Guest Editor Introduction to the

VLSS Special Issue on Blocks Programming

Franklyn Turbak
Computer Science Department
Wellesley College, Wellesley MA, USA
fturbak @wellesley.edu

This special issue of the Journal of Visual Languages and
Sentient Systems (VLSS) focuses on Blocks Programming.
Over the past twenty years, blocks programming languages
have evolved from research lab prototypes to practical tools
used by tens of millions of people. The core idea behind these
languages is simple: rather than constructing programs out of
sequence of characters that are lexed into tokens that are parsed
into syntax trees, why not construct syntax trees more directly
by composing drag-and-drop visual fragments that represent
the nodes of the trees?

There are now a host of blocks languages that can be used
for a wide variety of purposes, such as creating games, script-
ing 3D animations, inventing mobile apps, developing agent-
based simulations, controlling robots, generating 3D models.
and collecting/analyzing/visualizing scientific data.

Educators have seized upon blocks languages as a way to
introduce beginners to computer science concepts. Environ-
ments like Scratch, Blockly, Pencil Code, App Inventor, Snap!,
AgentSheets/AgentCubes, and Alice/Looking Glass have be-
come popular ways to introduce students (from grade school-
ers through graduate students) to computational thinking and
programming. This is done not only in traditional classrooms,
but also in extracurricular settings via online activities like
Code.org’s Hour of Code.

But blocks environments are also a boon to a broader
population whose primary goal is to “make stuff” rather
than learn computer science principles. This includes artists,
scientists, hobbyists, entrepreneurs, and other end users and so-
called casual programmers who want to build computational
artifacts for themselves, their families, their workplaces, their
communities, and the world at large.

There are many questions surrounding blocks languages.
Why are they so popular? What are their key advantages and
limitations compared to other programming environments? Do
they really lower barriers to programming, or is that just hype?
In what ways do they help and hinder those who use them
as a stepping stone to traditional text-based languages? What
are effective pedagogical strategies to use with blocks lan-
guages, both in traditional classroom settings and in informal
and open-ended learning environments? How does the two-
dimensional nature of blocks programming workspaces affect
the way people create, modify, navigate, and search through
their code? Do blocks environments have any features that

are worth incorporating into IDEs for traditional programming
environments? What are effective mechanisms for multiple
people to collaborate on a single blocks program when they
are co-located or are working together remotely? Can blocks-
based environments be made accessible to users with visual
or motor impairments?

These questions are being investigated by educators, soft-
ware developers, and researchers from areas that include
visual languages, human-computer interaction, programming
languages, education, psychology, learning science, and data
analytics. This special issue gives a sample of the kinds of
research and development that is taking place in the blocks
programming community.

Many blocks languages are domain-specific languages
(DSLs) that are not general programming systems but are in-
stead targeted at tasks in a particular domain. An excellent ex-
ample of such a DSL is SpargiBlocks, a blocks-based environ-
ment for making queries to find information encoded in linked
data within the semantic web. This system is described by its
creators, Miguel Ceriani and Paolo Bottoni, in the first article
of this issue, SparqlBlocks: Using Blocks to Design Structured
Linked Data Queries. The SparqlBlocks programming environ-
ment highlights several key advantages that blocks languages
have with respect to traditional textual notations (in this case,
the text-based SPARQL query language). First, SparglBlocks
language features are represented by drag-and-drop blocks
whose shapes both suggest how they can be composed and
only allow syntactically valid connections to be made. Second,
generating and editing queries involves manipulating high-
level chunks of information (blocks) as opposed to low-level
character representations, which not only aids the cognitive
task of assembling queries but also avoids frustrating errors
due to misspelled keywords or incorrect punctuation. Third,
the blocks of the language are organized into categories within
a toolbox menu, allowing users to learn available functionality
by exploring the menu options and use recognition rather than
recall to find the constructs that that they need. Fourth, the
system has a liveness property such that query results are
automatically displayed as soon as a valid query is created and
updated as soon as the query is modified. (Although liveness
has nothing to do with blocks per se, it is a common feature
of many blocks environments.)



In addition to these standard benefits, SparqlBlocks has an
innovative twist: the query result tables themselves are repre-
sented as blocks, which encourages the use of result fragments
in new queries. Anyone who has programmed using JSON data
representations or Lisp-like s-expressions will appreciate the
power unleashed by having output data representations that
can easily be repurposed as input data within a program.

SparqlBlocks is clearly not a language targeted at children,
but at people who understand the Resource Description Frame-
work (RDF) framework of the semantic web. So it serves
as an interesting case study for those who are dismissive
about blocks languages, and claim they can’t be used for
“real” coding or are just a stepping stone for programming
in traditional text-based languages. In this case, it’s easy to
imagine a class of users who would be completely satisfied
with using SparglBlocks for all their semantic web queries
without ever feeling the need to learn the textual SPARQL
syntax. Perhaps the naysayers are confused by the brightly
colored blocks and the fact that many current blocks languages
have limited environments that are targeted at those who have
never programmed before, and so they incorrectly conclude
that such environments are only good for kids and other
newbies and could never be of use to adults or seasoned
programmers. But fundamentally, blocks languages are just an
alternative way of representing the syntax trees that underly
any program, so there’s no reason that they can’t express
everything that a traditional text-based language can express.
And it’s worth remembering that it was not so long ago that
“real programming” was done only in assembly code and
higher-level programming languages were such a futuristic
idea that their study was considered a branch of artificial
intelligence. It will be interesting to see what is considered
“real programming” twenty to forty years hence.

This is not to say that blocks languages don’t have down-
sides. Common complaints are that blocks representations are
are less dense than text representations (so less information can
be conveyed in one screenful) and that they have high viscosity
— creating, moving, connecting, disconnecting, copying, and
deleting blocks when editing a program can take more opera-
tions and time than entering and editing text. And syntactically
correct programs aren’t necessarily semantically meaningful.
For example, in SparglBlocks, many users struggle with the
correct usage of literals and variables in their queries.

An important line of research in blocks based languages
is mitigating these downsides. The next three articles in this
special issue address this theme.

One idea for combining the benefits of blocks and text
within a single environment is bidirectional mode switching,
in which there is a way to convert a blocks program workspace
into an editor buffer with an isomorphic text program and vice
versa. There are now several blocks programming environ-
ments that support bidirectional mode switching, but one of the
earliest was Tiled Grace, which is described by its developers
Michael Homer and James Noble in their article Lessons
in Combining Block-based and Textual Programming. Tiled

vi

Grace is a blocks version of the existing Grace text-based lan-
guage. Users can edit a Tiled Grace program either in blocks
mode or text mode and, with the press of a button, see their
program transformed by a smooth animation into the other
mode. Each mode has its own advantages. Blocks mode al-
lows editing the program syntax tree with meaningful chunks,
provides a toolbox that organizes the language constructs into
inspectable categories, and provides visual feedback for syntax
errors and program dependencies (e.g., associating references
of variable and method names with their declarations). Text
mode allows low-viscosity editing of a denser representation
of the same program.

The article describes an experiment in which early under-
graduate Java programmers were asked to write, modify, cor-
rect, and describe Tiled Grace programs, and were allowed to
switch between blocks mode and text mode as many times as
they wanted to in order to complete their tasks. One interesting
result is that participants switched modes numerous times in
performing the tasks. Many participants (who were already
used to text-based programming in Java) found drag-and-drop
editing with blocks frustrating, so would switch to text mode
to edit the programs. But some participants would switch to
blocks mode to perform certain kinds of edits. Intriguingly,
over a third of switches to blocks mode involved no edits,
implying that participants were using it just to examine the
structure of the code.

The authors compare their study to some other studies
involving bidirectional mode switching. These other studies in-
volved different environments, different tasks, and participants
with different programming backgrounds, so it’s not surprising
that there is a lot of variability between results. But clearly,
bidrectional mode switching is a rich area for future study.
and can give insight into the relative advantages of blocks
vs. text for creating, modifying, debugging, and understanding
programs.

A different approach to mediating between blocks and text
is described in the Frame-Based Editing article by Michael
Kolling, Neil C. C. Brown, and Amjad Altadmri. They
describe a novel editing paradigm based on frames that is the
basis for an editor for the Java-like Stride language that has
been incorporated into their Greenfoot and BlueJ programming
environments. Rather than switching between blocks and text
views, the frame-based editor combines key aspects of both
blocks and text in a single unified view.

Declarations and statements are represented as frames,
which are visual block-like entities that can be created, moved,
copied, and deleted as single syntactic units. Frames have slots
for nested program structure. There are two types of slots.
A frame slot is filled with another frame, while a text slot
is filled by typing characters on the keyboard (or copying
and pasting text from elsewhere). Text slots are used for
entering expressions (e.g., numbers, variables references, arith-
metic/relational/logical operations, etc.) and specifying things
like parameter names, types, and the assigned variable in an
assignment statement. Although frames and frame/slot cursors



can be selected/dragged/positioned with a mouse, there are
keystrokes for creating, selecting, copying, pasting, and delet-
ing frames and for navigating to frames and slots. This makes
it possible to edit Stride programs using only keystrokes, even
though frames are block-like features.

The Stride frame-based editor supports numerous other fea-
tures that give it a low-viscosity “feel” more like a professional
text-based Integrated Development Environment (IDE) than
a high-viscosity visual language. The article describes a few
usability experiments with the Stride editor, some of which
are positive but others of which indicate areas for improve-
ment. More detailed experiments with frame-based editing
and comparing it with editing in other blocks based environ-
ments are obvious areas for future work, as are incorporating
frame-based features into other blocks-based environments and
adapting frame-based editors to other text-based languages.

This article also describes how frame-based and blocks-
based editing arose out of two research threads: one involving
structure editors for text-based programs, and another involv-
ing visual programming languages. Members of the blocks
community should familiarize themselves with both of these
lines of research.

Alex Repenning’s article Moving Beyond Syntax: Lessons
from 20 Years of Blocks Programming in AgentSheets is his
personal reflection about the history and future of blocks
programming. Repenning’s 1995 AgentSheets environment for
rule-based programming of agents in a two-dimensional grid
included a blocks programming editor for specifying the rules
that control the agents. Repenning defines four affordances
for blocks programming that he uses as a lens to discuss the
history of blocks programming and related work in visual pro-
gramming. Readers interested in the historical underpinnings
of blocks programming should follow up on the work cited by
Repenning as well as the structure editor work summarized by
Kolling, Brown, and Altadmri.

The main thrust of Repenning’s article is that although
blocks languages have clear benefits for making the syntax
of programming less frustrating for beginners, developers of
these environments should focus more on improving their
semantics and pragmatics (which he defines as the study of
what code means in particular situations). He gives some
compelling examples from AgentSheets and the follow-on
AgentCubes languages: automatically generated context-based
documentation and error messages, and so-called conversa-
tional programming and live palette techniques that support
context-based debugging and prediction of program behavior
— e.g., dynamically showing the values of rule conditions and
which rules would fire as agents are dragged through different
cells in a grid world. Such feedback can give programmers
a better understanding of the behavior of their programs, not
just their structure.

Repenning also argues that environments for beginners need
to focus less on traditional programming skills and more on
computational thinking and problem-solving skills. In this con-
text, there are advantages to having restricted computational

thinking environments that are tuned to having relatively sim-
ple solutions to certain classes of problems rather than general
programming tools that can solve any problem. Repenning
notes that solutions with general programming tools are often
swamped by accidental complexity, whereas in more con-
strained environments, it is easier to support pragmatics. Many
of the semantic, pragmatic, and computational thinking bene-
fits mentioned by Repenning are strongly rooted in the particu-
lar grid-with-agents-controlled-by-rules paradigm embodied in
his AgentSheets and AgentCubes environments. But how can
these sorts of benefits be realized in other paradigms, domains,
and modalities? This is a rich area for future research. As a
concrete challenge to the reader, I suggest considering how to
apply some of Repenning’s ideas to Ceriani and Bottoni’s
SparglBlocks system, or some other blocks language of their
choice.

Although Repenning defines four key affordances of blocks
programming, he doesn’t explore in detail why those affor-
dances should help blocks programmers. In their article How
Block-based Languages Support Novices, David Weintrop
and Uri Wilensky propose a framework for understanding
how such affordances help learners construct meaning from
the environment in the context of solving a particular prob-
lem. They use a notion of webbing to describe all resources
available to the learner in a situated computational problem
solving task. Their framework involves two dimensions: the
first dimension distinguishes internal cognitive processes Vvs.
external communication; the second dimension distinguishes
generating a program vs. interpreting one. Based on the 2 x 2
matrix involving these dimensions, they describe four roles for
the learner. They then give examples from a study involving
RoboBuilder (a blocks-based environment for describing the
behavior of screen-based robots that battle each other) of
how affordances of blocks help learners in each of the four
roles. An interesting aspect of their analysis is it suggests
that designers should consider all four roles when designing a
blocks language. However, there may be trade-offs in design
that benefit one role at the expense of another. Elaborating on
design decisions and trade-offs implied by this framework, as
well as applying it to non-blocks programming languages, are
avenues for future research.

Blocks programming environments are used in many situa-
tions where novice programmers make heavy use of example
programs to learn features of the language, often with little or
no help from an instructor or peer. In order to design helpful
examples and incorporate them into the learning process, it
is essential to better understand how blocks programmers
learn via examples. This is the motivation behind the work
by Michelle Ichinco, Kyle Harms, and Caitlin Kelleher in
their article Towards Understanding Successful Novice Exam-
ple Use in Blocks-based Programming. They investigated two
features of examples in Looking Glass: (1) different styles
of annotations that explain how an example works and (2)
surface and structural similarities between and example and
the assigned task (which involved modifying a given program).

vii



In a study of 99 children aged 10 to 15, they found that an-
notations on examples (vs. no annotations) helped participants
complete a similar task, but not a dissimilar one. Also, subjects
completed more tasks using similar examples than dissimilar
ones, and the similarity was correlated with getting to a later
stage in a 4-stage model of task completion. However, the tasks
were challenging for the subjects, and many subjects did not
get past the 1st of the 4 stages for many of the tasks. More
work clearly needs to be done to help novices get unwedged
from this 1st stage.

To understand the level of understanding that subjects had of
the relationship between the examples and tasks, subjects were
asked to draw analogical mappings that connected parts of the
example program to corresponding parts of the (unmodified)
task program. The study found strong correlations between
annotations and correct mappings and between example sim-
ilarity and correct mappings, but only a weak correlation
between correct mappings and task success.

Finally the study looked at how programming behavior
was correlated with task completion. For example, editing the
program in the lst stage or performing many user interface
operations in the 2nd stage were strong indicators that subjects
would not complete the task.

This study indicates that example-based learning in blocks
programming may not be particularly effective. It remains
to be seen whether more carefully crafted examples with
more explicit analogical mappings, possibly enhanced with
other forms of scaffolding, can increase the effectiveness of
examples.

The special issue concludes with the topic of accessibility of
blocks programming environments. Many people naturally as-
sume that the visual, drag-and-drop nature of blocks languages
inherently makes them inaccessible to those with visual or
motor impairments. But this is not necessarily the case! The
fact that blocks programming reifies syntax tree nodes and
focuses on creating, modifying, and navigating syntax trees
may be able to support programming for those with disabilities
better than character-based languages.

In their research notes paper Design Considerations to
Increase Block-based Language Accessibility For Blind Pro-
grammers Via Blockly, Stephanie Ludi and Mary Spencer

describe their work-in-progress on extending the Blockly
browser-based blocks language framework to support visually
impaired users. One aspect of their work is extending Blockly
with screen reader support so that it can pronounce block as-
semblies (including unfilled sockets) in a meaningful way. An-
other is providing keyboard support for navigating, connecting,
disconnecting, etc. blocks and using menus on the workspace.
(As discussed in Sec 14.5 of Kolling, Brown, and Altadmri’s
article, the fact that their frame-based Stride editor already has
complete keyboard support for all editing operations makes it
an interesting candidate for accessibility.) They also reference
work on vocal interfaces that can make blocks programming
accessible to people with motor impairments.

In the spirit of promoting accessibility, all researcher who
develop and study blocks environments are encouraged to
become familiar with ways of making these environments
more accessible.

Many individuals contributed to this special issue. I am
grateful Professor S-K. Chang, the Editor-in-Chief of VLSS,
for his support and encouragement for this special issue. Many
thanks to the authors who responded to the call for papers
for this issue. Of the nine papers that were submitted, six
were accepted as full papers (subject to revisions) and one
was accepted as a research notes paper. I especially appreciate
the willingness of the authors of the accepted papers to go
through three rounds of revisions on their papers (two based
on reviewer feedback and a final one based on my feedback),
which led to very high-quality results. Finally, I am indebted
to our reviewers, whose constructive comments during two
rounds of reviews greatly improved the quality of the papers.

Preparing this special issue has been a rewarding experience.
It has underscored how much exciting work is going on in
the area of blocks programming and exposed fertile ground
for future research, both in terms of studying how people
use and learn from blocks environments and improving the
environments to address numerous problems that have been
identified in existing systems.

There is a vibrant community of researchers conducting
work on blocks programming. Join us!

viii





