
SparqlBlocks: Using Blocks to Design
Structured Linked Data Queries

Miguel Ceriani1,2 and Paolo Bottoni1
1Sapienza, University of Rome, Italy

2Instituto Tecnológico de Buenos Aires, Argentina
{ceriani,bottoni}@di.uniroma1.it

Abstract While many Linked Data sources are available, the task of
building structured queries on them is still a challenging one for
users who are not conversant in the specialised query languages
required for their effective use. A key hindering factor is the lack of
intuitive user interfaces for these languages. The block programming
paradigm is becoming popular for the development of visual inter-
faces that are easy to use and guaranteed to generate syntactically
correct programs, promoting a gradual and modular approach to the
task of programming. We exploit these features of the block paradigm
to develop SparqlBlocks, a visual language and an integrated user
interface in which both Linked Data queries and results are repre-
sented as blocks, supporting a modular and exploratory approach to
query design. By integrating the presentation of queries and results,
reuse of results in the refinement of queries is promoted, as well as
the exploration of both the data and the structure of Linked Data
sources. SparqlBlocks has been evaluated with 11 users literate in
computer science but with small to no expertise in querying Linked
Data. After a tutorial, all the users were able to build at least a
simple query and all but two were able to build nontrivial queries.

1. Introduction
Linked Data [1] — the structured data available online —

are increasing both in quantity and diversity [2]. A key advan-
tage of the Linked Data model is its support for serendipitous
exploration and reuse of existing data. In practice, though,
exploring and querying Linked Data is not trivial and requires
knowledge of RDF [3] (the basic data model), SPARQL [4]
(the standard query language), and a number of schemas and
ontologies (the domain/dataset specific data models).

Existing experimental tools for non-experts (see for exam-
ple [5, 6]), while being effective for some cases, do not support
the user much in an incremental process of query design, as
reusing intermediate queries and results for new queries is not
easy.

As block programming languages [7, 8] — in which coding
occurs by dragging and connecting fragments shaped like
jigsaw puzzle pieces — have been successfully adopted to
introduce programming to non-experts, we decided to lever-
age the block programming paradigm to design Linked Data
queries, supporting an exploratory approach to query design in

DOI reference number: 10.18293/VLSS2017-011

which language affordances are visually exposed and syntax
errors are avoided. Hence, users are not required to know in
advance the details of RDF and SPARQL, while the flexibility
and expressiveness of a complex query language are preserved.

A specific challenge in querying Linked Data is supporting
their heterogeneous nature: no expert can achieve perfect
knowledge of the structure and semantics of all the data they
may need to use from multiple sources; systems should thus
help in discovering structure and semantics of data sources. To
deal with this, we build on the block programming approach,
presenting a novel paradigm for interactive queries in which
both the queries and their results are integrated and interoper-
able in the workspace. Results are available as blocks that can
be used as part of existing queries (to refine them) or to build
new (follow-up) queries. Queries are dynamically executed as
they are built or modified. As a result, the supporting environ-
ment fosters an exploratory approach such that users may start
querying datasets without knowing their specific organization
and gather progressively more detailed information.

The described approach has been implemented in Sparql-
Blocks1 [9, 10], a visual language and an associated visual
environment for designing and executing queries on Linked
Data sources. The target user of the system is anyone interested
in building queries beyond simple data browsing, on one or
multiple datasets. The tool may also work as an educational
aid for learning Linked Data technologies.

In this paper, we describe in detail the language and user
interface of SparqlBlocks and report on a controlled user
evaluation aimed at proving that the SparqlBlocks environ-
ment may be used to build nontrivial queries on Linked Data
without prior knowledge of RDF, SPARQL, or even of the
data source’s content and structure.
Paper organisation. After introducing the technological back-
ground in Section 2, we present and discuss related work
in Section 3. In Section 4 we describe the SparqlBlocks
visual language and environment, reviewing their specific re-
quirements and features, while in Section 5 we describe its
implementation. An analysis from the perspectives of cognitive
dimensions and query affordances is given in Section 6, fol-
lowed in Section 7 by the description of preliminary informal

1http://sparqlblocks.org/

1

http://sparqlblocks.org/


feedback from users and how, based on that feedback, the
design evolved. The tool has been evaluated in a user study,
described in Section 8, that involved 11 users without prior
knowledge of either RDF, SPARQL, or the structure and
content of the used dataset. The experimental results are shown
both from a quantitative and a qualitative point of view in
Sections 9 and 10, respectively. As pointed out in the con-
clusive discussion in Section 11, the results are encouraging,
as users were satisfied by the user interface and able to build
nontrivial queries, but they also reveal a number of possible
improvements for the tool.

2. Background
We introduce the basics of the RDF data model, the

SPARQL query language, and DBpedia, a dataset that will
be used for examples and evaluation. We then briefly describe
the block programming paradigm.

2.1. Data Model: RDF
In the Resource Description Framework (RDF) [3], the data

model proposed by the W3C for Linked Data, knowledge is
represented via RDF statements about resources, which are
meant to represent anything in the “universe of discourse”,
e.g. documents, people, physical objects, abstract concepts.
An RDF statement is represented by an RDF triple, composed
of subject (a resource), predicate (specified by a resource as
well, called a property), and object (a resource or a literal, i.e.
a value from a basic type). An RDF graph is a set of RDF
triples.

A literal is a simple value that can be either a language-
tagged string — a string associated with a language tag that
identifies the (natural) language of the label — or a typed
literal — a value expressed with a string and an associated
type that may be any IRI, but which is usually one of the basic
datatypes defined by W3C for the XML Schema Definition
Language (XSD) 1.1 [11].

Resources are identified by an Internationalized Resource
Identifier (IRI) [12], a generalization of the Uniform Resource
Identifier (URI) [13] for retrieving content in an HTTP context.
A resource may have one or more types, which are also
resources. If a resource is used as type for other ones, it is
called a class. A human-readable version of a resource’s name
is a string literal, called its label. A resource may have one
or more labels. Thanks to language tags, a resource can have
labels in different languages.

An RDF dataset is a set of named RDF graphs, i.e., RDF
graphs associated with an IRI, the graph name, along with a
single default graph, an RDF graph without a name. Named
RDF graphs are used to represent data associated with specific
contexts. Usually the default graph of an RDF dataset is either
the union of all the named graphs or holds meta-data about
the named graphs.

RDF graphs and RDF datasets can be serialized through dif-
ferent concrete RDF syntaxes (Turtle, JSON-LD, XML/RDF).
A common feature of multiple RDF syntaxes (used also in

SPARQL) is that prefixes can be used in place of the initial
part of an IRI, which represents specific namespaces for
vocabularies or sets of resources. For example, the two IRI
namespaces for standard RDF concepts2 are usually referred
to via the prefixes rdf: and rdfs:, as in rdf:type, which is the
property used to associate a resource with its type(s) and in
rdfs:label, which is the property used to associate a resource
with its label(s).

Figure 1 shows a graphical depiction of an RDF graph
where resources are represented as ovals, literals as rectangles,
and triples as labelled arrows connecting them (from subject
to object, while the label represents the predicate). The labels
for resources and predicates (that are resources too) are IRIs
in prefix notation, while the labels for literals are the lexical
representation of the literals.

In Listing 1, the same RDF graph is represented using
Turtle, an RDF syntax offering prefix notation. Turtle allows
authors to avoid repeating the subject of a sequence of triples
when it is the same. The semicolon (;) separates predicate/ob-
ject pairs that apply to the same subject. The dot (.) separates
blocks of triples having a common subject.

@base <http://www.w3.org/> .
@prefix rdf: <1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <2000/01/rdf-schema#> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

dbpedia:Mount_Everest
rdf:type dbo:Mountain ;
rdfs:label "Mount Everest"@en ;
dbo:elevation 8848 ;
dbo:locatedInArea dbpedia:Nepal ;
dbo:locatedInArea dbpedia:China .

dbpedia:K2
rdf:type dbo:Mountain ;
rdfs:label "K2"@en ;
dbo:elevation 8611 ;
dbo:locatedInArea dbpedia:China .

dbpedia:Nepal
rdf:type dbo:Country ;
rdfs:label "Nepal"@en .

dbpedia:China
rdf:type dbo:Country ;
rdfs:label "China"@en .

Listing 1. Turtle code for the RDF graph in Figure 1.

2.2. Query Language: SPARQL
SPARQL [4] is the standard query language for RDF

datasets3, based on the notion of triple pattern, an RDF triple
in which each component can be replaced by a variable. A
basic graph pattern is a set of triple patterns associated with

2http://www.w3.org/1999/02/22-rdf-syntax-ns# and http://www.w3.org/
2000/01/rdf-schema#

3For conciseness, rather than describing SPARQL syntax in detail, we just
show the basics of SPARQL semantics and then a few elements of the syntax.
This should be sufficient to both (1) have an idea of the language and (2)
understand the SPARQL queries that are shown in the paper in comparison
with SparqlBlocks syntax.

2

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#


Figure 1. Part of the RDF graph served by the SPARQL endpoint of DBpedia.

a specific input graph (the default graph, a graph named by a
IRI, or a generic named graph referred to via a variable). When
executing a SPARQL query, the basic graph pattern is matched
against the input RDF dataset and the result is a multiset of
tuples, each tuple corresponding to a binding for each of the
variables. Relations generated through basic graph patterns can
be filtered, composed, or grouped using relational operators.
The result of a SPARQL SELECT query (one of the available
query types and the one that will be considered in this work)
is a multiset of tuples that can be optionally ordered, making
it a list of tuples.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height .

}
ORDER BY DESC(?height)
LIMIT 3

Listing 2. SPARQL corresponding to blocks in Figure 11.

Table 1. Results of query in Listing 2.

?mount ?height

<http://dbpedia.org/resource/Mount_Everest> 8848.0
<http://dbpedia.org/resource/K2> 8611.0
<http://dbpedia.org/resource/Kangchenjunga> 8586.0

SPARQL syntax is reminiscent of SQL syntax and clauses
like SELECT, ORDER BY, and LIMIT have in SPARQL the
same meaning as in SQL. Basic graph patterns are represented
reusing Turtle syntax for RDF graphs with the addition of vari-
ables, which are represented by labels prefixed by quotation

mark and have as scope the whole query4. Both basic graph
patterns and operations like filter or union are specified in the
WHERE clause of the query. Listing 2 shows a query to get
the three highest mountains. Table 1 shows the results of the
query when executed on the RDF graph in Figure 1.

The SPARQL Protocol [14] is a protocol over HTTP used
to provide a Web API to query an RDF dataset. The client
sends queries to a service offering this API and gets back
the results. The URI at which a SPARQL Protocol service
listens for requests is called a SPARQL endpoint. Several RDF
datasets offer publicly accessible SPARQL endpoints.

2.3. A Reference Dataset: DBpedia
Both in the examples and in the user evaluation we used

a well known Linked Data source: DBpedia [15], an RDF
dataset generated from Wikipedia. It is obtained through a
set of scripts that extract structured data from the Wikipedia
pages, especially leveraging the content of infoboxes, fixed-
format tables that can be found in the right-hand corner of
some articles. In the Linked Data community, DBpedia is
widely considered a reference dataset because of its wide
coverage and the long-term continuity of the project.

2.4. Block Programming
Programming environments for block languages typically

offer a visual, drag-and-drop interface. Blocks are graphical
elements associated with code snippets, which can be con-
nected to one another like jigsaw puzzle pieces, at the same
time composing in a syntactically correct form the associated
code. Different kinds of blocks have different shapes, so that

4When using subqueries, which are neither described here nor available
in SparqlBlocks, the scope of a variable is instead restricted to the current
subquery, unless it is projected out in the SELECT clause

3

http://dbpedia.org/resource/Mount_Everest
http://dbpedia.org/resource/K2
http://dbpedia.org/resource/Kangchenjunga


the way they can be combined is visually apparent, exposing
the affordances of the language and preventing syntax errors.
In Section 4.3 we will present in detail the features of block
programming environments that we have adopted in Sparql-
Blocks.

From now on, we adopt for block programming concepts the
notation used in the documentation and code of Blockly [16],
a widely used block programming library on which our tool
is based.

3. Related Work
We report on visual query tools for Linked Data as well as

on block programming environments.

3.1. Structured Queries on Linked Data
Several interactive tools have been proposed to support

structured querying of RDF data sources, at various levels of
abstraction and using different paradigms. A basic distinction
can be made between tools: (1) those requiring usage of
SPARQL syntax and (2) those based on metaphors aimed
at lowering the learning curve and providing more intuitive
interaction. The first kind of UIs includes advanced editors,
e.g. YASGUI [17], or integrated environments, e.g. Twinkle5,
but users still have to know SPARQL and the vocabularies
used in order to design a query.

UIs of the second kind provide interaction with another
— textual or visual — representation of the query, then
transformed to SPARQL to be executed. Text-based UIs use
forms, e.g. SPARQLViz [18], or controlled construction of nat-
ural language statements, e.g. SPARKLIS [5]. These systems
do not scale well when the query complexity increases and
do not easily permit code reuse. As for visual tools, most
of them use a graph-based paradigm (e.g. NITELIGHT [6],
QueryVOWL [19]), others a dataflow-based paradigm (e.g.
SparqlFilterFlow [20]), and at least one, VQS [21], a combina-
tion of both. Graph-based interfaces fit the RDF graph pattern
matching model well and they can be see as one possible RDF
embodiment of the successful query-by-example paradigm, in
which the user defines queries by perusing the same structure
of the data (tables in the original definition for relational
databases [22], graphs in the case of RDF). Dataflow-based
interfaces, on the other side, are effective in representing
SPARQL functional operators (e.g., UNION). However, both
types of interfaces are inefficient in terms of screen real estate
and may present problems with interaction.

There is an existing tool that adopts the block programming
paradigm for building SPARQL queries: the SPARQL/CQELS
Visual Editor designed for the Super Stream Collider frame-
work [23]. In that tool, blocks strictly follow the language
structure and syntax and the UI requires at least basic knowl-
edge of SPARQL. Conversely, the SparqlBlocks UI is intended
to to provide blocks that should be mostly self describing
and usable also without previous knowledge of the SPARQL
syntax.

5http://www.ldodds.com/projects/twinkle/

Finally, for most of the existing tools, the visualization
of the result set is passive and presented in an independent
container (e.g., in many Web-based interfaces, the result page
replaces the query page). In our system, a query and its results
share the same workspace, supporting interactive database
exploration.

3.2. Block Programming Environments

The MIT Media Lab pionereed research in educational tools
for teaching the use of technology and especially programming
skills. This research provided the foundation for the develop-
ment of StarLogo [24], then Scratch [7] — the first broadly
successful visual programming software for kids — and their
successor for mobile apps, MIT App Inventor [8], which was
originally developed at Google and is now based at MIT. The
block programming paradigm has since been applied to several
scenarios.

Apart from the cited SPARQL/CQELS Visual Editor, other
block programming environments have been created to design
structured queries. Bags [25] and DBSnap [26] are two visual
tools to design relational algebra expressions. The former has
the typical block programming look and is similar to Scratch,
while the latter has a peculiar tree appearance to suite the
specific context. Results so far show the effectiveness of these
approaches to teach relational algebra concepts [26]. In fact,
SparqlBlocks’ relational operators are modelled in a similar
way. But many of our operators are unique to our case because:
(1) we operate on a graph data model, instead of on a relational
database; (2) we allow the user to perform queries on any
online SPARQL endpoint, not just on a predefined set of
relations.

It is also interesting also to see how block program-
ming environments following the imperative paradigm have
been extended to allow querying and manipulating data from
databases. App Inventor has interfaces to online database
services like Google Fusion Tables6 and Firebase Realtime
Database7. Punya8, a fork from App Inventor to build mobile
applications for crisis data [27], has blocks to send SPARQL
queries and receive the results. In the Learning with Data
project, Scratch has been extended with blocks that query
a specific dataset [28]. The approach followed in all these
cases is to offer a fairly thin layer of indirection among the
environment and the service offered by the database. In these
environments, blocks are used to execute the queries, but not
to build them: either only basic queries can be executed (most
of the environments) or complex queries are passed as text
(e.g., SPARQL queries in Punya) that must be built by other
means. In a way, these environments stop where SparqlBlocks
kicks in, at the level of the logic of the query. They are thus
not comparable with SparqlBlocks, being instead potentially
complementary to it.

6https://fusiontables.google.com/
7https://firebase.google.com/docs/database/
8http://air.csail.mit.edu/punya/

4

http://www.ldodds.com/projects/twinkle/
https://fusiontables.google.com/
https://firebase.google.com/docs/database/
http://air.csail.mit.edu/punya/


4. Features of the Programming Environment
We describe here the SparqlBlocks UI, along with mo-

tivations for the main design choices. We first present the
requirements we identified and the main strategies chosen to
approach them. We then proceed to describe the solution, from
its top-level features to the details of the visual language,
describing the different types of blocks provided.

4.1. Requirements
Based on an analysis of the existing tools, and the short-

comings discussed above, we identified the following basic
requirements for the design of the SparqlBlocks UI:

1. users need not know SPARQL syntax — hence visual
clues and constraints should prevent syntax errors;

2. users’ need for inputting text should be minimized;

3. users should have direct access to commonly used struc-
tures;

4. users should be able to use SparqlBlocks as a step to
learn the SPARQL (textual) syntax;

5. users should be able to work even without prior knowl-
edge of the dataset — hence exploratory queries should
be explicitly supported.

4.2. Main Strategies
In order to meet the previous requirements, we opted for

the following general strategies.

• Explicit language affordances. Users should be able to
visually explore the set of available language elements
and how they can be combined.

• Prevention of syntax errors. All admissible sentences in
the visual language should correspond to actual queries.

• Multiple ways of achieving a solution. It should be
possible to build a query in many different ways, as in
the underlying SPARQL language, to cope with different
approaches.

• Block Programming. The user interface should use the
block programming metaphor, with language elements
represented by visual, composable blocks.

• Results view integrated with query view. User inter-
faces for building queries — both textual and visual
ones — typically consist of two separate areas, one for
the query and one for the results. They may be shown
simultaneously, one along the other, or at different times,
one after the other. To facilitate the exploratory design of
queries, we should instead experiment with mixing results
and views in the same workspace. It should be possible
to design more than one query at once and to show
the corresponding results beside each query. It should be
possible to use the visual elements corresponding to the
results of a query to create new queries or to modify the
current one.

4.3. General Block Programming Features

Based on these general strategies, we designed a concrete
solution, considering also the constraints imposed by the tech-
nologies and the required effort. Figure 2 shows a screenshot
of the SparqlBlocks UI. We start our presentation of the
SparqlBlocks language and environment by listing the top-
level features of the solution.

The following features are the ones that are common to
most block programming environments.

Language elements as blocks. Language elements, repre-
sented as keywords and grammar structures in textual lan-
guages, are represented as blocks (see labels a and b in
Figure 2). Different language elements are represented by
blocks with different visual properties (shape, color, textual
labels, icons, etc.). Language items that require flexibility in
their definition (like literal values and variable names) are
represented in the blocks through fields (c) that provide an
input of some kind (free text, dropdown).

Program structure through block composition. Blocks
connect to each other via jigsaw-like connectors (d) The
syntax of the language is then defined by the available blocks
and how they may be connected. Possible connections are
hinted to the user by the visual properties of the connector
(male/female, shape) and implemented by visually dragging
and attaching one block to another.

Workspace as canvas. The programmer’s workspace is
shown as an unlimited canvas in which to organize and connect
the blocks (e). The connections define the program, thus
having a directly functional meaning, while the placement of
blocks in the canvas space has no effect on the program: it
serves the purpose of code organization and potentially of
communication in case of a collaborative setting. The canvas
has some of the usual controls of the window metaphor,
scrollbars and zoom, along with a control of the desktop
metaphor, the trash bin to delete blocks.

Visual toolbox as inventory of components. The
workspace usually starts empty and blocks are dragged from
the area for the toolbox component (f ), where the available
blocks are organized into categories (g).

Shadow blocks as defaults and examples. This is a new
feature introduced in Blockly to represent defaults and usage
examples. Shadow blocks (i) can be blocks of any of the
defined block types, with a specific behaviour: they are shown
in a lighter shade of the same colour and they disappear if
another block is connected in their place. They are used inside
other blocks to offer sensible defaults or example values, while
remaining less intrusive than regular blocks used for the same
purpose: regular blocks would remain on the workspace after
replaced and may hence need to be deleted/moved with a
further user action.

5



Figure 2. The user interface of SparqlBlocks.

Figure 3. A class diagram synthesising information on the block types in SparqlBlocks.

4.4. Specific Features of SparqBlocks

The following features are the main ones specific to the
programming environment of SparqlBlocks.

Query blocks, pattern blocks, and expression blocks.
Multiple types of blocks are connected to build queries. Fig-
ure 3 shows the taxonomy of block types used in SparqlBlocks,
in the form of a class diagram, also presenting information on
fields and relations between block types. All the classes that
are further specialised are represented as abstracts. Each block
of type Query represents the execution of a query against a
specific SPARQL endpoint (see Section 4.5). It also maintains
two pieces of information:

• the from text field, in which the URL of the remote

SPARQL endpoint has to be specified9;

• the limit numeric text field, which sets the maximum
number of result rows that are returned.

A specific query is defined by a structure of Pattern blocks
that the user composes inside the query block. Each pattern
block represents in turn either part of a basic graph pattern on
the dataset or some operator to be applied on other patterns
(see Section 4.7). Finally, Expression blocks are used for
language structures representing scalar values, i.e. single RDF
terms, variables, and calls to SPARQL functions and operators
(see Section 4.6). Each of these three main types of blocks has
different external connections, so that users can immediately
distinguish the role of these categories: query blocks have

9In the examples in this paper the value of the field is always the DBPedia
endpoint [15].

6



no external connections, pattern blocks have top and bottom
connections, expression blocks have one left connection. These
visual cues are important, but not sufficient, as specific sub-
types have different roles in the language. So, when a block of
a specific type is expected on a connection end, the systems
checks if the block being connected is compatible. If the check
fails, the block is “repelled” by the connection, thus signalling
to the user that the connection is not permitted.

Results of execution as blocks. The results of a query are
shown as blocks that can be used in the workspace, either to
modify the query itself, or to build new queries (see Figure 4d).
This feature supports an exploratory approach to the design of
the queries.

Queries and results integrated in the workspace. To
support the reuse of query results as blocks, results are part
of the workspace itself, attached to the corresponding query.
This enables to have multiple queries and their results directly
visible and actionable together in the workspace, avoiding the
need to switch between different query outputs.

Live query execution. Queries in the workspace are im-
mediately executed when created and every time they are
changed. This means the user has immediate “real time”
feedback10 and may change the query accordingly.

Export of queries and results. Users can export queries to
see them represented in the SPARQL syntax. Proficient users
may use this feature to sketch a new query visually and then
continue working on it in SPARQL, while others may profit
from this feature to learn SPARQL syntax. Result sets may
also be exported for reuse.

Built-in queries. The blocks defined so far offer a bottom-
up approach in which queries are built from components that
represent basic functional elements. Along with those basic
components, the tool provides a set of higher level blocks
to perform specific queries that are often needed. These are
the queries used to look for classes and properties in the
used vocabulary and for specific resources in the data (see
Section 4.8).

4.5. User Query Blocks

The language mimics the structure of SPARQL. As in
SPARQL, the simplest query is defined through a basic graph
pattern, whose simplest form is in turn a triple pattern. The
blocks in Figure 4a form a triple pattern that matches any triple
having dbr:The Beatles as subject and dbo:formerBandMember as
predicate. For each such triple, the variable member is bound to
the corresponding object (see Section 4.7 for details on pattern
blocks).

10The time to get the results from a remote SPARQL endpoint obviously
depends on bandwidth and server response times for the specific query.
Nevertheless, as the queries are executed asynchronously, possible delays do
not affect the responsiveness of the user interface.

In order to execute a query defined according to this pattern,
the user query block11 (see Figure 4b) is defined. This block,
representing a whole query on its own, has no external con-
nections, as it is not meant to be stacked or put inside other
blocks. Instead, it has the following fields and connections,
besides limit and from, inherited from the abstract class Query:

• the where connection, hosting a sequence of graph pattern
blocks (see Section 4.7) describing the query;

• a variable number of orderBy connections, in each of
which an expression block (see Section 4.6), typically
a variable, represents an ordering criterion;

• a drop down direction field for each orderBy connection,
to select the direction (ascending/descending) of that spe-
cific criterion;

The number of orderBy connections is variable because a
desired ordering may be obtained by a sequence of criteria
(e.g., from a dataset of some people and their telephone
numbers, to generate a telephone directory we may order first
by surname and then by name when the surname is the same).
To avoid to overly complicating the ordering mechanism, this
variability is managed in a simple way: even if the ordering is
not required, an empty connection is already available when
the query is dragged to the workspace; as soon as a block
is connected to this connection, a new empty connection is
created to the right and so on, so that an empty connection is
always available. This is the only case in which we allow an
empty connection12.

As soon as a pattern is attached to a query block, the query
is run on the remote dataset. Figure 4c shows the query block
connected to the pattern and “waiting for the results”. When
results are ready (as in Figure 4d), they appear in tabular
format attached to the lower connector of the query block.
Each row of the results represents a different matching of the
pattern, with the corresponding variable bindings. The single
data items are represented as expression blocks (specifically,
resource and literal blocks) that can be dragged from the result
set to create other queries (or even to modify the one that
generated them).

If the content of a query block is modified, the new query
is executed immediately and results shown as soon as they are
available13. Query execution is in any case non-blocking, i.e.
the UI is reactive and operational even if one or more queries
are being executed.

11The complete name “use query block” is here used to distinguish this
block from the built-in query blocks described in Section 4.8. In the rest of
the paper, this block is also called simply “query block” when the meaning
is not ambiguous.

12This choice has admittedly the potential to confound the user in believing
that a block is strictly required in that empty connection. Nevertheless, the
other alternatives that have been evaluated (like using the Blockly mutator
mechanism, that requires opening a sort of mini-workspace used to configure
a block through blocks representing parts of it) pose other forms of cognitive
overhead. In the evaluation described later in this paper, this choice did not
cause confusion in the users.

13When the query is modified, the table with the previous result set is
also immediately wiped (replaced with the “execution in progress...” block in
Figure 4c) to avoid any confusion.

7



(a) Blocks for pattern (b) Block for query

(c) Blocks joined and query in execution

(d) Query executed and results shown

Figure 4. Execution of a query in SparqlBlocks.

4.6. Expression Blocks

Expression blocks (see b in Figure 2) are visually identified
by having horizontal output (male) connectors and represent
the elements of the SPARQL language that correspond to
scalar values. The expression blocks are further classified in
resource blocks, literal blocks, variable blocks, and function
call blocks.

Resource blocks may be specified either with a full IRI or
in prefix notation (e.g. dbpedia:Beatles in Figure 2). Sparql-
Blocks offers ways to look for resources in a dataset and to
cast them directly as usable blocks (see Sections 4.5,4.8, and
categories Resources and Vocab in Section 4.9). As a further
option, users can look for the IRI through external means (e.g.,
a Linked Data browser, like the one used as front-end for
the resources by DBpedia) and then copy/paste it on a blank
resource block; if a known namespace is recognized, the IRI
is converted on the fly to the prefixed version.

Literal blocks hold strings with an optional language tag
(e.g. "robot"@en in Figure 2), booleans, or numbers (e.g. 42 in
Figure 2).

Variable blocks are used as wildcards in patterns. They are
represented by specific blocks with a drop-down menu, that
can be used to create a new variable or use one of the existing
ones (subj in Figure 2).

Function call blocks represent calls to SPARQL functions
and operators (lengthOf, absolute, <, +, etc.). Each function
call block has a number of internal connections equal to
the number of parameters (operands) that the corresponding
function (operator) has. Each internal connection accepts an
expression block.

Even if the output connectors for all the value blocks have
the same appearance, they cannot all be connected in the same
ways, because of the different roles in the language. RDF terms
and variables can be used in basic graph patterns (with some
limitations, see Section 4.7), while functions/operators cannot.
The latter are permitted whenever, in SPARQL, expressions
can be used. Currently, in SparqlBlocks, this corresponds to
the case of filters (see Section 4.7) and ordering.

4.7. Pattern Blocks
Pattern blocks (see a in Figure 2) are visually identified by

having vertical connectors (female on top and male on bottom)

8



that allow them to be stacked one under the other and used in
specific contexts, like the where connector of the query block.
As for the value blocks, even if the output connectors of all
the pattern blocks have the same appearance, they cannot be
connected all in the same way. In the case of pattern blocks
there are two strictly separated types: the pattern blocks, and
the branch blocks.

(a) Graph Pattern (b) Branch

Figure 5. Blocks for basic graph patterns.

Basic graph patterns are built using the blocks shown in
Figure 5, starting from the graph pattern block (Figure 5a),
used to group triple patterns that have a resource or variable
in common. It has two internal connectors:

• a subject connector that accepts a resource block or
variable block;

• a branch set connector for adding triple patterns related
to the common resource/variable, accepting a sequence
of branch blocks.

A branch block adds a triple pattern for which the com-
mon resource/variable of the basic graph pattern block is the
subject. It has two internal connectors:

• a predicate connector that accepts a resource block or a
variable block;

• an object connector that accepts a resource block, a literal
block, or a variable block.

Hence, following SPARQL syntax (see Section 2.2), branch
blocks can be stacked into basic graph pattern blocks to
join multiple triple patterns that have a resource/variable in
common. Basic graph pattern blocks can be in turn stacked
one upon another to build more complex basic graph patterns.

(a) Filter (b) Optional pattern

(c) Union of
two patterns

(d) Named graph pattern

Figure 6. Pattern blocks beyond basic graph patterns.

Apart from the basic graph patterns, other pattern blocks
can be used to build more complex queries:

• the filter block (Figure 6a), filters the matchings of the
graph pattern sequence14 according to a given condition
(which must evaluate to true to pass the filter); the filter
connector accepts an expression block that will be eval-
uated as boolean;

• the optional block (Figure 6b) adds a sequence of graph
pattern blocks as optional in the sense that its matching
is not required but if matched the variables will be bound
accordingly;

• the union block (Figure 6c) adds two sequence of pattern
blocks as alternatives in the sense that the union of the
matching of the first and the second pattern will be
considered;

• the named graph block (Figure 6d) selects a specific
named graph of the source RDF dataset (via the choose
connector, accepting a resource block or a variable one),
for the sequence of contained graph patterns.

4.8. Built-in Query Blocks
There are some queries that are useful for every RDF

dataset, regardless of its specific domain, for example queries
used to explore the vocabulary used in a dataset, i.e. the IRIs
used for classes, properties, and other important resources.
Hence, we present the user with a library of built-in query
blocks that offer pre-built queries for common tasks. The
BuiltinQuery type of blocks inherits from Query the from and
limit fields, to specify the SPARQL endpoint and the maximum
number of result rows, respectively. These blocks also have
an inGraph connector that optionally accepts a resource block
to select a named graph from the dataset (if not used, the
default graph is selected). As with user query blocks, the built-
in query blocks are executed as soon as the required fields and
connections are filled and are executed again each time some
of the fields or connections are changed. The results, also in
this case, are shown as a table connected to the lower part of
the query.

Currently, the library comprises the following blocks15:

Search resources block, having a withType connector,
which accepts a resource block and a named connector, accept-
ing a literal block with text (Figure 7a). It looks for resources
of the specified type and containing the specified text in their
label. The columns of the table of results are ?resource and
?label.

Search classes block, having a named connector, which
accepts a literal block with text (Figure 7b). It looks for classes
whose label contains the specified text. The typical use of a
class in a query is to look for instances of that class. So, to
give a sensible default and to reduce the potential errors, for
every result there is a column with a pre-built pattern looking

14The filter block operates on the graph pattern sequence this block is part
of, i.e. the sequence comprising blocks stacked both above and below the
filter block.

15To keep the diagram of Figure 3 simple, we do not detail these specialised
classes.

9



(a) Search Resources

(b) Search Classes

(c) Search Properties

Figure 7. Built-in query blocks.

for instances of that class. The columns of the table of results
are ?class, ?label, and ?pattern.

Search properties block, having the optional connectors
fromClass and toClass, both accepting resource blocks, and
a named connector that accepts a literal block with text
(Figure 7c). It looks for properties such that the specified text
is contained in their label, optionally going from a given class
to another given class. The typical use of a property in a query
is to look for pairs of resources connected by that property.
So, in analogy with the search classes block, there is a column
with a pre-built branch that uses the property. The columns of
the table of results are ?property, ?label, ?domain, ?range,
and ?branch.

4.9. Organization in Categories
Blocks are visualized and organized (in the toolbox) ac-

cording to their role. The query block is provided under
the category Query. Blocks used to build graph patterns are
grouped under the category Patterns. The optional, union, and
named graph blocks are under the category Compose. The
categories Logic (also containig the filter block), Math, and
Text contain literal, operators and functions blocks, organized
according to their types. Resource and variable blocks are

available in the respective categories Resources and Variables.
The category Vocab contains some pattern and branch blocks
for standard vocabularies, organized by categories named after
each of the vocabularies. Finally, all the built-in query blocks
are grouped under the category Search, as they all deal with
retrieving resources.

5. Implementation
Blockly [16] is a JavaScript library for block programming

maintained by Google, on which several tools — including
MIT App Inventor 2 — are based. It provides a set of basic
blocks covering the structure of typical imperative programs.
Most importantly, it is also extensible programmatically to
define new blocks. SparqlBlocks is based on an extension
of the Blockly JavaScript library, working entirely on the
client side. We extended the library to supply the specific
blocks needed for SPARQL queries and execution. We also
added the necessary code to generate SPARQL fragments
from the blocks. The SPARQL execution block listens for
changes in its query connection; each time the query changes,
the corresponding SPARQL query is generated and sent to
a SPARQL endpoint. The SPARQL endpoint to be used is
set as a field of the execution block. The results are used to
dynamically generate the result block and its sub-blocks. The
standard prefix definitions from prefix.cc16 are used to add
prefix declarations in the query sent to the endpoint and to
convert the IRIs in the result to the prefixed notation.

SparqlBlocks is available online17 and can be used directly
to query any public SPARQL endpoint. Furthermore, the code
is free and publicly available18.

6. Design Evaluation
Before organizing an evaluation with the users, Sparql-

Blocks was formally evaluated “in house” using the relevant
heuristics. We will first present its evaluation in terms of
cognitive dimensions and then analyze its affordances in the
specific context of query design.

6.1. Cognitive Dimensions
Cognitive dimensions [29] is a framework developed by

Green for the analysis of the properties of programming
languages. Green and Petre later derived from that general
framework a more specific one targeting visual programming
languages [30]. An initial evaluation of SparqlBlocks was per-
formed based on the cognitive dimensions deemed as relevant
to our context.

Consistency. The block syntax favours internal consistency;
external consistency is satisfied with respect to SPARQL tex-
tual syntax because the structure is maintained and, partially,
with respect to other Blockly-based languages because the
appearance and behaviour of basic expressions is preserved.

16http://prefix.cc/
17http://sparqlblocks.org/
18https://github.com/miguel76/SparqlBlocks

10

http://prefix.cc/
http://sparqlblocks.org/
https://github.com/miguel76/SparqlBlocks


Diffuseness. Representation through blocks requires more
space than textual representation. However, SparqlBlocks is
designed to be efficient in terms of graphic entities, with the
visual appearance of each block tuned to minimize the space
required for it.

Error-proneness. The chance of making syntax errors is
extremely reduced, compared to textual syntax: the affor-
dances are first coarsely constrained by the differences be-
tween shapes, then by other visual cues, and finally by the
behaviour of visual elements. The use of results for refining
existing queries or creating new ones reduces the chance of
mismatches between queries and data structure.

Hidden dependencies. Dependency and scope of variables
are strictly related to the SPARQL query structure that is
closely followed by the block structure.

Premature commitment. Queries can be as easily mod-
ified, decomposed, and recomposed at any time, the user is
thus not forced in any way to stick to earlier decisions.

Progressive evaluation. A trial and error approach is
favoured by the automatic execution of queries in query
blocks. While the user builds a query, she can immediately see
its results. Furthermore, the user can try, as separate queries,
any graph pattern that will eventually become part of the
complete query. This method is favoured by the possibility
of having multiple queries in the workspace.

6.2. Query Design Affordances
To further argue in favor of the proposed paradigm, we

show some of the affordances of SparqlBlocks related to the
query construction process. We analyse the basic operations
that a developer — whether an expert or a beginner — needs
to perform. The underlying idea is that designing a query
is an interactive process in which the query emerges from
a sequence of basic operational steps, possibly retracting or
modifying the effect of previous ones, without having to be
completely detailed in advance.

Generalization/Specialization. The design of a query may
proceed from a generic version, with a minimal number of
constraints, designed to start getting some data. Then, by
adding constraints, the query will gradually become more
selective. This process, which we call query specialization, is
supported by reducing the free variables (through replacement
with constant values or with already used variables), by adding
filter blocks, by adding more complex basic graph patterns to
be fulfilled, and by moving patterns out from an optional or
union block. The usage of blocks also for representing query
results allows the user to easily identify and manipulate the
specific blocks corresponding to resources or literals needed
to replace variables or to create filter expressions. An example
of query specialization is the transformation from the query in
Figure 8a (which asks for some mountains and their locations)
to the query in Figure 8b (where only Brazilian mountains are
selected) by dragging the resource dbpedia:Brazil from the
results in the place of the variable area.

The design of a query may also start from a specific query
on known data and then proceed by relaxing some constraints
to include a greater set of results. This process of query gener-
alization is supported by replacing constant values with vari-
ables, by removing filter blocks, by removing graph patterns
(or part of), and by moving graph patterns under an optional or
union block. These actions correspond directly and naturally
in SparqlBlocks to the removal of blocks or the creation of
new ones for the variables. An example of generalization can
be the reversal of the specialization example, i.e. from the
query in Figure 8b to the one in Figure 8a, by dragging on
the workspace a new variable block to replace the resource
dbpedia:Brazil.

Composition/Decomposition. A complex query may be
created by composing different queries together, so that, for
example, the output of separate components of the query
can be checked before composing them. As the proposed UI
permits multiple queries to be built and executed in the same
workspace, composition is directly executed by joining blocks
from different queries19. For example, to build a query for
European mountains, the user may first design a query to get
mountains (Figure 8a) and another query to get the European
countries (Figure 9a). The complete query can be composed
by dragging the graph pattern of the latter query and adding it
inside the former one and changing the area variable to country

(Figure 9b).
The reverse operation is to decompose a query in smaller

ones. From the point of view of the UI the actions are similar
to the ones needed for composition: dragging blocks and cre-
ating some new ones. Reversing the example of composition
gives an example of decomposition.

Stepwise Querying. Sometimes a query design comes after
some exploratory steps that identify relevant resources, classes,
or properties. This approach is supported by permitting values
dragged out of the result set of a query to be used by other
queries. The old query may then be removed or simply kept
aside for further use. For example, Figure 10 shows the use of a
built-in query block to get some candidate classes to represent
the set of mountains, by searching among available classes
using their label attribute. As soon as dbo:Mountain is identified
as the relevant class, the corresponding resource block may be
dragged away and used for follow-up queries, as in Figure 8a
(in the object connection of the rdf:type branch of the basic
graph pattern).

7. Iterative Design

SparqlBlocks has been tested with users to evaluate and
identify possible improvements. An informal evaluation has
been carried on with expert users, whose observations have
led to several improvements in the tool.

19Blocks may also be duplicated to preserve the original queries.

11



(a) Query to get mountains, generalization of query (b). (b) Query to get Brazilian mountains, specialization of query (a).

Figure 8. Example of specialization/generalization.

(a) Query to get European countries. (b) Query for European mountains, a composition of (a) and (c).

Figure 9. Example of query composition in SparqlBlocks.

Figure 10. Getting classes for “mount”.

7.1. Feedback from Users

After the first version of the tool was finished, we presented
it at the International Semantic Web Conference (ISWC)
2015 and at the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) 2015. These are top
conferences for, respectively, the Semantic Web and Visual
Languages research communities.

Demonstrating the tool in these two venues allowed us to
gather feedback from experts of two complementary aspects

of the user interface: its efficacy as a query design tool for
the Semantic Web and its expressivity as a visual language
(and specifically as a block programming language). The tool
was presented to interested users in the informal way typical
of software demonstrations in conferences. About a dozen of
users were invited to use the application and to share their
feelings about it in a colloquial fashion.

The following are the main reactions that we collected about
the system as a whole:

• the UI was seen as appealing by all the users;

• users had mixed feelings about ease of use: although
they felt the system was easy to use, they were not
immediately confident in using it, due to the perceived
complexity of the system in terms of available blocks
and possible combinations;

• most users considered the tool as novel, especially for the
use of the blocks in the results.

Detailed findings on specific UI elements are presented in
the next subsection, along with the performed changes.

12



7.2. Changes to the User Interface

The overall positive reactions concerning novelty and appeal
of the SparqlBlocks environment elicited subsequent work to
improve it, especially in the areas that were perceived by the
users as lacking. The following changes were introduced with
the aim to achieve a better user experience.

Join query block with execution block to reduce the
number of different available blocks and types of connections.
The blocks were distinct because of their different conceptual
role, one representing a complete SPARQL query (containing
a sequence of patterns and fields for ordering and limiting the
results) vs. the other representing a SPARQL endpoint (con-
taining a query, the field for the endpoint URL, and a generated
output field for the results). In practice, the execution block
made sense only connected to the query block (and vice versa)
and the chance of moving an entire query from an endpoint
to another was not exploited enough to justify the increased
complexity. So the two blocks were joined together in a new
query block that includes also the text field for the URL of
the endpoint and the generated field for the results.

Simplify table of results to avoid confusion, reduce the
space occupied, and the cognitive load. The appearance was
changed from the previous complex block structure to a single
results block containing directly the draggable blocks, still
arranged in a table. While before there were a large number
of blocks used without functional reason, after the change the
only non-draggable block is the top one20.

Replace pre-built queries with built-in query blocks to
reduce the cognitive load for both beginners and experienced
users. Initially, instead of built-in query blocks, we provided
pre-built queries exposing all the details. The idea was to give
the chance to not only use them but also to learn from their
structure and change them according to specific needs. The
pre-built queries occupied a lot of screen space and repre-
sented a heavy cognitive load for all the users; beginners were
especially not confident of where the parameters for the query
had to be placed. After the change, the predefined queries
are represented by single blocks (the built-in query blocks) in
which the only exposed connections and fields correspond to
the parameters that must be set to use the queries.

Reduced use of predefined values to reduce confusion
in perceived affordances and avoid the perceived extra work
needed to replace values. Blockly allows the toolbox to contain
not just basic blocks, but pre-connected groups of blocks.
In the first version we used this feature to provide default
and example values for basic blocks. That was found to be
to confusing, so we reduced the use of these pre-connected
sub-blocks, in several cases replacing them with shadow sub-
blocks.

20Due to the way the layout of blocks is managed in Blockly, it is not
currently possible to avoid the use of this last non-functional block without
extensive implementation work.

Support for building queries from classes and properties.
The typical use of a class in a query is to look for instances
of that class. So, to give a sensible default and to reduce the
potential errors, for every result of a black-box query searching
for classes there is a column with a pre-built pattern looking
for instances of that class. Similarly, the typical use of a
property in a query is to look for pairs of resources connected
by that property. So, for every result of a black-box query
searching for properties, there is a column with a pre-built
branch that uses the property. In both cases, those added blocks
may be reused directly in a query.

Directly offer highly used classes and properties to avoid
unnecessary effort to discover or manually write down them.
Classes like foaf:Agent and properties like rdfs:seeAlso are
widely used in RDF datasets so it makes sense to have them at
hand, rather then discovering them via black-box queries. The
new toolbox category Vocab contains a set of subcategories
corresponding to different vocabularies. For each vocabulary
a set of common classes and properties is available, already
available in the form of patterns and branches.

Keep in memory resources that have being used during the
session, to recover specific resources, classes, properties that
may have been found and then lost. The category Resources
contains now both the blank resource blocks (one in prefix
notation and one in full URI notation) and all the previously
created resources, the most recent ones on top.

8. User Evaluation
After the updates described in Section 7, the SparqlBlocks

UI was evaluated by a group of Master students, PhD students,
and young researchers of the Computer Science Department
of Sapienza, University of Rome. They all had a solid back-
ground in Computer Science but they were not conversant with
specific Semantic Web technologies like RDF and SPARQL.
This evaluation was designed as a formal assessment involving
the solution of three tasks and a questionnaire.

8.1. Setup
Users went through an online questionnaire with questions

and activities organized in a sequential manner:

1. rate their own background expertise on Semantic Web
concepts (Semantic Web, Linked Data) and technologies
(RDF, SPARQL), databases (relational databases, graph
databases, SQL), and block programming environments
(by indicating known environments);

2. rate the expected complexity of each of the three tasks
beforehand, without having seen the tool yet, and figur-
ing out how difficult it would be to look for the reply
with access to the Web;

3. follow an interactive tutorial designed to teach basic use
of the SparqlBlocks environment;

4. execute three tasks with the tool;

13



5. rate the actual complexity of executing each task;

6. rate the confidence in the result obtained for each task;

7. rate the tool for perceived easiness of use, appeal, and
novelty;

8. write open-ended comments on SparqlBlocks.

All the ratings were on a scale from 0 to 6. For the block
programming environments, participants were asked to select
the environments that they knew about, among a list including
the most common ones (Scratch, MIT App Inventor, etc.) and
the option other to include other environments.

11 people participated in the evaluation. Even if the whole
evaluation could have been executed online, in most of the
cases there was a facilitator so that further qualitative data and
feedback could be gathered. Only 3 participants executed the
tasks on their own. When present, the facilitator assumed also
the role of giving real-time help on the elements of the tool, as
currently there is not a complete help system embedded within
the tool. In any case, no explicit suggestions were given on
how to solve the tasks.

There were no time limits, but participants were informed
that the estimated duration of the test (including questionnaire,
tutorial, and tasks) was 50 minutes. They were told to try to
solve as many tasks as they could. They had thus the implicit
option to stop before achieving the solution of all the tasks
and record what they completed.

8.2. Tasks
The tasks were chosen so as to require the design of

structured queries of increasing complexity. Queries were run
on the DBpedia SPARQL endpoint. For each task, users were
asked to find the resource corresponding to the result by
building appropriate queries with the system:

1. third highest mountain in the world;

2. lowest mountain above 8,000 m in the world;

3. third highest mountain between China and Nepal.

These three main tasks were intertwined with some helper
tasks that required the user to find the elements that were
useful to design the main queries: the class used for mountains
and the one for countries, the property used for the eleva-
tion of mountains and the one used for their location, and
the resources used for China and Nepal. These helper tasks
required the appropriate use of black-box query blocks that
search for classes, properties, and resources. These classes,
properties, and resources could have been given directly to the
participants as basic blocks with which to build the queries, but
we preferred to test the more realistic situation in which the
user has no prior logic of the vocabulary used in the dataset.

Task 1 required building a query with a graph pattern to get
all the mountains and their elevations, then to set the ordering
to decreasing in respect to the elevation (see Figure 11).
Task 2 required adding a filter to that query, so that only
mountains with elevation more than 8,000 m. were selected,
and to invert the ordering to increasing (see Figure 12). Task 3

Figure 11. Query to solve Task 1.

Figure 12. Query to solve Task 2.

Figure 13. Query to solve Task 3.

required extending the graph pattern such that the mountains
selected are required to be located both in China and Nepal
(see Figure 13). Queries similar to the ones required in Tasks
1 and 2 were shown in the tutorial (using a text variable
instead of a numeric one), while no query in the tutorial had a
characteristic required in Task 3: two branches with the same
predicate but different objects. Listings 2 (earlier on page 3), 3,
and 4 show the SPARQL queries to solve the three tasks. They
are the textual counterpart of the block configurations shown
in Figures 11, 12, and 13.

14



PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height .

FILTER(?height >= 8000) .
}
ORDER BY (?height)
LIMIT 1

Listing 3. SPARQL corresponding to blocks in Figure 12.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbpedia: <http://dbpedia.org/resource/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height ;
dbo:locatedInArea dbpedia:China ;
dbo:locatedInArea dbpedia:Nepal .

}
ORDER BY DESC(?height)
LIMIT 3

Listing 4. SPARQL corresponding to blocks in Figure 13.

9. Quantitative Results
All the participants filled out the questionnaire, followed

the tutorial, and were able to solve at least the first task.
The average total completion time was slightly higher than
the estimated 50 minutes, around 1 hour. 9 participants out
of 11 were able to solve all three tasks, while the other two
solved only the first task.

We proceed to show in more detail the quantitative data
gathered through the questionnaire and measuring completion
times for the different parts of the test. The group of par-
ticipants is small and thus these data do not have statistical
significance. Nevertheless, the following quantitative analysis,
along with the qualitative analysis presented in Section 10, is
useful to discuss the effectiveness and challenges of Sparql-
Blocks and to gain insights on aspects to consider for such
tools.

9.1. Questionnaire
The plots in figures 14 through 16 are histograms that show

the distribution of the ratings given by the participants. The
horizontal axis is rating on a scale of 0 to 6, while the vertical
axis is the number of participants who gave that rating21. Fig-
ure 14 shows the distributions for participants’ self-assessed
relevant background knowledge, while Figure 15 shows, for
each task, the distributions for expected (assessed before using
the tool) and actual complexity (using the tool) and confidence
of the results obtained (with the tool). Figure 16 shows the
distributions for the rating given by the participants to the
various aspects of the proposed user interface: ease of use, use

21The total height of all the bars in each plot is thus 11 (for the 11 users).

(a) Semantic Web (b) Linked Data (c) RDF

(d) SPARQL (e) Relational DBs (f) Graph DBs

(g) SQL

Figure 14. Distributions of knowledge of technologies

(a) Expected Complexity (b) Actual Complexity (c) Confidence

Task 1

(d) Expected Complexity (e) Actual Complexity (f) Confidence

Task 2

(g) Expected Complexity (h) Actual Complexity (i) Confidence

Task 3

Figure 15. Distributions of Complexity by Task

(a) Ease of Use (b) Use Appeal (c) Novelty

Figure 16. Distributions of Ratings for Tool Aspect

15



appeal, and perceived novelty. Only two participants reported
to have used at least one block programming environment: in
both cases they had used Scratch, in one also Blockly Games.

9.2. Completion Times
Due to a bug in the logging of the tool we were not able to

record the detailed timing for the test, so for most participants
we have just the whole time of completion (including ques-
tionnaire and tutorial) that ranged between 46 and 76 minutes,
with an average of approximately 62 minutes. For 5 of the
participants, anyway, we have the breakdown of times among
questionnaire, test, and tutorial, which should give a quite
accurate estimate of what happened in the other cases. The
time to reply to the questionnaire was consistently around 4-5
minutes; the tutorial took between 19 and 33 minutes to be
completed (with an average of approximately 25 minutes); the
three tasks were solved between 23 and 48 minutes (with an
average of approximately 35 minutes). Among the tasks, the
first two required roughly the same amount of time (from 5 to
10 minutes each) while the third required roughly triple effort
(from 15 to 30 minutes).

9.3. Discussion
Regarding background knowledge and recalling that all the

participants are enrolled in the department of computer science
as at least Master students, it is not surprising that relational
databases (Figure 14e) and SQL (Figure 14g) are quite well
known subjects. Most of the participants declared to have a
midway expertise relating the Semantic Web (Figure 14a), but
did not know about specific Semantic Web technologies like
RDF (Figure 14c) and SPARQL (Figure 14d), with around two
thirds of the participants selecting 0 or 1. Also the Linked Data
expertise (Figure 14b) is fairly low (again, around two thirds
selecting 1), even if it is a term that shares a good part of
its meaning and technologies with the Semantic Web concept.
Maybe this could be explained by the fact that the term Linked
Data is less used than Semantic Web in an academic context.
Finally, it is also interesting to see that a technology like
graph databases (Figure 14f), which seems to be quite trending
among developers, is not well known in an academic group
of computer scientists.

We assume that the knowledge of relational databases and
SQL has helped participants in understanding the aspects
that SPARQL (and our closely related visual language) has
in common with relational algebra. At the same time, the
basic data model (RDF) is quite different from the relational
model and in part closer to the model of graph databases.
So the fact that RDF, SPARQL, and graph databases were
poorly known implies a potential challenge in understanding
the graph data model and the basics of SPARQL, which is built
on graph pattern matchings. The qualitative analysis described
in Section 10 confirms this issue.

Regarding the predicted complexity of tasks (Fig-
ures 15a, 15d, 15g), participants describe a progressively
growing complexity from Task 1 to Task 3, in agreement

with the increased complexity of the query required to solve
tasks. The complexity perceived after solving the tasks (Fig-
ures 15b, 15e, 15h) is distributed instead more like the ac-
tual solution times: Task 2 is considered only slightly more
difficult than Task 1, while Task 3 is perceived as much
more complex. The perceived confidence with the found result
(Figures 15c, 15f, 15i) follows a similar trend: participants are
quite confident in the solutions found for Tasks 1 and 2, while
confidence in the solution for Task 3 is mixed. Some hints for
the higher complexity found for Task 3 were already given
in Section 8.2: the novelty of an aspect of the query with
respect to the queries presented in the tutorial. This difference
is further discussed in the qualitative analysis described in
Section 10.

The comparison between the complexity expected for a task
and the actual complexity of solving it with SparqlBlocks
leads to a quite unappealing conclusion: the complexity met
by participants using the tool is typically higher than the
expected one. This is, in afterthought, a reasonable assessment
of complexity by the users: even if the tasks cannot be solved
by, say, a single Google query (and Tasks 2 and 3 cannot),
a user can quite easily find the results in a relatively short
time (compared to measured completion times) by exploring
the Web. Tasks 2 and 3 may probably be solved quicker by an
expert user of SparqlBlocks (Task 1 is such an easily found
answer that it would be hard to beat Google time), but for a
new user it is not the case. Needing to learn the vocabulary is
also a partial hindrance to the quick design of queries.

Perhaps in contrast with the complexity encountered when
solving the tasks, the analysis of the global ratings given by
the users to the tool is quite encouraging. The ease of use of
the tool is considered from average to good, perhaps recog-
nizing that the usage is not trivial, but after a bit of learning
SparqlBlocks permits building complex queries without having
to learn a specialized language like SPARQL. Better still,
the participants rated the tool as being highly appealing and
novel. While the assessment of novelty by users not familiar
with Semantic Web standards and tools may and should be
downplayed, the fact that the tool was appealing to non experts
of the field is for us a very promising result. We also recognize
that a probable contribution to this result is the appeal given
by the block programming paradigm to people that had not
experimented with it before (9 participants out of 11).

10. Qualitative Analysis

A facilitator attended most of the user tests (8 out of 11),
taking notes on relevant user behaviour, receiving explicit
suggestions and feedback, and following the chain of action-
related reasoning of the users. Furthermore, the online ques-
tionnaire contained an open-ended field for comments that was
used to describe the experience by the three participants that
worked on their own. The qualitative data gathered by these
means is summarized in this section, focusing on perceived
issues, strengths, and suggestions.

16



10.1. Issues Found
The main issues recognized are described in the following

paragraphs.

Difficulties in understanding how blocks may be con-
nected. These appear to be due to two main reasons:

• Failure to understand the behaviour of the block-based UI,
especially for the cases of stacking pattern/branches (the
availability of the top and bottom connections to stack
similar blocks was not evident for many participants)
and of replacing shadow blocks (the connector was often
not recognized as available when a shadow block was in
place);

• Failure to understand the basic structure of patterns-
/branches, or the role of variables versus resources (many
participants were trying to find analogies with relational
algebra, which were often misleading with respect to
graph pattern matching and the way variables are bound
in SPARQL). A recurring error was using properties
in expressions or order by clause, where the intended
behaviour would have been realized by putting in the
same place the object variable connected to the subject
by that property (see for example the query in Figure 17,
where the intended query would have been the one in
Figure 12).

Figure 17. Syntactically correct query that has two constants com-
pared in the filter clause, leading to an empty result set as the filter
expression is always false.

Query execution and table results not self-evident. At the
beginning of the tutorial, the fact that the query is automati-
cally executed and that the table of results is attached to the
same block is not apparent. After some steps of the tutorial,
this fact was understood by everyone because it is central to
every action that is performed, but missing this fact initially
may confound the user and eventually slow down progress in
the tutorial.

Operators hidden in drop-down menus were hard to
find. Some operator/function blocks contain a drop-down
menu for selecting one such item; for example a block is used
for all comparison operators (<,≤,=,,,≥,>) and one for logic
operators (and,or). But in the corresponding category of the
toolbox, each block is shown with the default operator/function

selected, thus hiding the availability of other operators/func-
tions. That confused many participants, until the logic of the
groupings was understood (after which it was not a problem
anymore).

Difficulties in using variable blocks. The combination of
the nontrivial way in which variables are used in SPARQL
(different from both how variables are used in typical pro-
gramming languages and field names are used in SQL) and
some idiosyncrasies in the behaviour of variable blocks (they
have a drop-down menu with which the variable used in that
place may be changed to be one of the other variables in
use or rename it, but that changes all the occurrences of the
variable) lead to many difficulties in usage of variables. A
typical problem was that the participant, trying something or
just exploring, randomly changed a default variable to point to
another one, leading to the disappearance of the old variable
name (because being a variable name generated by default it
was not stored), then tried to return to the previous state by
using the rename command that changed instead the name
of that variable in both occurrences. Many times participants
expected that dragging a variable from a pattern to a filter
block or an order by field had a copy behaviour rather than a
move behaviour.

Complexity of task 3. While the issues in designing queries
for Tasks 1 and 2 were mostly related to understanding the user
interface and the basic blocks of the language, designing the
query for Task 3 proved to be a challenge in terms of actually
“thinking about it” for many participants. Several of them
initially tried a graph pattern in which the branch with property
dbo:locatedInArea was used just once and then tried to solve
the problem by using a filter that required the corresponding
variable to be both dbpedia:China and dbpedia:Nepal. As the fil-
ter is applied to a matching at a time, such query does not give
any results (a variable cannot have simultaneously two differ-
ent values). To solve this task, the query needs to have two
branches with property dbo:locatedInArea that may connect to
two different variables that can then be constrained to be equal
respectively to dbpedia:China and dbpedia:Nepal in a filter (see
Figure 18). Even better, these two dbo:locatedInArea branches
may directly connect to dbpedia:China and dbpedia:Nepal, re-
spectively (as shown in Figure 13). All the participants who
solved Task 3 basically achieved it by using one of these two
queries (with some variations), but guessing a working query
was challenging for most of them. This not an issue related
to environment, but rather a recognition of the added step of
reasoning (and comprehension of the system) needed to solve
this task.

Unhelpful endpoint errors. The SPARQL protocol, used
to communicate with SPARQL endpoints, does not give much
support to the sensible communication of server errors, so very
different errors (like a syntax error or a time-out) can be dis-
tinguished only through a non-standardized textual description
returned by the server. As an example, in Table 2 we show
the responses of different SPARQL endpoints for the same

17



Figure 18. Alternative query to solve task 3.

type of error, a timeout during the execution of the query.
SparqlBlocks shows an error in place of the table of results
labelled with the truncated (not to break the user interface)
error message from the server. This is often not very helpful
to the user, like in the example shown in Figure 19 of a query
on the WikiData endpoint.

Figure 19. Query block with an error shown.

Acceptance of nonmeaningful queries. One of the main
advantages of the block-based interface is that syntax errors are
avoided. Nevertheless, the participants sometimes built queries
that either contained redundant parts or were bound to return
an empty result set, for one of two reasons:

• the syntax was accepted but it actually made no sense;
e.g. a variable not used in the query graph patterns was
used in a filter or in a block connected through an order
by connector (see for example the query in Figure 20);

• a query made sense in general terms but it did not respect
the dataset semantics; e.g. a property was used as subject
or object in a graph pattern22 (see for example the query
in Figure 21).

22That could make sense in special cases, like to query ontology meta-data,
but, in practice, it is often just an error.

Figure 20. Syntactically correct query having a variable appearing
only in the order by clause, which has no effect on the ordering.

Figure 21. Syntactically correct query in which a property appears
in the role of the object, leading to an empty result set.

10.2. Perceived Strengths
Many users saw the following as strengths of the tool.

(Phrases shown surrounded by quotation marks are actual
quotes from users23.)

“Once you get used to it, it is very intuitive.” After the
tutorial and the execution of tasks that were quite intense with
a lot of concepts to learn, the participants generally felt quite
empowered and they felt that, at that point, they were able to
solve similar problems more easily.

“Once you see the connector highlighted, you see where
you can put the block.” As previously described, participants
sometimes felt frustrated for not understanding immediately
where a block could be connected. Perhaps for that reason, the
visual feedback given when a block is close to a compatible
connector (the connector is highlighted) was much appreci-
ated.

“I enjoyed it very much!”/“I loved using this tool!” Many
participants expressed enjoyment using the tool, in accordance
with the high rate given to Use Appeal in the questionnaire.

“It may be useful for education.” Some participants
highlighted SparqlBlocks potential as an educational tool.

“Search blocks are really useful!” A participant with
previous experience with Semantic Web technologies indicated
the black-box query blocks as especially useful, possibly for

23Quotes are used to exemplify concepts expressed by multiple users (of
whom at least one of them used the given wording).

18



Table 2. Timeout error response messages from different SPARQL endpoints.

Endpoint Server Status Code Text Message
DBpedia OL Virtuoso 500 SPARQL Request Failed Virtuoso S1T00 Error SR171: Transaction timed out

SPARQL query:
(SPARQL)

WikiData Sesame 500 SPARQL-QUERY: queryStr=(SPARQL)
(full Java stack trace of a QueryTimeoutException)

Linked Open Aalto Data Service Apache Fuseki 503 Query timed out Error 503: Query timed out
Fuseki - version 2.5.0 (Build date: ...)

being familiar with the problem of exploring a dataset without
prior knowledge of the used vocabularies.

10.3. Suggestions
We received the following suggestions.

To add contextual help and examples associated with the
block types and accessible from the workspace.

To add retry button (or auto-retry) for when the query
fails for (possibly temporary) connection problems. Now the
only (admittedly suboptimal) solution is to disconnect and
reconnect the query pattern stack.

Joins among queries. While it is possible to combine any
number of patterns in a query to a single endpoint, it is
not currently possible to design queries that access multiple
endpoints. It would not be difficult to introduce this exten-
sion in the user interface, considering that SPARQL supports
that feature through an optional extension called SPARQL
Federation, but we should connect to a server supporting
it. Public SPARQL endpoints like DBpedia do not usually
support SPARQL Federation.

11. Conclusions and Future Work
We have proposed SparqlBlocks as a visual language and

an interactive environment embodying a new paradigm for
querying Linked Data. SparqlBlocks is based on a novel take
on block programming: using blocks not only to program but
also to show results, which can be incorporated in incremental
design of queries. A group of users with strong computer
science background but small to no experience in querying
Linked Data were able to successfully design non trivial
queries with the tool.

At the same time, the evaluation and analysis of the use of
SparqlBlocks opens up new questions and stimulates further
experimentation in the field of Linked Data access and block
programming environments.

11.1. SparqlBlocks
The users had some issues related to some aspects of the

user interface, especially concerning the representation of
graph patterns and the usage of variables. While participants
managed anyway to effectively use the tool in a relatively
short amount of time, tackling these issues is probably critical
to lower the bar for expertise and effort required to start
using SparqlBlocks. A central point is that maintaining the

full expressiveness of SPARQL has a cost in terms of having
a complex visual language (the user can easily mix things
in legal but meaningless ways). In many cases limiting the
expressiveness may help the novice user.

11.2. SPARQL
Some issues or requests push the limits of current SPARQL

infrastructure.

Better feedback on server errors would require going
beyond the current SPARQL protocol, while in the medium
term it could be tackled by designing a layer that may interpret
the output of the most used kinds of SPARQL endpoints and
give a semantically well-defined answer.

Proposing more complex queries, for example joining
patterns from multiple endpoints, requires not just adding the
missing pieces of the full SPARQL language, but also having
on the server side a system capable of executing those complex
distributed queries in an efficient way —which is not a fully
solved problem, neither in practice nor in theory.

11.3. Block Programming
Some issues should be analysed in the context of block

programming environments.

How to best represent optional component with default
values. This concerns the trade-off between (1) offering blocks
with defaults (for example through shadow blocks) versus
(2) requiring filled connections versus (3) allowing empty
connections (with implicit defaults).

Management and visual representation of variables. In
several block programming environments, variables are all
global, thus sacrificing the principle of information hiding
in order to gain the possibility of visually interacting with
variable blocks without having to manage scopes. In some
cases, like MIT App Inventor 2, the management of variables
has been designed to permit lexically scoped variables [31].
Locally scoped variables are introduced as parameters of
functions or through a specific block that initializes a set of
local variables and encloses the instructions in which they may
be used. In SPARQL, variables are locally scoped to queries,
but in the language there is no explicit declaration of them.
Furthermore, while variables in basic graph patterns may be
novel or refer to existing variables, variables in expressions
(for filter and order by fields) should have already been
introduced in some basic graph pattern of the same query. We

19



chose to keep the system simple by managing the variables
as if they were all global and leaving it to the user to deal
with them in the correct way. There is possibly room for
improvements by devising a visual representation of the scope
system of SPARQL.

Shapes and allowed connections. The recognition of avail-
able connections is paramount to the effective usage of a block
programming environment, but a complex language may have
many types (hence potentially many connection types) and
connectors that accept multiple types. Which is the “right”
trade-off in the number of different shapes? How can the UI be
augmented to further support fine-grained distinctions among
types in a way that the user would still be able to see the
potential connections at a glance? Blockly is rather conserva-
tive in having just two types of connectors. The OpenBlocks
system [32], upon which the original MIT App Inventor and
StarLogo TNG were based, had support for more connector
shapes and supported polymorphism. Some prototype systems
went to the length of supporting arbitrary complex derivative
types (like tuples or functions) by graphically composing basic
connector shapes through a set of rules [33, 34]. We chose not
to follow this line, as we were interested in first analysing the
potential of the approach for grasping the essential aspects of
SPARQL. Further experimentation will be needed to establish
the trade-off between the greater expressivity given by an
increase in the available possibilities for manipulation and
the consequent increase of cognitive load. It could also be
interesting to explore how a hierarchical system of types may
be represented through the use of different connection shapes.

Richness and organization of the toolbox. The organiza-
tion of the toolbox is paramount to user’s comprehension of
language affordances. It is not trivial to find a compromise on
the number of offered blocks. For example, blocks representing
multiple operators (e.g., the logic operator block, used for and
and or) are shown just with default one (in this case and) to
avoid overloading the toolbox. To use another operator, the
user must use a drop-down menu and change it. This was
found to be non evident to several users. So, at least for some
cases, it may be worth to show already all or most of the
options as separate blocks in the toolbox, as, for example,
MIT App Inventor does.

Extension of the SparqlBlocks’ paradigm to similar
applications. The results of the evaluation of the tool are so
far promising, so it could be interesting to extend the paradigm
to similar languages. The proposed incremental approach and
UI could potentially be applied to multiple query languages
and data models.

12. Acknowledgments

We thank all the reviewers for the valuable contributions
they made to the development of this paper. We are specially
grateful to Franklyn Turbak for his help and tireless commit-
ment to improve this paper through countless suggestions and

amazing editing work. We also thank all the volunteers who
participated in the user study for their time.

References
[1] T. Berners-Lee, “Linked data,” 2006. [Online]. http://www.w3.org/

DesignIssues/LinkedData.html

[2] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data – The Story So
Far,” International Journal on Semantic Web and Information Systems,
vol. 5, no. 3, pp. 1–22, 2009.

[3] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts
and Abstract Syntax,” W3C REC 25, February 2014. [Online].
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225

[4] S. Harris et al., “SPARQL 1.1 Query Language,” W3C
REC 21, March 2013. [Online]. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/

[5] S. Ferré, “Sparklis: a SPARQL Endpoint Explorer for Expressive Ques-
tion Answering,” in Proceedings of the 2014 International Conference
on Posters & Demonstrations Track (ISWC-PD’14), vol. 1272. CEUR-
WS, 2014.

[6] A. Russell, P. R. Smart, D. Braines, and N. R. Shadbolt, “NITELIGHT:
A Graphical Tool for Semantic Query Construction,” in Proceedings
of the 5th International Workshop on Semantic Web User Interaction
(SWUI ’08), vol. 543. CEUR-WS, 2008.

[7] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for All,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[8] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor 2:
Create Your Own Android Apps. O’Reilly Media, Inc., 2014.

[9] P. Bottoni and M. Ceriani, “Linked data queries as jigsaw puzzles: a
visual interface for SPARQL based on Blockly library,” in Proceedings
of the 11th Biannual Conference on Italian SIGCHI Chapter (CHItaly
2015). ACM, 2015, pp. 86–89.

[10] P. Bottoni and M. Ceriani, “SPARQL Playground: a block programming
tool to experiment with SPARQL,” in Proceedings of the ISWC 2015
workshop on Visualizations and User Interfaces for Ontologies and
Linked Data (VOILA 2015), 2015, p. 103.

[11] D. Peterson, S. S. Gao, A. Malhotra, C. M. Sperberg-McQueen,
and H. S. Thompson, “W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes,” W3C REC 5, April 2012. [Online].
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405

[12] M. Duerst and M. Suignard, “Internationalized Resource Identifiers
(IRIs),” RFC 3987 (Proposed Standard), Internet Engineering Task
Force, Jan. 2005. [Online]. http://www.ietf.org/rfc/rfc3987.txt

[13] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” RFC 3986 (INTERNET
STANDARD), Internet Engineering Task Force, Jan. 2005, updated by
RFC 6874. [Online]. http://www.ietf.org/rfc/rfc3986.txt

[14] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres,
“SPARQL 1.1 Protocol,” W3C REC 21, March 2013. [Online].
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

[15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“DBpedia – A Large-scale, Multilingual Knowledge Base Extracted
from Wikipedia,” Semantic Web Journal, vol. 5, pp. 1–29, 2014.

[16] N. Fraser, “Blockly — Google Developers,” accessed: 2017-05-10.
[Online]. https://developers.google.com/blockly/

[17] L. Rietveld and R. Hoekstra, “YASGUI: Not just another SPARQL
client,” in Proceedings of the Extended Semantic Web Conference
(ESWC 2013) Satellite Events. Springer, 2013, pp. 78–86.

[18] J. Borsje and H. Embregts, “Graphical query composition and natural
language processing in an RDF visualization interface,” B.S. Thesis,
Erasmus School of Economics and Business Economics, Erasmus Uni-
versity, Rotterdam, 2006.

20

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://developers.google.com/blockly/


[19] F. Haag, S. Lohmann, S. Siek, and T. Ertl, “QueryVOWL: Visual com-
position of SPARQL queries,” in Proceedings of the Extended Semantic
Web Conference (ESWC 2015) Satellite Events. Springer, 2015.

[20] F. Haag, S. Lohmann, S. Bold, and T. Ertl, “Visual SPARQL querying
based on extended filter/flow graphs,” in Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces (AVI
’14). ACM, 2014, pp. 305–312.

[21] J. Groppe, S. Groppe, and A. Schleifer, “Visual query system for
analyzing social semantic web,” in Proceedings of the 20th International
Conference Companion on World Wide Web (WWW ’11). ACM, 2011,
pp. 217–220.

[22] M. M. Zloof, “Query-by-Example: a data base language,” IBM Systems
Journal, vol. 16, no. 4, pp. 324–343, 1977.

[23] H. N. M. Quoc, M. Serrano, D. Le-Phuoc, and M. Hauswirth, “Super
stream collider-linked stream mashups for everyone,” in Proceedings of
the Semantic Web Challenge co-located with ISWC2012, 2012.

[24] M. Resnick, “StarLogo: An environment for decentralized modeling and
decentralized thinking,” in Conference Companion on Human Factors
in Computing Systems (CHI ’96). ACM, 1996, pp. 11–12.

[25] J. Gorman, S. Gsell, and C. Mayfield, “Learning relational algebra by
snapping blocks,” in Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (SIGCSE ’14). ACM, 2014, pp. 73–78.

[26] Y. N. Silva and J. Chon, “DBSnap: Learning database queries by
snapping blocks,” in Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, 2015, pp. 179–
184.

[27] A. Jain, J. Adebayo, E. de Leon, W. Li, L. Kagal, P. Meier,
and C. Castillo, “Mobile Application Development for Crisis Data,”
Procedia Engineering, vol. 107, pp. 255–262, 2015.

[28] S. Dasgupta and B. M. Hill, “Scratch Community Blocks: Supporting
children as data scientists,” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17). ACM, 2017, pp.
3620–3631.

[29] T. R. G. Green, “Cognitive dimensions of notations,” People and Com-
puters V, pp. 443–460, 1989.

[30] T. R. G. Green and M. Petre, “Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[31] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in App Inventor 2,” in IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 2014, pp. 129–132.

[32] R. V. Roque, “OpenBlocks: an extendable framework for graphical
block programming systems,” Master’s thesis, Massachusetts Institute
of Technology, 2007.

[33] M. Vasek, “Representing expressive types in blocks programming lan-
guages,” Undergraduate thesis, Wellesley College, 2012.

[34] S. Lerner, S. R. Foster, and W. G. Griswold, “Polymorphic blocks:
Formalism-inspired UI for structured connectors,” in Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15). ACM, 2015, pp. 3063–3072.

21


	Introduction
	Background
	Data Model: RDF
	Query Language: SPARQL
	A Reference Dataset: DBpedia
	Block Programming

	Related Work
	Structured Queries on Linked Data
	Block Programming Environments

	Features of the Programming Environment
	Requirements
	Main Strategies
	General Block Programming Features
	Specific Features of SparqBlocks
	User Query Blocks
	Expression Blocks
	Pattern Blocks
	Built-in Query Blocks
	Organization in Categories

	Implementation
	Design Evaluation
	Cognitive Dimensions
	Query Design Affordances

	Iterative Design
	Feedback from Users
	Changes to the User Interface

	User Evaluation
	Setup
	Tasks

	Quantitative Results
	Questionnaire
	Completion Times
	Discussion

	Qualitative Analysis
	Issues Found
	Perceived Strengths
	Suggestions

	Conclusions and Future Work
	SparqlBlocks
	SPARQL
	Block Programming

	Acknowledgments
	References



