task.

Multiple criteria decision making (MCDM) methods are

widely accepted and have been used across various fields,

including Software Engineering. These methods have also

been successfully applied in software selection problems,

which is regarded as an important and rather difficult problem,

such as in the selection of ERP systems [1].

Different problems often require different system function-

alities and one functionality might not be relevant for every

problem. In MCDM recommendation frameworks, usually all

functionalities are considered and, therefore, some functionali-

ties that are not important for a problem are taken into account,

which might lead to complexity and poor recommendations.

Furthermore, the comparison of alternatives is usually per-

formed manually by a group of experts. In some cases, expert-

based comparisons can be difficult because there are no experts

that are familiar with every available alternative. Besides, the

addition of new alternatives would require experts to perform

additional comparisons.

Furthermore, expert-based comparisons are highly subjec-

tive and there are cases when we have objective evaluation

results in which we can ground recommendations.

This paper presents an application of the Analytic Network

Process (ANP) for the recommendation of semantic technolo-

gies. The recommendation framework is based on a quality

model for semantic technologies, and the recommendations

are based on user quality requirements.

The comparison of alternatives in our framework depends

on real semantic technology evaluation results provided by the

SEALS European project1. In this paper, we also present an

algorithm for the comparison of alternatives, which uses those

results together with user quality requirements.

The reminder of this paper is organized as follows. Sec-

tion II presents the best-known MCDM methods. Section III

gives an overview of the proposed recommendation frame-

work, while Section IV describes the semantic technology

quality model. Section V describes the ANP and, afterwards,

an algorithm for pairwise comparisons based on quality re-

quirements and evaluation results is presented in Section VI.

Section VII presents in detail the ANP framework for the

semantic technologies, while Section VIII gives an illustrative

example. Finally, Section IX draws some conclusions and

includes ideas for future work.

II. RELATED WORK

When facing the complex decision of selecting the best

solution between a group of alternatives that can be compared

according to different conflicting criteria, decision makers use

MCDM methods that help them to better structure the problem

and make better decisions. In MCDM problems, alternatives

represent concrete products, services or actions that will help

in achieving a goal, while criteria represent the characteristics

of the alternatives that are important for making a decision.

A large number of MCDM methods have been defined to

date. However, no method is considered to be the best to

be applied in every decision making problem [2]. Next, we

describe the most relevant MCDM methods in the literature,

and give examples of their use in the Software Engineering

and in the semantic technology fields.

1http://www.seals-project.eu/

612

PROMETHEE methods [3] belong to a family of outranking

methods which are based on preference analysis, and different

PROMETHEE methods can be used depending on the goal

to be achieved. Alternatives are compared using one of six

types of preference functions for each criterion, and the results

are synthesized into positive and negative outranking flows.

The positive outranking flow of an alternative determines how

much it dominates the others, while the negative outranking

flow shows how much an alternative is dominated by the

others; these positive and negative outranking flows can be

synthesized into one final indicator.

One of the drawbacks of the PROMETHEE methods is that

they do not include any particular procedure for the calculation

of the importance (weights) of criteria [4], which is a key

information needed for obtaining the outranking flows.

The Analytic Hierarchy Process (AHP) [5] is a well-known

method developed by Thomas L. Saaty. It requires the formu-

lation of the decision problem into a hierarchical structure of

goal, criteria, and alternatives.

The key concept in the AHP is a pairwise comparison,

which is used to determine the importance of the criteria, as

well as to compare the alternatives according to each criterion.

Saaty also provides a scale for pairwise comparisons, which

consists of natural numbers ranging from 1 (equal importance)

to 9 (extreme importance). If number x is assigned when

comparing alternative a to b, then a reciprocal value (1/x) is as-

signed when comparing alternative b to a. Furthermore, Saaty

developed a method for verifying the consistency of pairwise

comparisons, which is regarded as the main advantage of the

AHP [6].

The Analytic Network Process (ANP) [7] is another method

developed by Saaty, which is a generalization of the AHP

where the decision problem is formulated as a network of

criteria and alternatives. The main difference between the ANP

and the AHP is that the ANP is designed for those problems

in which the criteria in the decision process depend on each

other.

In recent years, we have seen applications of the

PROMETHEE methods in Software Engineering, for example,

in the selection of web services [8], [9]. The AHP has been

adopted in many different fields because of its simplicity and

ease of use, and it is described in the literature as one of

the most widely used MCDM methods [10]. In the Software

Engineering field, the AHP has been frequently used for

software selection problems [11]. The ANP has also been

applied successfully in various problems, including Software

Engineering ones, such as the selection of ERP systems [12]

and of web services [13].

In the semantic technology field, we have only found one

example of applying MCDM methods. In her work, Mochól

developed an AHP-based framework for manual and (semi-)

automatic selection of ontology matching approaches [14].

Mochól’s work is focused only on one specific type of

semantic technologies, i.e., ontology matching tools, while in

our case multiple types of technologies are taken into account

simultaneously.

III. OVERVIEW OF THE RECOMMENDATION FRAMEWORK

This section presents the overview of the software rec-

ommendation framework. Following a typical MCDM frame-

work, alternatives would be a set of software products to be

compared according to different software quality characteris-

tics (i.e., criteria). Then, the output would be a ranking of

alternatives.

Next, we present the differences of our framework (depicted

in Fig. 1) compared to such typical approach.

Ranking

1. Alternative 1
2. Alternative 3

Fig. 1: Overview of the recommendation framework.

• Software quality model. When using a MCDM method in

a software recommendation process, the criteria usually

are software quality characteristics. Therefore, software

quality models are a good starting point for the recom-

mendation problem.

In those cases where there are many dependencies among

quality characteristics, which is usual in Software Engi-

neering and in our case, it is recommended to adopt the

ANP, to take advantage of these dependencies.

• User quality requirements. Usually, criteria that are taken

into account in MCDM problems cover all the quality

characteristics defined. In our case, solving a problem

does not require every characteristic and, therefore, the

criteria to take into account consist only of those specified

by the user.

• Alternatives. In our framework, recommendation covers

not one type of software product, but different types of

products. User requirements can be satisfied either by a

single product or by a combination of them. Therefore, an

alternative consists of a combination of software products

that together cover a set of common functionalities.

• Comparison algorithm. The comparison of alternatives is

in most cases performed manually based on subjective

opinions made by experts. In our case, the task of com-

paring the alternatives by experts is difficult because there

are no experts with expertise in every software product

type. Therefore, in order to overcome this problem and to

enable the automatic comparisons, we propose an auto-

mated comparison algorithm that is based on evaluation

results and user quality requirements.

• Evaluation results. For the previously mentioned algo-

rithm a set of evaluation results for the different types

of software products is needed. In our case, we use a

613

corpus of semantic technology evaluation results that have

been produced in the SEALS project. These results cover

five types of semantic technologies (ontology engineer-

ing tools, ontology matching tools, reasoning systems,

semantic web services, and semantic search tools), which

have been evaluated according to different characteristics

(scalability, conformance, interoperability, accuracy, etc.).

IV. QUALITY MODEL FOR SEMANTIC TECHNOLOGIES

In the Software Engineering field, software quality models

provide a common framework for software quality specifica-

tion and evaluation by specifying a consistent terminology for

software quality and by providing guidance for its measure-

ment.

Quality models consist of a hierarchy of quality character-

istics, which are further decomposed into sub-characteristics.

For every quality sub-characteristic, a quality measure or a set

of quality measures is defined, which are used for measuring

and provide insight of the particular sub-characteristic.

In the case of the AHP, which requires a hierarchical

structure in the model, hierarchical quality models (e.g., ISO

9126 [15] or SQuaRE [16]) are very convenient, and different

authors have used quality models based on the ISO 9126

together with the AHP [17], [18], [19].

In the semantic technology domain, a quality model for

semantic technologies has been proposed [20], which extends

the ISO 9126 quality model. The quality model describes 14

quality characteristics and sub-characteristics, and 55 quality

measures. Furthermore, for every quality measure, a formula

for its calculation is defined [21]; these formulas formally

specify the dependencies between measures.

V. ANALYTIC NETWORK PROCESS

The inputs in the ANP are the different alternatives and

the set of criteria used to compare them, and the output is a

ranking of the alternatives with respect to the criteria.

The ANP consists of several consecutive steps [7]:

1) The first step of a decision process is to define a model

of a problem, and it is often referred as the most

important step [22]. In the ANP, the model consists of

a network of elements (criteria and alternatives) and of

the dependencies between them. Elements are organized

into clusters, and dependencies between clusters are also

defined; these dependencies are deduced based on the

existing dependencies between elements.

2) For the defined network, a supermatrix is formulated.

The rows and columns of the supermatrix are related to

the elements in the network, and are grouped into the

corresponding clusters. This way, a supermatrix consists

of several sub-matrices, each related to two clusters in

the network. The entries of the supermatrix represent the

influence priorities of one element over another, e.g., the

entry in the i-th row and the j-th column represents the

importance of the i-th element over the j-th element.

3) The influence priorities are calculated with pairwise com-

parisons, similarly as in the AHP. For every column in

the supermatrix, a pairwise comparison is performed for

every cluster in a row separately, and it includes only the

elements that influence the one related to the observed

column. The standard Saaty’s scale for the pairwise

comparisons [5] is used, and the eigenvector of the

comparison is calculated. The results from the eigenvector

are then inserted into the corresponding positions of

a column in the supermatrix. If two elements are not

connected, a zero is entered.

In the ANP, criteria are also compared with respect to

each alternative. In the pairwise comparisons, every crite-

ria that contributes to a certain alternative is compared to

determine the level of contribution to that alternative. The

results are then entered as the corresponding elements in

the supermatrix. This step is particularly significant when

observing the influence of criteria on a single alternative.

4) As the supermatrix has to be stochastic (i.e., the sum

in every column has to be one), it has to be weighted.

This is done by determining the importance of each

block of clusters in the supermatrix in a set of pairwise

comparisons performed similarly to the previous step.

Then, each entry in the supermatrix is multiplied with

the importance of the block the entry belongs to.

5) The next step is the convergence of the weighted super-

matrix. The weighted supermatrix is put to a power of an

increasing number, until the limit supermatrix is obtained,

i.e., that in which the values in every column are equal.

6) The ranking of the alternatives is obtained from the limit

supermatrix. The value in every row that corresponds to

an alternative represents the result for that alternative in

the decision process, which is used to determine the order

of alternatives. A higher value denotes a better result, and

is used for sorting the alternatives from best to worst.

VI. ALTERNATIVES COMPARISON ALGORITHM

As presented in Section V, in the third step of the ANP

alternatives are compared with respect to each criterion. In this

section we present an algorithm for the automatic comparison

of alternatives, which is based on the standard 1-9 Saaty’s

comparison scale.

The inputs of the algorithm are a threshold value t, extracted

from the user quality requirements, and evaluation results for

the two alternatives, a1 with the result v1, and a2 with the

result v2. The output is a natural number on Saaty’s scale,

which tells to which degree one alternative is preferable over

the other.

There are several cases, with respect to the four types of

scale [23] for a quality measure:

• Nominal scale. Nominal scale is a type of scale in which

results are descriptive labels with no significance of order.

We distinguish two possible cases, depending on whether

the evaluation result meets the threshold:

– If only one result is equal to the threshold, e.g.,

v1, when comparing a1 to a2 a value of 9 (extreme

importance) is assigned and, according to the pairwise

614

comparison rule, a value of 1/9 is assigned when

comparing a2 to a1.

– If both results meet the threshold or none of them does,

both alternatives are of equal importance. Therefore, a

value of 1 is assigned in both comparisons.

• Ordinal, interval or ratio scale. Ordinal scale is a type

of scale in which results are also descriptive labels, but

with significance of order. In interval and ratio scales the

results are numerical values and the difference between

two results can be calculated. This leads to the following

possible cases:

– If v1 is equal or better than the threshold, while v2 is

worse, a value of 9 is assigned when comparing a1 to

a2, and a value of 1/9 when comparing a2 to a1.

– If both alternatives are worse or better than the thresh-

old, they are of equal importance with respect to the

requirement. However, they are still compared, and

a value of 5 (strong importance) is assigned when

comparing the better alternative to the worst. Similarly

as in previous cases, a value of 1/5 is assigned when

comparing the worse alternative to the better.

– If both results are equal, a value of 1 is assigned in

both comparisons.

In the ordinal, interval, and ratio scales, when comparing

two values, the nature of the criterion determines which

result is better. Two possible cases exist: higher-best

scale, in which the higher value denotes a better result,

and lower-best scale, in which the lower value denotes a

better result.

VII. THE ANP FOR SEMANTIC TECHNOLOGIES

In this chapter we describe the particularities of the ANP

with respect to the semantic technology domain.

A. ANP Network for Semantic Technologies
The quality model for semantic technologies provides a

good starting point in defining the ANP network. In several

consecutive steps, we transformed the quality model into the

network:

1) Every quality measure from the quality model becomes

an element of the network.

2) As every quality measure is used for measuring a sub-

characteristic, the network elements are grouped into

clusters, each containing those measures that are related

to a certain sub-characteristic.

3) Based on the formulas for obtaining the quality measures,

defined in the quality model, the dependencies between

the measures are deduced. Every two dependent elements

are then connected with an arc; the element where the arc

begins depends on the element where the arc ends.

4) Based on the dependencies between elements, dependen-

cies between clusters are defined in such a way that two

dependent elements imply a dependence between their

clusters.

Due to space reasons, we cannot present the whole network.

Therefore, on Fig. 2 we present only one part of the network

where seven quality measures are grouped into four clusters;

dependencies between measures are represented with arcs.

Fig. 2: Part of the semantic technology ANP network.

The network in this case consists only of quality character-

istics (criteria), and alternatives are not included. The reason

for this is that recommendations are based on user quality

requirements, and alternatives are formed and inserted into

the network only after the quality requirements are specified.

B. Supermatrix

Based on the previously defined network, a supermatrix was

constructed. It consists of several sub-matrices where every

sub-matrix is related to two clusters of the network, one at the

left of the matrix and one at the top.

For every column in a supermatrix, influence priorities for

the criteria were calculated in pairwise comparisons. This task,

unlike the comparison of alternatives, was performed by a team

of experts in semantic technologies. Every two elements in two

rows within a certain cluster that have influence on an element

in a column are compared in a pairwise comparison with the

following question: “given an element in the column, which

of the two elements in the rows has more influence?”.

Table I shows an example of a pairwise comparison in

which the priorities of measures with respect to Average
alignment F-measure are calculated. We can see from the

network (Fig. 2) that Average alignment F-measure depends on

Average alignment H-measure, Average alignment precision,

and Average alignment recall. Therefore, those three measures

are compared in the pairwise comparison to determine their

importance. For example, the Average alignment precision has

a strong plus over the Average alignment H-measure, which

implies the value 6 in their comparison.

Column Importance gives the overall importance for each

measure. This comparison suggests that, e.g., Average align-
ment precision influences Average alignment F-measure with

0.462 degree of importance.

TABLE I: Pairwise comparisons of measures with respect to

Average alignment F-measure.

AAF AAP AAR AAH Importance
AAP 1 1 6 0.462
AAR 1 1 6 0.462
AAH 1/6 1/6 1 0.076

615

Using the method provided by Saaty, we verified the consis-

tency of every pairwise comparison in our supermatrix. The

method is based on the calculation of the consistency ratio,

whose value is limited to 0.1, and which is satisfied in all the

pairwise comparisons performed.

Table II presents the part of the supermatrix that is related

to the part of the network presented on Fig. 2. The priorities in

the supermatrix were obtained through pairwise comparisons

performed by experts, and we can see that the values obtained

in Table I are inserted into the appropriate positions as a sub

column in the supermatrix (column AAF).

TABLE II: Part of the supermatrix.

OLCC IEE OPT AAP AAR AAF AAH
OLCC 0 1 0 0 0 0 0

IEE 1 0 1 0 0 0 0
OPT 0 1 0 0 0 0 0
AAP 0 0 0 0 0 0.462 0.462
AAR 0 0 0 0 0 0.462 0.462
AAF 0 0 0 0 0 0 0.076
AAH 0 0 0 0 0 0.076 0

The influence priorities of the clusters (i.e., of each block

in a supermatrix) are calculated in an analogue way as the

influences of their elements. Table III shows the priorities for

the previously-presented part of the network.

TABLE III: Cluster priorities.

OLMC OPR OPTB OAP
OLMC 0 0.15 0 0
OPR 1 0.204 1 0

OPTB 0 0 0 0
OAP 0 0 0 1

VIII. ILLUSTRATIVE EXAMPLE

In this section, we describe an example of using the pro-

posed recommendation framework. In it, we assume that a user

needs to modify existing ontologies (i.e., semantic models)

and then match their concepts to other ontologies. For this

task, two types of tools are needed, ontology engineering and

ontology matching tools.

Table IV shows the user quality requirements in terms

of a quality measure and a threshold, as well as the tools

that at least cover one requirement; T1 and T2 are ontology

engineering tools and T3 and T4 are ontology matching tools.

The set of alternatives will consist of the four combinations of

tools that cover every user quality requirement: T1+T3 (A1),

T1+T4 (A2), T2+T3 (A3), and T2+T4 (A4).

TABLE IV: User requirements and alternatives.

Requirements Scale type Tools
Quality
measure

Threshold Higher/Lower
best

T1 T2 T3 T4

OLCC 80 Higher 85 70 / /
IEE 3 Lower 5 2 / /
AAF 0.75 Higher / / 0.8 0.74

The network related to this problem is that presented on

Fig. 2, with the addition of one cluster related to all four

identified alternatives. The part of the supermatrix related to

the criteria is that of Table II, while the supermatrix of the

complete problem is shown in Table V.

The values in the alternatives cluster of the supermatrix are

obtained from the evaluation results; using the comparison

algorithm presented in Section VI alternatives are compared

according to each of the criteria from the user requirements.

For example, the comparison of alternatives according to

Ontology language component coverage is shown in Table VI.

A1 satisfies the requirement, while A3 does not and, hence, a

value of 9 (extreme importance) is assigned when comparing

A1 to A3. The overall importance of the alternatives according

to the observed criteria is shown in the Importance column,

and is entered in the corresponding column of the supermatrix.

TABLE VI: Alternatives comparisons with respect to OLCC.

OLCC A1 A2 A3 A4 Importance
A1 1 1 9 9 0.45
A2 1 1 9 9 0.45
A3 1/9 1/9 1 1 0.05
A4 1/9 1/9 1 1 0.05

The weighted supermatrix is obtained by multiplying each

element in the supermatrix with the importance of the cluster,

after which a limit supermatrix is obtained. Every column in

the limit supermatrix has the same values, which are shown

in the Limit supermatrix column in Table V.

From the limit supermatrix, we can observe that the best

alternative is A3 (with 0.074 score) and A1 (with 0.064) comes

after. Both alternatives satisfy two requirements, and A3 is

better with respect to Import/Export errors (IEE), while A1 is

better with respect to Ontology language component coverage
(OLCC); both are equal with respect to the Average alignment
F-measure. However, since Import/Export errors is a char-

acteristic more important than Ontology language component
coverage (0.346 > 0.184) because of the dependencies in the

network, A3 has a higher score.

Alternatives A4 and A2 satisfy only one requirement; there-

fore they are ranked as third and fourth respectively, where A4

is ranked better because it satisfies a characteristic that is more

important (Import/Export errors).

IX. CONCLUSIONS AND FUTURE WORK

This paper has presented a semantic technology recommen-

dation framework, which is based on the Analytic Network

Process. To apply the ANP to the semantic technology domain,

we have defined the ANP network, which is based on a quality

model for semantic technologies.

Having a quality model makes the definition of the network

a straightforward task. Furthermore, the semantic technology

quality model is a basis for the specification of quality

requirements, and helps users to tailor the recommendation

process to their needs.

This paper also describes an algorithm for the automatic

comparison of alternatives in the ANP, and also in the AHP.

616

TABLE V: Supermatrix for the example.

OLCC IEE OPT AAP AAR AAF AAH A1 A2 A3 A4 Limit supermatrix
OLCC 0 1 0 0 0 0 0 1 1 1 1 0.184

IEE 1 0 1 0 0 0 0 1 1 1 1 0.346
OPT 0 1 0 0 0 0 0 0 0 0 0 0.12
AAP 0 0 0 0 0 0.462 0.462 0 0 0 0 0.017
AAR 0 0 0 0 0 0.462 0.462 0 0 0 0 0.17
AAF 0 0 0 0 0 0 0.076 1 1 1 1 0.064
AAH 0 0 0 0 0 0.076 0 0 0 0 0 0.002
A1 0.45 0.05 0 0 0 0.45 0 0 0 0 0 0.064
A2 0.45 0.05 0 0 0 0.05 0 0 0 0 0 0.05
A3 0.05 0.45 0 0 0 0.45 0 0 0 0 0 0.074
A4 0.05 0.45 0 0 0 0.05 0 0 0 0 0 0.060

This algorithm is domain independent and can be used in other

scenarios in which evaluation results are available.

The comparison of alternatives in our framework is based

on real evaluation results. New results and alternatives can be

easily included in the framework, without the long process of

expert-based comparisons required by the ANP.

Evaluation results are currently available only for individual

tools. A future line of work is to specify new evaluations

and obtain results for combinations of tools, i.e., for whole

alternatives.

In the interval and ratio scales, the distance of the evaluation

results form a threshold can be precisely calculated. Therefore,

the alternatives comparison algorithm can be improved to take

into account those distances.

The network and the supermatrix in our framework are made

by experts in the semantic technology field. However, we plan

to perform a validation with a broader group of experts and,

in case of changes, to provide a way of easily updating the

network and the supermatrix.

Future work also includes the implementation of the pro-

posed framework in a web application. This will give users an

easy access to a system that will help them in choosing the

best semantic tools for solving the particular problems they

face.

ACKNOWLEDGMENTS

This work is supported by the SEALS European project

(FP7-238975) and by the EspOnt project (CCG10-UPM/TIC-

5794) co-funded by the Universidad Politécnica de Madrid and

the Comunidad de Madrid.

REFERENCES

[1] B. Hecht, “Choose the right ERP software,” Datamation-Highlands
Ranch, vol. 43, no. 3, pp. 56–61, 1997.

[2] A. Guitouni and J. Martel, “Tentative guidelines to help choosing an ap-
propriate MCDA method,” European Journal of Operational Research,
vol. 109, no. 2, pp. 501–521, 1998.

[3] J. Brans and P. Vincke, “A preference ranking organization method,”
Management Science, vol. 31, no. 6, pp. 647–656, 1985.

[4] C. Macharis, J. Springael, K. De Brucker, and A. Verbeke,
“PROMETHEE and AHP: The design of operational synergies in
multicriteria analysis. Strengthening PROMETHEE with ideas of AHP,”
European Journal of Operational Research, vol. 153, no. 2, pp. 307–317,
2004.

[5] T. Saaty, “Decision making with the Analytic Hierarchy Process,”
International Journal of Services Sciences, vol. 1, no. 1, pp. 83–98,
2008.

[6] W. Ho, “Integrated Analytic Hierarchy Process and its applications-a
literature review,” European Journal of operational research, vol. 186,
no. 1, pp. 211–228, 2008.

[7] T. Saaty, “Fundamentals of the Analytic Network Process - Dependence
and feedback in decision-making with a single network,” Journal of
Systems science and Systems engineering, vol. 13, no. 2, pp. 129–157,
2004.

[8] C. Herssens, I. Jureta, and S. Faulkner, “Dealing with Quality Tradeoffs
during Service Selection,” Proceedings of the International Conference
on Autonomic Computing (ICAC2008), pp. 77–86, 2008.

[9] R. Karim, C. Ding, and C.-H. Chi, “An Enhanced PROMETHEE
Model for QoS-Based Web Service Selection,” 2011 IEEE International
Conference on Services Computing (SCC2011), pp. 536 –543, 2011.

[10] O. Vaidya and S. Kumar, “Analytic Hierarchy Process: An overview of
applications,” European Journal of operational research, vol. 169, no. 1,
pp. 1–29, 2006.

[11] A. Jadhav and R. Sonar, “Evaluating and selecting software packages: A
review,” Information and software technology, vol. 51, no. 3, pp. 555–
563, 2009.

[12] V. Dimitrova, “Application of the Analytic Network Process (ANP)
in a framework of ERP systems implementation success,” The 4th
International IEEE Conference on Intelligent Systems (IS2008), 2008.

[13] M. Godse, R. Sonar, and S. Mulik, “Web service selection based on
Analytical Network Process approach,” Proceedings of the Asia-Pacific
Services Computing Conference (APSCC2008), pp. 1103–1108, 2008.

[14] M. Mochól, “The methodology for finding suitable ontology matching
approaches,” Ph.D. dissertation, Freie Universität Berlin, Germany,
2009.

[15] ISO, “ISO/IEC 9126-1:2001, Software engineering – Product quality –
Part 1: Quality model,” International Organization for Standardization,
Tech. Rep., 2001.

[16] ——, “ISO/IEC 25010-CD - JTC1/SC7, Software Engineering - Soft-
ware product Quality Requirements and Evaluation (SQuaRE),” Inter-
national Organization for Standardization, Tech. Rep., 2008.

[17] W. Ossadnik and O. Lange, “AHP-based evaluation of AHP-software,”
European Journal of Operational Research, vol. 118, no. 3, pp. 578–588,
1999.

[18] H. Jung and B. Choi, “Optimization models for quality and cost of
modular software systems,” European Journal of Operational Research,
vol. 112, no. 3, pp. 613–619, 1999.

[19] E. Colombo and C. Francalanci, “Selecting CRM packages based on
architectural, functional, and cost requirements: Empirical validation of
a hierarchical ranking model,” Requirements engineering, vol. 9, no. 3,
pp. 186–203, 2004.

[20] F. Radulovic and R. Garcı́a-Castro, “Extending Software Quality Models
– A Sample in The Domain of Semantic Technologies,” Proceedings
of the 23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE2011), Miami, USA, pp. 25–30, 2011.

[21] F. Radulovic, “A software quality model for the evaluation of semantic
technologies,” Master’s thesis, Facultad de Informática (Universidad
Politécnica de Madrid), 2011.

[22] R. Keeney and H. Raiffa, Decisions with multiple objectives: Preferences
and value tradeoffs. Cambridge University Press, 1993.

[23] S. Stevens, “On the theory of scales of measurement,” Science, vol. 103,
no. 2684, pp. 677–680, 1946.

617

P2P-based Publication and Location of Web Ontology
for Knowledge Sharing in Virtual Communities

Huayou Si1,2, Zhong Chen1,2,*

1Software Institute, School of Electronics Engineering and
Computer Science, Peking University

Beijing 100871, China;
{sihy, chen}@infosec.pku.edu.cn

Yong Deng1,2

2Key Laboratory of High Confidence Software
Technologies, Ministry of Education

Beijing 100871, China;
dengyong@pku.edu.cn

Abstract—In recent years, virtual communities, which focus on
the purpose of knowledge sharing, are beginning to use web
ontology to formally represent their sharable knowledge. In such
a community, each member usually creates one or more local web
ontologies for a given domain to be semantically queried by other
members. But, it has become a pressing issue that, given a
semantic query, how to efficiently locate the ontologies from
which some solutions of the query can be reasoned out. To
address this issue, we propose a structured P2P-based approach
to publish sharable ontologies in each member’s computer and
automatically locate the useful ontologies to process a given
SPARQL query. Therefore, given a SPARQL query, this
approach can further send it to nodes, where at least one of
ontologies useful to the query is located, to reason out solutions
for the query respectively. Moreover, given a SPARQL query, if
an ontology published can be reasoned out solutions, our
approach is sure to locate the ontology and achieve the solutions.
We also implemented this approach and conducted two
experiments to evaluate its efficiency. The experimental results
demonstrate that it is efficient.

Keywords-Virtual Community; Web Ontology; Ontology
Location; SPARQL Query; Peer-to-peer(P2P)

I. INTRODUCTION

Virtual community is a social network of individuals who
interact through specific media, especially Internet, in order to
pursue mutual interests or goals [1]. If a virtual community just
focuses on the purpose of knowledge sharing, it is also called
virtual knowledge community (VKC), which brings together
geographically dispersed, like-minded people to form a
network for knowledge exchange [2]. In recent years, with the
wide application of Semantic Web, web ontology is applied to
VKC to formally represent and automatically process sharable
knowledge. In such a community [3, 4], each member usually
creates one or more web ontologies to represent his/her own
knowledge of a given domain. These ontologies possess a large
quantity of knowledge to be shared and leveraged by each
member in the community for his/her own purposes.

Due to the adoption of web ontology, knowledge sharing in
such a community is largely based on structural semantic query.
But, it has become a pressing issue that, given a semantic query
in such a virtual community, how to efficiently locate the web
ontologies, from which some solutions can be reasoned out. In
recent years, the issue has been given a great deal of attention

in practice as well as in research. Most of current approaches to
deal with the issue are based on Client–Server (C/S) structure.
In these approaches, all the web ontologies in a VKC are
gathered and stored in s ome centralized knowledge servers.
Community members can query and utilize knowledge under
some sort of centralized control. These approaches have been
considered inappropriate and ineffective to share knowledge [5,
6]. They are not suitable for the autonomous and dynamic
characteristics of knowledge sharing [7, 8]. So, knowledge
sharing in a decentralized network, especially supported by
peer-to-peer (P2P) technology, is introduced. These approaches
usually organize members’ computers with sharable ontologies
into an unstructured P2P network. Given a semantic query,
these approaches try to route it to the nodes with useful
knowledge to process it. However, unstructured P2P network
limits their scalability and effectiveness.

To address the issue and overcome the limitations of
current approaches, in this paper we propose a structured P2P-
based approach to automatically publish and locate sharable
web ontologies so as to facilitate processing semantic query. In
our approach, community members’ computers are organized
into a structured P2P network. If a computer as a node has
sharable web ontologies, it can directly publish them on P2P
network. If a node receives a query of SPARQL (Simple
Protocol and RDF Query Language) [9] from a requestor, it can
efficiently locate the useful ontologies to process the query and
send the query to nodes, where at least one of the useful
ontologies is located, to reason solutions for the query
respectively. Given a SP ARQL query, our approach makes
sure that it can find out all the ontologies published, which can
be reasoned out solutions for the query. Our approach provides
user with a method to automatically share web ontologies in
virtual community to process their SPARQL queries.

II. OVERVIEW OF OUR APPROACH
Peer-to-peer (P2P) systems usually consist of large numbers

of autonomous nodes and allow the sharable resources of each
node to be accessed by others. Especially structured P2P
systems, such as Chord [10], they usually organize nodes in a
systematic way and publish every sharable resource to a given
node respectively. As a result, they can effectively find out a
given resource and provide very good sc alability. Because of
structured P2P with these strengths, we apply it to our approach

618

for knowledge sharing. Based on structured P2P protocols, we
can design two functions to publish and locate web ontologies
on P2P network as follows:

1) pubOnto(idx, onto), it is used to publish ontology onto
based on its index idx(i.e., a property value of ontology onto).
According to a given structured P2P protocol, it locates a
given node N based on index idx so as to save the pair <idx,
onto> on node N.

2) lookupOnto(idx), it is used to get all the ontologies as a
set, where these ontologies are published based on index idx
(i.e., a property value of these ontologies) by some nodes.

B. Our Approach’s Overview

In our approach, members’ computers concerned (as nodes)
constitute a structured P2P network. When a node with some
sharable web ontologies joins, it publishes them as follows:

1) For each ontology O, based on each entity which
appears in it, creates an index for it, which can describe what
knowledge it possesses.

2) For each index idx of ontology O, using function
pubOnto(idx, onto), publish ontology O’s IRI as onto.

Once a node N receives a SPARQL query, it processes it as
follows:

1) Node N parses the query and creates the indices for the
query. The indices can together describe what knowledge an
ontology should possess if it is useful to process the query.

2) Based on the indices, node N locates the ontologies by
using function lookupOnto(idx) with some strategies. the
query’s solutions can be reasoned out just from the ontologies.

3) For each located ontology O, node N sends the query to
the node n where ontology O locates.

4) Node n reasons its ontology O to construct solutions for
the query and returns solutions to node N.

5) Node N collects all the solutions returned and sends to
requestor of the query.

The idea to create the indices for sharable ontologies and
SPARQL query and the strategies to locate ontology for a
query will be discussed in detail in the following section.

III. PUBLICATION AND LOCATION OF ONTOLOGY
In this section, we first introduce SPARQL basics and the

basic idea to create indices of SPARQL query to locate useful
ontologies. Then, we present our method to publish ontologies
and our algorithm to locate ontologies for a query.

A. SPARQL Basics

SPARQL [9] is a query language for RDF diagrams. Since
ontologies in compliance with OWL [11] or RDFS [12] are all
based on RDF data model, they can be queried by SPARQL.
Each SPARQL query has a graph pattern which consists of one
or more pattern-clause. A graph pattern can be automatically
converted into a semantically equivalent triple pattern. For
example, the conversion can be shown from Figure 1 to Figure
2. The triple in a triple pattern is like RDF triple except that
each of the subject, predicate and object may be a variable.

{ [a dc:book] dc:title "Semantic Web";
dc:creator ?y.
?y a dc:corporation. }

Figure 1. A Graph Pattern with Initial Pattern-Clauses

{ _:b0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> dc:book .
 _:b0 dc:title "Semantic Web" .
 _:b0 dc:creator ?y .
 ?y <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> dc:corporation }

Figure 2. Triple Pattern of Graph Pattern in Figure. 1

Graph pattern is used to convert into a triple pattern so as to
match a sub-graph of the RDF diagram being queried when
RDF terms from that sub-graph may be substituted for the
variables in the graph pattern. The result, i.e., solution, is RDF
graph equivalent to the sub-graph matched. Here, RDF terms
mean recourses in RDF triples. In a SPARQL query, the graph
pattern consists of the following five different categories: Basic,
Group, Optional, Alternative, and Named Graphs Pattern.

Basic Graph Pattern contains a p attern-clause which must
be matched. Similarly, Group Graph Pattern consists of a group
of pattern-clauses which must be all matched too. So, given a
SPARQL query with Basic or Group Graph Pattern, if a RDF
graph can be queried out results, RDF terms appearing in the
graph pattern are bound to appear in the RDF graph. Moreover,
if the query’s graph pattern is converted into a triple pattern, for
each RDF term and its role (as one of subject, predicate and
object) in a given triple in the triple pattern, there is at least one
triple specified or implied in the RDF graph, which involves in
the RDF term as the same role. So, we can take it as a clue to
locate useful ontology for a query.

Optional Graph Patterns provide optional patterns to extend
solutions to be reasoned out, while Named Graph Patterns
designate the graphs that its patterns must be matched against.
Thus, they can not provide useful clues to locate ontologies for
a query with such graph patterns. Alternative Graph Pattern has
two or more possible patterns to be tried. In fact, given a query
Q, which graph pattern is an Alternative Graph Pattern, it can
be broken into several sub-queries. Each sub-query takes one
alternative part of query O’s graph pattern as its independent
query pattern. Out of question, if one of sub-queries can be
reasoned out solutions from an ontology, query Q surely can be
reasoned out the same solutions from the ontology. Vice versa,
if query Q can be reasoned out solutions from an ontology, one
of its sub-queries surely can be reasoned out the same solutions.
Thus, the ontologies located for each sub-query of a query can
be united as the ontologies useful to the query.

In fact, a graph pattern of a query is usually formed by the
five basic patterns in nested way. The outer-most one in a
query is called query pattern. If a query’s graph pattern consists
of one or more Alternative Graph Patterns, we can repeatedly
insert the pattern-clause (or other Graph Patterns) paralleled
with an Alternative Graph Pattern P into P’s alternative parts
until Alternative Graph Pattern is the query’s outer-most graph
pattern and each alternative part does not include any other
Alternative Graph Pattern. So, we can get a semantically
equivalent graph pattern, based on w hich we can break such

619

query into several sub-queries without any Alternative Graph
Pattern.

B. Indices Creation of SPARQL Query

Based on SPARQL basics as discussed above, we present a
method to create indices for a given SPARQL query to locate
useful ontology for it. The method just concerns the query
without Alternative Graph Pattern because the query with such
pattern can be broken into se veral sub-queries without such
pattern to substitute for it. It consists of the following steps:

1) given a SPARQL query, extracts its graph pattern GP.
2) from graph pattern GP, removes Optional and Named

Graph Patterns in it, as a graph pattern G.
3) converts graph pattern G into a tr iple pattern TP. For

example, the conversion from Figure 1 to Figure 2.
4) from each triple T in triple pattern TP, first takes out

each RDF term tm, which are not blank nodes, variables, or
vocabularies of ontology language, such as OWL. Then,
records RDF term tm and its role Ro(as one of subject,
predicate, and object) in the triple T as a pair <tm, Ro>. Thus,
given a query’s triple pattern, we can obtain a pair set, called
tmRoPairs.

RDF terms in pairs in tmRoPairs are also referred to as
entities, which are classes, properties, or individuals in web
ontology to express the notions in domain. Here, each pair in
tmRoPairs is reviewed as an index of its SPARQL query.
Based on S PARQL basics as discussed in subsection 3.1, we
can draw a conclusion as follows:

Conclusion 1: If a web ontology is likely reasoned out
results for a q uery, then for each pair P in the query’s
tmRoPairs, the ontology must specify or can be reasoned out a
triple T, which contains the RDF term tm in pair P, and tm’s
role in triple T is identical to the role in pair P.

For a pair P in a query’s tmRoPairs, if a web ontology
neither specify nor can be reasoned out such a triple T, it means
that a triple in the query’s triple pattern, from which pair P is
constructed, must not be matched in the ontology. So, the
ontology must not be reasoned out solutions for the query.

C. Web Ontology Publication

To locate web ontologies according to conclusion 1, we
publish an ontology based on each entity and one of its possible
roles which appear in a specified or implied RDF triple in the
ontology. The process is listed as follows:

1) given sharable ontology O, extracts the entities as a set
enSet, which appear in ontology O.

2) for each entity E in se t enSet, reasons the ontology to
determine whether there is at least one specified or implied
triple where entity E’s role is subject (predicate, or object). If
such a triple exists, puts E into subSet (preSet, or objSet).

3) takes each element E in set subset (objSet, proSet) and
its corresponding role subject (predicate, object) as a pair <E,
subject (or predicate, or object)>. Then, views the pair as an
index idx of ontology O.

4) according to each idx, publishes the IRI onto of

ontology O by using the function pubOnto(idx, onto) as
discussed in subsection 2.1.

D. Web Ontology Location

Based on conclusion 1 and ontology publication method in
subsection 3.3, we design algorithm ontoLocating in Figure 3
to locate ontologies useful to a given SPAQRL query. Its basic
idea is that, given a query Q, we first discover ontologies based
on each pair P in its tmRoPairs defined in subsection 3.2, and
then intersect them as a set of useful ontologies to process
query Q.

1. Algorithm ontoLocating
2. Input qry: a given SPARQL query.
3. Output ontos: a set of IRIs of ontologies useful to query qry.
4. Begin
5. sets integer i=0 ;
6. parses out set tmRoPairs from graph pattern of qry;
7. For each pair p in set tmRoPairs Do
8. i=i+1;
9. creates a index idx based on the entity and its role in p;
10. retrieves a set ontoSet by using function lookupOnto (idx);
11. If i=1 Then ontos = ontoSet Else
12. ontos = ontoSet ontos
13. End If
14. End Do
15. Return ontos;
16. End

Figure 3. Algorithm: ontoLocating

In this algorithm, to process a given query, the number that
the algorithms access P2P network is the number of pairs in
tmRoPairs.

IV. EVALUATION
To evaluate our approach, first we have implemented it.

Then, design the following two experiments to evaluate its
efficiency:

1) Experiment 1 evaluates our approach’s consumption of
network resources when ontology is published.

2) Experiment 2 evaluates our approach’s consumption of
network resources when query is processed.

A. Experiment Set Up

In our experiments, first we downloaded 16 web ontologies
from TONES [13], an ontology repository, as experimental
data, which are listed in Table I. Then, we design 15 SPARQL
queries using the entities, which come from the ontologies in
Table I.

In addition, we compare the consumption of network
resources of our approach M1 with approach M2 and M3. For a
same task, if an approach consumes fewer resources, it will be
superior. Here, the consumption of network resources refers to
the number of accesses to P2P network and quantity of values
publishing on o r retrieving from P2P network when a web
ontology is published, or a query is processed. As far as
approach M2 and M3 are concerned, they are all implemented
based on RDFPeers [14], a structured P2P-based RDF
repositories. RDFPeers stores each RDF triple at three places

620

by applying hash functions to its subject, predicate, and object.
Thus, all nodes know which nodes are responsible for the
triples they are looking for if the triples exist in the network. So,
we can implement approach M2 and M3 based on RDFPeers to
process SPARQL query as follows:

1) Approach M2: given a web ontology, it just publishes
the triples specified explicitly in it. Given a SPARQL query Q,
it retrieves the connected sub-graph of each entity appearing in
Q’s graph pattern to create an ontology to process Q.

2) Approach M3: given a web ontology, it publishes all
the triples, which are specified or implied in th e ontology.
Given a SPARQL query, according to entities appearing in the
query’s graph pattern, this approach retrieves all the relevant
triples to process the query.

Like our approach (M1) in this paper, given a SPARQL

query, if an ontology published can be reasoned out solutions,
approach M2 and M3 are sure to achieve the solutions. Here
we do not discuss it in detail.

B. Results and Analysis

Experiment 1 is conducted to evaluate our approach’s
consumption of network resources when ontology is published.
When we publish a web ontology by using approach M1, M2,
and M3 respectively, we count the total numbers of the values
to be inserted into P2P network according to each approach. In
fact, using the three approaches, when a value is inserted into
P2P network, the network must be accessed one time. Thus, the
total numbers of the values to be published is the number of
accesses to P2P network when ontology is published. The
experimental results are recorded in column M1, M2, and M3
in the Table I respectively.

TABLE I. WEB ONTOLOGIES AND ITS NUMBERS OF THE VALUES PUBLISHED BY APPROACH M1, M2, AND M3

IRI of Ontologies from TONES M1 M2 M3 mulM2 mulM3
O1. file:/Users/seanb/Desktop/Cercedilla2005/hands-on/people.owl 291 950 5046 3.26 17.34
O2. http://keg.cs.tsinghua.edu.cn/ontology/software 174 867 4569 4.98 26.26
O3. http://www.mindswap.org/ontologies/family.owl 30 108 525 3.6 17.5
O4. http://www.co-ode.org/ontologies/pizza/pizza.owl 341 3345 30867 9.81 90.52
O5. http://www.owl-ontologies.com/Movie.owl 135 565 1605 4.19 11.89
O6. http://www.bpiresearch.com/BPMO/2004/03/03/cdl/Countries 67 498 1920 7.43 28.66
O7. http://www.semanticweb.org/ontologies/2007/9/AirSystem.owl 856 3398 65607 3.97 76.64
O8. http://protege.stanford.edu/plugins/owl/owl-library/koala.owl 65 247 1209 3.8 18.6
O9. http://www.loa-cnr.it/ontologies/DUL.owl 763 2689 38202 3.52 50.07
O10. http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl 196 439 1560 2.24 7.959
O11. http://www.mindswap.org/ontologies/debugging/university.owl 81 271 2823 3.35 34.85
O12. http://www.co-ode.org/ amino-acid/2006/05/18/amino-acid.owl 143 2291 4503 16 31.49
O13. http://www.mindswap.org/dav/commonsense/food/foodswap.owl 40 210 864 5.25 21.6
O14. http://www.estrellaproject.org/lkif-core/role.owl 271 1078 4083 3.98 15.07
O15. http://www.estrellaproject.org/lkif-core/lkif-top.owl 23 25 150 1.09 6.522
O16. http://www.semanticweb.org/ontolgies/chemical 127 398 14313 3.13 112.7
The total quantity of published data 3603 17379 177846 4.82 49.36

TABLE II. NUMBERS OF ACCESSES TO P2P NETWORK FOR EACH QUERY PROCESS USING APPROACH M1, M2, AND M3

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Total
M1 5 6 6 5 5 5 5 6 5 5 4 5 5 5 4 76
M2 1383 1383 22 56 129 171 124 231 231 171 1383 98 98 129 129 5738
M3 5 6 6 5 5 5 5 6 5 5 4 5 5 5 4 76

mulM2 276.6 230.5 3.67 11.2 25.8 34.2 24.8 38.5 46.2 34.2 345.8 19.6 19.6 25.8 32.25 75.5
mulM3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE III. NUMBERS OF VALUES RETRIEVED FROM P2P NETWORK FOR EACH QUERY PROCESS USING APPROACH M1, M2, AND M3

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Total
M1 5 6 6 5 5 8 5 6 5 6 4 5 5 5 4 80
M3 8547 8547 104 208 499 1025 564 946 946 1025 8547 429 429 499 499 32814
M2 2009 1726 403 2614 1708 1639 1692 1774 504 1735 1789 229 1821 2022 1926 23591

mulM2 1709.4 1424.5 17.33 41.6 99.8 128.13 112.8 157.67 189.2 170.83 2136.8 85.8 85.8 99.8 124.75 410.18
mulM3 401.8 287.67 67.17 522.8 341.6 204.88 338.4 295.67 100.8 289.17 447.25 45.8 364.2 404.4 481.5 294.89

In Table I, the column mulM2 (or mulM3) is the multiples
from column M2 (or M3) to M1. Table I shows that, for
approach M2, the multiples range from 1.09 to 16 and have a
weighted average value 4.82; for approach M3, the multiples
range from 6.522 to 112.7 and have a weighted average value
49.36. These imply that M1 can save large numbers of
accesses to network, because it just publishes a very smaller

quantity of values for a same ontology than M2 or M3. The
reason is that, M1 publishes an ontology just based on entities
and their roles appearing in the ontology, while M2 publishes
each triple specified three times and M3 publishes all the
specified and implied triples three times. An ontology usually
contains large numbers of triples, especially, the triples implied.

621

Experiment 2 is c onducted to evaluate our approach’s
consumption of network resources when a SPARQL query is
processed. In this experiment, we conduct 3 tests. For the first
one, we published all ontologies in table I by using approach
M1. Then, we process the 15 SPARQL queries we constructed.
When a query is processed, we record the number of accesses
to P2P network and the quantities of the values retrieved from
P2P network. For the second and third test, we do the same
thing by using approach M2 and M3 respectively. Then, we
record the results in Table II and Table III. In Table II, the row
M1, M2, and M3 record the numbers of accesses to P2P
network when a query is processed by approach M1, M2, and
M3 respectively. In Table III, the row M1, M2, and M3 record
the quantities of values retrieved from P2P network when a
query is processed by approach M1, M2, and M3 respectively.

In Table II, the r ow mulM2 (or mulM3) is the multiples
from row M2 (or M3) to M1. The row mulM2 shows that the
multiples range from 3.67 to 345.8 and have a weighted
average value 75.5. This means that approach M1 accesses
network very less times than M2 when a query is processed.
The reason is that, to obtain relevant connected sub-graphs for
a query, M2 needs to access network iteratively based on each
entity in the desired connected sub-graphs, while approach M1
just uses the entities appearing in the query to locate ontologies.
The row mulM3 shows that all the multiples are 1 . It means
that the numbers in row M1 are identical to the corresponding
numbers in row M3. The reason is that, for a query, approach
M1 locates the appropriate ontologies from P2P network,
while M3 retrieves relevant triples; but, they are all just based
on the entities appearing in graph pattern.

In Table III, the row mulM2 (or mulM3) is also the
multiples from row M2 (or M3) to M1. The row mulM2 shows
that the multiples range from 17.33 to 2136.8 and have a
weighted average value 410.18. The row mulM3 shows that
the multiples range from 45.8 to 447.25 and have a weighted
average value 294.89. That is to say, for a query, M1 only need
retrieve significantly less data from P2P network than M2 or
M3. It is because that, to obtain relevant connected sub-graphs
for a query, M2 has to retrieve all triples related to each entity
in desired connected sub-graphs. For approach M3, because it
publishes all the triples specified or implied, usually large
numbers of triples will be retrieved based on each entity.

V. RELATED WORK
Along with the development of P2P technique and the

technical requirement of knowledge sharing in virtual
community, in recent years, some P2P-based approaches for
ontology publication and discovery have been proposed.

Chen et al. [7], propose a knowledge sharing approach,
which organizes the nodes with sharable knowledge as an
unstructured P2P network. For a query, the approach tries to
send it to the nodes with related knowledge. Similar
approaches are also presented in [4, 5, 8]. In these approaches,
unstructured P2P network limits their scalability and
effectiveness. Min et al. [14] present a scalable distributed
RDF repository (named RDFPeers) that stores each triple at
three places by applying globally known hash functions to its
subject, predicate, and object. Thus, all nodes know which

node is responsible for triples they are looking for. Queries are
guaranteed to find out matched triples in the network if the
triples exist. However, if RDF triples are directly published on
P2P, it is difficult to support semantic retrieval.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose and implement a structured P2P-

based approach to publish and locate sharable ontologies to
process SPARQL queries in a virtual knowledge community,
where web ontology is used to formally represent knowledge.
Given a SPARQL query, our approach makes sure that it can
find out all the sharable ontologies in community, which can
be reasoned out s olutions for the query. We also conducted
two experiments to evaluate its efficiency. The experimental
results demonstrated that our approach is efficient. In near
future, we plan to continue our research work in the following
aspects:

1) Conduct further study to investigate graph pattern of
SPARQL query to f ind out other clues to more efficiently
locate useful ontologies rather than the appearing entities and
their roles. For example, structure of graph pattern.

2) Study the method to map words to existing ontological
entities so as to facilitate requestors to construct their
SPARQL queries automatically.

REFERENCE
[1] Wikipedia. Virtual Community. http://en.wikipedia.org/wiki/Virtual-

community. Retrieved March 20, 2011.
[2] Wellman, B., Gulia, M.: Net-Surfers Don’t Ride Alone: Virtual

Communities as Communities. In: Wellman, B. (ed.): Networks in The
Global Village. Boulder, CO: Westview Press (1999) 331-366

[3] P. Maret, M. Hammond, and J. Calmet. Virtual Knowledge
Communities for Corporate knowledge Issues [C]. M.-P. Gleizes, A.
Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 33–44.

[4] Melanie Gnasa, Sascha Alda, Jasmin Grigull et a l. Cremers. Towards
Virtual Knowledge Communities in Peer-to-Peer Networks [C]. J.
Callan et al. (Eds.): SIGIR 2003 Ws Distributed IR, LNCS 2924, pp.
143–155

[5] Zhen, L.; Jiang, Z. & Song, H. Distributed recommender for peer-to-
peer knowledge sharing Information Sciences, 2010, 180, 3546 – 3561

[6] J.S.H. Kwok, S. Gao, Knowledge sharing community in P2P network: a
study of motivational perspective, Journal of Knowledge Management
8(1) (2004) 94–102.

[7] Chen-Ya Wang, Hsin-Yi Yang, Seng-cho T. Chou. Using peer-to-peer
technology for knowledge sharing in communities of practices, Decision
Support Systems 45 (2008) 528–540.

[8] L.C. Jain, N.T. Nguyen, Knowledge Processing and Decision Making in
Agent-based Systems [M], Springer-Verlag, 2009.

[9] W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/ rdf-
sparql-query/. Retrieved February 5, 2012.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F.
Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup protocol
for internet applications, IEEE/ACM Transactions on Networking (TON)
11(1) (2003) 17-32.

[11] OWL. http://www.w3.org/TR/owl2-overview/. February 9, 2012.
[12] RDF Schema. http://www.w3.org/TR/rdf-schema/. February 8, 2012.
[13] TONES. http://owl.cs.manchester.ac.uk/repository. February 17, 2012.
[14] Min Cai, Martin Frank. RDFPeers: a scalable distributed RDF

repository based on a structured peer-to-peer network. Proceedings of
the 13th international conference on Word Wide Web (WWW’04).
ACM Press. 2004. pp.650-657.

622

Empirical Validation of Variability-based Complexity Metrics
for Software Product Line Architecture

Edson A. Oliveira Junior and Itana M. S. Gimenes

Informatics Department - State University of Maringá
Maringá-PR, Brazil

Email: edson@edsonjr.pro.br, itana@din.uem.br

José C. Maldonado

Computing Systems Department - University of São Paulo
São Carlos-SP, Brazil

Email: jcmaldon@icmc.usp.br

Abstract—The software product line approach has been
applied as a successful software reuse technique for specific
domains. The product line architecture is one of the most
important product line core assets as it is the abstraction of the
products that can be generated, and it represents similarities
and variabilities of a product line. Its quality attributes analysis
and evaluation can serve as a basis for analyzing the managerial
and economical values of a product line. This analysis can be
quantitatively supported by metrics. Thus, we proposed metrics
for the product line architecture complexity quality attribute.
This paper is concerned with the empirical validation of such
metrics. As a result of the experimental work we can conclude
that the metrics are relevant indicators of complexity of product
line architecture by presenting a correlation analysis.

Keywords-Complexity, Correlation Analysis, Emprical Vali-
dation, Metrics, Software Product Line Architecture.

I. INTRODUCTION

In the last decades effective methodologies to evaluate

software architectures, such as ATAM (Architecture Trade-

off Analysis Method) and SAAM (Software Architecture

Analysis Method), were proposed and consolidated by both

industrial and academic segments [7]. Such a consolidation

is corroborated by the analysis of the number of published

research papers and technical reports providing important

examples of how to carry out a software architecture evalu-

ation based on quality attributes. Thus, these methodologies

are essential for evaluating single-product architectures.

In recent years, the software product line (PL) engineering

[10] has emerged as a promising reusability approach, which

brings out some important benefits, such as increases the

reusability of its core assets, while decreases the time to

market. One of the most important assets of a PL is its

architecture (PLA). The PLA plays a central role at the

development of products from a PL as it is the abstraction

of the products that can be generated, and it represents

similarities and variabilities of a product line.

The evaluation of a PLA must be supported by a set of

metrics [8]. Such metrics must both evidence the quality

of PL and serve as a basis to analyze the managerial and

economical value of a PL [2]. The PLA must explicit the

common (similarities) and variable (variabilities) aspects of

a PL. The variability impact analysis on the PL develop-

ment can determine the aggregated value of a PL for an

organization. Metrics for a PLA are applied to a set of assets

from which variants can be generated rather than one specific

product. Thus, it is necessary to define specific PLA metrics

to provide effective indicators with regard to the overall PL

development and evolution.

We proposed six metrics for PLA complexity. These

metrics were defined to provide an indicator of how complex

is a PLA by measuring its derived PL products. Complexity

is measured based on McCabe’s Cyclomatic Complexity

(CC) [11] which measures the number of different paths in a

source code. Basically, class complexity is calculated by the

Weighted Metrics per Class (WMC) metric [6], which is a

composition of the CC metric. Thus, component complexity

is the sum of the complexity of all classes that form a

component.

Variabilities are related to PLA class and/or components.

Each variability is related to variation points and/or variants

that realize it. A variation point or variant might be a PLA

class or component. The complexity of a variability can be

calculated based on the complexity of each variation point

or variant.

Both theoretical and empirical validations [5] are neces-

sary to validate a set of metrics. Theoretical validation is

concerned with demonstrating that a metric is measuring the

concept it is purporting to measure. The first requirement for

theoretical validation is that either the analyst has an intuitive

understanding of the concept that is being measured and/or

that the software engineering community has a consensual

intuitive understanding of the concept. Theoretical validation

of the complexity metrics have been done in [12].

This paper is concerned with the empirical validation of

the proposed metrics for PLA complexity quality attribute.

The validation aims at correlating the metrics with subject’s

complexity rating, respectively, when generating PLA con-

figurations. A PLA configuration represents a derived PL

product with variabilities resolved.

This paper is organized as follows: Section II defines

the complexity metrics to be validated and illustrates how

to collect them; Section III presents how the experimental

623

study was planned and carried out to validate the complexity

metrics; Section IV discusses the results obtained in this

study; and Section V provides the conclusions and directions

for future work.

II. COMPLEXITY METRICS FOR SOFTWARE PRODUCT

LINE ARCHITECTURES

The complexity understanding is essential from the PL

adoption point as a PL manager is able to analyze the

complex of the potential PL products to be produced.
Organizations which have a developed PL core asset

for a certain domain can analyze the complexity of the

distinct configurations and the PL evolution. Therefore, a PL

manager may choose from a set of feasible configurations

which are the most interesting to be produced.
The complexity metrics for PLA were composed based on

the Cyclomatic Complex (CC) [11] and Weighted Methods

per Class (WMC) [6]. The CC metric measures the quantity

of decision logic represented by the number of paths to be

tested in a source code. The WMC metric is the sum of the

CC metric for each concrete method in an object-oriented

class. Abstract methods have WMC value 0.0. Each metric

measures the complexity of class, interface and component

based on one of the following PL variability concepts:

• Variability, according to Bosch [4], is “the ability of

a software or artifact to be changed, customized or

configured for use in a particular context.” Although

a variability can take place at different levels of ab-

straction and artifacts, the complexity metrics in this

paper address only class and component UML artifacts

that result from PL activities [14] and represents the

PLA;

• Variation Point is the resolution of variabilities in

generic artifacts of a PL. According to Jacobson et al.

[9], “a variation point identifies one or more locations at

which the variation will occur.” Thus, a variation point

may take place at generic artifacts and at different levels

of abstraction. Basically, a variation point answers the

question: What varies in a PL? [16]; and

• Variant represents the possible elements through which

a variation point may be resolved. It may also represent

a way to directly resolve a variability. Basically, a

variant answers the question: How does a variability

or a variation point vary in a PL? [16].

The complexity metrics taken into consideration in this

paper are as follows:

CompInterface: measures the complexity of an interface.

It always has value 0.0 as an interface has no concrete meth-

ods to calculate the WMC metric. This metric is represented

by the following formula (1):

CompInterface(Cls) = WMC(Itf) = 0.0,

where:

• n = # of concrete methods (Mtd) of an interface (Itf)

}
(1)

CompClass: measures the complexity of a class. It is the

WMC metric value for a class. This metric is represented

by the following formula:

CompClass(Cls) = WMC(Cls) =

n∑
i=1

WMC(Mtdi),

where:

• n = # of concrete methods (Mtd) of a class Cls

⎫⎪⎪⎬
⎪⎪⎭ (2)

CompVarPointClass: measures the complexity of a varia-

tion point. It is the value of the metric CompClass (Equation

2), for a class which is a variation point, plus the sum of the

CompClass (Equation 2) value for each associated variant

class. This metric is represented by the following formula:

CompVarPointClass(Cls) = CompClass(Cls) +
n∑

i=1

CompClass(Assi),

where:

• n = # of (inclusive + exclusive + optional + mandatory) variant
classes and interfaces associated (Ass)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

CompVariabilityClass: measures the complexity of a vari-

ability. It is the sum of the metric CompVarPointClass
(Equation 3), for each variation point. This metric is rep-

resented by the following formula:

CompVariabilityClass(Vbt) =

nV P∑
i=1

CompV arPointClass(Clsi),

where:
• nVP = # of class and interface (Cls) variation points

⎫⎪⎪⎬
⎪⎪⎭ (4)

CompVarComponent: measures the complexity of a vari-

able PLA component. It is the sum of the metric Com-
pVariabilityClass (Equation 4), for each variability in a

component. This metric is represented by the following

formula:

CompVarComponent(Cpt) =

nV ar∑
i=1

CompV ariabilityClass(V ari),

where:
• nVar = # of variabilities (Var) in a component (Cpt)

⎫⎪⎪⎬
⎪⎪⎭ (5)

CompPLA: measures the complexity of a PLA. It is

the sum of the CompVarComponent (Equation 5) for each

component of a PLA. This metric is represented by the

following formula:

CompPLA(PLA) =

nCpt∑
i=1

CompV arComponent(Cpti),

where:
• nCpt = # of PLA variable components
• Cpti is the o ith component of a PLA

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

624

III. EXPERIMENTAL STUDY

In this section we describe the experiment we have carried

out to empirically validate the proposed metrics as indicators

of PLA complexity. We have followed the suggestions

provided by Wohlin et al. [19] and Perry et al. [15] on how

to perform controlled experiments with minor changes.

A. Definition

Based on the Goal-Question-Metric (GQM) template [1],

the goal of the experiment is presented as follows:

Analyze collected metrics from UML models and source
code

For the purpose of validating
With respect to the capability to be used as PLA com-

plexity indicators
From the point of view of software product line archi-

tects
In the context of graduate students of the Software

Engineering area at the University of Waterloo (UWaterloo),
University of São Paulo (ICMC-USP), and State University
of Maringá (UEM).

B. Planning

1) Context Selection: the experiment was carried out in

an academic environment.

2) Selection of Subjects: a group of Software Engineering

graduate students from ICMC-USP, UEM, and UWaterloo.

They have experience in the design of product lines and

variabilities using UML.

3) Variable Selection: the independent variables were the

class and component complexity of a PLA. The dependent

variables were the complexity of each product generated

from the PLA.

4) Instrumentation: the objects were: a document de-

scribing the Arcade Game Maker (AGM) PL [17]; AGM

UML class and component models, a traceability model

from classes to components; and a resolution model con-

taining the variabilities to be resolved at class level. The

independent variables were measured by the proposed met-

rics. The dependent variables were measured according to

the subjects ratings of complexity.

5) Hypothesis Formulation: the following hypothesis

were tested in this study:

• Null Hypothesis (H0): There is no significant correla-

tion between the PLA complexity metric (CompPLA)

and the subject’s complexity rating for each PLA con-

figuration; and

• Alternative Hypothesis (H1): There is a significant

correlation between the PLA complexity metric (Comp-
PLA) and the subject’s complexity rating for each PLA

configuration.

6) Experiment Design: all the tasks had to be solved by

each of the subjects.

C. Operation

1) Preparation: when the experiment was carried out, all

of the subjects had graduated in the Software Engineering

area, in which they have learned how to design at least

object-oriented (OO) class diagrams using UML. In addition,

all of the subjects had experience in applying PL and

variability concepts to OO systems designed using UML.

The material prepared to the subjects consisted of:

• the class diagram representing the core asset of the

AGM PL;

• the AGM component diagram, representing its logical

architecture;

• an AGM traceability model from classes to compo-

nents;

• the description of the AGM PL;

• the SMartyProfile [13], which is a UML metamodel,

thus the subjects can understand how the variabilities

are represented in class and component diagrams;

• a variability resolution model, which the subjects could

resolve the variabilities to generate one AGM configu-

ration; and

• a test (questionnaire) describing complexity concepts,

which the subjects had to rate the associated complexity

of each generated AGM configuration based on linguis-

tic labels (Table I).

Table I
LINGUISTIC LABELS FOR COMPLEXITY SUBJECTS RATING.

Extremely
Low Low Neither Low

nor High High Extremely
High

We selected five linguistic labels, based on Bonissone [3],

as we considered they are significant to cover the complexity

category of our variables and bring out balance to obtain

better results.

2) Execution: the subjects were given the material de-

scribed in Preparation (Section III-C1). It was required to

each subject to generate one AGM configuration. It was

done by following instructions on how to resolve the AGM

variability resolution model, and how to rate the complexity

associated to the configurations generated from the subjects

view point. All the tasks were performed by each subject

alone, with no time limit to solve them and neither se-

quentially nor simultaneously. As the metric CompPLA is

a composition of the remaining complexity metrics of this

paper, we only take CompPLA into consideration for the

validation purpose. In addition, the CompPLA value of each

configuration was divided by the CompPLA value of the

overall AGM PLA, thus resulting in a value ranging from

0.0 to 1.0.

3) Data Validation: the tasks realized by the subjects

were collected. We consider the subjects subjective evalu-

ation reliable.

625

D. Analysis and Interpretation

We summarized the collected data by calculating the

metrics CompPLA for the thirty AGM configurations gen-

erated by the subjects, as well as verifying the complexity

rating of such configurations. Table II presents the observed

values for the CompPLA metric from the generated AGM

configurations.

Table II
OBSERVED VALUES FOR THE COMPPLA METRIC FROM THE

GENERATED CONFIGURATIONS.

Configuration # CompPLA
1 0.51
2 0.56
3 0.51
4 0.83
5 0.91
6 0.50
7 0.47
8 0.53
9 0.67

10 0.90
11 0.53
12 0.97
13 0.48
14 0.69
15 0.74

Configuration # CompPLA
16 0.98
17 0.77
18 0.82
19 0.52
20 0.82
21 0.49
22 1.00
23 0.52
24 0.42
25 0.62
26 0.47
27 0.53
28 0.70
29 0.40
30 0.78

1) Descriptive Statistics: Figure 1 presents the CompPLA

observed values (Table II) plotted in a boxplot.

Box Plot of CompPLA
AGM Experiment 2v*30c

 Median = 0.5895
 25%-75%
= (0.505, 0.821)
 Non-Outlier Range
= (0.4, 1)
 Outliers
 Extremes0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
om

pP
LA

Figure 1. Boxplot for the CompPLA Observed Values.

2) Normality Tests: We can clearly observe that the

CompPLA values distribution (Figure 1) is non-normal. In

spite of it, Shapiro-Wilk and Kolmogorov-Smirnov normal-

ity tests were conducted to make sure of it.

The following hypothesis were proposed for both normal-

ity tests with regard to the CompPLA metric:

• Null Hypothesis (H0): the CompPLA observed values

distribution is normal, i.e., the significance value (p) is

greater than 0.05 (p > 0.05); and

• Alternative Hypothesis (H1): the CompPLA observed

values distribution is non-normal, i.e., the significance

value (p) is less or equal to 0.05 (p ≤ 0.05).

Taking into account a sample size (N) of 30, with mean

(μ) 0.6545, standard deviation (σ) 0.1842, and median (x̃)

0.5895, the CompPLA metric obtained a significance value:

• p < 0.01 (0.01 < 0.05) for the Kolmogorov-Smirnov
test;

• p = 0.0118 (0.0118 < 0.05) for the Shapiro-Wilk test.

Thus, there is evidence, for both normality tests, that

the null hypothesis (H0) must be rejected at a significance

level of 5%. Then, we cannot consider the CompPLA

observed values distribution normal and, consequently, a

non-parametric statistic method must be used to analyze the

data.

3) Spearman’s Rank Correlation: as CompPLA distribu-

tion is non-normal, we applied the non-parametric Spear-

man’s Correlation (ρ) [18] to support the interpretation of

the data. This method allows to establish whether there is a

correlation between two sets of data. Equation (7) presents

the Spearman’s ρ formula:

ρ = 1 − 6
n(n2−1)

n∑
i=1

d2i , where n is the sample

size (N)

⎫⎬
⎭ (7)

no correlation

strong negative
correlation

perfect negative
correlation

weak positive
correlation

strong positive
correlation

0- 0.5- 1.0 0.5 1.0weak negative
correlation

perfect positive
correlation

Figure 2. Spearman’s Rank Correlation Scale.

We performed the following correlation (Corr.1): Comp-
PLA and the subjects complexity rating, which shows that

the understanding of complexity by the subjects corroborates

to the CompPLA metric, establishing how to measure com-

plexity in PLA.

Table III presents the Spearman’s ranking correlation for

Corr.1. The Spearman ρ coefficient (Equation 7) for Corr.1

is calculated as follows:

ρ(Corr.1) = 1− 6
30(302−30) ×293.5 = 1− 6

26970 ×293.5 =
1− 0.07 = 0.93

Thus, according to Figure 2, there is a strong positive

correlation (ρ(Corr.1) = 0.93) between the metric CompPLA

and the subjects complexity rating.

Based on the proposed correlation, we have evidence to

reject the null hypothesis H0 of the study, and accept the

alternative hypothesis H1 (Section III-B5), which states that

complexity metrics are significantly correlated to complexity

of PLA.

626

Table III
SPEARMAN’S CORRELATION FOR CORR.1: COMPPLA AND SUBJECTS COMPLEXITY RATES.

Config. # CompPLA ra
Subject's

Complexity Rating rb
d

| ra - rb | d2

1 0.51 22.5 Neither Low nor High 22.5 0 0

2 0.56 16 Neither Low nor High 22.5 6.5 42.25

2 0.51 22.5 Neither Low nor High 22.5 0 0

4 0.83 6 Extremely High 4.5 1.5 2.25

5 0.91 4 Extremely High 4.5 0.5 0.25

6 0.50 24 Neither Low nor High 22.5 1.5 2.25

7 0.47 27.5 Neither Low nor High 22.5 5 25

8 0.53 18 Neither Low nor High 22.5 4.5 20.25

9 0.67 14 High 12 2 4

10 0.90 5 Extremely High 4.5 0.5 0.25

11 0.53 18 Neither Low nor High 22.5 4.5 20.25

12 0.97 3 Extremely High 4.5 1.5 2.25

13 0.48 26 Neither Low nor High 22.5 3.5 12.25

14 0.69 13 High 12 1 1

15 0.74 11 High 12 1 1

Config. # CompPLA ra
Subject's

Complexity Rating rb
d

| ra - rb | d2

16 0.98 2 Extremely High 4.5 2.5 6.25

17 0.77 10 High 12 2 4

18 0.82 7.5 Extremely High 4.5 3 9

19 0.52 20.5 Neither Low nor High 22.5 2 4

20 0.82 7.5 Extremely High 4.5 3 9

21 0.49 25 Neither Low nor High 22.5 2.5 6.25

22 1.00 1 Extremely High 4.5 3.5 12.25

23 0.52 20.5 Neither Low nor High 22.5 2 4

24 0.42 29 Neither Low nor High 22.5 6.5 42.25

25 0.62 15 High 12 3 9

26 0.47 27.5 Neither Low nor High 22.5 5 25

27 0.53 18 Neither Low nor High 22.5 4.5 20.25

28 0.70 12 High 12 0 0

29 0.40 30 Low 30 0 0

30 0.78 9 High 12 3 9

E. Validity Evaluation
In this section we discuss the empirical study’s threats to

validity and how we tried to minimize them.
1) Threats to Conclusion Validity: the only issue that we

take into account as a risk to affect the statistical validity

is the sample size (N=30), which can be increased during

prospective replications of this study in order to reach

normality of the observed values.
2) Threats to Construct Validity: our dependent variable

is complexity. We proposed subjective metrics for it, as lin-

guistic labels, collected based on the subjects rating. As the

subjects have experience in modeling OO systems using at

least class diagrams, we take their ratings as significant. The

construct validity of the metrics used for the independent

variables is guaranteed by some insights carried out on a

previous study of metrics for PLA [12].
3) Threats to Internal Validity: we dealt with the follow-

ing issues:

• Differences among subjects. As we dealt with a small

sample, variations in the subject skills were reduced by

applying the within-subject task design. Thus, subjects

experiences had approximately the same degree with

regard to UML modeling, and PL and variabilities basic

concepts.

• Accuracy of subject responses. Complexity was rated

by each subject. As they have medium experience in

UML modeling, and PL and variabilities concepts, we

considered their responses valid.

• Fatigue effects. On average the experiment lasted for

69 minutes, thus fatigue was considered not very rele-

vant. Also, the variability resolution model contributed

to reduce such effects.

• Measuring PLA and Configurations. As PLA can

be analyzed based on its products (configurations),

measuring derived configurations provide a means to

analyze PLA quality attributes by allowing the perform-

ing of trade-off analysis to prioritize such attributes.

Thus, we consider valid the application of the metrics to

PLA configurations to rate the overall PLA complexity.

• Other important factors. Influence among subjects

could not really be controlled. Subjects did the ex-

periment under supervision of a human observer. We

believe that this issue did not affect the study validity.

4) Threats to External Validity: Based on the greater the

external validity, the more the results of an empirical study

can be generalized to actual software engineering practice,

two threats of validity have been identified, which are:

• Instrumentation. We tried to use representative class

and component diagrams of real cases. However, the

PL used in the experiment is non-commercial, and

some assumptions can be made on this issue. Thus,

more empirical studies taking a “real PL” from software

organizations must be done.

• Subjects. Obtaining well-qualified subjects was diffi-

cult, thus we used advanced students from the Software

Engineering academia. More experiments with practi-

tioners and professionals must be carried out allowing

us to generalize the study results.

IV. DISCUSSION OF RESULTS

Obtained results of the study lead us to conclude that the

metric CompPLA is a relevant indicator of PLA complexity

based on its correlation to subject’s rating.

627

Several more experiments must be carried out, as well

as more PLA configurations must be both derived and

incorporated to enhance the conclusions. In addition, we

need to apply our metrics to a commercial PL in order to

reduce external threats to the study validity and for gathering

real evidence that these metrics can be used as complexity

indicators.

V. CONCLUSION

Current literature claims the need of metrics to allow PL

architects empirically analyze the potential of a PLA, as

well as PL managers analyze the aggregated managerial and

economical values of a PL throughout its products.
Performing empirical validation of metrics is essential to

demonstrate their practical usefulness. The proposed metrics

for the complexity (CompPLA) PLA quality attribute were

empirically validated based on their application to a set

of 30 products generated by experiment subjects from the

Arcade Game Maker (AGM) PL. The observed metric values

were submitted to normality tests which proved their non-

normality. Then, Spearman’s rank correlation was used to

demonstrate the metrics correlations, which is: CompPLA

has a strong positive correlation with the subjects complexity

rating.
Although we have used a non-commercial PL to conduct

our experiments, we had evidences that our proposed metrics

can be used as relevant indicators of complexity of a PLA

based on its derived products.
We are currently proposing changes on various issues to

improve our experiments with metrics, which are:

• increase the derived configurations sample size, which

is important to stay closer to real projects and to

generalize the results;

• conduct experiments in a more controlled environment;

• deal with real data from commercial PL obtained from

industrial environments; and

• recruit more subjects from the Software Engineering

area, both from academic and industrial environments.

REFERENCES

[1] V. Basili and H. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans-
actions on Software Engineering, vol. 14, no. 6, pp. 758–773,
1988.

[2] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, and
K. Schmid, “Calculating ROI for Software Product Lines,”
IEEE Software, vol. 21, no. 3, pp. 23–31, May 2004.

[3] P. P. Bonissone, “A Fuzzy Sets Based Linguistic Approach:
Theory and Applications,” in Proceedings of Conference on
Winter Simulation. Piscataway, NJ, USA: IEEE Press, 1980,
pp. 99–111.

[4] J. Bosch, “Preface,” in Proceedings of the 2nd Groningen
Workshop on Software Variability Management: Software
Product Families and Populations. Groningen, The Nether-
lands: University of Groningen, 2004, pp. 1–2.

[5] L. Briand, K. E. Emam, S. Morasca, K. El, and E. S. Morasca,
“Theoretical and Empirical Validation of Software Product
Measures,” International Software Engineering Research Net-
work, ISERN-95-03, 1995.

[6] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[7] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[8] E. Dincel, N. Medvidovic, and A. v. d. Hoek, “Measuring
Product Line Architectures,” in Proceedings of the Interna-
tional Workshop on Product Family Engineering. London,
UK: Springer-Verlag, October 2001, pp. 346–352.

[9] I. Jacobson, M. L. Griss, and P. Jonsson, Software Reuse:
Architecture, Process, and Organization for Business Success.
Boston, MA, USA: Addison-Wesley Professional, 1997.

[10] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[11] T. J. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[12] E. A. Oliveira Junior, I. M. S. Gimenes, and J. C. Mal-
donado, “A Metric Suite to Support Software Product Line
Architecture Evaluation,” in Proceedings of the Conferencia
Latinoamericana de Informática, Santa Fé, Argentina, 2008,
pp. 489–498.

[13] ——, “Systematic Management of Variability in UML-based
Software Poduct Lines,” Journal of Universal Computer Sci-
ence (J.UCS), vol. 16, no. 17, pp. 2374–2393, 2010.

[14] E. A. Oliveira Junior, I. M. S. Gimenes, E. H. M. Huzita,
and J. C. Maldonado, “A Variability Management Process for
Software Product Lines,” in Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative Research.
Toronto, ON, Canada: IBM Press, 2005, pp. 225–241.

[15] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical Studies
of Software Engineering: a Roadmap,” in Proceedings of the
International Conference on Software Engineering. New
York, NY, USA: ACM, 2000, pp. 345–355.

[16] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques.
Secaucus, NJ, USA: Springer-Verlag, 2005.

[17] SEI, “Arcade Game Maker Pedagogical Product Line,” 2010.
[Online]. Available: http://www.sei.cmu.edu/productlines/ppl

[18] C. Spearman, “The Proof and Measurement of Association
Between Two Things,” American Journal of Psychology,
vol. 15, no. 1, pp. 72–101, 1904.

[19] C. Wohlin, P. Runeson, M. Hust, M. C. Ohlsson, B. Regnell,
and A. Wesslun, Experimentation in Software Engineering:
an Introduction. Norwell, MA, USA: Kluwer Academic
Publishers, 2000.

628

A Mapping Study on
Software Product Lines Testing Tools

Crescencio Rodrigues Lima Neto1,3, Paulo Anselmo Mota Silveira Neto3

Eduardo Santana de Almeida2,3, Silvio Romero de Lemos Meira1,3

1Center for Informatics - Federal University of Pernambuco (CIn/UFPE)
2Computer Science Department - Federal University of Bahia (DCC/UFBA)

3Reuse in Software Engineering Labs (RiSE)
{crln, srlm}@cin.ufpe.br, pamsn@rise.com.br, esa@dcc.ufba.br

Abstract—The benefits of using a software testing tool in order
to achieve significant reductions in cost and time to market,
and, at the same time, increasing the quality has encouraged
the adoption of testing tools both in single systems and product
lines. In this context, this study focuses on the following goals:
analyze how the available tools are supporting the Software
Product Lines (SPL) Testing Process, investigate the state-of-the-
art on single system and SPL testing tools, synthesize available
evidence, and identify gaps among the tools, available in the
literature. A mapping study was undertaken to analyze important
aspects that should be considered when adopting testing tools. A
set of four research questions were defined in which 33 studies,
dated from 1999 to 2011, were evaluated. From the total of 33
studies considered, 24 of them described single system testing
tools and the other 9 described SPL testing tools. However, there
is insufficient information about publications describing tools
used in the industry. There is no tool suitable to all testing levels
of a SPL, researchers need to consider the feasibility of adapting
existing tools or constructing new tools.

Keywords—Software Testing; Software Product Lines; Soft-
ware Reuse; Testing Tools; Systematic Literature Reviews

I. INTRODUCTION

In order to achieve the ability to build individualized prod-

ucts, to meet individual customer needs, companies need high

investments, which consequently leads to higher prices for

final products. In this context, the increasing adoption of Soft-

ware Product Lines (SPL) practices in industry has decreased

implementation costs, reduced time-to-market and improved

quality of products. Although the benefits are promising, SPL

advantages demand mature software engineering practices,

planned and managed reuse [1].

Testing is an essential part of software development to

address product quality, since it examines the core assets, the

product-specific software, the interaction between them, and

finally the completed products [2].

Testing tools are important to increase the quality of testing

and at the same time reduce the effort to perform them.

However, existing testing tools (see Section IV) are mostly

unable to support SPL Testing [3].

This study has been structured combining ideas from [4]

with good practices defined in the guidelines proposed by

[5], such as the protocol definition. Therefore, we applied a

process for a mapping study (MS), including best practices for

conducting systematic reviews (SR), making the best use of

both methods.

The objective of this study is to investigate how do the
available tools support the Software Product Lines Testing
process? This study aims to map out existing testing tools,

to synthesize evidence to suggest important implications for

practice, as well as to identify research trends, open issues, and

areas for improvement. We derived four research questions:

• RQ1 - In which context the proposed tools were proposed
and evaluated? It aims at identifying where the tools were

developed (industry or academia) and how they have been

validated. Through these descriptions, it is possible to

map the current adoption of the tools.

• RQ2 - Is it possible to use the single system testing
tools to test software product lines? It aims to analyze

the possibility of using the single system testing tools to

test SPL instead of creating tools from scratch.

• RQ3 - Which testing levels are supported by existing
tools? It aims to classify the tools according to the testing

levels in order to identify what the tools can offer. It

can provide information regarding to further research in

a specific area or testing level.

• RQ4 - How are testing tools evolving? It aims to analyze

how the existing testing tools are evolving, regarding to

the different testing levels.

Furthermore, we believe that this paper can provide insights

for new research in the software testing tools area, serving as

a baseline, by analyzing the available tools and presenting the

existing gaps.

The remainder of this paper is structured as follows: Section

II presents the related work. Section III describes the research

method used. Section IV presents the analysis of the results.

Section V presents a discussion on the results and the main

findings of the study. Section VI presents the threats to validity,

and finally, Section VII discusses the main conclusions.

II. RELATED WORK

Several studies [6], [3], [7], [8], emphasize the need for

testing tools to support the Testing Process, however, few ones

629

focus on SPL.

Tevanlinna et al. [3] performed a survey in which eval-

uated the state-of-the-art in SPL Testing highlighting the

importance of testing tools for supporting the SPL process.

The study investigated the need for product lines specific

testing tools that should help to manage the reusable testing

assets, automate the test execution activity, and the analysis

of their results. Moreover, the authors explored specifically

regression testing, testing of partial programs, frameworks and

component testing.

Edwin [7] performed a systematic literature review, which

aims to find out the primary studies relating to Software

Product Lines Testing Tools. It investigated the tools that can

be used to support testing in the software product lines context

to ensure high quality in SPL and its derived products.

Lamancha et al. [9] presented a systematic literature review,

which deals with testing in software product lines. The authors

analyzed the existing approaches to SPL testing, discussing the

significant issues related to this area. The work discussed also

which papers described software product lines testing tools

Neto et al. [10] and Engströn et al. [11] presented a

systematic mapping study performed in order to map out the

SPL Testing field, through synthesizing evidence to suggest

important implications for practice, as well as identifying

research trends, open issues, and areas for improvement.

We elaborated a mapping study that investigates single

system testing tools and SPL testing tools. We analyzed all

the test levels (unit, integration, system and acceptance) of

the SPL Testing Process including regression testing. Finally,

we identified the possibility to adapt single systems testing

tools to test SPL.

III. RESEARCH METHODOLOGY

According to [12], a MS provides a systematic and objective

procedure for identifying the nature and extent of the empirical

study data that is available to answer a particular research

question. While a SR is a mean of identifying, evaluating

and interpreting all available research relevant to a particular

question [5].

Figure 1 presents the mapping study process adapted from

[4]. The process was divided into three main phases: Research

Directives which establishes the protocol and research ques-

tions, Data Collection which comprises the execution of the

mapping study and the Results responsible for reporting the

study outcomes and analysis.

A. Search Strategy

The search strategy was developed by reviewing the data

needed to answer each one of the research questions. We

divided the strategy in two phases. The first one focused on

Single System Testing Tools (SSTT), next, we focused on

Software Product Lines Testing Tools (SPLTT). The initial

set of keywords was refined after a preliminary search that

returned many results with few relevance. We used several

combinations of search items until achieving a suitable set of

keywords.

Fig. 1. The Mapping Study Process (adapted from [4])

Furthermore, search strings could then be constructed using

boolean AND’s and OR’s expressions. At the second part of

the search, all terms were combined with the term “Product

Lines”, “Product Family” and “SPL” by using Boolean “AND”

operator. All of them were joined by using “OR” operator

so that it could improve the completeness of the results. The

complete list of search strings is available in Table I.

TABLE I
LIST OF RESEARCH STRINGS

Research Strings

“Testing Tool” OR “Test Tool” OR “Testing Framework”OR
“Test Framework” OR “Tool for Testing” OR “Tool for Test” OR

“Testing Application” OR “Test Application” OR “Automatic Testing
Tool” OR “Automatic Test Tool” OR “Automation Testing Tool” OR

“Automation Test Tool” OR “Testing Generation Tool” OR “Test
Generation Tool” OR “Application for Testing”

AND
“product lines” OR “product line” OR “product family” OR

“product families” OR “SPL”

B. Data Sources

The search was executed using three steps: (i) the search

strings in Table I were adjusted and applied in each digital

database, and all search strings were systematically checked

by more than one author. The list of sources, in alphabetical

order, is the following: ACM Digital Library1, Elsevier2, IEEE

Computer Society Digital Library3, Science@Direct4, The

DBLP Computer Science Bibliography5 and Springer Link6;

(ii) a manual search was performed in the main Journals and

Conferences7. These libraries were chosen since they are the

1http://portal.acm.org/
2http://www.elsevier.com/
3http://ieeexplore.ieee.org/
4http://www.sciencedirect.com/
5http://www.informatik.uni-trier.de/ ley/db/
6http://springerlink.metapress.com/home/main.mpx
7http://wp.me/p157qN-2T

630

most relevant sources in software engineering [5]; (iii) and

finally, the search was also performed using the ‘snow-balling’

process [12], following up the references in papers and it was

extended to include grey literature sources, seeking relevant

white papers, industrial (and technical) reports, theses, work-

in-progress, and books.

Furthermore, as the described search engines are focused

on academic results, and given the fact that the goal was to

find the largest number of tools as possible, and these engines

would not find commercial tools (as long as they do not have

any paper or journal published), these keywords were also

used in searches in web search engines, such as Google8. In

the web engines, the target was tools information and their

grey literature.

C. Study Selection

A set of 69 studies involving both single system and SPL

testing tools was found. Figure 2 shows each filter applied

during the study selection. Moreover, it presents the amount

of studies remaining after applying each filter.

Fig. 2. Study Selection Summary

The inclusion criteria were used to select all studies during

the search step. After that, the exclusion criteria was firstly

applied in the studies title and next in the abstracts and con-

clusions. All excluded studies can be seen by differentiating

the results among filters. Regarding the inclusion criteria, the

studies were included if they described:

• Tools that support a testing level.
• Tools that support a testing process.
• Tools with available executable.
• Tools with documentation.
Studies were excluded if they described:

• Testing Tools that were not implemented.
• Conceptual Testing and conceptual testing frameworks.
• Duplicated studies.
After the first filter, 47 papers were selected (32 from

single and 15 from SPL). In the second one, we limited the

publication venues to international journals and conferences

8http://www.google.com

(no magazines were included). We excluded studies on the

basis of exclusion criteria applied to abstract and conclusion.

After this stage, there were 33 papers, which were consid-

ered to analysis (24 from single system and 9 from SPL).

Figure 3 shows the single system and SPL testing tools

regarding the publication years. As it can be seen, there is

a peak of SSTT in 2007. Figure 4 shows the amount of

publications considering the sources.

Fig. 3. Distribution of single system and SPL testing tools through their
publication years

Fig. 4. Amount of Studies vs. sources

1) Reliability of inclusion decisions: The reliability of

decisions to include a study is ensured by having multiple

researchers to evaluate each study. The study was conducted

by two research assistants (the two first authors) who were

responsible for performing the searches and summarizing the

results of the mapping study, with other members of the team

acting as reviewers. A high level agreement existed before the

study was included. In case the researches did not agree after

the discussion, an expert in the area was contacted to discuss

and give the appropriate guidance.

D. Classification Scheme

The studies were categorized based on the key wording

process defined by [4]. This process is a way to reduce

the time needed in developing the classification scheme and

ensuring that the scheme takes the existing studies into ac-

count. The abstract, titles and keywords were revisited to

631

TABLE II
STUDIES BY RESEARCH TOPICS

Validation
Research

Evaluation
Research

Solution Proposal

SSTT [13],[14],[15],
[16],[17],[18],
[19],[20]

[21],[22] [23],[24],[25],[26],[27],[28],
[29],[30],[31],[32],[33],
[34],[35],[36]

SPLTT [37],[38] [39] [40],[41],[42],[43],[44],[45]

identify different facets within the selected studies. More

details about the type of research as defined by [4] can be

seen in: http://wp.me/p157qN-3i

E. Data Extraction and Synthesis

All the 33 studies were fully read and submitted to a

predefined form to accurately record the information obtained

by the researchers from the primary studies. The form for data

extraction provides some standard information, such as:

• Tool’s name;

• Date of data extraction;

• Title, authors, journal, publication details (if available);

• Prototype information (if available);

• Website (if available); and,

• A list of each conclusion and statement found for each

question.

Based on the research results, inclusion and exclusion crite-

ria, a set of tools were selected. A brief description presented

ordered by the publication year of SSTT tools can be seen

in: http://wp.me/p157qN-2Z and SPLTT tools can be seen in:

http://wp.me/p157qN-32

IV. OUTCOMES

In this section, each research question is answered by

analyzing different point of views, highlighting the evidences

gathered from the data extraction process. All of these results

populated the classification scheme, which evolved while

doing the data extraction.

Initially, we analyzed the studies distribution regarding to

the research topics. The classification scheme, detailed in Table

II, allowed us to infer that many of the studies are Validation
Research (31%), Evaluation Research (9%) and Solution Pro-
posal (60%). On the other hand, no Philosophical, Opinion,

and Experience Papers were reported. For this reason, Table

II did not show them.

A. Tools Development and Usage

From the selected tools, most of them were developed in the

academic environment (14 for single systems and 7 for SPL),

while 7 were developed exclusively in industry (6 for single

system and 1 for SPL). The remaining 5 tools were developed

in both environments, academic and industrial (4 for single

systems and 1 for SPL), as detailed in Table III.

[13], [17], and [19], present case studies executed in an

academy context. [21], [22], and [39], describe case studies

in industry. Finally, [14], [15], [16], [18], [20], [37], and [38],

report experiments in order to evaluate the tools. The other

studies did not describe empirical evaluation.

TABLE III
WHERE THE TOOLS WERE DEVELOPED AND USED

Academy Industry Both
SSTT [23],[25],[26],[27],[15],[14],[28],

[29],[30],[22],[31],[16],[36],[20]
[24],[21],[32],
[34],[35],[19]

[13],[17],
[33],[18]

SPLTT [41],[42],[43],[37],[44],[38],[45] [40] [39]

B. Software Product Lines Adaptability

According to the results (see Table II), only 33% of the

single system testing tools can be used to test SPL. The

other ones (Solution Proposal) were implemented to specific

programming languages, techniques and approaches which

cannot be suitable to the SPL context.

Websob [29], Korat [30], CodeGenie [31], JWalk [16],

Smart [32], REST [34] and JUnitMX [35] are tools able to

be utilized in the SPL testing process.

Testing tools with specific purpose such as: test manage-

ment, bug reports, security test, can be used in Software

Product Lines testing if the methodology of using it is adapted

to suit the SPL necessities. Commonalities and variabilities

should be considered also.

C. Testing Levels

Many of the analyzed tools have similar functionalities.

Moreover, the extracted functionalities have analogous goals,

so it was possible to group them. This classification matched

the description presented in [6], which defines the following

groups:

• Unit Testing - Tools that test the smallest unit of software

implementation. This unit can be basically a class, or even

a module, a function, or a software component [10].

• Integration Testing - Tools that test the integration

between modules or within the reference in domain-

level when the architecture calls for specific domain

components to be integrated in multiple systems [10].

• System Testing - Tools that ensure that the final product

matches the required features [37].

• Acceptance Testing - Tools that will be used by cus-

tomers during the validation of applications [10].

• Regression Testing - Even though regression testing is

not a test level [6], some tools were developed to work

with it. For this reason, we considered regression testing

as part of the classification.

This classification can be applied not only for single system

testing tools but also for SPL testing tools. The main difference

is that SPL divide Testing according to two activities [10]:

core asset (grouping Unit and integration testing) and product

development (grouping system and acceptance testing). Table

IV details the classification of the tools according to the testing

level plus regression testing.

D. Testing Tools Evolution

In order to identify the evolution of the tools, we constructed

a timeline for SSTT showed in Figure 5. Figure 6 shows the

632

TABLE IV
TOOL’S CLASSIFICATION ACCORDING WITH TESTING LEVELS PLUS

REGRESSION TESTING

Unit Testing Integr.
Testing

System
Testing

Accept.
Testing

Regr.
Testing

SSTT [13],[25],[27],
[14],[15],[31],
[16],[32],[17],
[33],[35],[19],
[36]

[13],[26],
[31],[33]

[23],[28],
[29],[30],
[21],[22]

[23],[24]
[18],[20]

[27],[17],
[34],[20]

SPLTT [40],[41],[43],
[44]

[39],[37],
[45]

[42] [38]

same idea for SPLTT. Every year, since 2004, at least one tool

for Unit Testing Level was published.

There is a clear evolution of tools at the Unit Testing Level.

We identified that JTest [14], Jwalk [16], and JUnitMX [35]

evolved from the xUnit [41]. A possible reason for this fact

was the release of new versions of the Java programming

language, which allowed the development of more complex

functionalities. Nevertheless, there is no visible evolution in

other testing levels of single system and SPL testing tools

including regression testing.

V. MAIN FINDINGS

The analysis of the results enables us to identify what have

been emphasized in past research and also to identify gaps

and possibilities for future research.

Based on the analyzed tools, it was possible to identify that

the tools are usually developed to support a specific testing

level, under the justification that there are no tools supporting

all functionalities of a testing process. None of the selected

tools supports the overall SPL life cycle. For example, the

prototype tool developed by [39] was created to assist the

ScenTED technique, and does not support a general testing

process. Moreover, the majority of the testing tools were

implemented to solve a specific problem.

The amount of SPL testing tools in academy (78%) is

higher than the number of single system testing tools (58%). In

industry this percentage is inverted: 25% of the SSTT and 11%

of SPLTT. The percentage is equivalent when the tools are

applied in both industry and academy (17% for single system

and 11% for SPL). In accordance with Table III, the amount

of projects applied in industrial context lacks investments.

During the research, we identified the possibility to use

single system testing tools such as JUnitMX [35], and Code-

Genie [31] to support the SPL testing process, however, it

will be necessary to change the methodology of using in

order to suit the tool for the SPL context. Another possibility

should be implement specific functionalities from SPL such as

variability management of the assets, but this will be possible

only for open-source applications. Tools such as AsmL [24],

and SimC [15] were developed to solve specific problems of a

specific environment, thus, the effort to adapt these tools can

be impracticable.

Despite the number of SSTT be twice higher than the

number of SPLTT, when the tools are organized by testing

levels, the percentage of single system and SPL testing tools

are equivalent. The only exception was the Integration Testing

Level since there was no SPLTT identified for this level.

The amount of SSTT used in industry added with tools used

in both academy and industry correspond to 41% of the total.

When we focus on SPLTT, this number decreases to 22%.

Thus, we believe that SPLTT do not achieve maturity enough

to be applied in industrial projects so far. Moreover, the effort

required to implement a SPL testing process into organizations

hampers the development of SPLTT.

Companies are interested in developing tools that could be

used by a large number of consumers. For this reason, they

look for attacking problems common to most customers. These

tools are implemented to test general functionalities, perfor-

mance, security, etc. Meanwhile, academy aims to produce

tools that solve complex problems, which can explain the large

number of Solution Proposal.

Figure 5 shows that 2007 was the year with a higher

number of publications describing SSTT (8 papers): 3 in the

International Conference on Software Engineering (ICSE’07),

2 in the International Conference on Automated Software

Engineering (ASE’07), and 3 in other conferences. These

two conferences together published the largest number of

papers describing SSTT over the years, 6 papers each one.

Coincidentally, 2007 was also the year with more tools focused

on System Testing Level. From all the tools of System Testing

Level analyzed, only 3 were applied in industry: 2 SSTT and

1 SPLTT.

The lack of SPLTT since 2009 could be explained by the

absence of the Software Product Lines Testing Workshop

(SPLiT) which is a great responsible by publications of this

kind of tools. The SPLiT is part of the Software Product Lines

Conference (SPLC) which is the main event of the SPL area.

Finally, we identified a tendency directed to Automatic Gen-

eration Tools (50% of the analyzed tools) and according to [46]

“The dream would be a powerful integrated test environment

which by itself, as a piece of software is completed and

deployed, generating the most suitable test cases, executing

them and finally issuing a test report”.

However, tools for automatic test case, test input, and test

data generation, work independently. For this reason, the need

for a framework to integrate these tools still exists [3].

VI. THREATS TO VALIDITY

The main threats to validity identified in the review are

described next:

• Tools selection. A possible threat in such review is to

exclude some relevant tool. In order to reduce this possi-

bility, the tools selection was based on the identification

of the key research portals in computer science and a wide

range of web search engines, besides the main journals

and conferences. The defined criteria intended to select

tools supporting some functionalities of the SPL Test

Process and not just supporting specifics requirements.

• Data Extraction. In order to ensure the validity, multiple

sources of data were analyzed, i.e. papers, prototypes,

633

Fig. 5. Single System Testing Tools Timeline

Fig. 6. SPL Testing Tools Timeline

technical reports, white papers and manuals, in addition

to the tools executable.

• Research Questions. The questions defined could not

have covered the whole Testing Tools, which implies

that some one cannot find answers to the questions that

concern them. To mitigate this feasible threat, we had

several discussions with project members and experts in

the area, allowing the calibration of the question. Thus,

even if we had not selected the most adequate set of

questions, we attempted to address the most asked and

considered open issues in the field.

• Publication Bias. We cannot guarantee that all relevant

primary studies were selected. It is possible that relevant

studies were not chosen during the search process. We

mitigate this threat by following references in the primary

studies.

• Research Strings. The terms used in the research strings

can have many synonyms, and it is possible that some

work were overlooked. To mitigate this threat, we had

discussions with project members and experts in the area.

VII. CONCLUSION

This paper presented a mapping study on single system and

software product lines testing tools, whose main goal was to

identify how the available tools are supporting the SPL Testing

process. Through the review, it was possible to identify, which

current functionalities are being supported by the tools, and

which ones should be present in every tool based on their

priorities.

The research was conducted using techniques from mapping

study, a helpful approach for identifying the areas where there

is sufficient information for a systematic review to be effective,

as well as those areas where is necessary more research [12].

The great majority of the studies (60% of Solution Proposal)

were implemented to solve specific problems that avoid the

adaptability of the tools for the SPL context. For this reason,

it will be less costly create new tools than adapt the existing

ones.

Moreover, we identified an increasing number of automatic

testing case generation tools. As a result, one of the next

challenges will be learn how to automate this “generated” test

cases for the products of the SPL.

Finally, we noticed that publications describing industrial

experiences are rare in literature. The existing case studies

and experiments report only small projects, containing results

obtained from tools that solve specific problems related to

testing. Consequently, more experiments involving SPL testing

tools are needed.

As future work, we are incorporating the results of this

research in the development of a software product lines testing

tool.

ACKNOWLEDGMENT

This work was partially supported by the National Insti-

tute of Science and Technology for Software Engineering

(INES), funded by CNPq and FACEPE, grants 573964/2008-

4 and APQ-1037-1.03/08 and CNPq grants 305968/2010-6,

559997/2010-8, 474766/2010-1.

REFERENCES

[1] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Berlin: Springer, 2007.

634

[2] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley, 2001.

[3] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product Family Testing: a
Survey,” ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 12–
12, 2004.

[4] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Map-
ping Studies in Software Engineering,” 12th International Conference
on Evaluation and Assessment in Software Engineering, 2008.

[5] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Software Engineering
Group School of, vol. 2, p. 1051, 2007.

[6] J. D. McGregor, “Testing a Software Product Line,” CMU/SEI - Soft-
ware Engineering Institute, Tech. Rep. CMU/SEI-2001-TR-022, 2001.

[7] O. O. Edwin, “Testing in software product lines,” M.Sc. Dissertation,
School of Engineering at Blekinge Institute of Technology, 2007.

[8] E. Y. Nakagawa, A. S. Simão, F. C. Ferrari, and J. C. Maldonado,
“Towards a Reference Architecture for Software Testing Tools,” in
International Conference on Software Engineering & Knowledge En-
gineering. Knowledge Systems Institute Graduate School, 2007, pp.
157–162.

[9] B. P. Lamancha, M. P. Usaola, and M. P. Velthius, “Software Product
Line Testing - A Systematic Review.” in 4th International Conference
on Software and Data Technologies, B. Shishkov, J. Cordeiro, and
A. Ranchordas, Eds. INSTICC Press, 2009, pp. 23–30.

[10] P. A. M. S. Neto, I. C. Machado, J. D. McGregor, and S. R. L. M.
Eduardo Santana Almeida and, “A systematic mapping study of software
product lines testing,” Inf. Softw. Technol., vol. 53, pp. 407–423, 2011.

[11] E. Engström and P. Runeson, “Software product line testing - a system-
atic mapping study,” Information & Software Technology, vol. 53, no. 1,
pp. 2–13, 2011.

[12] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, “Using map-
ping studies in software engineering,” in Proceedings of PPIG 2008.
Lancaster University, 2008, pp. 195–204.

[13] S. Liut, T. Fukuzakit, and K. Miyamoto, “A GUI and testing tool
for SOFL,” 7th Asia-Pacific Software Engineering Conference, no.
11694173, pp. 421–425, 2000.

[14] T. Xie and D. Notkin, “Tool-assisted unit-test generation and selection
based on operational abstractions,” 21st IEEE International Conference
on Automated Software Engineering, vol. 13, no. 3, pp. 345–371, 2006.

[15] Z. Xu and J. Zhang, “A Test Data Generation Tool for Unit Testing
of C Programs,” 6th International Conference on Quality Software, pp.
107–116, 2006.

[16] A. J. H. Simons, “JWalk: a tool for lazy, systematic testing of java
classes by design introspection and user interaction,” 22nd IEEE Inter-
national Conference on Automated Software Engineering, vol. 14, no. 4,
pp. 369–418, 2007.

[17] B. Daniel and M. Boshernitsan, “Predicting Effectiveness of Automatic
Testing Tools,” 23rd IEEE/ACM International Conference on Automated
Software Engineering, pp. 363–366, 2008.

[18] S. Choudhary, H. Versee, and A. Orso, “A Cross-browser Web Applica-
tion Testing Tool,” in Software Maintenance, 2010 IEEE International
Conference on, 2010, pp. 1–6.

[19] A. C. Rajeev, P. Sampath, K. C. Shashidhar, and S. Ramesh, “CoGente:
A Tool for Code Generator Testing,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering. New
York, NY, USA: ACM, 2010, pp. 349–350.

[20] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “AutoBlackTest:
a tool for automatic black-box testing,” in Proceeding of the 33rd
international conference on Software engineering. New York, NY,
USA: ACM, 2011, pp. 1013–1015.

[21] Y. Ren and F. Chang, “ATTEST: A Testing Toolkit for Validating
Software Properties,” 23rd IEEE International Conference onSoftware
Maintenance, pp. 469–472, 2007.

[22] S. Nogueira, E. Cartaxo, D. Torres, E. Aranha, and R. Marques, “Model
Based Test Generation: An Industrial Experience,” in 1st Brazilian
Workshop on Systematic and Automated Software Testing, 2007.

[23] A. Beer, S. Mohacsi, and C. Stary, “IDATG: An Open Tool for
Automated Testing of Interactive Software,” 22th Annual International
Computer Software and Applications Conference, pp. 6–11, 1998.

[24] M. Barnett, W. Grieskamp, W. Schulte, N. Tillmann, and M. Veanes,
“Validating Use-Cases with the AsmL Test Tool,” 3rd International
Conference on Quality Software, pp. 238 – 246, 2003.

[25] H. Wu and J. Gray, “Automated Generation of Testing Tools for
Domain-Specific Languages,” in Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering. ACM,
2005, p. 439.

[26] R. Shukla, P. Strooper, and D. Carrington, “Tool Support for Statistical
Testing of Software Components,” in 12th Asia-Pacific Software Engi-
neering Conference. IEEE Computer Society, 2005, p. 8.

[27] J. Gao, D. Gopinathan, Q. Mai, and J. He, “A Systematic Regression
Testing Method and Tool For Software Components,” 30th Annual
International Computer Software and Applications Conference, pp. 455–
466, 2006.

[28] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “TAXI - A Tool
for XML-Based Testing,” 29th International Conference on Software
Engineering, pp. 53–54, 2007.

[29] E. Martin, S. Basu, and T. Xie, “WebSob: A Tool for Robustness
Testing of Web Services,” 29th International Conference on Software
Engineering, pp. 65–66, 2007.

[30] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat:
A Tool for Generating Structurally Complex Test Inputs,” in 29th
International Conference on Software Engineering. IEEE Computer
Society, 2007, pp. 771–774.

[31] L. Lemos, O. Augusto, S. Bajracharya, and J, “CodeGenie:: a Tool
for Test-Driven Source Code Search,” Proceedings of the 22th annual
ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 917–918, 2007.

[32] Q. Xie, M. Grechanik, and M. Hellige, “Smart: A Tool for Application
Reference Testing,” in 22nd IEEE/ACM international conference on
Automated software engineering. ACM, 2007, pp. 537–538.

[33] F. Pinte, N. Oster, and F. Saglietti, “Techniques and tools for the
automatic generation of optimal test data at code, model and interface
level,” 30th international conference on Software engineering, p. 927,
2008.

[34] Q. Xie, M. Grechanik, and C. Fu, “REST: A Tool for Reducing Effort in
Script-based Testing,” 24th IEEE International Conference onSoftware
Maintenance, pp. 468–469, 2008.

[35] J. Wloka, B. G. Ryder, and F. Tip, “JUnitMX - A Change-aware Unit
Testing Tool,” 31st International Conference on Software Engineering,
pp. 567–570, 2009.

[36] E. Mishra and Y. Sonawane, “TED: Tool for Testing and Debugging
uDAPL,” in Architectures for Networking and Communications Systems
(ANCS), 2010 ACM/IEEE Symposium on, 2010, pp. 1–2.

[37] C. Nebut, Y. Traon, and J. Jezequel, “System Testing of Product Lines:
From Requirements to Test Cases,” Software Product Lines, pp. 447–
477, 2007.

[38] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “Testing Software
Product Lines Using Incremental Test Generation,” 19th International
Symposium on Software Reliability Engineering, pp. 249–258, 2008.

[39] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-Based System
Testing of Software Product Families,” International Conference on
Advanced Information Systems Engineering CAiSE, pp. 519–534, 2005.

[40] Z. Stephenson, Y. Zhan, J. Clark, and J. McDermid, “Test Data Gen-
eration for Product Lines - A Mutation Testing Approach,” in 3rd
International Workshop on Software Product Line Testing. Citeseer,
2004, p. 13.

[41] M. Galli, O. Greevy, and O. Nierstrasz, “Composing Unit Tests,” in 4th
International Workshop on Software Product Line Testing. Citeseer,
2005, pp. 16–22.

[42] K. Kim, H. Kim, M. Ahn, M. Seo, Y. Chang, and K. C. Kang,
“ASADAL: A Tool System for Co-Development of Software and Test
Environment based on Product Line Engineering,” 28th International
Conference on Software Engineering, pp. 783–786, 2006.

[43] Y. Feng, X. Liu, and J. Kerridge, “A product line based aspect-oriented
generative unit testing approach to building quality components,” Pro-
ceedings of the 31st Annual International Computer Software and
Applications Conference, pp. 403–408, 2007.

[44] S. Weissleder, D. Sokenou, and B. Schlingloff, “Reusing State Machines
for Automatic Test Generation in Product Lines,” 1st Workshop on
Model-based Testing in Practice, p. 19, 2008.

[45] S. Oster, I. Zorcic, F. Markert, and M. Lochau, “MoSo-PoLiTe: Tool
Support for Pairwise and Model-Based Software Product Line Testing,”
in Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems. New York, NY, USA: ACM, 2011, pp. 79–82.

[46] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering, ser. FOSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 85–103.

635

Optimal Variability Selection in Product Line
Engineering

Rafael Pinto Medeiros∗, Uéverton dos Santos Souza†, Fábio Protti† and Leonardo Gresta Paulino Murta†
∗Universidade do Estado do Rio de Janeiro

Rio de Janeiro, Rio de Janeiro, Brazil

Email: rafaelmedeiros@uerj.br
†Instituto de Computação, Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

Email: {usouza,fabio,leomurta}@ic.uff.br

Abstract—Software Configuration Management is being
adopted with success in the development of individual products,
mainly supporting the creation of revisions and sporadically
supporting the creation of variants via branches. However, some
emerging software engineering methods, such as product line
engineering, demand a sound support for variants to gener-
ate customized products from product lines. The adoption of
branches in this scenario does not scale due to the huge number
of interdependent variants. The main goal of this paper is to
systematize a way to select the best variants of a product line
to generate products according to specific user needs. Moreover,
our paper contributes on providing an algorithm for product
generation from product lines. Our algorithm can be easily
implemented in the existing product line approaches as an
alternative for product selection.

Keywords-And/Or Graphs, Software Configuration Manage-
ment, Software Versioning.

I. INTRODUCTION

Software Configuration Management (SCM) is a discipline

applied during the software development process to control

the software evolution [9]. As changes can happen anytime

during the software development process, SCM activities are

developed to identify the changes; to assure the changes

are being correctly implemented; and to inform the changes

to people who have interests on it [6]. Due to that, it is

possible to conclude that the main objective of SCM is not

to avoid changes, but provide control and coordination over

the changes. Moreover, it is also concerned on providing

consistency among interdependent components and allowing

the reconstruction of previous states of the software.

As an important system of SCM, the Version Control

System (VCS) is responsible for managing different versions

of a product. Usually, VCS are developed through models that

define the objects to be versioned, version identification and

organization, as well as operations to retrieve previous versions

and create new ones. However, versions can serve for different

purposes [5]. Versions that are used to replace other versions of

the same component are called revisions. On the other hand,

versions that live together with other versions of the same

component, acting as alternatives, are called variants.

SCM is being adopted with success in the development

of individual products, mainly supporting the creation of

revisions and sporadically supporting the creation of variants

via branches. However, some emerging software engineering

methods, such as product line engineering, demand a sound

support for variants to generate customized products from

product lines. The adoption of branches in this scenario does

not scale due to the huge number of interdependent variants.

In product line engineering, a software product line is

composed to represent the commonalities and variabilities of

a software family. According to [4] a product line is usually

combined with feature models and configuration knowledge,

responsible to identify the possible product features and how

these features interplay. The derivation process is fundamental

in product line engineering. This process consists in compos-

ing specific products from the product line according to some

user requirements. According to [8] the existing approaches

to model product line architectures are predominantly focused

on enumerating the available component versions for each

possible product that can be generated from the product line.

However, conceptual differences in product features and their

interrelationships are not easily expressed in the available

modeling constructs. On the other hand, a goal-based ap-

proach provides a natural mapping to modeling product line

architectures, considering the user needs during the product

generation.

The main goal of this paper is to systematize a way to

select the best variants of a product line to generate products

according to specific user needs. This can result in VCS that

are better prepared to support product line engineering and

other methodologies that focus on the conception of families

of products. Moreover, our approach formalizes this product

composition according to the SCM terminology. Product line

researchers can build upon our approach to implement their

derivation process according to their specific technologies (i.e.,

features model, architecture description languages, etc.).

This paper is organized into 5 sections besides this introduc-

tion. Section 2 presents some background related to software

versioning concepts. Section 3 introduces the combinatorial

problem that emerges from the product line scenario. Section

4 presents our approach to generate the optimal product from

a product line. Section 5 presents some related works on soft-

ware versioning. Finally, section 6 presents final considerations

636

and future works.

II. BACKGROUND ON SOFTWARE VERSIONING

During the development process, software engineers need

to build specific versions of the software. A software version

is structured by components, and each component also have

specific versions. However, the selection of different compo-

nents or different versions of the same components leads to

different versions of the software as a whole. At an exponential

rate, different software versions start to become possible of

building, even versions that are not aligned to the user desires

or requirements [5].

A version model identifies and organizes items that should

be versioned and items that should not be versioned. Each

SCM system provides its own version model according to the

target domain and builds over its own formalism. According to

Conradi and Westfechtel [5], there are many ways to represent

a version model, such as file-based models, where versioning

is applied on files and directories, and data-based models,

where versioning systems manage versions of objects stored in

a database. Other resources are commonly applied to express

versioning rules, such as textual languages.

The version model can be described in terms of a product

space and a version space. In order to achieve proper existence

of a software, it is necessary to define what composes the

software itself. In other words, the software components, their

role to the final product, their functions inside the software,

and their relationships to each other should be defined. This

arrangements of components is defined in [5] as the product

space. The product space represents a universe of items and

their relationships, without considering their versions.

On the other hand, based on the definition in [5], the

version space represents the universe of possible versions of

a software, highlighting the common traits and differences of

the versions of an item. The transformation of a non versioned

item (in the product space) into a single, double, or multi

versioned item can be seen as a binding of an specific moment

in time of the product space with the version space. Hence,

a software version is composed by versions of the software

components, and generated by the combination of the product

space with a moment of existence of each component in the

version space. An item without this moment of existence in

the version space is a non versioned item, with its changes

implemented through overwriting.

A set of versions can be defined basically in two ways

[5]: extensional versioning and intensional versioning. We

can differ extensional from intensional versioning due to

the reasons that demand the generation of a new version.

Extensional versioning is realized through enumerating its

components’ versions; from this point, the user is able to

retrieve a version vx, apply changes over vx, and generate a

new version vz . Intensional versioning is capable of generating

versions from larger spaces to satisfy a set of goals established

by the user.

As a consequence, extensional versioning only allow the

retrieval of previously created versions, while intensional ver-

sioning allows the retrieval of versions on demand, combining

component versions that may never worked together before

and that can potentially generate inconsistent software versions

in terms of the user needs. This is one of the main reasons why

current SCM systems usually adopt extensional versioning.

III. THE OPTIMAL INTENSIONAL VERSION PROBLEM

An object base is defined as a combination of product

space and version space, comprehending all the versions of a

software [5]. This base contains all the software components,

all their versions, non versioned objects and their relationships.

The arrangement of an intensional version can be seen

as a selection of objects inside the base in a way that the

selected objects are enough to build the product version. This

selection is structured to satisfy the needs that motivated the

product development. During the versioning process, these

needs are transformed into affirmatives, named versioning

rules. Therefore, the selection is directed by a set of versioning

rules.

This method leads to a combinatorial problem inside the

intensional versioning. From a large number of potential

versions, only a few of them sustain the consistency needed to

satisfy the set of versioning rules. In summary, the configura-

tion process is based on satisfying restrictions and demands to

lead to a functional resulting software version. The versioning

rules in this article represent restrictions and demands, and the

object base is the universe of all possible versions, including

inconsistent ones.

According to Conradi and Westfechtel[5], the most difficult

factor when facing the combinatorial problem on intensional

versioning is to eliminate inconsistent versions. After that, it

relays on the configurator to build the version that matches a

certain query.

We present a formalization to the optimal intensional ver-

sioning problem as follows:

Problem: OIV – Optimal Intensional Version
Input: An object base and a set of versioning rules

Output: To find in the object base, if possible, an optimized

version of the software that satisfies the set of versioning rules.

In this article the software’s object base is represented

through an And/Or graph, according to the representation

introduced in [5]. And/Or graphs [12] provide a general

model for integrating product space and version space. An

And/Or graph is a directed graph G, such that every vertex

v ∈ V (G) possesses a label f(v) ∈ {And,Or}. In this graph,

the directed edges represent dependency relationship among

the vertices: And-type vertices (represented through an arc

between its out-edge) depend strictly on all its out-neighbors;

Or-type vertices depend only on one of its out-neighbors.

To represent the object base the source vertex maps to the

software as a whole, and the other vertices map to software

modules or components and its versions. In this graph, the

And out-edge represent composition relationship and the Or
out-edge represent possible versions of an item.

According to [5] a distinction is made between And and Or

637

edges, which emanate from And and Or nodes, respectively.

An unversioned product can be represented by an And/Or

graph consisting exclusively of And nodes/edges. A versioned

product is modeled by introducing Or nodes. Versioned ob-

jects and their versions are represented by Or nodes and And
nodes, respectively.

For example, Figure 1 illustrates an And/Or graph repre-

senting a base of objects. It is important to notice that fine-

grained visibilities of an object base can also be represented

by And/Or graphs using the same formalisms discussed in this

paper. However, we focused our examples on a coarse-grained

visibility to allow a better understanding of the problem and

our proposed solution. The main difference of coarse and fine

granularity is the number of components and their versions,

which enforces the necessity of faster algorithms to solve the

problem when fine-grained components are in place.

IV. SOLUTION TO THE OIV PROBLEM

In this section we introduce a transformation of the OIV

problem into a combinatorial problem related to And/Or

graphs (MIN–AND/OR). Through this transformation we sys-

tematize a process where the versioning rules are converted

into weights at the edges of the object base’s graph. Thus,

we present an approach that enables the development of

algorithms for solving the problem of intentional versioning.

In addition, we present a backtracking algorithm for MIN–

AND/OR which in turn solves the OIV problem.

The MIN–AND/OR problem consists on finding a subgraph

(solution subgraph) that matches a set of restrictions consid-

ering a weighted And/Or graph with a source vertex s. We

introduce the definition of the MIN–AND/OR Problem[11] as

follows:

Problem: MIN–AND/OR

Input: An acyclic And/Or graph G=(V,E) properly connected
and weighted with a source vertex s ∈ V , where each vertex v
possesses a label f(v) ∈ {And,Or} and each edge possesses a
weight τ(e) ≥ 1.

Output: A subgraph H = (V ′, E′) of G such as the sum of the
weights of its arcs is minimum, and satisfies:

1) s ∈ V ′;
2) if v ∈ V ′ and f(v) = And then all out-arcs of v must

belong to E′;
3) if v ∈ V ′ and f(v) = Or then exactly one of the out-arcs

of v must belong to E′.

To transform the OIV Problem into the MIN–AND/OR

Problem, it is necessary to weight the And/Or graph G

(representing the object base) according to the query built from

the versioning rules.

A. Weighting the And/Or graph G

Considering the And/Or graph G it is possible to add

weights to its edges using two types of versioning rules:

• Configuration Rules: a series of affirmative statements

originated from questions asked to the stakeholders of the

software; from these affirmatives, it is possible to exclude

some versions from the space of possible versions. As an

example of the formulation of the configuration rules,

the configuration manager can ask how the user com-

municates with the system (local access, remote access).

It becomes possible then to formulate the configuration

rule: the software must provide local access support. This

configuration rule discards the components that provide

remote access or portability features, because they are not

demanded. These rules consider the functional require-

ments of the product being generated, and can be replaced

by an existing feature-based approach if the product line

engineering process already has one in place.

• Classification/Qualification rules: a set of items classi-

fied/qualified considering their priority to the stakeholders

according to the needs and demands of the software.

For instance, the stakeholders can ask for a product

that allows high-end control capabilities and is efficient.

The configuration manager then is able to formulate the

Classification/Qualification rules: Control Capability, Ef-

ficiency. Versions of components that best excel at those

two items are preferred. These rules consider the non-
functional requirements of the product being generated.

They are important to solve situations where there are

open alternatives even after imposing the rules related to

functional requirements.

1) Applying Configuration Rules: The set of configuration

rules characterizes the first process of weighting the graph of

the base of objects. The possibilities that do not accomplish the

defined configuration rules are unable of existing in a solution-

subgraph with non-infinite cost. Along the weighting process,

the configuration rule analysis dictates if an edge receives an

infinite weight or not, sometimes excluding a large amount

of versions (by excluding one component, all its versions are

automatically excluded).

The configuration rules are therefore defined as affirmative

statements, originated from a set of questions answered in

cooperation with the stakeholders. The software engineers

should create questions with a high capability of constraining

the version space.

When applying configuration rules, the questions work as a

way to formulate demanding affirmatives - the configuration

rule itself. All edges of G pointing to vertices that oppose

the affirmative receive infinite weight; all other vertices have

their edges set with weight 1. According to this algorithm,

a version with non-infinite weight is a version that matches

the configuration rule not necessarily by accomplishing the

configuration rule, but by not going directly against it.

2) Applying Classification/Qualification Rules: With the

application of the classification/qualification rules, edge values

bounded to each component will emerge. By doing so, some

versions shall protrude, therefore distinguishing themselves

from the others. The stakeholder must classify some criteria,

according to his/her priority, aiming to reflect what is expected

in the final version of the software. In other words, the

638

System

Advanced Standard

Module A Module B Module C Module D

Version 2 Version 1 Version 1 Version 2 Version 1 Version 2 Version 3 Version 2 Version 1

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 Component 8

Version 1 Version 1 Version 1 Version 1 Version 2 Version 1 Version 1 Version 2 Version 1 Version 1

Fig. 1. Example of a object base represented by an And/OR graph.

stakeholder is demanded to prioritize non-functional aspects

of the software.

In this paper we named these criteria as Classifica-

tion/Qualification rules. As an example of classification rules,

the stakeholders can be asked to classify the following items

according to their priority: Control Capability, Efficiency, and

Support. It becomes possible, after this step, to choose the

version that best matches the stakeholder’s priorities.

The Classification/Qualification rules initiates by consider-

ing a set of criteria {s1, s2, s3,...,sk}, in general, some of

these criteria can be obtained from the ISO/IEC 9126 for the

evaluation of software quality [2], such as: usability, efficiency,

maintainability and portability. These criteria are classified by

the stakeholder with the tags high relevancy, regular relevancy,

low relevancy. Next, the software engineer classifies each

component of the object base according to the quality (bad,

regular, good, excellent or does not interfere/ not relevant) of

each sj criterion.

After that, it is proposed a weighting process of the And/Or

graph as follows:

To each component ci do:

1) Add

• weight 0 to the criterion classified as excellent or

not relevant;

• weight 1 to the criterion classified as good;

• weight 2 to the criterion classified as regular;

• weight 3 to the criterion classified as bad.

2) Calculate

• the sum of the weights of the high relevancy criteria

as HR;

• the sum of the weights of the regular relevancy

criteria as RR;

• the sum of the weights of the low relevancy criteria

as LR;

3) Sum W to the weight of the vertex in-edge that repre-

sents the component ci (W = 3HR+ 1.5RR+ LR).

The W value is calculated to ensure that the weight of a high

relevancy criterion is the double of the regular relevancy crite-

rion weight and the triple of the low relevancy criterion weight.

Consequently, a high relevancy criterion classified/qualified as

good corresponds to a regular relevancy criterion classified as

regular or to a low relevancy criterion classified as bad. Clearly

the higher relevancy criteria weights more, what is justified

because of the MIN-AND/OR problem structure. The MIN-

AND/OR Problem consists on the weight minimization in

which the higher relevance criteria weight is expected to be the

smallest. Figure 2 illustrates the object base shown in Figure

1 after applying a possible set of versioning rules.

At this point it is important to highlight that other possible

versioning, with different versioning rules, would produce

another weighting of the G graph; however, as the object base

remains the same, the graph itself is not rebuilt. In addition,

even when there are changes on the object base, the G graph

is capable of easy adapting and still has not to be rebuilt.

With the And/Or graph properly weighted, it is possible to

state that:

1) a version of the software corresponds to a subgraph

solution-subgraph) of G, such as:

• The source vertex (representing the software) be-

longs to solution-subgraph.

• If a And-type vertex belongs to the solution-

subgraph then all its out-edges do as well.

• If an Or-type vertex belongs to the solution-

subgraph then exactly one of its out-edges does as

well.

This observation is easily verifiable. The out-edges of an

And vertex represents composition, that is, if a module

belongs to a version z so do all of its components. On

the other hand, out-edges of an Or vertex represents

version options of a component; as a software uses at

most one version of each component, this observation is

true.

2) To find the optimal intensional version of the OIV

Problem corresponds to find the solution-subgraph with

minimum cost of the G graph. In our example, the

639

System

Advanced Standard

Module A Module B Module C Module D

Version 2 Version 1 Version 1 Version 2 Version 1 Version 2 Version 3 Version 2 Version 1

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 Component 8

Version 1 Version 1 Version 1 Version 1 Version 2 Version 1 Version 1 Version 2 Version 1 Version 1

∞ 1

1 1
1

1 1

1 1

1 5 1 3 1 1 1 1 2

∞ ∞ 20 2 3 1 3 1 4 1

1 2
1 2

1 1
3 1

3
1

3
1 1 1

3

1

1
2 2

2

Fig. 2. And/Or graph G representing an object base after applying the versioning rules.

optimal intensional version highlighted in red in Figure

2.

From these statements it becomes possible to adopt the

existing results in the literature regarding the MIN–AND/OR

Problem to achieve results to the OIV Problem. Among

the results of the MIN–AND/OR Problem, it is known that

the problem is NP -Hard in general. However, it becomes

polynomial when the G graph is a tree. In addition, it is

known that finding a viable solution (not necessarily optimal)

is polynomial [11], which means finding a version that satisfies

the configuration rules of the OIV Problem is also polynomial.

B. Backtracking algorithm to The MIN–AND/OR Problem

At this point, it is known that the And/Or Graph represents

the software object base; consequently a solution subgraph of

G corresponds to a specific version of the software. We present

the Algorithm 1 that, considering an And/Or graph G, returns

its optimal solution-subgraph, if there is such. In other words,

this algorithm finds the optimal solution to the MIN–AND/OR

problem and consequently to the OIV problem.

The algorithm is divided in 3 parts; in the first part it realizes

a topological sorting of the G vertices, which is possible

because G is an acyclic graph. The sorting assures that a

vertex vj (1 ≤ j ≤ n) is always before its out-neighbors

on the vertices arrangement.

Next, the procedure Generate is called to enumerate all pos-

sible solution-subgraphs of G. These subgraphs are stored

in V, where:

1) The vertices with the register flag set to 1 belong to the

current solution-subgraph.

2) If the position i in V represents an Or-type vertex that

belongs to the current subgraph, then exactly one index

j is stored in V[i], where vj is an out-neighbor of vi.
3) If the position i in V represents an And-type vertex

that belongs to the current subgraph, then a set with the

index j of each vertex vj which is an out-neighbor of

vi is stored in V[i].

4) If the position i in V represents a sink then an empty

set is stored in V[i].

With the V array properly populated, it becomes possible to

go through it building the solution-subgraph and calculating

its weight, which is done by the Cost procedure. When the

algorithm terminates, the result is the solution-subgraph with

the smallest weight.

The complexity of the algorithm is O(n.K) where K is

the number of possible solution-subgraphs, and the time to

generate each solution-subgraph is O(n).

V. RELATED WORK

In [1], Ghose and Sundararajan presented a work for mea-

suring software quality using pricing and demand data, quan-

tifying the degradation associated with software versioning.

Conradi and Westfechtel [5] introduced a uniform method

to represent version models using graphs, providing to con-

figuration managers a more flexible and illustrative way to

work with intensional and extensional versioning. In the same

direction, in this paper, we show that intensional versioning

rules can be represented by weights on the graph’s edges, and

the main problem on intensional versioning can be seen as a

classic combinatorial problem.

According to [7], product derivation is the process of

making decisions to select a particular product from a product

line and to customize it for a particular purpose. In product

derivation, the variability provided by the product line is

communicated to the users of the product line and based

on customers’ requirements, variants are selected from the

product line thus resolving the available variability. The most

important requirement for tool-supported product derivation is

obviously to support resolving variability. Users need tools

that present the available variability and let users decide

about choices interactively. Many SPLE tools for variability

resolution are model-based, e.g., they visualize feature or de-

cision models and allow users resolving variability by selecting

features [3] or making decisions [10]. The approach presented

in this paper can be adapted for variability resolution merging

selecting features and making decisions.

640

Algorithm 1: Backtracking for MIN–And/Or
input : An And/Or graph G; two arrays V and SS of n

positions (inicially empty).
output: SS storing the optimal solution-subgraph of G.
begin

Assume v1, v2, v3, ..., vn an arrangement of the vertex of
G, given by an topological sorting;
for i:=1 to n do

if vi is an And-type vertex then
V[i].out:=Oi;
(Oi is the set of index of the out-neighbours of vi);

else
V[i].out:={};

if i = 1 then
V[i].flag:=1;

else
V[i].flag:=0;

V[i].in:={}
smallest:=∞;
Generate(1,smallest,V,SS);

end
procedure Generate(i, smallest:integer,V, SS:array)

if i
= n then
if V[i].flag=0 or vi is sink then

Generate(i+1,smallest,V,SS);
else

if vi is an Or-type vertex then
foreach out-neighbor vj of vi do

V[i].out := {j};
V[j].flag:=1;
V[j].in := V[j].in ∪ {i};
Generate(i+1,smallest,V,SS);
Clear(i,{j});

else
foreach out-neighbor vj of vi do

V[j].flag:=1;
V[j].in := V[j].in ∪ {i};

Generate(i+1,smallest,V,SS);

else
if Cost(V,1) ≤ smallest then

SS:=V;
smallest := Cost(V, 1);

end
procedure Cost(V : array i: integer)

if V[i].out
= {} then
foreach j ∈ V [i].out do

value:= weight of edge(vi, vj) + Cost(V,j)

Cost:=value;
else

Cost:=0;

end
procedure Clear(k: integer Ok: set of integer)

foreach j ∈ Ok do
V[j].in := V[j].in \ {k};
if V[j].in = { } then

if V[j].out
= { } then
Clear(j,V[j].out);

V[j].flag:=0;

end

VI. CONCLUSION

In this paper we built upon the representations of version

models introduced by Conradi and Wesfechtel [5] and pro-

posed an approach of graph weighting and search for obtaining

the optimal intensional version of a software system according

to the preferences of the stakeholder. We showed that a query

over the object base can be translated into a weighting of

a And/Or graph G, where its edges are weighted according

to specific criteria and priorities. In addition, we presented a

transformation of the Optimal Intensional Versioning Problem

to the combinatorial MIN–AND/OR Problem, thus utilizing

some of the MIN–AND/OR existing results to solve the OIV

Problem. Finally, we presented an algorithm that takes the

weighted And/Or graph G and finds, if possible, the optimal

version, that is, the version with the smallest cost that matches

all the existing conditions over the referred object base.

For future work, we would like to apply the proposed

algorithm in projects with different characteristics to evaluate

how the algorithms behave and if there are situations where

intensional versioning should be avoid at all. Moreover, we

intend to investigate situations where the stakeholder prefer-

ences or even the criteria relevance change dynamically. These

situations are common in dynamic software product lines, used

in self-adaptive systems at runtime.

REFERENCES

[1] A. Ghose, A. Sundararajan, Software versioning and quality degradation?
An exploratory study of the evidence, Leonard N. Stern School of
Business, Working Paper CeDER, New York, NY, USA, pp. 05-20, July
2005.

[2] ISO, ISO/IEC 9126 - Software engineering - Product quality, International
Organization for Standardization, 2001.

[3] K. Czarnecki, S. Helson, U.W. Eisenecker, Staged configuration using
feature models, Proc. of the 3rd International Software Product Line
Conference (SPLC 2004), Springer, Berlin/Heidelberg, Boston, MA,
USA, 2004, pp. 266-283.

[4] K.C. Kang, J. Lee, P. Donohoe, Feature-Oriented Product Line Engineer-
ing, IEEE Software, v. 19, issue 4, pp. 58-65, July/August 2002.

[5] R. Conradi, B. Westfechtel, Version models for software configuration
management. ACM Computing Surveys, v. 30, issue 2, pp. 232-282, June
1998.

[6] R. Pressman, Software Engineering: A Practitioner’s Approach. McGraw,
2009.

[7] R. Rabiser, P. Grünbacher, D. Dhungana, Requirements for product
derivation support: Results from a systematic literature review and an
expert survey, Information and Software Technology, v. 52, pp. 324-346,
2010.

[8] S. A. Hendrickson, A.van der Hoek, Modeling Product Line Architectures
through Change Sets and Relationships, 29th International Conference on
Software Engineering (ICSE’07), pp. 189-198, 2007.

[9] S. Dart, Concepts in configuration management systems, SCM 91 Pro-
ceedings of The 3rd International Workshop on Software Configuration
Management, ACM Press, New York, NY, USA, pp. 1-18, June 1991.

[10] T. Asikainen, T. Soininen, T. Männistö, A Koala-based approach for
modelling and deploying configurable software product families, Proc.
of the 5th International Workshop on Product-Family Engineering (PFE
2003), Siena, Italy, Springer, Berlin/Heidelberg, 2003, pp. 225-249.

[11] U. dos S. Souza, A Parameterized Approach for And/Or Graphs and X-
of-Y graphs. Master Thesis, Federal University of Rio de Janeiro, 2010.

[12] W. F. Tichy, A data model for programming support environments and its
application, Proc. of the IFIP WG 8.1 Working Conference on Automated
Tools for Information System Design and Development, New Orleans,
North-Holland, pp. 31-48, Jan 1982.

641

Synthesizing Evidence on Risk Management: A
Narrative Synthesis of two Mapping Studies

Luanna Lopes Lobato1,2, Ivan do Carmo Machado3, Paulo Anselmo da Mota Silveira Neto1,

Eduardo Santana de Almeida3, Silvio Romero de Lemos Meira1
1Informatics Center. Federal University of Pernambuco. Recife – PE. Brazil

2Computer Science Department. Federal University of Goiás. Catalão – GO. Brazil
3Computer Science Department. Federal University of Bahia. Salvador – BA. Brazil

{lll,pamsn,srlm}@cin.ufpe.br, {ivanmachado,esa}@dcc.ufba.br

Abstract—Software Product Lines (SPL) Engineering is an
effective development paradigm for systematic software reuse. It
is focused on improving software practices, leading companies to
experience a series of benefits, such as: reduction in both time-to-
market and overall development effort, as well as improvements
in terms of quality for the products delivered to customers.
However, establishing an SPL is not a simple task, and may affect
several aspects of an organization. Moreover, it indeed involves
significant investment if compared to Single System Development
(SSD). As a consequence, a greater set of risks is involved with
SPL adoption, which can impact the project success if they are
not well managed and appropriate RM activities are not applied.
In this context, this paper presents an evidence analysis about
RM in both fields, SPL and SSD. Outcomes from several
published studies were analyzed, by means of systematic
mapping studies, and hence compared in order to highlight the
common and different findings among them. In addition, the
studies were analyzed in order to present their contributions and
the methods used to perform the research.

Software Product Lines; Single System Development; Risk
Management; Evidence-Based Software Engineering; Narrative
Synthesis.

I. INTRODUCTION
SPL Engineering is based on a set of systems sharing a

common, managed suite of features that satisfy the specific
needs of a particular market or mission. Products in an SPL are
developed from a co mmon set of core assets in a prescribed
way [1]. Such a development strategy, based on systematic
software reuse, is aimed at achieving large-scale software
production and customization, reduced time to market,
improved quality and minimized costs [2].

Despite the benefits of the SPL adoption, challenges and
problems may be faced, since it demands mature and
systematic practices. The SPL development consists of a three-
level process, namely Core Assets Development (CAD),
Product Development (PD) and Management (M) [3]. In the
prior, highly reusable core assets are developed, that will be
assembled in PD to build the planned and expected products.
Management is an o rthogonal activity, performed in order to
coordinate the whole SPL, thus encompassing both CAD and
PD issues [3].

Establishing an SPL is not a simple task, which might
affect several aspects of an o rganization. In this context, risk

management policies should be set down, and communicated
throughout the SPL development life cycle, since these can
affect the project success in all of its phases [4].

Risk Management (RM) in SPL has gained attention from
the research community, but it is still considered as an open
field for investigation, especially in terms of moving research
to industry practices, unlike traditional software development,
i.e., single systems development (SSD), which contains a
relevant set of reported evidences.

In this scenario, this investigation is aimed at discussing the
RM field, on the basis of a comprehensive analysis of common
issues reported for both SPL and SSD. We are interested in
verifying likely gaps in the field of RM, in order to provide
practitioners with a set of open rooms for improving the RM
practices in SPL development.

Findings from two empirical studies [5] serve as a basis for
this work. Such studies, performed as literature reviews on
software risk approaches, in respectively SSD and SPL,
sketched the state-of-the-art in RM in the both fields. They
followed the systematic mapping study methodology [6]. An
initial discussion on these findings was performed in a previous
work [7], a short paper in which a comparison of outcomes is
run. In such a st udy we described and synthesized the risks
identified in the both literature reviews, by applying the
narrative synthesis methodology.

In this work, an extension of [7], the synthesis was
performed based on the guidelines provided by Rodgers et al.
[8] and some experiences described by Cruzes and Dybå [9].
We also followed the lessons learned presented by Mills et al.
[10] about the analysis of different syntheses.

The remainder of this paper is structured as f ollows.
Section II describes the related work. Section III discusses the
comparative analysis about the findings identified. In Section
IV the limitations and threats are presented. Finally, Section V
concludes this work and outlines future work.

II. RELATED WORK
Besides our initial comparative analysis [7], there are no

studies that focus the comparison between RM to SPL and
SSD. Hence, as far as we know, our research is the initial effort
devoted reported towards understanding, based on comparing

642

outcomes from such research fields, and performed using a
systematic research strategy.

Cruzes and Dybå [9] proposed a tertiary study where 49
literature reviews were analyzed in order to verify the synthesis
developed in these studies. Among the studies that presented
synthesis, two thirds performed a n arrative or a thematic
synthesis. The focus of this study was to understand which are
the challenges in synthesizing SE research and which are the
implications for the progress of research and practice. They
concluded that few researches has been conducted on studies
synthesis in SE and highlighted the importance in comparing
and contrasting evidence from more than one study during the
synthesis.

Despite that in study an evidence analysis was developed, it
differs of our work since we focused on analyze the evidence
found on RM t o SPL and SSD, in order to highlight the
common and different findings.

III. COMPARATIVE ANALYSIS
We analyzed extracted data from 30 primary studies in the

mapping study on RM in SPL (RM-SPL), and 74 studies in the
mapping on RM in SSD (RM-SSD) [5]. Table I presents the
number of studies from RM-SPL and RM-SSD, developed in
either academic or industrial scenarios.

TABLE I. STUDY ENVIRONMENT

Studies Academy Industry N/A
RM-SPL 2 27 1
RM-SSD 15 45 14

The number of studies reporting on industry practices was
higher than academic investigations. In SSD, we identified a
relevant number of studies that did not mention where the
research was applied. Next we discuss th e addressed
development phases.

1) Development Phase

RM is a pra ctice to be co nsidered throughout the
development life cycle. In addition, it is important to realize in
which discipline the risk was leveraged. Both RM-SPL and
RM-SSD considered all relevant disciplines [5], as follows
(SPL - SSD): Pre-Scoping (8 - 0) ; Scoping (11 - 1);
Requirements (8 - 8); Architecture (10 - 5); Implementation (0 -
1); Test (5 - 2); Orthogonal to more than one discipline (21 -
36); and not available (6 - 23).

It is worth mentioning that SPL and SSD can present
different development phases. In SSD, the initial planning and
scoping is embedded in the requirements discipline. However,
as a way to compare the findings, the studies were classified in
Pre-Scoping and Scoping, respectively. Thus, the basic
disciplines were conserved following the SPL definition.

In RM-SPL, the total number of studies is higher than the
number of primary studies selected, since one study could
address more than one development phase. Such scenario
represents the case where a study was not primarily focused on
RM issues for SPL, but rather focused on a different SPL
aspect and included some RM p ractices. This scenario was

different in RM-SSD, in which the studies presented the
specific disciplines where they were implemented. Unlike SPL,
in SSD, RM is a common and well-explored activity. Hence it
is possible to find several studies addressing specific software
development lifecycle disciplines.

In RM-SPL, 11 studies addressed the Scoping discipline
and 10 studies addressed the Architecture discipline. Since
such disciplines are maybe the most important ones for SPL,
and thus the SPL research community largely addresses them,
our initial assumption was that such scenario, i.e., the number
of studies we identified in the review on RM in SPL, would be
portrayed in this investigation.

On the other hand, in RM-SSD, the most addressed
disciplines were Requirements and Architecture. An important
point to consider is that, despite the studies in SSD present
more specific issues about RM, they did not present, in a clear
way, in which disciplines the research was performed. There
are represented by Not available values.

By Orthogonal, we mean the set of studies that do not fit
any specific discipline, but rather gather information from a set
of different disciplines without referring to a specific one.

2) Research Questions (RQ).

As a means to understand what has been studied in RM
through the available literature about software development
projects, we defined a number of questions that guided the data
collection:

RQ1. Which risk management activities and practices are
adopted by the approaches? This question aims to identify the
RM activities and practices to deal with risks. These combine a
set of activities performed in order to manage the risks.

RQ2. Which risk management steps are suggested by the
approaches? The purpose is to identify the steps used to
manage risks. These steps aim to m ake RM activ ities and
practices easier, allowing managers to solve the risks.

RQ3. Which evaluation methods are presented by studies?
The goal of this question is identify how the studies analyzed
have been performed, if they are empirical or theoretical
studies.

RQ4. Which contribution type has been presented by the
studies? This questions aims to present the type of results
developed by the primary studies.

Table II presents the number of the studies that answered
each research question (RQ).

TABLE II. STUDIES PER RESEARCH QUESTIONS (RQ)

 RQ
Answer

RQ1 RQ2 RQ3
SPL SSD SPL SSD SPL SSD

Yes 3 34 2 16 13 39
Partial 21 33 22 31 10 19

No 6 7 6 27 7 16

In RM-SPL, only 3 primary studies were classified with
“Yes”, regarding the activities and practices that could be
applied to RM (RQ1). RM-SSD selected a greater number of
studies in this sense. A similar scenario was observed in RQ2.

643

There are two possibilities that can be drawn from such
scenario: (1) RM is not a commonly performed activity in an
SPL project; or, (2) practitioners have not reported their
experience about what has been experienced in RM to SPL
projects. Such possibilities were confirmed through the studies
analyzed during the mapping in SPL and SSD [5].

a) RM activities and steps.
A number of common and different activities were

identified during the results analysis. In order to understand
them, some steps were also considered, as showed in Table III.
The use of steps may ease the activities execution. However,
for some identified activities and practices, the steps were not
mentioned.

TABLE III. ACTIVITIES AND STEPS

ID Activities and Practices SPL SSD Steps SPL SSD

Ac1 Mature Scope Definition

Identify the drawbacks in Scope
Isolate stable areas from unstable

Meetings with the experts

Ac2 Risk Identification

Apply Interview
Apply Brainstorming

Analyses Documentation
Apply Questionnaire

Continuous Identification
Early Identification

Observation and Expertise
Provide Meetings

Provide Risk Description
Risk Scenario
Use of Tool

Ac3 Risk Prioritization

Checklist
Define Level of Exposure

Rank the Risks
Summarize the Risks

Ac4 Risk Reporting ----

Ac5 Team Commitment

Define Stakeholders Role
Improve the Communication

Provide Meetings
Stakeholder´s Expertise

Training the Team

Ac6 Artifacts Reuse
Identify reusable assets

Define Level of Exposure

Ac7 Provide (SPL)
Documentation

Define Graphs
Define Risk Template

Risks Description
Risk Historic
Risk Ranking
Risk Scenario

Ac8 SPL Management
Software Product Line Mapping

Artifacts Management

Ac9 Define Interview
Identify risk through interview

Define the Questionnaire

Ac10 Mature Domain Definition

Preparation, Execution and Analysis
Establish a domain analyst role

Assess the subdomains
Identification of reusable entities
Make a domain potential analysis

Ac11 SPL Assessment
Assess the architecture

Identify the strengths and weakness

Ac12 Feature Development

Features Identification
Features Elicitation

Feature Model Development
Ac13 SPL Variability Variability Assessment
Ac14 Requirements Management Requirements Elicitation
Ac15 Tool for SPL ----

Continued on next page

644

TABLE IV. CONTINUED FROM PREVIOUS PAGE

Ac16 Architecture Definition Architecture Assessment
Ac17 SPL Tool ----
Ac18 SPL Testing ----
Ac19 Contingency Plan Identify Contingency Factors

Ac20 Cooperative RM ----

Ac21 Define RM Plan Action Plan
Ac22 Define Scenario ----

Ac23 Mitigation Plan

Anticipatory Mitigations
Avoid or Prevent the Risk
Define Level of Exposure

Define Mitigation Plan
Early Identification

Risk Transfer
Risk Reduction

Risk Acceptance
Ac24 Provide Communication Provide Meetings
Ac25 Provide Knowledge ----

Ac26
Risk Analysis

Analysis Effects and Causes
Analysis Entire Project

Analysis Interview
Analyse the Documentation

Define Graphs
Decision Makers

Define Level of Exposure
Risk Scenario
Rank the Risks

Stakeholders Influence

Ac27

Risk Assessment

Apply a Questionnaire
Define Level of Exposure

Quantify the quality requirements
Rank the Risks

Risks Categories
Training the Team

Ac28 Risk Avoidance ----

Ac29 Risk Classification

Effort Factors
Managing Changes
Organization factors

Project factors
Risk Archetypes
Schedule Factors

Team factors
Technical factors

Ac30 RM in Early Stage ----

Ac31 Risk Monitoring

Define Stakeholders Roles
Early Identification
Provide Meetings

Review Risk
Risk Identification
Tracking the Risk

Ac32 Risk Pattern Review Risk
Continued on next page

645

TABLE III. CONTINUED FROM PREVIOUS PAGE

Ac33 Risk Profile

Monitoring
State Probabilities

Ac34 Risk Resolution

Define Resolution Plan
Provide Inspection
Risk Acceptance
Risk Avoidance
Risk Ignoring

Risk Minimization
Risk Transfer

TABLE IV. EVALUATION METHODS APPLIED BY THE PRIMARY STUDIES

SS
Study

Empirical Research Theoretical Research
Systematic

Review
Case
Study

Observational
Study

Field
Study

Experimental
Study Surveys Theoretical

Study
Expert

Opinion
SPL 0 16 0 0 0 0 5 12
SSD 1 8 1 1 8 17 18 22

TABLE V. CONTRIBUTION TYPE OF THE STUDIES

Study
Contribution Type

Process Framework Method Technique Model Approach Tool Characterization
Scheme

Lessons
Learned

RM-SPL 1 0 4 0 1 9 0 0 19
RM-SSD 1 8 2 1 11 9 1 1 40

It was noticed that a number of basic activities and
practices were pointed in both studies, such as: Risk
Identification, Provide Documentation, and Define Interview.
In addition, there are specific activities that were mentioned in
RM-SPL, due to their inherent characteristics: Mature Scope
Definition and Mature Domain Definition – since in SPL the
need for defining bo undaries is extremely relevant, and the
core assets will be developed in compliance with these
boundaries; SPL Management – management has to be
systematic and well defined.

The activities and practices can serve as a guide for the
Risk Manager to conduct RM, as well as to provide the
research community with valuable insights.

b) Evaluation Methods
Regarding RQ3, through the analysis we could identify

several research methods applied to conduct the primary
studies and which are the contributions that these studies
indicated to the area, as presented in the Table IV.

The categorization of methods was based on Lianping and
Muhammad [11] and Montesi and Lago [12]. The methods
were classified into Empirical and Theoretical Research, in
order to facilitate the research type that has been performed to
SPL and SSD. The number of primary studies presented in the
table can be greater than the number of primary studies

selected to each mapping studies, since one study can present
more than one method.

Regarding SPL, almost the same number of studies was
classified as Empirical Research and Theoretical Research
divided in Case Studies, Theoretical Study and Expert Opinion.
The same scenario was found in SSD, although other
evaluation methods were also addressed. Several studies (in
SPL and SSD) were only reports about expert’s opinion. Also,
as previously mentioned, many of the studies were related to
experiences in the industry.

When it comes to the SPL scenario, it is important to
highlight that the primary studies were not specific to RM, i.e.,
they did not present specific approaches or methods to conduct
RM during the projects. However, they were included since
they reported SPL studies discussing RM, at least superficially.

c) Contibution type
Through the RQ4, we could identify the type of

contribution of the studies analyzed, which are the results
presented, as showed in Table V. Many studies present lessons
learned as results and the several studies were classified in
Theoretical Research in the previous table.

We could observe that, either in SPL or SSD context, the
primary studies do not bring clear evidence about the methods
used and their contributions. Thus, the analysis of the

646

contribution of each study was made based on our feelings
during the development of the mapping studies, in which the
primary studies were analyzed in a systematic way.

When it comes to the SPL scenario, it is important to
highlight that the primary studies were not specific to RM, i.e.,
they did not present specific approaches or methods to conduct
RM during the projects. However, they were included since
they reported SPL studies discussing RM, at least superficially.

IV. LIMITATIONS AND THREATS
Some limitations and threats were identified during the

development of this research, as f ollows. In order to reduce
these problems, three researchers had been actively involved in
this work.

The studies analyzed in the mapping studies lack sufficient
information regarding ways that RM could be applied, mainly
to SPL projects. Hence, to identify the results and re port
relevant findings the researcher involved in the analysis had to
infer on the available results if these results were not explicitly
presented as way to manage the risks.

A potential bias involves the fact that one researcher was
responsible for synthetizing the evidences in this study, while
different researchers were involved with the validation of the
analysis.

The same researchers were involved in the both mapping
studies execution, consequently, bias from others studies can
be presented in this evidence analysis.

The RM-SPL presented studies until 2010 and the RM-SSD
until 2011. This can be a threat since some studies could be
considered in SSD due to the time in that the research was
performed.

V. CONCLUSIONS
Despite the need to apply Risk M anagement (RM)

activities during the development of SPL projects, these
practices have not been adequately reported in the literature.
Hence, explicit RM in SPL can still be considered as an open
question, which may be confirmed by analyzing industrial
practices, unlike SSD, which contains a large set of evidence.

In this effect, regarding SPL, RM still has a long way to
develop research, since no empirical evidence is available
about its effective use in companies that develop software
based on product line paradigm. It was verified through the
execution of two mapping studies in SPL and SSD t o RM,
where few studies reported experiences applying RM for SPL
projects compared with SSD [5].

Based on this analysis, we identified a set of activities to
apply RM in the SPL context. In addition, it was possible to
understand the practices adopted by the primary studies for
performing RM in software development. In the SPL context,
we identified 32 risks, 15 different activities and practices that
can be used to reduce them, and 26 steps to optimize the RM
activities and practices execution. In the SSD review, we found
56 risks, 22 RM activities and practices and 85 steps.

The narrative synthesis added meaning and value to the
results reported in our mapping studies, providing more
detailed implications for further research about RM in SPL.
The comparison described, through the narrative description,
allowed us to investigate the scenario of RM and to collect
specific insights to propose a clear RM approach to SPL.

REFERENCES
[1] Clements, P. and Northrop, L. M. Software Product Lines: Practices and

Patterns. Boston MA U.S.A.: Addison-Wesley, Aug 2001
[2] Schmid, K. An Assessment Approach To Analyzing Benefits and Risks

of Product Lines. Computer Software and Applications Conference,
Annual International, pp. 525, 25th Annual International Computer
Software and Applications Conference (COMPSAC'01).

[3] Northrop, L. M. SEI's Software Product Line Tenets. IEEE Softw. 19, 4
(July 2002), 32-40.

[4] Lobato, L. L., Silveira Neto, P. A. M., Machado, I. C., Almeida, E. S.
and Meira, S. R. L. Risk Management in Software Product Lines: An
Industrial Case Study. In: International Conference on Software and
Systems Process (ICSSP), 2012, Zurich.

[5] Lobato, L. L. An approach for Risk Management in Software Product
Lines. Ph.D. Thesis. Federal University of Pernambuco, Brazil, 2012, pp
382p.

[6] Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M. Systematic mapping
studies in software engineering, in: EASE ’08: Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering, University of Bari, Italy.

[7] Lobato, L. L., Silveira Neto, P. A. M., Machado, I. C., Almeida, E. S.
and Meira, S. R. L. An Study on R isk Management for Soft ware
Engineering. In: 16th International Conference on Evaluation &
Assessment in Software Engineering (EASE), 2012, Ciudad Real, Spain.

[8] Rodgers, M., Sowden, A., Petticrew, M., Arai, L., Roberts, H., Britten,
N., and Popay, J. Testing Methodological Guidance on the Conduct of
Narrative Synthesis in Systematic Reviews, Evaluation, 15(1): 49–74.

[9] Cruzes, D. S. and Dybå, T. Research Synthesis in Software Engineering:
A Tertiary Study, Information and Software Technology 53, 5 (May
2011), 440-455.

[10] Mills, A. J., Durepos, G. and Wiebe, E. Encyclopedia of case study
research. SAGE Publications, Thousand Oaks.

[11] Lianping C. and Muhammad A. B. A systematic review of evaluation of
variability management approaches in software product lines. Inf. Softw.
Technol. 53, 4 (April 2011), 344-362.

[12] Montesi, M. and Lago, P. Software engineering article types: An
analysis of the literature. Journal of Systems and Software. 81, 10
(October 2008), 1694-1714.

647

PlugSPL: An Automated Environment for Supporting
Plugin-based Software Product Lines

Elder M. Rodrigues∗, Avelino F. Zorzo∗, Edson A. Oliveira Junior†, Itana M. S. Gimenes†,
José C. Maldonado‡ and Anderson R. P. Domingues∗

∗Faculty of Informatics (FACIN) - PUCRS - Porto Alegre-RS, Brazil
Email: {elder.rodrigues, avelino.zorzo}@pucrs.br

Email: anderson.domingues@acad.pucrs.br†Informatics Department (DIN) - UEM - Maringá-PR, Brazil
Email: {edson, itana}@din.uem.br

‡Computing Systems Department (ICMC) - USP - São Carlos-SP, Brazil
Email: jcmaldon@icmc.usp.br

Abstract—Plugin development techniques and the software
product line (SPL) approach have been combined to improve
software reuse and effectively generate products. However,
there is a lack of tools supporting the overall SPL process.
Therefore, this paper presents an automated environment,
called PlugSPL, for supporting plugin-based SPLs. Such envi-
ronment is composed of three modules: SPL Design, Product
Configuration, and Product Generation. An example of a
PlugSPL application is illustrated by means of the PLeTs
SPL for the Model-Based Testing domain. The environment
contributions are discussed whereas future work is listed.

Keywords-Software Product Lines, Plugin-based SPL, Model-
based Testing.

I. INTRODUCTION

In recent years, software product line (SPL) [1] engineer-

ing has emerged as a promising reusability approach, which

brings out some important benefits, e.g., it increases the

reusability of its core assets, in the meanwhile decreases time

to market. The SPL approach focuses mainly on a two-life-

cycle model [1]: domain engineering, in which the SPL core

assets are developed for reuse; and application engineering,

in which the core assets are reused to generate specific

products. It is important to highlight that the success of the

SPL approach depends on several principles, in particular

variability management [2].

Although SPL engineering brings out important benefits,

it is clear the lack of an environment aimed at automating

the overall SPL life cycle, including: (i) configuration of

feature model (FM); (ii) configuration of products; and

(iii) generation of products. Literature and industry present

several important tools that encompass part of the SPL

development life cycle, e.g., SPLOT [3].

The plugin approach has also received an increasing

attention in the development of SPLs [4]. In the SPL

field, a plugin-based approach enables the development of

different applications by selecting/developing different sets

of plugins. Although the use of plugins to develop SPL

products is a promising approach and several works have

been published in recent years, to the best of our knowledge,

there is no tool to support plugin-based SPLs. Therefore,

this paper presents an automated environment for supporting

the overall SPL engineering life cycle, the PlugSPL. Such

an environment differs from existing tools as it aims at

supporting plugin-based SPLs. Moreover, PlugSPL provides

capabilities both to import/export FMs from/to other tools

and to effectively generate products.

This paper is organized as follow. Section II discusses

some concepts of SPL and plugin-based SPLs; Section III

presents the PlugSPL environment and its main characteris-

tics; Section IV illustrates the use of PlugSPL to manage a

Model-Based Testing (MBT) SPL; and, Section V presents

the conclusion and directions for future work.

II. BACKGROUND

In recent years, the plugin concept has emerged as an

interesting alternative for reusing software artifacts de facto
[5]. Moreover, plugins are a useful way to develop applica-

tions in which functionalities must be extended at runtime.

In order to take advantage of the plugin concept for

developing software, it is necessary to design and implement

a system as a core application that can be extended with

features implemented as software components. A successful

example of the plugin approach is the Eclipse platform [6],

which is composed of several projects in which plugins are

developed and incorporated to improve both the platform

and the providing services.

The plugin approach has also received an increasing

attention in the development of SPLs [4]. The SPL approach

has emerged over the last years due to competitiveness in

the software development segment. The economic considera-

tions of software companies, such as cost and time to market,

motivate the transition from single-product development to

the SPL approach, in which products are developed in a

large-scale reuse perspective [1]. Whereas a SPL can be

defined as a set of applications that share a common set of

features and are developed based on a common set of core

648

assets, the plugin approach can be easily applied to build

new applications by plugging different sets of plugins to a

core application [7]. Although the use of plugins to develop

products is a promising approach and several works have

been published in recent years, there is no tool to support

plugin-based SPLs.

III. PLUGSPL ENVIRONMENT: SUPPORTING

PLUGIN-BASED SOFTWARE PRODUCT LINES

Although there are many tools focused on SPL modeling,

consistence checking [3], and product generation support [8],

currently, there is no tool that integrates all SPL development

phases. Moreover, there is no tool to support the auto-

mated product configuration and product generation from a

plugin-based SPL. Therefore, in this section we present the

PlugSPL environment that has been developed to support

SPL design, product configuration and generation of plugin-

based SPLs. Figure 1 presents the PlugSPL modules and

activities, as follows:

Figure 1: The PlugSPL modules.

a) the SPL Design module aims to design a FM by either

creating it from scratch or importing a pre-existing FM

from SPL tools. Such tools, usually, do not use a common

format to represent FM elements and constraints, there-

fore, we conceived the PlugSPL SPL Design module

to work with a wide FM representations and file formats.

Thus, PlugSPL FMs can be seen as a starting point to

automate the creation of the SPL architecture and then

to generate products. Based on information extracted

from a FM, the SPL Design module represents such

information as SPL Models (Figure 1). Such models

are taken as input to the Product Configuration
module for composing the SPL architecture;

b) the Product Configuration module is responsi-

ble for automating the SPL architecture. Basically, this

module has two activities - Generate Abstract
Classes and Configure Product. The former re-

ceives the SPL Models provided by the SPL Design
module and creates a set of abstract classes, one class

for each feature. Each abstract class is a variation point

and/or a variant with a specific type. Thus, each plugin

may extend only one abstract class. The abstract classes

might be used, according to the SPL documentation,

by the core assets developer to build each plugin that

composes the SPL. After the generation of the abstract

classes, the SPL engineer is able to select the desired

features for the target system (product configuration).

PlugSPL checks the system consistency and generates

the target system architecture (abstract classes).

c) the Product Generation module takes the target

system architecture as input. This module graphically

shows such architecture to the application engineer. Thus,

this module retrieves from the plugin repository respec-

tive plugins that implement the types of the abstract

classes (product architecture). After that, the plugins are

linked to each of their respective abstract classes and the

consistency between the generated architecture and FM is

checked. PlugSPL shows graphically the set of plugins

that is able to be selected for resolving the variability

in each class and generates the target system. Them,

the application engineer: (i) selects one or more plugins

(which denote a feature in the FM) to resolve each class

variability; (ii) gives a name to the target system; and

(iii) clicks a button to generate the system.

IV. PLUGSPL APPLICATION EXAMPLE

This section presents an example of how PlugSPL can

be used to design, develop and derive MBT products from

PLeTs SPL [7]. PLeTs is a SPL aimed at automating

the generation, execution and results collection of MBT

processes. The MBT process consists in the generation of

test cases and/or test scripts based on the application model.

The MBT process main activities are [10]: Build Model,
Generate Expected Inputs, Generate Expected Outputs,

Run Tests, Compare Results, Decide Further Actions and

Stop Testing. PLeTs goal is the reuse of SPL artifacts to

make it easier and faster to develop a new MBT tool.

Figure 2 shows the main features of the current PLeTs FM:

Parser, TestCaseGenerator,ScriptGenerator
and Executor.

Figure 2 shows several dependencies (denoted

by propositional logic) between features. For

instance, if feature Executor and its child feature

LoadRunnerParameters are selected, then

feature ScriptGenerator and its child feature

LoadRunnerScript must be selected as the generated

tool is not able to execute tests without test scripts.

The PLeTs FM can be extended to support new testing

techniques or tools by adding new child features to its

main features. For instance, if one adds new features for

the SilkPerformer testing tool, new child features for the

ScriptGenerator and Parameterization features

must be included.

649

Figure 2: The PLeTs Feature Model [7].

A. Using PlugSPL for Generating a MBT SPL

Designing and development of SPLs supported only by

FMs editors and SPL documentation itself might be error

prone and time consuming activities. Moreover, checking

features constraints manually is a hard task. Therefore, this

section explains how PlugSPL can be used to automate the

overall SPL process by using PLeTs as an example SPL.

PlugSPL imports PLeTs FM (Figure 2) to the SPL
Design module. Thus, PlugSPL re-constructs and checks

the FM and shows the result to the SPL architect using

a tree notation. Therefore, the SPL architect can interact

with the PLeTs FM to, for instance, add or edit feature

relationships. The PLeTs FM is saved as SPL Models to

support the Product Configuration phase.

During Product Configuration, PlugSPL generates the

PLeTs architecture, formed by its abstract classes, e.g.,

Parser, UmlDiagrams and ScriptGenerator. Thus, the SPL

architect might export such classes, by clicking on the

Deploy Development Library button, and send it to

the plugin development team. Based on the architecture,

such team develops a plugin by extending a specific abstract

class (e.g. Parser), and sends it back to the SPL architect

to store it in the SPL plugin repository. As shown in

Figure 3, the product architect might define each product

architecture by selecting the abstract classes in the tree

structure. A product is a performance MBT tool that re-

alizes the following activities; a) Accepts as input an UML

model (Parser, UmlDiagrams); b) Transforms the model in a

formal model (TestCaseGenerator, FiniteStateMachine), and

applies it a sequence method (HSI) to generate the testing

sequence. Based on such a testing sequence, it generates the

abstract performance test cases (AbstractTestCaseGenerator,

PerformanceTesting); c) Uses the abstract performance test

cases to generate scripts to the LoadRunner performance

tool (ScriptGenerator, LoadRunnerScript); d) Executes pro-

duct via command line (Execution, Console) and sets the

LoadRunner parameters (Parameterization, LoadRunnerPa-

rameters).

PlugSPL allows the product architect to save each product

architecture in a repository for reuse. It is important to

highlight that in the PLeTs SPL each abstract class is

a variation point that is resolved by selecting a variant

(plugin).

The Product Generation module presents graphically the

abstract classes structure of a product. It also links a plugin

to classes by performing a search in the plugin repository to

find what plugins are implemented by each product abstract

class. Thus, the product architect selects a plugin, or a set

of plugins, to resolve each variability. In the Product Gene-

ration activity each variability (abstract class) uses only one

variant (plugin) to resolve a variability. However, it might be

necessary to use two or more variants to resolve a variability.

After resolving a variability, the product architect has two

options: save the product configuration and/or generate the

MBT product. In the first option, the tool asks for a product

name and, then, saves its classes and plugins to generate

a product later. In the second option, PlugSPL asks for a

product name, and then generates the MBT product. In order

to generate the product, PlugSPL: (i) selects the product

abstract classes and its related plugins; (ii) packages them

by using a “glue code”; and (iii) generates an executable

product file. Although the “glue code” generation is only

invoked and executed by PlugSPL, the piece of code that

generates such a code is implemented in the SPL base plu-

gin. This approach simplifies the development and evolution

of the product as the complex information necessary to

generate products from a wide amount of SPLs is stored

as a SPL artifact.

650

Figure 3: PlugSPL Feature Model Editing and Product Configuration.

V. CONCLUSION AND FUTURE WORK

This paper presented PlugSPL, which is an automated

environment to support the overall plugin-based SPL life

cycle. Although there are tools to partially support the SPL

life cycle as, for instance, pure::variants, there is no

tool that supports plugin-based SPLs and the overall SPL life

cycle. Furthermore, there are tools to design FMs, but most

of them use different notations and file formats. PlugSPL

provides capabilities with regard to create or import/export

FMs from/to other tools and uses a wide file format. There-

fore, there is no need to incorporate other tools/environments

into PlugSPL.

Although PlugSPL is a flexible environment for modeling

FMs, its most significant benefit is supporting the generation

of SPL products based on its FM. Moreover, PlugSPL

automatically generates an abstract class structure, which

can be used to develop third-party plugins. A PlugSPL

application example was presented for deriving MBT tools

from the PLeTs SPL. Directions for future work are: (i)

plan and conduct experiments for assuring the effectiveness

of PlugSPL environment; (ii) extend PlugSPL functionalities

to support different plugin-based SPLs; and (iii) include into

PlugSPL an overall SPL evaluation module.

REFERENCES

[1] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[2] E. A. Oliveira Junior, I. M. S. Gimenes, and J. C. Maldonado,
“Systematic Management of Variability in UML-based Soft-
ware Product Lines,” Journal of Universal Computer Science,
vol. 16, no. 17, pp. 2374–2393, 2010.

[3] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T.: Soft-
ware Product Lines Online Tools,” in Proc. Conf. Object Ori-
ented Programming, Systems, Languages, and Applications.
New York, NY, USA: ACM, 2009, pp. 761–762.

[4] R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and
H. Prahofer, “Supporting Runtime System Adaptation through
Product Line Engineering and Plug-in Techniques,” Int. Conf.
Commercial-off-the-Shelf (COTS)-Based Software Systems,
pp. 21–30, 2008.

[5] J. Mayer, I. Melzer, and F. Schweiggert, “Lightweight Plug-
In-Based Application Development,” in Proc. Int. Conf. Ne-
tObjectDays on Objects, Components, Architectures, Services,
and Applications for a Networked World. London, UK, UK:
Springer-Verlag, 2003, pp. 87–102.

[6] M. Kempf, R. Kleeb, M. Klenk, and P. Sommerlad, “Cross
Language Refactoring for Eclipse Plug-ins,” in Proc. Work-
shop on Refactoring Tools. New York, NY, USA: ACM,
2008, pp. 1–4.

[7] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, L. T. Costa,
H. V. Vieira, and F. M. de Oliveira, “Model-Based Automatic
Generation of Performance Test Scripts,” in Proc. Software
Engineering and Knowledge Engineering Conf. Miami,
USA: IEEE Computer Society, 2011, pp. 258–263.

[8] D. Beuche, “Modeling and Building Software Product Lines
with Pure::Variants,” in Proc. Int. Software Product Line Conf.
New York, NY, USA: ACM, 2011, pp. 358–.

[9] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund, “Abstract
Features in Feature Modeling,” in Int. Conf. Software Product
Line, 2011, pp. 191–200.

[10] I. K. El-Far and J. A. Whittaker, Model-based Software
Testing. New York: Wiley, 2001.

651

GS2SPL: Goals and Scenarios to Software Product
Lines

Gabriela Guedes, Carla Silva, Jaelson Castro, Monique Soares, Diego Dermeval, Cleice Souza
Centro de Informática

Universidade Federal de Pernambuco/UFPE
Recife, Brazil

(ggs, ctlls, jbc, mcs4, ddmcm, ctns)@cin.ufpe.br

Abstract — GORE (Goal Oriented Requirements Engineering)
approaches can effectively capture both the stakeholders’
objectives and the system requirements. In the context of
Software Product Lines (SPL), they offer a natural way to
capture similarities and the variability of a product family. Goals
to Software Product Lines (G2SPL) is an approach that
systematically guides the creation of an SPL feature model from
i* models with cardinality. However, it is not possible to model
behavioral characteristics of an SPL through GORE approaches,
such as i*. In order to capture the system behavior, it is common
to use a scenario specification technique. This paper defines a
Requirements Engineering approach for SPL that integrates the
G2SPL approach and a technique to specify use case scenarios
with variability. This new approach is named GS2SPL (Goals
and Scenarios to Software Product Lines) and also includes a
sub-process for configuring specific applications of an SPL based
on the priority given to non-functional requirements.

Keywords - Requirements Engineering; Software Product Line;
Goal Modeling; Feature Model; Scenarios

I. INTRODUCTION
Requirements Engineering (RE) is the phase of software

development concerned with producing a set of specifications
of software characteristics that satisfy the stakeholders needs
and can be implemented, deployed and maintained [1].

In RE for Software Product Lines (SPL), feature models
(FM) are often used to capture similarities and the variability of
a product family. However, using only FM, it is difficult to
relate the features of a software product and the objectives of
the stakeholders [2]. Besides, there wasn’t a systematic way to
select features for a particular product. In this context, in [3] we
proposed a systematic approach to obtain features of SPL from
stakeholders’ goals and to select the features for a specific
product of an SPL, based on non-functional requirements
(NFR) analysis.

However, our previous approach didn’t use scenario-based
descriptions (e.g. use cases) that are easily understood by
stakeholders [4] and capable of capturing the dynamic or
behavioral aspect of the SPL.

 Hence, in this paper, we propose the GS2SPL (Goals and
Scenarios in Software Product Lines) approach, which supports
the generation of feature models and scenario-based
descriptions from goal-based requirements specification.
Besides, this approach takes into account the priority given to

the NFRs used in its configuration sub-process to select the
features of a specific product that best satisfies the
stakeholders’ needs.

This paper is organized as follows. Section II describes the
background required for a better understanding of this work.
Section III presents the GS2SPL approach. Section IV
discusses related work and Section V su mmarizes our
contributions and points out future work.

II. BACKGROUND

A. Software Product Line Engineering
Clements and Northrop [5] define an SPL as a set of

software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way. The term “software product
family” is also used as synonym to “software product line” [6].

According to Pohl et al. [6], Software Product Line
Engineering (SPLE) is a paradigm to develop software systems
using platforms and m ass customization. The same authors
proposed an SPLE framework that consists of two separate
processes:

 Domain Engineering: responsible for establishing the
reusable platform and defining the commonality and
the variability of the product line [6]. This process is
called Core Asset Development in [5];

 Application Engineering: responsible for deriving
product line applications from the platform established
in domain engineering [6]. This process is called
Product Development in [5].

Our approach covers both processes, but it is limited to the
requirements phase only.

B. iStar
In the i* framework [7], stakeholders are represented as

actors that depend on each other to achieve their goals, perform
tasks and provide resources. Each goal is analyzed from its
actor point of view, resulting in a set of dependencies between
pairs of actors. The Strategic Dependency (SD) model provides
a description of the relationships and external dependencies
among organizational actors. The Strategic Rationale (SR)
model enables an analysis of how goals can be fulfilled through

652

contributions from the several actors. Fig. 1 presents part of the
SR model for MobileMedia [8], an SPL that will be used in this
paper as a running example. The main purpose of MobileMedia
is to manage media files in mobile devices.

Figure 1. MobileMedia i* SR model

The SR model in Fig 1 depicts two actors (“MobileMedia”
and “User”) and their dependencies. “User” depends on
“MobileMedia” to achieve the “Photo Added” goal and to
obtain “Album” resource. It also expects that “MobileMedia”
contributes to satisfy the “Integrity [Photo]” softgoal. On t he
other hand, “MobileMedia” depends on “User” to obtain
“Path”, “Photo” and “Name” resources and it expects “User” to
contribute to the “Accuracy [Path]” softgoal.

The boundary of the “MobileMedia” actor, shown in Fig. 1,
provides information on how this actor can fulfill its
dependencies and why it depends on other actors. The “Add
Photo” task is a way to satisfy the “Manage Media” goal, thus
these elements are linked by a means-end relationship. The
“MobileMedia” will fulfill the “Photo Added” dependency
through “Add Photo” task, which is d ecomposed in “Album
Selected” and “List of Photos Updated” goals and the “Store
Photo” task. “Store Photo” is decomposed in the “Quickness
[Storage]” softgoal and the “Photo Saved” goal. The “Photo
Saved” goal can be satisfied by “Save Automatically” task,
which contributes positively (“help” contribution link) to
satisfy the “Quickness [Storage]” softgoal, or by ”Save by
User” task that contributes negatively (“hurt” contribution link)
to the satisfaction of the same softgoal.

To capture variability in SR models of SPLs, an extended
version of i* has to be used. The i*-c (i* with cardinality)
allows the insertion of cardinality in task and resource elements
and also in means-end relationships [2]. This i* extension is
used by G2SPL [3] approach to derivate feature models. Our
approach is an extension of the G2SPL and, hence, it uses i*-c
models to derive not only FMs, but use case scenarios as well.

C. Scenarios for SPL
PLUSS (Product Line Use case modeling for Systems and

Software engineering) [9] is an SPL approach that combines
feature models and use case scenarios. It captures both
common and variable behavior of the SPL. In PLUSS, both use
cases and scenario steps are annotated with the features to
which they are related. During product configuration, desired
features are selected in the FM, and their corresponding

annotations, present on the use case scenarios, are used to
configure these scenarios for a specific product. Thus, only use
cases and scenario steps annotated with the selected features
will be present on the product’s use case descriptions.

III. GS2SPL
GS2SPL is an RE approach for SPL in which the feature

model and the use case scenarios of an SPL are obtained from
i*-c goal models. The GS2SPL process is divided in eight
activities, mostly are part of the Domain Engineering process
and just the last one is part of Application Engineering process.
The first four activities were inherited from G2SPL and,
therefore, they will not be explained in details in this paper.
Additional information about these activities can be found in
[3]. The rest of the process consists on the addition of new
activities or adaptations of G2SPL activities. The next sub-
sections present all activities of GS2SPL:

A. Creation of SR Model
This activity consists of modeling the stakeholders’ goals

using the i* framework. It is considered an optional activity if
the SR model is already available. The output of this activity,
for the running example, is depicted in Fig.1.

B. Identification of Candidate Elements to be Features
In this activity, the domain engineer identifies the elements

of the SR Model that could represent features. Features may be
extracted from tasks and resources. Therefore, all internal tasks
and resources of the actor that represents the SPL should be
highlighted, as w ell as t ask and resource dependencies
connected to this actor.

C. Reengineering the SR Model
In this activity, cardinality is added to the SR model based

on some heuristics defined in the G2SPL approach [3]. In
summary, cardinality may be added to intentional elements and
to means-end relationships in which the root element (end) has
more than one sub-element (means). The output of this activity
is an SR Model with cardinality, as the one shown in Fig. 2.

Figure 2. MobileMedia i*-c SR model with feature candidates highlighted in

grey

D. Elaboration of the Feature Model
This activity is c oncerned with the derivation of the SPL

feature model (activity output). The input artifacts are some
heuristics to elaborate the FM and the SR model with

653

cardinality. The heuristics suggests the construction of a table
(Table I) that keeps the traceability between features and
tasks/resources. This table is used to obtain the feature model.

TABLE I. TABLE OF TRACEABILITY BETWEEN FEATURES AND
TASKS/RESOURCES

Element
Cardinality Parent

Element Feature
Type Value

Add Photo Element [1..1] – Add Photo

Album Element [1..1] Add Photo Album

Store Photo Element [1..1] Add Photo Store Photo

Save Autom. Group <1..1> Store Photo Save Autom.

Save by User Group <1..1> Store Photo Save by User

Path Element [1..1] Store Photo Path

Photo Element [1..1] Store Photo Photo

Name Element [1..1] Save by User Name

According to the heuristics defined in this activity, optional
features are obtained from elements with cardinality [0..1],
while mandatory features are obtained from elements with
cardinality [1..1]. Elements involved in a means-end
relationship with cardinality become alternative features with
equivalent cardinality. The FM obtained from the SR model
depicted in Fig. 2 is shown in Fig. 3.

Figure 3. Feature model of MobileMedia

E. Feature Model Refinement
This is an optional activity to be executed if the FM needs

to be reorganized or if new features must be add ed, because
they were not present in the SR model. Reorganization is
required if the FM has repeated features, sub-features with
more than one parent or different features with the same
meaning. This activity can be performed as many times as the
domain engineer believes it is necessary. Our running example
is quite simple and did not require the execution of this activity.

F. Elaboration of Use Case Scenarios
The SPL use case scenarios are specified based on an

adaptation of the guidelines defined by Castro et al. [10]. This
activity obtains the PLUSS scenarios description for an SPL
from its SR model and feature model. The guidelines proposed
by Castro et al. in [10] are a mapping between i* models and
use case scenarios that are not specific for dealing with SPL

variability. We propose guidelines to map i*-c models to
PLUSS use case scenarios. As a result, some of the 10 previous
guidelines were removed; others were split into new ones.

In Step 1, all four guidelines were maintained, but a new
one was inserted (current Guideline 4) to deal with actors that
have only softgoal dependencies with the SPL actor. In Step 2,
the two previous guidelines were merged, since their sub-
guidelines were exactly the same. In Step 3, (i) a guideline was
inserted (current Guideline 7) to address PLUSS annotations;
(ii) the previous Guideline 8 was split into four (current
Guidelines 8, 9, 10, 11) because of the necessity to deal with
every possible cardinality in i*-c; (iii) the previous Guideline 9
(current Guideline 12) was reformulated to take into account
use cases derived from optional steps; and (iv) previous
Guideline 10 was removed because it was a recommendation to
draw a u se case diagram, but not a mapping guideline. The
guidelines we propose in GS2SPL approach are presented as
follows:

Step 1 – Discovering actors:

 Guideline 1: Every i* actor is a candidate to be mapped
to a use case actor;

 Guideline 2: The candidate i* actor should be external
to the intended software system; otherwise, it cannot be
mapped to a use case actor;

 Guideline 3: The candidate i* actor should have at least
one dependency with the actor representing the SPL;
otherwise, it cannot be mapped to a use case actor;

 Guideline 4: Analyze the dependencies between the
candidate i* actor and the actor that represents the SPL.
If all of them are s oftgoal dependencies, the i* actor
cannot be mapped to a use case actor;

 Guideline 5: Actors in i*, related through the ISA
relationship, and mapped individually to use case
actors (applying guidelines 1, 2, 3 and 4), will be
related through the “generalization” relationship in the
use case diagram;

In our example, there is only one external actor, “User”,
and, according to the presented guidelines, it can be mapped to
a use case actor.

Step 2 – Discovering use cases for the actors:

 Guideline 6: For each use case actor discovered in Step
1, analyze its dependencies with the SPL actor;

o Guideline 6.1: Goal dependencies – goals in i* can
be mapped to use cases;

o Guideline 6.2: Task dependencies – it should be
investigated if the task needs to be decomposed
into sub-tasks. If the task requires many steps to be
executed, then it can be mapped to a use case;

o Guideline 6.3: Resource dependencies – it should
be investigated if the resource can only be
obtained after many interaction steps between the
discovered actor and the system-to-be. If so, the
dependency can be mapped to a use case;

654

o Guideline 6.4: Softgoal dependencies – typically,
the softgoal dependency in i* is a n NFR for the
intended system. Hence, a softgoal does not
represent a use case, but an NFR associated with a
specific use case or with the SPL as a whole;

After applying Step 2 to the example, we discovered that
only the “Photo Added” goal dependency can be mapped to a
use case.

Step 3 – Discovering and describing use case scenarios:

 Guideline 7: After discovering the use cases, the field
“Feature” in their description (Table II) should be
filled. Also, the scenario steps to be discovered by
using the next guidelines should be annotated with the
features related to them;

o Guideline 7.1: If a task or resource dependency
originated the use case, then the “Feature” field is
filled with the name of the feature related to the
task/resource on the table of traceability (Table I);

o Guideline 7.2: If a goal dependency originated the
use case, then it is necessary to analyze the
internal element to which the dependency is
connected in the SPL actor. If such element is a
task or resource, the “Feature” field is filled with
the name of the feature related to that
task/resource. If the element is a g oal, then the
“Feature” field will be filled with the name(s) of
the feature(s) related to the task(s) in which this
goal is refined .

o Guideline 7.3: The steps obtained from tasks or
resources should be annotated with the name of
the related feature between brackets – [];

 Guideline 8: Analyze sub-elements of task
decompositions in order to map them to m andatory
steps of the use case primary scenario;

o Guideline 8.1: If the decomposed task in analysis
satisfies a dependency that was mapped to a use
case, then the sub-elements of that decomposition
will be mapped to mandatory steps of such use
case;

o Guideline 8.2: Every step obtained from task
decomposition sub-elements is identified by a
unique number without parenthesis, according to
PLUSS notation for mandatory steps;

o Guideline 8.3: If a sub-element of a t ask
decomposition is a softgoal, then it is associated to
the use case as an NFR;

 Guideline 9: When a means-end relationship has only
one sub-element, the sub-element’s cardinality should
be analyzed;

o Guideline 9.1: If the cardinality is [1..1], the
element will be mapped to a mandatory step.
Hence, it will be identified by a unique number
without parenthesis;

o Guideline 9.2: If the cardinality is [0..1], the
element will be mapped to an optional step.
Hence, it will be identified by a unique number
between parenthesis, according to th e PLUSS
notation for optional steps;

 Guideline 10: When a means-end relationship has more
than one sub-element, the relationship cardinality
should be analyzed;

o Guideline 10.1: If the cardinality is <1..1>, the
sub-elements will be mapped to mutually
exclusive alternative steps. Therefore, they will be
identified by equal numbers without parenthesis;

o Guideline 10.2: If the cardinality is <0..1>, the
sub-elements will be mapped to alternative steps
where only one may be selected. Therefore, they
will be identified by equal numbers between
parenthesis;

o Guideline 10.3: If the cardinality is <0..n> and
n>1, the sub-elements will be mapped to
alternative steps where none or at most n can be
selected. Therefore, they will be identified by
equal numbers between parenthesis, followed by a
different letter for each alternative;

o Guideline 10.4: If the cardinality is <i..j>, i ≠0 and
j>1, the sub-elements will be mapped to
alternative steps where at least i and at most j can
be selected. Therefore, they will be identified by
equal numbers without parenthesis, followed by a
different letter for each alternative;

o Guideline 10.5: If there is cardinality only in the
sub-elements, but not in the relationship, the sub-
elements will be mapped to alte rnative steps and
some of them may be o ptional, according to the
cardinality. Therefore, they will be identified by
equal numbers, followed by a different letter for
each alternative. However, those with [0..1]
cardinality should have their identifications
between parenthesis;

 Guideline 11: The SR model should be analyzed to
discover additional information about the use cases;

o Guideline 11.1: A nalyze contribution links from
other elements (source) to softgoals (target). If the
source element is part of a use case, then the target
softgoal will be associated to this use case as a
non-functional requirement;

o Guideline 11.2: Analyze links between elements
that generated steps to different use cases. These
links may represent that an element is a pre-
condition of a u se case (obtained from the other
element) or a rel ationship, such as “include” or
“extend”, between use cases (obtained from the
related elements);

 Guideline 12: Analyze use cases to check if they can be
refined or generate new use cases. Each scenario step

655

should be verified for the possibility of deriving a new
use case;

o Guideline 12.1: A new use case will be generated
if a step represents an activity that requires several
steps to be concluded;

o Guideline 12.2: If the new use case was derived
from a mandatory step, then it must be related to
the original use case through the “include”
relationship;

o Guideline 12.3: If the new use case was derived
from an optional step, then it must be related to the
original use case through the “extend”
relationship.

Applying Step 3 to the MobileMedia example, we obtained
the description for the “Add Photo” use case (Table II).

TABLE II. “ADD PHOTO” USE CASE DESCRIPTION

Use Case 1: Add Photo

CHARACTERISTIC INFORMATION

Primary Actor: User
Feature: Add Photo
Scope: MobileMedia
Pre-condition: -
Success Condition: Photo added to album
PRIMARY SCENARIO

ID User Action System Response

1 Select “Add Photo” option [Add
Photo]

2 Select album [Album]

3 Provide path of photo [Path]

4 Select photo to be added [Photo]

5 - Photo is automatically
saved [Save
Automatically]

5 Choose for photo [Name] [Save by
User]

Photo is saved with the
chosen name

6 - List of photos is updated

SECONDARY SCENARIOS

RELATED INFORMATION

Non-functional requirements: Integrity [Photo], Accuracy [Path], Quickness
[Storage]

G. Use Case Scenarios Refinement
As it can be observed in Table II, the use case description

generated by the guidelines proposed in the previous activity is
not complete. The system response for some actions is missing,
as well as the secondary scenarios (exceptional and alternative
scenarios). This occurs because i* models are not meant for
modeling behavior or exceptions. Therefore, this activity is
required to complement the use case description.

The scenarios obtained on the previous activity may be
succinct or written on a very high level; it will depend on the
level of refinement achieved in the SR model. Hence, it is

suggested to refine scenario descriptions until they reach the
desired detail level. Due to the lack of space, the refined use
case description for our running example will not be presented.

At the end of this activity, the requirements phase of the
Domain Engineering process is concluded.

H. Product Configuration
This activity is a ctually a su b-process of the Application

Engineering process. It will be executed every time a new
product of the SPL has to be derived. This sub-process is an
adaptation of Lima’s Application Engineering process [11] and
its three activities are described as follows:

1) Choice of Specific Configuration
In this activity, the client chooses the goals to be satisfied

by the new product. There are two heuristics to guide the
configuration:

 H1: All intentional elements with [1..1] cardinality
must be present in the product configuration model, if
their parent elements have been selected. Elements
with [0..1] cardinality might be present depending on
the stakeholders choices;

 H2: Sub-elements of means-end relationships will be
present in the configuration model depending on the
stakeholders choices, but obeying the relationship
cardinality (if it exists);

Depending on the choices made by the client, there may be
more than one possible product configuration, called
alternatives. The SR model of each alternative will be analyzed
in the next activity. In our running example, there are two
alternatives: one with “Save Automatically” task (A1) and
another with “Save by User” task (A2).

2) Prioritization of Variants
In this activity, the alternatives previously obtained are

ranked based on the priority the client gave to the softgoals
present in the SR model. The priority given to a softgoal must
in the interval [0,10]. For each alternative, we have to take into
account the number of positive and negative contributions from
the elements of the SR model to the softgoals, considering also
the degree (e.g.: help, hurt) of each contribution. The formula
to calculate the priority of each variant will not be presented in
this paper due to the lack of space.

The alternative with the highest priority value represents the
most suitable configuration for the client’s desires. For our
example, if the softgoal “Quickness [Storage]” receives the
highest priority, the priority value for A1 will be 7,5 and for A2
will be -7,5. Therefore, the alternative with “Save
Automatically” feature is the most suitable for the client.

3) Product Artifacts Configuration
The purpose of this activity is the derivation of the artifacts

for a specific product of the SPL. First, the configuration model
is generated by eliminating, from the FM, all features that are
not related to elements in the SR model of the chosen
alternative. Then, all cardinality indications must be removed
from the SR model, thus the i* model of the product is
obtained. Finally, only use cases that are related to selected
features will be present on the product’s artifacts. The scenario

656

descriptions must also b e configured by eliminating the steps
that are annotated with features that were not chosen.

IV. RELATED WORK
Compared to G2SPL [3], our work has two main

differences: (i) it uses PLUSS scenarios to capture behavioral
characteristics of the SPL, while G2SPL cannot capture the
SPL’s behavior; (ii) our approach allows to ch oose a
configuration based on the priority to the softgoals, while
G2SPL does not provide such a mechanism.

Asadi et al. [12] also proposed a GORE approach for SPL
using i*. It u ses annotations on the feature model do relate
goals and features. The advantage of this approach is that it has
tool support, providing an automatic way to obtain the
product’s features from selected goals. However, the FM is not
obtained systematically from stakeholders’ goals, it is created
separately and then annotated with goals. This approach does
not capture the behavior of the SPL either.

Santos et al. [13] proposed a bidirectional mapping between
feature models and goal models in the PL-AOVgraph
approach. Thus, not only the FM can be obtained from the goal
model, as in G2SPL and GS2SPL, but the goal model can be
derived from the feature model too. The bidirectional mapping
has tool support, but it covers only the Domain Engineering
requirements phase, i.e., it does not provide a way to configure
products.

Mussbacher et al. [14] proposed ASF (AoURN-based SPL
Framework), a framework that integrates goal models, feature
models and scenarios and is completely tool supported. The
goal models are described in GRL (Goal-oriented Requirement
Language), another i* extension, and is related to the FM
through the feature impact model. Scenarios are described in
UCM (Use Case Maps), a visual notation whose elements may
be associated with GRL elements. However, this association
must be defined by the Domain Engineer and there are no
mapping rules defined on the framework. Goals and softgoals
in GRL may have an “importance” attribute that allows
stakeholders to indicate how important these elements are for
them. This attribute is used during product configuration to
prioritize the most important goals and softgoals. This
represents an advantage compared to GS2SPL, since our
approach prioritizes only softgoals.

Despite the fact that all ASF artifacts may be associated
with each other, they are created separately, i.e., it is n ot
possible to systematically obtain one model from another.
Besides, the elaboration of the feature impact model is,
according to Mussbacher et al. [14], a complex task, since it
consists of a goal graph for each feature, describing how a
feature affects stakeholders’ goals.

V. CONCLUSION AND FUTURE WORK
This paper presented a GORE approach for SPL, called

Goals and Scenarios to Software Product Line (GS2SPL).
GS2SPL allows the domain engineer to generate feature
models and use case scenarios from i* goal models. The benefit
of this generation is that the most relevant features and use
cases to the stakeholders’ goals are obtained in a systematic

way. Another contribution of our approach is the inclusion of a
configuration process that allows the clients to choose their
product configuration on a higher abstraction level. Instead of
choosing specific features, they can choose the goals they want
to achieve. The configuration process also takes softgoals
(NFRs) into account, providing a way to rank possible variants
according to the softgoals’ priority given by the client.

As future work, we plan to: (i) perform case studies in
different domains to evaluate the strengths and weaknesses of
GS2SPL; (ii) develop tool support for our approach; (iii)
investigate how to identify feature model constraints from i*
models; and (iv) investigate how to take feature interactions
into account when generating use case scenarios.

REFERENCES

[1] A. Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in Proc. of t he 5th IEEE International Requirements Engineering
Conf. (RE’01), Washington, DC, USA, pp. 249-263, 2001.

[2] C. Borba and C. Silva, “A comparison of goal-oriented approaches to
model software product lines variability,” in LNCS, vol. 5833, pp.244-
253, Springer-Verlag, 2009.

[3] C. Silva, C. Borba, J. Castro, “A goal oriented approach to identify and
configure feature models for software product lines,” in Proc. of the 14th
Workshop on Requirements Engineering (WER’11), Rio de Janeiro,
Brazil, pp. 395-406, 2011.

[4] N. Maiden, I. Alexander. Scenarios, stories, use cases: through the
systems development life-cycle. 1st ed., Wiley, 2004.

[5] P. Clements and L. Northrop. Software product lines: practices and
patterns. 1st ed., Addison-Wesley, 2002.

[6] K. Pohl, G. Böckle, F. van der Linden. Software product line
engineering: foundations, principles, and techniques. 1st ed., Springer,
2005.

[7] E. Yu, “Modeling strategic relationships for process reengineering,” in
Social Modeling for Requirements Engineering, E. Yu, P. Giorgini, N.
Maiden, J. Mylopoulos, 1st ed., MIT Press, 2011, ch. 2, pp. 11-152.

[8] E. Figueiredo et al., “Evolving software product lines with aspects: an
empirical study on design stability,” in Proc. of the 30th International
Conference on Software Software Engineering (ICSE’08), Leipzig,
Germany, pp. 261-270, 2008.

[9] M. Eriksson, J. Börstler, K. Borg, “Managing requirements
specifications for product lines – an approach and industry case study,”
in Journal of Systems and Software, vol. 82, n. 3, pp. 435-447, 2009.

[10] J. Castro, F. Alencar, V. Santander, C. Silva, “Integration of i* and
oject-oriented models,” in Social Modeling for Requirements
Engineering, E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos, 1st ed., MIT
Press, 2011, ch. 13, pp. 457-483.

[11] C. Lima, “E-SPL – a ap proach for requirements phase in domain
engineering and application engineering with goal models,” (in
Portuguese: “E-SPL - um a abordagem para a f ase de requisitos na
engenharia de domínio e na engenharia de aplicação com modelos de
objetivos”) Dissertation (MSc), Center of Informatics, UFPE, Brazil,
2011.

[12] M. Asadi, E. Bagheri, D. Gasevic, M. Hatala, B. Mohabbati, “Goal-
driven software product line engineering,” in Proc. of th e 26th ACM
Symposium on Applied Computing (SAC’11), Taichung, Taiwan, pp.
691-698, 2011.

[13] L. Santos, L. Silva, T. Batista, “On the integration of the feature model
and PL-AOVGraph,” in Proc. of the 2011 International Workshop on
Early Aspects (EA’11), Porto de Galinhas, Brazil, pp. 31-36, 2011.

[14] G. Mussbacher, J. Araújo, A. Moreira, D. Amyot, “AoURN-based
modeling and analysis of software product lines,” in Soft ware Quality
Journal (online first), 2011.

657

A Set of Inspection Techniques on Software Product
Line Models

Rafael Cunha
Nokia Institute of Technology

INdT
Manaus, Brazil

rafael.cunha@indt.org.br

Eduardo Santana de Almeida
Reuse in Software Engineering (RiSE)
Universidade Federal da Bahia (UFBA)

Salvador, Brazil
esa@dcc.ufba.br

Tayana Conte
Grupo de Usabilidade e Engenharia de Software

Universidade Federal do Amazonas (UFAM)
Manaus, Brazil

tayana@icomp.ufam.edu.br

José Carlos Maldonado
Departamento de Ciência da Computação

Universidade de São Paulo (USP)
São Carlos, Brazil

jcmaldon@icmc.usp.br

Abstract— Software Product Lines are an approach that enables
organizations to develop a number of similar products in the
same application domain reducing development and maintenance
cost and increasing productivity. As in traditional software
development approach, software product lines model need to be
evaluated for improving software quality. This work proposes a
set of inspection techniques, named SPLIT, for evaluating
software product lines models. An in vitro experiment was
conducted for comparing a defect type based inspection approach
and the proposed set of techniques. Results indicated that our
techniques found a greater number of defects than a defect type
based inspection approach.

Keywords-inspection technique; software product line; feature
model; empirical study

I. INTRODUCTION
A Software Product Line (SPL) supports reusability by

developing a set of products sharing a core com monalities and
differing variabilities [1]. T hus, instead of in traditional
software development where it usually models one product a
time, it models a set of products.

An essential reason for introducing product line engineering
is cost reduction [2]. Since every product uses the same core
features and some optional ones, it can be reused aiming in a
cost reduction for each system. Although these artifacts can be
reused, it is necessary investments for creating them planning
the reuse mechanism, so that they are able to provide managed
reuse. In a software product line, in general, the time to market
indeed is initially higher, as the com mon artifacts have to be
built first. H owever, it is considerably shortened as m any
artifacts can be reused for each new product [2].

Software product lines need to address the same issues as in
traditional software developmen t as inconsistencies betw een
requirements and software specifications. One approach that is
applied to traditional softw are development that im proves
quality and reduces costs is inspection techniques, w hich is

used to identify defects in ear ly stage of development [3].
Inspections of software design may be especially crucial since
design defects can directly affect the quality of, and effort
required for, the im plementation [3]. Because SPL models are
quite different from single sy stem development, standard
techniques are insufficient to address the specific
characteristics of reusable systems [4], thus new inspection
techniques tailored to the SPL models are needed.

This scenario has m otivated one of our research’s goals: to
define a set of inspection techniques, named SPLIT, tailored to
support quality assurance concerned with specific models used
for Software Product Lines specification. This paper proposes
and validates, using a controlled experiment, a set of
techniques to evaluate a feature model and a product map
against software requirement document and feature model
inconsistencies. We propose that our set of techniques find a
greater number of defects than a defect type based inspection
approach.

The remainder of this paper is structured as follow s:
Section 2 presents background information on Software
Product Lines. Section 3 presents the set of inspection
techniques, SPLIT, proposed for software product line
specifications. In Section 4, the controlled experiment to
evaluate the set of the proposed techniques is discussed in
detail, including goals and experi mental design. In Section 5,
the results are presented and discussed. Section 6 describes
threats to the validity of our study. Finally, conclusions and
comments on future work are given in Section 7.

II. SOFTWARE PRODUCT LINE
Software Product Lines are a set of software-intensive

systems sharing a common, managed set of features that satisfy
the specific needs of a particul ar market segment or mission
and that are developed from a common set of core assets in a
prescribed way [5]. The artifacts used in different products
have to adaptable to fit each system created in the product line.

658

It means that throughout the development process, we have
to identify and describe where the products created by the
product line may differ in terms of the features they provide,
the requirements they fulfill, or even in term s of the underlying
architecture [5]. This flexibility is called variability and it is the
basis for the software product line engineering since it
represents the difference in each product produced by the
Software Product Line.

Different models have been proposed for specifying
Software Product Line, features models proposed in Feature-
Oriented Domain Analysis (FODA) approach [6] is one of the
most used [7]. Product line scoping is also an important phase
in product line engineering to d ecide not only what products to
include in a product line but also whether or not an
organization should launch the product line [8]. One approach
for product line scoping is product m ap [9] for selecting a
subset of products to be created by the product line . The
inspection techniques proposed use feature models and product
map. These m odels are further discussed in the following
sections.

A. Feature Models
Feature models are hierarchi cal models that capture the

commonality and variability of a Product Line. This feature -
oriented concept is based on the emphasis placed by the
method on identifying those featur es a user commonly expects
in applications domain.

The feature concept used for modeling the feature models is
that it is a prom inent distinctive user-visible aspect, quality, or
characteristic of software system [6]. The purpose of the
feature model is to represent the general capabilities for the
applications in the domain.

Feature Models are created using m andatory, optional,
alternatives and or features. The m andatory features represent
the features, which must be c ontained in every product created
by the product line. The optional features represents the
features which can be contained or not in the prod uct from the
SPL. Alternative features repres ent an alternative betw een two
or more others features so th at only one of them must be
contained in products from the SPL. And or features represent
an alternative betw een two or m ore features in w hich at least
one of them must be contained in the products from the SPL.

The feature m odels also have constraints elem ents:
implication and exclusion. Th e implication notation im plies
that if one feature is selected , some other feature must be
selected as well. The exclusion constraint indicates that two
features must not be selected in the sam e product so they are
mutually exclusive.

B. Product Map
The selection of optional or alternative features is not m ade

arbitrarily. It is usually made based on a number of objective s
or concerns that the end-user (and customer) has [6]. The
product map [9] aims to complement the feature model by
specifying the products, which are compliant with the software
requirements.

The product map lists all features available in the y-axis and
the products specified by the requirements in the x-axis. Every

product in the x-axis matches a list of features according to the
software product line requirements. Then the software product
line only creates the products specified in the requirements.

III. SOFTWARE PRODUCT LINE INSPECTION TECHNIQUE
A Software Product Line creates a set of products sharing

common features and features which differs from product to
product. Therefore, it is im portant to assure the quality of their
models, as they specify several products. A mapping study [10]
was conducted to obtain evidence about quality assurance
techniques for SPL models. M apping studies [10] are a formal
process that uses a methodology to identify all research related
to a specific topic [10]. U nlike informal literature review s,
mapping studies uses a scientific rigorous approach to assert an
efficient survey of the current knowledge.

The databases used for this mapping study were the IEEE
Xplore, ACM Digital Library and Scopus. Our formal process,
as well as all selected studies, is described in a Technical
Report [11]. The initial search returned a total of 841 papers, as
described in Table I. After the first filter, in w hich the title and
abstract from the selected papers were analyzed, it has been
filtered to 90 papers. In the second filter, it w as also analyzed
the introduction and conclusion from papers selected after the
first filter, resulting a total of 27 papers about quality assurance
techniques for SPL models.

The data extracted presented that 23 (85%) papers used
model checking techniques, 3 (11%) used ontologies for
modeling and model checking and code inspections were
presented in 2 papers (7%). Although the benefits of inspection
techniques [3] and the need for inspections tailored for SPL [4],
no inspection technique for assuring quality for softw are
product line models was identified [11].

TABLE I. PAPERS SELECTED IN THE MAPPING STUDY

Database
Papers

returned for
the 1st filter

Papers
selected after
the 1st filter

Papers
selected after
the 2nd filter

IEEE Xplore 88 22 5
ACM Digital
Library 482 28 10

Scopus 271 40 12

We have proposed a set of checklist based techniques,
named Software Product Line Inspection Techniques (SPLIT),
for verifying feature models and product map in comparison
with themselves and the software requirem ents specification.
The software requirem ent specification needs to enum erate
functional and non-functional requirem ents and the products
created by the software product line and its constraints. An
overview of SPLIT is presented in Figure 1:

659

Figure 1. SPLIT overview

A. Technique 1
This technique analyzes the product m ap against the

software requirement document, searching for defects that can
be classified as:

• Redundancy: The product m ap presents products that
have the same set of features and it should match
products from the software requirement document.

• Inconsistencies: The product map presents
inconsistencies when it does not match products from
the software requirement document.

B. Technique 2
This technique analyzes the product m ap and the feature

model against the software requirement document, looking for
defects that can be classified as:

• Inconsistencies: The software product line artifacts
(product map and feature mode l) present products that
do not match the software requirement document. It
differs from inconsistencies in the Technique 1 due to
information that is strictly from the feature model.

C. Technique 3
This technique analyzes the feature model for defects. It has

been based on [7] which identify redundancy, anomalies and
inconsistencies on feature models. The defects found in this
technique can be classified as:

• Redundancies: A feature model contains redundancy, if
at least, one sem antic information is m odeled in a
multiple way.

• Anomalies: A feature m odel contains anom alies, if
potential configurations are being lost, though these
configurations should be possible.

• Inconsistencies: A feature m odel contains
inconsistencies, if the model includes contradictory
information.

Table II shows a part of the checklist based Technique 3, in
which is shown the defect type in the first column, the question
addressed for the finding the defects in the second column and
an image for helping the inspector to notice the defect easily in
the feature model in the third column.

TABLE II. EXTRACT OF SOFTWARE PRODUCT LINE INSPECTION
TECHNIQUE [12]

Inconsistency

Are two mutual
exclusive features that
are also full mandatory?
Are two alternative
features that have an
implication relationship?

The complete set of techniques proposed is available in the
Technical Report “Inspection Technique for Software Product
Line Models” [12]. To assess this first version, we performed a
feasibility study described in the next section, in w hich we
compared the number of defects found by inspectors using
SPLIT with the number of defects found by different inspectors
using a defect type based inspection approach. W e choose to
compare the proposed technique with this defect type based
approach, in which the subjects had been trained in the defect
types they could found in SPL models, since we have not
identified any inspection technique specific for softw are
product line in the Mapping Study [11].

IV. THE EXPERIMENT
The experiment goal using the GQM (Goal/

Question/Metric) paradigm for form alizing characterization,
planning, construction, analysis , learning and feedback tasks
[13] is presented in Table III as:

TABLE III. EXPERIMENT GOAL USING GQM PARADIGM

Analyze:
The set of proposed inspection
techniques for software product
line models

For the purpose of: Characterize

With respect to:
The number of defects found
compared to a defect type based
inspection approach.

From the point
view of: Software product line inspectors

In the context of:
The inspection of software
product line models by
undergraduate students

A. Hypotheses
The experiment has been design to test the following

hypotheses (null and corresponding alternative hypotheses are
given):

• H0: There is no difference in the num ber of defects
found in software product line m odels using SPLIT
and a defect type based inspection approach.

• HA1: The number of defects found in software product
line models using a defect type based inspection
approach is greater than using SPLIT.

• HA2: The number of defects found in software product
line models using SPLIT is greater than using a defect
type based inspection approach.

660

B. Instrumentation
The experiment was supported by a set of artifacts: consent

forms, software product lin e specification, the SPLIT
documentation for the group that would execute them ,
worksheet to support defects and follow up questionnaire. The
software product line specification is composed by the
requirement specification, product map and feature model.

The software requirement artifact is a software product line
specification for a set of twitter client products with 13 features
from popular tw itter clients having 6 m andatory features, 3
optional features and 4 alternative features. It generates six
different products sharing the common features and each of
them having distinguished featur es. It describes each feature
for the software product line detailing its relationship to others
features, classifying it as mandatory, optional or alternative and
enumerating the products in which this feature would be
available.

The product map for the twitter client software product line
listed all the features available in softw are requirement
document and associates it to the product in which they are
available. It enumerates the six products from the twitter client
software product line and maps the features for each product.

The feature m odel for the software product line has been
created according to the softw are requirements for the tw itter
client and it would generate all the products, which are
specified in the product map. The feature model used in this
experiment has been seeded with defects by the researchers
based on deficiencies from feat ure models listed in [7]. It
contains defects from mode ling the feature model and
information inconsistencies from the softw are requirements
and the product map.

C. The Experiment Design
The subjects were divided in two groups, which would

inspect the same software pr oduct line model example: the
group A would evaluate using a defect type based inspection
approach and the group B would use the set of techniques
proposed in this paper. Sin ce no student had a previous
experience with SPL models, the subjects were assigned to
each technique using completely randomized design. Each
group was composed by 10 senior-level undergraduate students
chosen by convenience from Analysis and Design class in
Information System and Computer Science courses at Federal
University of Amazonas, Brazil.

D. Preparation
The subjects signed a consent form and they had a tutorial

about Software Product Line. It addressed an overview on
Software Product Line concepts and specifications including
feature models and product map. After the tutorial, the subjects
have been trained for the experiment execution. As the
classroom was divided in two groups, two different trainings
were prepared. The Group A has been trained in software
model inspection techniques. This training addressed the
objectives of model inspection for software product lines. It
described the defect types, which could be found by the
inspectors when conducting the inspection in this study. The

group B has been trained in the set of techniques proposed in
the SPLIT. The two trainings ha d different instructors due to
the fact that they occurred at the same time for avoiding
communication between the two groups. However both
materials have been prepared by the two instructors for having
balanced knowledge about softw are inspection for m itigating
the bias of prior knowledge of the subjects.

E. Execution
The experiment have been executed in a lim ited two hours’

time box and occurred at the same time for both groups. The
subjects were gathered in same room and then divided
randomly in groups. Group A and B have executed the
experiment in different rooms for avoiding any communication
between subjects from different groups.

V. RESULTS
At the end of the experim ent, the defect list form and the

evaluation questionnaire about the proposed set of techniques
were retrieved for the experim ent analysis. The num ber of
defects found per subject for each inspection is presen ted in
Table IV and Table V.

TABLE IV. NUMBER OF DEFECTS FOUND IN DEFECT TYPE BASED
INSPECTION APPROACH

Subject Number of Defects Found

Subject 01 4

Subject 02 9
Subject 03 7
Subject 04 8
Subject 05 4
Subject 06 9
Subject 07 1
Subject 08 3
Subject 09 7
Subject 10 7

TABLE V. NUMBER OF DEFECTS FOUND USING SPLIT

Subject Number of Defects Found

Subject 11 10

Subject 12 11
Subject 13 12
Subject 14 8
Subject 15 10
Subject 16 13
Subject 17 8
Subject 18 10
Subject 19 8
Subject 20 10

661

One example of defect that was found in the study is
presented in Figure 2, w here an extract from the tw itter
software product line feature model is shown and one defect is
circled. In this defect, one mandatory feature “Post M essage
(F6)” is implying on optional feature “Notify update in timeline
(F7)”. In this case, all the products from the software product
line must have the “Notify upda te in timeline (F7)” feature
although it is an optional feature and possible product
configurations would be lost.

Figure 2. Feature model for the twitter client software product line

The defect highlighted in Figure 2 could be found by the set
of techniques SPL IT as it w as covered in the checklist in the
technique 3, which is focused in the feature model. An extract
from SPLIT which checks this defect is presented in Table VI.

TABLE VI. EXTRACT OF SOFTWARE PRODUCT LINE INSPECTION
TECHNIQUE [12]

3.7 Is there a full mandatory feature that
implies an optional feature?

A. Quantitative Analysis
The statistical analysis was executed using the statistical

tool SPSS V 19.0. 0 and α = 0.05. This choice of statistical
significance was motivated by the small sample size used in
this experiment [14].

Table VII presents a comparis on between the defect type
based inspection approach and the SPLIT set using the average
and the standard deviation values for the number of defect
found by the inspectors.

TABLE VII. DEFECT FOUND COMPARISON ANALYSIS

Inspection Sampling
Size

Defects Found
Average Std. Dev. Std. Dev. %

Defect type
based inspection
approach

10 5,9 2,726 46,20%

SPLIT 10 10 1,700 17,00%

Table VII suggests that the number of defects found by
inspectors that used the technique proposed in the study is 60%
higher than when executing a defect type based inspection

approach. And it also has a sma ller standard deviation, which
reflects that the number of defects found when SPLIT has been
used it shows a small variance.

Figure 3 presents a boxplot with the number of defects
found by each inspection type. It can be analyzed as the m ean
value for the inspection when executed using the technique
proposed is higher than when using than a defect type based
inspection approach. We have also compared the two samples
using the non-parametric M ann-Whitney test, which shows an
asymptotic significances (p = 0.001) between the numbers of
defects found.

Figure 3. Boxplot for number of defects found per subject per inspection

type in the experiment

These results rejects the null hypothesis H0 that there are no
differences in the number of defects found by inspectors that
have used a defect type based inspection approach to the ones,
which have used the set of techniques proposed in the study.
Due to the analysis of the boxplot and the M ann-Whitney test,
the alternative hypothesis HA2 is valid for this experiment.
These results suggest that the num ber of defects found in
software product line models using the SPLIT is greater than
using a defect type based inspection approach. W e have not
measured time for com paring the tw o inspection types
according to its efficiency (number of defects found by hour) in
this study as the time box had a lim it of a two-hour class in the
University.

VI. THREATS TO VALIDITY
The threats to validity have been identified in the

experiment and categorized, according to [15], in one of the
following categories below:

• Internal Validity: W e considered the main threat that
can represent a risk for an improper interpretation of
the results the difference in training that the two groups
have received. The first gr oup had training in software
inspection based on defect types and the second group
had training on SPLIT. W e have tried to minimize this
threat by preparing equivale nt training material for
both groups.

662

• External Validity: W e have considered two main
threats concerned with generalization of the results: the
subjects being undergraduate students and the software
specification used in the e xperiment not being a real
world example. For any academic laboratory
experiment the ability to generalize results to industry
practice is restricted by th e usage of students as study
participants. Although they we re not real inspectors, it
has been shown that empirical studies can have
benefits when using student s as subjects [16]. And the
example used in the experiment was based in real
world twitter clients. T he specification of the tw itter
client software product line gathered features from
several twitter clients available in the market.

• Conclusion Validity: The m ain threat concerned
between the treatment and outcome used in the
experiment is the small sample of data points for the
statistical analysis. It is not ideal since it som etimes
lacks statistical representation of phenomenon but it is
a known problem difficult to overcome [17].

• Construct Validity: We have used the number of defect
found by the inspector for m easuring and com paring
the two different inspection types used in the
experiment. It is the comm only measurement used for
evaluating inspection techniques as presented in [3;
18].

VII. CONCLUSION
In this paper, we have proposed and validated a set of

inspection techniques (SPLIT) to evaluat e software product
line specification. It address th e needs due to single system
inspections are insufficient to address the specific
characteristics of reusable systems [4]. SPLIT is composed by
three techniques that address to find defects in feature mod els
and product map based on the Software Product Line
requirements.

We have conducted a formal experiment for comparing
SPLIT against a defect type based inspection approach using a
twitter client Softw are Product Line specification. The
experiment result showed that the number of defects found
when using SPLIT was greater than when executed a defect
type based inspection approach . Founding a greater number of
defects in early stages of development reduces costs and
improves software quality.

Future work for this research should include: an
improvement of SPLIT based on this experiment results and a
replication of the experiment in the industrial environment.

ACKNOWLEDGMENT
We thank all the undergraduate students for their

participation in the experiment. The authors acknowledge the
support granted by CNPq and FAPESP to the INCT-SEC
(National Institute of Science and Technology – Critical
Embedded Systems – Brazil), processes 573963/2008 -8 and
08/57870-9; FAPEAM through process PRONEX-023/2009;
and CAPES process AEX 4982/12-6. One of the authors of this
work was partially supported by the National Institute of

Science and Technology for Software Engineering (INES),
funded by CNPq and FACEPE, grants 573964/2008 -4 and
APQ-1037-1.03/08 and CNPq grants 305968/2010-6,
559997/2010-8, 474766/2010-1.

REFERENCES

[1] Weiss, D.M, Lai, C.T.R.: Software Product-Line Engineering. Addison-
Wesley,Reading (1999).J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] Pohl, K., Böckle, G. and Van Der Linden, F. Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer, Berlin
(2005).

[3] Travassos, G. H., Shull, F., Fredericks, M ., Basili, V.: Detecting defects
in object-oriented designs: using reading techniques to increase software
quality. ACM SIGPLAN Notices, vol. 34, n. 10, pp. 47-56. (1999)

[4] Denger, C; Kolb, R.: Testing and inspecting reusable product line
components: first empirical results. In Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering
(ISESE '06). ACM, New York, NY, USA, 184-193. (2006)

[5] Clements, P., Northrop, L.: Software Product Lines: Practices and
Patterns. Addison-Wesley, Longman (2001).

[6] Kang, K.: Feature-oriented domain analysis (FODA) - feasibility study.
Technical Report CMU/SEI-90-TR-21, SEI/CMU, Pittsburgh (1990).

[7] Massen, T., Lichter, H.H.: Deficiencies in Feature Models. In:
Workshop on Software Variability M anagement for Product Derivation-
Towards Tool Support. (2004).

[8] Lee, J., Kang, S., Lee D.: A Comparison of Software Product Line
Scoping Approaches. In International Journal of Software Engineering
and Knowledge Engineering. Vol. 20, No. 5. 637-663 (2010)

[9] Bayer, J.; Flege, O.; Knauber , P.; Laqua, R.; Muthig, D.; Schmid, K.;
Widen, T.; DeBaud, J: PuLSE: a methodology to develop software
product lines. In Proceedings of the 1999 symposium on Software
reusability (SSR '99). ACM, New York, NY, USA, 122-131. (1999)

[10] Kitchenham, B., Budgen, D., Brereton, P.:The value of mapping studies
– A participant-observer case study. In: Proceedings of Evaluation and
Assessment of Software Engineerin g - EASE´2010, Keele, UK, v. 56,
pp.638-651. (2010)

[11] Cunha, R.; Conte, T.: SPL Models Quality Assurance – a M apping
Study. Technical Report USES-TR-2011-004. Available at:
www.dcc.ufam.edu.br/uses (2011)

[12] Cunha, R.; Conte, T.; Maldonado, J.,C.: Inspection Technique for
Software Product Line Models. Technical Report USES-TR-2011-005.
Available in: www.dcc.ufam.edu.br/uses. (2011)

[13] Basili, V., Rombach, H., “The TAM E Project: Towards Improvem ent-
Oriented Software Environments”, IEEE Transactions on Software
Engineering, 14, (1988).

[14] Dyba, T.; Kampenes, V.; Sjoberg, D. A Systematic Review of Statistical
Power in Software Engineering Experiments.Information and Software
Technology. Elsevier. (2005).

[15] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. Wesslén,
A.: Experimentation in Software Engineering – An Introduction. Kluwer
Academic Publishers.(2000).

[16] Carver, J., Jaccheri, L., Morasca, S., and Shull, F., “Issues in using
students in empirical studies in software engineering education”,
Proceedings Ninth International Software Metrics Symposium, 3-5 Sept.
(2003).

[17] Conte, T., M assollar, J., M endes, E., Travassos, G.H.: Usability
Evaluation Based on WebDesign Perspectives. In: International
Symposium on Empirical Software Engineering and Measurement
(ESEM) Madrid, Spain. (2007).

[18] Shull, F., Rus, I., e Basili, V.R.: How Perspective-Based Reading Can
Improve Requirements Inspections. IEEE Computer, 33(7): 73-79.
(2000).

663

Non-functional Properties in Software Product Lines:
A Taxonomy for Classification

Mahdi Noorian1, Ebrahim Bagheri1,2, and Weichang Du1

University of New Brunswick, Fredericton, Canada1

Athabasca University, Edmonton, Canada2

m.noorian@unb.ca, ebagheri@athabascau.ca, wdu@unb.ca

Abstract—In the recent years, the software product lines
paradigm has gained interest in both industry and academia.
As in traditional software development, the concept of quality
is crucial for the success of software product line practices
and both functional and nonfunctional characteristics must be
involved in the development process in order to achieve a high
quality software product line. Therefore, many efforts have been
made towards the development of quality-based approaches in
order to address non-functional properties in software product
line development. In this paper, we propose a taxonomy that
characterizes and classifies various approaches for employing
non-functional properties in software product lines development.
The taxonomy not only highlights the major concerns that need
to be addressed in the area of quality-based software product
lines, but also helps to identify various research gaps that need
to be filled in future work in this area.

I. INTRODUCTION

A. Software Product Lines
The Software Product Line (SPL) paradigm is a systematic

reuse-based software development approach that is founded

on the idea of identifying and capturing commonalities and

variabilities of software products within a target domain [15].

Such an approach allows a new software product to be rapidly

developed by exploiting a set of reusable assets, known as

core assets, which support the management of commonality

and variability. The SPL approach allows for improvements in

software quality, time to market, and cost reduction [11]. The

software product line approach consists of two main develop-

ment lifecycles, namely Domain Engineering and Application
Engineering [9]. Domain engineering involves analyzing and

modeling the target domain as a whole and producing a

set of reusable core assets. On the other hand, application

engineering involves developing a domain-specific software

product using and through the customization of artifacts that

are developed in the domain engineering phase.

B. Non-functional Properties

As a part of the software development process, requirements

engineering cover all activities that are involved in identifying,

representing, documenting, and managing the set of needs,

desired features and preferences of the stakeholders [10].

Requirements can generally be categorized into functional and

non-functional. In software system requirement engineering

[14], [19], the term Functional Properties (FPs) refer to the

characteristics that specify the functions that the system must

perform [1]; while, the term Non-functional Properties (NFPs)

refers to the characteristics that are not related to the function-

ality of the software [4] but are essential for the operation and

acceptance of the system. In general, FPs define the ‘what of

a software system whereas NFPs address questions pertaining

to the ‘how of the software system performance.

C. Objectives of This Research

The general purpose of our ongoing research is to provide

a quality-aware framework for software product line develop-

ment. To achieve this goal, it is required to understand how the

NFPs can be managed and employed in the SPL development

lifecycle. In order to cater quality-aware SPL development,

there are several fundamental research questions that need to

be answered first, such as:

• What are the main tasks/stages within the domain engi-

neering and application engineering lifecycles that need

to be cognizant of quality?

• What are the most frequent NFPs used by SPLs practi-

tioners and how are they modeled and represented?

• What are the different types of NFPs that are used in

different stages of SPL development?

• How can NFPs be systematically defined and measured

in the context of software product lines? (This is specially

more complex as a product line has the potential to

develop a vast number of individual applications with

different quality levels, c.f. [13]).

In the first step, we propose a taxonomy that can be used

to classify the available research literature in intersection of

NFPs and SPLs. The proposed taxonomy provides us with

the opportunity to systematically investigate and extract the

prominent information from existing research works in NFPs

and SPLs and be able to draw valid conclusions about how

to best pursue the incorporation of non-functional properties

within software product lines.

D. Outline

The remainder of this paper is organized as follows: In

Section II, the proposed taxonomy is presented. In addition,

the dimensions of the taxonomy are discussed in detail. Section

III is devoted to presenting some prominent work in the area

of NFPs and SPLs. Then this set of representative work is

classified according to our proposed taxonomy. We conclude

the paper with conclusions and direction for future work in

Section IV.

664

II. THE PROPOSED TAXONOMY

The taxonomy characterizes and classifies the main aspects

of quality-based approaches in the context of software product

lines. In order to clarify the standpoint of NFPs in SPLs, we

propose this taxonomy. The dimensions and sub-dimensions

of the proposed taxonomy are depicted in Fig. 1. In the rest

of this section, we look at each dimension and its related sub-

dimensions in more detail.

A. Dimension 1- Main lifecycle
As defined by Kang et al. [9], SPL development consists

of two main lifecycles, namely domain engineering and

application engineering. In order to fulfill a quality-based

SPL development process, it is required to study the impact

of NFPs in both lifecycles separately. This first dimension

is devoted to the introduction of the major quality-based

tasks/steps that need to be performed in both domain and

application engineering lifecycles.

Domain Engineering
Based on Kang’s definition [9], domain engineering has three

main phases, 1) domain analysis, 2) reference architecture
development, and 3) reusable component development.

1) domain analysis
Domain analysis is the process of identifying, eliciting and

modeling the requirements of a family of products. The major

quality-based tasks that can be categorized in this phase are:

identification and elicitation of functional and non-functional

properties; modeling, which aims to model and represent NFPs

in a structured format. In the context of feature models,

which represent functional properties, the extended feature

model [9] is an instance of a structured representation model

for representing NFPs; integration of functional and non-

functional models, which helps to have both models under one

umbrella as it is useful to understand and identify the mutual

impacts between them; and model evaluation, the derived

model itself needs to be evaluated in terms of some expected

quality attributes.

2) reference architecture development
The main purpose of the reference architecture development

phase is to provide a common architecture or reference archi-
tecture for a particular domain. On the other hand, in quality-

aware reference architecture in addition to FPs the developed

architecture is influenced by predefined domain NFPs. In order

to obtain quality-aware reference architecture it is required

to consider: the architecture design stage in such a way that

predefined NFPs are employed in the design phase, e.g., the

components and connectors should be designed in such a way

that support specific quality attributes; trade-off analysis, when

designing the software architecture to meet any of the NFPs,

it is necessary to consider the mutual impacts of the NFPs and

analyze the tradeoffs between them. The importance or priority

of each NFP differs from system to system; in architecture
assessment it is required to assess the developed architecture

in terms of its capability for supporting the expected NFPs.

3) reusable component development
The last phase of domain engineering is devoted to

implementation. It is important to design a component and

perform coding in such a way that the expected quality

can be satisfied. For example, for achieving the expected

security level, developers should follow certain secure coding

standards. Therefore, in order to achieve quality-aware

implementation, component design and coding sub-dimension

are defined.

Application Engineering
In application engineering, there are also three phases [9],

1) user requirements analysis, 2) application architecture
selection, and 3) application software development.

1) user requirements analysis
User requirement analysis is concerned with capturing and

managing the target product requirements. In this phase, the

main task is to derive an instance model from the general

domain model that is developed in the domain engineering

lifecycle. In the context of feature models, the derived model

can be employed in the software product configuration process.

In quality-aware software product configuration, it is re-

quired to consider: an objective function, which captures

the end-user’s desirable functional and non-functional prop-

erties; optimal feature selection, the feature selection process

should be conducted according to the end-user’s predefined

requirements. This process leads to an optimized product. The

optimized product is the one that satisfies all desirable FPs and

NFPs optimally; trade-off analysis, during the configuration

process various trade-off scenarios should be defined in order

to resolve the potential conflicts and maximize the end-user’s

intended NFPs; model verification, after the target product is

configured the final product needs to be assessed based on

some verification process. The verification aims to confirm that

the target product is consistent with respect to domain and end-

users predefined functional and non-functional properties.

2) application architecture selection
As mentioned before, the reference architecture covers all

possible software architectures in a products family. In

this phase, the main task is to provide an instance from

the reference architecture and use it to develop a concrete

software product. Therefore, the quality-aware architecture
instantiation sub-dimension is defined to identify the work that

consider both user-defined and domain NFPs in developing

the software architecture for a concrete product.

3) application software development
In application software development, the main task is to

implement target products using the common assets such as

reusable components. The role of quality in this phase can

be seen in the following steps: component selection, com-
ponent integration, and software product validation. In both

component selection and component integration, the concern

is to select and integrate components in such a way that the

target NFPs can be satisfied. In software product validation,

the purpose is to validate the final implemented product in

terms of its predefined NFPs and observe how much the NFPs

are satisfied.

665

Fig. 1. A taxonomy for non-functional properties in software product lines.

B. Dimension 2- Class
The main goal of this dimension is to understand and

categorize the NFPs and study the main NFPs that have been

employed in SPL development. There are many classification

frameworks for NFPs in the literature each of which have been

proposed to classify NFPs in general [10], [6] or for a specific

application domain [5]. Two classification frameworks were

particularly influential to introduce Dimension 2, the McCall

quality model [12] and the classification proposed in [18].

The non-functional properties in our proposed taxonomy are

divided into two main categories: 1) quality attributes and 2)
constraints.

The quality attributes sub-dimension addresses quality at-

tributes and based on McCall quality model it can be cat-

egorized as: product operations, which are concerned with

attributes that address the product’s operation characteristics,

e.g. performance and usability ; product revision, which is

concerned with the attributes that address the product’s ability

to undergo changes, e.g. maintainability and testability ; and

product transition, which is concerned with the attributes that

address the products ability to adopt to new environments, e.g.

portability and reusability.

On the other hand, we introduce the constraints sub-

dimension. The NFPs sometimes appear as constraints and

impose restrictions on various stages of development. In our

proposed taxonomy, constraints are categorized as: external
resource, environmental, and process. The external resource
can be categorized as: infrastructure, software platform and

network. The external resource can impose specific quality

constraints on the target software product, e.g., the minimum

network bandwidth for the software product P is 1 Mb/s, or the

product P is only compatible with Windows OS platform. In

addition, environmental constraints can be identified as: legal
policy, cultural trait and business rule, e.g., in order to obtain

Canadian market, the software product P needs to support both

French and English languages. Also, process constraint can be

categorized as: design, standards and tool and language, e.g.,

the software product P needs to be developed based on Web

2.0 standards and using the Java language.

C. Dimension 3- Measurement
There are various methods that have been proposed for

measuring NFPs in traditional software engineering. Recently,

a number of methods and techniques have been proposed for

measuring NFPs in the SPL context. This dimension is devoted

to studying the approaches that have been employed to measure

the impact of non-functional properties. The measurement
dimension is classified as 1) type, 2) characteristic, 3) method,
and 4) time. Measurement type can be classified as quantitative
and qualitative. Quantitative measurement is concerned with

numerically measuring the NFPs for a particular artifact with

continuous values while qualitative measurement is concerned

with NFPs with non-numeric values. Measurement character-
istic can be classified as directly measurable and indirectly
measurable. The directly measurable approach is concerned

with measuring the basic attributes that cannot be divided

into other attributes. On the other hand, indirectly measurable
NFPs are those that are dependent on other basic attributes

and need to be divided into several measurable attributes. In

the measurement method sub-dimension, we study metric and

scale sub-dimensions and how they pertain to measurement of

each individual NFP. In addition, we take a look at possible

tool support for NFP measurement. The measurement time

666

sub-dimension is categorized as, compile time, load time, and

runtime. This sub-dimension targets the measurement stage.

In other words, we intend to realize what NFPs should be

measured in what stage of execution time. For instance, the

security attribute should be measured at runtime and footprint

can be measured at compile time.

D. Dimension 4- Scope of impacts

Functional/nonfunctional properties are usually interdepen-

dent and one attribute can affect others. Dimension 4 is defined

to identify the research that consider the mutual impacts be-

tween functional/non-functional properties and see how this in-

teraction can be measured. We classified this dimension to one-
to-one interaction, group interaction and indirect interaction.

We consider one-to-one interaction when one functional/non-

functional property has impact on a functional/non-functional

property based on one-to-one interaction, e.g., security can

have direct negative impact on usability. In group interaction,

a group of functional/non-functional properties have impact on

one or group of functional/non-functional property(s). In one-
to-one and group interactions the properties directly impact

each other while in indirect interaction, one property indirectly

impacts others.

III. SURVEY ON NON-FUNCTIONAL REQUIREMENTS AND

SOFTWARE PRODUCT LINES

In this section, some research work in the area of NFPs and

SPLs has been selected for supporting the proposed taxonomy.

The following four works are only introduced to show the

potential of our taxonomy. A mapping of taxonomy to several

selected work in NFPs and SPLs is shown in Table 1.

In [2], Bagheri et al. proposed an approach to predict the

maintainability of a software product line by measuring the

quality of the designed feature model in the early stages of

the development process. For this purpose, a set of feature

model structural metrics such as size and complexity are

proposed. According to our proposed taxonomy, this work

has been designed for the domain analysis phase and the

quality-based task was model evaluation, which tried to eval-

uate the feature models quality of design. The non-functional

property that is covered in this work is maintainability that

can be categorized under the revision quality attributes. With

respect to measurement dimension, quantitative measurement

has been utilized by the authors. In addition, maintainability

was measured indirectly using analyzability, changeability,

and understandability sub-attributes. Furthermore, the feature

model structural parameters such as feature model size, length

and complexity are defined as metrics for measurement. The

scope of impacts dimension is not applicable for this work

since the NFPs mutual interaction is not considered by the

authors.

For the work presented in [17], Siegmund et al. have pro-

posed an approach named SPL Conqueror, that addresses the

problem of automatically configuring a software product with

respect to a set of predefined NFPs. The quality-aware tasks in

this work can be categorized in both domain and application

engineering. In domain analysis, the authors address two type

of tasks: the identification & elicitation task through which

the NFPs of the target domain can be elicited and specified

by the domain expert; and the modeling task during which the

feature model is enriched with the identified NFPs. In addition,

the NFPs are measured and the results of the measurements are

stored. On the other hand, in the user requirements analysis
step, the optimal feature set is computed and the optimal

software product is derived. Thus, this task would fall under

the optimal feature selection sub-dimension. Regarding NFP

class dimension, the selected NFPs by the authors are: reli-

ability, complexity, footprint, and performance. With respect

to measurement dimension, for qualitative measurement, the

domain experts assign ordinal value to features. Also, for

quantitative measurement the domain expert assign a proper

metric to each NFP. A tool has been provided by the authors to

measure the NFPs automatically. For measuring the complexity

attribute, McCabe’s cyclomatic metric is used. In addition, the

Source Monitor tool is used by the authors in the measurement

process. For the time sub-dimension, the footprint attribute

measured is atcompile time and the performance attribute at

runtime. In the work by Siegmund et al. the concept of FP-

FP interaction is employed which falls under the one-to-one
interaction sub-dimension.

In the work presented in [7], the integrated modeling frame-

work called feature-softgoal interdependency graph (F-SIG) is

proposed. In order to support the concept of quality in SPL, the

authors extend the Feature-Oriented Domain Analysis (FODA)

[8] method with a goal-oriented approach. From the perspec-

tive of our proposed taxonomy, this work can be categorized in

the domain analysis phase, which supports integration of two

major modeling approaches namely, FODA and SIG [3]. In

terms of the class dimension, the F-SIG model supports a wide

variety of NPFs under the concept of soft-goal. Note that in this

work, since the concept of NFPs is presented using the idea

of soft-goals, there was no specific method for measuring the

NFPs quantitatively and all NFPs are addressed qualitatively.

With respect to the scope of impacts dimension, all types of

interactions one-to-one, group, and indirect can be directly

understood or inferred from the F-SIG model. The interaction

can be considered as: feature-to-feature (FP-to-FP) structural

interdependency, NFP-to-NFP structural interdependency, and

FP-to-NFP interdependency (the influence of FP on specific

NFP can implicitly be expressed).

In [16], Roos-Frantz et al. have proposed an approach

for quality-based analysis in software product lines. For ver-

ification purposes, the quality-annotated variability model is

mapped to a constraint satisfaction problem and using con-

straint solver the verification task is conducted automatically.

Within our proposed taxonomy, this work can be classified

under the domain engineering and application engineering
lifecycles. The performed quality tasks in domain engineering

are: modeling,where the orthogonal variability model (OVM)

is extended with NFPs; model evaluation, during which the

developed variability model can be evaluated to find a void

model, dead elements and false optionals. Both modeling and

model evaluation are categorized in the domain engineering

667

phase. On the other hand, in application engineering for the

user requirements analysis phase, the optimal feature selection
sub-dimension can be considered as a proposed quality-based

task in the work by Roos-Frantz et al. In this case, the general

model can be checked to find whether any software product

can be identified with respect to the defined NFPs. In this work,

the NPFs form both classes, quality attribute and constraints,

e.g., accuracy, cost, latency, and memory consumption. For

measurement purposes, this work only support quantitative
measurement. Based on the application domain, latency is mea-

sured with milliseconds and memory consumption is measured

with kilobytes.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a taxonomy regarding the

role of NFPs in SPL. This taxonomy focuses on the main

aspects that need to be addressed for developing a quality-

aware products and product lines in the SPL context. The

proposed taxonomy consists of four main dimensions, main
lifecycle, class, measurement, and scope of impacts. We have

discussed each dimension and introduced the related sub-

dimensions. In addition, in order to discuss our taxonomy, we

briefly survey some prominent research work in the field and

appropriately classify them into different categories according

to the proposed taxonomy.
Our direction for future research is to perform a compre-

hensive survey in the field and classify all current research

work and report the status in the area of NFPs and SPL. The

collected information from the classification process will assist

us to identify the possible enhancements to fill the existing

gaps between these two areas. Our initial probe has shown

that our proposed taxonomy is quite strong in providing the

means to capture various aspects of work in NFPs and SPLs.

REFERENCES

[1] Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, page 1, 1990.

[2] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of
software product line feature models using structural metrics. In Software
Quality Journal 19(3):579-612. Springer, 2011.

[3] Lawrence Chung, Brian Nixon, Eric Yu, and John Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer Academic
Publishers, New York, 2000.

[4] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling:
Foundations and applications. chapter On Non-Functional Requirements
in Software Engineering, pages 363–379. Springer-Verlag, Berlin, Hei-
delberg, 2009.

[5] M. Galster and E. Bucherer. A for identifying and specifying non-
functional requirements in service-oriented development. In Services
- Part I, 2008. IEEE Congress on, pages 345 –352, july 2008.

[6] M. Glinz. On non-functional requirements. In Requirements Engineering
Conference, 2007. RE ’07. 15th IEEE International, pages 21 –26, oct.
2007.

[7] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes
in domain analysis for product lines. IEEE Proceedings - Software,
153(2):61–73, 2006.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasibility study. Tech-
nical report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[9] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun
Kim, and Euiseob Shin. Form: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software Engineering,
5:143–168, 1998.

[10] Gerald Kotonya and Ian Sommerville. Requirements Engineering -
Processes and Techniques. John Wiley & Sons, 1998.

[11] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[12] James A. McCall. Quality Factors. John Wiley & Sons, Inc., 2002.
[13] Bardia Mohabbati, Dragan Gasevic, Marek Hatala, Mohsen Asadi,

Ebrahim Bagheri, and Marko Boskovic. A quality aggregation model
for service-oriented software product lines based on variability and
composition patterns. In The 9th International Conference on Service
Oriented Computing (ICSOC 2011). Springer, 2011.

[14] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, pages 35–46, New York, NY, USA, 2000. ACM.

[15] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[16] Fabricia Roos-Frantz, David Benavides, Antonio Ruiz-Cortes, Andre
Heuer, and Kim Lauenroth. Quality-aware analysis in product line
engineering with the orthogonal variability model. Software Quality
Journal, pages 1–47. 10.1007/s11219-011-9156-5.

[17] Norbert Siegmund, Marko Rosenmuller, Martin Kuhlemann, Christian
Kastner, Sven Apel, and Gunter Saake. Spl conqueror: Toward opti-
mization of non-functional properties in software product lines. Software
Quality Journal, pages 1–31. 10.1007/s11219-011-9152-9.

[18] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good
Practice Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st
edition, 1997.

[19] P. Zave. Classification of research efforts in requirements engineering.
In Requirements Engineering, 1995., Proceedings of the Second IEEE
International Symposium on, pages 214 – 216, mar 1995.

668

A Proposal of Reference Architecture for the
Reconfigurable Software Development

Frank José Affonso
Department of Statistics, Applied Mathematics and Computation

Univ Estadual Paulista - UNESP

Rio Claro - SP, Brazil

affonso.frank@gmail.com / frank@rc.unesp.br

Evandro Luis Linhari Rodrigues
Department of Electrical Engineering

University of São Paulo - USP

São Carlos - SP, Brazil

evandro@sc.usp.br

Abstract—The software development process is marked by
constant changes in customer needs or technological inno-
vations which have emerged in recent years. Moreover, we
can highlight the search for tools and automated processes
to assist in development activities. In this context, this paper
aims to propose a reference architecture model for developing
reconfigurable software, which has a specific feature, allowing
changes to be incorporated without the need of its execution
interruption. This model allows one to create a standard for
the software development of this nature, making requests for
changes which will be implemented naturally. We believe, with
this paper proposal, a concrete architecture for reconfigurable
systems can be defined.

I. INTRODUCTION

The need for computational systems endowed with run-

time reconfiguration characteristics is an old desire of

software engineers to incorporate their customers’ emerging

needs [1]. To meet this desire, there are computational re-

flections [2], [3], [4] as a mechanism for the implementation

of software reconfiguration in runtime. This mechanism can

be applied to several system approaches in development,

such as oriented objects, components, aspects, services,

remote method invocation and the combination of both [5].

Regarding to the reconfiguration systems context, we

have observed that the related work corresponds to individ-

ual projects, without the adoption of tools and engineering

processes. Concerning the two last items, some authors

Whitehead [6], Nakagawa [7], report about the lack of tools

to fully meet the project phases (software life cycle) and,

when they meet them, there is a problem in relation to

investment (high cost) for acquisition and maintenance.

Given the mentioned context, reconfigurable software in

runtime and engineering software tools to support all project

phases, this paper proposes a reference architecture model

for reconfigurable systems such as automated processes.

This proposal is associated with use of a Reconfigurable

Software Development Methodology (RSDM), a Recon-

figurable Execution Environment (REE) and a software

engineering tool, named ReflectTools, both developed in the

authors’ previous work [5], [8].

The RSDM provides a guidelines set for developing

reconfigurable software (classes, components, aspects, ser-

vices) - named software artifacts. Basically, its guidelines

lead to the development based on requirements segmenta-

tion, leaving the artifact free of any non-functional require-

ments. Furthermore, it adopts the architectural style based

on layers to organize the application and requirements com-

bination (functional and non-functional). This combination

can be made by aspects or dependency injection [5], [9].

The REE and ReflectTools represent the automatic mech-

anisms to support the RSDM of guidelines. Despite the

project specific features, was established the ability to

integrate with the tools (workbenches) development, such

as Eclipse and Netbeans. These tools are used in the

initial steps of RSDM (modeling and system developing).

After completing these steps, the projects are transferred to

ReflectTools so that a software engineer or developer can

use it directly in the REE to automate tasks [5].

The reference architecture model for reconfigurable sys-

tems helps in the processes automation in the REE and

software engineer tools (for example, ReflectTools). This

model not only helps to understand the domain structure but

also the vocabulary applied to reconfigurable systems. Thus,

we believe, with this paper proposal, a concrete architecture

for the use in reconfigurable systems can be defined.

II. CONCEPTS, DEFINITIONS AND RELATED WORK

This section presents the concepts, definitions and related

work that contributed to the development of this paper.

Initially are presented concepts of Computational Reflection

(CR) and their reconfiguration techniques. Following are

presented related work on software architecture.

The CR [2], [10] can be defined as any activity performed

by a system on itself. The main objective is to obtain

information about its own activities, aiming to improve

its performance, introduce new capabilities (features or

functionality), or even solve its problems by choosing the

best procedure.

669

According to Borde [10], Gomaa & Hussein [11], the CR

is used for the software components adaptation in two ways:

(1)structural, involving the component structures such as

change interface or operation name, and (2)behavior, which

affects the functional and non-functional properties [12].

This technique is centered on the packaging due to original

interface incompatibilities. The existing features are pre-

served and others, relating to new requirements are added

forming a new software component.

In Tanter et. al. [13], the Aspect-Oriented Programming

(AOP) is used in structural and behavioral systems. Aspects

are used to weave non-functional requirements to system

objects. The weaving requirements (functional and non-

functional) are performed by the tool named Reflex.

The component reconfiguration in distributed environ-

ments is approached by Chen [14]. His proposal is an RMI

(Remote Method Invocation) extension, XRMI - eXtended

Java RMI, which allows an application to monitor and ma-

nipulate invocations between components during a dynamic

reconfiguration process. The remote objects are used as if

they were local objects.

For Williams & Carver [15], the changes that occur

with the software are inevitable. The main reasons are the

users’ changing needs and issues related to technological

adaptation. At work, the author point out a study on the

software architecture flexibility to meet the required changes

without burdening the maintenance activity.

According to Navasa [16], software architecture should

be easy modification or reconfiguration. The authors pro-

posed the AspectLEDA - a language for description of

software architecture by using aspects. Aspects act as a

facilitating mechanism for software adaptation (manual or

runtime). The software interests are divided in functional

and non-functional, which can be identified, grouped and

reused in various system units.

The RefASSET (Reference Architecture for Software

Engineering Tools) is a proposal for a Software Engineering

Environment. This environment has a tool set that operate in

the following phases of software life cycle: documentation,

configuration management, quality assurance, verification,

validation, joint review, and audit. Basically, the proposed

development is centered on a software model with the

addition of non-functional requirements with aspects [7].

According to Santos [17], frameworks for domain-

specific languages (DSL - Domain Specific Language) assist

the product line software development. The author com-

ments on increasing the productivity of software by using

DSLs; however, it is necessary that software engineers make

the architectural design and act in the construction of meta-

models and code generators. On the architectural design,

they mention the use of aspect-oriented programming as

mechanism connector components.

Finally, the study conducted by Kazman [18], a contri-

bution to the evaluation and design of software architecture

called APTIA (Analytic Principles and Tools for the Im-

provement of Architectures) can be found. This paper offers

a guideline set for an automated process, which helps the

software engineer to improve the software architecture.

III. A PROPOSAL OF REFERENCE ARCHITECTURE

This section presents a reference architecture model for

the reconfigurable software development such as automated

processes [5]. This model represents a real solution (ab-

straction), based on a particular domain (reconfigurable

systems) and experience (patterns) [5], [8] to treat the

runtime software reconfiguration without the developers’

participation.

The solution adopted for this model is directed to systems

developed in programming language that have the following

features: reflection, dynamic compilation and dynamic load-

ing of artifacts. The reflection is associated with artifacts

architectural flexibility, since the information on its structure

and its execution state can be retrieved and reused when the

artifact is modified [2], [4]. The dynamic compilation and

dynamic loading of the artifacts are related to how these

artifacts can be obtained, compiled and reinserted in the

execution environment [2], [4], [5]. Figure 1 shows the

reference architecture model, emphasizing the modules for

artifacts runtime modifications.

The model presented in Figure 1 is organized in

seven modules: annotations (annotationManager),

state management (stateManager), reflection (re-
flectManager), source code generator (sourceCode-
Manager), query and rules (queryManager, configu-

ration (configurationManager) and reconfiguration

(reconfiguratorURLManager). The following are de-

scriptions and relations between modules to perform recon-

figuration automatically.

The annotations module (annotationManager) aims

to assist the software engineer in the definition of artifacts

reconfiguration level which are being developed. For the

reflection module, represented by the reflectManager
package, to identify what information can be modified (re-

moved and/or inserted), a metadata (annotation) indicating

the reconfiguration level supported by the artifact must be

present. Furthermore, there is an interest, the reflection

module, to identify if the artifact type represents a logical
class, which only has functionalities; or, a persistence
class, which has logical storage in database. It is rec-

ommended that this module has a functionality to verify

if the annotations were inserted correctly, otherwise the

reflection module cannot identify what information can be

reconfigured.

The state management module (stateManger) aims

to preserve the artifacts execution state. When a software

artifact is selected for manual or automatic reconfiguration,

670

Figure. 1. Reference Architecture Model

the information contained in its current state should be

preserved. The artifact is modified and the information is

reinserted so that the execution is not interrupted. Basically,

this module should have two functionalities to convert an ar-

tifact into a file (.xml) and vice versa. The choice of XML,

eXtensible Markup Language, to perform these operations is

related to the following facilities: files handling (reading and

writing), integration with different programming languages

and implementation facility.

The reflection module (reflectManager) aims to

perform the artifacts "disassembly" to obtain structural

information (attributes) and behavior (methods). Basi-

cally, the artifacts disassembly is conducted by using

the reflectManager.reflection package, which

uses the annotations module to identify changes that

can be performed on the artifacts. This information

is retrieved and inserted into a metamodel in the

reflectManager.model package. After instantiating

the metamodel, new information according to the clients’

interests are added to create a new metamodel. This meta-

model is transferred to the source code generator module

to create the new artifact.

The source code generator module (sourceCodeMa-
nager) aims to generate the software artifacts based on

metamodel (instantiated in reflection module). To execute

this operation, the software engineer must provide an ar-

tifact template based on the architectural pattern (logical

layer, persistence layer, and others). This module should

has four functionalities to generate the source code that

meets the reconfiguration interests: (1)when only the arti-

fact source code, without modification, must be generated,

(2)when only an attributes list should be added or removed

from the artifact. In this case, specifically, the getters

and setters methods that manipulate these attributes are

modified, (3)when only a methods list should be added or

removed from the artifact, and (4)when an attributes list

and a methods list should be added or removed from the

artifact.

The query and rules module (queryManager) aims

to be consulted by software artifacts in REE reposito-

ries. When an artifact is developed and inserted into

the REE, an automatic mechanism (rulesFactory)

is responsible for disassembling this artifact and cre-

ating rules set that describes the artifact functionali-

ties. These rules are stored in REE repositories and

reused when a search (rulesEngine) is performed.

The rules model (rulesFactory package) should be

compatible with the artifact metamodel in the package

reflectManager.model.

The configuration module (configurationMana-
ger) aims to control the size of software artifacts when the

reconfiguration is performed. The artifacts are developed to

671

meet specific requirements and to act in a specific domain.

Changes may occur so that they adapt to operate in the same

domain or in different domains. Therefore, the presence of

a configuration manager that allows performing the growth

control in the artifacts size and a number of adaptations

performed is desirable.

Finally, the reconfiguration module (reconfigura-
torURLManager) can be considered the "orchestrator"

of the model presented in Figure 1, since it performs call

and coordinates all the activities of the other modules. This

module must implement a "connection point" as a system

supervisor (reconfigurator package) between the dy-

namic compiler (dynamicCompiler package) and dy-

namic classloader (dynamicClassCloader package).

The module functionalities aim to compile/recompile the

artifacts software and upload its binary code in runtime

(memory). A desirable characteristic for this module, specif-

ically in dynamic compiler, is the ability to diagnostic

errors in source code, since the error messages are useful

information for the interpretation and corrections in the

source code. To conclude the module description, it is

recommended that the process is performed automatically

and managed by software engineering tools, since it reduces

implementation complexity and minimizes the generation of

uncertainties.

IV. CONCLUSIONS

This paper presented a proposal for reference architecture

model for the reconfigurable systems development using

automated processes. This proposal is based on modules

set (Figure 1), which are responsible for making artifacts

adaptations in runtime. This process minimizes developers’

involvement and therefore reduces the generation of uncer-

tainty.

In the development context, it is also considered that stan-

dardization should be adopted in the design and develop-

ment of reconfigurable systems (RSDM). The ReflectTools

allow functionality with potential reuse in other systems

which are identified and stored in information repositories.

They can be reused as remote methods (Remote Objects)

or services (Web Services) in the design of other systems:

(1)increasing the development speed of new artifacts, or

(2)contributing significantly as the information basis for the

reconfiguration process (manual or automatic) [5], [6], [8].

Finally, it emphasizes the reusability of the reference

architectural model (Figure 1) for reconfigurable systems

such as automated process. We believe that the guidelines

presented in Section III are the basis for the model instan-

tiation to act on artifacts developed in other programming

languages. The restriction for the use of this model is related

to programming language, since it should have resources

for reflection, dynamic compilation and dynamic loading

of artifacts.

V. ACKNOWLEDGMENT

This work is supported by the PROPe/UNESP (Pro-

rector of Research / Univ Estadual Paulista) and Fundunesp

(Foundation for the development of unesp). The author

received financial support to implement this work.

REFERENCES

[1] X. Hongzhen and Z. Guosun, “Retracted: Specification and verifi-
cation of dynamic evolution of software architectures,” Journal of
Systems Architecture, vol. 56, no. 10, pp. 523 – 533, 2010.

[2] P. Maes, “Concepts and experiments in computational reflection,”
SIGPLAN Not., vol. 22, no. 12, pp. 147–155, Dec. 1987.

[3] I. R. Forman and N. Forman, Java Reflection in Action (In Action
series). Greenwich, CT, USA: Manning Publications Co., 2004.

[4] G. Coulson, G. Blair, and P. Grace, “On the performance of reflective
systems software,” in Performance, Computing, and Communica-
tions, 2004 IEEE International Conference on, 2004, pp. 763 – 769.

[5] F. J. Affonso, “Metodologia para desenvolvimento de software recon-
figurável apoiada por ferramentas de implementação: uma aplicação
em ambiente de execução distribuído e reconfigurável,” Tese de
doutorado, EESC/USP, maio 2009.

[6] J. Whitehead, “Collaboration in software engineering: A roadmap,”
in 2007 Future of Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 214–225.

[7] E. Y. Nakagawa, F. C. Ferrari, M. M. Sasaki, and J. C. Maldonado,
“An aspect-oriented reference architecture for software engineering
environments,” Journal of Systems and Software, vol. 84, no. 10, pp.
1670 – 1684, 2011.

[8] F. J. Affonso and E. L. L. Rodrigues, “Reflecttools: Uma ferramenta
de apoio ao desenvolvimento de software reconfigurável,” Revista
Brasileira de Computação Aplicada, vol. 3, no. 2, pp. 73–90, 2011.

[9] P. J. Clemente, J. Hernández, J. M. Conejero, and G. Ortiz, “Manag-
ing crosscutting concerns in component based systems using a model
driven development approach,” Journal of Systems and Software,
vol. 84, no. 6, pp. 1032 – 1053, 2011.

[10] E. Borde, G. Haïk, and L. Pautet, “Mode-based reconfiguration of
critical software component architectures,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE
’09. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2009, pp. 1160–1165.

[11] H. Gomaa and M. Hussein, “Software reconfiguration patterns for
dynamic evolution of software architectures,” in Software Architec-
ture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP
Conference on, june 2004, pp. 79 – 88.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
ECOOP’97 Object-Oriented Programming, 1997.

[13] E. Tanter, R. Toledo, G. Pothier, and J. Noyé, “Flexible metapro-
gramming and aop in java,” Sci. Comput. Program., vol. 72, no. 1-2,
pp. 22–30, Jun. 2008.

[14] X. Chen, “Extending rmi to support dynamic reconfiguration of
distributed systems,” in Distributed Computing Systems, 2002. Pro-
ceedings. 22nd International Conference on, 2002, pp. 401 – 408.

[15] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Information and Software Technology,
vol. 52, no. 1, pp. 31 – 51, 2010.

[16] A. Navasa, M. A. Pérez-Toledano, and J. M. Murillo, “An adl dealing
with aspects at software architecture stage,” Information and Software
Technology, vol. 51, no. 2, pp. 306 – 324, 2009.

[17] A. L. Santos, K. Koskimies, and A. Lopes, “Automating the con-
struction of domain-specific modeling languages for object-oriented
frameworks,” Journal of Systems and Software, vol. 83, no. 7, pp.
1078 – 1093, 2010.

[18] R. Kazman, L. Bass, and M. Klein, “The essential components of
software architecture design and analysis,” Journal of Systems and
Software, vol. 79, no. 8, pp. 1207 – 1216, 2006.

672

A Variability Management Method for Software
Configuration Files

Hiroaki Tanizaki, Toshiaki Aoki, Takuya Katayama
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, Japan

Email: {tani-h, toshiaki, katayama}@jaist.ac.jp

Abstract—Configuration files of software systems should be
made correctly when software systems are operated. However, it
is hard to figure out syntax and constraints of configuration files
due to their complexity and size. Therefore, it becomes hard to
make correct configuration files.

We focus on two problems. One is syntax error that configu-
ration file description is invalid. The other is semantic error that
required functions do not perform due to mismatch between
requirements and configuration file description. One solution to
prevent these errors is to manage variability of configuration files.
We propose a method which manages variability of configuration
files. In particular, we use a model which organizes variability and
constraints of configuration file description. Requirements and
dependencies between requirements and organized information
are also included in the model. The model is described by using
the feature diagram. By using the feature diagram to describe
the model, it becomes possible to check consistency between the
model and a configuration file. Our method deals with detection
and correction of errors of configuration files.

I. INTRODUCTION

Configuration files take an important role when software

systems are operated because functions and performances of

software systems depend on configuration file descriptions.

When software systems are developed, specifications or source

code are verified in order to check whether software systems

have no error. Besides it is important to verify whether

configuration files are correct. If configuration files have errors,

software systems do not operate or functions which are needed

by users do not execute. Errors of configuration files are

syntax and semantic error [7]. One of causes of syntax error

is scale and complexity of configuration files. Semantic error

means that mismatch between user’s purpose and configuration

file descriptions. User’s purpose means functions which are

needed by users and is a kind of requirement for configuration

files. One of causes of semantic error is that correspondence

relations between configuration file descriptions and require-

ments are not clear. In order to make correct configuration

files, variability of configuration files should be managed.

Variability consists of syntax and correspondence relations

between requirements. However, it is not easy to manage

variability of configuration files because the complexity of

configuration files is becoming higher and higher according

to the increase of their size[2]. Besides, errors have to be

corrected, but error correction is also not easy for users and

administrators.

The purpose of our research is to propose a method which

supports users and administrators to make correct configura-

tion files. In order to make correct configuration files, our

method detects syntax and semantic errors and corrects them.

In particular, syntax and candidate of configuration file de-

scription and correspondence relations between requirements

are modeled, and our method checks consistency between the

model and a configuration file.

In this paper, we show our approach in the following way. In

Section II, we introduce configuration files. Section III shows

outline of our approach. In Section IV, we propose a model

which organizes configuration file descriptions and require-

ments. In Section V, we explain a method for support making

configuration files. Section VI shows an experiment using our

approach. In Section VII, we discuss about the effectiveness

of our approach. Section VIII shows related works. In Section

IX, we conclude this paper.

II. CONFIGURATION FILES

Configuration files are widely used in software systems such

as operating system, middleware software and application soft-

ware. We focus on configuration files of servers. Configuration

files of servers are directly made by users or administrators and

should be made correctly.

Configuration files are used to customize configuration and

functions of software systems. So, reliability of configuration

files is important to operate software systems, and should be

verified. Although there are some formats for configuration

files, basically combinations of setting item and parameters

are written. Each setting item has candidates of parameter.

Besides, a combination of setting item and parameter may

need other specific combinations in order to perform functions.

A. Requirements for configuration files

Users and administrators have their own purposes when they

make configuration files. Their purposes mean that specific

functions are performed. Therefore, we consider that purposes

are requirements for making configuration files.

For server software, configuration which is appropriate to

application which performs on the server is needed. For

example, when administrators make configuration files of

web servers and application servers which are used for a

web application execution environment, administrators should

configure functions for application which is executed on the

673

environment. Therefore, it is possible to deal with purpose

for configuration files as functions of application. By relating

purpose for configuration files and functions of application, it

becomes possible to specify what combinations of setting item

and parameter are required for execution of application.

B. Errors of configuration files

We focus on syntax error and semantic error of configu-

ration files. Syntax error means that combinations of setting

item and parameter are invalid, or dependencies between

combinations are not satisfied. Semantic error means that

configuration files do not meet requirements for configuration

files. Factors of configuration file error are size and complexity

of configuration files. Therefore, it is needed to solve these

factors in order to make error-free configuration files.

III. APPROACH

We take an approach to manage variability of configura-

tion files. Configuration files have variability in syntax and

correspondence relations between requirements. Variability of

syntax means combinations of setting item and candidate of

parameter. Variability of correspondence relations between

requirements and configuration files means that requirements

also have variability and what combinations of setting item

and parameter are required in order to perform requirement.

Our approach consists of using a model and a consistency

checking method. We propose configuration file model which

organizes variability of configuration files. In particular, con-

figuration file model represents candidates of combinations of

setting item and parameter, constraints on making configura-

tion files, requirements, and correspondence relations between

requirements and configuration files. In order to check seman-

tic error, we consider that requirements and correspondence

relations between requirements and configuration files should

be organized. Consistency checking method checks consis-

tency between configuration file model and configuration files.

Concept of our approach is shown in Fig. 1.

Fig. 1. Approach of Our Method

In order to clarify structure of configuration file model,

configuration file model is described using the feature diagram

[5] [3]. Requirements and configuration files are described by

using the feature diagram. Correspondence relations between

requirements and configuration files are described by corre-

spondence relations between feature diagram of requirements

and feature diagram of configuration files. In our method,

a diagram that configuration file model is described by the

feature diagram is called configuration model. Besides, we

use Alloy[1][4] in order to formalize and check the feature

diagram. The details of configuration model and consistency

checking method are shown in our previous work [9].

IV. CONFIGURATION FILE MODEL

A. Elements of configuration and relations

Basic elements of configuration file model are setting item,

parameter and requirement. Setting item and parameter are

specific elements of each configuration file. Requirement is

function of application. Requirement should be considered in

order to specify what combination of setting item and param-

eter are described in a configuration file. Configuration file

model includes following relations between basic elements.

• Combination of setting item and parameter

This combination shows valid candidates of parameter for

each setting item.

• Dependency between specific combinations of setting

item and parameter

This dependency shows that some combinations of setting

item and parameter may be required to describe other

combination.

• Relation between requirements

This relation shows that some requirements may be

required to perform other requirement.

• Relation between requirement and combinations of set-

ting item and parameter

This relation shows candidates of combinations of setting

item and parameter for execution of a requirement.

The concept of configuration file model is shown in Fig. 2.

Fig. 2. Concept of Configuration File Model

B. Definition of Configuration File Model

The definition of configuration file model (CFM) is as

follows.

CFM =（PN, PV, R, CR, Conf, Rel, RRel, Req）
The explanation of CFM is as follows. PN is set of names

of setting item. PV is set of parameters. R is set of names of

requirement. CR shows that what requirements are chosen by

users or administrators for configuration file description. Conf
means PN → 2PV , and shows candidates of combination of

setting item and parameter. Rel is subset of ((PN × PV)

× (PN × PV)), and shows relations between combinations

of setting item and parameter. RRel is subset of R × 2R,

and shows relations between requirements. Req means R

→ 2(PN×PV), and shows combinations of setting item and

parameter that corresponding to a requirement.

674

C. Correctness of configuration files

We define correctness of configuration files in order to check

configuration files. First, we define a configuration file which

is represented using configuration file model.

CFile = { (n, v) | n ∈ PN, v ∈ PV }
A configuration file (CFile) is defined as set of combination

of setting item and parameter.

Second, we define four properties in order to define correct-

ness of configuration files.

• constraint on combination of setting item and parameter

s conf ⇔ ∀(a, b) ∈ CFile. b ∈ Conf(a)

This constraint means that combinations of item and

parameter which are written in a configuration file have

to be defined in configuration file model.

• constraint on dependency between combinations of set-

ting item and parameter

s rel ⇔ ∃ x y. (x, y) ∈ Rel ∧ x ∈ CFile → y ∈ CFile

This constraint means that if a combination of setting

item and parameter is written in a configuration file and

requires other combinations, required combinations have

to be written in the configuration file.

• constraint on relation between requirements

This constraint means that if an element of requirement

is chosen and requires other elements of requirement,

required elements have to be chosen.

• constraint on relations between requirement and config-

uration file

s req ⇔ ∀r ∈ CR. Req(r) ∈ CFile

This constraint means that if a requirement is chosen and

relates to combinations of setting item and parameter,

the combinations of setting item and parameter have to

be written in a configuration file.

Correctness of CFile is defined that CFile satisfies above

properties.

V. METHOD FOR MAKING CONFIGURATION FILES

The workflow of our method is shown in Fig. 3.

Fig. 3. Workflow of the Method

We already defined configuration file model and correctness

of configuration files. Properties which are used in order to

prevent configuration file errors are organized in configuration

file model. However, the properties are not easy to apply

check configuration files because there is a gap between

configuration file model and configuration file description.

One solution is that to describe configuration file model and

configuration files in common description method. Therefore,

we use the feature diagram to describe configuration file model

and configuration files. Besides, constraints of the feature

diagrams are used to check correctness of configuration file.

A. Configuration model

Configuration model is a model that configuration file model

is described using the feature diagram. Configuration model

consists of requirement model which is a feature diagram

of requirement, config model which is a feature diagram

of configuration file, and correspondence relations between

feature diagrams.

A configuration model is described as following method.

Requirement model is described by analyzing commonality

and variability of functions of application. Config model is

described by analyzing candidates of combinations of setting

item and parameter. Combinations of setting item and param-

eter have some patterns. So, we analyzed syntax of httpd.conf,

which is configuration file of Apache web server, and extracted

five patterns of combinations. The patterns are as follows.

• Pattern 1. setting item needs one parameter which is

selected from set of candidates of parameter.

• Pattern 2. setting item needs some parameters which are

selected from set of candidates of parameter.

• Pattern 3. setting item needs two parameters which are

selected from different set of candidates of parameter.

• Pattern 4. setting item needs one parameter which is se-

lected from candidates of parameter and some parameters

which are selected from different set of candidates of

parameter.

• Pattern 5. setting item does not need parameter.

The above patterns are used for constraints when combi-

nations of setting item and parameter are chosen. Besides,

the patterns are described using feature diagram. In order to

describe the patterns, our method uses Mandatory, Optional,

Alternative and Or relations of the feature diagram. Each

pattern is described as follows.

• Pattern 1 is described by Alternative relation.

• Pattern 2 is described by Or relation.

• Pattern 3 is described by two Alternative relations.

• Pattern 4 is described by Alternative and Or relation.

• Pattern 5 is described only parent.

Additionally, there are dependency relations of combina-

tions of setting item and parameter. These relations are able

to describe by composition rules of the feature diagram.

An example of configuration model is shown in Fig. 4. In

Fig. 4, the upper side diagram is requirement model and the

under side diagram is config model. Dotted line arrows from

requirement model to config model represent correspondence

relations between requirement model and config model.

B. Error detection

We deal with checking correctness of configuration files as

checking validity of chosen features from configuration model.

Therefore, our consistency checking method checks whether

set of features which are chosen from configuration model

is an instance. An instance means a set of features which

satisfies constraints of the feature diagram. In order to detect

675

Fig. 4. Configuration Model

error, feature selections which do not satisfy each constraint

should be clarified. For example, if a combination of setting

item and parameters is described by Alternative relation and

some parameters are chosen, this feature selection is invalid.

If feature selection is invalid, it is an error.

Checking correspondence relations between requirement

model and config model is used to check whether configuration

files meet execution of requirements. Therefore, consistency

checking of correspondence relations checks whether features

which are related to an instance of requirement model are

included in an instance of config model. It is an error when

features which are required by the instance of requirement

model are not included in the instance of config model.

C. Error correction

In our method, error correction means to obtain an instance

when there is no instance of configuration model. In particular,

error correction consists of detection of causes of errors and

correction of them. For example, if a combination of setting

item and parameters is described by Alternative relation,

except for choosing setting item and one parameter, the other

choosing is invalid. In particular, choosing no setting item and

one parameter or choosing no setting item and some param-

eters are causes of error. In the case of the above example,

choosing setting item is the correction method when no setting

item and one parameter are chosen, and choosing setting item

and one parameter from candidates is the correction method

when no setting item and some parameters are chosen. In this

way, causes of error are defined and correction methods for

each cause are specified.

Correction method of correspondence relations between

requirement model and config model is changing configuration

files in order to satisfy requirements. Correction of configura-

tion file is to add lacking features which are needed to perform

requirement to an instance of config model.

Those correction methods are not enough to correct fea-

ture selection because only adding or deleting features may

become causes of other errors. Therefore, we implemented a

mechanism which obtains an instance in Alloy.

D. Consistency checking using Alloy

We use Alloy to check configuration model automatically.

Therefore, structure and constraints of the feature diagram are

described by Alloy description, and detection and correction

method for errors are implemented in Alloy.

Alloy is a structural modeling language based on firstorder

relational logic for expressing complex structural constraints

and behaviors, and is described using finite sets and relations.

Basic notations for describing alloy models are as follows.

• sig : A signature introduces a set of atoms

• fact : Always assumed constraints

• fun : A function to a relation from another relation

• pred : A true-false judging of a relation

• run : To search for an instance of a predicate (pred)

An Alloy model consists of sig and relations of sig, which

are described in fact. Operations are described using fun.

Conditions are described using pred. These described things

are verified using the run command. The Alloy Analyzer

which is a tool to verify Alloy models is provided. The

Alloy Analyzer finds the Alloy models which satisfy a given

specification of Alloy models automatically in scopes of sig.

1) Encoding of feature diagram: The structure of feature

diagram is relations between features. Thus, name of each

feature is enumerated, and relations between features are

named and each relation is related to feature names which have

relation between them. Constraints of the feature diagram are

defined by predicate in Alloy.

2) Consistency checking: Consistency checking method for

the feature diagram checks whether chosen features satisfy

constraints of the feature diagram. In this method, constraints

676

means patterns which are shown in section V.A. In particu-

lar, predicates, where constraints are described, are checked.

Correction method of feature selection compares causes of

errors with chosen features in order to detect causes of errors.

The Alloy Analyzer automatically searches that what features

should be chosen based on each correction method.
Consistency checking method for correspondence relations

between requirement model and config model checks whether

an instance of config model satisfies an instance of requirement

model. This check is implemented by set operators of Alloy.

In particular, Alloy checks whether a set of combination of

setting item and parameter which is required by an instance

of requirement model is subset of an instance of config model.

Correction method of correspondence relations also searches

instances. The Alloy Analyzer searches an instance of config

model which includes the existing instance and features which

are needed for correction.

VI. EXPERIMENT

In the experiment, we apply our method to a Web applica-

tion system which consists of an application and an execution

environment. We deal with an address book application as

application. Execution environment consists of some software,

and each software use configuration file.

A. Preparing for checking
1) Analysis of application: An address book application

has some functions such as showing, registration and editing.

Those functions have variations. There are some methods for

data registration. For example, files which contain data are

uploaded to a server, or users input data into a form on a web

page. Files or database are used in order to save data. Editing

data is data correction or deleting. In this way, functions

of application are analyzed. Analysis of configuration file

description for operation of each requirement is discussed later.
2) Analysis of configuration files: At least three kinds

of software, web server, server-side programming language

environment, and database server are needed. So, each of

software’s configuration file should be analyzed. For web

server, we assume that Apache is used. Basic configuration

for web server is needed. Besides, configuration for server-side

programming or cgi is needed. For server-side programming

environment, we assume that PHP is used. Configuration for

connecting to database server is needed. For database server,

we assume that PostgreSQL is used. Basic configuration for

database server is needed.
3) Analysis of correspondence relations: Which combina-

tions of setting item and parameter are needed for executing

each function is analyzed. Web server is needed in order to

show contents of address book, CGI or PHP are needed in

order to execute functions such as registration and deleting.

Database server is needed in order to save data.
4) Describing configuration model: A configuration model

is described based on analysis results. The configuration model

is shown in Fig. 4. The configuration model has to be described

in Alloy in order to check it. However, Alloy description is

omitted this time.

B. Consistency checking

In our method, feature diagrams and correspondence re-

lations between instances of them are checked separately.

Because, it makes no sense to check correspondence relations,

if there is no instance of requirement model or config model.
1) Feature diagram: We choose some features from the

requirement model and check it using the Alloy Analyzer. The

result is shown in Fig. 5.

Fig. 5. Result of Checking (Feature diagram)

In Fig. 5, “field configuration” shows set of chosen features.

“field validity” shows presence or absence of error. “field

inconsistent” shows causes of error and correction methods.

“field corrected” shows a candidate of corrected chosen fea-

tures. As the result of this checking, errors are detected, and

causes of errors and correction methods are shown.
2) Correspondence relations: We assume that there are

instances of requirement model and config model. A result

of checking of correspondence relations is shown in Fig. 6.

Fig. 6. Result of Checking (Correspondence relation)

In Fig. 6, “field Ains E” shows what features are required

by the instance of requirement model. “field diff” shows that

what features are lacking in the instance of config model.

“field validity” shows presence or absence of error. As the

result of checking, there is one error. The error means that

“PostgreSQL” is not included in the instance of config model

although the application requires database. So, correction

method applies to the instance of config model. The result

of correction is shown in Fig. 7.

Fig. 7. A Candidate of Corrected Instance

A candidate of corrected instance is shown in left side of

Fig. 7. In right side of Fig 7, causes of inconsistencies and

correction methods of them are also shown.

677

VII. DISCUSSION

Our method checks configuration files based on the con-

figuration model and deals with syntax error and semantic

error. As the result which is shown in Fig. 6, one error is

detected. The cause of the error is that using database is not

configured although address book application needs database.

The important part is that even if configuration files do not

have error, errors occur when configuration files are used

in order to perform application. Checking semantic error of

configuration files statically is one merit of our method.

It is not easy to understand syntax and constraints of

configuration files although those are explained in manuals. In

our method, syntax and constraints are described structurally

by using the feature diagram. Besides, checking configuration

files based on constraints of the feature diagram becomes

possible. We consider that a method which organizes config-

uration files using the feature diagram is effective.

Configuration model describe five patterns of configura-

tion file syntax. These patterns are extracted from syntax

of httpd.conf, but the patterns do not cover all syntax. In

particular, 180 setting items are available for httpd.conf and

patterns cover 153 setting items. So, the patterns can deal with

85 percent of setting items of httpd.conf.

A configuration model may be changed when needed con-

figuration files are changed because of change of application,

or candidates and constraints of configuration file description

are changed. This change means adding or replacing pattern

descriptions and is not difficult. Users or administrators only

have to follow the notations of the feature diagram.

Syntax checkers are enough to check syntax error because

each syntax checker is specialized in specific configuration

files. However, syntax checkers are not enough to check

semantic error because semantic error is not a target. We focus

on relations between requirements and configuration files, and

model those relations in order to check.

VIII. RELATED WORK

A method which checks configuration files based on rules is

proposed [7]. Rules mean dependencies between modules or

formats for data exchange. A method which checks validity

of parameters of configuration files is proposed [8]. In this

method, size, range and dependency of parameters are identi-

fied as constraints, and parameters are checked based on them.

Our method takes the similar approach which was proposed

in [7] [8]. Errors which can be detected by those methods

depend on rules, constraints or model. That is to say, it is

important what condition use to detect errors. On the other

hand, using rules and constraints is not suitable for checking

semantic errors because it is difficult to deal with requirements.

A method which deals with dependencies of configuration

attributes of software stack is proposed [6]. Authors proposed

Configuration Map (CM) which specifies dependencies and

order of configuring of configuration attributes, and relations

between configuration attributes and errors. By using CM,

managing configuration attributes becomes easily and CM is

effective for troubleshooting. As shown in [6], it is helpful

to model complexity in order to make configuration. Our

method deals with not only variability of configuration files

but variability of application, and models them in order to

make suitable configuration files for application.

An automatic generation method for configuration files of

web system which consists of Web server, application server

and database, is proposed [10]. In this method, configuration

files are generated by some scripts based on templates and

parameters are detected using heuristic algorithm. Automatic

generation is also a support method to make configuration files.

However, it is not easy to specify combinations of setting item

and parameter because descriptions of configuration files have

flexibility. Therefore, our method checks configuration files

which are made manually instead of automatic generation of

configuration files.

IX. CONCLUSION

In this paper, we proposed a method which manages vari-

ability of configuration files in order to prevent errors of con-

figuration files. We define the configuration file model which

organizes basic elements of configuration files and relations

of them. Besides, a configuration file model is described by

using the feature diagram in order to check.

Verifying configuration files is important as well as soft-

ware because the complexity and size of configuration files

are increasing drastically. Some applications have their own

syntax checkers for configuration files of them. However, only

checking syntax is not sufficient to ensure that what we want

to configure the applications is correctly described in the

configuration files. Thus, in our approach, requirements for

the configuration files are modeled as a configuration model

and check whether they meet the requirements or not.

REFERENCES

[1] Alloy website : http://alloy.mit.edu/alloy/
[2] Aaron B. Brown, Alexander Keller and Joseph L. Hellerstein, A Config-

uration Complexity Model and Its Application to a Change Management
System, In Proceedings of the 9th International IFIP/IEEE Symposium
on Integrated Management, pp. 631 - 644

[3] Krzysztof, C. and Ulrich, E. : Generative Programming : Methods,
Tools, and Applications, Addison-Wesley Pub (Sd), 2000, ISBN 978-
0201309775.

[4] Jackson, D : Software Abstractions: Logic, Language, and Analysis,
MIT Press, 2006, ISBN 0-262-10114-9.

[5] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Peterson,
A. S. : Feature-Oriented Domain Analysis (FODA) Feasibility Study,
Technical Report CMU/SEI-90TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[6] Kalapriya Kannan, Nanjangud C. Narendra and Lakshmish Ramaswamy,
Managing Configuration Complexity during Deployment and Main-
tenance of SOA Solutions, 2009 IEEE International Conference on
Services Computing, pp. 152-159

[7] Rajesh Kalyanaraman, A Rule based static configuration validation tech-
nique in an Autonomous Distributed Environment, Second International
Conference on Systems, pp 53

[8] Emre Kycyman and Yi-Min Wang, Discovering Correctness Constraints
for Self-Management of System Configuration, Proceedings of the 1st
International Conference on Autonomic Computing, pp. 28-35

[9] Hiroaki Tanizai. and Takuya Katayama. : Formalization and Consistency
Checking the Changes of Software System Confgurations Using Alloy,
15th Asia-Pacific Software Engineering Conference, pp.343-350.

[10] Wei Zheng, Ricardo Bianchini and Thu D. Nguyen, Automatic config-
uration of internet services, Proceedings of EuroSys 2007, pp. 219-229

678

Tool Support for Anomaly Detection in Scientific
Sensor Data

Irbis Gallegos
The University of Texas at El Paso

Department of Computer Science
El Paso, USA

irbisg@utep.edu

Ann Gates
The University of Texas at El Paso
Department of Computer Science

El Paso, USA
agates@utep.edu

Abstract— Environmental scientists working on understanding
global changes and their implicatio ns for humanity, collect data in
near-real time at remote locations using a variety of instruments. As
the amount and complexity of collected data increases, so does the
amount of time and domain knowledge required to determine if the
collected data are correct and if the data collection instruments are
working correctly. The Sensor Data Verification (SDVe) tool allows
scientists to detect anom alies in sensor data. SD Ve evaluates if
scientific datasets, which can be provided at near -real time or from
file repositories, satisfy reusable data properties specified by
scientists.

Keywords- Big Data; Cyberinfrastructure; Data Quality E co-
Informatics; Software Engineering.

I. INTRODUCTION
Scientists collect and analyze large amounts of data to

determine the causes of changes in ecological ecosystems.
Scientist use Eddy covariance (EC) towers [1] to collect
measurements needed to understand such ecological changes.
In particular, scientists use m easurements taken by EC towers
to monitor carbon dioxide (CO2), water balance (H2O), energy
balance (irradiance), and other meteorological measurements
such as temperature and atmospheric pressure.

Anomaly detection in eddy cova riance data must not only
identify instrument errors and problems with the sensors, but
also evaluate how closely conditions fulfill the theoretical
assumption underlying the method [2]. Anomaly detection
must be done in real time or s hortly after the measurements to
minimize data loss by reducing the time to detect and fix
instrument problems. The quality control procedures,
instrument malfunctions, maintenance and calibration periods
often remove 20 to 40% of the data. Efficient anomaly
detection is an outstanding pr oblem that is incom pletely
fulfilled in most of the FLUXNET networks [2].

In most cases, scientists manually evaluate eddy covariance
data by using a variety of time consuming methods and a
variety of customized software that has to be constantly
modified and recompiled. In a ddition, the data evaluation is
highly dependent on the expertise of the scientist, however,
such knowledge is typically not captured nor reused. The
sensor data verification (SD Ve) tool mitigates the
aforementioned limitations by allowing scientists to
automatically identify anomalies produced by environmental
events and equipment malfunctioning in scientific sensor

datasets collected at near-real tim e or extracted from file
repositories. SDVe evaluates w hether a dataset satisfies a set
of formally specified data properties. SD Ve identifies
anomalies, i.e., a deviation from an expected value, due to
environmental variability or instrum ent malfunctioning, and
raises alarms whenever anomalies are detected. SDVe does
not require source code recompilation and allows expert-
defined data properties to be reused to verify the datasets.

Section 2 provides the background on the software
engineering techniques adapted and extended by SDVe.
Section 3 describes the data property specification approach
used by scientists to specify the data properties that are input to
SDVe. Section 4 explains the S DVe tool. Section 5 describes
the experimental setup and the re sults of using SDVe to detect
anomalies in Eddy covariance data, and section 6 discusses
some of the lessons learned from the experiment. Finally
section 7 described some efforts related to SDVe, followed by
the concluding remarks in Section 8.

II. BACKGROUND
SDVe uses software engineer ing techniques, which have

been used to provide assurance for critical softw are systems,
to detect anom alies in scientific sensor datasets. T his section
provides the background information associated to such
software engineering techniques.

A. Property Specification
The specification and pattern system (SPS) [3] was

introduced to assist practitioners to formally specify software
and hardware properties.

In the SPS, a specification consists of scopes and patterns.
Scopes define the portion of a program over which the
property holds. Patterns describe the structure of specific
behaviors and define relationships betw een propositions.
Propositions are used to represent Boolean expressions that are
evaluated over the program execution.

SPS patterns are divided into two groups: Occurrence and
Order patterns. Occurrence patterns deal with single event or
condition and specify the rate at which that condition or event
occurs. Order patterns relate two conditions or events and
specify the order at which they occur. In this context,
conditions are propositions that hold in one or m ore
consecutive states. Events are instants at w hich a proposition
changes values in two consecutive states.

679

The SPS supports mapping to several formalisms including
discrete-time [4].

B. Runtime Monitoring
Run-time monitoring systems [5] and model checkers [6]

can be used to check that critical software systems are
functioning as expected with respect to a set of properties.
Run-time monitoring allows practitioners to observe the
behavior of a system and determ ine if it is consistent w ith a
given specification.

A run-time monitor takes an executing software system and
a specification of software properties and checks that the
execution meets the properties. In most run -time monitoring
frameworks, the app lication’s code is instrum ented, i.e., the
source code is injected at points of interest with checks
representing the specified property. Usually, the application to
be monitored has to be recompiled to include the checks, and
monitoring is performed at the c ode level to ensure that the
code is behaving as intended. Delgado et al. [6] have compiled
a taxonomy of run-time monitoring frameworks.

Model checkers [7] are a formal technique for verifying
finite-state concurrent system s and relies on building a finite
model of a system and an algorithm that automatically
traverses the system model to verify if a desired property (or a
set of properties) holds in the model.

III. DATA PROPERTY SPECIFICATION

A. Data Property Specification
Gallegos et. al. [8] conducted a literature survey over

scientific projects that collect sensor data to identify categories
of data properties as captured by scientists. Based on the
findings, a categorization of data properties was constructed.

The classification divided data properties into two major
types: experimental readings and experimental conditions.
Experimental readings properties specify expected values and
relationships related to field data . Experimental conditions
properties specify expected instrument behavior and
relationships by defining examining attributes (e.g., voltage)
and instrument functions based on readings. The data property
categories are further subdivided based on the number of
sensor dataset readings or streams and depending on whether
the data categories depend on time or not.

B. Data Specification and Pattern System
The data property specification and pattern system D-SPS

[8] uses and modifies the concepts from the SPS and its timing
extension [9]. D-SPS properties are defined using one or more
scopes, a pattern, and one to four Boolean statements. D-SPS
properties are of type Boolean and are evaluated over datasets,
i.e., a finite sequence of sensor data readings. For this w ork, a
sensor data reading, δ, is a pair, < α, β>, where α denotes a
unique indexing value, and β denotes a sensor reading value.
The unique indexing value can be either a tim estamp or a
floating- point value. A scope is a subsequence(s) of a dataset
of interest to be evaluated. A property pattern is a high-level
abstraction describing how one or more Boolean statements
are evaluate over a number of scopes. D-SPS uses the data

property categorization to determ ine the applicable patterns
that can be applied to a restricted number of scopes also
restricted by the data property categorization. Boolean
statements express data proper ties, which are defined using
mathematical relational operators that are applied to data
readings and relationships between data readings.

The SPS definitions included quantitative, not tim e-
constrained, patterns and timed-constrained patterns. For
timed patterns, units of tim e are assum ed to be ordered tim e
stamps in datasets, w ith equal constant tim e resolution, T he
scientist is assumed to map the unit of time used in the dataset
to the unit of time used in the data property specification.

C. Data Property Specification Tool Support
The data property categorization and the D-SPS resulted in

development of Data Property Specification (DaProS) [10], a
scientist-centered prototype tool that uses the categorization to
assist the user in specifying a data property. Through a series of
guiding questions and selections, the user identifies the
appropriate category and enters the scope, pattern, and Boole an
statements needed to specify th e property, and the tool yields
the appropriate specification as w ell as a disciplined natural
language representation of the specification for validation
purposes. The specification is generated as an XM L
representation to allow the specified properties to be exported.

IV. SENSOR DATA VERIFICATION TOOL SUPPORT

A. Overview
The sensor data verification (SDVe) prototype tool allows

scientist to evaluate D aProS-generated data property
specifications over scientific sensor data streamed at near real
time or extracted from file repositories. The SDVe tool takes as
input a property specification file and a dataset file and verifies
that the data in the dataset files adheres to the property
specified in the property specification fi le. SDVe automatically
identifies anomalies in sensor data without having to conduct
neither complex data analysis nor complete statistical analysis
of time series, thus satisfying the needs of scientific
communities in [11]. SD Ve raises alarm s whenever a data
reading does not satisfy the specified data property.

SDVe supports reusable properties , and does not requires
practitioners to recom pile any tool’s source code. R eusable
properties are of interests to scientists because data quality is
always a combination of different levels of control and site-
specific tests. The data quality w ill differ from one site to
another because of the topography and this must be taken into
account.

The SDVe is not intended to indicate the reasons for the
occurrence of legitim ate environmental variability events and
possible instrument pr oblems, but to indicate to the scientists
the data readings that might require further analysis to
determine the possible causes of the anomaly. Such tool design
decision was based on the literature [2] that indicates t hat
automated techniques cannot unequivocally pinpoint
differences between an environmental variability event and an
instrument problem. Furtherm ore, subjective analyses
combined with an autom ated approach do better than the
automated program alone for unusual conditions; data flagged

This research effort is supported by National Science Foundation grants
No. HRD-0734825 and CNS-0923442.

680

as suspicious and deemed as an environmental event after
graphical inspection are often found to be the most unusual and
interesting situations.

B. System Design
The system is composed of 5 components depicted in

Figure 1. The dataset parser module encompasses a group of
sensor dataset file parsers for supported data files. Even
though SDVe is intended to support a number of different
sensor data files, a dataset parser for such data file should be
developed and placed in this module. However, this is the only
change that has to be performed to the SDVe. The dataset
parser reads a dataset file and transform s the dataset into an
internal representation of the dataset that can be used by the
scope processor to extract the data subsequences to be
evaluated. The sensor data readings are stored as pairs indexed
by an identifier, i.e. a unique tim e-stamp or num eric value
associated to the sensor reading.

The specification parser module reads a DaProS-generated
specification file and extracts th e attributes needed to delim it
the dataset scopes, to build th e Boolean statem ents to be
evaluated over the data, and to determine how to apply the
pattern to the dataset.

The scope processor module uses the internal dataset
representation populated by the dataset parser module and
extracts the data subsequences over which the Boolean
statements will be evaluated.

The Boolean statement builder module uses the Boolean
statements attributes extracted by the specification parser
module and determines the type of operation, the inputs, and
the Boolean function code templates to evaluate the sensor
readings in the scope(s) . SDVe supports the M athematical
operators <, ≤, =, ≠, ≥, and >. Boolean connectives such as
conjunction or disjunction are not supported, except for
implication, which is used in som e of the patterns to capture
ordering between two data properties.

The pattern processor module uses the Boolean function s
created by the Boolean function builder module, the scopes
from the scope processor module and the pattern attributes
from the specification parser module to evaluate the pattern.
The pattern processor evaluates the Boolean functions over
the scopes of sensor data as specified by the pattern’s
attributes, and raises alarms when the Boolean functions
evaluations over the scopes do not satisfy the expected data
property. To evaluate the Boolean statem ents over the scopes,
SDVe interprets the DaProS specifications into code templates
that evaluate the data. Each pa ttern code tem plate in SD Ve
corresponds to a pattern in the D -SPS. The code templates
have a predefined number of B oolean statements that can be
evaluated by the pattern, and a predefined number of scopes
that can be evaluated by each Boolean statement.

Once the patterns have been evaluated, SDVe generates
two output files to document the violations of properties
identified in the data.

The verification summary file includes the total results of
the verification process over several sensor data files. The
verification summary is used to provide an overall overview of
the verification process. Each data property evaluated by
SDVe is presented in the file along wi th a count of instances
when sensor readings violate such property. The file also
contains, a count of the total number of sensor reading
evaluated, a count of the number of violations found, and a file
detection rate calculated from the ratio betw een total
violations found and the total number of checks . The
verification summary file also provides an aggregation of the
total time in milliseconds of the time needed to load the sensor
reading files to be evaluated and the total time in milliseconds
required to verify the sensor reading files.

The verification file includes the evaluated data properties
along with the instances of the data that violate the data
property.

Figure 1. System overview of the SDVe prototype tool.

681

V. ANOMALY DETECTION IN EDDY COVARIANCE DATA
EXPERIMENT

A. EC Data Description
A series of experiments were conducted to determine if

SDVe can be utilized to evaluate D aProS-specified data
properties to find anomalies in sensor data. Upon further
analysis of the data properties obtained from the literature
survey in [8], it w as determined that three data property types
account for approximately 72.5% of the total number of data
properties specified by scientis ts in the literature survey;
datum properties (32.5%), i.e. properties that capture the
behavior of a single data sensor reading, datum relationship
properties (30.8%), i.e. propert ies that capture a relationship
between two or more sensors, and datum dependent
instruments (9.2%), i.e., properties that capture environmental
data behavior effect on the data collection instruments. Based
on these findings, an experiment was design to determine if
SDVe can be used to identify anom alies for the m ost
frequently specified data properties: datum, datum
relationship, and datum dependent instrument.

A data property specification expert collaborated with
expert scientists working with eddy covariance and
biomesonet towers’ CO2 data to develop a set of data
properties of interest. The contributing scientists were working
on building their first eddy covariance tower and were
interested in capturing data pr operties extracted from sensor
reference manuals [12] [13], climate and climatological
variations in the research site literature [2], eddy covariance
towers post-field data quality control literature [14] and their
own expertise.

B. Experimental Setup
An initial experiment was conducted to validate the ability

of the SDVe tool to detect anom alies. An eddy covariance
error-free data file was random ly selected from a scientist-
provided repository and seeded with a number of anomalies,
based on a 95% confidence level calculation given the number
of readings in the file, to evaluate a group of data properties of
type datum, datum-relationship, and datum dependent
instrument. The experiment identified all seeded anomalies
and all events marked as anomalies were actually anomalies.

A second experiment was conducted to determine if SDVe
can identify anomalies in Eddy C ovariance sensor data and to
illustrate how such anom alies can be identified and
documented by cross referencing the results obtained from
SDVe to existing metadata recorded during the data collection
process. The experiment does not quantify the improvement in
the overall quality of the data.

The scientists developed a m atrix of all the relationships
between sensors in the Eddy covariance tower of interest for
the specific site. T he matrix included raw sensor
measurements and derived data aggregated at different
temporal resolutions and as part of the combination of
measurements from two or more sensors. The sensor
relationship matrix consisted of approximately 118 sensor
readings along with their associated relationships. In
collaboration with scientist som e of the sensor relationships

from the matrix were used to create 23 data properties to be
evaluated over the Eddy covarian ce datasets; the scientists
specified properties of interest of type Datum, Instrument, and
Datum Relationship. The properties w ere intended to capture
anomalies in raw data at collection tim e. The sensor readings
of interest were selected based on the relationship to other
sensor readings and the deriva tion of aggregated values from
them. In collaboration w ith scientists, data properties of
interest were specified, refined, and validated using DaProS.
The numeric thresholds used in the data properties were
defined following scientific community’s algorithms and
protocols.

The Eddy Covariance (EC) data verified using SDVe were
collected from July 06, 2010 to July 13, 2010 to capture EC
summer behavior and from February 09, 2010 to February 16,
2010 to capture EC winter behavior. The sensors at the tower
collected the EC data continuously, and a scientist ma nually
split the data into 1-hour interval files to ease the verification
process. 349 data files were evaluated for this work.

Two data property specification files were created, one for
each season, and used to automatically evaluate individual data
files according to the season to which they belonged. The data
files and specification files w ere automatically inputted to
SDVe to be evaluated. For each data file, the sensor data
streams were extracted to separate data scopes according to the
data property specifications. Then, the data scopes were
evaluated by applying the specifi cation Boolean statement and
data pattern to every individual sensor reading in the scope. If
the individual sensor reading in the scope did not satisfy the
data pattern and Boolean statement, a flag was raised and
stored to the verification file. Once the verification process had
concluded, a verification summary file was generated
aggregating the number of violati ons, i.e, anomalies, identified
by each data property along with the aggregated processing
times.

C. Results
SDVe performed a total of 219,800,854 evaluation calls of

which 50,857,351 of the evaluation calls were captured as
anomalies, approximately 23% . The evaluation process took
approximately 20 hours to complete, of which approximately
1 hour was spent loading the files into the system and 19 hours
were spent verifying the data. Assum ing a data file takes 15
minutes on average to be manually processed and evaluated by
a scientist manually processing the 349 files would take
approximately 87 hours. SDVe automatically evaluates the
data in one fourth of the tim e that it w ould take a scientist to
manually evaluate the same amount of data.

For summer data, 124,958,406 evaluations calls took place,
of which 24,417,791were of the evaluation calls were captured
as anomalies, approximately 20%.

Datum properties identified the m ost anomalies
(21,429,802), followed by Data Relationship (2,639,985),
Instrument (348,004) and Data Dependent Instrument (0). The
sensor datasets with the most anomalies included water vapor
mass density (H2O), atmospheric pressure (atm_press), carbon
dioxide (CO2), and temperature (Ts).

682

Once the datasets were evaluated using SDVe, the
anomalies found by the tool were cross-referenced with the
available data-collection process metadata compiled by the
scientists in the field site a nd with historical meteorological
data obtain from the Weather Underground website [15] to
identify false positives. SD Ve was able to identify
environmental variability and instrument malfunctioning in the
datasets. Abrupt changes in the number of violations detected
in the summer season by the data properties correspond to rain
events that occurred in the ar ea. Specifically, rain events
occurred in July 8, 2010 (07/08/2010) and July 11, 2010
(07/11/2010) represented as high concentrations and abrupt
changes in the number of anoma lies found at the time of the
event occurrence. A similar rain event, occurred on February
10, 2010 (02/10/2010) dur ing the winter season. Such rain
events were identified as both, true environm ental variability
and as a cause for instrument malfunctioning. Rain events
affected data properties m onitoring environmental variability
such has water vapor mass density (H2O), carbon dioxide mass
density (CO2), vapor pressure (e_hmp), and data properties
monitoring instrument functioning such as the automatic gain
control (agc) flag.

The results were evaluated by an expert and it was
determined that all of the e nvironmental events captured by
SDVe were true environmental events and no other
environmental events occurred dur ing that period of time . In
addition, all detected equipm ent malfunctioning anomalies
were associated to the detected environmental events as
expected. Also, identified false negatives were determined to
be mostly due to misrepresentation of environmental
phenomenon in specifications due to seasonal and diurnal
cycles.

VI. DISCUSSION
In some instances, the efficiency of SDVe can depend on

the quality of the specified properties. Some of the influencing
aspects that can affect the results of the anomaly detection
process are discussed in this section.

When defining data properties, scientist needs to consider
subtleties in the specification such as in the operator used in
the Boolean statements. For exampl e, the scientists need to be
aware of the distinction in the meaning associated with the “<”
and the “≤” operators and their implications to the verification
process.

Environmental events can only be characterized if va rious
data properties associated w ith different sensors are violated
during the event. For instance, solely looking at changes in
temperature cannot identify a rain event, but changes to
diagnostic flag and atm ospheric pressure in addition to the
temperature change can indicate such event.

Overlapping and conflicting properties can be determ ined
either during the specification pha se or the verification phase.
Identifying the conflicts at the specification stage is difficult
because it requires a deep understanding of the data being
analyzed and requires the practitioner to keep track of the data
properties and the relationship and side effects between them.
Also, potential properties conflicts are harder to validate

because there is no im mediate way to quantitatively com pare
the expected output for the data properties that can isolate the
conflict. If the conflicts are captured at the verification stage,
the practitioner has access to the verification results and can
cross-reference the results of the verification with the specified
data properties and thus decide if properties conflict with each
other.

Another challenge is to identify the m ost appropriate
threshold to be used in a data property. Threshold values,
when needed, are usually site specific, thus it is difficult to
identify universal threshold values that could use by all of the
scientific communities. Scientists must consider the intent of
the property in addition to the site-specific inform ation when
selecting the thresholds for the data properties.

Scientists are interested in identifying the critical set of
properties needed to identify environm ental variability or
instrument malfunctioning from the data. In this context, a
critical set of properties is the group containing the minimum
number of data properties that w ill allow a scientist to identify
a weather or instrument feature in the data.

Data properties can also be used to assign confidence levels
of quality to collected data. D ata properties can be defined in
terms of the diagnostic measurem ents in the data collection
instruments that are affected by the conditions surrounding the
experiment. Consider the clean window value (agc) from a 3-
D Sonic Anemometer [12]. Typi cal clean windows values are
between 55% and 65% . As dirt or water accumulates on the
windows, or anywhere in the optical path, the agc value
increases. Changes in the agc value can result from dust,
pollen, vibrations, dew, and ra in/snow [13]. G iven that the
higher the value of the agc, the higher the probability that the
collected data results in bad/ not-expected data, the scientist
can take advantage and specify data properties with
confidence levels on them.

Data properties can be used to identify anom alies at
different data granularities, i.e., the level of fineness to w hich
a dataset is sub -divided. The challenge is to determ ine at
which data granularity to verify the data such that the num ber
of anomalies found is maximized. If the data is verified at the
highest level, i.e., the sm allest sub-division of a dataset, every
data point can be examined a nd verified; however, it requires
more computational power to do so. Lowering the data
granularity relieves the computa tion power needed to verify
the data, but can miss anomalies in the data. For this work, the
data granularity used was the highest available --data
measurements were taken every millisecond and stored in half
hour files.

The effectiveness of SDVe depends on the precision with
which the seasonal and diurnal cycles are m odeled by the data
properties. Due to differences in data types and data behavior
according to seasonal and diurnal variability, in som e cases it
is necessary to define the data properties to be as specific as
possible to an expected data behavior or time-related
variability. For E C data, the e xpected data values m easured
by the sensors differ depending on the season, the diurnal
cycle and the time of the day. Different data property sets,

683

with specific data granularity and quantitative values, have to
be built for specific parts of the season and diurnal cycles.

Data Properties can be specified to docum ent scientific
knowledge about processes or to identify anomalies in
scientific sensor data. D ata properties specified to detect
anomalies in sensor data are typically specific about the sensor
names and thresholds over which the data should be evaluated,
can be interpreted and used to evaluate data by SDVe without
further manipulation to the property, and can be used to
document the scientific processes. D ata properties that are
specified for the sole purpose of documenting processes are
typically general in their descriptions, e.g., only describe
which sensor reading will be evaluated and how it will be
used, but do not include the speci fic name or threshold values
to be evaluated. Data propertie s for documenting processes
might also include computationa l methods that need to be
applied to data before the data can be evaluated. These types
of data properties are not suitable for the current version of
SDVe.

VII. RELATED WORK
Some of the approaches that are frequently used to detect

anomalies in sensor data are described in this section.
The Intelligent Outlier Detection Algorithm (IODA) [16] is

a technique used to perform quality control on tim e series
data. IODA uses statistics, graph theory, image processing and
decision trees to determine if data are correct. The I ODA
algorithm compares incoming data, which are treated as
images, to common patterns of failure. SDVe differs from this
approach in that it is a scientist-centered approach in which the
anomaly detection process is based on the expert scientific
knowledge captured by the data properties.

Dereszynski & Dietterich [1 7] use a Dynamic Bayesian
Network (DBN) [18] approach to automatic data cleaning for
individual air temperature data streams. The D BN combines
discrete and conditional linear-Gaussian random variables to
model the air temperature as a function of diurnal, seasonal,
and local trend effects. The approach uses a general fault
model to classify different type of anomalies. SDVe differs
from this approach in that no mathematical or logic knowledge
has to be acquired by the scientists to verify their data as it is
the case with the DBN.

EdiRe [19] is a software tool for eddy covariance and
microclimatological measurement analysis. EdiRe is adaptable
to most eddy covariance raw da ta formats and microclimate
data, however it requires processing routines to be developed
and redesigned to address the different areas associated with
data analysis as opposed to SDVe that do not required any
software implementation or recompilation.

VIII. SUMMARY
Scientists collecting large amounts of complex

environmental sensor data need to be assured that their data
are correct in a timely fashion. The SDve prototype tool adapts
software engineering techniqu es to allow scientists to verify
sensor datasets against predefined form ally specified data

properties. SDVe automatically verifies datasets and raises
flags whenever anomalies occur in the datasets. SD Ve has
been used to identify anomalies in eddy covariance data.

ACKNOWLEDGMENT
The authors would like to thank Dr. Deanna Pennington,

Dr. Craig Tweedie and Aline Jaim es for their invaluable input
towards this work.

REFERENCES
[1] A. Jaimes. Presentation, Topic: “Defining Properties for Eddy

Covariance Data,” Cybershare-Center, The University of Texas at El
Paso, 2010.

[2] X. Lee, W. Massman, B. Law. Handbook of Micrometeorology: A Guide
for Surface Flux Measurements and Analysis. 1st ed., Kuwer Academic
Publisher, 2004, pp. 181-208.

[3] M.B Dwyer, G.S. Avrunin, J.C. Corbe tt. “A System of Specification
Patterns,” in Proc. of the 2nd Workshop on Formal Methods in Software
Practice, 1998.

[4] O. Mondragon, A.Q. Gates. “Supporting Elicitation and Specification of
Software Properties through Patterns and Composite Propositions,” Intl.
Journal Software Engineering and Knowledge Engineering, vol. 14(1),
Feb. 2004.

[5] D. Peters. “Automated Testing of Real-Time Systems.” Technical report,
Memorial University of Newfoundland, 1999.

[6] N. Delgado, A.Q. Gates, S. Roach. “A Taxonomy and Catalog o f
Runtime Software-Fault Monitoring Tools,” in IEEE Trans. Softw. Eng.
30, 2004, pp. 859-872.

[7] G. Holtzmann. “The Spin Model Checker,” in IEEE Transactions on SE,
vol. 23(5), 1997, pp. 279-295.

[8] I. Gallegos, A.Q. Gates, C.E. Tweedie. “Toward Improving
Environmental Sensor Data Quality: A Preliminary Property
Categorization,” in Proceedings of the International Conference on
Information Quality (ICIQ), 2010.

[9] S. Konrad, B.H.C. Cheng. “Facilitating the Construction of Specification
Pattern-Based Properties,” in Proc. IEEE Requirements Engineering,
2005, pp. 329-338.

[10] I. Gallegos, A.Q. Gates, C.E. Tweedie. “DaProS: A Data Property
Specification Tool to Capture Scientific Sensor Data Properties,” in
Proceedings of the Workshop on Domain Engineering DE@ER10, 2010.

[11] J.A. Hourcle. “Data Relationships: Towards a Conceptual Model of
Scientific Data Catalogs,” in Eos Trans. AGU, vol. 89(53), 2009.

[12] Campbells Scientific. “Instruction manual: CSAT Three Dimensional
Sonic Anemometer.” Logan, Utah, Campbells Scientific Inc.: 70. 2008.

[13] Campbells Scientific. “Open Path Eddy Covariance Training.” Logan,
CSI. 2009.

[14] K.M. Havstad, L.F. Huenneke, W. H. Schlesinger., “Structure and
Function of a Chihuahua Desert Ecosystem: The Jornada Basin Long -
Term Ecological Research Site,” Oxford University Press, 1st Edition,
2006, pp. 44-80.

[15] Weather Underground. “WeatherUnderground,” Internet:
http://www.wunderground.com/. [Feb, 2012].

[16] R.A. Weekley, R.K. Goodrich, L.B. Cornman. “An Algorithm for
Classification of Outlier Detection of Time-Series Data,” in Journal of
Atmospheric & Oceanic Technology, vol. 27, pp. 94-107, 2010.

[17] E.W. Dereszynski, T.G. Dietterich. “A Probabilistic M odel for Anomaly
Detection in Remote Sensor Streams.” M.A thesis, Oregon State
University, USA, 2007.

[18] T. Dean, K. Kanazawa. “Probabilistic Temporal Reasoning,” in Proc.
AAAI, 1988, pp. 524-529.

[19] The University of Edinburgh School of GeoSciences. “EdiRe,” Internet:
http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/ [Feb, 2012]

684

Reconfiguration of Robot Applications using Data Dependency and Impact Analysis

Michael E. Shin, Taeghyun Kang
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

{michael.shin; th.kang}@ttu.edu

Sunghoon Kim, Seungwook Jung,
Myungchan Roh,

Intelligent Robot Control Research/ETRI
Daejeon, Korea

{saint; sejung; mcroh}@etri.re.kr

Abstract

This paper describes an approach to reconfiguring
component-based robot applications against component
failures using the data dependencies between components
and their impact analysis. Most of the components
constituting robot applications are activated periodically to
process periodic data delivered by other components. A
component depends on another component in terms of
periodical data. In this paper, the impact of data
dependency between components is analyzed as to how a
component failure affects its dependent component. The
impact levels are categorized as insignificant, tolerable,
serious, and catastrophic. The data dependencies between
components and their analyzed impacts are used to
reconfigure robot applications against component failures.
The proposed reconfiguration approach can be a basis for
recovery and safety of robot applications. The approach is
applied to the Unmanned Ground Vehicle (UGV)
application.

1. Introduction

Most of the com ponents constituting robot applications
depend on other com ponents in ter ms of periodic data. A
robot application can be made by robot components, which
are designed for specific functionalities. Most of the robot
components perform their fu nctions periodically to proces s
periodic data delivered by ot her components. If a periodi c
component does not deliver the data to its dependent
component, it causes the de pendent components to fail to
process the periodic data. Periodic com ponents in robot
applications should be activated periodically to process the
periodic data within the specified cycle time. A component
failure can spread out to loca l components nearby the failed
component or to all the components in the robot application.

The impact of a periodic component failure to its
dependent components differs depending on how important
the component is to its d ependent components. Some
component causes a m inor impact to its depende nt
components, whereas other c omponent can be critical to its
dependent components. Suppose that th e Car Detection
component in the Unm anned Ground Vehicle (UGV)
application receives the periodic pictures from a Camera and

the laser data array from a Laser Range Finder (LRF) to
detect other c ars trajectory. The Car Detection component
may ignore the LRF failure because it can detect other cars
trajectory with only Cam era pictures. However, the Car
Detection component may be seriously affected f rom a
Camera component failure i f it cannot rec eive the Cam era
picture periodically.

Functional or data de pendencies [Mohamed10a,
Mohamed10b, Vieira02, Ahn10, Popescu10] have been
investigated to analyze the im pact of failures.
[Mohamed10a] analyzes the propagation of dependencies in
terms of value, silent, and perform ance. In [Ahn10] , fault
impact levels are classified by ignore, reset, and stop, a nd
different fault handling is performed according to the level of
fault impact. [Mohamed10b] claims that a component failure
increases the failure severity of an application if the
component has a high propagation probability.

This paper describes an a pproach to r econfiguring
component-based robot applications against periodic
component failures using the data de pendencies between
components and their im pact analysis. The im pact of a
component failure to its dependent com ponents is analyzed
and classified as different impact levels. The reconfiguration
of robot applicat ion is carr ied out based on the data
dependencies and impact levels. But recovery and detection
of failed components are out of scope this paper.

2. Dependency and Impact Analysis

A feature of robot applications composed of components
is that a component processes data periodically delivered by
another component. Robot applications process periodic
stimuli captured by sensors in the environment and respond
to them via actuators. A component interfacing with a
sensor receives and processes the sensor input periodically,
and then it delivers to other components processing the data.
The processed data m ay be sent to a nother component so
that the data is processe d further. The output corresponding
to the sensor input is sent to the com ponents interfacing
with actuators that carry out the output.

Two components in r obot applications have a data
dependency relationship if a component processes the da ta
received from another. The data depende ncy relationship
between components is defined as the opposite direction of
the dataflow between com ponents. In this paper, the

685

dataflow and data de pendency relationship betwee n
components are represented with an arrow and a dotted
arrow respectively. Fig. 1 depicts the dataflow between
components for part of the Environment Modeling and
Perception (EMP) in the Unmanned Ground Vehicle (UGV)
application [Roh11]. The L aser Range Finder (LRF) and
Camera components generate LRF data array and 24 bits raw
RGB respectively. The Car Detection component produc es
other cars trajectory by analys ing the data that com es from
the LRF and Camera components. Using the data from the
Car Detection com ponent, the Dangerous Situation
component determines wheather it should generate an alarm
to prevent critical accidents.

Car Detection

Laser Range
Finder (LRF) LRF data array

Camera1

24 bits raw
RGB

List of car trajectory

Camera2

Dangerous
Situation

24 bits raw
RGB

Fig. 1 Dataflow between Components for Environment
Modeling and Perception in UGV application

The impact of a component failure to another component
is analyzed using the data dependency relationship between
components. The impact is defined depending on how much
a component is affected from other co mponent failure, and
the impact level is determined by considering the importance
of received data. The impact level of a component failure to
its dependent components is categorized as insignificant,
tolerable, serious, and catastr ophic. An insignificant im pact
level describes a data depe ndency in which a com ponent
uses an extra data from another component to verify or
increase the reliability of co mponent output additionally. A
component can provide its full functionality required without
any problem even though there is no extra data from a fai led
component. The impact is represented with an impact level
on the data dependency relationship between components.

Fig. 2 depicts the data dependency relationships between
components for the Environment Modeling and Perception
(EMP), which are defined based on the dataflow in Fig. 1.
The LRF co mponent is in significant for the Car Detection
component (Fig. 2), which receives data from the LRF and
two Camera components to trace other cars trajectory. Even
though the LRF component fails, the Car Detection
component can still produce other cars trajectory using only
the data generated from the Camera components. The LRF
component is added to the EMP as an extra component so
that the Car Detection com ponent can produce high quality
of other cars trajectory.

Failures of a component, which is t olerable to its
dependency component, do not disrupt the normal function
of its dependent component. The dependent component may

have a minor impact from a com ponent failure. The Car
Detection component (Fig. 2) is supported by two Camera
components, each impact level of whic h is de fined as
tolerable. Even though one of two Camera components fails
to capture other cars pictures, the Car Detec tion component
can make other cars trajectory using the remaining Camera
component.

Car Detection

Laser Range
Finder (LRF) insignificant

Camera 1

Camera 2 tolerable

tolerable Dangerous
Situation

serious

Fig. 2 Data Dependency Relationship between Components
for Environment Modeling and Perception in UGV

application

A component failure that makes serious impact to its
dependents component causes the dependent to st op
processing data. This is because the dependent component
cannot generate a reliable output any more without the data
from the failed com ponent. Stopping the de pendent
components could give a ripple effect to the next dependent
components so that it can pa ralyze part of an application.
But, stopping the dependent components does not lead the
application to a total failure. The application can provi de
still partial services using the remaining components, which
may not have critical impact from the stopped com ponents.
The data generated by the Car Detection c omponent is
critical to the Dangerous Sit uation component in Fig. 2, so
the impact of Car Detection component to the Dangerous
Situation component is defi ned as seriou s. When the Car
Detection component fails, the Da ngerous Situation
component should stop processing the data. This is because
the Dangerous Situation c omponent cannot generate the
reliable output without t he data from the Car Detection
component.

Catastrophic impact is used to describe a sit uation where
a component failure needs to stop all components
constituting an application. An application may encounter a
critical accident if all the com ponents do not stop
immediately. Catastrophic i mpact may be associated wi th
safety of robots. The Virtual Robot component in the UGV
application controls real devices such as engine and steering
wheel. A failure of Virtual Robot component may cause the
UGV to encounter an accident, which could lead to l ose
human life.

Some kind of data dependency relationships bet ween
components, which have the same impact level, can have a
cardinality constraint that describes a m inimum number of

686

data dependencies required for keeping the impact level. A
component may receive data from the same type of multiple
components. In t his case, the com ponent depends on the
multiple components that have the same impact level. If the
dependent component cannot receive data from at least
some number of same type com ponents, it can have
additional impact from the missing data. In this case, t he
impact level of the sam e type components to its depe ndent
component needs to inc rease one level up. Each Camera
component (Fig. 2) has a tolerable im pact to the Car
Detection component, but the tolerable impact should
change to seri ous if both Camera components encounter
failures at the same time. This is because the Car Detection
component requires the data from at least one Cam era
component so as to generate the reliable output.

3. Reconfiguration

3.1 Prototype

An application configuration manager as a prototype is
developed to validate the reconfiguration of a robot
application using the data dependency relationships between
components and their impact analysis. The application
configuration manager decides whic h components need to
be reconfigured using the data dependency relationships
between components and their impact levels in response to a
component failure. The scope of reconfiguration is decided
depending on the criticality of c omponent dependencies,
such as insignificant, tolerable, serious, or catastrophic. For
this, the appl ication configuration manager generates a
reconfiguration plan by c onsidering ripple effects of the
failure using the data dependency relationships and t heir
impact levels. This plan includes all the components being
affected from the failure.

The application configuration m anager reconfigures an
application by interacting with executors in the OPROS
engine [Song08, Jang10]. The OPROS engine is a platform
for robot applications t hat executes robot applications
composed of components. Periodic components that process
data periodically are activate d and run by executors in t he
OPROS engine. Each e xecutor runs components that have
the same periodic cycle tim es. When an executor detects a
component failure, it requests reconfiguring the components
associated with the failed c omponent from the application
configuration manager. Each executor has the worst ca se
execution times of c omponents, detecting a c omponent
failure if the component cannot finish its periodic cycle time
within its worst case execution time.

Figure 3 depicts the outline of our prototype for
reconfiguring components against component failures using
the data dependency relationships between components and
their impact analysis. Suppose two executors in the OPROS
engine execute periodic and same cycle-timed components.
When the first component in the Exec utor2 fails, the
executor notifies the application configuration manager of

the failure. The application configuration manager checks
how much the failed component has impact on its dependent
components in the application. A component in the
Executor1 depends on the fai led component and the im pact
level is serious. Now the component in the Executor1 waits
for some data from the failed component. Without the failed
component, the component in the Executor1 cannot process
the data. The application configuration manager requests the
Executor1 to s top the dependent component. Similarly, the
second component in the Executor1 depends on the sec ond
and third components in the Executor2. However, the
dependent component can survive even though t he second
component in the Exec utor2 fails. T his is because t he
impact level is tolerable.

Component
(50ms)

Component
(50ms)

Executor 1

Component
(50ms) Executor 2

Component
(50ms)

Component
(50ms)

failure

Message
Queue

Application
Configuration

Manager

Serious

Dependency
table/Impact
table

Update configuration table
(dependency table &
impact table)

tolerable

tolerable

failure

Component
(50ms)

Reconfiguration

Failure
notifying

Fig. 3 Outline of Reconfiguration in OPROS

3.2 UGV Application

The approach proposed in th is paper is validated with
the Unmanned Ground V ehicle (UGV) application
[Roh11], which drives a car to the destination place
safely without a human driv er’s intervention. Fig. 4
depicts the data dependency relationships between
components and their impact levels for the Pedestrian
Detection that is used for validating our approach, along
with the Environment Modeling and Perception (Figs. 1
and 2) described in sectio n 2. The Th ermal Imaging
Camera (TIC) renders infrared radiation as a visual light.
The Car Detection component produc es other cars
trajectory by analysing the data that comes from LRF,
Camera, and TIF components. The Pedestrian component
detects people on the road and the Localizatio n
component generates th e world space absolute
coordinates. Using the data from the Localization, Car
Detection and Pedestrian components, the Dangerous
Situation component determines if it sh ould generate an
alarm to prevent critical accidents.

For test purpose, we inject ed failures to components
and the reconfiguration result were co mpared to th e

687

expected reconfiguration. For instance, failures w ere
injected to the Camera1 first and then to t he Camera2 to
check if the Camera1 and Camera2 failures af fects the
Car Detection and Pedestri an components. Also, we
tested the reconfigurations for the LRF component that is
insignificant to the Car Detection componen, and
Pedestrian component that are serious to the Dangerous
Situation component. These test results were the same as
the expected reconfiguration.

Car Detection

Pedestrian

localization
Laser Range
Finder (LRF)

insignificant

Camera1

Thermal Imaging
Camera (TIC)

tolerable

tolerable

serious

serious
Camera2

tolerable

tolerable

Dangerous Situation

serious

tolerable

tolerable

Fig. 4 Pedestrian Detection, and Environment Modeling
and Perception in UGV Application

4. Conclusions

This paper has described a n approach to reconfiguring
component-based robot applications using the data
dependency relationships between components and their
impact analysis. The impact of a c omponent failure to its
dependent components are analyzed and classified as
different impact levels, such as insignificant, tolerable,
serious, and catastrophic. Based on different impact levels, a
robot application is reconfigured against a component failure.
To validate, a prototype for reconfiguration has been
developed with the UGV application and i t has been tested
with OPROS engine.

This paper can have future research. The constraints on
impact levels bet ween data dependency relationships
between components need be specified formally. The
impact level between data dependency relationships can be
changed dynamically and should be specified by means of
constraints. Also the proposed approach needs to be applied
to large-scale robot applications to validate further.
Moreover, this paper could be extended to include event and
functional dependency relationships between components
for reconfiguring a robot application.

Acknowledgement

This work was supported by the Industrial Foundation
Technology Development Program of MKE/KEIT, Rep. of

Korea [10030826, Development of Reliable OPRoS
Framework].

References

[Ahn10] Ahn, H., D. Lee, and S. Ahn, “Hiearchical Fa ult
Tolerant Architecture For Com ponent-based Service
Robots,” 8th IEEE International Conferenc es on Industrial
Informatics(INDIN), Osaka, Japan, 2010, pp.487-492 .

[Jang10] Jang, C., S. Lee, S. Jung, B. Song, R. Kim, S. Kim,
and C. Lee, "OPROS: A New Component-Based Robot
Software Platform," ETRI Journal, vol.32, no.5, Oct. 2010,
pp.646-656.

[Mohamed10a] Mohamed, A., and M. Zulkernine, “Failure
type-Aware reliability Assessment Component Failure
Dependency,” 4th International Conference on Secure
software Integration and reliability Improvement(SSIRI)
Singapore, 2010, pp.98-105.

[Mohamed10b] Mohamed, A., a nd M. Zulkernine, “The
Level of De composition Impact on Com ponent Fault
Tolerance,” IEEE 34 th Annual Computer Software a nd
Applications Conference Workshops(COMPSACW), Seoul,
Korea, 2010, pp.57-62.

[Popescu10] Popescu, D., “Impact Analysis for Event-Based
Components and Systems,” ACM/IEEE 32nd International
conference on Software Engineering, Cape Town, South
Africa, 2010, pp.401-404.

[Roh11] Roh, M. C., J. Byun , and S. Kim, “Design of t he
UGV System based on Open Platform Robot of S oftware,”
6th Korean conference on robots, Seoul, Korea, June, 2011.

[Song08] Song, B., S. Jung, C. Jang, and S. Kim, “An
introduction to Robot Component Model for OPROS
(Opend Platform for Ro botic Services),” International
Conference on Simulation, Modeling, and Programming for
Autonomous Robots, Venice, Italy, 2008.

[Vieira02] Vieira, M., a nd D. Richards on, “Analyzing
dependencies in Large Com ponent-based systems,” 17th

IEEE International Conference on A utomated Software
Engineering (ASE) , Edinburgh, UK, 2002, pp.241-244.

688

Spacemaker: Practical Formal Synthesis of Tradeoff
Spaces for Object-Relational Mapping

Hamid Bagheri
University of Virginia,

151 Engineer’s Way,

Charlottesville, VA 22903 USA

hb2j@virginia.edu

Kevin Sullivan
University of Virginia,

151 Engineer’s Way,

Charlottesville, VA 22903 USA

sullivan@virginia.edu

Sang H. Son
University of Virginia,

151 Engineer’s Way,

Charlottesville, VA 22903 USA

son@virginia.edu

Abstract—Developing mixed object-relational (OR) mappings
that achieve desirable quality attribute tradeoffs for object-
oriented applications is difficult, tedious, costly, and error-prone.
We contribute a practical, automated technique for exhaustive,
formal synthesis of large spaces of such mappings, and the
clustering of individual mappings in these spaces into multi-
dimensional quality equivalence classes. This technique can help
engineers to design effective persistence layers for object-oriented
applications. Our approach is to use a formal language to
describe both a space of mappings and multiple quality attribute
valuation functions on points in such a space. We use a constraint
solver to exhaustively enumerate points in this space and their
valuations. We then cluster the results into quality attribute
equivalence classes. This work promises to reduce the cost and
time required to develop mixed OR mappings, ensure their formal
correctness, and help engineers to understand and make tradeoffs
quantitatively. We conducted application-oriented experiments to
test feasibility and scalability of our approach. In one experiment
we synthesized an OR mapping tradeoff space for a real e-
commerce application, synthesizing and classifying hundreds of
thousands of mappings in just a few minutes.

Index Terms—Design; Database; Object-relational mapping;
Design space exploration; Alloy Language.

I. INTRODUCTION

Object-oriented applications often need to use relational

databases for persistent storage. Transformations between

instance models in these two paradigms encounter the so-

called impedance mismatch problem [9]. Object-relational

mapping (ORM) systems are now widely used to bridge the

gap between object-oriented application models and relational

database management systems (DBMS), based on application-

specific definitions on how object models are to be mapped to

database structures.

The problem we address is that today one has to choose be-

tween automatic generation of mappings using pure mapping

strategies [3], [9], or the manual design of mixed mappings,

in which different mapping strategies are applied to individual

classes rather than to entire inheritance hierarchies. Producing

pure mappings automatically is easy, but it often leads to

sub-optimal results. Developing mixed mappings by hand can

achieve much higher quality, but it is hard and error-prone.

Among other things, it requires a thorough understanding

of both object and relational paradigms, of large spaces of

possible mappings, and of the tradeoffs involved in making

choices in these spaces.

To address this problem, we present an approach that

provides both the quality benefits of mixed mappings and

the productivity benefits of automated synthesis. We present a

practical formal automated technique, implemented in a pro-

totype tool that we call Spacemaker, for exhaustive synthesis

of mixed OR mappings and their classification into quality

attribute equivalence classes. We take as inputs a formal object

model and optional class-specific mapping strategies for those

classes that the user wants mapped in a specific manner.

We then use an automated constraint solver to exhaustively

generate the space of mappings subject to the given con-

straints, along with multiple quality attribute measures for

each mapping. Next we cluster mappings into quality attribute

equivalence classes and present candidates from each class to

the engineer along with the measures of its quality attributes.

The engineer can then select a mapping to satisfy tradeoff

preferences. Our prototype tool uses Alloy as a specification

language [10], and the Alloy analyzer as a constraint solver.

In more detail, we claim four main contributions: (1) We

present what is to our knowledge the first formalization of

fine-grained and mixed ORM strategies by means of mapping

functions; (2) we contribute a fully automated approach for

formally precise synthesis of mapping tradeoff spaces, based

on this formalization; (3) we present an experimental demon-

stration of technical feasibility and scalability to practically

meaningful applications; and (4) we develop the Spacemaker

tool [1], which we make available to the research and ed-

ucation community. Data from our experiments support the

claim that our technique can reduce the time to develop high-

quality OR mappings, ensure their correctness, and enable

engineers to make tradeoffs based on automatically computed

quality attributes for a full range of possible mappings rather

than on intuition or hard-to-acquire expertise in OR mapping

strategies.

The rest of this paper is organized as follows. Section II

presents our approach. Section III reports and discusses data

from the experimental testing of our approach. Section IV

surveys the related work. Section V concludes the paper with

an outline of our future work.

II. APPROACH

We present our approach in three parts. We first formalize

application of object-relational mapping strategies. We then

689

use these formalizations to automate synthesis of quality

equivalence classes of OR mappings. Third, we describe algo-

rithms that are important for the scalability of our approach.

In a nutshell, they serve to decompose large object models

into smaller components for which mapping problems can be

solved independently. This element of our work helps avoid

combinatorial explosion in constraint solving.

A. Formalization

The issue of mapping an object model to a set of relations

is described thoroughly in the research literature [3], [9], [11],

[14]. To provide a basis for precise modeling of the space

of mapping alternatives, we have formalized OR mapping

strategies in an appropriate level of granularity. As an enabling

technology, we chose Alloy [10] as a specification language

and satisfaction engine for three reasons. First, its logical

and relational operators makes Alloy an appropriate language

for specifying object-relational mapping strategies. Second, its

ability to compute solutions that satisfy complex constraints

is useful as an automation mechanism. Third, Alloy has

a rigorously defined semantics closely related to those of

relational databases, thereby providing a sound formal basis

for our approach.

The principal mapping strategies are explained in terms

of the notations suggested by Philippi [14], and Cabibbo

and Carosi [3]. To manage association relationships, we have

formally specified three ORM strategies of own association
table, foreign key embedding and merging into single table. We

have also defined three more ORM strategies for inheritance

relationships: class relation inheritance (CR), concrete class
relation inheritance (CCR) and single relation inheritance
(SR). Furthermore, as the aforementioned ORM strategies

for inheritance relationships are just applicable to the whole

inheritance hierarchies, we have defined three extra predicates

for more fine-grained strategies: Union Superclass, Joined
Subclass and Union Subclass, suitable to be applied to the

part of an inheritance hierarchy to let the developer design a

detailed mapping specification using the combination of vari-

ous ORM strategies. To make our idea concrete, we illustrate

the semantics of one of these strategies in the following.

1 pred U n i o n S u b c l a s s [c : C l a s s]{
2 c in (i s A b s t r a c t . No) =>{
3 one Table <:c . ˜ t A s s o c i a t e
4 }
5 (c . i s A b s t r a c t =No) =>{
6 a l l a : A t t r i b u t e | a in c . a t t r S e t =>{
7 one f : F i e l d | f . f A s s o c i a t e =a
8 && f in (c . ˜ t A s s o c i a t e . f i e l d s) }
9 }

10 (c . i s A b s t r a c t =No)&&(c . ˆ p a r e n t != none) =>{
11 a l l a : A t t r i b u t e | a in c . ˆ p a r e n t . a t t r S e t =>{
12 one f : F i e l d | f . f A s s o c i a t e =a &&
13 f in (c . ˜ t A s s o c i a t e . f i e l d s) }
14 }
15 (c . ˜ t A s s o c i a t e) . f o r e i g n K e y = none
16 . . .
17 }

Listing 1. Part of the Alloy predicate for the UnionSubclass strategy

Listing 1 partially outlines the Alloy predicate for the

Union Subclass strategy, where each concrete class within

the hierarchy is represented by a separate table. The strategy

predicate then states, in lines 5–14, that each table encom-

passes relational fields corresponding to both attributes of the

associated class and its inherited attributes. As such, to retrieve

an individual object, only one table needs to be accessed.

Finally, this strategy implies no referential constraint over the

mapped relations.

B. Design Space Exploration
In the previous section, we showed how executable specifi-

cations can be used to formalize OR mapping strategies. In this

section, we tackle the other aspect that needs to be clarified:

how we can apply a design space exploration approach to

generate quality equivalence classes of OR mappings based

on those specifications.
A design space is a set of possible design alternatives, and

design space exploration (DSE) is the process of traversing

the design space to determine particular design alternatives

that not only satisfy various design constraints, but are also

optimized in the presence of a set of objectives [15]. The

process can be broken down into three key steps: (1) Mod-

eling the space of mapping alternatives; (2) Evaluating each

alternative by means of a set of metrics; (3) Traversing the

space of alternatives to cluster it into equivalence classes.

Modeling the Space of Mapping Alternatives
For each application object model, due to a large number

of mapping options available for each class, its attributes and

associations and its position in the inheritance hierarchy, there

are several valid variants. To model the space of all mapping

alternatives, we develop a generic mixed mapping specification

based on fine-grained strategies formalized in previous section.

This generic mixed mapping specification lets the automatic

model finder choose for each element of the object model

any of the relevant strategies, e.g. any of the fine-grained

generalization mapping strategies for a given class within an

inheritance hierarchy.
Applying such a loosely constrained mixed mapping strat-

egy into the object model leads to a set of ORM specifications

constituting the design space. While they all represent the same

object model and are consistent with the rules implied by a

given mixed mapping strategy, they exhibit totally different

quality attributes. For example, how inheritance hierarchies are

being mapped to relational models affects the required space

for data storage and the required time for query execution.
We called this mapping strategy loosely constrained because

it does not concretely specify the details of the mapping,

such as applying, for example the UnionSubclass strategy to a

specific class. An expert user, though, is able to define a more

tightly constrained mixed mapping by means of the parameter-

ized predicates Spacemaker provides, as we demonstrate in the

next section. The more detailed the mapping specifications, the

narrower the outcome design space, and the less the required

postprocessing search.

Measuring Impacts of OR mappings
Mapping strategies have various kinds of impacts in terms

of quality attributes of applications. There are several ap-

proaches proposed in the literature dealing with the challenge

690

Fig. 1. The ecommerce object model.

of defining metrics for OR mapping impacts on non-functional

characteristics. It has been shown that efficiency, maintain-

ability, and usability, among the set of all quality attributes

defined by the ISO/IEC 9126-1 standard, are characteristics

significantly influenced by OR mappings [8]. For each of those

attributes, we use a set of metrics suggested by Holder et

al. [8] and Baroni et al. [2]. The metrics are Table Access for
Type Identification (TATI), Number of Corresponding Table
(NCT), Number of Corresponding Relational Fields (NCRF),

Additional Null Value (ANV), Number of Involved Classes
(NIC) and Referential Integrity Metric (RIM).

To measure these metrics, we developed a set of queries to

execute over synthesized alternatives. For brevity, and because

it suffices to make our point, we concisely describe one of

these metrics and the corresponding query in the following.

Spacemaker supports the others as well.

The Number of Corresponding Relational Fields (NCRF)

metric specifies the extent of change propagation for a given

OR mapping. Specifically, the NCRF metric manifests the

effort required to adapt a relational schema after applying a

change, such as inserting or deleting an attribute, over a class.

According to the definition, given a class C, NCRF(C) specifies

the number of relational fields in all tables that correspond to

each non-inherited, non-key attribute of C. The specification

of a query we designated to measure the NCRF metric over

synthesized alternatives is given below:

NCRF(C) = #(C.attrSet - C.id). fAssociate. fields
The Alloy dot operator denotes a relational join. While

attrSet specifies a set of non-inherited attributes of a class,

fAssociate is a relation from a table field to its associated class

attribute. The query expressions then, by using the Alloy set

cardinality operator (#), defines the NCRF metric.

Exploring, Evaluating and Choosing

The next step is to explore and prune the space of mapping

alternatives according to quality measures. Spacemaker parti-

tions the space of satisfactory mixed mapping specifications

into equivalence classes and selects at most a single candidate

from each equivalence class for presenting to the end-user.

To partition the space, Spacemaker evaluates each alterna-

tive with respect to previously described relevant metrics. So

each equivalence class consists of all alternatives that exhibit

the same characteristics. Specifically, two alternatives a1 and

a2 are equivalent if value(a1, mi) = value(a2, mi) for all

metrics (mi). Because equivalent alternatives all satisfy the

mapping constraints, it suffices to select one alternative in

each equivalence class to find a choice alternative. Given

that quality characteristics are usually conflicting, there is

generally no single optimum solution but there are several

pareto-optimal choices representing best trade-offs.

C. Model Splitting

As with many formal techniques, the complexity of con-

straint satisfaction restricts the size of models that can actu-

ally be analyzed [7]. Our approach also requires an explicit

representation of the set of all quality equivalence classes of

mapping alternatives, which in general grows exponentially in

the number of elements in a model.

To address these scalability problems, we split the object

model into sub-models. The key idea is that since for asso-

ciation relationships with cardinality of many-to-many, there

is just one applicable mapping strategy, i.e. own association
table, we make use of such relations to split the object model

into sub-models.

We consider an object model as a graph, GobjModel =<
V,E >, where nodes V represent classes, and there is an

edge < vi, vj > joining two nodes vi and vj if there is

a direct relationship including association and generalization

link between them. We assume that GobjModel is connected.

Otherwise, we consider each sub-graph separately. An edge

joining two nodes vi and vj in a graph is a bridge if removing

the edge would cause vi and vj to lie in two separate sub-

graphs [5]. A bridge is the only route between its endpoints. In

other words, bridges provide nodes with access to parts of the

graph that are inaccessible by other means. So, to decompose

a graph GobjModel, we remove all bridges of type many-to-

many association.

To make our idea concrete we consider the ecommerce

domain model we adopted from Lau and Czarnecki [13].

According to the diagram shown in Figure 1, there are two

such bridges: < Product, Asset > and < Item,Product >.

By removing those bridges we obtain three smaller sub-graphs.

The gain then comes from the reduction in the sizes of

the constraint solving problems. That is, we replace a large

691

Fig. 2. Examples of mixed mapping strategies

constraint solving problem with smaller and more manageable

problems that can in particular be addressed by our formally

precise synthesis technique.

III. EVALUATION

The claim we make in this paper is twofold: (1) It is feasible

to formalize the correctness constraints for object-relational

mapping strategies, thereby to automate the synthesis of an

exhaustive set of mixed object-relational mapping candidates,

and that it is possible to statistically analyze each of the

candidates in dimensions of six major mapping quality metrics,

and thereby to cluster them into quality equivalence classes;

(2) for non-trivial systems, the performance of the technology

implementation based on a bounded model checker is reason-

able (on the order of minutes).
To test the feasibility hypothesis, we develop a prototype

tool that implements it, called Spacemaker [1], which is

available for download. We show that our ideas are practical

by applying Spacemaker to several case studies from the

object-relational mapping literature. We then compare the

discrepancies between our formally derived OR mappings

and the manual mappings published in the literature. The

differences revealed problems with their mappings, suggesting

again that manual development of OR mappings can be error-

prone.
Figure 2 shows two applications of mixed ORM strategies,

adopted from Holder et al. [8]. White boxes represent classes,

while boxes having grey titles represent corresponding mapped

tables. Black and white arrows represent mapping and inheri-

tance relationships, respectively. Finally, foreign keys as well

as the applied mapping strategies are also mentioned in the

diagrams.
Listing 2 formally describes part of the personObjectModel

according to the diagram. At the top, it imports the declaration

of objectModel, and then defines Person and its attribute,

name, using signature extension as a subtype of Class and

Attribute types. The other characteristics of the class are also

specified.
To specify a mixed OR mapping, the developer can call fine-

grained ORM strategies, given as inputs those classes to be

1 module p e r s o n O b j e c t M o d e l
2 open o b j e c t M o d e l
3
4 one s i g P e r s o n ex tends C l a s s {}{
5 a t t r S e t = i d e n t i f i e r +name
6 i d = i d e n t i f i e r
7 no p a r e n t
8 i s A b s t r a c t = No }
9

10 one s i g name ex tends A t t r i b u t e {}{
11 t y p e in s t r i n g }

Listing 2. Example of object model (elided) in Alloy

mapped in a specific manner. Spacemaker then automatically

generates the corresponding mapping specifications, should

they exist. The followings outline the high-level definition of

mapping specifications for Figure 2a.

open ORMStra teg ies
open p e r s o n O b j e c t M o d e l

U n i o n S u b c l a s s [Manager]
J o i n e d S u b c l a s s [C l e r k]
U n i o n S u p e r c l a s s [Employee]
U n i o n S u b c l a s s [S t u d e n t]

Figure 3 illustrates the computed result for the example of

Figure 2a. The diagram is accurate for the result automatically

computed, but we have edited it to omit some details for

readability (fields of tables and primary key relationships, for

example). In this diagram, Table 1 is associated to Person
and Employee classes, which are being mapped by the union
superclass strategy. Separate tables are associated to both

Student and Manager classes, according to the union subclass
strategy. Finally, application of the joined subclass strategy

leads to a separate table for Clerk with a foreign key, omitted

in the diagram, to its superclass corresponding table.

To enumerate the space of mappings for the given object

model, we use the genericMixedStrategy, with the set of

classes within the hierarchy as inputs. This generic strategy

lets the automatic model finder, here Alloy, to choose for each

class any of the fine-grained strategies and to see whether

their combinations applied to classes within the hierarchy is

satisfiable or not. Alloy guarantees that all computed mapping

candidates conform to the rules implied by mapping predicates

formalizing correctness constraints.

692

Fig. 3. Mapping diagram for Figure 2a derived automatically based on mixed
mapping strategies of union superclass, joined subclass and union subclass

We used a PC with an Intel Core i5 2.67 Ghz processor

and 4 GB of main memory, and leveraged SAT4J as the SAT

solver during the experiments. Given all the specifications and

mapping constraints, Spacemaker using the Alloy Analyzer

then generate 760,000 mapping candidates, assess them, and

reduce them to 40 equivalence classes, in less than 10 seconds.

The spider diagram, shown in Figure 4, illustrates the 6-

dimensional “quality measures” for two mapping candidates

represented in Figure 2. To display quality measures in one

diagram, we normalized the values.

According to the diagram, if the designer opts for the

resource utilization, the mapping depicted in Figure 2a would

be a better option. More specifically, with respect to the ANV

metric, representing additional storage space in terms of null

values, the mapping of Figure 2b requires more wasted space.

This is because instances of four different classes, namely

Person, Student, Employee and Clerk, are stored together in a

shared table. Thus, each row in the shared table that represents

an instance of the Student class, for example, contains a null

value at each relational field corresponding to the other classes.

On the other hand, if the designer opts for maintainability and

performance, the mapping depicted in Figure 2b would be a

better choice. More precisely, the mapping of Figure 2a neg-

atively affects the NCRF metric reflecting the effort required

to adapt the relational schema. This is partly because applying

the UnionSubclass strategy results in duplication of relational

fields. With respect to the TATI metric which is a performance

indicator of polymorphic database queries, this mapping also

poses performance problems.

Focusing on the second hypothesis, to test that Spacemaker

is able to handle also non-trivial OR mappings, we select an

object model of a real ecommerce system [13]. This object

model, shown in Figure 1, represents a common architecture

for the kind of open source and commercial ecommerce

systems. It includes 15 classes connected by 9 associations

and consists of 7 inheritance relationships.

Without decomposition, the Alloy Analyzer ran out of

memory before synthesizing the whole space of mapping

Fig. 4. Multi-dimensional quality measures for two mapping candidates
represented in Figure 2

alternatives. Given the splitting algorithm, we decompose the

object model to three sub-models and feed them into the

Spacemaker. Figure 5 represents the results.

ObjectModel Solutions Eq.Classes T [min]
Product 137,000 67 46

Asset 124,000 31 1 >
Order 93,000 31 16

Fig. 5. Ecommerce Experiment performance statistics.

Interpretation of data shows that similar to the former

experiment, the synthesis time for the Asset sub-model is in

the order of seconds, but for the other two sub-models is in the

order of minutes. This is mainly because in the former case, the

analyzer just considers inheritance mapping strategies as there

are no associations in those models, while in the other models

the constraints of both inheritance and association mapping

strategies are involved. So it takes more time for the model

finder to generate satisfying solutions for them.

As Spacemaker solves sub-models separately, the constraint

solving bottleneck depends on the largest sub-model to solve.

Although the number of valid solutions is high, i.e. hundreds

of thousands of satisfiable solutions, Spacemaker is able

to generate quality equivalence classes of mappings in an

acceptable amount of time, which confirms that the proposed

synthesis technology is feasible.

Discussion

This work shows that ORM strategies can be formalized and

implemented as executable specifications, and that Spacemaker

can automatically synthesize and prune the space of mapping

alternatives in an effective manner. Our formal recapitulations

of previous studies also reveals some problems. For exam-

ple, the referential integrity constraint in Figure 2b, is not

mentioned in the source paper [8], but exists in the mapping

specifications automatically derived using Spacemaker. Our

discovery of such inconsistencies provides an example of how

our formal synthesis technique can help designers in an error-

prone task of developing OR mappings.

693

Overall, this work appears to support the idea that shifting

the responsibility of finding an optimized mapping specifi-

cation from technicians —who better understand mapping

strategies, their implications, and techniques for mapping

object models to relational models— to the domain experts,

more aware of requirements and specifications is a plausible

aspiration.

IV. RELATED WORK

We can identify in the literature two categories of work that

are closely related to our research. The first one concerns the

research that deals with deriving database-centric implemen-

tations from Alloy specification. The second one encompasses

all works that have been done in the object-relational mapping

research area.

Focusing on the first category, Krishnamurthi et al. [12]

proposed an approach to refine Alloy specifications into PLT

Scheme implementations with special focus on persistent

databases. Cunha and Pacheco [4] are similarly focused on

translating a subset of Alloy into the corresponding relational

database operations. These works share with ours an emphasis

on using formal methods. However, our work differs in its

focus on separating application description from other inde-

pendent design decisions, such as choices of OR mapping

strategies. Furthermore, we use Alloy not only to specify the

object model, but also to model the spaces of OR mappings

consistent with both the given object model and choice map-

ping strategy, and to automate the mapping process.

Regarding the second area, a large body of work has focused

on object-relational mapping strategies and their impacts to

address the impedance mismatch problem [3], [9], [11], [14].

Among others, Philippi [14] categorized the mapping strate-

gies in a set of pre-defined quality trade-off levels, which are

used to develop a model driven approach for the generation

of OR mappings. Cabibbo and Carosi [3] also discussed more

complex mapping strategies for inheritance hierarchies, in

which the various strategies can be applied independently

to different parts of a multi-level hierarchy. We share the

same problem domain with these approaches, but our focus

is on automating formal derivation of equivalence classes of

mapping specifications.

Drago et al. [6] also considered OR mapping strategy as

one of the variation points in their work on feedback provi-

sioning. They extended the QVT-relations language with anno-

tations for describing design variation points, and provided a

feedback-driven backtracking capability to enable engineers to

explore the design space. While this work is concerned with

the performance implications of choices of per-inheritance-

hierarchy OR mapping strategies, it does not really attack the

problem that we are addressing, namely the automated and

exhaustive synthesis of the equivalence classes of mixed OR

mapping specifications.

V. CONCLUSION

While a wealth of research has been performed on bridging

application models and databases to address the impedance

mismatch problem, little has been done on automated sup-

port for the derivation of mapping specifications for ORM

frameworks. In this paper, we presented a novel approach that

substantially supports automatic generation of such mapping

specifications to deliver the quality of expert-hand-crafted

mappings and the productivity benefits of fully automated

techniques. This approach ultimately promises to reduce the

engineering personnel costs involved in producing high-quality

modern software systems. The new mapping approach exposes

many interesting research challenges. These challenges include

exploring symmetry breaking techniques customized for the

specific domain of OR mappings to reduce the size of the

solution space and integrating the mapping compiler with

industrial object-relational mapping tools.

ACKNOWLEGEMENTS

This work was supported in part by the National Science

Foundation under grant #1052874.

REFERENCES

[1] Spacemaker tool suite. http://www.cs.virginia.edu/∼hb2j/Downloads/
Spacemaker.zip.

[2] A. L. Baroni, C. Calero, M. Piattini, and O. B. E. Abreu. A formal
definition for ObjectRelational database metrics. In Proceedings of the
7th International Conference on Enterprise Information System, 2005.

[3] L. Cabibbo and A. Carosi. Managing inheritance hierarchies in Ob-
ject/Relational mapping tools. In Proceedings of the 17th International
Conference on Advanced Information Systems Engineering (CAiSE’05),
pages 135–150, 2005.

[4] A. Cunha and H. Pacheco. Mapping between alloy specifications and
database implementations. In Proceedings of the Seventh International
Conference on Software Engineering and Formal Methods (SEFM’09),
pages 285–294, 2009.

[5] David Easley and Jon Kleinberg. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, 2010.

[6] M. L. Drago, C. Ghezzi, and R. Mirandola. A quality driven extension
to the QVT-relations transformation language. Computer Science -
Research and Development, 2011.

[7] Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and
Thomas Santen. Components, platforms and possibilities: Towards
generic automation for MDA. In Proceedings of International Con-
ference on Embedded Software, 2010.

[8] S. Holder, J. Buchan, and S. G. MacDonell. Towards a metrics
suite for Object-Relational mappings. Model-Based Software and Data
Integration, CCIC 8:43–54, 2008.

[9] C. Ireland, D. Bowers, M. Newton, and K. Waugh. Understanding
object-relational mapping: A framework based approach. International
Journal on Advances in software, 2:202–216, 2009.

[10] D. Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(2):256–290, 2002.

[11] W. Keller. Mapping objects to tables - a pattern language. In Proc. of
the European Pattern Languages of Programming Conference, 1997.

[12] S. Krishnamurthi, K. Fisler, D. J. Dougherty, and D. Yoo. Alchemy:
transmuting base alloy specifications into implementations. In Proceed-
ings of FSE’08, pages 158–169, 2008.

[13] S. Q. Lau. Domain Analysis of E-Commerce Systems Using Feature-
Based Model Templates. Master’s thesis, University of Waterloo,
Canada, 2006.

[14] S. Philippi. Model driven generation and testing of object-relational
mappings. Journal of Systems and Software, 77(2):193–207, 2005.

[15] T. Saxena and G. Karsai. MDE-based approach for generalizing design
space exploration. In Proceedings of the 13th international conference
on Model driven engineering languages and systems, MODELS’10,
pages 46–60, 2010.

694

A formal support for incremental behavior specification in agile development

Anne-Lise Courbis1, Thomas Lambolais1, Hong-Viet Luong2, Thanh-Liem Phan1, Christelle Urtado1,
and Sylvain Vauttier1

1LGI2P, école des mines d’Alès, Nı̂mes, France, First.Last@mines-ales.fr
2Laboratoire Ampère, UMR 5005, INSA-Lyon, Lyon, France, Hong-Viet.Luong@insa-lyon.fr

Abstract

Incremental development is now state of the practice. In-
deed, it is promoted from the rational unified process to ag-
ile development methods. Few methods however guide soft-
ware developers and architects in doing so. For instance,
no tool is proposed to verify the non-regression of function-
alities, modeled as behavior specifications, between incre-
ments. This work helps to incrementally specify software
functionalities using UML state machines. It provides an
on-the-fly evaluation of a specified behavior as compared
to that of previous increments. The proposed contribution
is based on two formally specified relations that are proved
to preserve refinement when composed. Architects and de-
velopers are free to choose their preferred behavior speci-
fication strategy by iteratively applying them, so as to de-
velop the required functionalities, having at each step the
benefit of a formal non-regression checking to guide the
global specification process. Our proposal is implemented
in a proof-of-concept tool and illustrated by a didactic case-
study.

Keywords: UML state machines, incremental develop-
ment, agile methods, state machine verification, confor-
mance relations, refinement.

1. Introduction

The evolution of software system development processes
currently follows two apparently contradictory main trends.
Agile and extreme programming promote fast development
of small increments that will altogether constitute the ex-
pected complete software [3]. These development meth-
ods are very popular as they are concrete, foster the sense
of achievement among development teams and best satisfy
clients as well as stakeholders by early, fast and regular de-

liveries of usable and valuable software that incrementally
integrates all the required functionalities. However, the lack
of a big picture to guide the development process towards
well def ned goals may lead to harmful inconsistencies such
as regressions or substitution mismatches. Model driven en-
gineering (MDE) promotes models as the main artifacts to
capture both requirements and the designed solution. They
are used, via automated or assisted transformations, to cre-
ate the implementation of the system. MDE concentrates
developers’ efforts on the early development steps, trying to
specify once and then generate implementations to various
target technologies or execution frameworks, skipping, as
much as possible, tedious repetitive design or coding tasks.
MDE provides an effective support to capture the big pic-
ture of a specif cation and reason about design decisions.
However, MDE does not yet fully support disciplined in-
cremental development. Indeed, non regression is often pre-
vented by the means of tests [7]. MDE lacks formal tools to
perform behavioral model verif cations.

This paper advocates that it is possible to combine the
advantages of both trends by providing tools to compare the
behavior specif cations of increments and evaluate the exis-
tence of ref nement relations in order to verify the global
consistency of the development process. This enables in-
cremental but disciplined development processes, supported
by tools that provide guidance to enforce consistency. UML
state machines are used as a uniform means to model behav-
iors throughout the development process, from initial, par-
tial and abstract specif cations, that interpret requirements
as functionalities, to detailed designs, that fully def ne sys-
tem dynamics. This way, incremental behavior specif cation
and design schemes can be proposed thanks to three rela-
tions, that we have adapted from process algebra literature
to state machines in previous work [17]:

• the behavior extension relation (noted ext) captures
the fact that a machine adds behaviors to another one,

695

without impeding existing mandatory behaviors.
• the behavior restricted reduction relation (noted redr)

captures the fact that a machine does not add extra ob-
servable behaviors and that mandatory behaviors are
preserved: non observable behaviors may be detailed
and optional behaviors may be removed.

• the behavior refinement relation (noted refines) links
an abstract machine to a more concrete one and en-
forces that all the mandatory behaviors specif ed in
the abstract machine are preserved in the ref ned one.
Some optional behaviors may be removed, while new
observable ones may be added, provided they do not
conf ict with existing ones.

These relations are going to serve as a basis for the in-
cremental development of behavior models. The idea of the
paper is that they altogether form a formal yet not constrain-
ing means to evaluate the consistency of artifacts produced
when using agile development processes.

Whichever relations are composed, the latter machines
are guaranteed to be conform implementations of the form-
ers. When none of theses relations can be asserted between
two successive machines, a rupture is detected in the ref ne-
ment process. This paper advocates for a guided revision
mechanism that helps analyze the cause of the inconsis-
tency and decide which machine should be modif ed: either
the proposed implementation may be erroneous, or the ab-
stract machine may be over-specif ed and impossible to be
properly implemented. Once this ambiguity is resolved, the
system might also help designers propagate involved cor-
rections to other machines so as to establish the required re-
lations. These two cases show how composing the restricted
reductions and extensions might constitute an agile but dis-
ciplined method for specifying the behavior of systems.

The remainder of the paper is structured as follows. Sec-
tion 2 describes a didactic motivating example that is used
as an illustration throughout the paper. Section 3 presents
our proposal. It describes the three proposed relations
we choose to support state machine development and then
presents how they can be used to support an agile devel-
opment scenario. Section 4 discusses our approach against
state of the art before concluding in Section 5 with some
perspectives.

2. Motivating example

Informal specification of a Vending Machine. The
specif cation a Vending Machine (Figure 1) contains
mandatory parts (refund the customer unless goods are ob-
tained), as well as optional parts (maintenance, cookies).

Successive UML state machines. In order to progres-
sively design the behavior of this vending machine, the de-

The system delivers goods after the customer inserts the
proper credit into the machine. Goods are drinks, but could
also be cookies. Optionally, a technician can shutdown the
machine with a special code. When used by a customer (not
a technician), the system runs continuously. An important
feature is that the system must not steal the user: if the cus-
tomer has not inserted enough money, changes his mind or
if the system is empty, the system refunds the user.

Figure 1: Informal specif cation

signer produces several intermediate state machines (Fig-
ure 2). He starts from mandatory behaviors, considering
coin and cancel signals only. Hence, the Minimal Machine

is a rather stupid machine, which specif es that after any
amount of coins, the user can be refunded and that is the
only thing he can ask for. The drink signal is always ig-
nored. In the second NeverEmpty Machine, the designer
adds the ability to react to the drink signal, in some cases
after the coin signal. At that time, the user can still be re-
funded. If he chooses a drink, the machine will eventually
distribute it and give him his money back. Note that this
machine is nondeterministic1.

1. Minimal Machine

3. Realistic Machine

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

cancel
Choose

drink

coin

cancel

2. NeverEmpty Machine

coin

Ready

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin

cancel

coin

do / verifyStock

coin

Ready

do / giveChange

MoneyBack

cancel

coin Ready
coin

5. Multi-choice Realization

do / giveGoods

GoodsDelivery

cookies

Ready

do / giveChange

MoneyBack

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin [enoughMoney]

cancel

coin [else]

do / verifyStock

coin

4. Realistic Realization

Ready

do / giveChange

MoneyBack
do / giveDrink
DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin [enoughMoney]

cancel

coin [else]

do / verifyStock

coin

4’. Maintainable Machine

do / shutdown

Maintenance

Ready

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin

cancel

coin

do / verifyStock

getOpCode

coin

Figure 2: Incremental development proposing several UML
state machines

The third Realistic Machine considers the fact that the
1Although nondeterminism is not allowed in UML, we consider that f -

nal models have to be deterministic, but that initial and intermediate mod-
els may be nondeterministic.

696

machine may be empty which should leave solely the cancel
action to the user. This machine describes every manda-
tory part of the above informal specif cation. Other features
(cookies and maintenance) are options. Hence, it can lead
to the concrete state machine (Realistic Realization) which
f xes the nondeterministic points and can be used as a ba-
sis for a f rst implementation. This concrete machine can
then be extended (Multi-choice Realization) to add the sec-
ond choice of goods with the cookies signal. Alternatively,
from the third Realistic Machine, we could also extend the
behaviors and consider the getOpCode signal in the Ready

state. These development sequences show that concrete ma-
chines can be derived from intermediate abstract models,
which only describe the most important features. In that
sense, they obey an agile development process where sim-
plif ed products are quickly produced. Machines 4 and 5
are called realizations since they are concrete, determinis-
tic machines, which describe all the mandatory behaviors of
the informal requirements of Figure 1.

Verification needs. Having such development scenarios
in mind, we focus on the following properties:

r1 : Implementation. At any step of a development process,
the resulting machine has to fulf ll the requirements ex-
pressed by the f rst specif cation model.

r2 : Liveness preservation. Liveness properties state a sys-
tem has to react to some signals after precise signal
sequences. At any time, our example system must re-
act to the cancel button and refund the user; after a
given sequence of coin signals and if the machine is
not empty, it must react to the drink button.

r3 : Progress. During the development process, when an
M ′ machine is supposed to be an extension of an M

machine, we want to be able to verify that any behav-
ior offered by M is also offered by M ′ in the same
conditions.

r4 : Safety preservation. Safety properties state that some
actions are forbidden. When an I machine is a re-
stricted reduction of an M machine, we need to guar-
antee that I does not implement behaviors not de-
scribed by M . On the example, delivering a product
that has not been paid for or delivering two products
instead of one are such forbidden actions.

r5 : Composability. When chaining extensions, we want
the result to be an extension of the initial machine, and
similarly for reductions. When combining extensions
and reductions, we need to know the relation between
the resulting machine and the initial one.

3. Relations to support incremental develop-
ment processes

The verif cation technique we choose to satisfy these
properties is to compare models between them. This ex-
cludes the developer to separately describe liveness and
safety properties in an another language, as in [10]. At f rst,
we mainly focus on properties r1, r2, r3 and r4.

3.1. Behavior conformance relation

Conformance testing methodologies proposed by
ISO [13] compare an implementation to a standard specif -
cation. Recommendations def ne mandatory and optional
parts. An implementation is in conformance to a specif ca-
tion if it has properly implemented all the mandatory parts
of that specif cation [19]. We consider conformance as our
reference behavior implementation relation.

Formalizing the conformance relation [5] consists in
comparing the event sets that must be accepted by the com-
pared models, after any trace of the specif cation model. A
trace is a partial observable sequence of events and/or ac-
tions that the machine may perform. The set of traces of
an M machine is noted Tr(M). An implementation model
conforms to a specif cation model if, after any trace of the
specif cation, any set of events that the specif cation must
accept, must also be accepted by the implementation model.
We refer to [14] for a study of this relation on Labeled Tran-
sition Systems (LTSs), and to our works [17] for an imple-
mentation technique and a translation from UML state ma-
chines to LTSs.

In the example of Figure 2, Tr(Minimal Machine) =
{coin∗, (coin∗.cancel)∗}. Minimal Machine must ac-
cept coin and cancel events after any trace σ ∈
Tr(Minimal Machine). This property is satisf ed by the
NeverEmpty Machine, which consequently conforms to
Minimal Machine.

NeverEmpty Machine conf Minimal Machine

The conformance relation is suited for implementation (r1
property) and liveness (r2 property). However, it is too
weak to guarantee progress and safety properties (r3, r4),
and, since it is not transitive, it cannot answer property r5.
It thus cannot be considered as a ref nement relation.

3.2. Behavior refinement relation

Considering conf as an implementation relation, the re-
f nement relation (refines) is def ned as the largest relation
satisfying the following refinement property: For all ma-
chines M1 and M2,

M2 refines M1 =⇒ ∀I, I conf M2 ⇒ I conf M1. (1)
The refines relation has the following properties:

697

redr

ext
1. Minimal Machine

4’. Maintainable Machine

4. Realistic Realization 5. Multi-choice Realization

2. NeverEmpty Machine

3. Realistic Machine
ext

not refines

A

B

A

B
B
specializes
A

B
realizes
A

refines

ext

redr

A

B
B
does not
specialize nor
realize A

UML notations

Figure 3: Synthesis of relations

• refines⊆ conf: refines can be used as an implementa-
tion relation (property r1) and inherits properties of the
conf relation, such as liveness preservation (property
r2);

• it is transitive;
• If M2 refines M1, for any trace σ of M2 which is not

a trace of M1, M2 must refuse everything after σ.

This def nition of ref nement is large enough to encom-
pass both notions of classical ref nement [2] and incremen-
tal constructions (extension).

3.3. Specialized behavior refinement relations

Extension. The extension relation is def ned by ext =def

refines ∩ ⊇Tr, where, for two machines M1 and M2,
M2 ⊇Tr M1 =def Tr(M2) ⊇ Tr(M1). The ext relation
inherits implementation and liveness preservation property
from refines (properties r1, r2). It is moreover def ned to
satisfy the progress property (r3). The ext relation is a re-
f nement relation that reduces partiality and nondetermin-
ism. In Figure 2, the NeverEmpty Machine offers the pos-
sibility to ask for a drink, without preventing the user from
doing something he could do with the Minimal Machine:

NeverEmpty Machine ext Minimal Machine (2)

Restricted reduction. To overcome the fact that ext does
not preserve safety (one cannot know whether the drink ac-
tion, which is new, is safe or not), restricted reduction is de-
f ned by redr =def refines ∩ ⊆Tr. redr inherits properties
from refines and adds safety preservation property (r4). redr
is very similar to classical ref nement (it reduces abstraction
and nondeterminism). In Figure 2, the RealisticRealization

is a reduction of theMaintainable Machine: the getOpCode
signal can be refused by Maintainable Machine after any
trace in {ε, coin∗};

RealisticRealization redr Maintainable Machine (3)
To summarize, we keep three ref nement relations which
are transitive and preserve liveness properties: refines is the
largest one, ext is the subset of refines ensuring progress
and redr is the subset of refines ensuring safety preserva-
tion. Our goal now is to study the composition (property r5)
between these three relations.

Analysis on the example. It appears that:
not(Realistic Machine refines NeverEmpty Machine) (4)

TheRealistic Machine may refuse coin after the empty trace
ε, whereas NeverEmpty Machine must always accept coin.
Considering the development process proposed in Figure 2,
result (4) gives information to the designer. He has to an-
swer the question whether the coin event must always be
accepted initially or may be refused, by forcing him to ask
for the cancel event. This point is not clear in the infor-
mal requirements (Figure 1). If the developer considers the
coin action is mandatory, he must correct Realistic Machine

by adding for instance a self-transition triggered by coin on
state OutOfStock. Otherwise, if coin can be refused when
the machine is empty, Realistic Machine is to be considered
as the new reference specif cation.

Figure 3 sums up relations ext, redr, and refines on the
six proposed machines. In an agile development process,
having proposed Realistic Realization model, the designer
can come back to Maintainable Machine, checking that the
following result (5) is satisf ed. Then, knowing result (3),
he can propose Multi-choice Realization and verify rela-
tion (6):

Maintainable Machine ext Realistic Machine (5)
Multi-choice Realization ext Realistic Realization (6)

3.4. Composing relations to support agile develop-
ment processes

We call strategy the successive steps that a designer
chooses to achieve a development. With our disciplined
framework, this amounts to choose to add behaviors (hor-
izontal ref nement) or details (vertical ref nement) to the
current behavior model, producing a new behavior model
that must verify an ext or a redr relation. Figure 4 shows
how an Agile development process can be managed as an
instantiation of such a strategy. From partial and abstract
requirements (S0), a specif cation of the f rst increment to
implement is def ned (S1). This specif cation is detailed
through several design steps to produce eventually an im-
plementation model (S3). Then, a new increment is def ned
(S4), extending the previous, and so on, until all require-
ments are implemented. Thereafter, an evolution of the

698

software, based on revised requirements (S7), can be de-
veloped as a new development process. A crucial issue is to
guarantee that the development process leads to conformant
implementations (for instance S3 as compared to S1 or S0)
whereas only local consistency is stated by the ref nement
relations that are built between successive models. This im-
plies to verify that ref nement relations can be composed
into implementation relations.

Local composition. Locally, two ext and redr relations
commutatively compose refines relations:

redr ◦ ext = ext ◦ redr = refines (7)

This result comes from the def nition of redr and the
properties of conf (see 3.2 and 3.3). As redr and ext re-
lations are easier to check, it is interesting to deduce refines
relations from them.

Global composition. Globally, ext and redr relations
compose with refines relations as follows:

refines ◦ ext = ext ◦ refines= refines (8)
refines ◦ redr = redr ◦ refines= refines (9)

These two properties derive from the fact that for any
preorder A and any relation X ⊆ A, we have: A ◦ X =
X ◦A = A.

iterations

co
nc

re
tiz

at
io

n
le

ve
ls

S0

S1

S2

S3

S4

S5

S6

S8

S9

S10

S7

realization
(redr)

specialization
(ext)

Figure 4: Instantiation of an Agile development process

Applied to the example, result (10) is inferred from com-
puted relations (3), (6) and by property (7):

Multi-choice Realization refines Maintainable Machine

(10)

With property (9), we also conclude that:

Multi-choice Realization refines Realistic Machine (11)

Such calculations provide an effective support to agile de-
velopment. At any step, designers can freely choose their
preferred strategy and leverage inferred relations to carry
on development.

4. Discussion and related works

Process algebra implementation and refinement rela-
tions. In order to satisfy property r1, we f nd a large num-
ber of behavior model comparison relations in the con-
text of process algebras and LTSs. Milner’s observational
equivalence and congruence, based on bisimulations [18],
are well known relations to compare a detailed implemen-
tation model to an abstract specif cation model. Obser-
vational congruence can be considered as an implementa-
tion relation in a strong sense, where mandatory as well as
optional behaviors must be present in the implementation
model. They have been implemented in several toolboxes
such as [10]. Milner’s observational congruence preserves
safety and liveness. However, it does not satisfy the r3 prop-
erty: observational congruence cannot be used in an incre-
mental process.

An interesting result is that conformance is weaker
than Milner’s observational congruence: any observationaly
congruent models are also conformant. Hence, the refines

relation still distinguishes dangerous from harmless live-
locks, as in Milner’s theory, which is not the case of Hoare’s
CSP ref nement relations [12].

Incremental construction versus refinement. Refine-
ment has to be discussed since it has various interpretations.
It is a well-known and old concept [22] used in some ref-
erence works about state machine ref nement [1] or speci-
f cation ref nement [2], where it is considered as a relation
for comparing two models in order to reduce non determin-
ism and abstraction. This relation corresponds to a reduc-
tion: it consists in introducing details into models in order
to get an implementation model. It has been implemented
in languages such as B [2] and Z [8]. From our point of
view, founding a development process on such a relation
is restrictive. We prefer the def nition given by [4], in ac-
cordance with def nition 1 of section 3.2. Note that this
relation is called consistency in [14] and some researchers
of the UML community prefer this term rather than refine-
ment. This def nition is interesting because it includes the
conventional ref nement based on reduction but does not ex-
clude the extension of initial specif cations. The benef ts of
our approach compared to the conventional ref nement pro-
cesses are manifold. It is close to the way of reasoning and
to the practice of designers to f nalize complex models. It
is close to agile processes to allow rapid delivery of high-
quality software meeting f rst requirements of customers. It
attests the feasibility of a f rst implementation model before
enhancing it to get the f nal one. Finally, it might help to
support evolution because “systems, and consequently their
design, are in perpetual evolution before they die” [15].

Related approaches for analyzing state machine consis-
tency. Few works deal with incremental development of

699

state machines. [6] addresses the problem at architecture
level (state machine assembly). [9] does alike and guides
assembling with rules.

Works about state machines verif cation have to be men-
tioned despite their different objectives, as they focus on
consistency between a software and its specif cation. Many
works are based on model checking techniques. UML is
thus transformed into the modeling language of the model
checking tool: it can be PROMELA to use SPIN as it is
done in [16] or LTSs to use JACK as in [11]. Some works
analyze consistency using pre and post-conditions as it is
done in [4] using the Z formalism. Lastly, consistency can
be expressed through transformations as it is done for refac-
toring in [21]. Such techniques require to explicitly express
liveness properties.

5. Conclusions and future works

In this paper, we address the issue of the incremental
construction of state machines to support agile development
processes. It implies a composition of successive vertical
and horizontal ref nements that must globally achieve a con-
sistent implementation of the initial software specif cation.
The study of existing works points out that these two as-
pects are never considered as a whole, despite they are key
points to def ne development strategies.

We demonstrated the computational feasibility of our
proposal by developing a JAVA tool named IDCM (Incre-
mental Development of Conforming Models). It imple-
ments the verif cation of conf, ext, redr and refines rela-
tions [17] by transforming UML state machines into LTSs
and analyzing their relations. Analysis provides designers
with feedback about detected warnings or errors.

Beyond the several experimented case studies, we plan to
evaluate our proposal and tool on full size projects. We also
currently study the adaptation of this work to component-
based architectures, in other words to coarse-grained, reuse-
centered development approaches, to address complexity
and scalability issues.

References

[1] M. Abadi and L. Lamport. The existence of ref nement map-
pings. In Logic in Computer Science, pages 165–175, 1988.

[2] J. Abrial. The B-Book : Assigning Programs to Meanings.
Cambridge University Press, 1996.

[3] S. W. Ambler. The Object Primer: Agile Model-Driven De-
velopment with UML 2.0. 3rd edition, 2004.

[4] E. Boiten and M. Bujorianu. Exploring UML ref nement
through unif cation. In Critical Systems Development with
UML, LNCS, page 47—62, 2003.

[5] E. Brinksma and G. Scollo. Formal notions of implementa-
tion and conformance in LOTOS. Technical Report INF-86-

13, Twente University of Technology, Department of Infor-
matics, Enschede, Netherlands, Dec. 1986.

[6] S. Burmester, H. Giese, M. Hirsch, and D. Schilling. Incre-
mental design and formal verif cation with UML/RT in the
FUJABA Real-Time tool suite. In SVERTS, 2004.

[7] A. Cicchetti, D. D. Ruscio, D. S. Kolovos, and A. Pieran-
tonio. A test-driven approach for metamodel development,
chapter Emerging Technologies for the Evolution and Main-
tenance of Software Models, pages 319–342. IGI Global,
2012.

[8] J. Derrick and E. Boiten. Refinement in Z and object-Z: foun-
dations and advanced applications. Springer-Verlag, 2001.

[9] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Testing
the consistency of dynamic UML diagrams. In Proc. 6th Int.
Conf. on Integrated Design and Process Technology, 2002.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2010: A toolbox for the construction and analysis of dis-
tributed processes. In P. Abdulla and K. Leino, editors,
Tools and Algorithms for the Construction and Analysis of
Systems, volume 6605 of LNCS, pages 372–387. Springer,
2011.

[11] S. Gnesi, D. Latella, and M. Massink. Modular semantics
for a UML statechart diagrams kernel and its extension to
multicharts and branching time model-checking. Journal of
Logic and Algebraic Programming, 51(1):43–75, Apr. 2001.

[12] C. A. R. Hoare. Communicating sequential processes. Pren-
tice Hall, June 2004.

[13] ISO/IEC 9646-1. Information technology – Open Systems
Interconnection – Conformance testing methodology and
framework – Part 1: General concepts, 1991.

[14] G. Leduc. A framework based on implementation relations
for implementing LOTOS specif cations. Computer Net-
works and ISDN Systems, 25(1):23—41, 1992.

[15] M. Lehman. On understanding laws, evolution, and conser-
vation in the large-program life cycle. Journal of Systems
and Software, 1:213–221, 1980.

[16] J. Lilius and I. Paltor. Formalising UML state machines for
model checking. In UML conf., 1999.

[17] H. Luong, T. Lambolais, and A. Courbis. Implementation of
the Conformance Relation for Incremental Development of
Behavioural Models. Models 2008, LNCS, 5301:356–370,
2008.

[18] R. Milner. Communication and concurrency. Prentice-Hall,
1989.

[19] S. Moseley, S. Randall, and A. Wiles. In Pursuit of Interop-
erability. In K. Jakobs, editor, Advanced Topics in Informa-
tion Technology Standards and Standardization Research,
chapter 17, pages 321–323. Hershey, 2006.

[20] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[21] G. Sunyé, D. Pollet, Y. L. Traon, and J. Jézéquel. Refactor-
ing UML models. In UML conf., pages 134–148, 2001.

[22] N. Wirth. Program development by stepwise ref nement.
Communications of the ACM, 14(4):221–227, 1971.

700

A Process-Based Approach to Improving
Knowledge Sharing in Software Engineering

Sarah B. Lee Ph.D., Kenneth Steward
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS, USA

sblee@cse.msstate.edu, kcs111@msstate.edu

Abstract—Information technology organizations often
assume that to improve knowledge sharing, a knowledge
management system must be independently developed or
purchased. Also often assumed is the idea that
implementing tools for knowledge sharing will provide a
foundation for the evolution of processes and culture
that support knowledge sharing. The intent of this
research is to illustrate that an effective approach to
increased knowledge sharing and collaboration must
consider first the processes that make up a knowledge
workers daily context, and the knowledge that supports
that workflow. Organization of people and process must
be considered in order for knowledge creation to be
efficient and effective.

Keywords- knowledge management; process
improvement

I. INTRODUCTION

Knowledge has becom e increasingly releva nt for
organizations since the shift from an industrial economy to a
global, decentralized, and knowledge-based econom y.
Organizations now work, compete, and cooperate on a
worldwide scale [1]. T oday, employees are often
geographically separated within a si ngle city or on a
corporate campus. Loss of knowledge in the ha ndoff of
work products is an area of concern. Offices in different
locations may use different terminology and tools, making
knowledge sharing across departmental boundaries a
challenge [2]. A variety of technologies have been
employed to attempt to close t his communication gap
including company intranets, directories, and groupware [3].

When applied to software engineering, knowledge
management deals with a wide domain including projec t
management, communication with clients and e nd users,
problem solving, c ode reuse, staff development, and
maintenance and support. Project success rates continue to
be an area of concern, and one reason given for repeated
failures is that organizations do not adequately use existing
experience to avoid prior mistakes. This occurs when
knowledge created during a project is not captured or shared
for later use [4]. To avoid this continuous cycle,

organizational knowledge produced during the software
development lifecycle (SDLC) must be recognized as a
valuable asset and leveraged to meet objectives.

II. BACKGROUND

While software development shares many characteristics
with other engineering disciplines, it prese nts new
challenges due to its relian ce on the knowledge and
creativity of individual software developers and their
interactions. In addition to the engineering aspects of
software development, cognitive aspects and human activity
must be considered. The development of a software system
requires integration of knowledge from a variety of sources.
Software development can be thought of as “t he
crystallization of knowledge into the software systems” [5].

With a global software development model, the gathering
of requirements may involve a co-located team of analysts
and users. B usiness requirements must be tra nslated to
software requirements specifications, leading ultimately to
development work which may be perf ormed by a team
located separately from the team that worke d on
requirements analysis and development. Throughout the
software development process, knowledge producer and
consumer roles emerge.

A Software Requirements Specification (SRS) is
produced that includes all re quirements needed by the
developers to address the business requirements. The SRS
must be reviewed to validate that it meets the business need
as defined, with traceability to the business requirements
documented. The de velopment and infrastructure support
teams should collaborate to confirm if the SRS is feasible
and verifiable. The SRS is typically used to validate
technical designs, code, and test cases.

The importance of the software architecture design which
documents the com ponents and t heir connectors that
comprise a software system should not be ignored.
Typically all the knowledge regarding the design decisions
on which the architecture is based are implicitly embedded
in the architecture. This lack of explicit representation leads
to increased complexity, a high cost of making changes, and
design erosion. In the design phase, the main concern is on
which design decision should be made. In the coding phase,

701

it is often important t o know why certain decisions have
been made [6].

A. Codification of Knowledge
Explicit knowledge is represented i n a way that is easil y

transferred from one person to another. Data files, reports,
and other physical representations of knowledge are
explicit. Taci t knowledge is the knowledge that people
maintain inside themselves and is harder to formalize. It is
inferred through the behaviors of indivi duals. Access to
tacit knowledge is typ ically obtained through personal
contact and trust.

Nonaka describes how organizational a nd individual
knowledge are created through continuous dialogue among
individuals involving their tacit and explicit knowledge [7].
Organizational knowledge is created in a continual cycle
through: socialization, intern alization, externalization, and
combination. These four modes of knowledge creation are
described in Table 1.

TABLE I. MODES OF KNOWLEDGE CREATION

To Tacit To Explicit
From Tacit Socialization Externalization
From Explicit Internalization Combination

With socialization, the key to gaining tacit knowledge is

some form of shared experience through interactions with
individuals. The tacit-to-tacit socialization mode is initiated
when a group of people forms and int eraction begins.
Externalization encompasses the conversi on of tacit to
explicit knowledge and is trigg ered through the
documentation of shared tacit knowl edge and new
knowledge. This explicit know ledge is com bined with
existing data and available knowledge in the combination
mode, forming new concepts and concrete knowledge.
Internalization involves explicit to tacit knowledge; learning
occurs when participants translate explicit knowledge
gained into forms of individual tacit knowledge [7].

The combination mode of knowledge creation can b e
demonstrated through the engineering of new knowledge
from existing knowledge s ources. Lee et al. described the
use of knowledge engineering to visualize complexity in the
software engineering domain. This experience showed the
value of knowledge engineered from legacy application
metadata [8]. The goal of determining the risk as sociated
with each application was reali zed and successfully applied
to modernization strategy planning, supporting the goal of
reducing complexity in domains with high business risk.
Knowledge engineering of application meta-data into
estimates of resource impact and potential risks and costs is
applicable in a wide array of problem domains [8].

B. Personalization of Knowledge
Informal discussions represent a very important form of

knowledge sharing where cross-fertilization of knowledge
occurs. Finding a way to capture the knowledge exchange

in these informal communications is challenging. Informal
communication in communities can be promoted through
the use of social networks and expert lists. The willingness
of each person to participate is critical to success [5]. By
integrating a co mmunity-based environment with a
traditional knowledge repository approach, both tacit and
explicit knowledge sharing is encouraged and supported.

Communities of practice, informal networks of
individuals with shared interests, objectives, and social
networks highlight the important link between social capital
and knowledge resources in effecti ve knowledge
management. A community of practice refers to the process
of social learning that occurs and the shared practices that
emerge when people with common goals interact. A similar
concept is a community of interest, a group of people who
share a common interest. Communities reflect the “interests
and/or expertise of people that are free t o join one or more
communities for: receiving help on specific fields;
recommending or publishing a ny piece of information;
informally discussing on th emes; rating or inserting
comments on elements; and so on” [9]. A community
workspace may contain formal documents and informal
comments. A software project may be tied to se veral
communities. By und erstanding how these communities
can successfully maintain and s hare knowledge, the
potential exists to greatly e nhance sharing of knowle dge
[10]. Marks et. al. argue that th e stronger an individual
identifies with a group, the more apt that person is to share
information [11].

C. Knowledge Sharing Philosophy
Ezingeard et. al. discuss the importance of building a

knowledge sharing culture as a foundation. The knowledge
management sandcone in Fi g. 1 demonstrates this conce pt
[12] [13].

Figure 1. A depiction of the knowledge management sandcone concept
[12].

702

Appropriate processes m ust support a knowledge-shari ng
culture, and then the technology layer can be implemented
to facilitate the acquisition and distribution of knowledge
[13].

Kock and Davison underlined the importance of process
improvement in the knowledge management domain [14].
They concluded t hat using sim ple asynchronous
collaborative technologies to support process improvement
initiatives is likely to stim ulate knowledge sharing am ong
participants in cross-functiona l organizational processes.
Through process improvement activities, knowledge sharing
will increase with no extra resource commitment required
from the organization other than that already committed to
support process im provement activities [14]. Jennex and
Olfman address this aspect with their KMS Success Factors,
supporting work processes that incorporate knowledge
capture and use [15].

III. THE EXPERIMENT

The original context chosen for this research consisted of
the activities requi red to define, analyze, and achieve the
non-functional requirements of a software system. Through
participatory action researc h, the primary author was
embedded in t he environment within which direct actions
were taken to improve the performance within the target IT
community, with observation of the effects of those changes
[16].

Research was conducted within the IT department of a
large Fortune 100 company over a period of two years. The
context of the research project was in itially defined as t he
flow of knowledge between infrastructure support teams and
other stakeholders with particular focus on acti vities
required to define, analyze, and achieve the non-functional
requirements of a s oftware system. No knowledge
management strategy was employed in t his environment.
Documents were st ored in a variety of sources, with no
single point of access. Previously, the re were internal
efforts within small groups to im prove collaboration
through the use of Wiki and intranet portals. With
employees given temporary and rotating assignments across
projects, finding a point of contact for a pa rticular
knowledge area is often challenging [17].

Interviews were conducted across business, softwa re
development, and infrastructure support departments. T he
purpose of the interviews was to capture how stakeholders
perceive knowledge sharing and process effectiveness
within and across team s. Based on gaps identified through
the interviews, the anticipated benefits to be realized by
improved knowledge management were identified as
follows:

improved communication across SDLC stakeholders,
consolidation of knowledge about infrastructure
activities impacting development and business
teams, and
simplification of all st akeholder interactions
regarding non-functional software requirements by

improving first contact res olution and reducing the
need to as k and respond to the same questions
repeatedly.

Work was conducted in two phases. The second phase
was developed based on re flections from phase one and a
new cycle research question. Data was collected before and
after action events in a variety of form ats including
observations and discussions with subjects. Statistics were
gathered regarding access of individual intranet pages.

A. Phase 1
The cycle research question for the first phase was asked

as follows. In what ways will an i ntranet user portal that
provides a consolidated and coordinated view to knowledge
artifacts and knowledge owners lead to increased knowledge
sharing and improved collaboration across IT teams?

A knowledge hub was developed with a primary goal of
promoting multi-way dialogue between stakeholders. An
intranet-based portal enabled identification of user profiles
and leveraged skill set inventories to facilitate knowing who
and knowing who knows what [17].

Results were mapped to top KMS Success Factors,
defined by Jennex and Olfman [15] as follows. The
developed solution met the success factor calling for an
integrated technical infrast ructure through a knowledge
sharing portal that integrated technologies curre ntly
available into the knowledge workers’ daily work context.
Sources of explicit knowledge were presented, along wi th
author and storage formats for documents, partially meeting
the success factor expectation of ide ntifying users, sources,
processes, and storage strategy. The intranet-based interface
provided an easy to use view of frequently used documents
as well as extended search capability which included
artifacts in the doc ument repository. T his addressed the
success factor of having an enterprise -wide and easy t o
understand structure with search, retrieval, and visualization
functions. A m ost important result is that additional
management support, another key success factor, was
gained in support of continuing the study [15].

The concept of sharing knowledge about team members’
interest and expertise was well-received by the participants
interviewed. Leveraging communities of interest along with
proactive notification of know ledge availability based on
user profiles were documented requirements for future
consideration [17].

A drawback to the a pproach in the first c ycle was t hat
development work, while m inimal, required dedicated
highly skilled resources which in turn could not be secured
without management approval. C ompetition for
development resources is fi erce and allocation of these
resources to further knowledge sharing cannot be reasonably
prioritized over support for revenue generating business
system support. An approach of converging technology to
improve knowledge sharing, without the need for h ighly
sought-after development resources, was considered for
cycle two.

703

As the researcher became more embedded in the
problem domain, observations revealed that a lack of just-
in-time knowledge during processes related to the
movement of application s oftware to production caused
process delays and degraded communication to upstrea m
and downstream stakeholders. When participants in the
process did not have the knowledge needed to execute their
step in the process, the process stalled and often additional
team members were brought into the situation. This
increase in time and number of human resources increases
the cost of e xecuting the process. Tac it knowledge is
created and shared during process execution, as well a s
creation of new explicit knowledge.

B. Phase 2
Based on the results of the first cycle, the second cycle

research question was defined as: How will organizational
and process changes increase knowledge sharing and
collaboration both within infrastructure support team s and
between those teams and ot her software engineering
stakeholders?

For this phase, the scope chosen was the set of activities
required to move an application from one data center to a
new primary data center on a different set of ph ysical
infrastructure. Frequently, applications must make coding or
other changes to adhere to new technology standards that
are instituted at the new center. The process of bringing
business applications up to those new standards was chosen
as a very specific area withi n which to study and attem pt to
improve team collaboration and knowledge sharing.
Specific deliverables of the process included the following
artifacts: a technical architecture requirements document, a
technical architecture design that includes required
infrastructure, and an envi ronment build docum ent that
documents configuration re quirements for syst em
administrators to follow when building machines for the
target application.

Problems with this process included frequent handoffs,
lost time when information is s hared but not receive d,
sequential steps, bottlenecks, and multiple points of contact.
All of these problems are barri ers to knowledge sharing.
Improvements to the process are e xpected to reduce cycle
time for the process, reduce error, increase satisfaction both
with the development teams and the infrast ructure support
teams, and i ncrease knowledge sharing and collaboration
between subject matter experts and between service
providers and their internal customers.

While participating in t he process im provement
activities, the role of the acti on researcher in this study was
to contribute to the de sign of a collaborative technology to
support a stre amlined process. A n important part of this
process analysis was analyzing the data flows in and ou t of
the process. An i nventory exercise was conducted,
identifying what data and inform ation was needed at each
point in the fl ow of the process. Data owne rs and data
receivers were also ide ntified. T he process timeline was

identified as one to six months depending on the technical
requirements of t he project and the individuals involved.
With multiple handoff points, there was increased time and
the potential for error i ntroduced. The process was very
human-intensive, so progression was directly dependent on
the availability, responsiveness, and knowledge of each
person in the process.

Resulting recommendations for process improvement
following evaluation of this phase included the following:

Reduce the number of a nalysts involved. By
combining roles, handoffs between project
initiation and implementation is eli minated. This
also increases the likelih ood that the inform ation
and knowledge used for infrastructure
configuration and setup is m ore accurate, as the
same person has accountability from the beginning
of the process until the end.
Automate data collection th roughout the process
cycle. T his ensures consistency of data collected
across process iterations. It a lso ensures that input
received across project im plementations will be
shared.

IV. CONCLUSION

Observations in the first cycle revealed that, in a n
environment where revenue generating applications are
given priority for development resources, limited support
for development of a knowledge sharing system is available.
A creative framework that utilizes existing technology with
minimal development for a very specific problem domain is
the most effective way to address cross-boundary
knowledge sharing concerns. However, to be most effective
the scope must be bounded by specific functional processes,
which are the ties that bind a community of practice.

In addition to the technology layer, an effective approach
to increased knowledge sharing and col laboration must
consider the multiple processes that m ake up a knowledge
workers daily context, and the knowledge that must flow in
order to support that workfl ow. The organization of people
and process must be considered in order for kn owledge
creation to be efficient and effective. The layers in the
knowledge management sandcone depicted in Fig. 1 should
be reordered as shown in Fig. 2. P rocess must first enable
knowledge sharing, with organizational changes considered
a part of process improvement. T he technology layer c an
then be applied. Only then is there enablement for cu ltural
change.

704

Figure 2. Reordered layers of the knowledge management sandcone.

The recommended strategy for knowledge sharing resulting
from this study includes:

IT organizations must recognize the im portance of
processes and the direct impact a process can have
on the effectiveness of a co llaborative
environment.
IT organizations should develop a knowledg e
management strategy fr om a com munity of
practice perspective. Through workflow
automation, a repository of bu siness rules and
knowledge essential to process flow can be
developed for the participants in a defined
community with common goals.
IT Organizations should identify and use existing
technologies to facilitate knowledge sharing
without introducing a new toolset.

V. FUTURE WORK
Callele, et. al. describe how software engineering in the

context of video game development is not well understood,
thus the application of proces s improvement to this dom ain
is limited. W ith a d iverse set o f roles in the game
development process, the application of th e knowledge
sharing recommendations presented here is an opport unity
[18].

The game development process can be broken down into
two large phases: pre-production and production. Pr e-
production involves all required tasks to create the gam e
before actual coding starts. Production involves all tasks that
are required to implement the game. In the beginnin g of the
pre-production phase, the lead gam e designer m ust
successfully create and share the idea of what the game
should become. A game design document is created by the
lead designer t o help c onvey these ideas. This doc ument,
which expresses the gam e concept in a non-technical
manner, is referred to throughout the entire gam e
development process.

After the initial pitch, a design team is created in order to
further plan the look and feel of the game. T his requires
many revisions to the game design document. It is
imperative that the design document express the ideas of the
design team as clearly as possible because from this
document the development team will later create a software
requirements document.

In the production phase, the design document is handed
off to the development team. The team starts by taking the
design document that was created in preproduction and then
formally creating an SRS. Requirements such as art, music,
levels, artificial intelligence , and ot her factors are al l
considered. When this document is co mpleted the
information must be shared through the entire development
team in order to actually start implementation. In
implementation, all art, m usic, code, and other assets are
actually created from the SRS. Post implementation, the
development team is still tasked with controlling
maintenance for any discovered e rrors in the gam e. The
entire game team is expected to also reflect and record the
positive and negative aspects of the project [19].

As in any software design and development process, a
large amount of knowledge must be shared in order to create
an accurate design and implem entation that m eets the
customers’ expectations. If the integrity of knowledge is
not preserved during t he game design a nd development
process, the resulting game is not likely to satisfy the
original vision and intent.

The most critical area of knowledge sharing that, poorly
handled, could cause the most damage to a game
development project is the shift f rom pre-production to
production. Problems may arise i n the creation of t he
requirements document by translating t he game design
document into m ore specific and technical term s. Even
though the game design document is written as specificall y
as possible, the development team can still misinterpret the
meaning of what was documented. It is true that the
development team can meet with the design team and try to
completely understand the true meaning in the game design
document, but this causes a delay in the start of
implementation which can be detrimental to the proj ect. It
is also possible for the team to create an incorrect SRS a nd
begin development using this document. This can cause a
delay in product release [18].

At any point during coding, the development team may
encounter a situation where ideas of the design team cannot
be actually implemented in a way that would is consi dered
enjoyable to a user. When this occurs, the information must
be shared with the design team and t hen the design
document must be update d to re flect any changes . A fter
that the requir ements document must be updated to re flect
the same changes. Within this cascading flow of updates to
project information, there is much opportunity for error a nd
miscommunication [19].

The differences in the game design a nd development
process from more traditional so ftware development offers

705

an opportunity to apply recommended knowledge sharing
improvement practices. Callele et. al. supports the idea that
process improvement will increase the likelihood that
knowledge is captured and disseminated when needed [18].

ACKNOWLEDGMENT

The views expressed herein are those of the above named
authors and not necessarily those of their current or former
employers.

REFERENCES

[1] Hustad, E. (2004). Knowledge n etworking in glo bal organizations:
the transfer of knowledge. Proceedings of the 2004 SIGMIS
Conference on Computer Personnel Research: Careers, Culture, and
Ethics in a NetworkedEnvironment, 55-64.
doi:10.1145/982372.982384

[2] Bossen, C., & Dalsgaard, P. (2005) Conceptualization and
appropriation: the evolving u se of a collaborativ e knowledge
management system, Proceedings of the 4th decennial conference on
Critical computing: between sense and sensibility, 99-108. doi:
10.1145/1094562.1094574

[3] Teigland, R., & Wasko, M. (2000). Creative ties and ties that bind:
examining the i mpact of weak ties on indi vidual performance,
Proceedings of the Twenty-First International Conference on
Information Systems, 313-328. Retrieved from
http://portal.acm.org/citation.cfm?id=359640.359758

[4] Rus, I., & Lindvall, M. (2002). Guest editors introduction:
Knowledge management in software engineering. IEEE Software, 19,
26-38. doi:10.1109/MS.2002.1003450

[5] Ye, Y. (2006). Supportin g software develop ment as knowledge-
intensive and collaborative activit y. Proceedings of the 2006
international Workshop on Workshop on interdisciplinary Software
Engineering Research, 15-22. doi:10.1145/1137661.1137666

[6] Jansen, A., & Bo sch, J. (2005). Software architecture as a set of
architectural design decisions. Proceedings of the Fifth Working
IEEE/IFIP Conference on Software Architecture. 109-120. doi:
10.1109/WICSA.2005.61

[7] Nonaka, I. (1994). A d ynamic theory of organization kn owledge
creation. Organization Science, 5(1), 14-37. doi:10.1287/orsc.5.1.14

[8] Lee, S., Braunsdorf, K. & Shiva, S. (2010). Knowledge engineering
to visualize com plexity for le gacy modernization planning,
Proceedings of the Twenty-Second International Conference on
Software Engineering and Knowledge Engineering, 331-334.

[9] A. Agostini, S. Albolino, G. De Mi chelis, F. De Paoli, and R. Dondi,.
“Simulating knowledge discovery and shar ing,” Proceedings of the
2003 international ACM SIGGROUP Conference on Supporting
Group Work, ACM, New York, 2003, pp. 248-257.

[10] D. L. Hansen, “Knowledge shar ing, maintenance, and use in onli ne
support communities,” CHI '06 Extended Abstracts on Human
Factors in Computing Systems ACM, New Yo rk, 2006, pp. 17 51-
1754.

[11] Marks, P. Polak, S. McCoy, and D. Galletta, “How Managerial
Prompting, Group Identification, and Social Value Orientation Affect
Knowledge-Sharing Behavior, “ Communications of the ACM,
February 2008, pp. 60-65.

[12] J. Ezingeard, S. L eigh, and R. Chandler -Wilde. “Knowledge
management at Ernst & Young UK: getting value through knowledge
flows,” Proceedings of the Twenty First international Conference on
information Systems. ACM, Atlanta, GA, 2000. pp. 807-822.

[13] Lee, S., & Shiva, S. (2009). A novel approach to knowledge sharing
in software s ystems engineering, Proceedings of the Fourth IEEE
International Conference on Global Software Engineering, 376-381.
doi:10.1109/ICGSE.2009.59

[14] Kock, N., & Davison, R. (2003). Can lean media support knowledge
sharing? Investigating a hid den advantage of process improvement.

IEEE Transactions on Engineering Management, 50(2), 151-163.
doi:10.1109/TEM.2003.810830

[15] Jennex, M., & L. Olfman. (2004) Assessing Knowledge Management
Success/Effectiveness Models. Proceedings of the Thirty-Seventh
Hawaii International Conference on System Sciences, 8, 236-245.

[16] Baskerville, R. (1999). Investigating information systems with action
research. Communications of the Association on Information Systems,
2. Retrieved on Mar ch 9 2 011 from
http://www.cis.gsu.edu/~rbaskerv/CAIS_2_19/CAIS_2_19.html

[17] Lee, S. & Shiva, S. (2010). An approach to overcoming knowledge
sharing challenges in a corporate IT environment, Proceedings of the
Fifth IEEE International Conference on Global Software
Engineering, 342-346. doi:10.1109/ICGSE.2010.47

[18] Callele, D., Neufeld, E., Schneider , K. “Requir ements Engineering
and the Creativ e Process in th e Video Gam e Industry,” In
Proceedings of the 13th IEEE International C onference on
Requirements Engineering (RE '05). IEEE Co mputer Society,
Washington, DC, USA, 240-252. DOI=10.1109/RE.2005.58

[19] Lohmann, S. & Niesenhaus, J. Towards Continuous Integration of
Knowledge Management into Ga me Development. Proceedings of
IKNOW ’08 and IMEDIA '08 Graz, Austria, September 35,2008.

706

Automatic Acquisition of isA Relationships from Web
Tables

Norah Alrayes
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

naa27@sfu.ca

Wo-Shun Luk
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

woshun@sfu.ca

Abstract—Automatic acquisition of isA relationships is an
important process in knowledge engineering, with significant
applications in natural language processing and software
engineering. Until now, most research on searches for isA
relationships has been based on the lexical patterns in free text.
While the precision of this strategy is generally high, the recall is
low. This paper proposes a new source from which isA
relationships may be acquired: web tables that come with table
titles. A number of natural language processing methods are
proposed for extracting the label from the table title that most
accurately annotates a group of column/row headers,
independent of the domain to which they belong. Experiments
were conducted on summary tables from Statistics Canada and
Statistics Austria, which show our extraction algorithm achieving
an accuracy of 92%.

Keywords-isA relationship; web tables; statistical tables;
WordNet; Natural Language Processing

I. INTRODUCTION

An isA relationship is sustained between two concepts, say
X and Y, if concept Y can be generalized to concept X, or
equivalently concept X being a specialization of concept Y.
Symbolically, it is written as (X isA Y). As an example, dog
isA animal is a relationship between dog and animal such that
the concept dog may be generalized to the concept animal.
Linguistically, X is called a hyponym of Y, and Y a hypernym
of X. An isA relationship is transitive, which means if X can be
generalized to Y and Y to Z, then the isA relationship X isA Z
holds.

WordNet [1] is probably the best known and most popular
source of isA relationships. Besides applications of WordNet to
many problems in natural language processing [2], it has
become an important tool for information processing. In
particular, WordNet has been used for identifying semantic
similarity between keywords in matching documents in
information retrieval [3], and between attributes in matching
database schemas in schema integration [4][5].

As popular as WordNet is, it is not without shortcomings.
The main concern about manually crafted semantic taxonomy,
such as WordNet, is its high cost in maintaining and extending
its coverage. Following a seminal paper [6] on automatically
extracting isA relationships from free text, a number of papers
have been published on automatic discovery of isA

relationships based on lexical patterns [7][8]. Meanwhile,
others are looking for extraction of isA relationships from more
specialized sources such as Wikipedia, YAGO or DBpedia
[9][10][11][12].

This paper investigates a new source where isA
relationships are automatically and accurately discovered,
namely tables published on the Web. A column in a table
contains words, i.e., hyponyms, the concept of which they
represent, which have an isA relationship with the concept
represented by the column header, i.e., the hypernym.
According to some estimates [13] there are roughly 100 million
data-rich tables on the Web. However, the column headers are
not precise enough; they might be very brief and might not lead
to important knowledge. In [12], column headers are ignored,
and the label describing the values in the column semantically
is derived from web searching.

Here, the focus is on those web tables that come with table
titles, which include those published by public organizations
such as government agencies, particularly national statistical
agencies. The objective of this research is to show how
domain-independent isA relationships may be discovered from
these tables. These tables are more complex than tables
analyzed in [12]. Instead of multi-columns, as in most common
tables, they feature multi-dimensions, where each quantitative
item in the table is associated with a header from each
dimension. The set of all column and row headers can be
partitioned into a number of groups, each of which corresponds
to a particular dimension (see the example in Section II, which
gives a more details about the concept of multidimensional
tables). This work builds on our previous work [14], which
develops an algorithm for the partitioning of headers according
to the dimensions they belong to. In this paper, a scheme is
developed to acquire a label, mostly from the table title, that
forms the isA relationship with a given group of dimension
headers.

The rest of the paper is organized as follows. Section II
explains the background of this research, in particular the
terminology in table processing. Section III introduces the
summarization rule to determine whether the headers of a
dimension truly share a commonality for which a label can be
found. A general scheme to locate a label for a group of
headers is described in Section IV. Section V describes in

707

detail how to select the most appropriate label from a set of
candidate labels for a given group of headers, i.e., dimensions.
Experimental results are presented in Section VI. Section VII is
the conclusion and discussion of future work.

II. INTRODUCING MULTIDIMENSIONAL TABLES

Multidimensional tables are designed with a specific
common layout that is standardized for readers. Fig. 1 shows
the main components of a multidimensional table, including the
table title, column/row headings, and data region.

Figure 1. The main components of a multidimensional table

• The table title summarizes the information stored in the
table. Typically, titles are carefully prepared by a
professional organization. The table title usually
consists of two components: 1) description of the data
stored in the table cells, and 2) the labels for the
included dimensions. The title is used to inform readers
of the purpose of a particular table. According to
Finland Statistics articles [15], a table title has four
important elements: the title, which identifies the
population covered; the variables described in the table
and their classification; the time period of the
observations; and the units of measurement. In short,
the table title should provide a general description of
the table.

Often the title elements are connected together with a
preposition such as “by”, or with punctuation such as
commas. For example, in Fig. 2, “selected primary site
of cancer” and “sex” both follow the preposition “by”.
This may not always be the case, however, such as in
the table title “Workers who use an official language
most often or regularly at work, by province and
territory”, where one of the dimensions should be
labeled as “official language”. Still, the majority of the
dimension labels appear after the preposition.

• Multidimensional tables have two kinds of headings:
the row heading and the column heading. The text
string contained in a cell in either heading is called a
header. The headers are displayed to the reader such
that they are recognized as what they stand for. For
example, Fig. 2 shows that some headers are associated
with data cells, while others are not. They can be
shown in different font types. These visual clues will
help the reader to comprehend the meaning. For
example, The “Males” header is associated with the
phrase “by sex” in the table title, while the header
“Total, all primary sites of cancer” is associated with
another part of the title.

• The data region, i.e., the non-heading region of the
table, is populated with data cells containing numeric
data items. Each data cell is indexed horizontally by a
row header and vertically by a column header.

A careful design of a multidimensional table will enable a
human reader to associate a data item found in the data region
with a number of headers in the heading regions. For example,
the data item 6,279 is associated with three headers: Colon
(excluding rectum), Male, and 2003. Thus, this is a 3-
dimensional table, where the headers are partitioned into three
groups, or dimensions, which are:

• Selected primary site of cancer: Colon (excluding
rectum), Rectum and rectosigmoid, Lung and
bronchus, Prostate, Breast.

• Sex: Male, Female.

• Year: 2003, 2004, 2005, 2006, 2007

Figure 2. Sample of a statistical multidimensional table

Most multidimensional tables feature 3-4 dimensions. A
higher dimensional table is sometimes broken into a number of
lower dimensional tables. Due to lack of space, we will not
deal with table series here, although in [16] a scheme to handle
table series is described.

For each dimension, there is a dimension name and a
number of dimension headers. Between the name and each
header is an isA relationship. While it is a relatively easy task
for humans, especially experienced readers, to partition the
headers into dimensions and derive a label from the table title
as the dimension name, it is a nontrivial job for a machine.

The algorithm described in [14] to extract the headers from
the row/column headings and partition them into dimensions
relies on the visual clues embedded in the multidimensional
table. Also [14] introduces a simple technique for assigning a
label to the dimensions, which is the column label associated
with the dimensional headers. Clearly, this simple technique is
not sufficiently accurate to uncover all isA relationships in the
table without access to the table title. For example, in Fig. 2 the
label “sex” will not be easily discovered as the dimension label,
since it is not found anywhere other than the table title. Much
of the present paper is to develop techniques to process the
table title as a natural language entity to search for a label for a
number of dimensions located by the algorithm described in
Sections IV and V.

708

III. VALIDATING THE DIMENSION HEADERS

In [14] the dimensions including their headers are extracted
according to visual clues. Nevertheless, our research found that
the dimension headers are not always in the same category and
hence should not be covered by the same label. Let us consider
the example in Fig. 3. The group of dimension headers {Males,
Females, Sex unknown, Aboriginals, Non-Aboriginals,
Aboriginal identity unknown} have the same visual clues but
are not from the same group, and no label can represent them
as one collection.

To confirm that the dimension headers are related, we need
to use the numeric values in the table data region. This is done
by summing the numbers associated with the dimension
headers and one of the columns. In our example, the sum of the
numeric values under column “2004” associated with the
previously mentioned dimension headers is 316. The sum
exceeds the numeric value associated with the dimension
summary header, which is 158. Thus, for our purpose, this
proves that it is not a collection and it is not necessary to find a
label for them. On the other hand, if the sum is less than the
total under every column, as in the case of the table in Fig. 2,
the group of the dimension headers is acceptable as they are
only a proper subset. We called this the summarization rule.

Figure 3. Statistics table shows the summation problem

IV. FINDING isA RELATIONSHIPS - GENERAL SCHEME

In this section and in Section V, the main problem of this
research is tackled: given a set of headers that belongs to a
dimension { , ..., }, a label needs to be found such that an
isA relationship exists between the label and , 1<= i <= q. A
general scheme is presented in the algorithm below, followed
by more detailed explanation of each step.

1) Common dimensions
Some dimensions may contain special kinds of headers; for

example, time and age. These headers can easily be detected
because what they represent can be understood directly without
having to perform any further processing. Since these types of
header may not have any linguistic meaning, being numbers or
special characters, they can be identified by the use of some
temporal templates. A label such as Time or Age will be
assigned directly.

2) Candidate set
The candidate set consists of a number of labels, which are

selected on the basis that any of them is likely to be the
ultimate label we are looking for. It is constructed from two
sources: the table title and the dimension summary header.
Since the construction of the candidate set and the
identification of the most suitable candidate from the set are
very complex, the discussion is deferred to Section V.

3) External domain list
Often, dimensions share the same domain. For example, the

names of provinces and territories belong to the same domain.
The dimensions in many tables would contain headers drawn
from this domain. Consequently, we maintain a list of domains
as we process the collection of tables. Whenever a dimension is
derived, it is checked against the domain list to verify whether
or not it shares the same domain as the other dimensions that
have been processed. Occasionally, the matching process may
help to locate a label when using heuristics 1 or 2 fails to
provide an appropriate label for a dimension.

The domain can also be shared with full names and
abbreviations. For example, suppose the headers of a
dimension are abbreviations, like NB, and a domain in the
external domain list contains New Brunswick. If the two
dimensions are found to share the same domain, the former
header will be reverted back to its full name, since the latter is
syntactically closest to the abbreviation.

To define the matching process, the two lists—the
dimension headers and the domain list—are syntactically
compared. First the labels are checked, and if the two lists carry
the same labels, it is possible to determine syntactically
whether or not the two groups of headers intersect with a low
threshold to do the merge. The union of these groups is not
applied directly without first confirming the label, because it

1: for each group of dimension headers { , ..., } do
2: if { , ..., } are from domains (time/age) then
3: merge this dimension with the domain

list and assign label L= “time” or “age”
4: quit}
5: else {
6: construct the set of candidates { for

isA relationship
7: if an isA relationship is identified for { , ..., }

from { then
8: assign the successful candidate as a label

 and merge this dimension with
the domain list.

9: quit}

10: else {
11: If the external domain list { , ..., } contains a

proper portion of { , ..., } then
12: assign the domain name as a label

and merge this dimension with
the domain list.

13: quit}
14: else {
15: if the default candidate { is available

then
16: assign the candidate as a label and

merge this dimension with the domain
list.

17: quit}

709

Coverage

Common
Ancestor

Height

Dimension
Header Set

cannot be guaranteed that the labels have been correctly
assigned. On the other hand, if the labels are different, they can
be merged by syntactically intersecting the dimension headers
with a high threshold.

4) Default
Occasionally, the methods outlined in 1, 2, and 3 may fail

to identify an appropriate label for the dimensions.
Nevertheless, there may be a remaining list from the candidate
list in heuristic 2 that has not been assigned as a label to any of
the dimensions. The candidates derived from the dimension
summary headers have the highest priority to be assigned as a
label, because of the nature of this location in regards to the
dimension. If a dimension summary header was not found, then
the non-assigned candidate from the table title is assigned as
the label without any processing.

V. IDENTIFYING isA RELATIONSHIPS FROM A CANDIDATE

SET

In this section, the candidate set is constructed using the
table title and the dimension summary header. One of the
candidates in this set can be the dimension label. This paper
introduces a special algorithm to reach this goal. The algorithm
is run in three steps.

In short, there should be a candidate set, i.e., { ,
and the dimension headers; i.e., { , , }. The problem is to
select a , 1<=i<=p, which is the most appropriate label for the
set of headers { , , }. For the pre-processing (step A), a
list of ancestors is identified from the WordNet taxonomy that
is deemed to be semantically close to the dimension headers as
a whole, i.e., { , , }. Each ancestor in the list is
essentially a proxy for the dimension headers. In step B, the
candidate set is constructed in three different methods. The last
step C is to compute the semantic similarity between each
ancestor in the list and each candidate in the candidate set, i.e.,
{ , to select the candidate with the highest similarity
score to be the label for the dimension. These steps are
explained in detail below.

A. Pre-Processing

The headers { , , } in the dimensions could be phrases
or short sentences and could be quite large. They could also be
too diverse semantically. When the headers are phrases or short
sentences, it is not known which word of the header is more
dominant. Therefore, it is not appropriate to directly match the
headers to the candidate set. This decision is justified by the
experimental results described in Section VI. By this pre-
processing, the set of the dimension headers { , , } is
replaced with another set of words, i.e., common ancestors
{ , , }, that semantically represents this set of headers, such
that a common ancestor represents the majority of or all the
headers. This set of common ancestors is smaller and
semantically closer to the candidate set, to be constructed in
step B.

To proceed, each header in the dimension must first be
represented within the WordNet taxonomy. It is reasonable to
assume that headers in the same dimension should share a
common ancestor. Two important factors must be considered

when choosing a common ancestor for the dimension headers:
the size of the coverage (c), where c
is the set of headers in the
dimension that retrieves this
ancestor, and height (h), which is
the median distance between the
common ancestors of the headers in
c. The greater the height, the more
tenuous is the ancestor-descendant

relationship. Conversely, the larger
the coverage, the more relevant is
the ancestor to the header set as a
whole, as demonstrated in Fig. 4.
For each ancestor matching at least 25% of the headers in the
set, the common ancestor score is defined as:

Common ancestor score = |c|/h (1)

The list of ancestors is sorted according to their common
ancestor score, and the low scoring ancestors will be dropped
from the list. Because some headers in the dimension are
phrases or short sentences, it can be difficult to collect the
common ancestor for these headers, since one cannot be sure
which word is most closely related to the other headers in the
set. WordNet contains single words and some general purpose/
common phrases. Since the headers are mostly phrases defined
by the table designer and are not common or general purpose
WordNet synset, therefore, for WordNet to retrieve them, each
dimension header needs to be divided to the appropriate
WordNet synset. Also some ancestors may be retrieved more
than once for the same group, for the reason given above.
Therefore, the shortest height between them is chosen. The
following algorithm is a summary of the pre-processing step.

The pre-processing step is not needed in one situation, when
the dimension headers are listed in the table title without any
common words to represent them. This can happen when the
dimension headers are less than or equal to 3. In such cases, the
list of headers is compared directly with the candidate set.

B. Construction of the Candidate Set

The candidate set is formed with labels from the two main
sources: the table title, which was introduced in Section II, and
the dimension summary header for the dimension header set.
The latter is located right above the headers in either column or
row headings. It is distinguished from the headers by font
type/size. This summary header is often just a single word, but
occasionally it contains the label that appropriately describes
the dimension header set, e.g., the phrase “total, all primary
sites of cancer” in Fig. 2. The dimension summary header is
ignored when it is an aggregate word only, such as “total”.

1: for each group of dimension headers { , ..., } do
2: for each collect ancestor group { , ..., }
3: for each Ancestors in { ,..., } collect the

ancestor score
4: score = |c|/h
5: sort the Ancestors according to its high score
6: return ancestors and their score { , ..., }

Figure 4. Height and
Coverage of Common

Ancestor

710

The table title and the dimension summary header are most
unlikely full sentences. Many resemble noun phrases.
Therefore, they need to be partitioned to appropriate sizes in
order to find a label to be matched with the ancestor set. Those
labels could be phrases or words. This study has developed
three different ways of partitioning in order to find the best
method to choose the candidate set. The candidates can be
partitioned into NLP chunks, or they can be partitioned to the
WordNet synset and the full chunk that would serve as a label
can then be retrieved. The third method is a combination of the
previous two.

1) Case #1: NLP chunks
Chunking any sentence/phrase, in this case the table title

and the dimension summary header, depends on the part of
speech tagging of words in the sentence. These chunks are
considered as candidates for the label that covers the dimension
headers. We refer to “Statistical parsing of English sentences”
[17] to divide the candidates into appropriate noun phrases,
verb phrases and words. For example, for the table title in Fig.
2, the chunks are {Cancer, new cases, selected primary site of
cancer, sex}, which become candidates in the candidate set.

2) Case #2: single words
Each candidate in the candidate set will be a single

WordNet synset that is found in the table title and the
dimension summary header.

3) Case #3: sliding window chunks
A sliding window technique is formed on the table title and

the dimension summary header. The candidates in the
candidate set are of size 1, 2 or 3 WordNet synsets picked from
this technique.

C. Assigning Label from the Candidate Set

This step computes the semantic similarity between the list
of ancestors, derived in step A, and the candidates in the
candidate set, derived in step B. This is done using the
semantic score presented in “WordNet-based semantic
similarity measurement” [18]. The semantic similarities are
computed between the ancestors in the ancestor set and the
candidate set, beginning with the highest scoring ancestor and
the candidates that appear after the prepositions in the table
title. The candidate that matches one of the ancestors is
selected as a label. This procedure is done in two steps,
depending on the type of candidates in the candidate set. The
steps are presented in the following algorithm.

When the candidates are single WordNet synsets, the
semantic similarity between each ancestor and each candidate
is measured according to Wu and Palmer [19], as shown in (2),
where LCA is the least common ancestor depth in WordNet
taxonomy between two WordNet synsets; i.e., the ancestor and
the candidate, is the depth for the ancestor, and is the
depth for the candidate word.

Sim= LCA /) (2)

When the candidates are chunks, the chunks must be
divided into single WordNet synset and their semantic
similarity computed with the ancestors. This is followed with a
computing of the full similarity of the full chunk, since any
semantic similarity function cannot compute the similarity
directly between the phrase and words, because the chunk
contains more than one WordNet synset and the ancestor is one
WordNet synset. Therefore, it is necessary to ensure that the
semantic similarity measure considers comparisons of a group
of WordNet synsets taken together.

Since (2) computes the similarity between two WordNet
synsets, the similarity scores for the case when the candidate is
a phrase must be collected. According to [18] the total
similarity, T, is equal to the summation of the similarities
between the phrase and the ancestor, p1, and p2 is the highest
similarity score between the ancestor and a word in the phrase.
This is divided by the summation of their length l1 and l2.

T= (p1+p2)/ (l1+l2) (3)

VI. EXPERIMENTAL RESULTS

Our system was tested with multidimensional tables from
Statistics Canada’s website of summary tables [20] and from
Statistics Austria website [21]. The tables are freely accessible
and belong to a few national statistical agencies that continue to
publish in HTML. They contain invaluable quantities of isA
relationships. More importantly, the tables are valuable because
they cover a wide range of topics. Our test dataset contained
some 305 randomly selected tables, containing 781 dimensions,
which were domain-independent and covering such topics as
education, construction, household, travel, and languages. By
implementing the algorithms, we found that we are able to
extract 92% of isA relationships successfully.

Different techniques were implemented to reach the goal of
this research. This section of the paper looks deeper into the
results to determine their effectiveness. First, the pre-
processing step described in Section V was found crucial to

1: for each in { , ..., }
2: for each candidate in {
3: divide each to each WordNet synset

{
4: for each
5: identify LCA between and , the

depth d for and ,
6: Sim= LCA /)
7: end
8: end
9: if Case #1 or Case#3 then{
 compute the similarity for the ancestor

 and the full chunk
10: =
11: =
12: T= (+)/ (+)
13: if T certain threshold then{
14: L =
15: quit loop}
16: else if Case#2 then{
17: if (Max Sim certain threshold) then{
18: L =
19: quit loop}

711

identification of the most accurate label. Alternative
experiments were conducted by directly matching between the
candidate set and the dimension headers, while skipping the
pre-processing step, and the success rate dropped by a wide
margin, to 69%.

The experimental results also demonstrated how essential
and critical the table title is. It was the most important source
for labeling all the major dimensions. It was used to
successfully label almost 51% of 92% of the total successfully
labeled dimensions. On the other hand, 1.6% of the
successfully labeled major dimensions were labeled by the
dimension summary header. The majority of the other 44%
labeled dimensions were common dimensions such as time,
since this kind of dimension is very common in the
multidimensional tables.

Experimental data also compare the effectiveness of three
different ways of analyzing the table titles, resulting in three
different candidate sets. The success rates for these cases are
shown in Table I.

TABLE I: EXPERIMENTAL RESULTS

Candidate set Success rate
Case #1 87%

Case #2 92%
Case#3 92%

We found that the best case for successfully computing the
semantic similarities between the ancestors and the candidates
was by representing the candidates as a single WordNet synset
(Case #2).

By using Case #3 type of candidates, the sliding window
size 1 always had the highest scores, which is also represented
in the candidates in Case #2. The similarity between the
ancestors and the candidates as chunks usually had lower
scores, since the ancestors are a single WordNet synset, and
comparing them to a chunk means unnecessary words were
included the score. The results were ambiguous when
comparing a chunk of size 1 with a chunk of size 3.

Case #1 had the lower success rate, since the candidates
were fixed chunk size. In addition, these experiments depended
on the success in chunking the candidate set. The procedure
might not always retrieve a good list of chunks since some of
the chunks would contain two words, each of which would
label one of the dimensions.

VII. CONCLUSION AND FUTURE WORK

This paper has demonstrated that web tables collectively
are a valuable source for acquiring isA relationships. It
proposed a rule of summarization to verify whether or not a
group of table headers share some commonalities, so that a
label can be found that describes them collectively. Different
ways were examined for processing the table title as a natural
language entity to extract a label for a group of table
dimensions. Our work can be extended to millions of web
tables where table titles are not located in the immediate
neighborhoods of the tables. Strategies for locating a proper
table title in a web page where a table is found are currently
being developed.

REFERENCES

[1] C. Fellbaum, "WordNet: an electronic lexical database," Cambridge,
MA: MIT Press., 1998.

[2] "Usage of WordNet in Natural Language Processing systems," in
Proceedings of COLING-ACL Workshop, Montreal, Canada., 1998.

[3] R. Mandala, T. Takenobu, and T. Hozumi, "The use of WordNet in
information retrieval," in Proc. Conf. Use of WordNet in Natural
Language Processing Systems, 1998, pp. 31-37.

[4] F. Hakimpour and A. Geppert, "Resolving semantic heterogeneity in
schema integration: an ontology based approach," in Proc. of the Intl.
Conf. On Formal Ontologies in Information Systems, Ogunquit,
Maine, USA, 2001, pp. 297--308.

[5] N. F. Noy, "Semantic integration: A survey of ontology-based
approaches," SIGMOD Record, vol. 33, no. 4, 2004.

[6] M. A. Hearst, "Automatic acquisition of hyponyms from large text
corpora," in In Proc. of the 14th Intl. Conf. on Computational
Linguistics, Nantes, France, 1992, pp. 539--545.

[7] R. Snow, D. Jurafsky, and A.Y. Ng, "Learning syntactic patterns for
automatic hypernym discovery," in Advances in Neural Information
Processing Systems, 2005.

[8] A. Ritter, S. Soderland, and O. Etzioni, "What is this, anyway:
Automatic hypernym discovery," in Proc. of AAAI Spring Symposium
on Learning by Reading and Learning to Read, 2009, pp. 88-93.

[9] A. Sumida and K. Torisawa, "Hacking Wikipedia for hyponymy
relation acquisition," in Proc. of the Third Intl. Joint Conf. on Natural
Language Processing, 2008.

[10] S. Sarawagi and S. Chakrabarti G. Limaye, "Annotating and searching
web tables using entities, types and relationships," in 36th Intl. Conf.
on Very Large Data Bases, Singapore, 2010.

[11] A.Bhattacharjee and H. Jamil M. Amin, "Wikipedia driven
autonomous label assignment in wrapper induced tables with missing
column names," in Proc. of the 2010 ACM Symposium on Applied
Computing, Switzerland, 2010.

[12] A. Halevy, J. Madhavan, M. Pa ca, W. Shen, F. Wu, G. Miao and C.
Wu P. Venetis, "Recovering semantics of tables on the Web," in The
37th Intl. Conf. on Very Large Data Bases, Seattle, Washington, 2011.

[13] M.J. Cafarella, A. Halevy, D.Z. Wang, E. Wu and Y. Zhang,
"Uncovering the relational web," in Proc. of the 11th Intl. Workshop
on Web and Databases, Vancouver, Canada, 2008.

[14] W. Luk and P. Leung, "Extraction of semantics from web statistical
tables," in IEEE/WIC/ACM Intl. Workshop on Semantic Web Mining
and Reasonin, Beijing, China, 2004.

[15] Statistics Finland. (2010, September) Statistics Finland - Online
statistics course - How to read and use statistics - Ways of displaying
statistics tables. [Online].
http://www.stat.fi/tup/verkkokoulu/data/tlkt/03/01/index_en.html

[16] Norah Alrayes, "Extracting data cubes from multidimensional tables
on the Web," M.Sc. Thesis, 2011.

[17] R. Northedge. (2011) Code project: Statistical parsing of English
sentences. [Online].
http://www.codeproject.com/Articles/12109/Statistical-parsing-of-
English-sentences

[18] T. Simpson and T. Dao. (2010, Jan) Code project: WordNet-based
semantic similarity measurement. [Online].
http://www.codeproject.com/KB/string/semanticsimilaritywordnet.asp
x?msg=2776502

[19] Z. Wu and M. Palmer, "Verb semantics and lexical selection," in Proc.
of the 32nd Annual Meeting of the Associations for Computational
Linguistics, 1994, pp. 133-138.

[20] Statistics Canada. [Online]. http://www.statcan.gc.ca

[21] Statistics Austria. [Online]. http://www.statistik.at/

712

A light weight alternative for OLAP

Hugo Cordeiro
Infoway - Teresina - PI - Brazil

hugo@infoway-pi.com.br

Jackson Cassimiro
Infoway - Teresina - PI - Brazil

jackson@infoway-pi.com.br

Erick Passos
IFPI - Teresina - PI - Brazil

erickpassos@ifpi.edu.br

Abstract

OLAP applications allow end-users to view and analyze
enterprise data based on its multidimensional nature and
has become an important tool for business management.
Although an OLAP solution may bring strategic advantage,
its adoption is complex given that building and maintain-
ing data warehouses is not an easy-to-perform task. We
propose an alternative approach to perform OLAP by us-
ing production rules to compute data cubes. The discussed
method incrementally builds the multidimensional database
by confronting rules with events sent by operational infor-
mation systems. The solution described in this paper is cur-
rently integrated to a claim processing system in a govern-
ment health care insurance service, from which we describe
a case study. Our method has some advantages in compar-
ison to traditional OLAP systems, such as seamless distri-
bution of processing over time and simpler rules-oriented
language for cube generation.

1. Introduction

The term OLAP (Online Analytical Processing) was

coined in a 1993 white paper [1], which defines require-

ments of systems where users can perform multidimen-

sional data analysis. An OLAP application transforms data,

retrieved from a data warehouse, into strategic information,

enabling users to perform ad-hoc analysis through a view of

aggregate data. This type of analysis has become one of the

important requirements for managing enterprises [1].

It is importance to notice that performing this kind of

analysis directly on operational databases may not be fea-

sible, due to the fact that data may be persisted on logi-

cally separated instances. To provide OLAP features prop-

erly, it becomes necessary to build and maintain a data

warehouse, where data from operational databases will be

cleaned, transformed, loaded and summarized. This is

a hard, error-prone process where mistakes can create ir-

recoverable problems.

This paper proposes an alternative approach to represent

multidimensional queries with production rules, avoiding

the creation data warehouses, at the same time simplifying

query specification. The goal is achieved by confronting

data received from enterprise information system with rules,

which define filters and a set of actions to compute business
measures and persist them over a timeline.

This new approach for performing OLAP brings the fol-

lowing contributions:

• Simplifies query specification by replacing the

dimensional-based SQL with simpler production rules;

• Avoids the creation and maintenance of complex data

warehouses;

• Seamless distribution of load processing over time;

• A run-time engine and plugin architecture to enable

live monitoring of events from many distributed enter-

prise systems at the same time;

The rest of the paper is organized as follows: next section

covers related works in production rules and applications

in OLAP systems. The following section presents founda-

tions on the proposed approach, and describes the cycle of

performing queries over data warehouses. It also explains

production rules as knowledge representation. In Section 4,

our proposal is presented, including the inversion of OLAP

and the run-time engine architecture. Section 5 show a case

study, and Section 6 brings final remarks and future work

considerations.

2. Related Work

As mentioned in the previous section, the original paper

on OLAP [1] defines it as a category of database process-

ing to solve the most notably lacking feature of relational

databases, which is the ability to consolidate (synthesiz-

ing pieces of information into single blocks of knowledges),

view and analyze data according to multiple dimensions at

any given point in time. Since then, many works have been

made to support and enhance this approach.

713

Gray et al. [2] present the problems of the standard SQL

group by operator and defines the data cube operator, which

generalizes histogram, cross-tabulation, roll-up, drill down,

and sub-total constructs. An N-dimensional cube is a set

of points, which are the aggregate of a particular set of

attribute values. And given that computing multidimen-

sional aggregates is the performance bottleneck for OLAP,

Agarwal et al. [3] proposed faster algorithms for comput-

ing sets of group bys, specially the cube operator. Extend-

ing sort-based and hash-based grouping methods with opti-

mizations like using pre-computed group by for computing

others group-by.

Harinarayan et al. [4] investigated the issue of which

cells from the data cube to materialize when working with

large data cubes. They used a lattice framework to ex-

press dependencies among views, and a greedy algorithm

to determine a good set of these views to be materialized,

based on the tradeoffs between the space used and the av-

erage time to answer a query on a proposed benchmarking

database.

The standard method for optimizing OLAP queries exe-

cution is often precomputing some of the queries into sub-

cubes, and then to build indexes on theses summary tables.

Grupta et al. [5] were pioneers in proposing automation of

the selection of summary tables and its indexes with near-

optimal algorithms. Going further, and using a logical re-

construction of multidimensional schema design, multidi-

mensional forms were proposed by [6] to ensure summa-

rizability within the whole application schema, achieving

sparsity reduction of the underlying data cube and reason-

ing about the quality of conceptual data warehouse schema.

The application of production rules in OLAP systems

have not been deeply explored, with only a few recent pa-

pers being published. Vasilecas et al. [7] proposes a back-

ward chaining approach to transform production rules into

executable MDX instructions 1, representing rules in XML

format and automating decisions and decision support ac-

cording to the internal and external influences. Prat et al. [8]

argue that multidimensional models poorly represent aggre-

gation knowledge, and propose production rules to better

represent this knowledge of how aggregation may be per-

formed on a given data cube based on the additive nature

(non-, semi-, fully-additive) of the attributes involved, and

minimizing the risk of introducing errors during aggrega-

tion, since this errors may accumulate consequently leading

into awful analysis.

3. Foundations

The proposed method relies on using production rules to

replace query languages, anticipating the summarization of

1MDX is a standard query language for OLAP.

data into a dimensional structure, providing a subset of all

OLAP features. OLAP was created as a database processing

solution to solve issues not tackled by relational database

systems. Production rules are a way to represent knowl-

edge about reasoning on data. In this section, we present

a general introduction to these two foundational concepts,

before discussing our solution.

3.1. OLAP

OLAP applications help analysts and executives to gain

insight into the performance of an enterprise through fast

access to a wide variety of data, organized to reflect the

multidimensional nature of the information [9]. However,

this type of analysis can not be done directly from opera-

tional databases [1], given that they are prepared only for

on-line transactional process. Performing OLAP operations

requires detaching data from database, transforming, inte-

grating and loading it into a multidimensional one.

Multidimensional databases are used in data warehous-

ing to support OLAP operations and separate structural as-

pects and contents. Relational database technology is bet-

ter suited for transaction management and ad hoc query-

ing [10]. Data warehouses maintain data from operational

databases, transformed and integrated accordingly to the

demands of analysts. The data is usually organized into

a relational model of multidimensional data, called a star

schema [11], shown in Figure 1, where tables are separated

into dimension tables, which contains identifying informa-

tion about the dimensions themselves, and a fact table, that

correlates dimension and information of interest.

Fact Table

Dimension Table

Dimension TableDimension Table

Dimension Table Dimension Table

Figure 1. In the star schema dimension tables
contains identifying information about the di-
mensions itself and the fact table correlates
them and informations of interest to analysts

The conversion of data from a relational database into a

multidimensional schema is not an easy task, and the pro-

cedure normally has to be assisted by an expert in business

modeling. Some organizations opt for data marts instead,

714

i.d. subsets of cubes focused on selected objects, if a com-

plete business model is not fully developed [11].

Queries over the warehouse are made through XML for
Analysis, a specification for a set of XML message inter-

faces that defines data access interaction between a client

application and an analytical data provider. XMLA pro-

vides access to multi-dimensional data from varied data

sources through web services that are supported by multi-

ple vendors.

3.2. Production rule engines

A production rule engine is a forward-chaining based

system which uses production rules to perform reason-

ing [12]. A production rule is a list of structured statements

comprising a set of conditions (Left Hand Side or LHS) and

a correspondent set of actions/consequences (Right Hand

Side or RHS).

A production system has a centralized knowledge base

known as Production Memory, which manage all avail-

able rules, an ongoing memory of assertions called Working
Memory, which contains available facts, and an Inference
Engine, which is based on a pattern matcher responsible for

comparing the current state of the Working Memory with

the Rules from the Production Memory, as shown in Figure

2. The forward-chaining logic goes as follows:

1. Find which rules have a LHS that satisfies the current

working memory;

2. Among the found rules, choose which of them should

get a chance to execute (priority policy);

3. Perform the RHS of all the selected rules.

Working
Memory

Production
Memory

Inference
Engine

Pattern
Matcher

Agenda

Figure 2. A production rule system architec-
ture, composed by a production memory to
manage rules, a working memory to manage
facts, and a inference engine responsible for
matching rules with facts and executing the
consequences.

The application of production rules into information sys-

tems have many advantages over traditional approaches. By

using production rules, it is possible to separate business

logic from conventional boilerplate code used to implement

it, maintaining all business knowledge centralized. All de-

cisions made by production rules are readable by a special-

ist, due to the fact that rules are expressed in a declarative

manner, usually even a domain specific one. Modern rule

engines are backed by robust algorithms, like RETE [13],

that make them faster and scalable than ad-hoc solutions.

However, maintaining a knowledge base involves some

issues. Firstly, to ensure reliability, it is important that these

systems are checked and validated before being implanted.

This process can include checks for anomalies like redun-

dant, contradictory or missing rules that appear after refac-

toring or because of a communication mismatch between

a business expert and a knowledge engineer as explained

in [14].

Some efforts on tools developing for verification and val-

idation of knowledge bases are Drools Verifier [14] and

VALENS [15]. Drools Verifier check for redundancy, sub-

sumption and equivalence. VALENS focuses on logical ver-

ification of knowledge bases using meta-rules, a inference

engine and meta information provided by users.

In the next section, we explain our approach of using

a production rule engine to provide for the replacement of

a relational to dimensional database conversion in OLAP

systems.

4. OLAP cube construction using production
rules

As cited in previous sections, traditional OLAP solu-

tions involve managing complex data warehouses, where

the transformation of data into a dimensional model is dif-

ficult and error-prone. In fact, the cost of maintain a mul-

tidimensional database can be higher that of maintaining a

relational database.

Our proposal is to build each histogram (normally com-

puted by a query over a cube) incrementally through ap-

plication of production rules on live events (data received

from an enterprise system, associated with the exact time

it was created). Each production rule has a set of condi-

tions that define a filter over data and a set of actions that

compute the associated magnitude and persist them associ-

ated to a timestamp. With this approach, production rules

provide for a robust way of building OLAP cubes, reduc-

ing the possibility of errors. Furthermore, building OLAP

cubes incrementally divides the processing cost along time.

Additionally, storing all measures into relational databases

simplifies and reduces the cost of maintaining the multidi-

mensional schema.

To understand the role of production rules in our pro-

posal, the following example should be considered: in a

sales management system, all products are grouped by cat-

715

egories such as food, personal care, beverages, etc., and all

sales of these products have a location and a price associ-

ated. In this context, a manager wants to know the sum of all

sales of food and beverage in the cities of Rio de Janeiro and

Sao Paulo, grouped by date. With a traditional approach,

this query must be performed over an OLAP cube where

the dimensions are category, city and date. In our system,

this whole operation can be replaced by the production rule

shown in Figure 3.

1 - production rule "Sales of food and beverages for Rio and São Paulo"
2 - when
3 - City(name == "Rio de Janeiro" or name == "São Paulo")
4 - Product(category == "food" or category == "beverage")
5 - Sale($price = price)
6 - do
7 - update_cube($price, $timestamp, $this)

Figure 3. A simple production rule for a sales
management system

In this figure, the rule are expressed in pseudocode. Line

one identify the rule to represent the cube where all mea-

sures are stored. Lines two to five define the set of con-

ditions (LHS of rule) that filter only desired data to be in-

cluded into the particular cube. Specifically, line three fil-

ters data allowing only two cities (Rio de Janeiro and Sao

Paulo), also defining city as a dimension. Line four fil-

ters only products from categories food and beverage, also

defining the category dimension. Line five is used to tem-

porarily store the price of the sale into a variable ($price)

that will be used to increment data into the cube. Lines six

and seven define the set of actions (RHS of rule) where the

measures are updated using auxiliary functions (these func-

tions are generalized and can be used for any domain). In

line seven, the sum of prices is updated using a function

called update cube, a timestamp (the $timestamp variable)

and a reference to current rule (the $this variable).

The timestamp is used to explicitly associate the com-

puted measure with the time dimension, and the two

other dimensions, city and category, are defined implicitly

through the set of conditions.

Considering that this rule has filtered some data from

sales registries, computed measures are persisted as shown

in table 1.

In table 1, each rule represents a cube, the timestamp

represents the time dimension and the measure column rep-

resents all business measures computed by the production

rules. In the sales management example, the measure col-

umn contains the sum of prices of all sales of food and bev-

erage sold in the cities of Rio de Janeiro and Sao Paulo in a

specific date.

In Figure 4 a generic representation of the OLAP cube

generated for the sales management example is shown. In

this figure, all sales of food and beverage are presented as

Id Rule Measure Timestamp

1 sales example 10 2012-06-10

2 other rule 01 20 2012-06-11

3 sales example 37 2012-06-12

4 other rule 02 25 2012-06-13

Table 1. Each rule identifies a particular cube.
The timestamp represents the time dimen-
sion and the other ones are inferred from the
LHS of the rule

one single measure because of the manner in which the

rule’s LHS was written, applying a disjunction on the prod-

uct category: measures will be updated when category is

”food” or ”beverage”. It was applied in the same manner

to cities of Rio de Janeiro and Sao Paulo, according to the

rule’s LHS shown in line three of Figure 3. Timestamp and

measures are stored together as shown in 1.

Timestamp

T1

T2

T3

Food or Beverage

Rio de Janeiro
or Sao Paulo

Figure 4. Generic representation of the OLAP
cube generated for the sales management ex-
ample

4.1. Run-time engine architecture

To support our approach of dynamically building OLAP

cubes by applying production rules to enterprise data, we

developed a runtime architecture that is comprised of five

modules: connector, adapter, engine, knowledge base and

database.

The connector is integrated into the enterprise system,

and is responsible for collecting relevant data as events, that

will be passed to the adapter. The later, for instance, splits

all events into smaller unities, called facts, to be confronted

with the rules stored in the knowledge base. The engine
itself is responsible for matching the production rules with

the facts generated by the adapter. All measures computed

716

Conector

Adapter

Engine

Knowledge
Base Database

Enterprise System

Data

Events

Facts

Persists the
accounting

Match
production rules

Figure 5. Run-time Engine

by the production rules are stored in a relational database
through auxiliary functions provided by a simple API.

Dynamically, all these five components work together

as a consumer of data streams from an enterprise system.

When a new event arrives in the stream, it is splited in facts

to be confronted with the production rules from the knowl-

edge base, producing measures that will compose the OLAP

cube. This process is shown in Figure 6.

Production Rules
Discretized Time

Yes

No

Measures

Event Stream

Figure 6. Stream to business measures

In the next section we describe how this system was in-

tegrated into a large governmental health care management

system.

5. Case Study

The proposed architecture is part of a real claim pro-

cessing system of a government health insurance service in

Brazil. This system is currently being used to smartly mon-

itor health service spending for some medical specialities,

for instance cardiological procedures on people older than

50 years old. With this kind of data, it is possible to ef-

ficiently manage financial resources and create prevention

campaigns.

This goal is implemented by creating rules that filter only

the specific medical events, monitoring, accounting for and

Id Rule Count Measure Timestamp

1 Cardiology

cost age > 50

10 2012-06-31

2 Cardiology

cost age > 50

20 2012-07-01

4 Other Rule 71 2012-07-02

5 Other Rule 12 2012-07-02

Table 2. Table that illustrates how our sys-
tem integrates all matched occurrences of the
LRS of a rule over time, using day as the
smaller unit of time. All events that match
a given rule are summed into the count mea-
sure.

storing the associated appointments. For instance, a possi-

ble query to be executed in this scenario could be: ”How

much did cost the cardiology exams made in july for per-

sons above 50 years old?”. In our system, the whole conver-

sion into a cube, and the query over a traditional OLAP sys-

tem can be replaced by the simpler production rule shown

in Figure 7.

production rule "CARDIOLOGY exams' costs for USER with age > 50"
when

User(age > 50)
Speciality(name = "cardiology", isExam = true)
Claim($cost = totalCost, $date = date)

do
update_cube($cost, $date, $this)

Figure 7. Production rule that filters only the
events of interest and integrates them over
time.

As this rule is applied to an event stream, the business

measures are persisted into a database as shown in Table 2,

characterizing a cube with the well-defined time dimension

in column ”timestamp” and aditional dimensions (User and

Speciality) implicitly defined trough the rule’s LHS. With

this data, the query from example can be executed by filter-

ing only the desired date interval.

6. Conclusions

OLAP applications allow the execution of complex

queries over summarized data, also know as measures,

which aids decision-making for managers. Normally, the

creation and maintenance of a data warehouse separated

from normal system database is required, where the data

717

is persisted in a multidimensional schema.

However, maintaining a multidimensional database is a

complex task and costs more than traditional relational solu-

tions. This paper proposes a model where the measures are

accounted and organized in dimensions by production rules,

where the rule’s LHS filters the information that is used to

integrate the measures, and the RHS persists the measures

into a relational database discretized over the time dimen-

sion.

The most important advantages of the proposed ap-

proach are the declarative construction of OLAP queries,

the load distribution over time and the relative lower costs

when confronted with the traditional method. However, our

system is still not able to compute all OLAP operations such

as roll-up and drill down in a aggregate set of cubes.

It is important to notice that in our system, a single pro-

duction rule applied over time results in the same data as

an OLAP query that requires a full-stack multi-dimensional

conversion before being performed. However, to extend

the set of supported OLAP features over the resulting data-

mart, we plan to keep the computed data in a multidimen-

sional schema.

We also plan to augment the system with reasoning about

the time-series computed in our engine. We are interested

in prediction algorithms over these time-series. All the pro-

posed features are part of a roadmap for the information

system on which we integrated the engine, and we will sub-

mit further developments to the academic community.

References

[1] E. F. Codd, S. B. Codd, and C. T. Salley, “Provid-

ing olap to user-analysts: An it mandate,” Ann Arbor
Michigan, 1993.

[2] J. Gray, A. Bosworth, A. Layman, D. Reichart, and

H. Pirahesh, “Data cube: A relational aggregation

operator generalizing group-by, cross-tab, and sub-

totals,” 1996, pp. 152–159.

[3] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F.

Naughton, R. Ramakrishnan, and S. Sarawagi, “On

the computation of multidimensional aggregates,” in

VLDB 96, Proceedings of 22th International Confer-
ence on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, T. M. Vijayaraman, A. P.

Buchmann, C. Mohan, and N. L. Sarda, Eds. Mor-

gan Kaufmann, 1996, pp. 506–521.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman,

“Implementing data cubes efficiently,” SIGMOD Rec.,
vol. 25, pp. 205–216, June 1996.

[5] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.

Ullman, “Index selection for olap,” in ICDE ’97: Pro-
ceedings of the Thirteenth International Conference
on Data Engineering. Washington, DC, USA: IEEE

Computer Society, 1997, pp. 208–219.

[6] W. Lehner, J. Albrecht, and H. Wedekind, “Nor-

mal forms for multidimensional databases,” Pro-
ceedings. Tenth International Conference on Sci-
entific and Statistical Database Management (Cat.
No.98TB100243), pp. 63–72, 1998.

[7] O. Vasilecas and A. Smaizys, “Business rule based

data analysis for decision support and automation,”

2006.

[8] N. Prat, I. Comyn-Wattiau, and J. Akoka, “Represen-

tation of aggregation knowledge in olap systems,” in

ECIS, 2010.

[9] G. Colliat, “Olap, relational, and multidimensional

database systems,” SIGMOD Rec., vol. 25, pp. 64–69,

September 1996.

[10] M. Gyssens and L. V. S. Lakshmanan, “A foundation

for multi-dimensional databases,” in VLDB ’97: Pro-
ceedings of the 23rd International Conference on Very
Large Data Bases. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1997, pp. 106–115.

[11] S. Chaudhuri and U. Dayal, “An overview of data

warehousing and OLAP technology,” ACM Sigmod
record, vol. 26, no. 1, pp. 65–74, 1997.

[12] R. Brachman and H. Levesque, Knowledge Represen-
tation and Reasoning. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2004.

[13] C. L. Forgy, “Expert systems,” P. G. Raeth, Ed. Los

Alamitos, CA, USA: IEEE Computer Society Press,

1990, ch. Rete: a fast algorithm for the many pat-

tern/many object pattern match problem, pp. 324–341.

[14] A. Giurca, G. Nalepa, and G. Wagner, Eds., Proceed-
ings of the 3rd East European Workshop on Rule-
Based Applications (RuleApps 2009) Cottbus, Ger-
many, September 21, 2009, ser. CEUR Workshop Pro-

ceedings. CEUR-WS.org, 2009.

[15] R. Gerrits and S. Spreeuwenberg, “Valens: A knowl-

edge based tool to validate and verify an aion knowl-

edge base.” in ECAI, W. Horn, Ed. IOS Press, 2000,

pp. 731–738.

718

A Tool for Visualization of a Knowledge Model

Simon Suigen Guo, Christine W. Chan, Qing Zhou

Energy Informatics Laboratory, Faculty of Engineering and Applied Science
University of Regina, Regina, Saskatchewan, Canada S4S 0A

Abstract - A survey of existing ontology visualization tools has
revealed that existing tools are inadequate as they lack
support for (1) a knowledge modeling methodology, (2)
dynamic knowledge representation and visualization, and (3)
visualizing a large amount of information due to limitations of
the 2D graphical space. This paper presents the design and
implementation of an ontology visualization tool called
Onto3DViz with the objective of addressing these three
weaknesses. Onto3DViz supports visualization of both static
and dynamic knowledge models that have been developed
based on the Inferential Modeling Technique. By employing
3D computer graphics, Onto3DViz presents a solution for
organizing and manipulating complex and related domain
concepts and relationships among concepts in a 3D model.
Onto3DViz accepts knowledge sources from both XML and
OWL files, hence, it is designed to not only visualize an
application ontology developed based on the Inferential
Modeling Technique, but also supports visualizing application
ontologies that have been developed using other tools or
techniques. The application of Onto3DViz for visualization of
knowledge models in the carbon dioxide capture process was
also illustrated in this paper.

Keywords- Knowledge Engineering; Ontology Visualization; 3D
graphic; CO2 Capture Process System

1. INTRODUTION
 Ontological Engineering aims to model concepts,
axioms and facts which reflect a real world phenomenon of
interest. In the modeling process, on tological engineering
software tools are of ten used for creating and editing
application ontologies. However, tools th at can
simultaneous support an ontological engineering
methodology and dynamic knowledge modeling are
lacking. A recent e xception is th e dynamic knowledge
modeler of D yna [1], which is based on the Inferential
Modeling Technique (IMT) [2] and can be ap plied for
modeling dynamic knowledge. The knowledge model
generated with Dyan can be stored in XML based
languages such as RDF1 and OWL2. By using XML3 based

1 Resource Description Framework (RDF),
http://www.w3.org/RDF/

languages, Dyna enables knowledge re-use and sharing on
the Semantic Web [3]. While Dyna can simultaneously
support the IMT and dynamic knowledge modeling, its
capability for supporting ontology visualization is limited.
In the area of ontology visualization, most major ontology
visualization tools use 2-dimentional or 2D g raphics for
representing concepts and relatio nships among concepts.
2D graphics are of ten employed for representing static
knowledge in hierarchical or frame like structures.
However, 2D g raphics are not adequate for representing
complex and related inf ormation because there is
insufficient space on a bi -dimensional plane, where
complex and related visual objects tend to squeeze together
or even o verlap with each other. In an effort to
accommodate a model of complex related objects in a 2D
plane, existing visualization tools eith er collapse lower
priority visual objects into high level objects, or implement
different representations that offer multi-perspectives on an
organization of knowledge elements. While these
approaches solve the problem of related objects being
overcrowded in a sh ared space, it sacrif ices clarity of the
display. Moreover, the ontology of many industrial
applications often requires visualization of not only static
but also d ynamic knowledge models. Adding dynamic
knowledge on top of an overcrowded 2D graphics model of
static knowledge would make the display confusing for the
user. Hence, we aim for 3D v isualization of knowledge
models that consist of both static and dynamic knowledge.

The objective of this paper is to presen t a tool f or
ontology 3D visualization called On to3DViz, which
utilizes 3D g raphics to v isualize a k nowledge model
consisting of both static and d ynamic knowledge
components. The tool h as been constructed based on the
theoretical framework of IM T, hence Onto3DViz
simultaneously supports a dev eloped knowledge
engineering method and ontology visualization. Compared
to a 2D graphical representation, 3D g raphics supports
visualization solutions that represent complex and related

2 OWL Web Ontology Language, http://www.w3.org/TR/owl-
features/
3Extensible Markup Language, http://www.w3.org/XML/

719

information in a clear visual model that can be manipulated
for multiple views.

 This paper is organized as follows. Section 2 presents
relevant background literature about the field of ontology
editors, ontology visualization tools and the structure of 3D
graphic rendering. Section 3 describes the development of
the proposed ontology 3D v isualization tool. Section 4
presents the application of Onto3DViz on ontology
visualization of the CO2 capture process system, and
section 5 discusses some strengths and weaknesses of the
tool for ontology visualizing application. Section 6
provides a conclusion and some discussion of future work.

II. BACKGROUND LITERATURE
A. Inferential Modeling Technique (IMT)
 The IMT supports “an iterative-refinement of
knowledge elements in a problem-domain that provides
top-down guidance on the knowledge types required for
problem solving” [2]. Typically, the resulting inferential
model consists of th e four levels of knowledge: domain
knowledge, inference knowledge, task knowledge and
strategy knowledge. The domain knowledge, also referred
as static knowledge, consists of concepts, attributes, values
and their relationships; the task knowledge, also referred as
dynamic knowledge, includes objectives, tasks, and
relationships among objectives and tasks. Static a nd
dynamic knowledge are in tertwined in that a tas k is a
process that manipulates static knowledge to ac hieve an
objective. T he details of this modeling technique can be
found in [2].

B. Ontological Engineering Modeling Tools
There are v arious modeling tools available that support

ontological engineering. Some examples include KAON
[4], OntoStudio [5], Protégé [6] and Dyna [1]. KAON is an
open source ontology management infrastructure, which
supports creation, storage, retrieval and maintenance of an
application ontology. KANO is based on the RDFS file
format. The successor of KANO, called KANO2, supports
OWL and F-Logic. OntoStudio is a co mmercial ontology
modeling tool, which supports the creation and
maintenance of application ontologies. OntoStudio
supports a variety of file formats, such as F-Logic, OWL,
RDF(S) and OXML (OntoStudio’s own XML format).
Protégé is another open source ontology editor and
knowledge-based framework, which supports frame based
(F-Logic) and OW L based on tology modeling. Protégé
ontologies can be exported into a v ariety of formats
including OWL, RDF(S), and XML schema. Protégé has
been designed so that more features can be added to it by
means of implemented plug-ins. For exa mple, Dyna has
been implemented as a Protégé-OWL editor plug-in that

addresses the need for dynamic knowledge modeling. Dyna
supports ontologies represented in the XML or O WL
languages format.

C. Ontology Visualization Tools
 There are many ontology visualization tools. Although
Protégé has some degree of visualization capabilities, the
actual ontology visualization applications are implemented
in its plug-ins. Some examples of these ontology
visualization plug-ins include Jambalaya [7] and
OntoSphere [8].

 Jambalaya provides several viewing perspectives for
the ontology model and supports operations such as
filtering and searching, so that th e user can examine and
interact with the knowledge elements at different levels of
abstraction and detail s. However, Jambalaya only
visualizes the static knowledge of classes and instances of
an application ontology, it does n ot support dynamic
knowledge visualization. Furthermore, since Jambalaya is
based on 2D graphics, the space it supports is insufficient
for rendering complex knowledge. In its representation,
text labels and s ymbols tend to ov erlap when the domain
ontology includes a hierarchy of many levels of concepts.
This deficiency means it is diff icult for users to v iew and
understand the concepts and the relationships among
concepts when the domain ontology is complex.

 OntoSphere is the only existing ontology visualization
tool that adopts the 3D view, thereby extending the volume
of space available for visualizing overcrowded concepts. A
main advantage of a 3D rep resentation is that it a llows
users to manipulate the visualized knowledge elements of
the application ontology by means of the actions of
zooming, rotating and translating. Through physical
manipulation of the concepts, the user can better
understand a co mplex ontology. For t his purpose,
OntoSphere provides four scenes so that the user can
observe a v isualized application ontology from multiple
perspectives. However, OnotoShere had not been
developed based on any ontological engineering
methodology, and it does not support visualization of
dynamic knowledge. Although the employment of 3D
graphics enlarges the space availab le for OntoShpere in
rendering images, the problem of overlapping concepts and
labels can still occur when the ap plication ontology to be
visualized is complex.

III. DESIGN AND IMPLEMENTATION OF

ONTO3DVIZ
A. Overview
 Onto3DViz has been developed for visualizing an
application ontology in 3D graphics. It is written in Java™
language and its 3D visualization engine is implemented in
java 3D™. The main difference between Onto3DViz and

720

other ontology visualization tools is t hat Onto3DViz is a
visualization tool developed based on the IMT [2]. Hence it
supports visualization of both static and dynamic
knowledge models. Onto3DViz also supports knowledge
sharing and re -use, by requiring ontology documents
represented in Web Ontology Language (OWL) as th e
input. Unlike Dyna which has been implemented as a
Protégé plug-in, Onto3DViz is develo ped as a n
independent software application. Onto3DViz is desi gned
to not only visualize an application ontology developed
based on the IMT, but also supports visualizing application
ontologies that has been developed by other tools or
techniques, as lon g as th e ontology is stored in the OWL
format.

The design of Onto3DViz is shown in Figure 1, it
consists of the three major components of (1) Grap hical
User Interfaces (GUI), (2) o ntology document processor
and (3) 3D graphic rendering engine. Each of the three
components contains sub packages. The GUI pa ckage is
used to create windows for displaying the output model
generated by Onto3DViz, it also displa ys text and
responses to u ser inputs. The GUI pack age consists with
three sub components: which are (1) th e User In put
Handler component, (2) the Text Output component and (3)
the Graphic Output component.

Ontology 3D
Visualization

Program

GUI User Input Handler

Static Knowledge Processor

3D Object Generator

«interface»
GUI

«interface»
Ontology Document Processor

«interface»
3D Rendering Engine

GUI Text Ouput

Dynamic Knowledge Processor

3D Scene Generator

GUI Graphic Output

Figure 1. Structural diagram of Onto3DViz

B. Knowledge Extraction and Interpolation
 After an application ontology has been constructed
using a tool lik e Dyna [1], both the static a nd dynamic
knowledge elements are stored in the XML files, which can
be shared and re -used by other systems. Instead of being
connected to an on tology editor that generates an
application ontology, Onto3DViz is a separate stand-alone
system that uses OWL and XML documents as inputs for

3D ontology visualization. The benefit of this approach is
that Onto3Dviz is n ot restricted by other systems. It can
produce 3D ontology visualization as long as it receiv es a
copy of ontology document from another system or via the
network. Sin ce the formats of OWL and XM L are well
standardized and recogn izable, the only requirement for
using Onto3DViz is t hat a v alid ontology document is
available to the system in either format.

C. Visual Object Creation and Display
 The objective of Onto3DViz is to visually represent
knowledge elements specified in the IMT. The tool
employs three techniques for accomplishing this objective
and these techniques enable Onto3DViz to rep resent an
ontology with minimal literal description while enhancing
visual effects of the representation. Two techniques are
discussed in detail as follows; they are (1) representation of
concepts by the shape of visual objects, (2) size scaling of
visual objects. Onto3DViz uses the following symbols to
represent the following concepts:

 Class : Sphere

 Objective : Cylinder

 Instance : Box

 Task : Cone
 Relationship between concepts : Line

 For the purpose of showing hierarchical structure
among concepts of an ontology, Onto3DViz decreases the
size of the visual objects that occupy the lower levels in
the hierarchy. For example, if the class of Thing is th e
parent class of all classes, then it is scaled to be the largest
sized object. A subclass of t he Thing class is class, the
visual object of this class is scaled to be 70 percent of the
size of the Thing class. Si milarly, subsequent children
classes are scaled to be 70 percent of the associated parent
class. Hence the classes in the default hierarchical view of
an application ontology represents the visual objects that
are decreasing in size from top to bottom. By employing
this technique, the hierarchical relationships as reflected in
a parent-and-child relationship are clearl y represented
among concepts.

D. Hierarchical Visual Object Rendering Algorithm
 To represent the hierarchical graph structure among
concepts of an ontology in Onto3DViz, a layered rendering
algorithm has been implemented in three steps:
1) Pre-process information for rendering: for rendering
relevant information on each v isual object, e.g. total
number of subclasses associated with the object, are

721

collected in preparation for the drawing algorithm in the
next.
2) Recursive drawing algorithm: for each v isual object.
According to th e information that is collected from the
previous step, the drawing algorithm assigns coordinate for
each visual object so as to optimize the graphical space. In
such a way that the children classes are placed un der their
parent classes with suitable length of distance.
3) Post-process rendering information: t he visual
representation of the visualized ontology is further
optimized so as to minimize the visual nodes crossing each
other, separate nodes colliding together, and eli minate
redundant visual objects.

E. User Interaction
 Interactions between the 3D model generated by
Onto3DViz and t he user are effected using the physical
devices of computer mouse and keyboard. Both the mouse
and keyboard can be used for controlling operation of the
3D model in Onto3DViz. By combining these user control
actions, users can manipulate the 3D ontology model and
obtain multiple perspectives of the 3D model of an
application ontology.

IV. APPLICATION CASE STUDY
 In order to demonstrate functionalities of Onto3DViz,
the tool was applied for visualization of CO2 capture
process system ontology model. The ontology of carbon
dioxide capture process system was developed and
implemented on Protégé and D yna at th e Energy
Informatics Laboratory at the University of Regina, Canada.
The knowledge modeling process was originally conducted
based on the IMT, and th e knowledge model consists of
both static and dynamic knowledge. The static knowledge
includes the information on constructive components of the
reaction instruments, fluids, and the control devices in the
CO2 capture system. The dynamic knowledge specified
operation tasks of the CO2 capture process system, which
are expressed as the control strategies for dealing with 25
critical process parameters when a fault condition emerges.
Onto3DViz was applied for visualizing this ontology so as
to test and verify the visualization capability of Onto3DViz
in a co mplex industrial domain. An overview hierarchical
representation of the concepts in the CO2 capture ontology
is shown in Figure 2.

Figure 2. Concepts in CO2 capture plant [9]

 The ontology of the CO2 capture process generated by
Protégé and Dyna is stored into two files, an OWL and an
XML file. After loading these files into Onto3DViz, a 3D
ontology visualization is generated in Onto3DViz, as
shown in Figure 3. Figure 3 shows a co mplete visualized
model of carbon dioxide capture ontology, which consists
of both static and dynamic knowledge. Static knowledge is
represented by the process param eters shown in the
foreground. The spherical objects represent the class
hierarchy of the knowledge structure. Dynamic knowledge
is displayed in the background and is rep resented by
cylinders and cones. To further explore the carbon dioxide
capture ontology in this model, a user can choose to f ilter
out some context.

Figure 3. 3D Visualized model of CO2 capture ontology

 By filtering out the dynamic knowledge, a visualized
static knowledge model of carbon dioxide capture ontology
is shown in Figure 4. Classes are shown as spheres in the
foreground, and insta nces are shown as box es in the
background. To obtain a clearer view, the user may need to
perform the actions of zooming, rotation, and translation.
By filtering out the static knowledge, a visualized dynamic
knowledge model of carbon diox ide capture ontology is

CO2 capture Plant

 Static Objects Dynamic Objects

 Reaction Instruments

 Valves Pumps Water Solvent

 Gases

 Flue Gas Off Gas CO2 Steam

722

shown at Figure 5. Objectives are shown as cylinders under
the node called Ob jectiveList. Tasks are represen ted as
cones and placed u nder the objectives they are as sociated
with. The relationships among objectives and tas ks are
linked by lines. The tasks are sorted by the task priority,
which means a tas k located at a h igher position has a
higher priority than the task or tasks located at t he lower
positions. Moreover, the priority of a task is co rrelated to
the size of the represented node. A task that has a higher
priority is larger than the task that has a low priority.

Figure 4. Visualized static knowledge model of CO2 capture ontology

Figure 5. Visualized dynamic knowledge model of CO2 capture ontology

V. DISCUSSION

 A survey of Onto3DViz has been conducted with three
users, who completed a qu estionnaire with 20 questions
about the tool’s support for knowledge engineering, user

experience, and user recommendations. T he results
suggested that this tool with the developed visualized
conceptual models is helpful for enhancing understanding
of domain knowledge in the process of knowledge
acquisition.
 Some strengths of Onto3DViz are summarized as
follows. Onto3DViz supports the IMT during the
knowledge acquisition process and e nables visualizing
complex domain knowledge in a 3D model. The visualized
model of the domain knowledge supports design of the
KBS because the visualized knowledge model can help the
knowledge engineer gain quicker understanding of the
concepts and relationships among the concepts. It supports
communication between the domain expert and knowledge
engineer so t hat it is not limited to oral discus sion and
textual recording. Hence, it can be used for bridging the
knowledge gap between the domain expert and knowledge
engineer in the knowledge acquisition process. Mo reover,
the preliminary design of the knowledge model can be
visualized in Onto3DViz. Then, the domain expert and
knowledge engineer can discuss and fine tune the
visualized model to become the final design.
 Several weaknesses of the current version of
Onto3DViz are also n oted. First, the visualized concepts
are not easy to identify in the 3D model, especially when
the knowledge model is complex. The control actions of
rotating, zooming, and translating of the 3D model requires
some learning time. Secondly, the visual objects and labels
are too close together in some places, red ucing the
expressiveness of the model. Furthermore, the nodes and
lines overlap at some spots in the 3D visualized model; this
problem needs to be a ddressed in the next version of
Onto3DViz. Thirdly, Onto3DViz lacks a search function
for concepts.

VI. CONCLUSIONS AND FUTURE WORK

 The survey of existing ontology visualization tools
revealed that they are i nadequate in dynamic knowledge
visualization and visualization of a larg e amount of
information due to li mitations of the 2D g raphical space.
Onto3DViz is a n ew ontology visualization tool th at is
designed to address these weaknesses. As On to3DViz is
developed according to t he knowledge engineering
technique of the IMT methodology, it supports both static
and dynamic knowledge visualization. By allocating visual
objects to 3 different planes in a 3D space, Onto3DViz can
support visualization of a large amount of information.

 Onto3DViz can represent a complex knowledge
model by rendering the concepts using objects of different
shapes and placing them at designated 3D position s.
Visualization of the CO2 capture ontology demonstrates
Onto3DViz’s capabilities in generating a 3D model of
static knowledge and dynamic knowledge. We believe that

723

Onto3DViz can provide strong support for ontological
engineers in visualizing application ontologies.
 To address the weaknesses noted in the current
version of Onto3DViz, some improvements to the tool can
be made in the future. Firstly, the current graphical layout
of the Onto3DViz is a tree lik e structure generated from
top to bottom. It is dif ficult to exten d the rendering
algorithm because it i s tightly coupled. In the future,
Onto3DViz can be im plemented in a loosely coupled
architecture, which enables various graphic layouts to be
ported into Onto3DViz. Secondly, to address the difficulty
of finding concepts in a model, a f eature that supports
automatic identification of a required concept can be added
to Onto3DViz. Such a search fu nction can be ad ded by
providing a graphical area for the user to in put the exact
text name of the concept. After th e name is accepted by
Onto3DViz, it will look through the model and locate th e
concept, then highlight the 3D co ordinate of the searched
concept in the visualized model by adding color and
lighting. These improvements will be le ft for future
research.

ACKNOWLEDGEMENT

We are grateful for the generous support from the Natural
Sciences and Engineering Research Council (NSERC) and
the Canada Research Chair Program.

REFERENCES
[1] R. Harrison and C. W. C han. “A dynamic knowledge

modeler”, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing , Publisher,
Volume 23 , Issue 1, pp 53-69, April 2009.

[2] C. W. Chan. (2004, Dec). “From Knowledge Modeling
to Ontology Construction”, Int. Journal of Software

Engineering and Knowledge Engineering, 14(6), pp.
603-24.

[3] T. Berners-Lee, J. Hendler and O. L assila."The

Semantic Web", Scientific American. May 2001.

[4] K. Bauknecht, A. M.Tjoa and Gerald Quirchmayr. E-

Commerce and Web Technologies, Third International
Conference, EC-Web 2002, Aix-en-Provence, France,
September 2-6, 2002, Proceedings, Volume: 2455,
Series: LNCS, Seiten: 304-313, Verlag: Springer. 2002.

[5] Onto-Studio. (n.d.). ontoprise GmbH. Retrieved from:

http://www.ontoprise.de/en/home/products/ontostudio

[6] Protégé. (n.d.). Stanford Center for Biomedical

Informatics Research. Retrieved from:
http://protege.stanford.edu

[7] Jambalaya. (n.d.). Computer Human Interaction &

Software Engineering Lab (CHISEL) and its members.
Retrieved from:
http://www.thechiselgroup.com/jambalaya

[8] Alessio Bosca, Dario Bonino, and P aolo Pellegrino.

(2005) OntoSphere: more than a 3D ontology
visualization tool, SWAP.

[9] Zhou Q, Ch an CW, Tontiwachwuthikul P, Idem R,

Gelowitz D, A statistical analysis of the carbon dioxide
capture process. Greenhouse Gas Control, 3, 535–544
(2009).

724

Rendering UML Activity Diagrams as a Domain
Specific Language— ADL

Charoensak Narkngam
Department of Computer Engineering

Chulalongkorn University
Bangkok 10330, Thailand

Charoensak.N@student.chula.ac.th

Yachai Limpiyakorn
Department of Computer Engineering

Chulalongkorn University
Bangkok 10330, Thailand

Yachai.L@chula.ac.th

Abstract—Activity diagrams are extensively used in software
engineering for modeling the behaviors of systems. However, for
large and complex systems, manually creating activity diagrams
with graphic notation is error-prone and may cause data and
behavior inconsistency. This paper thus proposes a preventive
approach to generating proper activity diagrams with a textual
notation that can be considered as a domain specific language,
called action description language (ADL). The design of ADL
contains both grammars and lexical analyzer that can explain
nodes and coordinate behaviors in activity diagrams. Parsing an
ADL script results in a semantic model that can be eventually
transformed to the target activity diagram, using the
methodology described in this research. An example is used to
demonstrate how to transform the ADL script to the semantic
model of the target activity diagram containing decision, nested
decision, and concurrent controls, without loss of information.

Keywords-process modeling; unified modeling language;
activity diagram; domain specific language

I. INTRODUCTION
Activity diagrams are extensively used in various domains

for modeling behaviors of systems. The diagram shows the
workflow from a s tart point to the finish point detailing the
many decision paths that exist in the progression of events
contained in the activity. They may be used to detail situations
where parallel processing may occur in the execution of some
activities. Although activity diagrams are useful for describing
procedural logic, business processes, and workflows, it is
difficult to manually create the activity diagrams of large and
complex systems that accurately describe the behaviors of the
systems, and conform to UML specification.

Several research and so ftware tools have attempted to
create activity diagrams using textual notation languages. Flater
et al. [1] proposed the activity diagram linear form (ADLF)
which is a plain text representation to support the rendering of
activity diagrams as h uman-readable text. PlantUML [2], and
yUML [3] are so ftware tools that facilitate creating UML
diagrams with the simple and i ntuitive language. However,
they still lack the features of verification and validation to
ensure consistency and understanding of the activity diagrams
generated. This paper thus presents an approach to rendering
UML activity diagrams as a domain specific language, called
action description language (ADL). ADL is designed to explain
relations between objects such as seq uence, parallel, and
alternative flows. An example is provided to demonstrate how

to transform the semantic model of ADL to that of the target
activity diagram. The resulting semantic model will then be
used for visualizing the target activity diagram without loss of
information, and the data can be exported for the verification
and validation process.

II. BACKGROUND

A. UML Activity Diagram
In UML [4], an activity diagram is used to display a

sequence of activities. The diagram describes the flow of
operations and data represented by a set of nodes and edges. A
node denotes an action, an object, or a control, while edges
represent either an object flow or a control flow. Fig. 1 s hows
the architecture or metamodel of UML activ ity diagrams 2.3
proposed in this work.

Figure 1. Activity diagram metamodel

B. Domain Specific Languages
A domain specific language (DSL) is a formal specification

language which contains the syntax and semantics that model a
concept at the same level of abstraction provided by problem
domain [5]. Four elements are required to constitute a D SL:
structure, constraints, representation, and behavior, where
structure defines the abstract syntax; constraints describe
additional restrictions on the structure of the language;
representation can be the description of a graphical or textual

725

concrete language syntax; and behavior can be a mapping or
transformation into another language [6,7].

III. ACTION DESCRIPTION LANGUAGE
Fig. 2 illustrates the ADL metamodel considered as th e

source model that corresponds to the target model or the
activity diagram metamodel presented in Fig. 1. Meta Object
Facility [8] is used to develop ADL on the basis of the objects
or tokens residing the activity diagram. Rather than focusing on
actions that do not enable the detection of objects between two
actions, this research opts to focus on objects as th e key
concept to link between two actions. In other words, an action
is regarded as the relation of two objects. Therefore, an action
must have at least one input object and one output object.

Figure 2. ADL metamodel

Since the intent of ADL is to explain relations between
objects, or actions, the textual notation language is developed
in terms of actions and relations of actions. The language
contains the keywords:
action, end, decision, if, then, else, endif,
initiate, break, terminate

And the textual syntax grammar built on EBNF [9] is defined
as following:
<diagram> ::= 'diagram' <name> (<action> |
 <sequence> | <decision>)* 'end'
<action> ::= 'action' <action_identifier>
 <action_attrs>* 'end'
<action_attrs> ::= 'name' <name>
 | '<-' <object_identifier> (','
 <object_identifier>)*
 | '->' <object_identifier> (','
 <object_identifier>)*
 | 'precondition' <condition>
 | 'postcondition' <condition>
<sequence> ::= <action_identifier> '->'
 <action_identifiers> ['[' <label> ']'] ('->'
 <action_identifiers> ['[' <label> ']'])*
<decision> ::= 'decision' 'from' <action_identifier>
 <guard> <guard>* 'end'
<guard> ::= 'if' <expression> 'then' <statement>
 (<statement>)* ('else' <statement>
 (<statement>)*)* 'endif'
<statement> ::= <action_identifiers> | <guard>
<action_identifiers> ::= <action_identifier> (','
 <action_identifier>)*

A. Defining Input and Output of An Action
Since the approach uses an object to create a co nnection

between two actions, the grammar of a n action is defined as
follows:
action a
 <- O1 /* an input object O1 */
 -> O2 /* an output object O2 */
end

Hence, an action can be described as a path in directed graph,
as expressed in (1).

 a = O1 → a → O2

B. Defining Sequence of Actions
A sequence of actions can be defined by two methods: 1)

use explicit objects to create a co nnection; and 2) use implicit
objects to create a connection.

The former method uses the input and output objects
explicitly defined in an action to create a co nnection between
two actions. For example,
01 action a 05 action b
02 <- O1 06 <- O2
03 -> O2 07 -> O3
04 end 08 end

Hence, a sequence of actions can be derived as stated in (2):
 a = O1 → a → O2

b = O2 → b → O3

then a . b = O1 → a → O2 → b → O3

The latter method provides the alternative grammar to
reduce the complexity of ADL scripts by defining a sequence
of actions directly without specifying the binding object, or the
implicit object is used to create a connection. For example,
01 action a 05 -> O3
02 <- O1 06 end
03 end 07 a -> b
04 action b

The line 07 defines a sequ ence of actio ns with the implicit
object that is created and bound to the output of action a and
the input of action b. The result is tantamount to (2).

C. Defining Concurrent of Actions
Since the ADL grammar cannot directly describe parallel

behaviors, process algebra [10] is used to replace them with
sequential behaviors as expressed in (3).

(a . b) || (a . c) = a . (b || c)

Given a script containing concurrent of actions as follows:
01 action a 07 -> O3
02 <- O1 08 end
03 -> O2 09 action c
04 end 10 <- O2
05 action b 11 -> O4
06 <- O2 12 end

According to (1), actions can be defined as follows:

726

 a = O1 → a → O2
 b = O2 → b → O3
 c = O2 → c → O4

Next, the sequences of actions can be derived as:

 a . b = O1 → a → O2 → b → O3
 a . c = O1 → a → O2 → c → O4

According to (3), the parallel behaviors with object relations
can be expressed as (4).

 a . (b || c) = O1 → a → O2 → (b → O3 || c → O4)

D. Defining Condition
Activity diagrams use a decision node and guard conditions

to denote alternative composition or choices. That is, when a
decision node accepts a token, it will ev aluate if th e token
satisfies which guard condition annotated in square brackets on
branches, and th en deliver the token to th e outgoing edge
satisfying the condition.

Example activity diagram containing a decision and the
associated ADL script are illustrated in Fig. 3.

action receiveOrder end
action fillOrder end
action closeOrder end

receiveOrder -> fillOrder ['order accepted']
receiveOrder -> closeOrder ['order rejected']

Figure 3. Example for defining condition

E. Defining Nested Condition
For complex decisions or nested decisions, additional

information of guard conditions will be added to the sequence
of actions. A guard condition also owns input and output
objects to create a co nnection between actions related to it.
Given the following chunk of ADL script,
01 action a end 06 if 'guard2'
02 action b end 07 then b
03 decision from a 08 endif
04 if 'guard1' 09 endif
05 then 10 end

the sequence of actions a . b can be expressed as (5).
Suppose a = O1 → a → O2
 b = O2 → b → O3
then a . guard1 & guard2:→ b = O1 → a → O → G1 (5)
 → G2 → b → O3

where G1, G2 denote output objects produced from ‘guard1’
and ‘guard2’, respectively. The values of G1 and G2 a re O2
attached with the evaluated condition.

IV. GENERATING ACTIVITY DIAGRAM FROM ADL
Parsing ADL scripts results in ADL semantic models,

which cannot be directly transformed to activity diagrams
because they still lack the information of controls, namely fork,
join, decision, and merge. However, the particular pattern
exists for each control and can be detected from the details of
edges (incoming/ outgoing), labeled edges, and flow detail
contained in ADL scripts. Steps to generate activity diagrams
from ADL scripts are illustrated in Fig. 4.

Figure 4. Steps to generate activity diagrams from ADL scripts

A constructor or a m odel is required for retriev ing loss
information of controls and generating the activity diagram. To
accomplish model-to-model transformation, QVT or query/
view/ transformation specification [11] is applied to describe
the transformation from the semantic model of ADL
metamodel to the semantic model of the metamodel for
constructing activity diagrams, as sh own in Fig. 5. Starting
from defining top-level relations of model transformation that
specify the mappings between the two models as follows,
transformation adl (adl : ADL, constructor :
ADConstructor) {
 top relation ObjectToObjectNode {...}
 top relation RelationToEdge {...}
 top relation ActionToActivityNode {...}
 relation ActionToAction {...}
 relation ActionToControlNode {...}
}

the semantic model for constructing activity diagrams is then
created. Next, it will be transformed to the semantic model of
the metamodel for constructing activity diagrams using the
mappings of top-level relations defined as follows:
transformation ad (constructor : ADConstructor, ad :
AD) {
 top relation ObjectNodeToObjectNode {
 checkOnly domain constructor left:ObjectNode {
 hidden=false, name=on}
 enforce domain ad right:ObjectNode {name=on}
 ...
 }
 top relation ActionToAction {...}
 top relation EdgeToActivityEdge {...}
 relation ActivityEdgeToControlFlow {...}
 relation ActivityEdgeToObjectFlow {...}
 top relation InitialNodeToInitialNode {...}
 top relation FlowFinalNodeToFlowFinalNode {...}
 top relation ActivityFinalNodeToActivityFinalNode
 {...}
 top relation ActivityNodeToEdgeDetail {...}
 relation OutgoingEdgeToForkAndDecisionNode {...}
 relation IncomingEdgeToJoinAndMergeNode {...}
}

Parse ADL
Script

Build Objects and
Relations

Build Actions Construct Fork and
Decision Nodes

Normalize Fork and
Decision Nodes

Construct Join and
Merge Nodes

Normalize Join and
Merge Nodes

ADL Semantic
Model

Fill Order

[order accepted] [order rejected]

Close Order

Receive Order

727

Figure 5. Metamodel for contructing activity diagrams

V. EXAMPLE OF RESEARCH METHOD
An example of t he trouble ticket scenario is selec ted to

demonstrate how t o compose the underlying ADL script and
how to insert control nodes based on the ADL semantic model.
Fig.6 illustrates the target activity diagram [2] associated with
the example scenario.

Figure 6. Target activity diagram of trouble ticket scenario [2]

The ADL script representing the trouble ticket scenario can
be written as follows:
01 diagram 'ticket trouble scenario'
02 action recordProblem end
03 action reproduceProblem end
04 action correctProblem end
05 action idProblemAndResolution end
06 action verifyResolution end
07 action auditAndRecord end
08 action communicateResult end
09
10 decision from recordProblem
11 if 'recorded'
12 then
13 reproduceProblem
14 if 'problem statement rectified'

15 then auditAndRecord,
16 communicateResult
17 endif
18 else
19 if 'not recorded' then terminate endif
20 endif
21 end
22
23 decision from reproduceProblem
24 if 'cannot reproduce problem'
25 then correctProblem
26 else
27 if 'can reproduce problem'
28 then idProblemAndResolution
29 endif
30 else
31 if 'duplication of another problem'
32 then verifyResolution
33 endif
34 else
35 if 'known problem and solution'
36 then auditAndRecord,
37 communicateResult
38 endif
39 endif
40 end
41
42 correctProblem -> auditAndRecord
43 correctProblem -> communicateResult
44
45 decision from verifyResolution
46 if 'problem not solved'
47 then idProblemAndResolution
48 else auditAndRecord,
49 communicateResult
50 endif
51 end
52 end

Fig. 7 illustrates all the actions and their object evidences as
implicit objects are used to create all action sequences here.

Figure 7. Actions and their object evidences

Once all sequences of actions have been created, the start
point and the termination point are identified. Actions without
an input object and those without an output object are
candidates for connecting to th e initial node and the activity
final node, respectively. Therefore, recordProblem is connected
to the initial node, while auditAndRecord and
communicateResult are co nnected to the activity final node.
The directed connections can be expressed as follows:

 initiate → INITIAL → recordProblem → A
 auditAndRecord → G → terminate → TERMINATE
 communicateResult → F → terminate → TERMINATE

Next, (5) is ap plied to build guard condition objects,
resulting in the directed connections as follows:

Record Problem A Reproduce Problem

Correct Problem C
ID Problem and

Resolution D

Verify Resolution E

Communicate Result F
Audit and Record G

B

728

recordProblem → A → reproduceProblem => recordProblem
→ A → [recorded] → reproduceProblem; recordProblem → A
→ auditAndRecord => recordProblem → A → [recorded] →
[program statement rectified] → auditAndRecord;
recordProblem → A → communicateResult => recordProblem
→ A → [recorded] → [program statement rectified] →
communicateResult; recordProblem → A → terminate =>
recordProblem → A → [not recorded] → terminate.

A digraph [12] is deployed to visualize all the objects and
action relations constructed, as shown in Fig. 8.

Figure 8. Digraph of objects and action relations

When an edge has the ancestor action node as the target of
the edge, it is considered as a lo op-type edge. Example loop-
type edge existing in Fig. 8 is the edge, which has [problem not
solved] as source and idProblemAndResolution as target. It is
observed that idProblemAndResolution is simultaneously the
ancestor node and the target node on the looping path:

idProblemAndResolution → D → verify Resolution → E →
[problem not solved] → idProblemAndResolution → ...

Next, the controls will be created by detecting the patterns
as described in [13], whether they appear in the digraph. For
example, if a node has more than one outgoing edges, this will
signify the insertion of a fork, a decision, or both a fork and a
decision node. A fork node will be inserted to the node which
has all outgoing edges that are normal-type without label, while
a decision node will be inserted to the node which has all
outgoing edges that are normal-type with label. In Fig. 8, a
decision node will be inserted to object A, B, and E. Based on
Fig. 8, the insertion of a decision node to object [recorded], as
shown in Fig. 9, results from applying the following process
algebra (6) to reduce the complexity.
Refer to [10] a . b + a. c = a . (b + c) (6)

then [recorded] . reproduceProblem
 + [recorded] . [problem statement rectified] =
[recorded] . (reproduceProblem+[problem statement rectified])

Figure 9. Example of mapping decision pattern

Considering auditAndRecord and communicateResult, they
have quite complex incoming edges providing tokens from four
nodes. The result of using the simple fork pattern is illustrated
in Fig. 10a. Process algebra is further applied to reduce the
complexity or the number of edges. That is, from Fig. 8, let s1
be C, s2 be [known problem and solution], s3 be [else], s4 be
[problem statement rectified], t1 be auditAndRecord, and t2 be
communicateResult, then s1 . (t1 || t2) + s2 . (t1 || t2) + s3 . (t1 ||
t2) + s4 . (t1 || t2) = (s1 + s2 + s3 + s4) . (t1 || t2). The result is
shown in Fig. 10b.

Figure 10. Example of mapping fork pattern (a) without combined fork nodes

(b) with combined fork nodes

C [problem statement
rectified]

[known problem
and solution]

[else]

Communicate Result Audit and Record

C [problem statement
rectified]

[known problem
and solution]

[else]

Communicate Result Audit and Record

(a)

(b)

A

[recorded] [not recorded]

[not recorded] [recorded]

A

[recorded] [not recorded]

[not recorded] [recorded]

A

C

D

E

F G

B

INITIAL

TERMINATE T

Normal

Loop

Terminate

[recorded] [not recorded]

[problem statement
rectified]

[cannot reproduce
problem]

[can reproduce
problem]

[duplication of
another problem]

[known problem
and solution]

[problem
not solved]

[else]

Record Problem

Reproduce Problem

Correct Problem

ID Problem and
Resolution

Verify Resolution

Communicate Result Audit and Record

TERMINATE

T

[not recorded] [recorded]

[known
problem

and
solution]

[cannot reproduce problem] [can reproduce problem]

[duplication
of another
problem]

[problem not solved]

[problem
statement
rectified]

[else]

729

Once all fo rk and decision nodes have been created, the
details of incoming edges and flow types can be used for the
insertion of a join or merge node. The algorithm of tree
traversal is used to determine the type and level of flows where
the root node is INITIAL object node. Abstract State Machines
or ASM [14] is used to describe the algorithm as follows:
TraverseTree(node, flow) =
 let f = new(Flow) in
 info:= flow.info
 if IsJoinNode(node) or IsMergeNode(node) then
 f.info:= CalculateFlow(node)
 else
 if IsInitialNode(node) then
 f.info:= f.info + "N"
 if IsForkNode(node) then
 f.info:= f.info + "F"
 if IsDecisionNode(node) then
 f.info:= f.info + "D"

 let c = true

 if count(node.incomingEdges) > 1
 and IsJoinNode(node) = false
 and IsMergeNode(node) = false then
 forall e in node.incomingEdges do
 if IsNull(e.flow) then c:= false
 if c = true then
 TraverseTree(CreateJoinMerge(node), f)
 else
 forall e in node.outgoingEdges do
 e.flow:= f
 TraverseTree(e.target,f)

To reduce complexity when inserting join and merge nodes,
it is suggested that the flows with the deepest level and the
same type should be determined first. Fig. 11 shows the result
of the insertion of two merge nodes into Fig. 10b.

Figure 11. Example of mapping merge pattern

VI. CONCLUSION
The design of ADL, a domain specific language for UML

activity diagrams presented in this paper, covers four elements
required to co nstitute a DSL: structure, constraints,
representation, and behavior. The ADL metamodel illustrates
the language structure. Constraints can be defined as validation
and verification rules described in [13], serving the purposes of
preventing data inconsistency, and fortifying conformance to
UML specification, respectively. Representation can be
visualized with a digraph. Behavior is accomplished by means
of QVT applied for model-to-model transformation.

Process algebra and metamodel-based technology are
applied to develop the language, which is unambiguous and has
a sufficiently high-level abstraction to describe general activity
diagrams. Compared to previous research an d existing tools
mentioned earlier, the proposed approach could reduce the
complexity of scripts, and source lines of code. Compared to
manual method, the proposed method could reduce resource
consumption, in addition to prevent modeling mistakes and
incorrect notation usages.

The trouble ticket scenario is selec ted as an example to
demonstrate how to transform the underlying ADL script to the
semantic model with control nodes that can be further
processed to visualize the target activity diagram, eventually.

The method presented in this paper is capable of generating
intermediate activity diagrams. Future research work could be
the enhancement of the method to sup port structural activity
diagrams which can describe interruptible regions, events, and
features related to the programming languages.

REFERENCES
[1] D. Flater, P. A. Martin, and M. L. Crane, Rendering UML Ac tivity

Diagrams as Human-Readable Text, National Institute of Standards and
Technology, 2007.

[2] PlantUML, http://plantuml.sourceforge.net, January 2012.
[3] yUML, http://yuml.me, Febuary 2012.
[4] OMG, Unified Modeling LanguageTM (OMG UML): Superstructure

Version 2.3, Object Management Group, Inc., 2010.
[5] D. Ghosh, DSLs in Action, Manning Publications Co., 2011.
[6] A. Prinz, M. Scheidgen, and M. S. Tveit, “A Model-Based Standard for

SDL”, Springer-Verlag Heidelberg, SDL 2007, LNCS 4745, p p. 1-18,
2007.

[7] T. Gjøsaeter, I. F. Isfeldt, and A. Prinz, “Sudoku – A Language
Description Case Study”, Springer-Verlag Berlin Heidelberg, SLE 2008,
LNCS 5452, pp. 305-321, 2009.

[8] OMG, Meta Object Facility (MOF) Core Specification Version 2.0,
Object Management Group, Inc., 2006.

[9] D. Grune and C. Jacobs, Parsing Techniques: A Practical Guide, 2nd ed,
Springer, 2008.

[10] J. C. M Baet en, T. Basten, and M. A. Reniers , Process Algebra:
Equational Theories of Commnicating Processes, Cambridge University
Press, 2010.

[11] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification Version 1.1, Object Management Group, Inc., 2011.

[12] J. Bang-Jensen and G. Gutin, Di graphs: Theory, Algorithms and
Applications, Springer-Verlag, 2007.

[13] C. Narkngam and Y. Limpiyakorn, “Domain Specific Language for
Activity Diagram”, in R amkhamhaeng Journal of Engineering, vol. I,
2012.

[14] E. Börger and R. Stärk, Abstract State Machines: A Method for High -
Level System Design and Analysis, Springer-Verlag Heidelberg, 2003.

C [problem statement
rectified]

[known problem
and solution]

[else]

Communicate Result Audit and Record

ND1D2D3 ND1D2 ND1D2D3 ND1D2D4

ND1D2D3 ND1D2
ND1D2D3 ND1D2D4

C [problem statement
rectified]

[known problem
and solution]

[else]

Communicate Result Audit and Record

ND1D2D3 ND1D2 ND1D2D3 ND1D2D4

ND1D2

ND1
ND1J1 ND1J1

730

umlTUowl - A Both Generic and Vendor-Specific
Approach for UML to OWL Transformation

Andreas Grünwald

Vienna University of Technology

Karlsplatz 13, 1040 Wien, Austria

Email: a.gruenw@gmail.com

Thomas Moser
Christian Doppler Laboratory CDL-Flex

Vienna University of Technology

Taubstummengasse 11, 1040 Vienna, Austria

Email: thomas.moser@tuwien.ac.at

Abstract—The extraction of knowledge from UML class dia-
grams into ontologies is a typically manual thus time-consuming
and error-prone task in software and systems engineering. To
support an automated UML to OWL transformation approach,
purebred and hybrid tool solutions have been researched and
evaluated. Since no approach met the defined requirements, a new
UML to OWL tool, called umlTUowl was designed and realized.
umlTUowl supports the transformation of Visual Paradigm, MS
Visio and ArgoUML UML class diagrams into valid OWL2 DL
and is available as open source software. The tool provides a
novel approach, resolving issues of preceding approaches through
an extensible architecture dealing with the fragility of XML
Metadata Interchange (XMI) by providing traceability and an
automated testing framework for vendor-specific UML tools. In
addition, this work presents an industrial use case, in which
umlTUowl is applied to models from the automation systems
engineering domain. The tool successfully passed all test cases
completely, including the presented industry-specific use case.

Index Terms—Semantic Web; Automated Ontology Creation;
Knowledge Modeling; UML to OWL transformation; Industrial
Case Study.

I. INTRODUCTION

Industrial projects, such as performed by the Christian

Doppler Laboratory ”Software Engineering Integration for

Flexible Automation Systems” (CDL-Flex) at Vienna Univer-

sity of Technology (TU Vienna), often require the collabora-

tion of people with different domain expertise and method-

ological approaches that should provide their heterogeneous

knowledge into an overall solution. The CDL-Flex tackles this

kind of issues by leveraging OWL ontologies as explicit data

model specifications, which enable the intercommunication

of heterogeneous tools based on a semantically level within

CDL-Flexs integration framework called Engineering Knowl-

edge Base Engineering Knowledge Base (EKB) [12].

However, there is still an important issue to cover, con-

cerning the common lack of experience regarding ontologies,

i.e. OWL, by project members. Engineers do not only often

have insufficient knowledge about ontologies; furthermore,

the maintenance of sophisticated OWL ontologies by itself is

challenging, error-prone and may lead to unrecognized conse-

quences during runtime. Common modeling components (e.g.

used for software technology, automation systems engineering

and industrial automation) are scattered across team roles thus

it may be unreasonable, not to say impossible, to expect that

team members make a shift from their prefered modeling

language towards OWL.

CDL-Flexs project experience shows that most of the en-

gineers are familiar with simple concepts using UML class

diagram notation. Hence, UML modeling tools, such as Visual

Paradigm (VP)’s UML editor1 can be established to collect and

share domain knowledge between project partners, primarily

using UML’s logical data model notation. An UML to OWL

tool may be leveraged to replace ontology experts who have

to transfer this UML diagrams into adequate OWL knowledge

bases.

In this work, existing UML to OWL transformation so-

lutions will be evaluated with respect to their practical ap-

plicability. After discussing pros and cons of even more

persuasive solutions, i.e. Eclipse’s (ATLAS Transformation

Language (ATL) and TwoUse Toolkit, as well as common

issues regarding XMI transformations, the lack and necessity

of a flexible, easy-adaptable model to model solution becomes

obvious. Thus this work introduces the developed transfor-

mation tool umlTUowl. The application of the tool, which is

capable of transforming VP XMI 2.1, MS Visio XMI 1.0 or

ArgoUML XMI 2.1 class diagrams into OWL ontologies, is

then illustrated by presenting an industry-specific use case.

The innovation of umlTUowl lies in the combination of

the benefits of classical meta models with a vendor-specific

but flexible implementation approach. While conventional

transformation tools either fail by trying to provide a solution

that is capable to deal with all XMI standards or simply

assume that a model-specific implementation implies that the

tool is compatible with all other XMI versions of all different

vendors, umlTUowl considers this grievances by providing a

traceable, testable, integrable, extensible framework approach

that might also be of scientific value.

II. EVALUATION OF EXISTING TRANSFORMATION TOOLS

Because large vendors tend to come up with new ontol-

ogy modeling solutions currently, existing tools have been

grouped into purebred UML to OWL transformation and

hybrid modeling tools during evaluation phase. Latter are

often sophisticated graphical tools, which do not support

1http://www.visual-paradigm.com

731

transformation of UML diagrams directly, but offer ontology

modeling utilizing UML profiles (compare [4][pg.2ff]). In this

alternative approach users have to explicitly specify OWL ele-

ments using UML syntax[1], while conventional tools typically

try to extract implicit information from UML elements[2].

Only the latter approach is relevant for CDL-Flex, hence only

one representative, i. e., TwoUseToolkit2, will be outlined in

this paper. Other examples for hybrid tools are Altova Semantic
Works,UMLtoOWL by Gasevic et al. which is described in [3]

and VisioOWL.

Purebred transformation tools have been compared and

evaluated based on portability, traceability, their transforma-

tion approach, up-to-dateness, availability of documentation,

support, usability and surplus value for CDL-Flex. The major

prerequisite was that the UML to OWL transformation feature

is executable or that, if the tool/feature is not available, it is

somehow justified, why the tool is capable to transform UML

into OWL.

A. Evaluation Results

None of the tools transformed VP XMI 1.2 or 2.1 into valid

OWL 2 DL. All scripts completed within a reasonable time

(in other words: none of the programs crashed), but also none

of the tools correctly transformed a single UML element into

its valid OWL counterpart. The tools either terminated before

an OWL file was created or the root element of the resulting

OWL XML/RDF file was empty.

Most of the tools passed their own reference model tests,

which means that they successfully translated the examples

(XMI files) they provided into valid OWL ontologies, which

has been validated using OWL Validator by University of

Manchester (ManchesterValidator)3. Transformation of Lein-

hos’ UML2OWL4 reference models failed when the models

were opened in Poseidon for UML SE 6.0.2 and re-exported

into XMI 1.2. Dia5 successfully imported MS Visio XSD

files, but crashed during OWL export, because the Visio file

could not be saved as a valid Dia file (tested with Ubuntu

11.04). OntoStudio6 seemed quite interesting and provides

a pliable GUI (Eclipse based). However, UML 2 is only

available for ObjectLogics. NeOn Toolkit7, which is a derivate

of OntoStudio claims to provide transformation functionality

as well, but version 2.5.1 misses any feature. Eclipse offers

an entire UML modeling environment (EMF; ATL; UML2 or

Papyrus project) and ATL transformation performed well for

the distributed XMI 2.1 reference examples, but the flip side

of the coin is that most of the Eclipse modeling tools are still

in incubation. Detailed evaluation results and a comprehensive

comparison of available tools in tabular form are provided in

[4][p.2ff].

2http://code.google.com/p/twouse
3http://owl.cs.manchester.ac.uk/validator
4http://diplom.ooyoo.de/index.php?page=download
5http://projects.gnome.org/dia/
6http://www.ontoprise.de/de/produkte/ontostudio/
7http://neon-toolkit.org/wiki/Main Page

B. ODM-ATL Implementation (Bridging UML - OWL)

ATL8 is an Eclipse-based model transformation language

that provides ways to produce a set of target models out of

a set of source models. It originally has been initiated by

Object Management Group (OMG) and is part of Eclipse’s

Model To Model Transformation (M2M) project. One of the

transformation use cases for ATL is the Ontology Defni-

tion Meta Model (ODM) implementation for bridging UML

and OWL. Hillairet9 provides the most current project files

(including samples) as well as the source files for reverse

transformation (OWL2UML) of OWL. Evaluation showed

that the tool transforms XMI 2.1 UML models accurate, if

they have been designed using Eclipse’s UML2 plug-in or

Papyrus, which both implement OMG’s XMI 2.1 standard.

Transformation of VP XMI 2.1 caused exceptions and resulted

in an empty OWL file.

Eclipse ATL’s transformation approach is based on different

meta levels, as defined by OMG (compare [5]). ATL is used to

transform UML 2.0 (XMI 2.1) input files into OWL metadata,

based on OWL.ecore. Eclipse ecore is a meta language in-

spired by MOF 1.4 and is used to define platform independent

models [6]. Once the XMI input file has been transformed into

OWL ecore format, the AM3 plugin serializes OWL resulting

in valid OWL RDF/XML output.

The ATL approach is elegant, though transformation rules

are defined in a single, transparent file. ATL supports syntax

highlighting and debugging. Transformation rules are intuitive

to interpret and may be easier to read than XSLT, because the

rules do not follow an XML sytanx. Helper functions can be

defined and allow more freedom for the developer. ATL is easy

adaptable. Drawbacks are that the Eclipse environment is hard

to setup. ATL UML2OWL project requires Eclipse Eclipse

Modeling Framework (EMF), UML2 and AM3. Some of those

components are still in incubation phase and incompatible

either among themselves or with some versions of Eclipse.

Furthermore, ecore/ATL training effort is high. Developers

have to dive into the EMF concept to gain a deeper under-

standing and learn ATL, which can be time consuming.

C. TwoUse Toolkit

The TwoUse Toolkit originated from an European project. It

implements the current OMG and W3C standards for software

design, code generation and OWL ontology engineering.[7]

All components are implemented as Eclipse plug-ins. The

aim of TwoUse toolkit is to enable Semantic Web Software

Engineering and Model Driven Semantic Web. Thus, besides

extensive browsing and querying support (e.g. SPARQL), it

offers different graphically design tools for modeling of OWL

ontologies:

• UML editor for modelling and transformation of UML

profiles into OWL ontology functional syntax.

• TwoUse Graphical Editor for directly creating ontologies

(some design elements have been adopted from Protégé).

8http://www.eclipse.org/atl
9http://perso.univ-lr.fr/ghillair/projects.html

732

The tool’s ability to deal with SWRL rules based on an UML

profile based approach as discussed in literature [8] has been

successfully demonstrated in [4][p.7,8].

D. A Word about XML Metadata Interchange

Evaluation showed that the transformation proccess heavily

depends on the format of the provided XMI file. Although

most of the leading UML modeling tool vendors support XMI,

their formats are highly incompatible and implementations

often have a lack of quality. Often export and import of simple

diagrams within the same modeling tool is doomed to fail.

One of the reasons for this is that XMI attempts to solve

a technical problem far more difficult than exchanging UML

models; it attempts to provide a mechanism for facilitating the

exchange of any language defined by the OMG’s MetaObject

Facility (MOF). Furthermore, the UML 2.* Diagram Inter-

change specification lacks sufficient detail to facilitate reliable

interchange of UML 2.* notations between modeling tools.

Since UML is a visual modeling language, this shortcoming

is a show-stopper for many modelers who don’t want to redraw

their diagrams10.

There are several reasons why transformation of VP XMI

2.1 format into valid OWL fails using existing UML2OWL

tools. First of all, VP takes use of different XML namespaces

to distinguish between different types of elements (i.e. classes,

associations, packages) which do not have been considered by

most of the transformation tools. Secondly, the XML structure

is nested and data for particular elements have to be grabbed

using cross references. This turned out to be fragile according

to XSLT scripts implementations and tools who try to tackle a

joint solution for all XMI dialects. Furthermore, the structure

of the resulting VP XMI file depends on the state of the

UML editor view during the export process (e.g. if a particular

package/part of the diagram is selected, the XML hierarchy

changes). Finally there are even incompatibilities between

different versions of VP (i.e. between VP UML 7.2 and VP

UML 8.2).

The conclusion is that an UML2OWL transformation pro-

cess always should be tailored to a specific vendor’s UML

solution. UML2OWL tool developers are required to specify

vendor, product name and version of the UML editor they

support as well as XMI versions and instructions, how to

export that XMI version from the respective UML editor.

Furthermore they must define, which UML elements their

tool supports (and which not) and provide adequate reference

models, including test cases (automated?) and documentation.

III. UMLTUOWL TRANSFORMATION TOOL

A. Overview

umlTUowl has been developed to overcome the problems

that arise during the transformation process of evaluated

UML2OWL tools. It is not only optimized to transform UML

class data models, as used by partners of CDL-Flex (Visual
Paradigm for UML V7.2, 8.2; XMI 2.1, Microsoft Visio 2010

10http://www.uml-forum.com/FAQ.htm

Supported UML elements Not supported UML elements
- classes - multiplicity of attribute value
- abstract classes - attribute values except primitives
- interfaces - package elem. inside a diagram
- generalization - data constraints
- multiple packages (diagrams) - class operations
- attributes - association classes
- visibility of attributes (partly) - n-ary associations
- attrs. with primitive data types - overlapping/disjoint classes
- attrs. with XML data types - roles (VP, ArgoUML)
- associations - XOR annotation
- navigable associations - redefnition of derived attributes
- multiplicity of associations - subset annotation
- aggregations - ordering+uniqueness attr. annot.
- compositions - datatype meta annotation
- labelled endpoints (MS Visio) - enumerations
- comments / note elements - stereotypes

TABLE I: Comparison of supported and not supported UML

elements

XMI 1.0) into OWL 2 DL ontologies, but also attempts to be

a best practice lightweight framework for engineers and thus

is hosted as an open source project.11 Both, executable and

source code are available.

umlTUowl eases the integration of new transformation

scripts, e.g. support for ArgoUML 0.32.2 XMI 2.1 (freeware)

has been already implemented. Its maxim is: don’t try to pro-

vide an overall transformation solution for all vendors, because

parsing of XMI is too fragile. Be prepared for variations and

UML-model-vendor updates that affect the structure of the

resulting XMI code by providing traceability of supported

UML tools, as well as providing high testability, modifiability

and extensibility.

Traceability is reached by keeping record of version num-

bers, export settings and supported UML elements for each

vendor-specific UML modeling tool. This approach has several

advantages. It provides end user documentation and guaran-

tees designated transformation results, which at all times are

OWL2 DL compatible and thus should be also compatible

with current versions of Protégé (¿=4.1). Furthermore, by

leveraging automated testing those artifacts also ensure that

whenever a vendor adapts a modeling tool, these changes

will be detected. umlTUowl comes with a bulk of unit tests

and three implemented reference model tools[4][pg.37ff.],

hence providing comprehensive templates to developers, who

want to implement transformations for additional models. By

utilizing a meta model, either a new input format (e.g. Entity

Relationship Diagram (ERD) instead of UML) may be added,

or the output converter (e.g. DAML instead of OWL) may be

replaced.

Supported UML elements are outlined in Table I. VP

uses the term package for diagram synonymously. umlTUowl
allows to define, if all packages should be merged into a

single ontology, or if an own ontology file should be created

for each package. The elements which are not supported by

umlTUowl typically are not commonly used or only well-

understood by UML experts. They have not been implemented

11http://sourceforge.net/projects/uml2owl

733

within the umlTUowl prototype because these elements have

not been used by CDL-Flex customers and engineers in the

past years and also may not be important for the populace

of UML modelers outside CDL-Flex projects. Other reasons

are that some elements are hard to implement because they

can’t be expressed naturally in OWL. For instance, how can

someone express a class operation such as

, without introducing additional semantics?

However, this case is not relevant for the CDL-Flex.

The tool should be seen as a recommendation as well. It

attempts to suggest, which informations should be provided

when publishing an UML transformation tool, based on the

experiences collected during the evaluation phase.

B. Software Architecture

umlTUowl naturally accepts UML diagrams in the specified

XMI format. As illustrated in figure 1, at first the XML/XMI

files are loaded into memory. Depending on the XMI input-

format a particular converter is selected, which transforms the

UML model into a simplified meta model ().

The meta model basically consists of modules that represent

and facilitate all relevant UML model elements in a convenient

way. It has been defined analogue to Eclipse MOF, Netbeans

MDR or as discussed in [9]. The usage of a meta model

has numerous benefits. On the one hand, decoupling of XMI

parsing process () and OWL serialization

() eases the adoption of additional converters

(e.g. Poseidon XMI format or even ER-diagram conversion)

and enables automated testing approaches. On the other

hand, a meta model can facilitate access to specific meta

data elements, which implies that searching, manipulating

and referencing of entities is much more comfortable than

directly accessing XML. This advantage is also leveraged by

the component, which ensures that all classes,

attributes and associations are labeled with a unique and OWL

2 DL compatible name, before they are finally serialized into

an OWL 2 DL ontology utilizing the OWL API by University

of Manchester (OWL API). Decoupling of input (parsing) and

output (serialization) process furthermore has the advantage

that not only the parser might be replaced, but also the OWL

serialization component.

Fig. 1: Workflow and software architecture of umlTUowl

1) Harmonizer: The harmonizer component ensures the

uniqueness of element names and prepares them for the

OWL export. According to the configured strategy all entity

names in the meta model are unified, so that each name only

occurs once. Furthermore, attribute and association names are

converted into common OWL styles.

Table II illustrates some of the most considerable harmoniz-

ing techniques and how they are applied (the complete exam-

ple can be found in [4][p.22]).Two strategys have been imple-

mented to handle packages: Depending on the configuration

either all meta packages are merged into a single meta model

during the harmonizing phase, or all packages remain and are

serialized into separated ontologies, subsequently. If all classes

are merged into a single ontology, more harmonizing effort

is required, since it can happen that semantically inequivalent

classes with same class name exist in different packages. These

classes have to be prefixed with their package name.

Duplicate attributes and association names frequently occur

even within a package. They appear, when packages are

merged into a single ontology or when the same attribute (or

association) name is contained in different UML classes (e.g.

age might exist for a class named ”Student“, but also for a class

named ”Building“). Therefore, the component

offers a set of naming strategys, which can be customized.

Thus, attribute names are always renamed (pre- or suf-

fixing class and/or package name), if they occur more than

once, although different strategys exist therefore. Associations

often exist without label. Even if they are named labels

are useless, except the association is navigable. Hence, all

associations are renamed, depending on the chosen strategy

(). For instance, as illustrated in table

II, aggregations and compositions can be renamed using

supplementary patterns. If only a conventional association

is established between two classes, e.g. ”Building“ contains

”Rooms“, this results in two OWL object properties. The first

one is named ”buildingHasRoomAssociation“ and the second

(inverse) object property is named ”roomHasBuildingAssoci-

ation“; if the association is bidirectional navigable, there is no

way, to find out, if ”Building“ is contained in ”Room“ or vice

versa.

2) Metamodeltoowl: The OWL API by the University of

Manchester has been utilized to serialize umlTUowl’s meta

model into valid OWL2 DL. Not all UML elements have a

matching counterpart. For instance, an abstract UML class

will be transformed into an entity with probably

specific naming conventions. Depending on the chosen trans-

formation strategy either all UML packages are merged into

a single file, or each package is separated into a single OWL

ontology. This approach is inspired by previous works, such

as [2] and [9].

Attributes are transformed into data properties. XML built-

in data types (e.g.) are supported as well as OWL

built-in data types. UML associations result in OWL ob-

12X: harmonizing carried out using default settings; blank: adapted config-
uration settings; S: blank + special case

734

Elem. UML Example D12 Harmonizing result Relevant settings
class Two classes named Student exist

within two different packages.
X Student

Package2 Student
merge-packages=true
merge-disable-fixing=true
merge-class-prefix={package}

class Two classes named Student exist
within two different packages. Package1 Student

Package2 Student

merge-packages=true
merge-disable-fixing=false
merge-class-prefix={package}

class Two classes named Student exist
within two different packages.

Student in out Package1.owl
Student in out Package2.owl

merge-packages=false

abstract
class

{abstract} Student X
Abstract Student

abstract-prefix=Abstract
abstract-postfix=

attribute Two classes, namely Student and
Building exist within the same
package. Both contain attribute
name.

X Building: hasName
Student: hasPackage1 StudentName

merge-packages=true
data-property-prefix=has
merge-attribute-strategy=duplicates
merge-attribute-prefix={package-class}

attribute Two classes, namely Student and
Building exist within the same
package. Both contain attribute
name.

Building: hasName
Student: hasStudentName

merge-packages=true
data-property-prefix=has
merge-attribute-strategy=duplicates
merge-attribute-prefix={class}

attribute Two classes, namely Student and
Building exist within the same
package. Both contain attribute
name.

Student: hasStudentName
Building: hasBuildingName

merge-packages=true
data-property-prefix=has
merge-attribute-strategy=all
merge-attribute-prefix={class}

associ-
ation

Unidirectional association named
based on between Tree and Trunk.

X
hasTreeTrunkRelation
hasTrunkTreeRelation (inverse). Comment ”Re-
lation originally named ’based on’“ added.

relation-strategy-relation=Relation
relation-strategy-1=
has{from}{to}{dependingRelation}

compo-
sition

Each Tire belongs to exactly 1 Car
at one time.

X hasCarTireComposition
isTireOfCar (inverse - part of)

relation-strategy-1=has{from}{to}{dependRel}
relation-strategy-composition-part-
1=is{from}Of{to};
relation-strategy-composition=Composition

aggre-
gation

University has Researchers. hasUniversityResearcher
IsResearcherOfUniversity (inverse)

relation-strategy-1=has{from}{to}{dependRel}
relation-strategy-aggregation-part-
1=is{from}Of{to};
relation-strategy-aggregation=

associ-
ation

Three associations: Tank contains
Temperature Sensors, Level Sen-
sors and Heaters (class names). All
assoc. are labelled with contains.

S All associations are still labelled with contains.
One OWL object property named with
domain and range

will be created.

allow-multiple-labelled-names=true
relation-strategy-1={name}
relation-strategy-2=has{from}{to}
{dependRel}

TABLE II: Examples of implemented harmonizing techniques, depending on settings

ject properties, which are restricted by domain and range

through their corresponding OWL classes (formally UML

classes or interfaces). Equally named associations as well are

supported. Thus, domain/range expressions contain concate-

nated OWL entities, separated by . Example: UML associ-

ations and

will be transformed into object property with

domain and range . If an

association is navigable in both directions, object properties

will be linked as Inverse properties one another. All object

properties are added as subclass axioms to their related OWL

classes, concerning cardinality. Assuming that a Professor can

hold between 0 and 500 lectures, the example above would

result in two subclass axioms:

and .

The mapping mechanism of umlTUowl is detailed in figure

2. All transformed ontologies have been validated manually,

by applying ManchesterValidator for OWL2 DL format and

by comparing the resulting ontology in Protégé (using the

FaCT++ reasoner) [10]). The verification of the ontologies

showed that all UML reference models were transformed

correctly and completely for all three UML modeling tools and

with respect to different configuration settings of umlTUowl.

Fig. 2: Mapping of UML elements and OWL entities

735

Due to umlTUowl’s architecture the test cases are transparently

available and repeatable.

C. Time Complexity

Time complexity of the transformation implementation is

T = O(#N) ∗ [O(#G) +O(#Assoc)

+O(#Attr) +O(#Com) ∗O(#ComC)]
(1)

where #N is the number of XML elements (depending on

the XML serialization), #G is the number of class generaliza-

tions, #Assoc the number of associations, #Attr the number

of attributes, #Com the number of comments and #ComC
the number of connections between classes/associations and

comments.

The comparison with Xu et al.’s solution[11] shows that

time complexity is slightly higher than O(#N). The main

reason is that the DOM structure of VP’s XMI 2.1 in some

cases has to be traversed, e.g. to map attributes and data

range, or to link comments to their corresponding entity. The

algorithm may be optimized (e.g. extracting data types into an

array before processing attributes), but the current algorithm

is broadly satisfactory.

D. Automated Testing

umlTUowl uses an elegant testing approach based on exe-

cutable test cases (jUnit): The tool is shipped with a variety

of test cases, which are linked with elaborate UML reference

models to cover common UML class diagram constructs as

defined in Table I. The unit tests are applied to particular ele-

ments of the reference model’s diagrams, whereupon identical

diagrams have been created for each of the supported modeling

tools. For each converter implementation, an adequate XMI

file, images of the model’s diagrams created by the specific

modeling tool, and the related project files are provided. To

implement a new UML modeling editor’s XMI format, one just

has to extend an existing XMI converter, redraw the reference

model in the particular UML modeling tool and document

the export process of the newly implemented XMI version.

Due to leveraging, the intermediate meta model coding of test

cases is no longer necessary! Additional reference models can

be placed to support additional features for a specific UML

editor’s XMI file format. Adaption of not yet implemented

transformation features can be carried out across all existing

converters, hence the approach helps to gain high-quality

converters. Even UML-related models, such as MS Visio ERD,

can be implemented in adequate time.

E. Use Case: Transformation of Industrial Tank Model

Practitioners, especially designers and Quality Assurance

(QA) personnel, want to make complex industrial automation

systems more robust against normally hard to identify runtime

failures. Challenges to detect and locate defects at runtime

come from the different focus points of models. Without

an integrated view on relevant parts of both design-time

and runtime models inconsistencies from changes and their

impact are harder to evaluate and resolve. Better integrated

engineering knowledge can improve the quality of decisions

for runtime changes to the system, e.g., better handling severe

failures with predictable recovery procedures, lower level

of avoidable downtime, and better visibility of risks before

damage occurs [12][13][14]. As shown in [15], these problems

can be addressed with the help of ontologies and reasoning.

The CDL-Flex developed, domain-specific EKB provides

a better integrated view on relevant engineering knowledge

in typical design-time and runtime models, which were orig-

inally not designed for machine-understandable integration.

It contains schemes on all levels and instances, data, and

allows reasoning to evaluate rules that involve information

from several models. umlTUowl in combination with the EKB

enables practitioners from different fields to create ontologies

out of previous or novel created UML (or similar) models on

the fly, and thus helps to gain better integrated and shared

knowledge across teams. It not only supports iterative devel-

opment of ontologies and hence helps to improve consistency

and compliance between design- and code/runtime- elements,

but also unburdens EKB ontology engineers so that they

can focus on modeling of complex logical relationships and

axioms.umlTUowl incorporates and centers domain experts

and helps improving the CDL-Flex EKB workflow transiently.

To demonstrate the integration of umlTUowl into

CDL-Flex’s EKB and to dig into a use case, the tool

has been validated against a previously-used, domain specific

tank model (compare [15]). Both, VP class data diagram

and OWL ontology that had been created in manual work

by CDL-Flex, have been provided beforehand. The UML

diagram models a piped tank that is connected to several

control elements, which ensure that the tank provides enough

fluid (eg. water or liquid chemical substances) and the content

is heated, dependent on the measures of different sensors.

The existing, manually created ontology and the umlTUowl
transformation result have been compared in Protégé and

were validated using ManchesterValidator. The results are

outlined next.

1) Class Transformation and Disjointness: The tool trans-

formed all 19 classes and considered all hierarchy levels

correctly. For instance, actuator is the superclass of heater,

pump and valves, while valve itself has been subdivided into

magnetic, manual and pneumatic classes. Unlike the manually

created ontology, disjointness of classes is not defined in

the umlTUowl created ontology. By default, UML classes

are defined as overlapping, so the ontology engineer has to

explicitly define disjoint classes, using Protégé.

2) Equivalent Classes: Of course the automated umlTUowl
transformation approach cannot distinguish equivalent and de-

fined classes. While the CDL-Flex ontology engineer defined

some equivalent classes in OWL, the tool created defined

classes with subclass axioms, instead.

3) Attributes: Because for none of the attributes a data type

had been specified in the UML diagram, the tool assigned data

range . The ontology engineer has to add missing

ranges to all data properties manually, e.g. set the data range

of (Domain =) to .

736

4) Associations: In the first test run, the tool cre-

ated 24 object properties, while the CDL-Flex ontol-

ogy contained only seven object properties. The reason

was that the transformation tool created an object prop-

erty and its inverse for each UML association. For in-

stance, one sensor measures an actuator. The resulting

object properties were and

, which is the inverse object

property (compare Table II). For avoidance of inverse relations,

either the object properties have to be removed in Protégé, or

the UML designer has to define unidirectional associations

(add navigation arrows). After the UML diagram had been

reworked, 24/2=12 object properties remained. The CDL-Flex

ontology still contained seven object properties. The reason

is that in the UML model six associations have been labelled

with and three are named . umlTUowl
cannot determine, if all associations with same label are

semantically equal and therefore, creates a new object property

for each association.

So umlTUowl had been extended, to support

transformation of equally named associations into a

single object property (compare Table II). By adding

the lines and

{ } in

one can define that equally named associations are allowed

and that their name are used to label OWL object properties.

After re-execution of umlTUowl the number of object

properties in the result was reduced to a number of five

(the manually created ontology contained two additional

properties, which were not modeled in the UML file). The

result has been equivalent to the manually created ontology.

The transformation succeeded for all three UML modeling

tools with respect to different configuration settings.

IV. CONCLUSION

Traditional UML to OWL transformation tools are doomed

to fail transforming VP UML2.0 or MS Visio 2010 diagrams

Fig. 3: Tank modeled in VP for UML 8.2

into valid OWL, because they heavily rely on XMI standards,

which turned out to be fragile and vary by vendors’ tools.

Eclipse’s ATL framework offers a transparent transformation

approach, but is, in combination with OWL, still half-baked.

umlTUowl is not only tailor-made for the CDL-Flex, but

provides a framework that supports high extensibility due

to precise documentation of supported UML modeling tools

and an automated test approach. It rests on a well-thought-

out lightweight architecture, which enables developers to add

high-quality converter scripts rapidly. Future work may be

carried out regarding the implementation of less common

UML constructs, such as disjointness, multiplicity of data

properties or support of constraints.

REFERENCES

[1] K. Baclawski, M. M. Kokar, P. A. Kogut, L. Hart, J. Smith, J. Letkowski,
and P. Emery, “Extending the Unified Modeling Language for Ontology
Development,” Software and Systems Modeling, vol. 1, 2, 2002.

[2] K. Falkovych, M. Sabou, and H. Stuckenschmidt, “Uml for the semantic
web: Transformation-based approaches,” Knowledge Transformation for
the Semantic Web, vol. 95, pp. 92–107, 2003.

[3] D. Gasevic, D. Djuric, V. Devedzic, and V. Damjanovi, “Converting
UML to OWL ontologies,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, ser.
WWW Alt. ’04. New York, NY, USA: ACM, 2004, pp. 488–489.

[4] A. Grünwald, “Bachelor thesis. evaluation of uml to owl approaches
and implementation of a transformation tool for visual paradigm and
ms visio,” 2011. [Online]. Available: http://cdl.ifs.tuwien.ac.at/files/
bachelor thesis uml2owl.pdf

[5] J. Nytun and A. Prinnz, “Metalevel representation and philosophical
ontology,” in Workshop on Philosophy, Ontology, and Information
Systems (held as part of the Eighteenth European Conference on Object
Oriented Programming, ECOOP-04), Oslo, 2004, p. 2.

[6] V. Bacvanski and P. Graff, “Mastering eclipse modeling framework,”
EclipseCon. Eclipse Foundation, 2005.

[7] F. Silva Parreiras, S. Staab, and A. Winter, “Twouse: Integrating uml
models and owl ontologies,” Institut für Informatik, Universität Koblenz-
Landau, Tech. Rep. 16/2007, 2007.

[8] S. Brockmans, P. Haase, P. Hitzler, and R. Studer, “A metamodel and
uml profile for rule-extended owl dl ontologies,” The Semantic Web:
Research and Applications, pp. 303–316, 2006.

[9] Kiko and Atkinson, “A Detailed Comparison of UML and OWL,”
REIHE INFORMATIK TR-2008-004, 2008.

[10] M. Horridge and S. Bechhofer, “The OWL API: a Java API for
working with OWL 2 ontologies,” in Proc. of the 5th Int. Workshop
on OWL: Experiences and Directions (OWLED 2009), CEUR Workshop
Proceedings, Chantilly, VA, United States, October. Citeseer.

[11] Z. Xu, Y. Ni, L. Lin, and H. Gu, “A Semantics-Preserving Approach
for Extracting OWL Ontologies from UML Class Diagrams,” Database
Theory and Application, pp. 122–136, 2009.

[12] T. Moser and S. Biffl, “Semantic tool interoperability for engineering
manufacturing systems,” in Emerging Technologies and Factory Automa-
tion (ETFA), 2010 IEEE Conference on. IEEE, 2010, pp. 1–8.

[13] F. Waltersdorfer, T. Moser, A. Zoitl, and S. Biffl, “Version management
and conflict detection across heterogeneous engineering data models,” in
Industrial Informatics (INDIN), 2010 8th IEEE International Conference
on. IEEE, 2010, pp. 928–935.

[14] T. Moser, S. Biffl, W. Sunindyo, and D. Winkler, “Integrating production
automation expert knowledge across engineering stakeholder domains,”
in Complex, Intelligent and Software Intensive Systems (CISIS), 2010
International Conference on. IEEE, 2010, pp. 352–359.

[15] M. Melik-Merkumians, T. Moser, A. Schatten, A. Zoitl, and S. Biffl,
“Knowledgebased runtime failure detection for industrial automation
systems,” in Workshop Models@ run. time, 2010, pp. 108–119.

737

A Framework for Class Diagram Retrieval Using
Genetic Algorithm

Hamza Onoruoiza Salami, Moataz A. Ahmed
Information and Computer Science Department,

King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia

{hosalami, moataz}@kfupm.edu.sa

Abstract—In this research, we propose the use of genetic
algorithm (GA) for retrieving class diagrams from a software
repository. This technique will prove useful in the reuse of
existing Unified Modeling Language (UML) artifacts. Our
proposed similarity metric for matching query class diagrams to
repository class diagrams is based on name (semantic) similarity
and structure similarity. Our preliminary results on structure
similarity show that the proposed method is effective in retrieving
class diagrams from the repository that are similar to query class
diagrams.

Keywords-component; UML Class Diagrams; Software Reuse;
Similarity; Genetic Algorithm

I. INTRODUCTION
Software reuse is the process of creating s oftware systems

from existing software rather than building software system s
from scratch [1] . Some of the advantages of reuse include
reduced overall development cost, increased reliability and
accelerated development [2]. One of the most important
activities in software reuse is retrieval. During retrieval, an
input query is com pared with existing software artifacts to
determine those artifacts that are similar enough to the query.
The emphasis on similarity of query artifacts to stored software
artifacts is important, to ensure that adapting retrieved artifacts
is more beneficial than building a new software system from
scratch.

Software artifacts that can be reused include domain
models, requirement specifications, design, documentation, test
data and code [3]. The first three types of artifacts are referred
to as early-sta ge reusable art ifacts, while the rem aining three
are referred to as later-stage reusable artifacts [3]. Clearly, it is
more beneficial to reuse early-stage artifacts than later-stage
artifacts because once a matching early-stage artifact is found,
all later-stage artifacts re lated to the matched artifact can also
be reused.

This research focuses on the retrieval of early-stage artifacts
that are represented using the Unified Modeling Language
(UML). In particular, we con centrate on class diagram s since
they are the de facto standard in the design stage of the
software development process [4].

The rest of this paper is orga nized in the following manner.
We discuss related work in S ection II. Section III describes a
graphical representation for UML class diagrams. A similarity

metric for comparing class diagrams is presented in Section IV.
Section V explains the use of Ge netic Algorithm (GA) in
matching of class diagrams, while our experiments are
described in S ection VI. Finally, we present our c onclusions
and future work in Section VII.

II. LITERATURE SURVEY
This research focuses on the use of GA for retrieving UML

class diagrams from the repository for re use. Retrieving or
locating reusable artifacts is a search problem involving a
comparison of que ry artifacts and repository artifacts [3]. In
this section, we review res earch regarding softwa re artifact
reuse. In particular, because the UML is the de facto modeling
language for software systems, we descri be previous work
regarding retrieval of softw are artifacts r epresented using
UML.

Robinson et al [5] developed a C ASE tool that
automatically retrieves similar sequence diagrams from a
repository using a graph m atching algorithm called SUBDUE.
Ahmed [6] has applied GA for m atching sequence diagra ms
based on their structural and semantic relatedness.

Rufai [3] proposed a set of similarity metrics to measure
class diagram similarity based on semantic relatedness of class
names, attributes and m ethods. Gomes et al [7] combine
Wordnet and Case Based Reasoning (CBR) for retrieving UML
models. Because they represented cases as UML class
diagrams, their work involv ed retrieval of UML class
diagrams. Robles et al [4] have used dom ain and application
ontologies for class diagram retrieval. They use query
expansion to match class diagrams, while we employ GA.

Blok et al [8] have m atched Use Cases by co mputing a
similarity measure of their event flow vectors.

 Our method is similar to th at of Gupta et al [9] who use
inexact graph matching to detect design patterns. Howe ver,
while we GA, the authors use an iterative method to m atch
graphs. Their algorithm has a com putational complexity of
O(n2Kn) where n is the number of nodes and K is the number of
phases in the algorithm, specified by the user.

Park et al [10] have presented a two stage m ethod for
matching UML specifications. In the first stage, Class
Diagrams are compared using analogy. In the second stage,
Sequence Diagrams are compared based on graph similarity.

This research was supported by NSTIP Project Grant 11-INF1633-04

738

III. GRAPH REPRESENTATION OF CLASS
DIAGRAMS

UML class diagrams can be c onverted to labeled directed
graphs in which the classes are represe nted by nodes, and the
relationships between the classes are re presented as edges of
the graph. In addition, edges contain extra information which
specify whether they represent dependencies, generalization,
association, and so on. With this representation in m ind, the
problem of m atching a quer y class diagram to another class
diagram in the repository becomes that of graph m atching. In
particular, since the graphs to be compared usually have
different numbers of nodes a nd edges, the problem is referred
to as inexact g raph matching [11]. Fig. 1 s hows how a class
diagram is converted to a directed graph. An adjacency matrix
representation of the graph is al so shown in Table I. Rath er
than containing zeros and ones, the entries of the matrix s how
the types of Class relationships represented by the edges of the
graph.

IV. SIMILARITY METRIC
We propose a similar ity metric which is com posed of two

parts; name (semantic) similarity and str ucture (topology)
similarity [4], [12]. Nam e similarity measures the semantic
relatedness of the concepts (classes) in the class diagram s to be
compared, while structure similarity measures how closely the
relationships between classes match one another. In other
words, name similarity determines how t he corresponding
nodes of tw o graphs are r elated, while structure similarity
measures the level of similar ity between corresponding edges
[13], [9].

A. Name Similarity
One way of measuring the sem antic relatedness of class

names is to use domain ontology [4]. Another possibility is to
utilize a lexical database such as WordNet.

Figure 1. A Class Diagram and its corresponding directed graph. Nodes 1, 2,

3, 4 and 5 in the graph represent the Customer, Order, Corporate Customer,
Personal Customer and Item Classes

TABLE I. ADJACENCY MATRIX

We propose using WordNet as is done in [3]. The Name
Similarity of two class diagrams A and B having equal num ber
of classes is given in (1).

n

BAcns
BANS

i

n

i
i),(

),(1

Ai is the na me of the i th class in class diagram A, Bi is the
name of the i th class in class diagram B while n is the number
of classes contained in both diagram s. cns (Class Na me
Similarity) is a function that returns a semantic relatedness
value between zero and one . Zero and one denote maximal
relatedness and un-relatedne ss of conce pts, respectively. The
division by n in equation 1 ensures that the value of nam e
similarity (NS) always lies between 0 and 1.

B. Structure Similarity
In order to measure the stru cture similarity between two

matrices, we define a squa re matrix Diff, whose entries
represent the level of dissimilarity between the various types of
class relationships. The (i, j)th en try of the matrix is a measure
of the dissimilarity between the i th type of relationship and the
jth type of relationship. A value of 1 indi cates that the two
relationships are extremely dissimilar, while 0 indicates that the
relationships are the sa me (hence the diagonal entries of the
matrix are all zeros). The entries of this matrix can be filled by
gathering information from UML experts, or by appl ying
ontology as in [4] . Table II (adapted from [4]) shows a sample
Difference matrix (Diff). Since the main objective of retrieving
class diagrams is to reuse the m, the entries in Diff shoul d be
proportional to the am ount of effo rt required to con vert one
type of relationship to another, after retrieving a class diagram
from the repository. The last row labeled ‘None’ shows the
level of dissimilarity between having no rel ationship between
two classes (that is no edge connecting the vertices) and having
a relationship between the two classes.

Let A and B be two directed graphs (representing class
diagrams) each having n nodes. In addition, let the n x n
matrices AdjA and AdjB be the adjacency matrices of A and B,
respectively. The Structure Similarity (SS) between A and B is
computed as shown in (2). nm is the number of times the edges
in both graphs match exactly, while nu is th e number of times
the edges do not match.

nunm

jiAdjBjiAdjADiff
BASS ji ,

)),(),,((
),(

The overall similarity metric between two class diagrams
represented by graphs A and B is a weighted sum of the Name
Similarity and Structure Similarity as shown in (3). is a value
between 0 and 1 that determ ines the relative im portance of SS
and NS.

),(*)1(),(*),(BANSBASSBAS

1 2 3 4 5

1 None None None None None

2 Association None None None None

3 Generalization None None None None

4 Generalization None None None None

5 None Aggregation None None None

G
eneralization

A
ggregation

Generalization

Customer
1

Association

Corporate
Customer

Personal
Customer

2

3 4 5

Order

Item

739

V. APPLICATION OF GENETIC ALGORITHM
As previously mentioned, in practice the class diagram s in

the repository would usually have different number of classes
than the number of classes in the query class diagram. While
discussing the Name Similarity and Structure Sim ilarity
measures in the last sec tion, we have ass umed that the c lass
diagrams have equal number of classes. In this section we
explain how GA can be used to select an equal num ber of
classes from both diagrams. Wang et al [14] used GA to match
2 graphs having the sam e number of node s. In contrast, our
method can match graphs having different number of nodes.

A. Chromosome Design
Let A and B be two class diagram s having na a nd nb

classes respectively such that na nb. The task of choosing
how all the na classes of A will be mapped to na classes in B is
a combinatorial optimization problem. GA has been use d to
solve combinatorial optimization problems such as timetabling,
scheduling, Travelling Salesman Problem, Eight Queens Chess
problem and s o on. Fig. 2 shows a suitable encoding of a
chromosome to determ ine the mapping of all the na clas ses
from A to na classes in B.

Each gene in the chrom osome represents a class nu mber in
B. For example, from Fig. 2 we observe that the 1st class in A is
mapped to the 5th class in B, the 2nd class in A is mapped to the
nbth class in B, the 3rd class in A is mapped to the nath class in B
and so on. In t his way, we map the classes in A to a subset of
the classes in B. The selected classes in B maintain their class
relationships only if both cla sses involved in the relationship
were chosen as part of the chromosome.

B. Fitness Function
We use the similarity measure S given in equation 3 as our

fitness function. Since the value of S always ranges from 0 to 1
(where 0 im plies the highest level of sim ilarity), successive
generations of GA should produces less values of S compared
to previous ge nerations. This results in GA selecting (near)
optimal mappings from classes in the query class diagram to
those in repository class diagrams.

VI. EXPERIMENTS
In this section, we present the results of experiments carried

out using our proposed method. Our experiments focused
mainly on Structure Sim ilarity (SS), henc e the weight in
equation 3 was set to 1. Our objective was to deter mine the
efficiency of the proposed method in retrieving matching class
diagrams from the repository. Fig. 3 shows two class diagrams;
a query class diagram Q and a class diagram R from the
repository. As shown in the figure, Q is isomorphic to a s ub-
graph of R.

We used the proposed method to determine how m any
times the classes in Q were correctly mapped to the classes in
R. Maximum similarity is obtained when the value of the
fitness function is zero as de scribed in Section V. Fig. 4 shows
the mean and standard deviation of the fitness value over 500
successive generations. The experiment was re peated 100
times. After a few genera tions, the mean and standard
deviations of the fitness function stabiliz es, indicating that
there is no additional benefit in running GA further.

TABLE II. DIFF MATRIX

AS = ASSOCIATION, AG = AGGREGATION, CO = COMPOSITION, DE = DEPENDENCY, GE =
GENERALIZATION, RE = REALIZATION, IR = INTERFACE REALIZATION, NO = NO

RELATION

In addition, the mean value of the fitness function is often
sufficiently close to zero because the propos ed algorithm finds
exact matches most of the time. However, the standard
deviation of the fitness value is higher than the mean in most
cases. This is because the algorithm usually finds optimal
solutions, but obtains near optimal solutions at other times.

In another set of experim ents, we studied the im pact of
using GA in our algorithm. We replaced the GA component of
our algorithm with a random matching of query class diagrams
to repository class diagrams. The experiment was repeated
1,000 times. For the GA-based experiments, there were 100
individuals in each generation, and the m aximum number of
generations was 50. Thus, the maximum number of iterations
was 5,000 across all generations. In the case of the experiments
based on random matching of classes, the matchings were
based on randomly generated permutations. The random
permutations were generated and tested up to 5,000 times. As
in the case of GA, the search was abandoned as soon as an
optimal matching was f ound. The res ults shown in Fi g. 5
indicate that o ur GA-based algorithm usually finds optim al
class matchings in less num ber of iterations com pared with
random matching of classes. The figure shows that in 700 out
of the 1000 cases, our GA-based algorithm finds optim al
matchings after a few generations (1,500 iterations or
alternatively 15 generations). However, 30% of the time, GA
executes all the 5,000 iterations (50 generations) and
determines near-optimal class matchings.

VII. CONCLUSION AND FUTURE WORK
We have described a method for retrieving UML class

diagrams from a software repository by using GA. Few
experiments were carried out to measure the effectiveness of
the proposed algorithm in d etecting structural sim ilarity. No
experiment was carried out re garding name similarity. Thus, it
is necessary to perform many more experiments to evaluate the
performance of the proposed method in t erms of precision,
recall, execution time and so on.

We have considered only cl ass names and class topology.
In the future, we hope to include class attr ibutes and operations
in the similarity measure. In a ddition, the technique will be
extended to deter mine similarity measures of other U ML
diagrams such as sequence diagrams and state chart diagrams.
The development of a tool to integrate our proposed technique

 AS AG CO DE GE RE IR NO

AS 0 0.11 0.11 0.45 0.45 0.66 0.77 1

AG 0.11 0 0.11 0.45 0.45 0.66 0.77 1

CO 0.11 0.11 0 0.45 0.45 0.66 0.77 1

DE 0.49 0.49 0.49 0 0.28 0.21 0.32 1

GE 0.49 0.49 0.49 0.28 0 0.49 0.6 1

RE 0.83 0.83 0.83 0.34 0.62 0 0.11 1

IR 1 1 1 0.51 0.79 0.17 0 1

NO 1 1 1 1 1 1 1 0

740

as an add-in to popular UML m odeling software like Rational
Rose and Enterprise Architect is also being considered.

Figure 2. Chromosome Encoding for GA

Figure 3. Repository and Query Class Diagrams. a) Repository Class

Diagram b) Query Class Diagram. Classes 1, 2, 3 and 4 from the Query
Diagram can be mapped to Classes 2, 4, 6 and 5 in the Repository Diagram

respectively.

Figure 4. Mean and Standard Deviation of similarity value over 500

generations

Figure 5. Number of required iterations in GA-based matching and random

matching of classes.

ACKNOWLEDGMENT
The authors would like to acknowledge the support

provided by the Deanship of Scientific Research at King Fahd
University of Petroleu m and Minerals (KFU PM) under
Research Grant 11-INF1633-04.

REFERENCES
[1] Krueger C. W, “Software reuse,” ACM Comput. Surv. vol.24, 2, pp

131-183, 1992.
[2] I. Sommerville, “Software engineering,” 9th ed., Addison-Wesley, 2010.
[3] R. Rufai, “New structural similarity metrics for the UML, ” MS Thesis,

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia,
2003.

[4] K.. Robles, A. Fraga, J. Morat and J. Llorens, “Towards an ontology -
based retrieval of UML class diagrams,” Inf. Softw. Technol. vol. 54,
no. 1, pp. 72-86, 2012

[5] W. N. Robinson and H. G. Woo, "Finding reusable UML sequence
diagrams automatically," IEEE Software, vol. 21, pp. 60-67, 2004.

[6] A. Ahmed, “Functional similarity metric for UML Models, ” MS Thesis
King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia,
2006.

[7] P. Gomes et al, “Using WordNet for case-based retrieval of UML
models”. AI Commun. vol. 17, no. 1, pp 13-23, 2004.

[8] M.C. Blok and J. L. Cy bulski, J.L, "Reusing UML specifications in a
constrained application do main," in Software Engineering Conference,
1998. Proceedings. 1998 Asia Pacific, 1998, pp.196-202.

[9] M. Gupta, R. Singh, A. Tripathi, “Design pattern detection using inexact
graph matching,” in International Conference on C ommunication and
Computational Intelligence (INCOCCI), 2010, pp.211-217.

[10] W. Park and D. Bae, “A two-stage framework for UML specification
matching,” Inf. Softw. Technol., v ol. 53, no. 3, pp. 230-244, March
2011.

[11] E. Bengoetxea, “Inexact graph matching using estimation of distribution
algorithms,” Phd Dissertation, University of the Basque Country, 2002.

[12] Z. Xing, E. Stroulia, “UMLDiff: an algorithm for object-oriented design
differencing,” in Proceedings of t he 20th IEEE/A CM international
Conference on Automated Software Engineering, 2005, pp. 54-65.

[13] A. Hlaoui, S. Wang, “A new algor ithm for inexact graph matching,” in
16th International Conference on Pat tern Recognition, vol. 4, 2002, pp.
180- 183.

[14] Y. Wang, K. Fan, and J. Hor ng, “Genetic-based search for error-
correcting graph isomorphism,” IEEE Trans. on SM C, vol. 27, no. 4,
pp.588-597, Aug 1997.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Number of Generations

Mean
Standard Deviation

1 - 1500 1501-3000 3001-4500 4501-5000
0

100

200

300

400

500

600

700

Number of Iterations

Fr
eq

ue
nc

y

Genetic Algorithm
Random Permutation

1 2 3 4 . . na

5 nb na 2 3

741

742

743

744

745

746

747

CLAT: Collaborative Learning Adaptive Tutor ∗

Alaeddin M.H Alawawdeh, César Andrés and Luis Llana
Departamento Sistemas Informáticos y Computación

Universidad Complutense de Madrid
E-28040 Madrid. Spain.

e-mail: alaeddin@fdi.ucm.es, c.andres@fdi.ucm.es and llana@sip.ucm.es

Abstract

In this paper we introduce CLAT, a multi user online e-
learning tutor. This system is used to improve the knowl-
edge of the students in different environments. A novel al-
gorithm to share the knowledge is presented. It is based on
letting the students to share their experience with the rest
of their partners. In order to do this task, CLAT provides a
dynamical structure that is updated under some constrains.
In particular, CLAT adapts its behavior not only individually
for each student but also by considering the performance of
similar students. The core of its adaptive part is based on
the classification of students into classes (groups of students
sharing some attributes). By doing that, the past behavior
of students of the same class determines how CLAT inter-
acts, in the future, with students of that class. That is, CLAT
learns how to deal with each type of student.

Keywords: Intelligent Tutors, Education

1 Introduction

Online courses [4, 6, 1] and collective knowledge [7] ap-

proaches uncover several contradictory findings about the

best way to conduct teaching and learning online. The

importance of recognizing the feelings, reactions, and re-

sponses of the students in an online environment is really

important, but it is a hard task. Most instructors or design-

ers simply move text-based courses to the Internet following

some form of pedagogy and there are very few studies that

examine this phenomenon. But, there are several promising

techniques focusing on this goal based on extracting struc-

tured data from unstructured user contributions [2, 3].

In this paper, a Collaborative Learning Adaptive Tutor

is presented CLAT. This system let users to interact with

a set of tests, in order to increase their degree of knowl-

edge. CLAT has been developed using software engineering
∗Research partially supported by the Spanish MCYT project TESIS

project (TIN2009-14312-C02-01).

principles, and make use of formal methods in the testing

module. On the one hand, generally speaking, software en-

gineering can be considered as a systematic and disciplined

approach to develop software. It concerns all the aspects

of the production cycle of software systems and requires

expertise, in particular, in data management, design and al-

gorithm paradigms, programming languages, and human-

computer interfaces. It also demands an understanding

of and appreciation for systematic design processes, non-

functional properties, and large integrated systems. On the

other hand formal methods refer to techniques based on

mathematics for the specification, development, and verifi-

cation of software and hardware systems. The use of formal

methods is especially important in reliable systems where,

due to safety and security reasons, it is important to ensure

that errors are not included during the development process.

Formal methods are particularly effective when used early

in the development process, at the requirements and speci-

fication levels, but can be used for a completely formal de-

velopment of a system. It has been argued, usually with

very good arguments, both that formal methods are very ap-

propriate to guide the development of systems and that, in

practice, they are useless since software development teams

are usually not very knowledgeable of formal methods in

general, and have no knowledge at all of what academia is

currently developing. It is interesting to remark that some

of the strongest advocates of formal methods have almost

“no experience on the development of real systems”. Thus,

one of the main goal of this paper is to present CLAT as a

formal real system development for e-learning.

Next we briefly sketch the main characteristics of CLAT.

First, CLAT combines individual profiles for each student

with general profiles for each class of students. By doing so,

CLAT is able to adapt its behavior with respect to a student

not only individually, on the basis of her previous fails and

successes, but also by taking into account the performance

of the rest of students (current studentes as well as former

students). That is, the system learns how to interact with

a student by adapting the general profile of her class(es) to

748

her necessities. However, the progress of the users while

experimenting with the system is individually controlled.

CLAT keeps profiles for each student where all the relevant

information (from her previous sessions) is recorded. In

particular, the system points to the next topic that the user

should explore once she has reached a certain command in

the current topic. Another important feature of CLAT is that

it can automatically generate based on the student’s skill.

We consider that CLAT may increase the success rate of stu-

dents in two ways. On the one hand, students can regularly

check their progress by self-evaluation. On the other hand,

teachers can find out which parts of the course are more

difficult for the students (CLAT provides the teacher with a

private interface that allows her to access the information

about the performance of students). An additional contribu-

tion of CLAT is a module implemented to verify the identity

of the students. This module makes use of Bayesian text

filtering to determine the similarity between different exe-

cutions of the same student.

The rest of the paper is structured as follows. In Sec-

tion 2 we present the initial structure of CLAT. In Section 3

we present the idea of how to identify the users that are fill-

ing the tests. Following, in Section 4 we discuss different

features and measures of CLAT. In Section 5 it is presented

our system in a collective user scenario solving some fea-

tures previously discussed. Finally, in Section 6 we give our

conclusions and some lines for future work.

2 CLAT structure

In this section the initial structure of CLAT is presented .

Let us note that the main advantage of using an intelligent

tutor with adaptive capabilities is that it can be automati-

cally adapted to the students. CLAT can adapt its behavior

not only on the basis of the fails and successes of the current

student, but also on the experiences of the rest of students.

In CLAT, at the same time, n different users can be con-

nected. Previous interactions of the users is recorded on the

server. This information is used for obtaining statistical data

and for classifying the users in different statements. When

a user asks a new test to the server, by sending Do test
request, the server sends to this user Send test (x),

where x is the test to be solved. After receiving the test, the

user sends the answer to the server, and according with the

stored results, it will consider it as a good answer or not.

CLAT implements a user classification. This distribution

not only depends on the answers provided from the users

on different topics tests, but also in the effort provide from

each user to generate new tests.

Each group is a set of sorted users (according to the

amount of gained points). So, the set of guru users is made

of the u1 best users of the ranking, the set of expert users is

made of the next u2 users, and so on. As it usually hap-

Figure 1. Users structure.

pens in knowledge communities, the amount of users in

each class should follow a pyramidal structure. Thus, the

condition | u1 | < | u2 | < . . . < | um | will be con-

sidered. In Figure 1 a basic users structure is presented in

CLAT. There are three different levels, which are Experts
(E), Medium (M), and Basic (B). Also, in this Fig-

ure the values 0, . . . , 4 represent tests suites.

Any new user starts solving tests at point 0, which is

represented in the base of the system. If the user passes

this initial tests suite, then she will be included into the (B)
level.

If users want to continue being in their current level, then

they have to perform some tests of this level, that means

they are being “updated with the current knowledge” of this

level. These tests suites are represented in Figure 1 by num-

ber 1, and usually they are proportionated by the other users

belonging to this level, or the users of a higher level (de-

noted by 2). An user can upgrade to a higher level if she

performs correctly the tests suite 3, or downgrade if she is

unable to answer the tests suite 4 correctly.

Taking into account the user structure presented in Fig-

ure 1, then in Figure 2 we present our ideal structure evo-

lution. In this structure is presented how all the users of

the system are becoming into experts. At the beginning the

most users of the system are in the (B)level, and at the end

the most users are in the (E) level. It means, at the end, all

new knowledge is spread out into the users of the system.

3 The Validation of a Student ID

In order to ensure a personalize treatment, students ac-

cess the system through a login page. This allows the sys-

tem to recover the data from previous sessions. At the be-

ginning of the course, students are provided with a pass-

749

Figure 2. Users structure.

word. They log in by giving their ID-numbers and the pass-

word. This mechanism tries to avoid attacks to previous

sessions of students. For example, an attacker could ask the

system for previous exercises and provide wrong answers.

Then, when the real student logs in, she will find out that

the system thinks that she did not understand the concepts

covered in previous sessions.

So, to solve this problem, in CLAT we have implemented

a novel approach to detect unexpected behaviours of the

users. Next we present the main steps of this module and

next the implementation details. First of all, we have to

define what is an unexpected behaviour. Basically, at the

beginning of each session the first set of tests that the user

answers always contains some tests that she answered in

the past. Taking into account that all the interactions of the

users and the system are collected in our database, then we

can compare what the student answered and what she is an-

swering right now. CLAT assumes that student learns the

subject, so it expect that some questions that had a wrong
answer in a first iteration with the student, they are answered

correctly answered in a second iteration. However, during

the implantation phase of CLAT, we detected that there were

some situations that happened in CLAT that forced us to

adapt this validator in order to avoid them. Following we

report a situation that show unexpected behaviours. “Some

students always use some common expressions in their an-

swers. We detected that some of them always wrongly

wrote these expressions (the verb, the subject...). CLAT de-

tected a wrong behaviour because of during a session one of

this student always wrote correctly the expressions and the

session recorded in the following day she continued writing

wrongly the expressions. Thus, there was another person

answering her tests.”.

A typical execution of our this module is following pre-

sented. During the rest of the section we will denote by

ρ the test that is being compared. The first thing that is

extracted from a test is the language, so that we can differ-

entiate, in our case, between English, German, French and

Spanish. Next the representation of ρ is analyzed. All the

information is extracted from the ρ while empty words, that

is, words that are not representative of ρ, are removed by us-

ing a stop list (typically, this list includes words such as “a”,

Attribute Description

Subject The name of the subject

Date Date of dispatch

Origin The IP number and the operative system

Message The answers for the test

Error Indicates whether it is an unexpected behaviour or

not

Terms Terms extracted from the Message and the Subject

Weights Weights associated with each term of this test

Document number Document number in the case database

Language Language used in this test

Attribute Description

Terms Terms extracted from the message and the subject

Weights Weights associated with each term of the test

Document number Document number in the case database

Table 1. Structure of an event and of a test.

Attribute Description

Universe’s speech Total number of terms in the list

Number of Documents Total number of documents in the case database

List of terms List of inverted terms itself

Attribute Description

Total number of occurrences Total number of occurrences of the word among all

documents

Vector of occurrences Vector with the number of occurrences of the word

in each document

Table 2. Structure of the list of inverted terms
and of its elements.

“the”, “is”, “etc”, etc). As expected, these lists vary for dif-

ferent languages. Next, ρ is tokenized so that the frequency

on the test of each relevant term is computed. These terms

are calculated by using a list of inverted terms (we will deal

later with this concept). Given a word i and a document j,

the weight of the word is computed by using the following

expression:

wdji = Frecji ∗ log2
(

NTD

NDAi

)

where Freqij is the frequency of i in document j, NTD is

the total number of documents on the case database for this

user and NDAi is the number of documents that contain the

word w. In Table 1 we show how the relevant information

contained in each test is recorded by using events (contained

all the information) and cases (containing the information

relevant for further processing).

Once all the weights for ρ have been computed, the sim-

ilarity between this and other documents classified in the

case database is studied. For the classification of cases,

CLAT is based on a list of inverted terms to store all the

terms that appear in previous cases as well as a list contain-

ing the document numbers that have that word among its list

750

Figure 3. Global Log.

of terms. The list of inverted terms has been implemented

with a hash table, having as keys in this table are the new

terms. The values of the table are elements with the struc-

ture defined in the bottom of Table 2. Finally, the similarity

between a document of the database j and ρ is computed as

simjρ =

∑m
i=1 wdji ∗ wdρi√∑m

i=1 wd
2
ji ∗

∑m
i=1 wd

2
ρi

where wdxy is computed as stated before, denoting the

weight of word y in document x, and m is the number of

weight vectors.

Once we have all the similarities, we choose the three

documents providing the highest similarity with ρ. If the

highest one is greater than 65% of the addition of the other

two, then we take the result corresponding to the highest.

Otherwise, we make a majority voting among these three

cases. Once ρ is processed, and a verdict regarding whether

it contains an unexpected behaviour has been reached, then

ρ is added to the case database so that it can be used for

analyzing forthcoming tests. Let us remark that with this

module, CLAT allows us to detect the unexpected behaviours

of the students.

4 Security and statistical measures on CLAT

In order to guarantee the fault absence, a methodology of

performing testing security task is provided in CLAT. There

are several ways to classify testing techniques. In this work,

there are used passive testing techniques, which are non-

intrusives with respect to the system under test, and the se-

curity properties can be represented by using formal syn-

tax. Passive testing do not use any set of test in order to

provide a verdict of how good a system is. This technique

uses the log of the system in order to recognize erroneous

behaviors. We have detected within our architecture several

problems. When users are interacting with the system, all

actions performed from them are stored in a global log, and

the measure of this log is huge.

The global log structure presented in CLATis presented In

Figure 3. There, all messages sent from users are recorded

Figure 4. Tests Structures.

into a file. We can express security properties in order to

check the correctness of the log. For example, let us con-

sider the following property: “CLAT implements a FIFO

user policy”. That is, if the user C1 asks for a test before

C2, C3, . . . then, the server will provide firstly to C1 the

test to be solved. According to the global log presented in

Figure 3, C1 asks for Do Test before C2, so the server

will answer with Send Test to C1 before to C2. Let us

note, than before receiving C2 its notification, a new user,

by means Cn, asks for a new test. Then, according to the

previuos rule, the answer to C2 should obtain the test before

than Cn.

Let us consider another property presented in CLAT. As

it was mention, CLAT provides a methodology to perform

different tests in different topics. Sometimes it is necessary

that previous knowledge should be learned before advanc-

ing in tests. Let us consider the test structure presented in

Figure 4. This structure represents that the initial test to be

performed by an user is Test 0, and performing this she

will be able to answer or Test 1, or Test 2, or Test
3. The arrows from Test i imply which tests are opened
after correctly performs the test i. By using passive test-

ing techniques, we are allowed to express properties such

as: “At the beginning only Test 0 can be performed”, or

“If the Test 6 is performed then previously Test 1 and

Test 2 were correctly performed”.

The other main features on CLAT is possibility to to get,

in an easy way, statistical information of the users. This

information is used to provide a good classification of stu-

dents. This information should be able at the end of each

day, and it is extracted from the interactions log of the users

recorded in one day. Each day the information has to be

mixed with previous information, and a new user hierarchy

is provided.

There are three problems when we perform these tasks

in the structure presented in Section 2. The first problem

751

Figure 5. New Structure.

is the huge size of the log presented in the server. Let us

consider that the amount of users, with respect to time that

are connected is denoted by N(t), and the average of the

amount of actions of any user with the system is K. Then

we have that an usual size of log between two timed values

t1 and t2 is represented as:∫ t2

t1

N(t) dt ·K (1)

The second problem is relative to performed measures.

When we perform p different properties by using passive

testing then we have that the complexity of performing this

task is presented as:

p ·
∫ t2

t1

N(t) dt ·K (2)

The third problem is relative to perform the statistical
information. In order to provide m statistical information,

we have:

m ·
∫ t2

t1

N(t) dt ·K (3)

Let us note that in order to increase the performance of

CLAT, we should reduce the values of equations 1. 2 and 3.

5 CLAT in a collective user environment

In this section we present how to reduce the previous

problems in CLAT to work in a collective user environment.

First, we focus on the size of the log. The previous approach

assumes to have a big log, where all user interactions with

the server are recorded. In this update, the software per-

formed by users increase the functionality, in order to re-

duce the memory used in the server. All client software, will

be able to store all interactions of the incoming user, and af-

ter will process this information, and will send a resume to

the server. This idea is presented in Figure 5. When an user

finishes interacting with the system, then the passive testing

techniques will be used with the local stored data, and will

send this information to the server. Let us note, that if we

only check security properties in alone nodes then the size

of the server for storing the log is null, and the size of the

users is K (Similar value than Equation 1).

But, not all properties can be checked in users software.

For example, the FIFO property must be checked, the in-

formation recorded in users is not enough. The information

regarding when the user Ci and the user Cj connect to the

system is only provided in the server. Let us assume that

we have p properties, where q, with q ≤ p are properties

that only can be checked in the server. Let K be the aver-

age of actions performed by users (see Equation 1), and let

K ′, with K ′ ≤ K be the actions that have to be recorded

in order to check the q properties. Then, the amount of data

recorded in server are:∫ t2

t1

N(t) dt ·K ′ (4)

Let us note, that the log size in users have not be reduced,

because very often the properties p−q that matches the local

log need to check the complete interaction log.

The second problem that we focus in this update is the

time to check all properties. Let us note that in previous

approach, we have a big log, recorded in the server, and

all interaction were recorded on it. The time associated to

check the properties were presented in Equation 2. By us-

ing this new architecture paradigm, we reduce the computa-

tion. The passive testing tasks are performed now not only

in the server, but also in the n users. The task of performing

in users can be done at the same time, because they are in

different machines. So that, the time associated with this

task is:

q ·
∫ t2

t1

(N(t) dt ·K ′) + (p− q) ·K (5)

The last problem is the time to check the statistical prop-

erties. As we have computed previously in Equation 3 this

task continues being very cost. However, this property only

uses isolate user information. That is, this task can be per-

formed with all guarantee in the user clients. So, the server

only has to be able to record the results generated by each

user clients, at the end of all interactions. The new equation

to compute the m statistical information is:

m ·K (6)

This cost is computed in each client, and it does not per-

form any disadvantage in the server. Next, all information

about the statistics of the user are sent to the server. Let

us remark another feature presented in this update. In Fig-

ure 5 is presented two calls to the server: Statistical
request and Statistical response. This in-

put/output action respectively are used in order to compute

752

two stages. The first stage is focused on classifying users

into system; and the second one is used to create/modify/up-

date the tree structure of the topics.

6 Conclusions and Future work

In this work we have presented our tool CLAT. This tool

has been developed focusing on solving the problems of

testing task and synthesizing statistic information. Both

tasks are traditionally performed in the server. We sug-

gest to increase the power of client software, in order to

reduce the computational time presented in the server. Fur-

thermore, we have proved that by using the CLAT architec-

ture, the amount of interactions of the users that has to be

mixed in logs, in order to perform the testing task, is re-

duced. In addition we have presented a novel module, based

on Bayesian text filterd to identify the ID of the users.

It is worth to point out that a very important part of any

tutoring system is the feedback from the users. While de-

signing our system, we have been specially careful at this

point. For instance, let us consider the answer of our system

after a test is made. If the student provides the right answer

then the system returns a congratulations message. The dif-

ficulties start when managing wrong answers. The easy

solution consists in notifying that the answer was wrong

and provide the right answer. In this scenario, the student

will try to understand what she was doing wrong by pattern

matching. We consider that this is not the best practice. We

have preferred to return a suggestion about what the student

should do (indicating what the error was) instead of giving

the right answer.

We have also paid special attention to avoid cheating. As

it is pointed out for example in [5], some students tend to

learn how to cheat the system instead of learning the cur-

rent contents. We do not claim that our system is totally

fool-proof (actually, we do not think so!) but we have tried

to detect some funny answers. For instance, if we ask for

the value of 3+4 a student may answer 5+2 (non so trivial

examples include the application of higher order functions

in an unexpected way). Actually, this is a right answer, but

it is not what it is expected. If CLAT detects such a right
answer, it will indicate that it is correct but it will ask for

the most correct answer. Finally, even though the manage-

ment of answers has been a specially hard part to develop,

we think that the effort has been worth. Firstly, students

will see their mistakes and try to correct them. Secondly,

they will be soon convinced (we hope) that it is senseless to

spend time trying to fool the system.

Students will be also allowed to ask for hints. The type

of hints, that the system provides, depends on the number

of hints the student has already asked for in the current ex-

ercise. For instance, if the student has provided a wrong an-

swer, a first hint will only provide a message saying which

type of error it was, that is, whether it was a syntactic error,

a type error, or a semantic error. Afterwards, in case the

student needs more hints, the error will be explained more

precisely. Finally, if a student is not able to provide the right

answer, she can press the give up button and the answer will

be presented.

Thus, as future work, we would like on the one hand to

include more intuitive answers in each test, and on the other

hand to implement new situations to detect unexpected ba-

haviours, such as using probabilities and stochastic infor-

mation.

References

[1] Z. Akyol and D.R. Garrison. The Development of a

Community of Inquiry over Time in an Online Course:

Understanding the Progression and Integration of So-

cial, Cognitive and Teaching Presence. Journal of Asyn-
chronous Learning Networks, page 20, 2008.

[2] S. Auer and J. Lehmann. What have Innsbruck and

Leipzig in common? extracting semantics from Wiki

Content. In 4th European conference on The Semantic
Web, ESWC ’07, pages 503–517. Springer, 2007.

[3] S. Overell, B. Sigurbjörnsson, and R. van Zwol. Clas-

sifying tags using open content resources. In 2nd ACM
International Conference on Web Search and Data Min-
ing, WSDM ’09, pages 64–73. ACM, 2009.

[4] R.M. Palloff and K. Pratt. Collaborating online: Learn-
ing together in community. Jossey-Bass San Francisco,

2005.

[5] R. Schank and A. Neaman. Smart machines in edu-

cation. chapter Motivation and failure in educational

simulation design, pages 37–69. MIT Press, 2001.

[6] M.K. Tallent-Runnels, J.A. Thomas, W.Y. Lan,

S. Cooper, T.C. Ahern, S.M. Shaw, and X. Liu. Teach-

ing courses online: A review of the research. Review of
Educational Research, 76(1):93, 2006.

[7] H. Tsoukas and E. Vladimirou. What is organizational

knowledge. Complex knowledge: Studies in organiza-
tional epistemology, pages 117–140, 2005.

753

754

755

756

757

758

759

A Goal-Driven Method for Selecting Issues Used in
Agent Negotiation

Yen-Chieh Huang and Alan Liu
Department of Electrical Engineering

National Chung Cheng University
Chiayi, Taiwan

aliu@ee.ccu.edu.tw

Abstract—Agent negotiation is an important process in
cooperation among intelligent agents, and the selection of suitable
issues will have a direct impact on negotiation results. However,
the way to determine such issues is usually ad hoc. To introduce a
systematical way to extract issues based on requirements analysis,
this study proposes a method to find negotiation issues using
goal-driven use case analysis. The issues are derived based on the
nonfunctional requirements that are part of the user goals. After
deriving possible issues, it is important to rate how well the issues
can be used. For evaluating issues, we use the analytic hierarchy
process to compare and choose a combination of issues. The
contributions of this paper include, first, a method for providing
issues traceable to their sources and clear information about the
relationship between the issues. Second, a selection method is
provided for choosing a suitable set of issues from a number of
proposals.

Keywords--goal-driven analysis; agent negotiation; negotiation
issues; requirements analysis; agent-based software engineering

I. INTRODUCTION

Agent cooperation and negotiation have become important
research topics in multiagent systems [1][2]. Agents perform
negotiation based on a set of issues, and the choice of issues
may influence the result of negotiation. If issues are chosen
randomly, the result of negotiation may not be desirable [3].
With correct issues chosen, the negotiation process may speed
up and also result in better conflict resolution. However, many
methods assume that the issues for negotiation are already
given or there is a mediator who is able to make the negotiation
possible for agents involved [4]. Since the method of finding
issues has not been studied well, this article proposes a method
based on goal-driven requirements analysis to f ind usable
negotiation issues based on user requirements. With a possible
set of issues on hand, the next process is t o find the most
suitable set of issues to be used in negotiation. For this
challenge, our method provides a way to analyze and compare
different sets of issues in order to choose the most suitable set
of issues for a given negotiation problem.

For establishing a procedure of how to derive and evaluate
a set of issues, we use a goal-driven method, called the Goal-

This research is partially supported by National Science Council, Taiwan
under the grant numbers NSC-100-2221-E-194-011 and NSC-97-2221-E-006-
160-MY3.

Driven Use Case (GDUC) approach [5], to analyze the user
requirements for keeping track of the derived goals from the
functional and nonfunctional requirements. GDUC uses goals
to model use cases and their corresponding relationship and to
derive user goals. During the process, rigid and soft goals are
identified, and functional and nonfunctional requirements are
evaluated. Negotiation issues are extracted based on these user
goals. In order to provide a way of comparing issues, we have
studied some multi-criteria decision methods and decided to
use AHP [6] because of its qualitative approach for comparing
pairs of issues.

The rest of the paper is organized as follows. The next
section discusses our proposed method. Section three presents
an illustration along with an experiment. The last section gives
a brief conclusion with discussion.

II. PROPOSED METHOD

As shown in Figure 1, our method consists of three phases.
First, we apply GDUC to analyze the goals and their
relationship from requirements. Second, we analyze the goals
with attributes involved in objects involved to extract possible
issues to be used in negotiation. Lastly, we use AHP to
evaluate all issues for forming a set of proposals containing
issues. Finally, the ranking of the proposals is produced.

Figure 1. Relationship between goals and use cases

760

With the GDUC approach, we can model functional and
nonfunctional requirements by extending the use cases while
analyzing the requirements as shown in Figure 2. A goal is
associated to the original use case (U1), and U1 is extended to
more detail use cases having their respective goals to achieve.
These goals carry richer information that will be discussed in
the next section. A goal can be classified with three facets:
competency, view, and content. Looking into competency, we
can model a goal as a rigid goal or a soft goal. A rigid goal is
the goal that needs to be fulfilled fully while the requirement of
a soft goal is more relaxed. The view of requirements can be
actor-specific or system-specific, and the content can be
functional or nonfunctional requirements. The content of a goal
is derived based on functional or nonfunctional
requirements.There are four steps used repeatedly in this
process: identifying the actors, setting goals, constructing a use
case model, and evaluating the goals.

Figure 2. Relationship between goals and use cases

After defining the categories and the relationship among
goals, we now focus on identifying what issues are associated
to the goals [7]. First, we can organize the existing information
among goals, including goal categories, roles, cooperative
goals, conflicting goals, and counterbalanced goals. Goal
categories contain issues that will affect the result of analysis,
and the actors and use cases provide attributes that describe the
actors and their relationships. With such attributes discovered,
we can analyze their relationship to see if they are cooperative,
conflicting, or counterbalancing to each other.

 Identifying possible issues based on these attributes, we
need to select which issues are best fit for the negotiation
process. Comparing all issues at once causes heavy
computation, so we use a hierarchical approach in evaluating
issues. Issues are compared in pairs and the resulting scores are
recorded in a matrix. The first step is to define the levels, and
then the matrix with comparison results is constructed.
Proposals containing different set of issues are derived, and the
proposals are compared. Finally, the order of favorable
proposals is determined.

III. ILLUSTRATION AND EXPERIMENT

A. Scenario and Assumption

For presenting the detail steps of our approach, a scenario
about a market activity is presented below to illustrate how our
method can be used. There are three players in this purchasing

negotiation: a boss, a customer, and a salesperson. The boss
expects to gain the largest benefit from a transaction and has
the control over the pricing activity. He gives the price
guideline to the salesperson while interacts with the customer
for special needs. The customer has a certain habit for purchase
and is looking for a lower price for merchandise. For ordinary
purchase, he interacts with the salesperson, but for some
special requests, he works out with the boss. The salesperson
needs to meet the assigned sales quota by using his ability to
persuade customers. He has some freedom in lowering price,
but the boss has the final say. In a usual setting like in Figure 3,
the customer first encounters with a salesperson, and the
salesperson promotes some merchandise to the customer.
When there is a special purchase request such as large volume
of purchase, the customer may be directly dealing with the boss.

Figure 3. Relationship between participants in selling items

B. Gaol-Driven Analysis

We start from identifying actors as Boss, Customer, and
Salesperson with their corresponding use cases as shown in
Figure 4. For these actors, we define the corresponding goals,
such as boss to get the highest benefit, customer to purchase
necessary items, and salesperson to sell items. Using three
facets (competency, view, and content) to analyze these goals,
we observe that these goals are rigid since they must be
fulfilled. They are also actor-specific and functional. In
enriching the user model, we extend the original use case with
more use cases to provide more information that is embedded
in the requirements. These extended use cases are able to
associate with goals that may be rigid or soft goals with actor-
or system-specific and functional or nonfunctional
requirements.

Figure 4. Use case model with associated goals

Identifying the relationship between the use cases and
corresponding goals based on our scenario, we can extend it to
“Whole sales” and “Regular sales” from the original use case,
“Selling Merchandise”. The use case “Purchase Necessity” is

761

then extended to “Company Purchase” and “Personal
Purchase”, and the use case “Promote items” is then extended
to “Take Initiative”. Each goal is labeled with R or S (rigid or
soft goal), A or Y (actor-specific or system-specific
requirements), and F or N (functional or nonfunctional
requirements). Lastly, the goal evaluation takes place for
evaluating the relationship between the use cases and goals, the
interaction between goals in the use case level, and the
interaction between goals in the system level.

For analyzing the relationship between the goals and the
use cases in te rms of their degree of relevance, we use four
levels to describe their relationship. A pair of use case and its
corresponding goal is compared to see whether they are highly
relevant (labeled as ++) with each other. Otherwise, they can
be partially relevant (+), partial irrelevant (-), or totally
irrelevant (--) to each other. The result of checking such
relationship based on the example in Figure 4 is recorded in
Table I.

TABLE I. RELATIONSHIP BETWEEN USE CASES AND GOALS

G1 G2 G3 G4 G5 G6 G7 G8
U1 ++ + + + ++ - ++ ++
U2 + ++ - + + ++ -- +
U3 ++ + ++ + ++ - ++ ++
U4 ++ + + ++ ++ - ++ --
U5 ++ + + + ++ + -- +
U6 + + - + + ++ - +
U7 ++ + + ++ ++ -- ++ --
U8 ++ + + + ++ + -- ++

By analyzing the relationship between goals at the system
level, we state that if both goals are cooperative to each other
for all use cases, then they are cooperative to each other at the
system level. If all of them are conflicting to each other at the
use case level, then they are conflicting to each other at the
system level. We use the concept of cooperative, counter-
balanced, and conflict relationship to describe such interactions,
and the result is shown in Table II.

TABLE II. RELATIONSHIP BETWEEN GOALS
(Co: Cooperative, Bal: Counterbalanced, Conf: Conflict)

G1,G2 G1,G3 G1,G4 G1,G5 G1,G6 G1,G7 G1,G8
Co Bal Co Co Bal Bal Bal

G2,G3 G2,G4 G2,G5 G2,G6 G2,G7 G2,G8 G3,G4
Bal Co Co Bal Bal Bal Bal

G3,G5 G3,G6 G3,G7 G3,G8 G4,G5 G4,G6 G4,G7
Bal Bal Bal Bal Co Ba l Bal

G4,G8 G5,G6 G5,G7 G5,G8 G6,G7 G6,G8 G7,G8
Bal Bal Bal Bal Conf Bal Bal

When comparing the interaction between a p air of goals,
we consider a goal consisting of a set of entries corresponding
to use cases and compare each pair of entries. Thus, using
Table I as example, we check two columns to compare the
entries row by row. If all rows are ++ or +, then the pair of such
goals are cooperative. If each rows have one entry with ++ or +
while the other entry has – or --, then they are conflicting to
each other. If the entries are mixed, then they are called
counter-balanced.

C. Acquisition of Possible Negotiation Issues

We construct a table indicating the information of each goal,
which consists of the category of a goal and the associated
actor along with the information about cooperative, conflicting,
and counterbalanced goals. Based on s uch information, we
identify a possible issue that will be most influential to a goal.
The result is shown in Table III, where we see that the goal G1
is a rigid goal containing actor-specific and functional
requirements. G1 belongs to the actor Boss, and is cooperative
to goals G2, G4, and G5. It is counter-balanced to the goals G3,
G6, G7, and G8, but does not conflict to any other goals.
Because of such characteristics, we identify an issue, Price, as
the most representative issue concerning this goal. The rest of
the issues, namely Eloquence (ability of presentation),
Necessity, Quantity, Quality, and Budget, are derived in the
same manner.

TABLE III. GOAL ISSUES AND RELATIONSHIP

 Category Actor Coop Conf Counterbalanced Issue
G1 R,A,F Boss G2,G4,G5 G3,G6,G7,G8 Price
G2 R,A,F Sales G1,G4,G5 G3,G6,G7,G8 Eloquence
G3 R,A,F Customer G1,G2,G4,G5G6,G7,G8 Necessity
G4 S,A,F Boss G1,G2,G5 G3,G6,G7,G8 Quantity
G5 S,A,F Boss G1,G2,G4 G3,G6,G7,G8 Price,

Quality
G6 S,A,N Sales G7 G1,G2,G3,G4G5,G8 Price,

Eloquence
G7 R,A,F Customer G6 G1,G2,G3,G4

G5,G8
Budget

G8 R,A,F Customer G1,G2,G3,G4
G5,G6,G7

Price,
Quality

With six kinds of issues identified, we can examine the
pair-wise relationship between these issues and take the
geometric mean to define weighted comparison as shown in
Figure 5. A hierarchical relationship is shown in Figure 6 to
organize the information, in which Level 2 shows the possible
issues. Based on these issues, we can derive possible proposals
in Level 3. P roposal A con tains the tw o issues with highest
values: Budget and Necessity; Proposal B adds Price to
Proposal A; and Proposal C includes Quality to Proposal B.

Figure 5. Calculation for deriving weighting for issues.

762

Figure 6. Three proposals containing most promising issues.

Using AHP, we can rate the issues according to each
proposal. Tables II and III are used as reference for making the
decision for what points to give to each issue in a proposal. If
the issues belong to the goals that are cooperative, then the
points are higher, and the points are lower if the goals are
conflicting to each other. Table IV shows three proposals with
the points given for different issues. For each issue, we
compare three proposals pair-wise by finding geometric mean
for weighting the issues, and the results are listed in Table V.

TABLE IV. POINTS FOR ISSUES IN DIFFERENT PROPOSALS

Proposal Price Eloquence Necessity Quantity Quality Budget
A 1 1 5 3 1 5
B 5 3 6 5 6 3
C 6 4 6 7 8 3

TABLE V. WEIGHTING FOR ISSUES ACCORDING TO PROPOSALS

Proposal Price Eloquence Necessity Quantity Quality Budget
A 0.083 0.125 0.294 0.200 0.067 0.455
B 0.417 0.375 0.353 0.333 0.400 0.273
C 0.500 0.500 0.353 0.467 0.533 0.273

Considering Table V as a matrix Mij and the normalized
matrix in Figure 5 as Nj, we can evaluate proposals by the sum
of the product of weights. Thus, Pi= Mij Nj where Pi is the
evaluation for Proposals A to C, produces P0=0.376, P1=0.376,
and P2=0.376. From the result, we see that the proposal C is
most promising. However, it contains more issues and requires
more computation than Proposals A or B. If the computation is
a concern, then Proposal B is a good alternative.

IV. DISCUSSION AND CONCLUSION

The effectiveness (E) of a set of issues can be calculated by
E= IUi/ PIi, where the numerator is the sum of weights of
all issues used (a set IU) in a proposal and denominator is the
sum of weights of all possible issues (a set PI) available. When
negotiating a purchase, usually the issue Price is a natural
choice as most influential to affect the sales of an item.
However, compared to those proposals mentioned above, E
becomes small if Price is the only issue in IU. Besides this
intuitive discussion, we have developed a simulation
environment to execute negotiation process to compare the use
of different sets of issues. For experiment, negotiation is run 50
times. The success rate of a salesperson is set as 20% for a
correctly chosen issue; otherwise, a salesperson has only 5%
success rate to land a deal. If no deal is reached, then 1% to 3%

price cut is tried until the price offered is lower than 90% of the
original price. The negotiation based on the single issue Price
resulted in 19 successes and 31 failures while Proposal A had
28 successes, Proposal B 32 su ccesses, and Proposal C 38
successes. A notable performance of Proposal C is that it
enabled a deal with 5 or fewer rounds of negotiation. As seen
in Table VI, the result of the simulation showed that the more
effective the issues are, the higher the number of success
becomes.

TABLE VI. SIMULATION RESULTS

Success

Rounds to reach a deal Failure1 2 3 4 5 6~10

Price 19 6
(31.6%)

8
(42.1%)

1
(5.3%)

1
(5.3%)

1
(5.3%)

2
(10.6%) 31

A 28 9
(32.1%)

5
(17.9%)

8
(28.6%)

2
(7.1%)

3
(10.7%)

1
(3.6%) 22

B 32 8
(25%)

11
(34.4%)

3
(9.4%)

3
(9.4%)

4
(12.5%)

2
(6.25%) 18

C 38 14
(36.8%)

7
(18.4%)

7
(18.4%)

4
(10.5%)

6
(15.8%)

0
(0%) 12

Many agent negotiation strategies depend on th e correct
issues to work on. The selection of issues for negotiation is
important, and there is a need for a process in determining
usable issues. This paper proposes a systematical method based
on goal-driven requirements analysis to produce a set of issues
for agent negotiation. The issues are traceable to user
requirements for better evaluation of effectiveness of issues
used and also the maintenance of issues. The relationship
between issues is studied to u nderstand whether they are in
cooperative or conflicting matter. Another important advantage
of this method is to have information for comparing the
number of issues to be used in a negotiation process. By
integrating the GDUC and AHP methods, our method provide
a way for the user to determine suitable issues according to the
user requirements. The future work is to consider the
dependency among issues, so that a proposal consists of a set of
mutually related issues.

REFERENCES

[1] G. Lai and K. S ycara, “A Generic Framework for Automated Multi-
attribute Negotiation,” Group Decision and Negotiation, vol. 18, no. 2,
pp. 169–187, Mar. 2009.

[2] R. Krovi, A. C. Graesser and W. E. Pracht, “Agent Behaviors in Virtual
Negotiation Environments”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 29, no. 1, pp.15-25,
1999.

[3] M. Hall and G. Holmes, “Benchmarking Issue Selection Techniques for
Discrete Class Data Mining”, IEEE Trans. Knowledge and Data Eng.,
vol. 15, no.6, pp.1437-1447, 2003.

[4] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra and
M.Wooldridge, “Automated negotiation: Prospects, methods and
challenges”, Int Journal of Group Decision and Negotiation, vol. 10,
pp.199–215, 2001.

[5] J. Lee and Nien-Lin Xue. Analysis User Requirements by the Use
Cases A Goal-Driven Approach , IEEE Software, vol. 16, no. 4, pp.
92 101, 1999.

[6] T. L. Saaty, “Highlights and Critical Points in The Theory and
Application of The Analytic Hierarchy Process”, European Journal of
Operational Research, vol.74, no. 3, pp. 426-447, 1994.

[7] J. Lee , N.L. Xue, and K.Y. Kuo, “Structuring requirements
specifications with goals,” Information and Software Technology, vol.
43, pp. 121-135, 2001.

763

764

765

766

767

768

Proactive Two Way Mobile Advertisement Using a Collaborative Client Server Architecture

Weimin Ding and Xiao Su
Department of Computer Engineering

San Jose State University
San Jose, CA 95192, USA

Email: weimin.ding@gmail.com, xiao.su@sjsu.edu

Abstract—more and more advertisements have been
pushed into mobile devices by advertising providers.
Advertisers, not the consumers, decide and control the
content and delivery time of the advertisements. This
one-way push-based architecture doesn’t truly meet
consumers’ demands and can quickly develop resistance
from consumers. In this paper, we propose new client-
server based architecture to provide proactive mobile
advertisements in mobile devices. With the proposed
solution, application developers can seamlessly integrate
advertisements into their applications, based on users’
behavior and preferences. Users will not be interrupted
by the pushed advertisement and can stay more focused
with their main tasks. We will present our detailed
design, implementation, and evaluation of this proactive
solution.

Keywords – mobile, advertisement, REST, content-driven,
proactive advertisement

I. INTRODUCTION
Mobile marketing is booming. More Smartphone’s

shipped than PC’s since 2010. With the increasing
marketing of m obile devices, mobile advertising has
become crucial for the current advertisement industry.
Compared to the conventional TV and PC, the number
of mobile handheld devices is tw ice as larg e. I n
addition, mobile devices have more personality
characteristics because they always belong to specific
owners. This w ill give the advertisement providers
more room to trim their advertisements to fit different
customers. According to Smaato White Paper [1], the
mobile advertising market in US continues to expand
every year; and it is predicted to reach ov er $5 billion
in 2015.

Currently, advertising providers push content to
mobile devices, regardless of users’ interest and
preferences. There are several problems with current
push technology.

First, consumers are j ust passive receivers and
pushed advertisements will not truly meet consumers’
real demands. Consumers will quickly develop
resistance to those pushed advertisements and reduce
the advertisements hit rate. Second, the cont ent of the
advertisements and actual applications are separated
and have no rel ationship. The pop-up advertisements
are kind of the interruptions to users’ normal
applications. Most users will have antipathies to pop-
up advertisements, so these advertisements actually
bring opposite effect to consumers.

In this paper, w e propose a client-server based
solution of prov iding proactive advertisements in
mobile devices. The client side includes content
detection and col lection of user behav iors to define
and filter the accurate adv ertisements for specific
users. The server side includes REST interface to
communicate with clients and to provide dynamic
contents for clients.

This solution can hel p application developers
integrate advertisements into their applications
seamlessly. Users will not feel the inter ference of the
pushed advertisements, and the adv ertising content
can be part of the appl ication. With the rich content
provided by the proactiv e advertisement server,
developers can make more and m ore attractive
applications.

In the rest of the paper, w e will elaborate on the
problems with push-based advertising and describe in
detail the desig n, implementation, and ev aluation of
our proposed proactive solution.

II. PROBLEM OF PUSH-BASED ADVERTISING
Mobile advertising is a new area for the advertising

industry and even the advertising giant such as Google
is still exploring the correct model in this area. With
the rapid growth of the market size, more and m ore
vendors will involve in this area.

769

However, in current mobile advertisement solution,
the need of customer is ignored and irrelevant content
is pushed to customers. Let us see an example:

Figure 1. current mobile advertisement

First, we see that the banner advertisement has
taken up a considerabl e amount of user’s display
screen: generally about 1/8 screen size is displaying
the advertisement. In other words, if a user pay s 500
dollars for the device, he/she pays about 60 dollars for
the advertisement placeholder.

Second, we also observe that the advertisement is
irrelevant from the cont ent. Customers are watching
stock quo. T his advertisement offering cheap
telephone cards may not motivate the mass untargeted
customers to click the advertisement for more details.
It is really a waste of resources for both advertisement
publishers and consum ers. Those advertisements are
delivered to the w rong target. In this case, if it could
display some special deals of st ocker traders, the
results would be better.

This current solution is one -way push. Consumers
are always passive receivers. There is no way for them
to publish their content into the network.

To resolve the above constraint of current m obile

advertisements, our w ork adopts a new approach.
Using a client/server architecture, consumers are able
to publish mobile advertisements using its easy-to-use
APIs and ar e able to enj oy better user experience by
using mobile devices without intruding advertisements

and by receiving only relevant and interesting
advertisements based on thei r past interests and
behaviors. Our design objectives include:

 No banner advertisement -- users w ill not be
irritated by wasted screen

 Smart and Rel evant Advertisements --
advertisements should be rel evant of the
content

 Interactive advertisement – consumers can be
developers and publishers too.

III. SYSTEM ARACHITECTURE

A. system architecture

Our proposed sy stem comprises of a client -server
architecture. The client application resides in m obile
devices and communicates with server using REST
service [2].

REST

Server Cluster

OS

APP

Client

Transport Layer

REST

Event
Listenner

Socket
Handler

Data handler

UI

Service provider

Figure 2. Proactive mobile advertisement

The client application pops up a m essage box to
display incoming SMS and adv ertisement. The
application doesn’t modify or del ete user’s SMS
message while parsing this message. Meanwhile,
client application sends the content and receives
advertisement response from server.

The client uses message queue to st ore both text
SMS and advertisement messages, and uses a pop-up
window to display the content from message. Message
queue is a FI FO queue. After receiving the response
from server, client displays the advertisements in the
pop-up windows for specified timeout period, which is
defined in the server response. User can finish reading
by pressing cancel key in the device.

Upon receiving the request, the server analyzes the
incoming content and finds helpful information. Based
on this infor mation, it queries the internal database
with the content analy sis results and location

770

information. If more than one advertisements match in
query, server will provide client the advertisement
which has the highest PPC (Pay per Click).

B. Protocol
Server provides the restful A PI for inv oking the

request. This API can be enabled to support multiple
client platforms.

CreateAd: to create an advertisement in server, the
client sends a standard HTTP POST request to server
AD URL. The following parameters have been added
to the request message:

Post http://URL:Port/ads/

GetAd: to get a adv ertisement from server, client
will send a standard H TTP GET request to AD URL
followed with an advertisement ID.

Get http://URL:Port/ads/id

DeleteAd: to delete on adv ertisement in serv er,

client will send a standard H TTP Delete request to
specific AD URL.

Delete http://URL:Port/ads/id

UpdateAd: to update an adv ertisement in server,

client will send a standard H TTP PUT request to
specific AD URL . The following parameters have
been added to the request message:

Put http://URL:Port/ads/id

GetBestAd: to get the best m atch advertisement
form server, client will send a standard H TTP POST
request to server AD URL. The following parameters
have been added to the request message:

Post http://URL:Port/ads/
Attribute name Type Status
context String Mandatory

location String Optional

GetTopAd: to get TOP 10 advertisement in server,
client will send a standard HTTP POST request to
server Vendor URL. The following parameters have
been added to the request message:

Post http://URL:Port/vendors/

GetMyAd: to get the own published advertisements

from server, client will send a standard H TTP POST
request to server Vendor URL with vendor name.

Post http://URL:Port/vendors/ vendorname

C. System modules
Our design has leveraged POS (Part of Speech [3])

tagger technology to realiz e content-driven
advertisement pushing.

The central part of our design is implemented in
MAD (Mobile A dvertisement) server, which is
responsible for providing the mad service to clients in
different platform.

Gateway

Parsing

AD Found

Multiple Ad.

Yes

No

Analyser

Yes Price bid

Packaging

TaggerAD Engine

No

Figure 3. server work flow

Let us expl ain different system components

(illustrated in Figure 3) in server work flow.
Gateway/Packaging takes care of w eb service

handling and parse s the request data to next module
and it also sends out the results to client application.

POS Tagger reads the incoming context and gives
the tag for each word. The tagged content will be sent
to Analyzer to find the real meaning.

Analyzer finds useful keywords according to the
tagged content. It outputs this content to Ad engine to
help it to find matched advertisements.

Ad Engine queries the database according to the
request data from Analyzer and prepare s the
advertisement content from the queue results. Ad
Engine are in charg e of creating, updating, reading,
and deleting advertisement from database.

Attribute name Type Status
Category String optional
Vendor String mandatory
Content String mandatory
location String mandatory
Ppc Integer Mandatory

Attribute name Type Status
Category String optional
Vendor String mandatory
Content String mandatory
location String mandatory
Ppc Integer Mandatory

771

Database stores the advertisement content.

Figure 4. Show s the w ork flow in the client

application.
Client uses message queue to st ore both text SMS

and advertisement messages, and uses pop-up
windows to display the cont ent from the FIFO-based
message queue.

Connector

UI

Event
Receiver

SMS
Incoming

MSG QUEUE

Ad.
Service

AD ON/Off

Figure 4. client work flow

UI will present the content of incom ing SMS and
advertisement to end user s. Users can configure the
display timeout and enable/ disable the advertisement
filter through the application menu. This module has
one message queue to st ore incoming SMS and
advertisement content. UI displays the top listed
advertisement in the system and provides the interface
for end users to input and post their advertisements.

Event Receiver will listen the SMS and system
event and trigger the ad service wake up.

Connector handles the incoming/outgoing traffic
to server. It packs and unpacks data and queues
messages.

AD service prepares the request data to serv er,
which filters the k eywords in the incoming SMS and
collects the location information.

IV. SYSTEM IMPLEMENTATION
We have implemented our proposed solution in three tiers:
front-tier, middle-tier, and data tier.

A. Front-Tier Implementation

The client uses Android as the target platform, and
it inherits A ctivity, Service and Broadcast receivers
from Android SDK. Next we present our front-tier

implementation

Activty

Service

Broadcast
Receiver

Main

MyList

MAD

Toplist

AdsBoot
Receiver

SMS
receiver

Conector

About

RestAgent

Figure 5. Front-Tier Overview

a) Main

The main activity will be launched w hen the user
starts the application.

b) Top list
It displays top 10 adv ertisements counted by the

display times in history. Users can display the related
mobile advertisements by clicking the vendor’s name.
The specific adv ertisement will be displayed if the
user clicks it from the list.

c) My list
 It displays the adv ertisement published by the

owner. For example, in this screen shown in Figure 6,
the user publishes four m obile advertisements by its
device (14084395867). Users can dis play their own
advertisements by clicking them.

Figure 6. User Posted Advertisement

772

Users can al so publish adv ertisements from the
devices directly. The vendor’s name will be connected
to its phone number, and the user can change it before
submission. Users have the option to choose
publishing free advertisements or paid advertisements.

d) Mad
It displays retrieved mobile advertisements and

incoming SMS. User s can switch between SMS and
advertisements. MAD will be triggered while

- Users are clicking the advertisement in Top list or
My list

- SMS messages are arrived
- Advertisements are retrieved

Besides the activ ity we demonstrated, the client

also implements a service called Ads in Device. This
service can be st arted manually by users or
automatically when the application starts or the device
reboots. After Ad received mobile advertisements
from server, it w ill relay this advertisement to MAD
activity. If more than 10 seconds have passed, it relays
the advertisement immediately; otherwise, it w aits
until the user finishes reading SMS in 15 seconds.
Client uses Connector and RestAgent to communicate
with server. The Restful action is perform ed by that
class.

B. Middle-Tier Implementation
To get the hidden meaning of the context, Mid-Tier

application implements POS tagger technology. It tags
the context and retrieves meaning words.

Based on the frequency and posi tion of the
meaningful words, server start queries to Mong o
database. The results might include more than one
responses. In that case, the top one w ill be decide by
pay per click value defined by advertisement provider.
Server uses MongoMapper as Object-relational
mapping to communicate with data-tier.

C. Data-Tier Implementation

Data-Tier is implemented by Mongo database,

which is a document based, schema-free, scalable and
high performance database.

A document-based data model can hold rich dat a
structure from simple JSON to complex array, so t he
administrator does not need to hold the complex
content within multiple relation tables.

The advantage of this schema makes it easy for the
administrator to dum p multiple formats of the

advertisements into the sy stem. Also it can keep the
data backward compatible.

As the database will be expanded when the system
gains more and m ore users and adv ertisements,
predictable scalability is important to the system.

Performance is al so a concern w hen choosing the
database. The high performance brought by Mongo
DB meets the performance requirements of the system.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
To measure the perform ance of the system, we

designed a test to check system capability of handling
different contents. The test setup includes a computer
running MAD server and Mongo DB and an Android
device running MAD client. The computer is a 2.53
GHz dual core m achine with 3GB memory. The
Android device is equipped with a 1GHz CPU and 512
MB memory.

B. Performance Results
In the experiments, we compared the elapsed tim es
while MAD system handles different sizes of SMS. A
SMS will be sent to the device, which has installed the
MAD client. The client will send request to the server.
On server side, it analy zes the incoming request and
responds with the correct adv ertisement based on the
contents. The elapsed times are monitored and
captured to measure the efficiency of the sy stem. DB
elapsed time presents the duration that it tak es for
server to render the adv ertisement after querying
database. E2E tim e represents the durat ion between
device sending request and recei ving response. Also
we record the returned vendor for such SMS test
campaign to v erify the quality of returned
advertisement

TABLE I. TEST MATRIX

Content Words Vendor E2E Time
(ms)

Lunch 5 One local
restaurant

1273

Let us watch movie
tonight

25 AMC 1570

Would you please
bring the book to
me? I am in library.

53 Amazon 1794

The recipe of
pumpkin pie: 2
spoon of salt, 3
pound of pumpkin,
1 pint of sugar.
blend them and

104 Safeway 1912

773

bake in 450F
Debates concerning
the nature, essence
and the mode of
existence of space
date back to
antiquity; namely,
to treatises like
the Timaeus of Plat
o, or Socrates in his

140 Santa
Clara
Library

2178

We evaluated their performances about five

different SMS si zes: 5, 25, 53,104 and 140 with
different contents. As you can see the table, when the
SMS size is increasing, the tim e taken to get
advertisements is becom ing longer. The behavior is
expected as more time will be consum ed by the
transmission and content analyzing.

Figure 7. Database Elapse Time/Total Elapes Time

VI. FUTURE ENHANCEMENTS
In the future, we plan to include location

information in the analy sis and preparat ion of
advertisements. When a consum er goes to a targ et
territory, relevant advertisements should be delivered
to the consumer, considering his location. Com bining
location information, users will receive location-aware
and content-aware advertisements tailored to their
interests.

I. CONCLUSION
Our proactive mobile advertisement system

provides convenient restful A PI for developers to
embed mobile advertisements into the application.
This system conquers the problem s that happened in
existing mobile advertisements solutions. It uses
convenient RESTful API and avoids the banner
display in mobile devices. Our work presents the
initial step to chang e the current advertising model.

We believe that in the future, g ood content-related
advertisement providers should help advertisement
publishers deliver the adv ertisements to targ et
customers precisely and shoul d provide the friendly
user interface to m otivate customers to involve into
the advertisement system and to give them the
opportunity to post and display advertisements.

GLOSSARY

[1] API: Application Interface which is a interface provide to develop to

access the service provided by provider
[2] REST:Representational State Transfer is style of web service. Service

consumer could access the service and resource by stand HTTP call
[3] POS Tagger: Part-of-speech tagging is a pr ocess to markup the

word regards to the context
[4] PPC: Pay per click which define the bid pr ice by vendor for each

clicking in their advertisement

REFERENCES

[1] White Paper on The USmA: The United States of Mobile Advertising
retrieved by July 06,2011
http://www.smaato.com/media/Smaato_WhitePaper_USma_1102201
0.pdf

[2] RESTful Service retrieved by July 10,2011
http://en.wikipedia.org/wiki/Representational_state_transfer#RESTfu
l_web_services

[3] Mobile Marketing Association Mobile Advertising
Guidelines(Version 5.0) retrieved July 06, 2011,
 from http://www.mmaglobal.com/mobileadvertising.pdf

[4] Silicon Angle 2009 Mobile Advertising revenue market share leader
Retrieved July 07, 2011
from http://siliconangle.com/blog/2009/12/11/2009-mobile-
advertising-revenue-market-share-leaders/

[5] Google Inc. Admob API Document
[6] Google Inc. Google Adsense API

A-1

The COIN Platform: Supporting the Marine
Shipping Industrial Sector

Achilleas P. Achilleos, Georgia M. Kapitsaki, George Sielis, and George A. Papadopoulos

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
E-mail: {achilleas, gkapi, sielis, george}@cs.ucy.ac.cy

Abstract – The COIN (Enterprise COllaboration and

INteroperability) platform allows exposure, integration and
application of interoperability and collaborative services in
various business domains. As part of the COIN FP7 project,
the objective was to exploit the COIN platform and apply its
services in the marine shipping sector. In this demo, we
demonstrate how COIN services are used to expedite and
simplify business processes in the marine shipping domain.
The demo showcases the execution of the two marine
business processes, which are implemented using the COIN
service platform. On the basis of the case studies, the
necessary results are acquired based on the feedback
received from marine experts. This reveals the positive
impact of the COIN platform, in terms of reducing the time
required to execute marine processes.

Keywords - Web-based Enterprise Systems; Web-based
Business Processes; Collaboration and Interoperability

I. INTRODUCTION

The business use cases studied and developed in the
form of COIN pilots in volve the marine shipping domain
in Cyprus. The first use case refers to the “Negotiations
between UPT and charterers f or the voyage’s pre-fixture
queries”, which produces the “Recap” document as an
outcome of negotiations and logical amendments for the
vessel's voyage. The second scenario refers the creation of
the Proforma Disbursement Account (PDA). The PDA
details all estimated port costs that the port agent will have
to pay in order for the vessel to have a smooth voyage.

The platform forms the backbone, integrating Web
Services for Enterprise Collaboration (EC) and Enterprise
Interoperability (EI) in various business domains [1]. It
fulfils the COIN vision of providing a perv asive service
platform to h ost Baseline and Innovative Web Services
for EI and EC, which can be used by European enterprises
for running their business in a secure, reliable and
efficient way. The COIN platform is develo ped ontop of
Liferay, which is an enterprise, web-based portal f or
building technology-oriented, business applications that
deliver immediate results and long-term value. Using the
COIN platform we have implemented the marine pilots
using the ProcessMaker application (i.e. business process
management and workflow software) offered by the
platform. Through this ap plication we can invoke the
necessary COIN services that allow executing the required
business tasks. In this demo we will allow conference
participants to execute the pilots via a Web-Based portal.

Table 1 shows the COIN EC/EI services, which follow
the notion of “Software as a Service” (SaaS) [2], used for
the pilots implementation. The following services [3] were
deemed essential based on the initial requirement analysis
performed with our industrial partners: (1) Collaboration
Visualization Tool (CVT) – Formulation and visualization
of human collaboration networks, including users and
their discovered relations (e.g. joint activities), (2) Trusted
Information Sharing (TIS) – Flexible sharing of business
related information (e.g. documents) on the basis of CVT
relations, (3) Interoperability Space Service (ISS) – A
negotiation tool f or exchanging and n egotiating business
documents in standardized UBL format and (4) Baseline
Communication Services – A suite of services that include
Skype call, instant messaging and notification.

TABLE 1: DEVELOPED WORKFLOWS, EC/EI SERVICES AND SUCCESSFUL
EXECUTIONS

 EC/EI Services Used Workflow
Executions

Successful
Executions

BUC1 CVT, TIS, ISS,
Communication

14 11

BUC2 CVT, ISS,
Communication

11 10

The execution of the pilots was carried out initially by
the developers at the University of Cyprus (UCY). Actors
from our industrial partner Donnelly Tanker Management
(DTM) were also involved. At this stage DTM employees
were acquainted with the functionalities offered by the
platform and the EC/EI services used in the developed
workflows. Developers trained DTM actors h ow to u se
the service platform to execute the workflows. Next, they
were involved in solo execu tion and evaluation of the
workflows. Finally, a meeting was setup at DT M offices
where DTM employees engaged in the pilots execution
and provided the needed feedback. Developers undertook
the roles of the remaining parties.

The initial training of DTM employees by developers
was sufficient for successful executions of the use cases.
Failures were recorded in the first executions, since an
initial learning curve was essential to avoid errors and
omissions. The workflows design foreseen in improving
two factors: reduce execution time and achieve efficient
voyages management by a single operator. Currently, the
communication methods used are e- mails and telep hone.

A-2

This makes the process tim e consuming. An operator is
also responsible to operate more than one voyage per day.
Therefore, an operator needs to be aware of several recap
documents, forward each recap to the right captain and at
the same time be ab le to manage each trip by following
the recap instructions that corresponds to a v oyage.
Hence, the use of structured workflows will aid the
operator in managing several v oyages and execu ting
business processes more efficiently.

II. THE COIN EXPERIENCE

The test-bed environment was prepared and execu ted
at DTM offices, in Limassol, Cyprus. Figure 1 presents a
small part of the second modeled workflow; due to space
limitations. It includes the necessary tasks executed for the
formulation and th e distribution of the PDA document.
The preliminary data is recorded into the initial PDA, as a
direct result of the negotiations between DTM and the
selected port agent. T he PDA is then distributed to the
captain and th e DTM accounts department. Then, the
accounts department is responsible to handle the payment
of the appointed agent's fee. The captain and the agent are
then in contact and follow the PDA terms to manage and
execute the voyage. The vessel captain is also responsible
to report daily to DT M. This will lead to th e successful
execution of the voyage and delivery of goods from the
loading to the destination port without any predicaments.

Figure 1: Part of the workflow model of the business use case for the

production of the Recap document

A single task is presented, to showcase the changes
performed in the marine processes. In this task the agent
should create the PDA document that contains the voyage
details and terms (e.g. agent fee) under negotiation (Figure
2). Currently, numerous documents exist in accordance to
the agent’s company. These hard copies include the same
data but in different formats. Hence, the agent completes
the form and sends it by fax to th e DTM operator. In
parallel, they exchange emails or phone calls to inform on
the changes and negotiate the terms of agreement. With

the structured workflow the data is formalized and defined
in an electronic PDA form. The agent completes the form
and submits it. Upon submission a transformation script is
executed. Thus, the UBL format (i.e. XML-based) of the
PDA is autom atically generated and u ploaded into the
COIN ISS to kick-off the negotiations.

Figure 2. Using ISS for contacting the negotiations

III. LESSONS LEARNED & BEST PRACTICES

The COIN platform has provided benefits in terms of
decreasing the development time to implement the pilots
and in terms of reducing the time required for executing
the business use cases. This efficiency improvement was a
result recorded by the DTM actors during the execution of
real-life business workflows as shown in Table 1. An
important factor is that pilots development was impeded
less by developers and was driven mostly by business
requirements. The initial learning curve required 3-4
executions assisted by developers, prior to th e business
partners being able to eng age on their own in the
successful execution of the workflows.

The pilots’ execution via a Web-Based portal aided
the partners to familiarize and navigate easily the assigned
tasks. The workflow management tool allowed having a
clear view of pending tasks. This was very critical for our
partners since it provided structure, control and facilitated
coordination of the use cases; specifically for the operator.
It also allowed DTM managers to view the progress of the
workflow to monitor the tasks and be aware of the voyage
status. This was missing since ad-hoc procedures did not
provide any structure. Thus, it was very difficult to have
easy control, coordination, supervision and monitoring of
the processes. In overall, the efficiency of the processes as
stated by our business partners was improved through the
offered collaboration and interoperability services.

REFERENCES

[1] E. D. Grosso, S. Gusmeroli, A. Olmo, A. Garcia, D. Busen, G.
Trebec, “Are Enterprise Collaboration and Enterprise Interoperability
enabling Innovation scenarios in industry? The COIN IP perspective in
Automotive”, eChallenges 2010.
[2] P. Buxmann, T. Hess and S. Lehmann, “Software as a Service”,
WIRTSCHAFTSINFORMATIK, Volume 50, Number 6, 500-503, DOI:
10.1007/s11576-008-0095-0.
[3] Florian Skopik, Daniel Schall, Schahram Dustdar, “Trust-based
Adaptation in Complex Service-oriented Systems”, IEEE Conference on
Engineering of Complex Computer Systems (ICECCS), 2010.

A-3

A-4

A-5

Checking Contracts for AOP using XPIDRs

Henrique Rebêlo, Ricardo Lima, Alexandre Mota, César Oliveria, and Márcio Ribeiro

Federal University of Pernambuco
Brazil

{hemr,rmfl,acm,calo,mmr3}@cin.ufpe.br

ABSTRACT
Over the last years, several proposals have advocated that a notion of interface between the base code and aspect code is
necessary for reasoning about aspect-oriented programming (AOP), and for overcoming pointcut fragility. However, existing
work that are AOP based, have not shown how one can specify these interfaces to facilitate m odular reasoning and specify
control effects, such when advice does not proceed.

In this dem onstration, we show how our crosscut program ming interfaces with design rules, or XPIDRs allow m odular
understanding and enforcement of control flow effects. The key idea behind our design methodology is to introduce a design
phase for each crosscutting concern. Hence, a designer establishes a crosscutting de sign rule interface to decouple the base
and the aspect design. Such a crosscutting design rule is based on the well-known crosscut programming interfaces (XPIs).
The main difference is that we present XPIs with the notion of behavioral rules. W e also show that since our approach with
XPIDRs do not require any new AOP construct; they can be adopted in a straightforward manner by the AOP community.

Demonstration Overview
This demonstration showcases the features and benefits of the XPIDRs through the figure editor system , which is the
classical example used in several AOP papers. The current infrastructure for developing XPIDRs is also demonstrated. It
requires the AJDT developm ent toolkit used by the Eclipse ID E. Hence, features like weavi ng and syntax highlighting are
straightforward. In addition, there is an XPIDR library required to specify the design rul es of the base and aspect code. This
library includes all the JML annotations along with specific ones used to specify the control flow effects of the program.

Presenter Biography
Henrique Rebêlo is one of the authors of the XPIDRs. He has extensive experience in separation of concerns and design by
contract techniques. He co-develope d the aspect-oriented JML com piler known as ajm lc. This com piler uses AOP for
enforcing JML contracts at runtime. He was a researcher in tern in 2010 at Microsoft Research working on program analysis
and program verification. He has given talks on design by contract and AOP at prestigious venues like SEKE’11, FTFJP’11,
SAVCBS’09, ICST’08, and SAC’08.

Acknowledgments
This work has been partially supported by FACEPE under grant No. IBPG-1664-1.03/08 for Henrique Rebêlo. Ricardo Lima
is also supported by CNPq under grant No. 314539/2009-3.

A-6

A
Sudipta Acharya, 51

Frank José Affonso, 668
Rui L. Aguiar, 387

Moataz A. Ahmed, 737
Alaeddin M.H Alawawdeh, 747

Adriano Albuquerque, 574
Antonio Juarez Alencar, 319

Gary Allen, 418
Norah Alrayes, 706

Tatiane O. M. Alves, 491
Jiufang An, 340

César Andrés, 464, 747
Reghu Anguswamy, 194

Nicolas Anquetil, 118
Toshiaki Aoki, 672

Eduardo Aranha, 557
Wandresson Araújo, 545

Wagner Arbex, 491
Hazeline U. Asuncion, 412

Jorge L. N. Audy, 551
Werney Ayala, 273

A. Azadmanesh, 305

B
Rosa M. Badia, 88

Ebrahim Bagheri, 663
Hamid Bagheri, 688

Yunxia Bao, 340
Franck Barbier, 517
Moncef Bari, 406

Kamel Barkaoui, 375
Fabiane Barreto Vavassori Benitti, 143

Riad Belkhatir, 324
Mohamed BEN AHMED, 505

Swapan Bhattacharya, 315
Muhammad U. Bhatti, 118

J. M. Bieman, 763
Sandra Rodrigues Sarro Boarati, 594

Bruno Bonifácio, 588
Hanifa Boucheneb, 375

José Luís Braga, 511
Regina M. M. Braga, 491
Jacques D. Brancher, 225

Kellyton dos Santos Brito, 311
Ricardo Britto, 273

Lei Bu, 369

Frederico Moreira Bublitz, 426

C
Lizhi Cai, 279

Zining Cao, 525
Miriam A. M. Capretz, 432

Fernanda Campos, 491
Jackson Casimiro, 712

Jaelson Castro, 444, 448, 531, 651
Ana Cavalli, 464

Christine W. Chan, 718
Debasis Chanda, 315

Shi-Kuo Chang, 1, 180
D.Y. Chao, 359

Laura Maria Chaves, 80
Daoxu Chen, 217
Jiaxi Chen, 211

Qiaoqiao Chen, 231, 235, 239
Xiangping Chen, 211
Xiaohong Chen, 61

Zhenyu Chen, 139, 267, 470
Zhong Chen, 617
Xiang Chen, 217

Francesco Colace, 180
Xabriel J. Collazo-Mojica, 88

Daniel B. F. Conrado, 495
Tayana Conte, 33, 582, 588, 657

Jonathan Cook, 154
Hugo Cordeiro, 712

Alexandre Luis Correa, 319
Ronaldo C. M. Correia, 168

Leandro T. Costa, 112
Sérgio Roberto Costa Vieira, 33

Anne-Lise Courbis, 694
Jonathas Cruz, 273

Zhanqi Cui, 369
Rafael Cunha, 657
Sean Curley, 400

Diego M. Curtino, 599
Ricardo M. Czekster, 112

D
Álvaro F. d’Arce, 168

Daniel Alencar da Costa, 557
Lucas Francisco da Matta Vegi, 511

Alberto Rodrigues da Silva, 66
Glauber Luis da Silva Costa, 511

Author’s Index

A-7

Maicon B. da Silveira, 112
Aldo Dagnino, 458

Filipe Bianchi Damiani, 605
José Renato Villela Dantas, 80

Eduardo Santana de Almeida, 628, 641, 657
Hyggo Oliveira de Almeida, 426

Vanilson André de Arruda Burégio, 311
Francisco Tiago Machado de Avelar, 438

Rodolfo M. de Barros, 225
Valter V. de Camargo, 495
Cedric L. de Carvalho, 256
Agustín De la Rosa H., 599

Silvio Romero de Lemos Meira, 311, 628, 641
Flávio M. de Oliveira, 112

Max Gontijo de Oliveira, 256
Massimo De Santo, 180

Abraham L. R. de Sousa, 570
Adler Diniz de Souza, 753

Gaëtan Deltombe, 517
Yong Deng, 617

Diego Dermeval, 444, 448, 651
Prem Devanbu, xxv
Oscar Dieste, 328
Junhua Ding, 363
Weimin Ding, 768
Zuohua Ding, 135

Rogério do Nascimento, 33
Anderson R. P. Domingues, 647

Derek Doran, 400
Uéverton dos Santos Souza, 635

Weichang Du, 663
Xingzhong Du, 139

Leonardo Simas Duarte, 158
Stéphane Ducasse, 118

Animesh Dutta, 51
Haimonti Dutta, 100
Geycy Dyany, 174

E
Armin Eberlein, 261

Magdalini Eirinaki, 13
L. Eisen, 763

Jorge Ejarque, 88
Shimaa M. El-Sherif, 261

Danilo M. Eler, 168
Matthew Engskow, 39

Sergio España, 531

F
Behrouz Far, 261

Behrouz H. Far, 70
Stefan Farfeleder, 19

Pedro Porfírio Muniz Farias, 80
Paulo H. L. Fernandes, 551

Priscila Fernandes, 588
David de Almeida Ferreira, 66

Anthony Finkelstein, 448
Daniel F. Fitch, 333

Ioannis E. Foukarakis, 200
William B. Frakes, 194

Marília Aranha Freire, 557
Yoshiaki Fukazawa, 480

G
Irbis Gallegos, 678

Cui Gang, 131
Kehan Gao, 74
Xin Gao, 541

Rogério E. Garcia, 168
Vinicius Cardoso Garcia, 311

Raúl García-Castro, 611
Ramón Garcia-Martínez, 25, 328

J. Garcia-Rejon, 763
Wander Gaspar, 491

Ann Gates, 678
Tamer Fares Gayed, 406

Qiang Ge, 422
S. Ghosh, 763

Itana M. S. Gimenes, 622, 647
Rafael A. Glanzner, 551

Swapna S. Gokhale, 162, 400, xxvii
Hassan Gomaa, 394
Edson S. Gomi, 563

Éric Grégoire, 243, xxvii
Katarina Grolinger, 432
Andreas Grünwald, 730

Qing Gu, 217
Yulong Gu, 279

Gabriela Guedes, 444, 651
Simon Suigen Guo, 718

H
Hao Han, 124
Dan Hao, 283

Xudong He, 352

A-8

Samedi Heng, 299
E. Hernandez-Garcia, 763

Estevão R. Hess, 551
Flávio E. A. Horita, 225
Alejandro Hossian, 25

Wenhui Hu, 541
Yen-Chieh Huang, 759

Zhiqiu Huang, 422
Marianne Huchard, 118

Chengfeng Hui, 139
Reisha Humaira, 480

Mamoona Humayun, 131

I
Saqib Iqbal, 418

J
Kushal Jangid, 13

Shunhui Ji, 231, 235, 239
Nahla JLAIEL, 505

Seungwook Jung, 684

K
Taeghyun Kang, 394, 684
Georgia M. Kapitsaki, 200

Takuya Katayama, 672
Taghi M. Khoshgoftaar, 74, 94, xxvii

Sunghoon Kim, 684
Manuel Kolp, 299
Andreas Krall, 19
Josiane Kroll, 551
Uirá Kulesza, 557

L
Thomas Lambolais, 694
Olivier Le Goaer, 517

Sarah B. Lee, 700
Yu Lei, 486

Thiago Leite, 574
Bixin Li, 7, 231, 235, 239, 452

Demin Li, 381
Jiakai Li, 231, 235, 239

Kuwen Li, 106
Sihan Li, 267

Xuandong Li, 369
Feng Li, 279

Yao-Nan Lien, 359
Ricardo Lima, 148

Yachai Limpiyakorn, 724
Jugurta Lisboa-Filho, 511

Alan Liu, 759
Gaiyun Liu, 359

Hui Liu, 55
Jia Liu, 139
Jing Liu, 61

Shih-Hsi Liu, 537
Su Liu, 352
Xi Liu, 369
Yi Liu, 55

Wei Liu, 279
Xiaoqiang Liu, 279

Zhenyu Liu, 279
Luis Llana, 747

Luanna Lopes Lobato, 641
Hakim Lounis, 406

S. Lozano-Fuentes, 763
Faming Lu, 340

Wo-Shun Luk, 706
Hong-Viet Luong, 694

M
Marianella Aveledo M., 599

Jiaying Ma, 135
Weiyun Ma, 139
Wentao Ma, 289

Zhiyi Ma, 55
Mazen EL Maarabani, 464

Ivan do Carmo Machado, 641
Marco Antonio Machado, 491
Marcelo de Almeida Maia, 174
Dwijesh Dutta Majumder, 315
José Carlos Maldonado, 657
José C. Maldonado, 622, 647

Bhavya Malhotra, 394
Narendar Mandala, 45

Guilherme A. Marchetti, 563
José R. Marti, 432

Rivalino Matias Jr., 174
Robert McCartney, 162
Danilo Medeiros, 545

Rafael Pinto Medeiros, 635
Silvana M. Melo, 476
Hernán Merlino, 328
Marjan Mernik, 537

Yi Miao, 267
Jing-Yeu Miaw, 100

A-9

Seyedehmehrnaz Mireslami, 70
Takao MIURA, 741

Peter Molin, 205
Jefferson Seide Molléri, 143

Thomas Moser, 19, 730
Mohammad Moshirpour, 70

Alexandre Mota, 148
Bruno de Azevedo Muniz, 80
Patrícia Fontinele Muniz, 311

Leonardo Gresta Paulino Murta, 635

N
Elisa Yumi Nakagawa, 158

Amri Napolitano, 74, 94
Satoshi NARATA, 741

Charoensak Narkngam, 724
Leandro Marques Nascimento, 311

Crescencio Rodrigues Lima Neto, 628
Júlio Cesar Campos Neto, 80

Paulo Anselmo Mota Silveira Neto, 628, 641
Pedro Santos Neto, 273, 545

Mahdi Noorian, 663
Daltro J Nunes, 570
Amjad Nusayr, 154

O
Omar Ochoa, 39

Akira Ohashi, 480
Alcione de Paiva Oliveira, 511

César Oliveira, 148
Karolyne Oliveira, 531

Edson A. Oliveira Junior, 622, 647
Lenin Ernesto Abadie Otero, 311

Mourad Oussalah, 324
Keizo Oyama, 124

P
Rebecca J. Passonneau, 100

Erick Passos, 545, 712
Oscar Pastor, 531

Pratik Paul, 13
Witold Pedrycz, 106

Cecília Sosa Arias Peixoto, 594
Johannes Pelto-Piri, 205

Óscar Mortágua Pereira, 387
Angelo Perkusich, 426
Patricia Pesado, 328

Thanh-Liem Phan, 694

João Pimentel, 444, 448
Vládia Pinheiro, 574

Fábio Pittoli, 570
Eduardo Kessler Piveta, 438

D. R. Plante, 499
Rafael Prikladnicki, 551

Fábio Protti, 635

Q
Xiaofang Qi, 289, 293

Ju Qian, 289
YongJun Qie, 180

R
Ricardo Rabelo, 273
Axinia Radeva, 100
Filip Radulovic, 611

M. Rahmani, 305
Deepa Raka, 537

Lakshmi Ramachandran, 458
Sébastien Ramon, 243
Henrique Rebêlo, 148

Marek Z. Reformat, 106, xxviii
Márcio Ribeiro, 148

Luis Rivero, 582
Ana Regina Cavalcanti Rocha, 753

Elder M. Rodrigues, 112, 647
Evandro Luis Linhari Rodrigues, 668

Myungchan Roh, 684
Cynthia Rudin, 100

S
Ana M. Moreno S., 599

Deise de Brum Saccol, 438
D. Sadhu, 763

S. Masoud Sadjadi, 88, xxvi
Kazunori Sakamoto, 480

Salamah Salamah, 39
Hamza Onoruoiza Salami, 737

Afonso Sales, 551
Alan R. Santos, 551
Emanuel Santos, 448

Maribel Yasmina Santos, 387
Pedro Santos Neto, 545
Eber Assis Schmitz, 319

Manan R. Shah, 578
Lingshuang Shao, 211

Weizhong Shao, 55

A-10

Guohua Shen, 422
Xiaoyan Shi, 217

ZHANG Shi-kun, 541
Michael E. Shin, 394, 684

Huayou Si, 617
Carla Silva, 444, 651

Thiago Silva-de-Souza, 319
H. Siy, 305

Karen Smiley, 458
S. Smith, 499

Thérèse Smith, 162
Monique Soares, 444, 651

Thiago Soares, 273
Sang H. Son, 688
Cleice Souza, 651

Paulo S. L. Souza, 476
Simone R. S. Souza, 476

Krishan D. Srivastava, 432
Kenneth Steward, 700

Xiao Su, 768
Vinitha Hannah Subburaj, 578

Kevin Sullivan, 688
Xiaobing Sun, 7, 452

Xuan Sun, 541
Zhuo Sun, 352

T
Janghwan Tae, 346
Cleice Talitha, 444

Hiroaki Tanizaki, 672
Chuanqi Tao, 452

Richard N. Taylor, 412
D. Tep-Chel, 763

Changbao Tian, 422
Ashish Tomar, 100
Richard Torkar, 205

Nikolaos D. Tselikas, 200

U
Prajna Devi Upadhyay, 51

Joseph E. Urban, 578
Christelle Urtado, 694

V
Sylvain Vauttier, 694

Davi Viana, 33
Elder Vicente, 174

Arnaud Viguier, 324
Patrícia Vilain, 605

W
Randall Wald, 94

Gursimran S. Walia, 45
Huanjing Wang, 94
Jiacun Wang, 381

Linzhang Wang, 369
Peng Wang, 293
Tao Wang, 188
Yingze Wang, 1

Hironori Washizaki, 480
Yves Wautelet, 299

F. Wedyan, 763
Jun Wei, 188

Walter Wilson, 486
Xingxia Wu, 283

X
Francisco Calaça Xavier, 256

Guang Xiang, 1
Boyi Xie, 100

Baowen Xu, 470
Dianxiang Xu, 346, 363

Haiping Xu, 333
Lei Xu, 289

Xiaojing Xu, 293
Yinxing Xue, 124

Y
Rui Yang, 289, 470
Genxing Yang, 279

Wei Ye, 541
Jinfeng Yu, 106

Z
Emilio Zegarra, 180
Qingtian Zeng, 340

Reng Zeng, 352
Xiaoxiang Zhai, 231, 235, 239

Du Zhang, 249, xxvi
Hao Zhang, 340

Jianhua Zhang, 188
Lijiu Zhang, 217
Lu Zhang, 283

Qiandong Zhang, 7, 452

A-11

Wei Zhang, 422
Wenbo Zhang, 188
Zhiyi Zhang, 470

Haigang Zhao, 217
Jianhua Zhao, 369
Zhihong Zhao, 267

Zibin Zhao, 211
Hua Zhong, 188
Qing Zhou, 718
Wujie Zhou, 470

Xiaoyu Zhou, 289
Yuming Zhou, 267

Min Zhu, 231, 235, 239
Avelino F. Zorzo, 112, 647

A-12

Reviewer’s Index
A

Alain Abran
Silvia Teresita Acuna

Taiseera Albalushi
Edward Allen

Thomas Alspaugh

B
Doo-hwan Bae

Ebrahim Bagheri
Hamid Bagheri
Rami Bahsoon
Xiaoying Bai

Purushotham Bangalore
Ellen Francine Barbosa

Fevzi Belli
Ateet Bhalla

Swapan Bhattacharya
Alessandro Bianchi

Karun N. Biyani
Borzoo Bonakdarpour

Ivo Bukovsky

C

Kai-yuan Cai
Gerardo Canfora
Jaelson Castro

Raul Garcia Castro
Cagatay Catal
Peggy Cellier

Christine Chan
Keith Chan

Kuang-nan Chang
Ned Chapin

Shu-Ching Chen
Zhenyu Chen

Stelvio Cimato
Peter Clarke
Esteban Clua

Nelly Condori-fernandez
Fabio M. Costa

Maria Francesca Costabile
Karl Cox

Jose Luis Cuadrado
Juan J. Cuadrado-gallego

D

Ernesto Damiani
Dilma Da Silva

Jose Luis De La Vara
Marian Fernandez De Sevilla

Scott Dick
Massimiliano Di Penta

Jing Dong
Weichang Du

Philippe Dugerdil
Hector Duran

E

Christof Ebert
Ali Ebnenasir
Raimund Ege

Magdalini Eirinaki
Faezeh Ensan

F

Davide Falessi
Behrouz Far

Scott D. Fleming
Liana Fong

Renata Fortes
Fulvio Frati

G

Jerry Gao
Kehan Gao
Felix Garcia

Ignacio Garcia Rodriguez De Guzman
Itana Gimenes

Swapna Gokhale
Wolfgang Golubski

A-13

Desmond Greer
Eric Gregoire

Christiane Gresse Von Wangenheim
Katarina Grolinger

H

Hao Han
Xudong He

Miguel Herranz
Mong Fong Horng

Shihong Huang

J

Clinton Jeffery
Jason Jung

Natalia Juristo

K

Selim Kalayci
Eric Kasten

Taghi Khoshgoftaar
Jun Kong

Nicholas Kraft
Anesh Krishna

Sandeep Kulkarni
Vinay Kulkarni
Gihwon Kwon

L

Jeff Lei
Bixin Li
Ming Li
Tao Li

Yuan-Fang Li
Qianhui Liang
Shih-hsi Liu

Xiaodong Liu
Yan Liu
Yi Liu

Hakim Lounis
Joan Lu

M

Jose Carlos Maldonado
Antonio Mana

Vijay Mann
Riccardo Martoglia

Hong Mei
Hsing Mei

Emilia Mendes
Ali Mili

Alok Mishra
Ana M. Moreno

N

Kia Ng
Ngoc Thanh Nguyen

Allen Nikora

O

Edson Oliveira Jr.

P

Kunal Patel
Xin Peng

Antonio Piccinno
Alfonso Pierantonio

Antonio Navidad Pineda

R

Rick Rabiser
Damith C. Rajapakse

Rajeev Raje
Jose Angel Ramos
Marek Reformat
Robert Reynolds

Ivan Rodero
Daniel Rodriguez

S

Samira Sadaoui
Masoud Sadjadi

A-14

Claudio Sant’Anna
Salvatore Alessandro Sarcia

Douglas Schmidt
Andreas Schoenberger

Naeem (jim) Seliya
Tony Shan

Rajan Shankaran
Michael Shin
Qinbao Song

George Spanoudakis
Jing Sun

Yanchun Sun
Gerson Sunye

 T

Jeff Tian
Genny Tortora

Mark Trakhtenbrot
Peter Troeger

T.h. Tse

V

Giorgio Valle
Sylvain Vauttier
Silvia Vergilio
Akshat Verma

Sergiy Vilkomir
Arndt Von Staa

W

Huanjing Wang
Limin Wang

Hironori Washizaki
Victor Winter
Guido Wirtz
Eric Wong

Franz Wotawa

X

Dianxiang Xu
Haiping Xu

Y

Chi-lu Yang
Hongji Yang
Ji-Jian Yang

Junbeom Yoo
Huiqun Yu

Z

Cui Zhang
Du Zhang

Hongyu Zhang
Yong Zhang

Zhenyu Zhang
Hong Zhu

Xingquan Zhu
Eugenio Zimeo

A-15

Poster/Demo Presenter’s Index
A

Achilleas P. Achilleos, A-1

C
Ana Regina Cavalcanti Rocha, A-3

D
Adler Diniz de Souza, A-3

K
Georgia M. Kapitsaki, A-1

L
Ricardo Lima, A-5

M
Alexandre Mota, A-5

O
César Oliveria, A-5

P
George A. Papadopoulos, A-1

R
Henrique Rebêlo, A-5
Márcio Ribeiro, A-5

S
George Sielis, A-1

SEKE
2012

Program for the
Twenty-Fourth
International
Conference on
Software Engineering &
Knowledge Engineering

San Francisco Bay
July 1-3

Copyright © 2012
Printed by
Knowledge Systems Institute
Graduate School
3420 Main Street
Skokie, Illinois 60076
(847) 679-3135
office@ksi.edu
www.ksi.edu
Printed in USA, 2012

