
 1

Journal of

Visual Languages and Sentient Systems

Editor-in-Chief
Shi-Kuo Chang, University of Pittsburgh, USA

Co-Editors-in-Chief

Gennaro Costagliola, University of Salerno, Italy

Paolo Nesi, University of Florence, Italy

Gem Stapleton, University of Brighton, UK

Franklyn Turbak, Wellesley College, USA

An Open Access Journal published by

KSI Research Inc.

and

Knowledge Systems Institute Graduate School

 2

VLSS Editorial Board
Tim Arndt, Cleveland State University, USA

Alan F. Blackwell, University of Cambridge, United Kingdom

Paolo Bottoni, University of Rome, Italy

Francesco Colace, Univeristy of Salerno, Italy

Maria Francesca Costabile, University of Bari, Italy

Philip T. Cox, Dalhousie University, Canada

Martin Erwig, Oregon State University, USA

Vittorio Fuccella, University of Salerno, Italy

Angela Guercio, Kent State University, USA

Erland Jungert, Swedish Defence Research Establishment, Sweden

Kamen Kanev, Shizuoka University, Japan

Robert Laurini, University of Lyon, France

Jennifer Leopold, Missouri University of Science & Technology, USA

Mark Minas, University of Munich, Germany

Brad A. Myers, Carnegie Mellon University, USA

Joseph J. Pfeiffer, Jr., New Mexico State University, USA

Genny Tortora, University of Salerno, Italy

Kang Zhang, University of Texas at Dallas, USA

Copyright ⓒ 2015 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-38-1

ISSN: 2326-3261 (print)

2326-3318 (online)

DOI: 10.18293/VLSS2015

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

 3

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School, USA.

Journal of

Visual Languages and Sentient Systems
Volume 1, 2015

Table of Content

Preface 4

Regular Papers

Nurcan Gecer Ulu and Levent Kara, “Generative Interface Structure Design for Supporting Existing
Objects” 5

Gennaro Costagliola, Mattia De Rosa and Vittorio Fuccella, “Fast prototyping of visual languages using
local context-based specifications” 14

Castellano Giovanna, Fanelli Anna Maria and Torsello Maria Alessandra, “Incremental indexing of objects
in pictorial databases” 23

Gennaro Costagliola, Mattia De Rosa and Vittorio Fuccella. RankFrag: A Machine Learning-Based
Technique for Finding Corners in Hand-Drawn Digital Curves” 29

Vincenzo Del Fatto, Vincenzo Deufemia, Luca Paolino and Sara Tumiati, “WiSPY: A Tool for Visual
Specification and Verification of Spatial Integrity Constraints” 39

Guoqiang Cai, “GO-Bayes Method for System Modeling and Safety Analysis” 49

Research Notes

Fabio Pittarello, “Testing a Storytelling Tool for Digital Humanities” 59

Luca Greco, Francesco Colace, Vincenzo Moscato, Flora Amato and Antonio Picariello, “A Quick Survey
on Sentiment Analysis Techniques: a lexical based perspective” 62

 4

PREFACE

The Journal of Visual Languages and Sentient Systems (VLSS) is intended to be a forum for researchers,
practitioners and developers to exchange ideas and research results, for the advancement of visual languages
and sentient multimedia systems. The success of visual languages especially iconic languages is evident to
everyone because most smart phones these days use iconic languages to communicate with the end user.
Ironically the success of visual languages in practice has led to doubt and uncertainty about the future of
visual languages research. However the advances of sentient systems can motivate more research on visual
languages, both at the practical level and at the theoretical level.

Sentient systems are distributed systems capable of actively interacting with the environment by gathering,
processing, interpreting, storing and retrieving multimedia information originated from sensors, robots,
actuators, websites and other information sources. In order for sentient systems to function efficiently and
effectively, visual languages may play an important role. To stimulate research towards that goal, the
Journal of Visual Languages and Sentient Systems is born.

VLSS publishes research papers, state-of-the-art surveys, review articles, in the areas of visual languages,
sentient multimedia systems, distributed multimedia systems, sensor networks, multimedia interfaces, visual
communication, multi-media communications, cognitive aspects of sensor-based systems, and
parallel/distributed/neural computing & representations for multimedia information processing. Papers are
also welcome to report on actual use, experience, transferred technologies in sentient multimedia systems
and applications. Timely research notes, viewpoint articles, book reviews and tool reviews, not to exceed
three pages, can also be submitted to VLSS.

Manuscripts shall be submitted electronically to VLSS. Original papers only will be considered.
Manuscripts should follow the double-column format and be submitted in the form of a pdf file. Page 1
should contain the article title, author(s), and affiliation(s); the name and complete mailing address of the
person to whom correspondence should be sent, and a short abstract (100-150 words). Any footnotes to the
title (indicated by *, +, etc.) should be placed at the bottom of page 1.

Manuscripts are accepted for review with the understanding that the same work has not been and will not be
nor is presently submitted elsewhere, and that its submission for publication has been approved by all of the
authors and by the institution where the work was carried out; further, that any person cited as a course of
personal communications has approved such citation. Written authorization may be required at the Editor's
discretion. Articles and any other material published in VLSS represent the opinions of the author(s) and
should not be construed to reflect the opinions of the Editor(s) and the Publisher.

Shi-Kuo Chang
Editor-in-Chief
Journal of Visual Languages and Sentient Systems

DOI reference number: 10.18293/VLSS2015-033
5

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

6

7

8

9

10

11

12

13

Fast prototyping of visual languages using local context-based specifications

Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella
Dipartimento di Informatica, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

{gencos, matderosa, vfuccella}@unisa.it

Abstract

In this paper we present a framework for the fast pro-
totyping of visual languages exploiting their local context
based specification.

In previous research, the local context specification has
been used as a weak form of syntactic specification to de-
fine when visual sentences are well formed. In this pa-
per we add new features to the local context specification
in order to fully specify complex visual languages such as
entity-relationships, use case and class diagrams. One of
the advantages of this technique is its simplicity of applica-
tion and, to show this, we present a tool implementing our
framework. Moreover, we describe a user study aimed at
evaluating the satisfaction and effectiveness of users when
prototyping a visual language.

Keywords: local context, visual languages, visual lan-
guage syntax specifications.

1 Introduction

Due to the ever growing evolution of graphical inter-
faces, visual languages are now a well established form of
digital communication in many work and research environ-
ments. They are being used extensively by engineers, ar-
chitects and others whenever there is the need to state and
communicate ideas in a standardized way. This is tradi-
tionally happening, for example, with software engineering
UML graphical notations but it is also catching on in other
research fields, such as, for example, synthetic and system
biology, [21, 16].

In the 1990s and the early 2000s, the formalization and
implementation of visual languages have excited many re-
searchers and many proposals have been defined. In particu-
lar, formalisms were defined mainly based on the extension
of textual grammar concepts, such as attributed grammars

DOI reference number: 10.18293/DMS2015-50

[13, 17, 9, 23] and graph grammars [3, 14], and on meta-
modeling [4].

Lately, a new proposal for the specification and inter-
pretation of diagrams from the only syntactic point of view
has been given in [7]. This research is motivated by the
need to reduce the complexity of the visual language syntax
specification and originated while working on the recogni-
tion of sketch languages and on the difficulty of recogniz-
ing the symbols of the language. In order to disambiguate
sketched symbols, the more knowledge is given on each
symbol and on its possible interactions with the others, the
better. The methodology, known as local context-based vi-
sual language specification requires the designer to define
the local context of each symbol of the language. The local
context is seen as the interface that a symbol exposes to the
rest of the sentence and consists of a set of attributes defin-
ing the local constraints that need to be considered for the
correct use of the symbol.

At first, this approach is, then, more lexical than syntac-
tic: the idea is to provide a very detailed specification of the
symbols of the language in order to reduce complexity when
specifying the language at the sentence level. On the other
hand, due to the easy-to-use and intuitiveness requirements,
many practical visual languages have a simple syntax that
can be completely captured by the local context specifica-
tion as defined in [7]. To show this, the syntax of the binary
trees and of a Turing complete subset of flowcharts have
been completely specified through local context in [7].

When considered as a syntax specification, however, the
simplicity of the approach is counterbalanced by its low ex-
pressiveness, especially with respect to the more powerful
grammars formalisms.

In this paper, we define new features to be added to the
original local context definition in order to push the ex-
pressiveness of the methodology and to allow the complete
syntactic specification of complex visual languages such
as entity-relationships, use case and class diagrams. We
present the tool LoCoMoTiVE (Local Context-based Mod-
eling of 2D Visual language Environments) implementing
our framework which basically consists of a simple inter-

DOI reference number: 10.18293/VLSS2015-050

14

face allowing a user, in one screen, to define the symbols of
the language and their local context. Moreover, we demon-
strate the usability of the tool in a user study, in which par-
ticipants are asked to define and test a visual language after
a short introduction to the tool. Besides the participants’
ability to define the visual language, we also administered a
System Usability Scale (SUS) [5] questionnaire to evaluate
their satisfaction with the tool.

The rest of the paper is organized as follows: the next
section refers to related work; Section 3 gives the back-
ground information on the “local context-based visual lan-
guage specification”, sketches the three new features and
presents a complete syntax specification for the use case di-
agrams; Section 4 is devoted to describe the tool; the exper-
iment is presented in Section 5; some final remarks and a
brief discussion on future work conclude the paper.

2 Related Work

In recent years many methods to model a diagram as a
sentence of a visual language have been devised. A diagram
has been represented either as a set of relations on symbols
(the relation-based approach) [22] or as a set of attributed
symbols with typed attributes representing the “position” of
the symbol in the sentence (the attribute-based approach)
[12]. Even though the two approaches appear to be differ-
ent, they both consider a diagram (or visual sentence) as a
set of symbols and relations among them or, in other words,
a spatial-relationship graph [3] in which each node corre-
sponds to a graphical symbol and each edge corresponds to
the spatial relationship between the symbols.

Unlike the relation-based approach, where the relations
are explicitly represented, in the attribute-based approach
the relations must be derived by associating attribute values.

Based on these representations, several formalisms have
been proposed to describe the visual language syntax, each
associated to ad-hoc scanning and parsing techniques: Rela-
tional Grammars [23], Constrained Set Grammars [17], and
(Extended) Positional Grammars [10]. (For a more exten-
sive overview, see Marriott and Meyer [18] or Costagliola
et al. [8].) In general, such visual grammars are specified
by providing an alphabet of graphical symbols with their
“physical” appearance, a set of spatial relationships gener-
ally defined on symbol position and attachment points/ar-
eas, and a set of grammar rules in context-free like format.

A large number of tools exist for prototyping visual lan-
guages. These are based on different types of visual gram-
mar formalisms and include, among others, VLDesk [9],
DiaGen [19], GenGed [2], Penguin [6], AToM3 [11], and
VL-Eli [15].

Despite the context-free like rule format, visual gram-
mars are not easy to define and read. This may explain
why there has not been much success in transferring these

techniques from research labs into real-world applications.
We observe that several visual languages in use today are
simple languages that focus on basic components and their
expressive power. These languages do not need to be de-
scribed with complex grammar rules. Our approach pro-
vides a simpler specification for many of them, making it
easier to define and quickly prototype visual languages.

3 Local Context Specification of Visual Lan-

guages

According the to the attribute-based representation, a vi-
sual sentence is given by a set of symbols defined by a set of
typed attaching points linked through connectors. In [7], the
local context specification of a visual language consists in
the definition of the sets of graphical elements (named sym-
bols) and spatial relations (named connectors) composing
the language and, for each of them, their attributes. These
are:
• Name of the graphical symbol;
• Graphical aspect (for example, specified through an

svg-like format);
• Maximum mumber of occurrences of the symbol in a

sentence of the language;
• Attachment areas: an attachment area is a set of points

(possibly one) through which symbols and connectors
can be connected. For each area the following at-
tributes have been identifed:

– Name of the attachment area;
– Position: the location of the attachment area on

the symbol or connector;
– Type: an attachment area of a symbol can be con-

nected to an an attachment area of a connector
only if they have the same type;

– Local constraints: such as the max number of
possible connections for an attachment area.

As a further and sentence level constraint, a local-context
based specification may assume that the underlying spatial-
relationship graph of any sentence of the specified language
is connected.

As an example, Table 1 shows the attributes of the
statement symbol STAT and the connector ARROW when
considered as alphabetical elements of a particular set of
flowcharts. The specification states that STAT has the
graphical aspect of a rectangle; it has two attaching areas
named IN and OUT corresponding to the upper and lower
sides of the rectangle, respectively; it may occur zero or
more times in a flowchart; the attachment area IN can only
be connected to an attachment area of a connector with type
enter, while the attachment area OUT can only be con-
nected to an attachment area of a connector with type exit.
Moreover, IN may participate in one or more connections,
while OUT may participate in only one connection. As re-

2
15

Symbol Attachment areas

Symbol name Graphics

occurrences name

type

constraints

STAT � 0
IN enter connectNum � 1

OUT exit connectNum = 1

Attachment areas

Connector name

Graphics

name

type

constraints

ARROW
HEAD enter connectNum = 1

TAIL exit connectNum = 1

Table 1: Attribute specification for the symbol STAT and the connector ARROW.

gards the connector ARROW, its graphical appearance is
given by a line with a head and the attachment areas are
located to the head (HEAD) and tail (TAIL) of the arrow it-
self. An arrow can be connected to only one symbol through
its head and only one symbol through its tail. In [7], com-
plete local context specifications for a particular set of Tur-
ing complete flowcharts and for binary trees are given to
show how local context can be used to fully specify the syn-
tax of visual languages.

3.1 New Local Context Features

In order to capture as much as possible of the syntax of
complex languages other than flowcharts and binary trees
and to keep simplicity, new local features need to be added
to the original definition of local context. In particular, we
introduce the possibility of
• defining symbol level constraints involving more than

one attaching area of a symbol/connector as opposed
to constraints on individual attaching areas;

• assigning multiple types to attaching areas;
• defining constraints to limit connector self loops.
These features allow us to give complete local context

specifications of complex languages such as the entity rela-
tionship diagrams, class diagrams, and use case diagrams.
In the following, we show the practical usefulness of this
extension by referring to the local context specifications of
the use case diagrams and the entity-relationship diagrams.

Symbol level constraints. Table 2 shows the binary
version of the relation symbol of the well-known entity-
relationship (E-R) graphical notation. Each vertex of the
symbol has one attaching point (Up, Down, Left or Right)
of type enter. In order to force its use as an E-R binary
relation (as opposed to ternary) the constraints need to set
the sum of all their connections to two, apart from requiring
that the number of connections to each attaching point be
at most one. In this case, the feature simplifies the speci-
fication by avoiding that a designer define all the possible
ways a binary relation symbol can be attached to the other
symbols.

Multiple types and Connector self loop constraints. Ta-
ble 3 shows the complete specification of the use case
graphical notation, while Figure 1 shows some examples of
correct and incorrect sentences. In the table, the language
symbols and connectors are specified in the first and second
part while, for sake of completeness, the last row declares,
if present, any requirement at sentence level. It can be noted
that the attachment area Border of the symbol ACTOR (first
table row) has two types GenA and AssOut. By consider-
ing the Connector part of the table, this means that an AC-
TOR can be connected through its border to both the head
and tail of the GENERALIZATION A connector (through
GenA) and also to the attaching point P1:P2 of the connec-
tor ASSOCIATION (through AssOut). Moreover, because
of the constraint numLoop = 0 , a GENERALIZATION A
connector cannot be connected to the border of an ACTOR
with its head and tail, simultaneously.

In Figure 1, case (b) shows the correct use of connector
GENERALIZATION Uc, while case (d) shows the correct
use of connector GENERALIZATION A.

The use of these new features allow the language de-
signer more flexibility in the definition of the language.
However, multiple types must be carefully used when deal-
ing with connectors with the same graphical aspect since
they may introduce ambiguities in the language.

It is not difficult to see that Table 3 completely specifies
the syntax of the use case graphical notation as presented
in http://agilemodeling.com/artifacts/useCaseDiagram.htm
but without the optional “System boundary boxes”.

With respect to a grammar definition, the new specifi-
cation is basically distributed on the language elements in-
stead of being centralized.

As a final note, the selection of which language elements
are symbols and which are connectors is completely left to
the language designer. Moreover, connectors may not have
a graphical representation (such as the relationships “touch-
ing”, “to the left of”).

3
16

Symbol Symbol Attachment points

name

Graphics

occurrences name

type

constraints

BIN REL � 0

Up ConA connectNum(X) 1 for X =
Up,Down,Left ,Right ^ (connectNum(Up) +
connectNum(Down) + connectNum(Left) +
connectNum(Right) = 2) ^
(connectNum(Border) � 0)

Left ConA
Right ConA
Down ConA
Border ConB

Table 2: ER binary relation specification.

Symbol Attachment points

Symbol name Graphics

occurrences name

type

constraints

ACTOR � 1 Border
GenA

connectNum �
0 ^ numLoop = 0

AssOut connectNum � 0

USE CASE � 1 Border

GenUc
connectNum �

0 ^ numLoop = 0

AssIn connectNum � 0

Dep connectNum �
0 ^ numLoop = 0

Attachment points

Connector

Graphics

name

type

constraints

ASSOCIATION P1 :P2 AssOut connectNum = 1
P2 :P1 AssIn connectNum = 1

GENERALIZATION A Head GenA connectNum = 1
Tail GenA connectNum = 1

GENERALIZATION UC Head GenUc connectNum = 1
Tail GenUc connectNum = 1

DEPENDENCY Head Dep connectNum = 1

Tail Dep connectNum = 1

Non local constraint

the spatial-relationship graph must be connected

Table 3: Use case diagrams language specifications.

4 The tool LoCoMoTiVE

The current implementation of the local context method-
ology includes the new set of constraints defined in the pre-
vious section and is composed of two different modules:
• LoCoModeler: the local context-based specification

editor, and
• TiVe: a web-based visual language environment for

editing and checking the correctness of the visual sen-
tences.

4.1 LoCoModeler

The LoCoModeler module allows designers to create
and edit visual language specifications based on local con-

text, quickly and easily. Its output is the formal definition
in XML format of the language that will be used during the
disambiguation and the recognition of diagrams. Once the
language designer has completed the specification, s/he can
compile it into a web-based environment (the TiVE module)
to allow users to draw sentences and verify their correct-
ness. During language definition, this feature also allows
the designer to check the correctness of the specification.

The main view of the LoCoModeller GUI is shown in
Figure 2. Its main components are:

• A textbox containing the name of the language and a
checkbox to enable/disable the option that diagrams
must necessarily be connected;

• A table reporting the main information of symbols and
connectors included in the language. It is possible to

4
17

(a) (incorrect) (b) (correct) (c) (incorrect)

(d) (correct) (e) (incorrect)

Figure 1: Simple instances of syntactically correct and in-
correct use case diagrams.

interact with the widgets in the selected row to edit
and/or delete it. The user can add new symbols or con-
nectors by using the buttons below the table.

• A panel (on the right) showing a graphical preview of
the symbol/connector selected in the table. It is possi-
ble to change the graphical representation of the sym-
bol by using the button Change.

• A table (in the center) showing the information related
to the selected symbol/connector. Each row specifies
the attachment points and their constraints. It is pos-
sible to add new rows by using the buttons above the
table;

• A textarea to specify the symbol/connector level con-
straints through C language-like expressions.

4.1.1 Wizard

A new language can be defined by using a wizard inter-
face. Through a sequence of three different views, the user
chooses the name of the language, its symbols and connec-
tors (see Figure 3). Symbols and connectors are chosen
from a hierarchical repository and their definition already
includes some attachment points having default types/con-
straints. The user can choose whether to keep the default
values or modify them.

(a) Language name selection

(b) Symbol selection

(c) Connector selection

Figure 3: Wizard.

4.2 TiVE: the visual language environment

Once the language is defined, the diagrams can be com-
posed by using the symbols and the connectors defined in its
specification. This can be done through the graphical editor
TiVE, which is a web application enabling diagram compo-
sition directly in the web browser and which is created by
and can also be launched from the LoCoModeler.

Figure 4 shows the environment. The central component
is the working area where the diagrams are composed. The
symbols and connectors used for diagram composition are
displayed in the sidebar, which contains only those elements
included in the definition of the language. An element can
be selected and dragged in the central working area.

The upper toolbar provides shortcuts to features such as
zoom manipulation, changing fonts, checking diagram cor-
rectness, etc.

The correctness of a diagram can be checked at any point
of the diagram composition. The diagram in Figure 5 rep-
resents an ER diagram with two entities interconnected by

5
18

Figure 2: The Local Context-based Modeler.

a binary relation. The diagram is correct and, by launching
the check, an alert reports the positive result of the verifi-
cation. The diagram in Figure 6, instead, represents an in-
correct ER diagram, as the relation (the diamond symbol) is
connected to a single entity (the rectangle). This violates the
local constraints defined for the relation symbol in the lan-
guage. In fact, in this language, relations must be connected
to two or three entities through the diamond’s vertices.

4.3 Implementation

The LoCoModeler allows the user to produce the lan-
guage specification in XML format. The specification is
used during the removal of ambiguities and the recognition
of symbols and connectors.

TiVE is based on Draw.io (https://www.jgraph.com),
which is a free web application that allows users to create
charts directly from the browser and integrates with Google
Drive and Dropbox to store data. Draw.io is in turn based on
the mxGraph library, which renders the diagram and stores
its structure in the form of a graph, where symbols and con-
nectors are its vertices. We modified the library to handle
attaching points of symbols and connectors.

In a typical thin-client environment, mxGraph is divided
into a client-side JavaScript library and a server side library
in one of the two supported languages: .NET and Java. The

Figure 4: The TiVE home page.

JavaScript library is a part of a larger web application. The
JavaScript code uses vector graphics to render the chart.
The languages used are SVG (Scalable Vector Graphics) for
standard browsers and VML (Vector Markup Language) for
Internet Explorer.

An implementation of the tool can be downloaded at the
address http://weblab.di.unisa.it/locomotive.

6
19

Figure 5: Successful diagram verification (no error found).

Figure 6: Failed diagram verification (one error found).

5 Evaluation

We ran a user study aimed at measuring users’ capac-
ity to define visual languages using our tool. Furthermore,
we recorded the perceived usability of the system through a
questionnaire.

5.1 Participants

Our participants were six male and four female Italian
university students in computer science (six master students
and four phd students), aged between 22 and 45 (M = 26.8,
SD = 6.9), with no previous experience with the system.

Participants were asked to evaluate, with a 5-point Lik-
ert scale, their prior knowledge in programming, diagrams,
compilers, formal languages, flowchart and other visual lan-
guages. The average and standard deviations of the re-
sponses are reported in Table 4.

Knowledge Avg. St. dev.

Programming 4.40 0.70
Diagrams 3.40 0.84
Compilers 2.90 1.10

Formal languages 3.40 1.07
Flowchart 3.40 0.97

Other visual languages 2.80 1.14

Table 4: Participants prior knowledge evaluation with a 5-
point Likert scale.

(a) BEGIN (b) END (c) STAT (d) IO (e) PRED

Figure 7: Flowchart symbols.

5.2 Apparatus

The experiment was executed on a Dell Precision T5400
workstation equipped with an Intel Xeon CPU at 2.50 GHz
running Microsoft Windows 8.1 operating system, the Java
Run-Time Environment 7, and the Firefox browser.

5.3 Procedure

Participants were asked, as a single task of the session,
to define a visual language. In particular, they were asked to
create a simplified version of flowcharts, as defined in [7],
with the following features:
• The language only includes a small set of blocks (start,

end, I/O, decision, processing - shown in Figure 7) and
an arrow as a connector;

• The handling of text within blocks or arrows is not re-
quired;

• An arrow is always directed at the top of a block and
comes out from its bottom;

Participants were asked to specify all the constraints neces-
sary to ensure that only well formed flowcharts would pass
the correctness check. Furthermore, they were required to
carefully check they had defined the language correctly be-
fore submitting the task. The time limit for task completion
was half an hour.

Before the experimental session, each participant had a
brief tutorial phase where an operator (one of the authors)
explained him/her the purpose and operation of the system
and instructed him/her about the experimental procedure
and the task. While showing the operation of the system,
the operator also showed participants how to use our tool
to define a simple visual language, in this case a simplified
version of ER diagrams.

7
20

A post-test questionnaire in the form of System Usabil-
ity Scale (SUS) [5] was administered to participants at the
end of the experiment. SUS is composed of 10 statements
to which participants assign a score indicating their strength
of agreement in a 5-point scale. The final SUS score ranges
from 0 to 100. Higher scores indicate better perceived us-
ability. We also gathered some participants’ freeform com-
ments.

5.4 Results

Two participants out of ten completed the experiment
defining the language perfectly, seven completed the exper-
iment with minor inaccuracies in the language definition,
while only one of them completed the experiment with ma-
jor inaccuracies. Here, for minor inaccuracies, we mean
small errors that allow user to compose at least one in-
valid diagram which however satisfied the user’s language
specification. Typical errors are inaccuracies in defining at-
tachment points cardinality. The participant who committed
major errors was unable to compose and correctly compile
any diagram. The average task completion time was 25.5
minutes.

The responses given by participants to the statements in
the SUS questionnaire are reported in Table 5. In particular
the responses to statements 1, 3, 5, 7 and 9 show that partic-
ipants appreciate the system, that they considered it simple
to use and easy to learn even for non-experts of visual lan-
guages. Moreover the responses to questions 2, 4, 6, 8 and
10 show that participants did not feel they need support to
use the system and did not found the system complex, intri-
cate or inconsistent.

The scores of the questionnaire calculated on the re-
sponses of the participants range from 37.5 to 95, with an
average value of 80.0, which value indicates a good level of
satisfaction [1]. As it can be seen from the data in the ta-
ble, only a single participant (the one who committed major
errors) expressed a negative judgment on the tool.

In addition, participants provided some freeform sugges-
tions for improving the system: most of the criticism was
expressed on the editor for diagram composition tool, which
was not felt to be very user-friendly. In particular, partici-
pants noticed that some basic operations for diagram com-
position, such as the insertion of connectors, are surpris-
ingly uncomfortable. Furthermore, one participant pointed
out that the editor is not well integrated with the VLDE.

6 Conclusions

In this paper we have presented a framework for the fast
prototyping of visual languages exploiting their local con-
text based specification. We have shown how to define a vi-
sual language by extending the local context with three new

features and have presented a simple interface for its im-
plementation LoCoMoTiVE. Moreover, we have described
a user study for evaluating the satisfaction and effective-
ness of users when prototyping a visual language. At the
moment, the user study has been limited to the simpler ver-
sion of the local context methodology in order to provide
us with a first feedback. Given the encouraging results, we
are now planning to test the usability of LoCoMoTive with
more complex applications.

The local context approach may then greatly help visual
language designers to prototype their languages very eas-
ily. However, more studies are needed to investigate the
computational borders of the approach. Our intention is not
too push local context features more than needed, keeping
simplicity as a priority. More complex language constructs
should then be left to the following phases of the recognition
process as it is the case for programming language compiler
construction.

As a final goal, we are working on the integration of the
local context approach in frameworks for the recognition of
hand drawn sketches, as shown in [7].

References

[1] A. Bangor, P. T. Kortum, and J. T. Miller. An Empirical
Evaluation of the System Usability Scale. International
Journal of Human-Computer Interaction, 24(6):574–594,
2008.

[2] R. Bardohl. Genged: a generic graphical editor for visual
languages based on algebraic graph grammars. In Visual
Languages, 1998. Proceedings. 1998 IEEE Symposium on,
pages 48–55, Sep 1998.

[3] R. Bardohl, M. Minas, G. Taentzer, and A. Schürr. Hand-
book of graph grammars and computing by graph transfor-
mation. chapter Application of Graph Transformation to Vi-
sual Languages, pages 105–180. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1999.

[4] P. Bottoni and G. Costagliola. On the definition of visual
languages and their editors. In M. Hegarty, B. Meyer, and
N. Narayanan, editors, Diagrammatic Representation and
Inference, volume 2317 of Lecture Notes in Computer Sci-
ence, pages 305–319. Springer Berlin Heidelberg, 2002.

[5] J. Brooke. Sus: A quick and dirty usability scale. In P. W.
Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland,
editors, Usability evaluation in industry. Taylor and Francis,
London, 1996.

[6] S. S. Chok and K. Marriott. Automatic construction of in-
telligent diagram editors. In Proceedings of the 11th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’98, pages 185–194, New York, NY, USA, 1998.
ACM.

[7] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. Journal of Visual
Languages & Computing, 25(6):955–962, 2014. Distributed
Multimedia Systems {DMS2014} Part I.

8
21

Question U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Avg.

resp.

St.

dev.

S1 I think that if I needed to define a vi-
sual language I would use this system

4 5 4 4 4 3 5 3 5 5 4.2 0.79

S2 I found the system unnecessary com-
plex

1 1 1 2 4 2 2 4 1 2 2.0 1.15

S3 I found the system very easy to use 5 5 5 4 4 4 4 2 5 4 4.2 0.92
S4 I think I would need the support of a

person who is already able to use the
system

2 1 1 1 1 2 2 4 1 1 1.6 0.97

S5 I found the various system functions
well integrated

4 5 4 3 3 4 4 3 5 3 3.8 0.79

S6 I found inconsistencies between the
various system functions

2 1 1 2 1 1 1 2 1 2 1.4 0.52

S7 I think most people can easily learn to
use the system

5 4 5 4 5 4 5 3 5 4 4.4 0.70

S8 I found the system very intricate to use 2 1 1 1 2 2 2 4 1 2 1.8 0.92
S9 I have gained much confidence about

the system during use
4 4 4 5 5 4 3 2 4 5 4.0 0.94

S10 I needed to perform many tasks before
being able to make the best use of the
system

1 1 2 1 1 1 3 4 2 2 1.8 1.03

Score 85 95 90 82.5 80 77.5 77.5 37.5 95 80 80 16.33

Table 5: SUS questionnaire results (5-point Likert scale).

[8] G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM Trans. Softw. Eng.
Methodol., 13(4):431–487, Oct. 2004.

[9] G. Costagliola, V. Deufemia, and G. Polese. Visual lan-
guage implementation through standard compiler–compiler
techniques. Journal of Visual Languages & Computing,
18(2):165 – 226, 2007.

[10] G. Costagliola and G. Polese. Extended positional gram-
mars. In Proc. of VL ’00, pages 103–110, 2000.

[11] J. de Lara and H. Vangheluwe. Atom3: A tool for multi-
formalism and meta-modelling. In R.-D. Kutsche and
H. Weber, editors, Fundamental Approaches to Software En-
gineering, volume 2306 of Lecture Notes in Computer Sci-
ence, pages 174–188. Springer Berlin Heidelberg, 2002.

[12] E. J. Golin. Parsing visual languages with picture layout
grammars. J. Vis. Lang. Comput., 2(4):371–393, Dec. 1991.

[13] E. J. Golin and S. P. Reiss. The specification of visual lan-
guage syntax. J. Vis. Lang. Comput., 1(2):141–157, June
1990.

[14] R. J. and A. Schurr. Defining and parsing visual languages
with layered graph grammars. Journal of Visual Languages
& Computing, 8.1:27–55, 1997.

[15] U. Kastens and C. Schmidt. Vl-eli: A generator for vi-
sual languages - system demonstration. Electr. Notes Theor.
Comput. Sci., 65(3):139–143, 2002.

[16] N. Le Novere et al. The systems biology graphical notation.
Nature Biotechnology, 27:735–741, 2009.

[17] K. Marriott. Parsing visual languages with constraint multi-
set grammars. In M. Hermenegildo and S. Swierstra, ed-
itors, Programming Languages: Implementations, Logics
and Programs, volume 982 of Lecture Notes in Computer
Science, pages 24–25. Springer Berlin Heidelberg, 1995.

[18] K. Marriott and B. Meyer. On the classification of visual
languages by grammar hierarchies. Journal of Visual Lan-
guages & Computing, 8(4):375 – 402, 1997.

[19] M. Minas and G. Viehstaedt. Diagen: A generator for
diagram editors providing direct manipulation and execu-
tion of diagrams. In Proceedings of the 11th International
IEEE Symposium on Visual Languages, VL ’95, pages 203–,
Washington, DC, USA, 1995. IEEE Computer Society.

[20] I. Plauska and R. Damaševičius. Design of visual language
syntax for robot programming domain. Information and
Software Technologies Communications in Computer and
Information Science, 403:297–309, 2013.

[21] J. Quinn et al. Synthetic biology open lan-
guage visual (sbol visual), version 1.0.0, 2013.
http://sbolstandard.org/downloads/specification-sbol-visual/
[Online; accessed 4-June-2015].

[22] J. Rekers and A. Schurr. A graph based framework for
the implementation of visual environments. In Visual Lan-
guages, 1996. Proceedings., IEEE Symposium on, pages
148–155, Sep 1996.

[23] L. Weitzman and K. Wittenburg. Relational grammars for
interactive design. In Visual Languages, 1993., Proceedings
1993 IEEE Symposium on, pages 4–11, Aug 1993.

9
22

Incremental indexing of objects in pictorial databases

G. Castellano, A.M. Fanelli, M.A. Torsello
Computer Science Department

University of Bari A. Moro
Via Orabona, 4 - 70126 Bari, Italy

(giovanna.castellano, annamaria.fanelli, mariaalessandra.torsello)@uniba.it

Abstract

Object indexing is a challenging task that enables the
retrieval of relevant images in pictorial databases. In this
paper, we present an incremental indexing approach of pic-
ture objects based on clustering of object shapes. A semi-
supervised fuzzy clustering algorithm is used to group sim-
ilar objects into a number of clusters by exploiting a-priori
knowledge expressed as a set of pre-labeled objects. Each
cluster is represented by a prototype that is manually la-
beled and used to annotate objects. To capture eventual
updates that may occur in the pictorial database, the pre-
viously discovered prototypes are added as pre-labeled ob-
jects to the current shape set before clustering. The pro-
posed incremental approach is evaluated on a benchmark
image dataset, which is divided into chunks to simulate the
progressive availability of picture objects during time.

1. Introduction

The extensive use of image digital capturing systems in
several fields has generated massive amount of digital im-
ages that are typically collected in pictorial databases [1].
Most of the past projects on pictorial databases focus on
content-based approaches searching images that are visu-
ally similar to the query image [2]. Such approaches do
not have the capability of assigning textual descriptions au-
tomatically to pictures, i.e. they do not perform linguistic
indexing.

Linguistic indexing is a difficult task due to the semantic
gap problem, i.e. the lack of coincidence among the visual
content of images represented by automatically extracted
features and the human visual interpretation of the pic-
ture content typically expressed by high-level concepts [3].
Learning concepts from images and automatically translat-
ing the content of images to linguistic terms can bridge the
semantic gap thus resulting in one of the most influential
factors in successful image retrieval [4], [5] consequently

broadening the possible usages of pictorial databases.
Different machine-learning methods have been applied

to learn associations between the low-level features and the
linguistic concepts in a pictorial database [15]. In particular,
learning techniques can be used to annotate objects clearly
identifiable by linguistic cues. A common approach is to
perform classification on the collection of picture objects
[6], [14], so that visually similar objects are grouped into
the same class and a textual label is associated to each class.
Thus, each object is indexed by classifying it into one of the
identified classes.

Classification of picture objects can be performed by
means of supervised or unsupervised learning methods. Su-
pervised techniques require a lot of training data, and pro-
viding these data is a very tedious and error-prone task, es-
pecially for large image database. Unsupervised learning
techniques overcome these limitations but often they gener-
ate inconsistent classes including objects that, although hav-
ing a similar shape, actually represent different linguistic
cues. The presence of objects with ambiguous shapes moti-
vates the use of semi-supervised clustering algorithms that
can improve classification by using a combination of both
labeled and unlabeled data. In [11] we proposed the use of a
semi-supervised clustering algorithm called SSFCM (Semi-
Supervised Fuzzy C-Means) to create object classes and
prototypes useful for indexing images in a database. How-
ever, when new images are added to the database, this static
indexing scheme requires rebuilding the prototypes starting
from scratch by reprocessing the whole set of objects, i.e.
it does not take advantage of the previously created proto-
types.

To overcome this limitation, in this paper we propose
the use of an incremental version of the SSFCM clustering
algorithm, that we call Incremental SSFCM (ISSFCM). The
ISSFCM applies SSFCM to chunks of picture objects that
are periodically added to the database, thus providing an
incremental scheme for picture object indexing.

The paper is organized as follows. Section 2 describes
the proposed indexing scheme for pictorial object annota-

DOI reference number: 10.18293/VLSS2015-010

23

tion. In section 3 we provide some preliminary simulation
results on a benchmark data set containing picture objects
of different shapes. Finally, section 4 concludes the paper.

2. Incremental scheme for object indexing

We assume that a collection of pictorial objects is avail-
able. Each object is described by the contour of its shape.
Different shape descriptors could be used to represent ob-
ject shapes. In this work, each object shape is represented
by means of Fourier descriptors that are well-recognized
to provide robustness and invariance, obtaining good ef-
fectiveness in shape-based indexing and retrieval [8]. The
shape of each pictorial object is described by means of
M Fourier descriptors and denoted by a numerical vector
x = (x1, x2, ..., xM).

The proposed scheme for incremental indexing of ob-
jects is based on the assumption that sets of object shapes
belonging to different semantic classes are available during
time and processed as chunks, that is, a chunk of N1 object
shapes is available at time t1, a chunk of N2 shapes is avail-
able at t2 and so on. We denote by Xt the chunk of picture
objects available at time t. For a correct application of the
proposed incremental scheme, all semantic classes should
be represented in the early chunks. The chunks of objects
are processed as they are added to the database, by apply-
ing incrementally the Semi-Supervised FCM (SSFCM) al-
gorithm [11] described in section 2.1. The resulting scheme,
called ISSFCM (Incremental SSFCM), is shown in fig. 1.
It enables the update of previously derived prototypes when
new shapes are continuously available over time. Each time
a new chunk of shapes is available, previously created clus-
ter prototypes are used as pre-labeled shapes for the new
run of SSFCM. At the end of each SSFCM run, the derived
labeled prototypes are used to index all available shapes ac-
cumulated in the pictorial database.

The overall scheme of the proposed incremental index-
ing approach is summarized in algorithm 1. Each time a
chunk is available, it is clustered by SSFCM and the result-
ing clusters are represented by K prototypes that are man-
ually annotated by textual labels (step 4-7). Then each ob-
ject is added to the cluster corresponding to the best match-
ing prototype and labeled with the related label (step 8-9).
Matching is based on computing Euclidean distance be-
tween the Fourier descriptors of the object and the descrip-
tors of prototypes. We chose the Euclidean distance since it
is one of the most popular distances in literature that permits
to obtain accurate results when matching shapes represented
by Fourier descriptors with a low-cost and simple computa-
tion [16]. To take into account the evolution of the database,
the prototypes discovered from one chunk are added as pre-
labeled objects to the next chunk (step 10, step 4).

Precisely, when the first chunk of pictorial objects is

Figure 1. The scheme of the incremental in-

dexing approach

available, the algorithm will cluster the chunk into K clus-
ters and it will derive a set of K object prototypes that are
manually labeled. When a second or later chunk of objects
is available, it will be clustered with the labeled prototypes
derived from the previous clustered chunks1.

Summarizing, our incremental indexing scheme gener-
ates a structure of clusters on the basis of chunks which
capture the availability of new picture objects during time
and reflect physical evolution of the database. The index-
ing mechanism is incremental in the sense that the cluster
prototypes derived from one chunk are used not only for
current indexing but also as a starting point for the clus-
tering of successive chunks. The derived prototypes offer
an intermediate indexing mechanism that enables automatic
linguistic indexing of pictorial objects by requiring manual
annotation of a very limited number of objects (namely the
prototypes).

2.1. Clustering by SSFCM

The SSFCM algorithm works in the same manner as
FCM (Fuzzy C-Means) [9], i.e. it iteratively derives K
clusters by minimizing an objective function. Unlike FCM,
that performs a completely unsupervised clustering, SS-
FCM performs a semi-supervised clustering, i.e. it uses

1How many chunks of history to use for clustering with a new chunk is
predefined by the user.

24

Algorithm 1 Incremental SSFCM (ISSFCM)
Require: Chunks of unlabeled objects X1, X2, ...
Ensure: P : set of labeled prototypes; X: set of annotated

objects
1: H ; /* Initialization of history */

2: t 1 /* Initialization of time step */

3: while 9 non empty chunk Xt do

4: Xt Xt [H /* Add history to current chunk */

5: Cluster Xt using SSFCM
6: Derive the set P of prototypes
7: Annotate manually each prototype in P
8: Annotate each object in

St
⌧=1 X⌧ using the best-

matching prototype in P
9: Update X with annotated objects

10: Update H with P
11: t := t+ 1
12: end while

13: return P , X

a set of pre-labeled data to improve clustering results. To
embed partial supervision in the clustering process, the ob-
jective function of SSFCM includes a supervised learning
component, as follows:

J =
KX

k=1

NtX

j=1

um
jkd

2
jk + ↵

KX

k=1

NtX

j=1

(ujk � bjfjk)
md2jk (1)

where

bj =

⇢
1 if object xj is pre-labeled
0 otherwise (2)

fjk denotes the true membership value of the pre-labeled
object xj to the cluster k, djk represents the Euclidean dis-
tance between the object shape xj and the center of the k-th
cluster, m is the fuzzification coefficient (m � 2) and ↵
is a parameter that serves as a weight to balance the super-
vised and unsupervised components of the objective func-
tion. The higher the value of ↵, the higher the impact com-
ing from the supervised component is. The second term of
J captures the difference between the true membership fjk
and the membership ujk computed by the algorithm. The
aim to be reached is that, for the pre-labeled objects, these
values should coincide.

As described in [12], the problem of optimizing the ob-
jective function J is converted into the form of uncon-
strained minimization using the standard technique of La-
grange multipliers. By setting the fuzzification coefficient
m equal to 2, the objective function is minimized by updat-
ing membership values ujk according to:

ujk =
1

1 + ↵

"
1 + ↵(1� bj

PK
l=1 flk)PK

l=1 d
2
jk/d

2
lk

#
+ ↵bjfjk (3)

and the centers of clusters according to:

ck =

PNt

j=1 u
m
jkxj

PN
j=1 u

m
jk

(4)

The clustering process ends when the difference between
the values of J in two consecutive iterations drops below a
prefixed threshold or when the established maximum num-
ber of iterations is achieved.

Once the clustering process is completed, a prototype is
identified for each cluster by selecting the object shape be-
longing with the highest membership to that cluster. Then,
each prototype is manually associated to a label correspond-
ing to a specific linguistic cue or semantic class.

Summarizing, the result of SSFCM applied to each
chunk is a set of K labeled prototypes P = {p1, p2, ..., pK}
that are used to index objects in the database. Namely, all
objects belonging to cluster k are associated with the text
label assigned to prototype pk.

3. Experimental results

To assess the suitability of the proposed incremental in-
dexing approach, we considered the MPEG-7 Core Exper-
iment CE-Shape-1 data set [8] containing 1400 binary im-
ages of object shapes grouped into 70 different classes with
each class including 20 samples. Fig. 2 shows a sample
image for each class of the considered data set. In order to
apply ISSFCM, all images were processed to extract bound-
aries of shapes and compute Fourier descriptors. Each ob-
ject shape was represented by a vector of 32 Fourier coeffi-
cients (this number was set in our previous experiments on
the same dataset).

To evaluate the clustering results we used the average
purity error, as in [10], defined as follows:

pur = 1� 1

K
⇥

KX

k=1

|Cd
k |

|Ck|

where K denotes the number of clusters, |Cd
k | denotes the

number of objects with the dominant class label in cluster
k and |Ck| denotes the total number of objects in cluster
k. Intuitively, the purity error measures the purity of the
clusters with respect to the true cluster (class) labels that
are known for the MPEG-7 dataset.

We performed a suite of experiments in order to analyze
the behavior of ISSFCM when varying the percentage p of
pre-labeled shapes (p = 20% and p = 30%) and following
two different pre-labeling schema:

• scheme A: we assume that each chunk contains a per-
centage p of pre-labeled shapes;

25

Figure 2. Sample images from the MPEG-7

Core Experiment CE-Shape-1 data set

• scheme B: we assume that only the first chunk con-
tains a a percentage p of pre-labeled shapes; in the next
chunks the previously derived prototypes represent the
pre-labeled shapes.

In all the experiments, the parameters of the ISSFCM al-
gorithm were set as follows: the number of cluster K was
set to the number of classes in the dataset (i.e. K = 70),
the size of a chunk was set to 280 shapes (hence 5 chunks
were built from the whole dataset), the history was set to
1, meaning that only the prototypes extracted from the pre-
vious chunk were considered as pre-labeled shapes in the
current chunk. Since SSFCM is not deterministic (due to
the random initialization of the cluster centers) 10 different
runs were performed and the average results are presented.

At the first time step, the SSFCM was applied to the
union of the first two chunks in order to obtain more sta-
ble and significant initial prototypes to be exploited in the
next steps of the incremental clustering process. In this
way 4 different time steps were simulated. After cluster-
ing a chunk, 70 prototypes were derived and each prototype
was manually annotated by a label descriptive of a semantic

Figure 3. Prototypes derived in each time step

for three semantic classes

Table 1. Average purity error values

percentage of pre-labeled shapes
scheme 20% 30%

A 0.29 0.18
B 0.28 0.17

class. These prototypes were used to annotate all shapes in-
cluded in the previous chunks on the basis of a top-matching
score. To perform matching we computed the Euclidean
distance between descriptors of each shape and descriptors
of each prototype. Each shape was annotated with the label
of the best-matching prototype. As an example, in fig. 3,
we show the prototypes derived for three semantic classes
at the end of each time step by applying ISSFCM with the
30% of pre-labeled shapes following scheme B.

The annotation results were evaluated by computing the
average purity error. Table 1 reports the average values of
the purity error obtained by varying the percentage of pre-
labeled shapes and the pre-labeling scheme. It can be seen
that, as expected, when the percentage of pre-labeled shapes
increases, the quality of the obtained clusters improves. Re-
gardless the pre-labeling percentage, the two pre-labeling
schema provide comparable values of the purity error.

The effectiveness of the proposed incremental approach
was evaluated by comparing the average purity error ob-
tained in the last step of ISSFCM and the average purity
error obtained by applying the SSFCM algorithm in a one-
shot way (following the experimental setting described in
[11]). To apply the SSFCM in one-shot way the data set
was divided into a training set (composed of the shapes in-
cluded in the first 4 chunks) and a test set (including the
280 remaining shapes). The training set was used to derive
the shape prototypes whilst the test set was used to perform
annotation by exploiting the derived prototypes. Figure 4a
compares the average purity error obtained by applying ISS-

26

FCM (varying the pre-labeling scheme and the percentage
of pre-labeled shapes) and the one-shot SSFCM. We ob-
serve that ISSFCM obtains results that are comparable to
those obtained by the static one-shot SSFCM with the ad-
ditional advantage to exploit and update the knowledge dis-
covered in the previous time steps. Finally, we evaluated
the annotation accuracy in terms of Precision and Recall
and we compared the results obtained by applying the in-
cremental SSFCM the static SSFCM. Figures 4b and 4c
show the comparative values of precision and recall, respec-
tively. It can be seen that the incremental indexing approach
achieves better annotation accuracy with respect the static
one-shot approach thus confirming the benefit of exploiting
previously acquired knowledge whenever new picture ob-
jects have to be added to the pictorial database.

4. Conclusions

In this paper an incremental scheme for pictorial ob-
ject indexing has been proposed. The approach exploits a
semi-supervised fuzzy clustering algorithm to derive a set
of prototypes representative of a number of semantic cate-
gories. The derived prototypes are manually annotated by
attaching labels related to semantic categories. The use of
shape prototypes, which represent an intermediate level of
visual signatures, facilitates the annotation process, since
only a reduced number of objects need to be manually anno-
tated. Moreover, the use of prototypes simplifies the search
process in a pictorial database by reducing time needed to
retrieve similar shapes. Indeed, a query is matched only
with shape prototypes, thus avoiding unnecessary compar-
isons with all objects in the database. Annotation results on
the MPEG-7 benchmark dataset show that our incremen-
tal scheme obtains results which are very similar to those
obtained by the one-shot approach with the additional ad-
vantage to exploit the previously discovered prototypes thus
avoiding the reprocessing of the whole database. These pre-
liminary results encourage the application of the proposed
approach to real-world contexts requiring the indexing of
evolving collections of pictorial objects.

References

[1] S.K. Chang and T.L. Kunii. Pictorial data-base systems,
IEEE 23. G. Strang, Linear Algebra and Its Applica-
tions. Harcourt, Brace, and Computer 14, pp. 13-21,
1981.

[2] Y. Rui, T. Huang, and S. Chang, Image retrieval: cur-
rent techniques, promising directions and open issues,
J. Visual Commun. Image R. 10(4):39-62, 1999.

[3] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain, Content-based image retrieval at the end

(a)

(b)

(c)

Figure 4. Comparison between Incremental

SSFCM and one-shot SSFCM

27

of the early years, IEEE Trans. Pattern Analysis and
Machine Intelligence. 22:1349-1380, 2000.

[4] W.I. Grosky, and R. Mehrotra. Index-based object
recognition in pictorial data management. Computer
Vision, Graphics, and Image Processing, 52(3):416-
436, 1990.

[5] J. Li, and J.Z. Wang. Automatic linguistic indexing
of pictures by a statistical modeling approach. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 25(9):1075-1088, 2003.

[6] H. Nezamabadi-Pour, and S. Saryazdi. Object-based
image indexing and retrieval in DCT domain using
clustering techniques. In Proc. of World Academy of
Science Engineering and Technology, pp. 207-210,
2005.

[7] S. Aghabozorgi, M.R. Saybani, and T.Y. Wah. In-
cremental clustering of time-series by fuzzy cluster-
ing. Journal of Information Science and Engineering
28(4):671-688, 2012.

[8] I. Bartolini, P. Ciaccia, and M. Patella. WARP: Accu-
rate retrieval of shapes using phase of Fourier descrip-
tors and Time warping distance. IEEE Trans. on Pat-
tern Analysis and machine Intelligence, 27(1): 142-
147, 2005.

[9] J.C. Bezdek, Pattern recognition with fuzzy objective
function algorithms, Plenum Press, New York, 1981.

[10] F. Cao, M. Ester, W. Qian and A. Zhou. Density-based
clustering over an evolving data stream with noise. In
2006 SIAM Conference on Data Mining, pp. 328-339,
2006.

[11] G. Castellano, A.M. Fanelli and M.A. Torsello. Shape
annotation by semi-supervised fuzzy clustering. Infor-
mation Sciences, 289(24):148-161, 2014.

[12] W. Pedrycz and J. Waletzky. Fuzzy clustering with
partial supervision. IEEE Transactions on System Man
and Cybernetics, 27(5): 787-795, 1997.

[13] S. Guha, A. Meyerson, N. Mishra, R. Motwani and
L. O’Callaghan. Clustering data streams: Theory and
practice, IEEE Trans. on Knowledge and Data Engi-
neering, 15(3):515-528, 2003.

[14] D. Stan, and I.K. Sethi. Mapping low-level image fea-
tures to semantic concepts. In Proc. of the SPIE, pp.
172-179, 2001.

[15] D. Zhang, M.M. Islam, and G. Lu, A review on au-
tomatic image annotation techniques, Pattern Recogn.
45(1):346-362, 2011.

[16] D. Zhang and G. Lu, Shape-based image retrieval us-
ing generic Fourier descriptor, Signal Processing: Im-
age Communication, 17(10):825-848, 2002.

28

RankFrag: A Machine Learning-Based Technique for Finding Corners in
Hand-Drawn Digital Curves

Gennaro Costagliola*, Mattia De Rosa*, Vittorio Fortino†, Vittorio Fuccella*
*Dipartimento di Informatica, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
†Unit of Systems Toxicology, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland

{gencos, matderosa, vfuccella}@unisa.it, vittorio.fortino@ttl.fi

Abstract

We describe RankFrag: a technique which uses ma-
chine learning to detect corner points in hand-drawn digital
curves. RankFrag classifies the stroke points by iteratively
extracting them from a list of corner candidates. The points
extracted in the last iterations are said to have a higher
rank and are more likely to be corners. The technique has
been tested on three different datasets described in the lit-
erature. We observed that, considering both accuracy and
efficiency, RankFrag performs better than other state-of-art
techniques.

Keywords: corner finding, stroke segmentation, frag-
mentation, sketch recognition, machine learning, RankFrag

1 Introduction

The research on hand-drawn sketch recognition has had
a recent boost due to the diffusion of devices (smartphones
and tablets) equipped with touch screens. Sketched dia-
grams recognition raises a number of issues and challenges,
including both low-level stroke processing and high-level
diagram interpretation [11]. A low-level problem is the seg-
mentation (also known as fragmentation) of input strokes.
Its objective is the recognition of the graphical primitives
(such as lines and arcs) composing the strokes. Stroke seg-
mentation can be used for a variety of objectives, including
symbol [16, 4] and full diagram [3] recognition.

Most approaches for segmentation use algorithms for
finding corners, since these points represent the most no-
ticeable discontinuity in the graphical strokes. Some other
approaches [1] also find the so called tangent vertices
(smooth points separating a straight line from a curve or
parting two curves). Besides stroke segmentation, the iden-
tification of corners has other applications, including ges-
ture recognition [9] and gestural text entry [6, 5].

A high accuracy and the possibility of being performed

DOI reference number: 10.18293/DMS2015-43

in real time are crucial features for segmentation techniques.
Tumen and Sezgin [26] also emphasize the importance of
the adaptation to user preferences and drawing style and
to the particular domain of application. Adaptation can
be achieved by using machine learning-based techniques.
Machine learning has also proven to improve accuracy. In
fact, almost all of the most recent segmentation methods use
some machine learning-based technique.

The technique presented here, which we call RankFrag,
uses machine learning to decide if a candidate point is a
corner. Our technique is inspired by previous work. In par-
ticular, the work that mostly influenced our research is that
of Ouyang and Davis [20], which introduced a cost function
expressing the likelihood that a candidate point is a corner.
We adopt their cost function, but our corner finding pro-
cedure is different. The technique works by iteratively re-
moving points from a list of candidate corners. At each it-
eration, the point minimizing the cost function is classified
and, in the case it is not a corner, it is removed. As a point
is removed from the list, it is assigned a rank, which is a
progressively decreased integer value. Points with a higher
rank (a lower integer value) are more likely to be corners.
Another important characteristic of RankFrag is the use of
a variable “region of support” for the calculation of some
local features, which is the neighborhood of the point on
which the features are calculated. Most of the features used
for classification are taken from several previous works in
the literature [23, 15, 27, 21, 20]. Four novel features are
introduced.

We tested our technique on three different datasets pre-
viously introduced and already used in the literature to eval-
uate existing techniques. We compared the performance of
RankFrag to other state-of-art techniques [28, 26].

Summarizing, this paper introduces and evaluates:

1. a novel iterative procedure for finding corners in digital
curves;

2. the use of four previously untested features for corner
classification.

The rest of the paper is organized as follows: the next
section contains a brief survey on the main approaches forDOI reference number: 10.18293/VLSS2015-43

29

29

sketch segmentation; in Section 3 we describe our tech-
nique; Section 4 presents the evaluation of the performance
of our technique in comparison to those of existing tech-
niques, while the results are reported in Section 5; lastly,
some final remarks and a brief discussion on future work
conclude the paper.

2 Related Work

According to a widely accepted classification [24], the
methods for corner detection in digital curves can be di-
vided in two categories: those that perform a classification
of the points and those that compute a piecewise approxi-
mation of the curves.

The former methods evaluate some features on the points
of the stroke, after they have possibly been resampled, e.g.
at a uniform distance. Curvature and speed are the features
that have been used first. In particular, the corners are iden-
tified by looking at maxima in the curvature function or at
minima in the speed function. Lately, methods based on
machine learning have begun to consider a broader range of
features.

One of the first methods proposed in the literature is [24],
which assesses the curvature through three different mea-
sures. The authors also propose an advanced method for
the determination of the region of support for local features.
One of the first methods based on the simple detection of
speed minima is [14]. Given the inaccuracy of curvature
and speed taken individually, it was decided to evaluate
them both in combination: [22] uses a hybrid fit by com-
bining the set of candidate vertices derived from curvature
data with the candidate set from speed data.

A method introducing a feature different from curvature
and speed is ShortStraw [27]. It uses the straw of a point,
which is the segment connecting the endpoints of a win-
dow of points centered on the considered point. The method
gave good results in detecting corners in polylines by select-
ing the points having a straw of length less than a certain
threshold. Subsequently, the method has been extended by
Xiong and LaViola [28] to work also on strokes containing
curves.

One of the first methods to use machine learning for cor-
ner finding is the one described in [20]. It is used to seg-
ment the shapes in diagrams of chemistry. A very recent
one is ClassySeg [13], which works with generic sets of
strokes. The method firstly detects candidate segment win-
dows containing curvature maxima and their neighboring
points. Then, it uses a classifier trained on 17 different fea-
tures computed for the points in each candidate window to
decide if it contains a corner point.

The approaches for computing a piecewise approxima-
tion of digital curves try to fit lines and curves sequentially
in a stroke; the dominant points then correspond to the in-

tersections of adjacent substrokes. The problem of finding
the optimal subset of the n points of the stroke has an expo-
nential complexity. Nevertheless, almost all the algorithms
that implement this approach use dynamic programming to
reduce the exponential runtime complexity to O(n2). The
first work [2] dates back to 1961. This algorithm fixes the
number of segments and finds the solution minimizing the
error. An algorithm proposed later [8] fixes the error and
minimizes the number of segments. The algorithms also
differ for the norm they use to measure the approximation
error. A recent method, called DPFrag [26] learns primitive-
level models from data, in order to adapt fragmentation to
specific datasets and to user preferences and sketching style.

Lastly, there are hybrid methods, which use both the ap-
proaches mentioned above. SpeedSeg [12] and TCVD [1]
are examples of such methods. TCVD is also able to find
both the corners and the points where there is a significant
change in curvature (referred to as “tangent vertices” in [1]).
In order to detect corners, the former method mainly relies
on pen speed while the latter uses a curvature measure. Tan-
gent vertices are found through piecewise approximation by
both methods.

3 The Technique

Our technique segments an input stroke in primitives by
breaking it in the points regarded as corners. As a prelim-
inary step, a Gaussian smoothing [10] is executed on the
raw points in order to reduce the resampled stroke noise.
Then, the stroke is processed by resampling its points to
obtain an equally spaced ordered sequence of points P =
(p1, p2, . . . , pn), where n varies depending on a fixed space
interval and on the length of the stroke.

In order to identify the corners, the following three steps
are then executed:

1. Initialization;

2. Pruning;

3. Point classification.

The initialization step creates a set D containing n pairs
(i, c), for i = 1 . . . n where c is the (initial) cost of pi and is
calculated through Eq. 1 derived, through some simplifica-
tion steps, from the cost function defined in [20].

Icost(pi) =

{
[dist(pi; pi−1, pi+1)]

2 if i ∈ {2, . . . , n− 1}
+∞ if i = 1 or i = n

(1)

In the above equation, the term dist(pi; pi−1, pi+1) indi-
cates the minimum distance between pi and the line seg-
ment formed by (pi−1, pi+1). Since p1 and pn do not
have a preceding and successive point, respectively, they
are treated as special cases and given the highest cost.

230

The pruning step iteratively removes n−u elements from
D in order to make the technique more efficient. The value
u is the number of candidate corners not pruned in this step
and depends on the complexity of the strokes in the tar-
get dataset. Its value has no effect on the accuracy of the
method, provided that it is conservatively chosen so that no
corner is eliminated in the pruning step. However, too high
a value for this parameter may affect its efficiency.

At each iteration, the element m with the lowest cost
is removed from D and the costs of the closest preceding
points ppre in P and the closest successive point psuc in P
of pm, with pre and suc occurring in the set {i : (i, c) ∈
D}, are updated through Eq. 2 derived from the cost func-
tion defined in [20].

Cost(pi) =

√

mse(S; pipre , pisuc)× dist(pi; pipre , pisuc)

if i ∈ {2, . . . , n− 1}
+∞ if i = 1 or i = n

(2)

In the above equation,

• the points pipre and pisuc are, respectively, the closest
preceding and successive points of pi in P , with ipre
and isuc occurring in the set {i : (i, c) ∈ D};

• S = {pipre, . . . , pisuc} is the subset of points between
pipre and pisuc in the resampled stroke P ;

• mse(S; pipre, pisuc) is the mean squared error be-
tween the set S and the line segment formed by
(pipre, pisuc);

• the function dist is defined as for Eq. 1.

The point classification step returns the list of points rec-
ognized as corners by further removing from D all the pairs
with indices of the points that are not recognized as corners.
This is achieved by the following steps:

1. find the current element in D with minimum cost (if
D contains only pairs with indices 1 and n, return an
empty list);

2. calculate the features of the point corresponding to the
current element and invoke the binary classifier, previ-
ously trained with data.

• if the classifier returns false, delete the element
from D, make the necessary updates and go to 1.

• if the classifier returns true, proceed to consider
as current the next element in D in ascending cost
order. If the corresponding point is one of the
endpoints of the stroke, return the list of points
corresponding to the remaining elements in D
(except for 1 and |P |), otherwise go to 2.

In Fig. 1, the function DETECTCORNERS() shows the
pseudocode for the initialization, pruning and point classi-
fication steps. In the pseudocode, D is the above described
set with the following functions:

• INIT(L) initialize D with all the (i, c) pairs contained
in L;

• FINDMINC() returns the element of D with the lowest
cost;

• PREVIOUSI(i) returns j such that (j, c′) is the closest
preceding element of (i, c) in D, i.e., j = max{k |
(k, c) ∈ D and k < i};

• SUCCESSIVEI(i) returns j such that (j, c′) is the clos-
est successive element of (i, c) in D, i.e., j = min{k |
(k, c) ∈ D and k > i};

• SUCCESSIVEC(i) returns the successive element of
(i, c) in D with respect to the ascending cost order;

• REMOVE(i) removes (i, c) from D;

• UPDATECOST(i, c) updates the cost c′ to c for (i, c′)
in D.

DETECTCORNERS() calls a CLASSIFIER(i, P , D) function
that computes the features (described in Section 3.2) of the
point P [i], and then uses them to determine if P [i] is a cor-
ner by using a binary classifier previously trained with data
(described in Section 3.3).

3.1 Complexity

The complexity of the function DETECTCORNERS() in
the previous section depends on the implementation of the
data structure D. We will base our calculation by imple-
menting D with an array and a pointer: the ith element of
the array refers to the node that contains the pair (i, c) (or
nil if the node does not exist) while the pointer refers to
the node with the minimum c. Each node has 3 pointers:
one that points to the successive node in ascending c or-
der, one that points to the successive node in ascending i
order and one that points to the previous node in ascending
i order. Based on this implementation, the FINDMINC(),
PREVIOUSI(), SUCCESSIVEI(), SUCCESSIVEC() and RE-
MOVE() functions are all executed in constant time, while
the UPDATECOST() function is O(|D|) (where |D| is the
number of nodes referred in D) and the INIT(L) function
is O(|L| log |L|) (by using an efficient sorting algorithm).
In the following we will show that the DETECTCORNERS()
complexity is O(n2), where n = |P |.

It is trivial to see that: the complexity of the ICOST()
function is O(1); the complexity of COST() is O(n) in the

331

Input: an array P of equally spaced points that approxi-
mate a stroke, a number u of not-to-be-pruned points,
and the CLASSIFIER() function.

Output: a list of detected corners.
1: function DETECTCORNERS(P , u , CLASSIFIER)
2: # initialization
3: for i = 1 to |P | do
4: c← ICOST(i, P) # computes Eq. 1
5: add (i, c) to TempList
6: end for
7: D.INIT(TempList)

8: # pruning
9: while |D| > u do

10: (imin , c)← D.FINDMINC()
11: REMOVEANDUPDATE(imin , P , D)
12: end while

13: # point classification
14: while |D| > 2 do
15: (icur , c)← D.FINDMINC()
16: loop
17: isCorner ← CLASSIFIER(icur , P , D)
18: if isCorner then
19: (icur , c)← D.SUCCESSIVEC(icur)
20: if icur ∈ {1, |P |} then
21: for each (i, c) in D such that
22: (i 6= 1 ∧ i 6= |P |)
23: add P [i] to CornerList
24: return CornerList
25: end if
26: else
27: REMOVEANDUPDATE(icur , P , D)
28: break loop
29: end if
30: end loop
31: end while
32: return ∅
33: end function

34: procedure REMOVEANDUPDATE(i, P , D)
35: ipre ← D.PREVIOUSI(i)
36: isuc ← D.SUCCESSIVEI(i)
37: D.REMOVE(i)
38:
39: c← COST(ipre , P , D) # computes Eq. 2
40: D.UPDATECOST(ipre , c)
41:
42: c← COST(isuc , P , D)
43: D.UPDATECOST(isuc , c)
44: end procedure

Figure 1: The implementation of the initialization, pruning
and corner classification steps.

worst case and, consequently, the complexity of REMOVE-
ANDUPDATE() is O(n); and the complexity of CLASSI-
FIER() is O(n) since some features need O(n) time in the
worst case to be calculated.

The complexity of each of the three steps is then:

1. Initialization: ICOST() is called n times and D.INIT()
one time, consequently the complexity of the initial-
ization step is O(n log n).

2. Pruning: D.FINDMINC() and REMOVEANDUP-
DATE() are called n − u times each, consequently the
complexity of this step is O(n(n− u)).

3. Point classification: the while loop (in line 14) will be
executed at most k = |D| − 2 ≤ u − 2 times. In the
loop (in line 16), CLASSIFIER() will be called at most
k times, D.SUCCESSIVEC() at most k − 1 times, and
REMOVEANDUPDATE() at most once. Thus, in this
step, they will be called less than or equal to k2, k2

and k times, respectively.

The complexity of the CLASSIFIER() calls can be cal-
culated by considering that for each point, if none of
its features changes, the result of CLASSIFIER() can be
retrieved in O(1) by caching its previous output. Since
the execution of the REMOVEANDUPDATE() function
involves the changing of the features of two points,
CLASSIFIER() will be executed at most 3k times in
O(n) (for a total of O(k×n)) and the remaining times
in O(1) (for a total of O(k2)), giving a complexity of
O(k × n).

Furthermore, the complexity of the
D.SUCCESSIVEC() calls is O(k2), while the
complexity of the REMOVEANDUPDATE() calls
is O(k × n).

Thus, since k < n, the point classification step is in
the worst case O(k × n), or rather O(n× u).

It is worth noting that the final O(n2) complexity does not
improve even if a better implementation of D providing an
O(log |D|) UPDATECOST() function is used.

3.2 Features

Most of the features used in our classification are derived
from previous research in the field. In particular, we have
three different classes of features:

• Stroke features: features calculated on the whole
stroke;

• Point features: local features calculated on the point.
These features are calculated using a fixed region of
support and their values remain stable throughout the
procedure;

432

• Rank-related features: dynamically calculated local
features. The region of support for the calculation of
these features is the set of points from the predecessor
ppre and the successor psuc of the current point in the
candidate list. Their value can vary during the execu-
tion of the Point classification step.

Some features are parametric. In particular, they can
adopt two different types of parameters:

• An integer parameter w, defining the width of the
(fixed) region of support used to calculate point fea-
tures;

• A boolean parameter norm, indicating whether a nor-
malization is applied in the calculation of the feature.

3.2.1 Stroke Features

The features calculated on the whole stroke can be useful
to the classifier, since a characteristic of the stroke can in-
teract in some way with a local feature. For instance, the
length of a stroke may be correlated to the number of cor-
ners in it: it is likely that a long stroke has more angles than
a short stroke. We derived two stroke features from [20]: the
length of the stroke and the diagonal length of its bounding
box. These features are called Length and Diagonal , re-
spectively. In Figure 2a the bounding box (light gray) and
the diagonal (dark gray) of a hand drawn diamond (black)
are shown. Furthermore, we added a feature telling how
much the stroke resembles an ellipse (or a circle), called
EllipseFit . The use of this feature prevents that corners
are accidentally inserted in strokes resembling circles or el-
lipses. It is calculated by measuring the average Euclidean
distance of the points of the stroke to an ideal ellipse, nor-
malized by the length of the stroke. Figure 2b shows the
EllipseFit calculation for a hand-drawn diamond. In partic-
ular, the figure shows the segments (dark gray) connecting
the diamond (black) and the ellipse (light gray), of which
we calculate the average measure.

3.2.2 Point Features

The point features are local characteristics of the points.
The speed of the pointer and the curvature of the stroke
at a point have been regarded as very important features
from the earliest research in corner finding. Here, the
speed at pi is calculated as suggested in [23], i.e., s(pi) =
‖pi+1, pi−1‖ /(ti+1 − ti−1), where ti represents the times-
tamp of the i-th point. We also have a version of the speed
feature where a min-max normalization is applied in or-
der to have as a result a real value between 0 and 1; the
Curvature feature used here is calculated as suggested in
[15].

A feature that has proven useful in previous research is
the straw, proposed in [27]. The straw at the point pi is the
length of the segment connecting the endpoints of a window
of points centered on pi. Thus we define Straw(pi, w) =
‖pi+w, pi−w‖, where w is the parameter defining the width
of the window. An example of straw is shown in dark gray
in Figure 2d.

A simple feature to evaluate if a point is a corner, is the
magnitude of the angle formed by the segments (pi−w, pi)
and (pi, pi+w), defined here as Angle(pi, w). An exam-
ple is shown in Figure 2e. A useful feature to distinguish
the curves from the corners is what we call AlphaBeta, de-
rived from [28]. Here we use as a feature the difference be-
tween alpha and beta , the magnitudes of two angles in pi
using different segment lengths, one three times the other:
AlphaBeta(pi, w) = Angle(pi, 3w) − Angle(pi, w). An
example of the two angles is shown in Figure 2f.

Lastly, in this research we introduce two point features
that, as far as we know, have never been tested so far for
corner detection. One feature is the position of the point
within the stroke. Its use tends to prevent that corners are
inserted in uncommon positions of the stroke. The position
is calculated as the ratio between the length of the stroke
from p0 to pi and the total length of the stroke. We call this
feature Position(pi). The other feature is the difference of
two areas: the former is the one of the polygon delimited
by the points (pi−w, . . . , pi, . . . , pi+w) and the latter is the
one of the triangle (pi−w, pi, pi+w). The rationale for this
feature is that its value will be positive for a curve, approx-
imately 0 for an angle and even negative for a cusp. We
call it DeltaAreas(pi, w). Figure 2g shows an example that
highlights the difference between the two areas.

3.2.3 Rank-Related Features

The rank-related features are local characteristics of the
points. The difference with the point features is that their
region of support varies according to the rank of the point:
the considered neighborhood is between the closest preced-
ing and successive points of pi, which we have called pipre
and pisuc , respectively. The Cost function defined in Equa-
tion (2) is an example of feature from this class. It tends
to assume higher values at the corners. A distinguishing
feature of our approach, strictly related to the Cost , is the
Rank . We define the Rank of a point p = P [i] with respect
to D, as the size of D resulting from the removal of (i, c)
from D. As already explained, this feature is a good indica-
tor of whether a point is a corner and it is useful to associate
it to the cost function, to improve classification.

A simple feature derived from [20] is MinDistance, rep-
resenting the minimum of the two distances ‖pipre , pi‖ and
‖pi, pisuc‖, respectively. We also used a normalized ver-
sion, obtained by dividing the minimum by ‖pipre , pisuc‖.

533

Feature Class Parameters Ref.
Length(S) Stroke / [20]
Diagonal(S) Stroke / [20]
EllipseFit(S) Stroke /
Speed(p,norm) Point norm = T, F [23]
Curvature(p) Point / [15]
Straw(p, w) Point w = 4 [27]
Angle(p, w) Point w = 1, 2 [28]
AlphaBeta(p, w) Point w = 3, 4, 6, 15 [28]
Position(p) Point /
DeltaAreas(p, w) Point w = 11
Rank(p) Rank-Related /
Cost(p) Rank-Related / [20]
MinDistance(p,norm) Rank-Related norm = T, F [20]
PolyFit(p) Rank-Related / [21]
CurveFit(p) Rank-Related / [21]

Table 1: The features used in our classifier. Features with-
out a reference are defined for the first time in this paper.

As in previous research, we try to fit parts of the stroke
with beautified geometric primitives. The following two
features are similar to the ones defined in [21]: PolyFit(pi)
fits the substroke (pipre , . . . , pi, . . . , pisuc) through the
polyline (pipre , pi, pisuc), while CurveFit(pi) uses a bezier
curve to approximate the points. The return value is the av-
erage point-to-point euclidean distance normalized by the
length of the stroke. Examples of the two aforementioned
features are shown in Figures 2i and 2c, respectively.

Table 1 summarizes the set of features used by RankFrag
in the CLASSIFIER function. The table reports the name of
the feature, its class, the values of the parameters (if present)
with which it is instantiated and the reference paper from
which we derived it. The presence of more than one pa-
rameter value means that some features are used multiple
times, instantiated with different parameter values. The set
of features has been chosen by performing a two-step fea-
ture selection method. In the first step, bootstrapping along
with RF algorithm was used to measure the importance of
all the features and produce stable feature importance (or
rank) scores. Then, all the features were grouped into clus-
ters using correlation, and those with the highest ranking
score from each group were chosen to form the set of rele-
vant and non-redundant features.

3.3 Classification method

The binary classifier used by RankFrag in the CLASSI-
FIER function to classify corner points is based on Random
Forests (RF) [17]. Random Forests are an ensemble ma-
chine learning technique that builds forests of classification
trees. Each tree is grown on a bootstrap sample of the data,
and the feature at each tree node is selected from a random
subset of all features. The final classification is determined
by using a voting system that aggregates the classification
results from all the trees in the forest. There are many ad-

vantages of RF that make their use an ideal approach for
our classification problem: they run efficiently on large data
sets; they can handle many different input features without
feature deletion; they are quite robust to overfitting and have
a good predictive performance even when most predictive
features are noisy.

3.4 Implementation

RankFrag was implemented as a Java application. The
classifier was implemented in R language, using the ran-
domForest package [18]. The call to the classifier from the
main program is performed through the Java/R Interface
(JRI), which enables the execution of R commands inside
Java applications.

4 Evaluation

We evaluated RankFrag on three different datasets al-
ready used in the literature to evaluate previous techniques.
We repeated 30 times a 5-fold cross validation on all of the
datasets. For all datasets, the strokes were resampled at a
distance of three pixels, while a value of u = 30 was used
as a parameter for pruning. Since there is no single met-
ric that determines the quality of a corner finder, we cal-
culated the performance of our technique using the various
metrics already described in the literature. The results for
some metrics were averaged in the cross validation and were
summed for others.

The hosting system used for the evaluation was a lap-
top equipped with an IntelTMCoreTMi7-2630QM CPU at 2.0
GHz running Ubuntu 12.10 operating system and the Open-
JDK 7.

4.1 Model validation

Here we describe the process of assessing the prediction
ability of the RF-based classifiers. The accuracy metrics
were calculated by repeating 30 times the following proce-
dure individually for each dataset and taking the averages:

1. the data set DS is randomly partitioned into 5 parts
DS 1, . . . ,DS 5 with an equal number of strokes (or
nearly so, if the number of strokes is not divisible by
5);

2. for i = 1 . . . 5: DSt i = DS \DS i is used as a training
set, and DS i is used as a test set.

• RankFrag is executed on DSt i in order to pro-
duce the training data table. In DS , the correct
corners had been previously marked manually.
For each point extracted from the candidate list
the input feature vector is calculated, while the

634

(a) Bounding box and diag-
onal for a hand-drawn dia-
mond.

(b) EllipseFit calculation for
a hand-drawn diamond.

pi

pipre pisucc

(c) CurveFit calculation for point pi.

pi

p
i+
w

pi-w

(d) Straw (in
gray) for point
pi (w = 4).

pi p
i+
w

pi-w

(e) Angle
for point pi
(w = 2).

pi p
i+
w

pi-w

pi-3w

p
i+
3
w

β

α

(f) AlphaBeta
calculation
for point pi
(w = 2).

pi

p
i+
w

pi-w

(g) DeltaAreas
(highlighted in
black) for point pi
(w = 6).

pi

pipre pisucc

(h) MinDistance for point pi (the minimum
between ‖pipre , pi‖ and ‖pi, pisuc‖).

pi

pipre pisucc

(i) PolyFit calculation for point pi.

Figure 2: Examples for the features used in our classifier.

output parameter is given by the boolean value
indicating whether the point is marked or not as
a corner. The training table contains both the in-
put and output parameters;

• a random forest is trained using the table;

• RankFrag is executed on DS i, using the trained
random forest as a binary classifier;

• In order to generate the accuracy metrics, the cor-
ners found by the last run of RankFrag are com-
pared with the manually marked ones. A corner
found by RankFrag is considered to be correct if
it is within a certain distance from a marked cor-
ner.

3. In order to get aggregate accuracy metrics, for each of
them the average/sum (depending on the type of the
metric) of the values obtained in the previous step is
calculated.

4.2 Accuracy Metrics

A corner finding technique is mainly evaluated from the
points of view of accuracy and efficiency. There are dif-
ferent metrics to evaluate the accuracy of a corner finding
technique. We use the following, already described in the
literature [27, 13]:

• False positives and false negatives. The number of
points incorrectly classified as corners and the number
of corner points not found, respectively;

• Precision. The number of correct cor-
ners found divided by the sum of the num-
ber of correct corners and false positives:
precision = correct corners

correct corners+false positives ;

• Recall. The number of correct corners found divided
by the sum of the number of correct corners and false
negatives: recall = correct corners

correct corners+false negatives .
This value is also called Correct corners accuracy;

• All-or-nothing accuracy. The number of correctly
segmented strokes divided by the total number of
strokes;

The presence of the angle is determined by human per-
ception. Obviously, different operators can perform differ-
ent annotations on a dataset. The task of judging whether
a corner is correctly found should also be done by a human
operator. In our case, the human judgment is unfeasible due
to the very high number of tests. Thus, we just checked
whether the found corner was at a reasonable distance from
the marked corner. In particular, we adopted as a tolerance
the fixed distance of 20 pixels already used in literature for
tests on the same datasets [13].

4.3 Datasets

Two of the three datasets used in our evaluation, the
Sezgin-Tumen COAD Database and NicIcon datasets, are
associated to a specific domain, while the IStraw dataset is
not associated to any domain, but was produced for bench-
marking purposes by Xiong and LaViola [28]. Some fea-

735

Dataset No. of No. of No. of No. of Source
classes symbols strokes drawers

COAD 20 400 1507 8 [25]
NicIcon 14 400 1204 32 [19]
IStraw 10 400 400 10 [28]

Table 2: Features of the three data sets.

tures of the three datasets are summarized in Table 2. The
table reports, for each of them, the number of different
classes, the total number of symbols and strokes, the num-
ber of drawers and a reference to the source document in-
troducing it.

The symbols in the Sezgin-Tumen COAD Database
(called only COAD, for brevity, in the sequel) dataset are a
subset of those used in the domain of Military Course of Ac-
tion Diagrams [7], which are used to depict battle scenarios.
A set of 620 symbols was firstly introduced by Tirkaz et al.
[25] to measure the performance of a multi-stroke symbol
recognizer. Here we use a subset of 400 symbols annotated
by Tumen and Sezgin and used to evaluate a technique for
finding corners [26].

The NicIcon Database of Handwritten Icons [19] is a
set of symbols, drawn by 32 different subjects, gathered for
assessing pen input recognition technologies, representing
images for emergency management applications. Here we
use the subset of 400 multi-stroke symbols, annotated by
Tumen and Sezgin [26].

The IStraw dataset is referred to as an out-of-context
dataset, i.e., it is not linked to a domain. It was one of
the datasets used to test the homonymous technique [28]
and DPFrag [26]. It contains both line and arc primitives
belonging to 400 unistroke symbols, drawn by 10 different
subjects.

Figure 3 shows one random sample from each class of
the three symbol set.

5 Results

In this section we report the results of our evaluation. As
for the accuracy, we calculated all of the metrics described
in the previous section. Furthermore, RankFrag’s accuracy
is compared to that of other state-of-art methods by using
the All-or-nothing metric. It is worth noting that, due to
the unavailability of working prototypes, we did not directly
test the other methods: we only report the performance de-
clared by their respective authors.

The accuracy achieved by RankFrag on the three datasets
is reported in Table 3. The results are averaged over the 30
performed trials.

Table 4 shows a comparison of the accuracy of RankFrag
with other state-of-art methods. The methods considered

Metrics COAD NicIcon IStraw
Corners manually marked 2271 867 1795
Corners found 2260.67 774.03 1790.80
Correct corners 2254.20 730.90 1784.33
False positives 6.47 43.13 6.47
False negatives 16.80 136.10 10.67
Precision 0.9972 0.9441 0.9964
Recall / Correct corners ac-
curacy

0.9926 0.8428 0.9940

All-or-nothing accuracy 0.9870 0.8657 0.9572

Table 3: Average accuracy results of RankFrag on the three
datasets.

Dataset RankFrag DPFrag IStraw
COAD 0.99 0.97 0.82
NicIcon 0.87 0.84 0.24
IStraw 0.96 0.96 0.96

Table 4: Comparison of RankFrag with other methods on
the All-or-nothing accuracy metric.

here are DPFrag [26] and IStraw [28]. Due to the unavail-
ability of other data, we only report the results related to
the All-or-nothing metric. As we can see, RankFrag outper-
forms the other two methods on two out of three datasets.

As for efficiency, we report that the average time needed
to process a stroke is ∼390 ms. Our prototype is rather slow,
due to the inefficiency of the calls to R functions. We also
produced a non-JRI implementation by manually export-
ing the created random forest from R to Java (avoiding the
JRI calls). With this implementation, the average execution
time was lowered to ∼18 ms, enabling real-time runs.

6 Discussion and Conclusion

We have introduced RankFrag, a technique for segment-
ing hand-drawn sketches in the corner points. RankFrag
has a quadratic asymptotic time complexity with respect
to the number of sampled points in an input stroke. This
complexity is the same reported in the literature for many
other methods and, to the best of our knowledge, there is no
method with a lower complexity. The technique was eval-
uated on three different datasets. The datasets were specif-
ically produced for evaluating corner detection algorithms
or were already used previously for this purpose.

We compared the results obtained by RankFrag with
those already available in the literature for two different
techniques: DPFrag [26] and IStraw [28]. With respect to
the latter, our results show a clear advantage in accuracy
on two datasets for RankFrag. With respect to DPFrag, our
technique has a comparable accuracy, with a slight advan-
tage on two of the three datasets. Nevertheless, compared
to DPFrag, our technique has the additional advantage that

8
36

(a) COAD

(b) NicIcon

(c) IStraw

Figure 3: One random sample from each class of the three symbol set. The manually annotated corners are highlighted with
a red circle.

Figure 4: Examples of misclassification by RankFrag. Detected corners are represented through a red dot, while classification
errors are represented through rings.

it can be performed in real time on all the tested data, re-
gardless of the complexity of the input strokes. The chart
reported in [26] (Figure 9) shows that this is not guaranteed
for DPFrag and that its running time grows with the number
of corners in the stroke.

RankFrag can be considered a significant improvement
to the segmentation technique presented in [20]. In that
technique, the classifier is used as a stop function: when
the classifier decides to stop, all the remaining points (those
with a higher cost) are classified as corners. We found that
such a technique is not appropriate for strokes containing
curves, since the cost function alone is not a reliable indi-
cator and gives many false positives. Thus, we decided to
invoke the classifier within a more complex, but still effi-
cient, procedure, which performs further checks to estab-
lish whether a point is an angle. We also more profitably
use a larger set of features, some of which have a variable
region of support. Lastly, in our analyses the random forest

seemed to have better performance with respect to the other
classifiers which we preliminarily tested, such as SVM and
Neural Networks.

It is worth noting that, although further accuracy im-
provements are possible, it is very difficult to get a score
close to 100% due to the procedure used in our tests: the de-
cision of the classifier was compared to an earlier annotation
made by a human operator. Some decisions are debatable
and the annotation process is not free from errors. Figure 4
shows some examples of corner misclassification by Rank-
Frag on the three datasets, including both false positives
(dots inside a ring) and false negatives (rings). Although
annotation errors are evident in some of the strokes reported
in the figure, we decided not to alter the original annotation
in order to obtain a more faithful comparison with the other
methods.

RankFrag has only been tested for finding corner points
and not tangent vertices, as done by other techniques

937

[12, 1]. It can be directly used in various structural methods
for symbol recognition. However in some methods an addi-
tional step to classify the segments in lines or arcs may be
required.

The non-JRI version of our implementation is able to
produce the segmentation of a stroke in real time on a suf-
ficiently powerful device. Future work will aim to achieve
further implementation improvements, in order to further
reduce the execution time and make the technique appli-
cable in real time on more strokes at once (e.g., an en-
tire diagram) or on mobile devices with low computa-
tional power. For testing purposes, our implementation
can be downloaded at http://weblab.di.unisa.
it/rankfrag/.

References

[1] F. Albert, D. Fernández-Pacheco, and N. Aleixos. New
method to find corner and tangent vertices in sketches us-
ing parametric cubic curves approximation. Pattern Recog-
nition, 46(5):1433 – 1448, 2013.

[2] R. Bellman. On the approximation of curves by line
segments using dynamic programming. Commun. ACM,
4(6):284, June 1961.

[3] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. Journal of Visual
Languages & Computing, 25(6):955 – 962, 2014.

[4] G. Costagliola, M. De Rosa, and V. Fuccella. Recognition
and autocompletion of partially drawn symbols by using po-
lar histograms as spatial relation descriptors. Computers &
Graphics, 39(0):101 – 116, 2014.

[5] G. Costagliola, V. Fuccella, and M. D. Capua. Interpretation
of strokes in radial menus: The case of the keyscretch text
entry method. Journal of Visual Languages & Computing,
24(4):234 – 247, 2013.

[6] G. Costagliola, V. Fuccella, and M. Di Capua. Text entry
with keyscretch. In Proceedings of the 16th International
Conference on Intelligent User Interfaces, IUI ’11, pages
277–286, New York, NY, USA, 2011. ACM.

[7] T. D.U. Commented APP-6A - Military symbols for land
based systems, 2005.

[8] J. Dunham. Optimum uniform piecewise linear approxima-
tion of planar curves. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, PAMI-8(1):67–75, Jan 1986.

[9] V. Fuccella and G. Costagliola. Unistroke gesture recog-
nition through polyline approximation and alignment. In
Proceedings of CHI ’15, pages 3351–3354, New York, NY,
USA, 2015. ACM.

[10] R. Haddad and A. Akansu. A class of fast Gaussian binomial
filters for speech and image processing. Signal Processing,
IEEE Transactions on, 39(3):723–727, Mar 1991.

[11] T. Hammond, B. Eoff, B. Paulson, A. Wolin, K. Dahmen,
J. Johnston, and P. Rajan. Free-sketch recognition: Putting
the chi in sketching. In CHI ’08 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’08, pages
3027–3032, New York, NY, USA, 2008. ACM.

[12] J. Herold and T. F. Stahovich. Speedseg: A technique for
segmenting pen strokes using pen speed. Computers &
Graphics, 35(2):250–264, 2011.

[13] J. Herold and T. F. Stahovich. A machine learning approach
to automatic stroke segmentation. Computers & Graphics,
38(0):357 – 364, 2014.

[14] C. F. Herot. Graphical input through machine recognition
of sketches. In Proceedings of the 3rd Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’76, pages 97–102, New York, NY, USA, 1976.
ACM.

[15] D. H. Kim and M.-J. Kim. A curvature estimation for pen
input segmentation in sketch-based modeling. Computer-
Aided Design, 38(3):238 – 248, 2006.

[16] W. Lee, L. Burak Kara, and T. F. Stahovich. An efficient
graph-based recognizer for hand-drawn symbols. Comput-
ers & Graphics, 31:554–567, August 2007.

[17] B. Leo. Random forests. Machine Learning, 45(1):5–32,
dec. 2001.

[18] A. Liaw and M. Wiener. Classification and regression by
randomForest. R News, 2(3):18–22, 2002.

[19] R. Niels, D. Willems, and L. Vuurpijl. The nicicon database
of handwritten icons. 2008.

[20] T. Y. Ouyang and R. Davis. Chemink: a natural real-time
recognition system for chemical drawings. In Proceedings
of the 16th international conference on Intelligent user inter-
faces, IUI ’11, pages 267–276, New York, NY, USA, 2011.
ACM.

[21] B. Paulson and T. Hammond. Paleosketch: accurate prim-
itive sketch recognition and beautification. In Proceedings
of the 13th international conference on Intelligent user in-
terfaces, IUI ’08, pages 1–10, New York, NY, USA, 2008.
ACM.

[22] T. M. Sezgin, T. Stahovich, and R. Davis. Sketch based
interfaces: Early processing for sketch understanding. In
Proceedings of the 2001 Workshop on Perceptive User In-
terfaces, PUI ’01, pages 1–8, New York, NY, USA, 2001.
ACM.

[23] T. F. Stahovich. Segmentation of pen strokes using pen
speed. In AAAI Fall Symposium Series, pages 21–24, 2004.

[24] C.-H. Teh and R. Chin. On the detection of dominant points
on digital curves. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 11(8):859–872, Aug 1989.

[25] C. Tirkaz, B. Yanikoglu, and T. M. Sezgin. Sketched sym-
bol recognition with auto-completion. Pattern Recognition,
45(11):3926–3937, 2012.

[26] R. S. Tumen and T. M. Sezgin. Dpfrag: Trainable stroke
fragmentation based on dynamic programming. IEEE Com-
puter Graphics and Applications, 33(5):59–67, 2013.

[27] A. Wolin, B. Eoff, and T. Hammond. Shortstraw: A simple
and effective corner finder for polylines. In EUROGRAPH-
ICS Workshop on Sketch-Based Interfaces and Modeling.
Eurographics Association, 2008.

[28] Y. Xiong and J. J. J. LaViola. A shortstraw-based algorithm
for corner finding in sketch-based interfaces. Computers &
Graphics, 34(5):513 – 527, 2010.

1038

WiSPY: A Tool for Visual Specification and Verification of
Spatial Integrity Constraints

Vincenzo Del Fatto
Faculty of Computer Science

Free University of Bozen-Bolzano
39100 Bolzano, ITALY

vincenzo.delfatto@unibz.it

Vincenzo Deufemia
Department of Computer Science

University of Salerno
84084 Fisciano (SA), ITALY

deufemia@unisa.it

Luca Paolino
Department of Research
Link Campus University

00162 Roma, ITALY
l.paolino@unilink.it

Sara Tumiati
South Tyrolean Municipality Consortium

39100 Bolzano, ITALY
sara.tumiati@gvcc.net

Abstract

Nowadays, most of tools for spatial data manipulation
allow to edit information on maps without performing any
integrity verification. On the other hand, data repositories
such as the DBMS only permit few constraints to be defined
by means of their Data Definition Languages and leave pro-
grammers to implement procedures for complex constraints.
In this work we present the WiSPY system, a plugin of the
GIS tool uDig for visually specifying and verifying complex
spatial integrity constraints. WiSPY includes a visual en-
vironment for defining spatial data models with integrity
constraints and for automatically generating the constraint
checker. The latter is used by the WiSPY tool to verify the
integrity of the data produced during the map editing pro-
cess. The system has been validated on a real case study
concerning the current regulation of the Public Illumination
Plan (PIP) managed by an Italian municipality.

1 Introduction

The management of spatial data is one of the fields where
companies and researchers have invested much money and
time in the last decade. The result is that commercial prod-
ucts such as Autodesk Autocad Map 3D1, Bentley Microsta-

1
http://www.autodesk.it/products/

autocad-map-3d/overview

tion2, ESRI ArcGIS3, or free and open source products such
as Google Map4, QGIS5, GRASS GIS6, uDig [22], have
become part of the daily life not only for GIS users. This
is because, they offer a large amount of features for spa-
tial data manipulation, spatial analysis and reasoning func-
tionalities that in many cases may support or simplify our
activities. Despite the large amount of available features,
these products lack of an adequate control during the edit-
ing phase, not allowing a solid constraint check. Also in the
Database Management Systems (DBMS) field, commonly
used product as Oracle and PostgreSQL, which offer spatial
extensions, only allow basic functionalities to support con-
straint checking. Indeed, their Data Definition Languages
(DDL) only support the management of simple topological
constraints while advanced controls need to be coded. In
this context, it appears to be desirable to provide a signif-
icant support in this phase in order to improve the quality
of data and minimizing the implementation activities which
often are annoying and repetitive.

In order to increase the dataset quality, correction oper-
ations can be performed both during the editing phase (on
the fly) or after a data manipulation session (a posteriori).
Both such approaches have pros and cons. On one hand,
checking correctness during the editing phase has a direct
effect on the data entry process, since the feedback is im-
mediate, but the check can be performed only on a subset

2
http://www.bentley.com/it-IT/products/

microstation/

3
http://www.esri.com/software/arcgis

4
https://maps.google.com/

5
http://www.qgis.org/en/site/

6
http://grass.osgeo.org/

DOI reference number: 10.18293/VLSS2015-018

39

of data. On the other hand, an a posteriori check is per-
formed on the whole dataset or on a selected subset of data,
giving the possibility to apply a complete verification and
to globally re-adjust geographic data. However, in this case
the system returns feedback to the user just at the end of
the manipulation process, making more difficult to handle
possible errors.

To guarantee the effective verification of map constraints
according to the designer requirements, in [7] a visual lan-
guage parsing approach for constraint checking of input
spatial data during the editing phase is presented. The in-
tegrity of data produced during the map editing process is
guaranteed by a constraint checker automatically generated
from a visual language grammar. In order to reduce the ef-
forts for defining the constraints to be checked, a high-level
data model is used to specify the user needs.

In this paper we propose a software system, named
WiSPY, which consists of two uDig plugins that allow the
user to:

• specify geographic models by means of the OMT-G
visual modeling language;

• automatically translate the OMT-G models to the cor-
responding grammars;

• validate geographic incoming data against the con-
straint checker generated from the grammars.

The rest of the paper is organized as follows. Section
2 presents the case study based on the Public Illumina-
tion Plan which we used to validate the proposed system.
Section 3 introduces the OMT-G modeling language used
for specifying spatial integrity constraints (SICs, for short).
Section 4 describes the WiSPY tool, while Section 5 shows
its application to the considered case study. Section 6 dis-
cusses the work existing in literature related with our pro-
posal. Conclusions and future work are given in Section 7.

2 Case Study

The case study presented in this section represents the
current regulation of the Public Illumination Plan (PIP)
managed by the South Tyrolean Municipalities Consortium
(STMC), in South Tyrol, Italy. The STMC7 is a coopera-
tive founded in 1954 that includes among its members all
the south Tyrolean municipalities and is mainly focused on
legal practice, administrative training, labor legislation, and
ICT services. The PIP is a complex set of regulations that
can be difficult to interpret and apply correctly. In partic-
ular, these regulations define a complex set of lighting cat-
egories depending on the type of road the lamp is placed
(urban or extraurban roads, pedestrian zone, bicycle paths),

7
http://www.gvcc.net

if the road is heavily busy or not, if there is a pedestrian pas-
sage, if there are crossing roads, and so on. The plan must
be “safe for people and things” and implemented in order
to limit light pollution. Light pollution is considered as a
misdirected, excessive or obtrusive artificial light, causing
a serious degradation of the natural nocturne light. A pub-
lic administration must intervene in order to prevent such
situations. In addition, a illumination system that involves
wrong light bulbs, wrong lamp types or has an overestima-
tion of the lamp power could create economical issues. The
proposed WiSPY tool can help domain experts to better un-
derstand and effectively manage such a complex real world
scenario.

The verification of the PIP is a typical task that a pub-
lic administration is faced with and it is a complex task for
different reasons, such as the difficulty of managing many
types of geographic data involved in, as well as, the tight
connection to the context they are inserted in. In fact, the
simple containment spatial relationship is not sufficient to
check a wide range of constraints that could depend on the
context on which a lamp is being placed (type of road or
area), the type of lamp itself, the type of illumination based
on both lumen and lux. In addition, checking the correct-
ness of the geographic data related to a street lamp could
be tricky, because a lamp is normally represented as a point
in space, while the constraints may need a polygon to be
successfully checked. For example, checking the correct
distribution of lamps along a road is not sufficient to com-
pute the distance between the points of the lamps, it is also
necessary to calculate the amplitude of the radiation given
by the lux value.

The case study consists in the automatic verification of
real geographic data related to the PIP of the South Ty-
rolean Municipalities. The data includes basic cartographic
data (boundaries, hydrography, vegetation), roads, build-
ings, and of course the PIP. Based on the current regula-
tions, a set of constraints suited to the validation of the cho-
sen municipality’s PIP can be specified. The road types in
the municipal boundaries are of type C (secondary extra ur-
ban road) and type F (local roads and bicycle paths). The
following steps are necessary to determine which configu-
ration is suitable for each road type:

• determine whether the road is of type C or F, including
the speed limit;

• determine which technical illumination class is related
to the road, in order to have the right luminance values;

• determine the type of lamp;

• determine the height of the poles;

• determine how to place the poles at the side of the road:

– unilateral;

40

– bilateral with alternate center;

– bilateral with opposite center;

– double centred (between the two carriageways);

• determine the distance of the poles.

All these factors must be taken into account during the
verification process, and they depend on each others; de-
termining the distance of the poles is the step that depends
more on the other steps, whilst the first two steps are those
that influence more the decision.

3 Visual Modeling Geographic Data embed-
ding Integrity Constraints with OMT-G

Although existing data modeling approaches and tools
can be adapted for geographic database design, most of
them do not support certain aspects of the modeling pro-
cess, such as the treatment of SICs. A visual language for
modeling geographic data must be able to visualize differ-
ent aspects of the data structure including numerous types of
representations, such as point, line, polygon as well as non-
spatial data; conventional as well as geo-referenced classes;
different types of spatial relations, spatial constraints, spa-
tial aggregation relationships.

Object Modeling Technique for Geographic Applica-
tions (OMT-G) is an object-oriented approach to model data
for geographic information. Its notation is based on the
classic OMT class diagram notation [5], and further ex-
tended to embrace also Unified Modeling Language (UML)
concepts and notations [4]. OMT-G provides three types of
primitives, based on the UML primitives for class diagrams,
to model the geometry and topology of geographic data,
providing support for topologic structures, network struc-
tures, multiple views of objects, and spatial relationships.
These types are classes, relationships and SICs. These
primitives allow also for the specification of alphanumeric
attributes and associated methods for each class.

OMT-G offers three types of diagrams: the class dia-
gram, that represents the classes involved in the model, as
well as their relations; the transformation diagram, that per-
mits the description of the transformation process of a class,
if the class diagram indicates the need of multiple represen-
tation of it; the presentation diagram which describes how
to represent the visual aspects of objects in the visualization.

OMT-G class diagrams are composed of conventional
and geo-referenced classes. The first behave as UML
classes and have no geographical properties. The latter in-
clude a geographical representation alternative, which spe-
cializes in two types of representations: discrete, associated
with real world elements (geo-objects), or continuously dis-
tributed over the space (geo-fields). Geo-objects are rep-
resented with points, lines, polygons or network elements,

whereas geo-fields correspond to variables such as soil type,
relief and temperature. The relationships of a OMT-G class
diagrams can be conventional, e.g. UML relationships, or
georeferenced. The latter include topological relations (e.g.
touch, in, cross, overlap, and disjoint), arc-node network
relations and spatial aggregations.

OMT-G class diagram permits the derivation of the set
of SICs that must be observed in the implementation. SICs
can be classified in: topological (the geometrical proper-
ties), semantic (the semantic of the geographic feature), and
user-defined integrity constraints, “business rules” and all
those controls that are non-spatial. Topological integrity
constraints include spatial dependencies, spatial associa-
tions, connectivity, and geo-field rules. Semantic integrity
constraints include spatial association and disjunction rules.
User-defined integrity constraints are obtained from meth-
ods that can be associated to the classes.

4 The WiSPY Tool

In this section we present WiSPY (Visual specification
& Verification of SPatial integritY constraints), an exten-
sion of the uDig GIS tool [22] for enabling users to visu-
ally model geographic applications, also embedding SICs,
and to verify the correctness of the input geographic data.
WiSPY has been implemented by means of two plugins. In
the following we present the architecture of the WiSPY tool
and provide details about the implemented plugins.

4.1 The Architecture

Figure 1 shows the architecture of the proposed WiSPY
tool. It has been implemented on top of uDig, which is a
software program based on the Eclipse platform featuring
full-layered Open Source GIS. In particular, uDig provides
a complete Java solution for viewing, editing, and accessing
GIS data. Since it is built on top of the Eclipse “Rich Client
Platform”, WiSPY has been developed in Java as two uDig
plugins, namely OMT-G Editor and Constraint Checker.

The OMT-G Editor provides three different environ-
ments, one for each diagram the OMT-G data model pro-
vides. In the canvas of the class diagram editor, users spec-
ify their schema, adding classes and relationships chosen
from the tool palette. The relationships selected from the
palette can be inserted by clicking over the source class and
dragging a line to the target class. As an example, Figure 2
shows simple OMT-G class diagram modeling containment
constraints among Municipality, Lamp, and Road objects.

The OMT-G editor includes a function to derive a visual
grammar modeling the SICs specified in the OMT-G data
model. The Constraint Checker generated from the gram-
mar by using the ANTLR parser generator8 can be activated

8
http://www.antlr.org/

41

Figure 1: The architecture of WiSPY tool.

by the user during map editing phase. In particular, the input
of WiSPY is a set of geographic data whose type is defined
in the OMT-G data model. The output is the validation of
the input data with respect to the SICs specified between the
classes of the OMT-G data model. If a SIC is violated then
a suitable error message is shown to user with information
to recover from the violation.

4.2 Constraint Checker Generation

The WiSPY tool automatically generates a constraint
checker able to verify the SICs defined by a OMT-G class
diagram. In particular, WiSPY exploits the visual lan-
guage compiler-compiler technique proposed in [6] for de-
riving a visual language parser through standard compiler-
compilers, like YACC [11].

The OMT-G Editor allows users to develop their schema,
adding classes and relationships chosen from the tool
palette. The relationships can be annotated with SICs,
which impose restrictions on the input data. In particular,
the classes of the model represents the geographical ob-
jects that the user can place on the map, while the rela-
tionships specified between two classes define SICs on their
instances. Such constraints are defined on the attributes of
the involved classes. The editor provides the set of standard
OMT-G spatial integrity rules (e.g., contain relation, coin-
cide relation, cross relation, touch, in) as well as standard
processes such as generalization and specialization. More-
over, the users can define new rules by specifying a set of
conditions on the classes’ attributes.

The constraint checker generation process consists of
mapping the OMT-G class model into a visual grammar.
To this end, we use the XPG grammar formalism [6], which
is similar to context-free string grammars, where more gen-
eral relations other than concatenation are allowed. In par-
ticular, an XPG textually describes a diagram by grammar

productions that alternate (terminal and nonterminal) sym-
bols with relations defined on the symbol attributes. Thus,
the idea is to map the classes defined in the OMT-G schema,
which represent the spatial objects to be placed on the map,
into terminal symbols of the grammar, while the SICs de-
fined between the spatial objects are modeled in terms of
spatial relations among them [6]. In this way, the user can
analyze the SICs specified for a particular application do-
main and, eventually, customize some of them interacting
with the editor.

For instance, the containment constraint between Road
and Lamp in Fig. 2 is modeled by the production:

Roads ! ROAD hcontainsi LAMP
where contains is an empty production with associated a se-
mantic action that verifies the satisfiability of the relation-
ship [6]. ROAD and LAMP are terminal symbols having
associated the set of attributes defined in the corresponding
classes of the OMT-G model, e.g., type for ROAD. Such
attributes are used by the contains production to verify the
spatial constraint. The nonterminal symbol Roads has as-
sociated a set of attributes whose value is synthesized from
the attribute values of ROAD and LAMP.

The WiSPY tool provides the implementation of seman-
tic actions for a predefined set of constraints. However, as
said above, the tool enables users to define their own con-
straints. In particular, the user can annotate a OMT-G re-
lationship connecting two classes A and B with a boolean
condition on the attributes of A and B. As an example,
for the OMT-G diagram in Figure 2, a user could define
the following illuminance constraint: the lightning of lamps
associated to urban highways is greater than 40SB2. This
constraint is named illuminates and is defined by the fol-
lowing boolean expression:

(Road.type=‘Highway’ ^ Lamp.lightning >40).
The constraint checker is obtained by giving as input to

a compiler-compiler the grammar automatically generated
from the OMT-G model. Since WiSPY uses the ANTLR
parser generator to perform this task, we represent the XPG
grammar into a format compatible with ANTLR. The use of

Fig. 3 shows the grammar constraint checker editor em-
bedded into the uDig interface. In particular, in the right
side of the interface (label D), the palette contains all the
suitable tools for grammar checking, and the “Select Fea-
ture Set” operator is activated. By using this operator, users
can select geographic features into the area of interest by
using a simple rectangle selection tool on the standard uDig
map view. After this operation the geographic data of inter-
est are selected and highlighted in yellow in the map (see
label A). In this example, the highlighted polygons repre-
sent areas, while the highlighted points represent lamps. In
this case, only the selected geographic features are involved
in the constraint check process. At the bottom left side of
the interface (label B), the details about the selected features

42

Figure 2: OMT-G interface for specifying the spatial integrity constraints.

are shown. Finally, at the bottom right side of the inter-
face (label C), the output console of the validation process
is shown.

4.3 Verification of SICs

The parser generated with ANTLR is used by WiSPY
to validate the input spatial data against the SICs specified
in the OMT-G model. In particular, the parser analyzes the
spatial objects positioned on a map driven by the relation-
ships specified in the grammar. If the spatial objects violates
a SIC then it yields a parse error.

Fig. 4 shows the result of the constraint checking process
in the WiSPY interface. In this example, points represent-
ing lamps are highlighted by using the “Select Feature Set”
operator. Executing the constraint checking, the steps per-
formed by the validation process are listed into the console
view, located at the bottom of the interface. If an error oc-
curs, it is reported to the user in the console view.

5 Checking SICs for Public Illumination
Plans

The best way to illustrate how to apply our system to real
problems is through an example on PIP case study. In this
domain, lamps are spatial objects having associated the fol-
lowing information: localization of the lamp (municipality,
hamlet, street, GPS coordinates), number of light points for
every lamp, lamp type, type of light source, number of light
sources for light point, electric power for each light source,
year, overall electric power of the lamp, mounting typology
(wall or pole), pole type, pole height, circuit and electric
power panel, road classification and technical illumination
classification. The roads are classified as:

• Category A: highways;

• Category B: high-speed extraurban roads;

• Category C: secondary extraurban roads;

• Category D: urban arterial roads;

43

Figure 3: WiSPY main window with the additional tools for grammar parsing.

• Category E: urban district roads;

• Category F: local roads.

Road illumination varies depending on road classifica-
tion and on the related technical illumination classification.
This classification is the same specified in the UNI EN
13201 European normative, which states that the illumina-
tion level is based on the traffic intensity of the road and on
the daytime. Therefore the technical illumination classifi-
cation of a road may vary during the daytime. Since the ge-
ographic data used for the prototype are coming from a mu-
nicipality far away from highways, the classification used
in WiSPY is simplified as reported in Tables 1 and 2. The
illumination parameters reported in Table 2 refers to:

• L̄(cd/m2) is the average road surface luminance of a
carriageway of a road expressed in candelas per square
meter;

• U

o

is the overall uniformity of road surface luminance;

• U

l

is the longitudinal uniformity of road surface lumi-
nance;

• TI is the threshold increment, which measures the loss
in percentage of visibility caused by the disability glare
of the luminaries of a road lighting installation;

• SB

2 is the surround ratio of illumination of a carriage-
way of a road

• Ē is the hemispherical illuminance averaged over a
road area expressed in lux.

Table 1: UNI EN 13201 road classification (subset).

In order to illustrate how WiSPY is able to identify vio-
lations in the public illumination plan, in the following we

44

Figure 4: WiSPY interface showing the result of the constraint checking process.

Table 2: Considered UNI EN 13201 technical illumination
classes.

sketch the grammar derived from the OMT-G model in Fig-
ure 2. In particular, the terminal symbols of the grammar
correspond to the classes of the model, i.e., MUNICIPAL-
ITY, LAMP, and ROAD, while the productions are gen-
erated according to the class relationships specified in the
OMT-G model:

1. Map ! MUNICIPALITY hcontainsi Objects;

2. Objects ! Lamps hunioni Roads;

3. Lamps ! Lamp hpipi Lamps

4. pip ! ✏

SemanticAction: {
if distance(Lamp,Lamps)<MIN LAMP DIST

then
parse.alert(‘CONSTRAINT VIOLATION’,
‘Lamp’+Lamp.pos+‘ is too close to other lamps’);

}

5. Lamps ! Lamp

45

6. Lamp ! LAMP

7. Roads ! Road htouchesi Roads

8. Roads ! Road

9. Road ! ROAD

10. Road ! ROAD hcontains, isIlluminatedi Lamp

11. isIlluminated ! ✏

SemanticAction: {
if (ROAD.type=‘C’^ Lamp.lightning6=0.5) _(. . .)

then
parse.alert(‘CONSTRAINT VIOLATION’,

‘Lamp’+Lamp.position +‘ violates the ’+
‘illumination of road ’ + ROAD.name);

}

The productions have associated semantic actions that an-
alyze the values of the attributes associated to the spatial
symbols and verify whether the PIP constraints are satis-
fied. In particular, the first production indicates that a map
is composed of a municipality symbol (visually defined in
Figure 2 with a polygon) containing within its area other
objects. The latter can be Lamps and/or Roads as defined
in production 2. The set of lamps in the municipality has
to satisfy the constraint associated to the PIP relationship in
Figure 2, which defines the compatibility constraints among
lamps. As an example, the semantic action associated to
production 4 checks if the lamps are positioned too close. In
this case, a message is shown to the user. Thus, productions
3-6 define the nonterminal Lamps as a set of LAMP posi-
tioned within a MUNICIPALITY according to compatibil-
ity constraints. Similarly, productions 7-9 define the nonter-
minal Road as a set of ROAD symbols positioned within a
MUNICIPALITY and related through a touch relationship.
Productions 10 and 11 define the compatibility constraint
between roads and lamps according to the classifications re-
ported in Tables 1 and 2. In particular, each lamp is asso-
ciated to road and has to satify the user-defined constraint
isIlluminated. Notice that, for readability of productions,
we have omitted the semantic actions that synthesize the at-
tributes for the LHS nonterminal from the attributes of the
RHS (non)terminals.

The parser automatically generated from the previous
grammar is able to analyze the municipality, road, and lamp
symbols positioned by the user on a map, as shown in Fig-
ure 4, and verify whether the previously described SICs are
violated. As an example, when the parser analizes the lamps
positioned on a map it applies productions 3 and 4 trying
to reduce the LAMP terminal symbols into Lamps nonter-
minal symbols. If a lamp is too close to a lamp already
analyzed (the spatial coordinates of the lamps previously
analyzed by the parser are associated to Lamps’ nontermi-
nal symbol) then violation message is shown to the user.

When a SIC is violated by two or more geographical ob-
jects WiSPY shows a message with the information on the
objects involved in the violation and the type of violation.

Thw WiSPY approach simplifies the specification and
verification of SICs since the geographic application do-
main can be easily modeled with OMT-G class diagrams,
the SICs can be specified as visual relationships between
classes and customized using boolean conditions on at-
tribute values, and the constraint checker can be automat-
ically obtained from the annotated OMT-G model. In
this way, the user can easily customize/add new SICs and
rapidly prototyping new constraint checkers.

6 Related Work

The quality of spatial databases is an open problem in
the field of geographic information systems and, in the last
few decades, many efforts have been done to deal with im-
plementation and management issues [15, 23]. In the fol-
lowing, we highlight the most important features of these
works.

A constraint solver of spatial data based on programming
logic has been presented in [1, 2]. The constraint system is
able to handle the basic spatial types such as points, lines
and polygons as well as the constraints in terms of equali-
ties and inequalities, memberships, metric, topological and
structural constraints. The system also provides a suitable
theory for managing constraints and a set of transformation
rules. The latter handle a special kind of constraints used
for consistency checking, enabling an optimized and effi-
cient resolution of spatial constraints.

In [12] a dimension graph representation is used for
maintaining the spatial constraints among objects in an Eu-
clidean space. The constraint consistency checking prob-
lem is transformed into a graph cycle detection problem on
dimension graph.

The process for discovering inconsistencies in geograph-
ical dataset described in [19] consists of three steps: error
definition, error checking, and error correction. Basically,
the first step consists of the execution of some computa-
tional geometry algorithms, while the third one is solved by
applying the first order calculus predicates.

In [14] a system developed for automatically maintain-
ing topological constraints in a geographic database is pre-
sented. This system is based on extending to spatial data
the notion of standard integrity maintenance through active
databases. Topological relationships, defined by the users,
are transformed into SICs, which are stored in the database
as production rules. A similar approach is also introduces
in [3].

An automated constraint checking procedure has been
introduced by Udagepola et al. [21] to check constraint vi-
olations at compiling time before updating the database. It

46

is based on a data structure called Semantic Spatial Outlier
R-Tree (SSRO-Tree).

In [17] Rigaux et al. presented Dedale, a constraint-
based spatial database system relied on a linear constraints
logical model. This system provides both an abstract data
model and a user declarative query language based on SQL
in order to represent and manipulate geometric data in arbi-
trary dimension. A different approach which combines re-
lational and constraint data models is used in [10], where
a three-tier constraint database architecture is presented.
The latter increases the level of abstraction between the
physical data and its semantics by introducing an addi-
tional layer to the classical relational data model architec-
ture (logical and physical layer), which allows to manage
both constraint-based and geometric data representations in
the same layer of abstraction, in opposition to the pure con-
straint databases, where all data are represented in terms of
constraints.

The framework presented in [20] allows the definition of
hierarchical descriptions of abstract regions. To this aim,
the framework exploits attributed grammars which can be
translated by a compiler of compiler to a parser for abstract
regions. Once generated, the parsers can be used for evalu-
ating whether the incoming regions are consistent with the
specified patterns. Basically, the abstract region candidates
that were identified by the parsing rules can be evaluated to
check if they conform to the definition provided by the user.

On the commercial side, Oracle R� Spatial9 allows spatial
constraint checking by using either the PL/SQL language or
by defining the constraint within the table procedure. Ar-
cGIS10 provides users with a button bar where it is possible
to visually define simple constraints. More complex con-
straints have to be implemented by specific languages.

A significant part of the proposed WiSPY tool concerned
with the visual definition of spatial constraints. The choice
we made for this purpose is using the OMT-G modelling
language. Similar to other approaches, it uses some visual
formalisms for describing the spatial objects composing the
geodatabase and others for connecting the objects specify-
ing the relationships existing among them. We have cho-
sen OMT-G [4] for its capability of explicitly specifying
the constraints in associations and attributes [9], which is a
limitation of the models extending UML [18], such as Ext.
UML [16] and GeoFrame [8]. Moreover, OMT-G seems
to be the most simply and user-friendly notation for non-
expert constraint designers. Along this line, in [13] Lizardo
and Davis presented a tool which provides various consis-
tency checks on the integrity of the defined schema, and
includes a function that maps OMT-G geographic concep-

9
https://docs.oracle.com/cd/E18283_01/appdev.

112/e11830/sdo_intro.htm#insertedID0

10
https://sites.google.com/site/

ochaimwiki/geodata-preparation-manual/

how-to-check-topology-using-arcgis

tual schemas into physical schemas, including the SICs. Al-
though, it seems very similar to our approach, it is based
on SQL constraints which considerably limits the power of
constraint checking.

7 Conclusions

In this paper we have proposed a system to support users
in the automatic verification of SICs in geographic appli-
cations by exploiting visual language parsing. We have
demonstrated, by implementing the WiSPY tool, that the
visual language parsing is suitable for identifying violation
in the PIP case study and for solving ambiguities that may
arise in their interpretation. We have motivated our choice
of having an entirely visual system, and highlighted its ad-
vantages. This choice represents the major difference be-
tween our proposal and the related work.

Our future work will focus on the extension of the cur-
rent prototype in a fully functional product. Moreover, we
will concentrate our efforts on finding appropriate solutions
to present the information provided to the user, feedback
and solutions, in a flexible and supportive manner.

References

[1] J. M. Almendros-Jiménez. Constraint logic programming
over sets of spatial objects. In Proceedings of the 2005 ACM
SIGPLAN Workshop on Curry and Functional Logic Pro-
gramming, WCFLP ’05, pages 32–42, New York, NY, USA,
2005. ACM.

[2] J. M. Almendros-Jiménez and A. Corral. Solving constraints
on sets of spatial objects. In M. V. Hermenegildo and
D. Cabeza, editors, Practical Aspects of Declarative Lan-
guages, 7th International Symposium, PADL 2005, Long
Beach, CA, USA, January 10-11, 2005, Proceedings, vol-
ume 3350 of Lecture Notes in Computer Science, pages 158–
173. Springer, 2005.

[3] A. Belussi, E. Bertino, and B. Catania. Manipulating spatial
data in constraint databases. In M. Scholl and A. Voisard,
editors, Advances in Spatial Databases, 5th International
Symposium, SSD’97, Berlin, Germany, July 15-18, 1997,
Proceedings, volume 1262 of Lecture Notes in Computer
Science, pages 115–141. Springer, 1997.

[4] K. A. V. Borges, C. A. Davis, and A. H. F. Laender. OMT-G:
an object-oriented data model for geographic applications.
GeoInformatica, 5(3):221–260, 2001.

[5] K. A. V. Borges, A. H. F. Laender, and C. A. Davis. Spatial
data integrity constraints in object oriented geographic data
modeling. In C. B. Medeiros, editor, ACM-GIS ’99, Pro-
ceedings of the 7th International Symposium on Advances
in Geographic Information Systems, November 2-6, 1999,
Kansas City, USA, pages 1–6. ACM, 1999.

[6] G. Costagliola, V. Deufemia, and G. Polese. Visual lan-
guage implementation through standard compiler-compiler
techniques. J. Vis. Lang. Comput., 18(2):165–226, 2007.

47

[7] V. D. Fatto, V. Deufemia, and L. Paolino. Map integrity con-
straint verification by using visual language parsing. JDIM,
6(4):332–341, 2008.

[8] J. L. Filho and C. Iochpe. Specifying analysis patterns for
geographic databases on the basis of a conceptual frame-
work. In Proceedings of the 7th ACM International Sympo-
sium on Advances in Geographic Information Systems, GIS
’99, pages 7–13, New York, NY, USA, 1999. ACM.

[9] A. Friis-Christensen, N. Tryfona, and C. S. Jensen. Re-
quirements and research issues in geographic data modeling.
In W. G. Aref, editor, ACM-GIS 2001, Proceedings of the
Ninth ACM International Symposium on Advances in Geo-
graphic Information Systems, Atlanta, GA, USA, November
9-10, 2001, pages 2–8. ACM, 2001.

[10] D. Q. Goldin. Taking constraints out of constraint databases.
In B. Kuijpers and P. Z. Revesz, editors, Constraint
Databases, Proceedings of the 1st International Symposium
on Applications of Constraint Databases, CDB’04, Paris,
June 12-13, 2004, volume 3074 of Lecture Notes in Com-
puter Science, pages 168–179. Springer, 2004.

[11] S. Johnson. YACC: Yet Another Compiler Compiler. Bell
Laboratories, Murray Hills, NJ, 1978.

[12] X. Liu, S. Shekhar, and S. Chawla. Consistency checking for
euclidean spatial constraints: a dimension graph approach.
In 12th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI 2000), 13-15 November 2000,
Vancouver, BC, Canada, page 333. IEEE Computer Society,
2000.

[13] L. E. O. Lizardo and C. A. D. Jr. OMT-G designer: A
web tool for modeling geographic databases in OMT-G.
In M. Indulska and S. Purao, editors, Advances in Con-
ceptual Modeling - ER 2014 Workshops, ENMO, MoBiD,
MReBA, QMMQ, SeCoGIS, WISM, and ER Demos, At-
lanta, GA, USA, October 27-29, 2014. Proceedings, volume
8823 of Lecture Notes in Computer Science, pages 228–233.
Springer, 2014.

[14] C. B. Medeiros and M. Cilia. Maintenance of binary topo-
logical constraints through active databases. In Proceed-
ings of the 3rd ACM International Workshop on Advances
in Geographic Information Systems, Baltimore, Maryland,
December 1-2, 1995, in conjunction with CIKM 1995., page
127, 1995.

[15] L. Plümer and G. Gröger. Achieving integrity in geographic
information systems maps and nested maps. GeoInformat-
ica, 1(4):345–367, 1997.

[16] R. Price, N. Tryfona, and C. S. Jensen. Extended spatiotem-
poral UML: motivations, requirements and constructs. J.
Database Manag., 11(4):14–27, 2000.

[17] P. Rigaux, M. Scholl, L. Segoufin, and S. Grumbach. Build-
ing a constraint-based spatial database system: model, lan-
guages, and implementation. Inf. Syst., 28(6):563–595,
2003.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling
Language Reference Manual, The (2Nd Edition). Pearson
Higher Education, 2004.

[19] S. Servigne, T. Ubeda, A. Puricelli, and R. Laurini. A
methodology for spatial consistency improvement of geo-
graphic databases. GeoInformatica, 4(1):7–34, 2000.

[20] J. Steinhauer, T. Wiese, C. Freksa, and T. Barkowsky.
Recognition of abstract regions in cartographic maps. vol-
ume 2205 of Lecture Notes in Computer Science, pages 306–
321. Springer, 2001.

[21] K. P. Udagepola, L. Xiang, L. H. Wei, and Y. X. Zong. Ef-
ficient management of spatial databases by data consistency
and integrity constraints. WSEAS Transactions on Comput-
ers, 5(2):447–454, 2006.

[22] uDig. User-friendly desktop internet gis. http://udig.
refractions.net/, 2004.

[23] M. F. Worboys. A unified model for spatial and temporal
information. Comput. J., 37(1):36–34, 1994.

48

GO-Bayes Method for System Modeling and Safety
Analysis

Guoqiang Cai, Limin Jia, Hui Zhen,
Mingming Zheng, Shuai Feng

State Key Lab of Rail Traffic Control & safety
Beijing Jiaotong University, Beijing, China

guoqiangcai@163.com

MengChu Zhou

Department of Electrical and Computer Engineering
New Jersey Institute of Technology, Newark, NJ 07102,

USA
zhou@njit.edu

Abstract—Safety analysis ensuring the normal operation of an
engineering system is important. The existing safety analysis methods
are limited to relatively simple fact description and statistical
induction level. Besides, many of them enjoy poor generality, and fail
to achieve comprehensive safety evaluation given a system structure
and collected information. This work describes a new safety analysis
method, called a GO-Bayes algorithm. It combines structural
modeling of the GO method and probabilistic reasoning of the Bayes
method. It can be widely used in system analysis. The work takes a
metro vehicle braking system as an example to verify its usefulness
and accuracy. Visual implementation by Extendsim software shows
its feasibility and advantages in comparison with the Fault Tree
Analysis (FTA) method.

Keywords: Safety analysis, GO-Bayes method, and Reliability

I. INTRODUCTION
Safety evaluation technologies were originated in the 1930s.

In the 1960s, the needs from the US military field’s
engineering system safety theory and applications promoted
their rapid development[1]. As people's awareness of safety
continues to grow and system safety engineering becomes a
mature discipline, a system safety engineering approach is
gradually extended to aviation, nuclear industry, petroleum,
chemical, and manufacturing areas. Researchers have proposed
new theories and methods, such as safety checklist[2], safety
analysis[3] and evaluation methods[4], event trees[5], fault trees[6]
and risk assessment techniques[7-8], mode evaluation, six-stage
safety and other risk index evaluation method, artificial neural
networks and other technologies.

The GO method has commonly been used since 1980s [9].
Several improved methods for quantitative analysis are
proposed in signal processing[10]. This work intends to improve
the GO algorithm based on Bayes reasoning[11-13] and names
the new method as a GO-Bayes algorithm. It has the following
innovative characteristics:

First, the structural modular reliability analysis of the GO
method is applied to analyze the operational status of a safety
analysis assessment system; Second, the Bayes probability
theory is used in a safe state probability parameter extraction
process to each basic unit of the model; Third, the Bayes

inference is integrated into the system GO graph model,
reversing fault reasoning analysis and evaluation, thereby
achieving simpler quantitative analysis. The proposed GO-
Bayes method combines the structural modeling of the GO
method and probabilistic reasoning of the Bayes method[14],
which can be used in situations where one has a large amount
of system fault information. Its use can help one prevent and
diagnose faults in a timely fashion, thus ensuring the safe
operation of an entire system.

II. GO-BAYES METHOD
The proposed GO-Bayes method is system-unit-component

failures oriented. It combines basic unit models and logic
analysis models according to a flow chart to establish the
analysis model, in accordance with certain rules to calculate
reliability parameters. Besides we adopt Bayes methods to
deduce system failure and solve inverse probability, in order to
achieve a comprehensive system safety evaluation. The GO-
Bayes method’s operators are shown in Figure 1.

A. Modeling method
The GO-Bayes method inherits graph modeling ideas, e.g.,

schematic diagrams, flow charts and other drawings. First, we
summarize the basic model elements, and explain the unit
algorithm. Second, we build a system model according to a
system structure and data flows among its units. We use system
modeling algorithms to process raw input data and then obtain
system outputs according to the working mechanism and fault
conditions.

B. Bayes theory based on information fusion
Information fusion research based on the Bayes theory is

mainly used for system internal self-monitor and self-test
information. The information (hereinafter collectively referred
to as detection information) plays a strong role in system
operation safety analysis. The GO-Bayes method is based on
the description and information of each component and
subsystem, and the model is systematically analyzed. Fault
information related to the system reliability and safety is
integrated for system reliability analysis.

DOI reference number:10.18293/DMS2015-052
DOI reference number: 10.18293/VLSS2015-052

49

1

Two unit state

S R

2

Or gate

S1

S2

SN

R

3

Trigger generator

S R

4

Multi signal generator

R1

R2

RN

5

signal generator

R

6

Signal conduction element

S1

S2

R

7

Signal closing element

S1

S2

R

8

Delayed generator

S R

9

Function operator

S1

S2

R

10

AND gate

S1

SN

R

11

"M" taking "K gate"

S1

S2

SN

R

11

Path separator

S
R1

R2

13

Multiple input / output device
S1

S2

SN

R1

R2

RN

14

Linear combination generator

S1

S2

SN

R

15

Limiting probability gate

S R

16

Recovery conducted element

S1

S2

R

17

Recovery turned off element

S1

S2

R

Figure 1. The operators used in the GO-Bayes method

C. Probabilistic Inference based on GO-Bayes
System probabilistic safety evaluation can be realized in

two ways. First, from components to systems, based on the
probability parameters of component parts, we solve
probability parameters of a system, such as normal work
probability and failure probability. Second, from the system to
the components, based on known system state information and
component probability parameters, we reason a system’s
various safety status probabilities, i.e., "inverse probability".

III. INTRODUCTION TO UNIT MODEL
When a basic unit is described, its probability data follows

the following principles [15-16]. We use the following notation: S
is the data unit subscript, like Rs, Fs and Ps; I is the input data
subscript, like RI, FI and PI; and O is the output data subscript,
like Ro , Fo and Po.

A. Signal generating unit
A signal generating unit means an input to a system,

external event or signal independent of the system. It can
represent a generator, power, environmental impact and human
factors. It has two states, normal or faulty. Its safety probability
parameter comprises, Unreliability F(1), inverse probability
P(1). Its single arrow output indicates an unreliability output,
double arrow indicates an inverse probability input, satisfying:

 (1) (1)O SF F (1)

 (1) (1)S IP P (2)
Figure 2 means a signal generating unit model, and Figure

3 means a signal generator unit.

1

Figure 2. A signal generating unit model

Figure 3. A Signal generator unit

B. Two state unit
As shown in Figures 4-5, a two-state unit is the most

common unit, whose two states are normal and faulty ones. It
has input and output data, and can represent resistors, switches,
and valves. Its unreliability value is calculated based on the
reliability theory,

 (2) 1 [1 (2)][1 (2)]O S IF F F � � � (3)

Two-state unit output failure results from either input fault
or its own fault. They form a series logical relationship with the
inverse probability

(2) (2)

(2)
(2)

S I
S

O

F P
P

F
 (4)

50

(2) (2)

(2)
(2)

I I
O

O

F P
P

F
 (5)

2

Figure 4. A Two-state unit model

Figure 5. A two-state unit

C. Conditional control unit
A conditional control unit, as shown in Figures 6-7,

requires two inputs, the working status input, with a subscript
label 1, and the control state input, with a subscript label 2. Its
output represents their safety status. A conditional control unit
may represent relay and mechanical control valves and so on.
Its probability parameter calculation rules as follows:

1 2(3) 1 [1 (3)][1 (3)][1 (3)]O I I SF F F F � � � � (6)

(3) (3)

(3)
(3)

S I
S

O

F P
P

F
 (7)

 1
1

(3) (3)
(3)

(3)
I I

O

O

F P
P

F
 (8)

 2
2

(3) (3)
(3)

(3)
I I

O

O

F P
P

F
 (9)

3

Figure 6. A Conditional control unit model

Figure 7. A Conditional control unit

D. AND gate
An AND gate unit is shown in Figures 8-9. It can rely on

several reliability input data items (with subscript labels being
1, 2, 3, …, n), to compute one reliability output. It yields an
output only when multiple inputs simultaneously are available.
It does not have its own data. It does not stand for an internal
system component, but is used to connect different units. Its
reverser fault data is expressed as an input and multiple output.
Obviously, an AND gate unit represents a parallel logical
relationship. Its probability parameters can be computed:

 1 2(4) (4) (4)... (4)O I I InF F F F (10)

 1 (4) (4)O IP P (11)

 2 (4) (4)O IP P (12)

 (4) (4)On IP P (13)

4...

Figure 8. An AND gate unit model

Figure 9. An AND gate unit

51

E. OR gate
An OR gate unit relies on several reliability input data (with

a subscript label 1, 2, 3,…, n), to compute reliability output
data, as shown in Figures 10-11. When one of the multiple
inputs occurs, it can yield an output. It does not have its own
data, and stand for no internal system component, but can be
used to connect multiple units. Its reverser fault data is
expressed as an input and multiple outputs. Probability
parameters are calculated as follows:

 1 2(5) 1 [1 (5)][1 (5)]...[1 (5)]O I I InF F F F � � � � (14)

 1
1

(5) (5)
(5)

(5)
I I

O

O

F P
P

F
 (15)

 2
2

(5) (5)
(5)

(5)
I I

O

O

F P
P

F
 (16)

(5) (5)

(5)
(5)

In I
On

O

F P
P

F
 (17)

5...

Figure 10.An OR gate unit model

Figure 11. An OR gate unit

F. Voting gate
A voting gate unit as shown in Figures 12-13 has several

reliability input data items (with a subscript label 1, 2, 3, …, n),
and one output. It produces an output only when more than k
inputs are present at the same time. It does not have its own
data, and stands for no internal system component, but it can be
used to connect multiple units. Its reverse fault data is
expressed as an input and multiple outputs. It represents a
parallel and series logical relationship. It can be divided into a
combination of AND gate units and OR gate units. For
example taking 2 from 4 has C2

4 =6 options, two AND gate units
connect to one OR gate unit, meaning that two or more input
failures lead to system output failure.

6...

Figure 12. A Voting gate unit model

Input1

Input2

Input3

Input4
4

4

4

4

4

4

5

Figure 13. A 4-input series-parallel voting gate model

Its probability parameters can be derived from those for

AND gate and OR gate units. We derive an algorithm for a
GO-Bayes basic voting model.

Take 2 from 4 as an example in Figure 13. It can be divided
into a combination of 6 AND gate units and 1 OR gate unit.

Assuming that the probabilities of inputs 1-4 are RI1(6)=x1,
RI2(6)=x2, RI3(6)=x3, RI4(6)=x4 , we can derive the probability
formula for the 2/4 voting gate Fo(6),

1 2 1 3

1 4 2 3

2 4 3 4

(6) 1 [1 (1) (1)] [1 (1) (1)]

[1 (1) (1)] [1 (1) (1)]

[1 (1) (1)] [1 (1) (1)]

oF x x x x

x x x x

x x x x

 � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

 (18)

thus

1 2 3 1 2 4 1 3 4

2 3 4 1 2 3 4

(6) 1 (

3)
oF x x x x x x x x x

x x x x x x x

 � � � � � � � � � �

� � � � � �
 (19)

Since the jointly signal has no effect on the calculation of
the reverse probability, according to the reverse probability
formula of an AND gate unit (label 4) and OR gate unit (label
5), we can derive the following reverse probability of the gate:

1 2(1 2) (6) (1) (1) (6)
(1 2)

(6) (6)
I I I

I

O O

F P x x P
P

F F

� � � � �
� (20)

1 3(1) (1) (6)(1 3) (6)
(1 3)

(6) (6)
II I

I

O O

x x PF P
P

F F

� � � ��
� (21)

1 4(1 4) (6) (1) (1) (6)
(1 4)

(6) (6)
I I I

I

O O

F P x x P
P

F F

� � � � �
� (22)

2 3(1) (1) (6)(2 3) (6)
(2 3)

(6) (6)
II I

I

O O

x x PF P
P

F F

� � � ��
� (23)

52

2 4(2 4) (6) (1) (1) (6)
(2 4)

(6) (6)
I I I

I

O O

F P x x P
P

F F

� � � � �
� (24)

3 4(1) (1) (6)(3 4) (6)
(3 4)

(6) (6)
II I

I

O O

x x PF P
P

F F

� � � ��
� (25)

1 1 2 1
1

1 2

(6) (1) (1) (6) (6) (6)
(6)

(1) (1) (6) (6)
I I I I

I
O O

F x x P F P
P

x x F F
� � � � �

 �
� � �

 (26)

2 1 2 2
2

1 2

(6) (1) (1) (6) (6) (6)
(6)

(1) (1) (6) (6)
I I I I

I
O O

F x x P F P
P

x x F F
� � � � �

 �
� � �

 (27)

3 1 3 3
3

1 3

(6) (1) (1) (6) (6) (6)
(6)

(1) (1) (6) (6)
I I I I

I
O O

F x x P F P
P

x x F F
� � � � �

 �
� � �

 (28)

4 1 4 4
4

1 4

(6) (1) (1) (6) (6) (6)
(6)

(1) (1) (6) (6)
I I I I

I
O O

F x x P F P
P

x x F F
� � � � �

 �
� � �

 (29)

Then we get a 2/4 vote gate algorithm. We can obtain the
similar results for other voting gates.

IV. SAFETY ANALYSIS OF VISUAL UNIT METRO
VEHICLES BRAKING SYSTEM

We now show how to use the proposed GO-Bayes method
to analyze an urban rail transit vehicle air braking part.

A. Basic composition of air braking
Air braking portion of a braking system's basic components

include air compressor and filtration device (as shown in A5 of
Figure 14), total duct, air spring devices and pneumatic part
(beginning with L in Figure 14), parking braking device (B7),
braking control section (B13), braking airline (beginning with
B), foundation brakes (beginning with C), and electronic anti-
skid devices (beginning with G).

We build the visual system for an urban metro vehicle
braking system as shown in Figure 14.

Figure 14. Visual system of an urban metro vehicle braking system

B. GO-Bayes modeling method for a braking system
The braking system has a complex structure and many

components. In order to display and analyze it fully, this work
uses a hierarchical modeling method by dividing the braking
system into two layers. Its first layer has six functional sections
as shown in Figure 15.

AB

CD

F

E

Figure 15. First layer structure model of a braking system

In Figure 15, node A represents an air supply device, B the
line along which braking air passes through, C the air spring
suspension, D the braking control device, E parking braking
control, and F the foundation braking.

In the second layer of the model structure as shown in
Figure 16, since the number of components is big, we label
them according to the labels in the first parts and the position in
the device. Numbers on the left of the dash represents unit
types, and those on the right side correspond to the system unit.

(1) An air supply device is shown in Figure 16 and

Table 1.

2-A4 2-A3 2-A2 1-A1

Figure 16. Structure model of an air supply device

TABLE 1 Units in an air supply device model

Code Corresponding component

1-A1 Drive motor
2-A2 Air compressor
2-A3 Drying tower
2-A4 total air cylinder

(2) A braking air route is given in Figure 17 and Table 2.

2-B22-B33-B41-B5 2-B1

Figure 17. Braking air route structure model

TABLE 2 Components in a braking air route structure model

Code Corresponding component

2-B1 Total air duct
2-B2 Cut-off valve
2-B3 Safety valve
3-B4 Braking reservoir cylinder
1-B5 Exhaust valve

53

(3) An air spring suspension device is shown in Figure 18
and Table 3.

2-C12-C2

2-C3 2-C42-C10 2-C52-C11

2-C62-C12

2-C72-C13

2-C14 2-C83-C15 3-C9

Figure 18. Structure model of an air spring suspension device

TABLE 3 Components in an air spring suspension device model

Code Corresponding component

2-C1 Cut-off valve
2-C2 Filter
2-C3 Air spring cylinder
2-C4 Cut-off valve
2-C5 Left height valve
2-C6 Right height valve
2-C7 Air spring
2-C8 Air spring
3-C9 Pressure valve

2-C10 Cut-off valve
2-C11 Left height valve
2-C12 Right height valve
2-C13 Air spring
2-C14 Air spring
3-C15 Pressure valve

(4) A braking control device inner has its structure and

components shows in Figure 19 and Table 4.

3-D1

2-D3

3-D5 5-D6

3-D7

3-D4

1-D2

Figure 19. Structure model of a braking control system

TABLE 4 Components in a braking control system model

Code Corresponding component
3-D1 Analog converter
1-D2 ECU code
2-D3 Emergency solenoid valve
3-D4 Pressure Switch
3-D5 Weighing valve
5-D6 OR gate
3-D7 Relay valve

(5) A parking braking device has its structure and

components in Figure 20 and Table 5.

3-E3

2-E2

1-E6

2-E1

2-E7

3-E5

1-E4

Figure 20. Structure model of a parking braking device

TABLE 5 Components in a braking device model

Code Corresponding component

2-E1 Cut off valve
2-E2 Pressure Switch
3-E3 Parking braking solenoid valve
1-E4 Parking braking code
3-E5 Pulse valve
1-E6 Two-way valve
2-E7 Check

(6) A Foundation Braking is given in Figure 21 and

Table 6.

2-F5

2-F1

2-F6

2-F2

2-F3 2-F4

5-
F19

2-
F15

3-F9
2-
F17

2-
F16

3-
F10

5-
F20

2-
F18

1-
F13

3-F7 3-F8

1-
F14

5-
F21

1-
F11

1-
F12

Figure 21.Structure model of a foundation braking device

TABLE 6. Components in a foundation braking device model

Code Corresponding component

2-F1 Cut off valve
2-F2 Cut off valve
3-F3 Slip solenoid valve
3-F4 Slip solenoid valve
3-F5 Slip solenoid valve
3-F6 Slip solenoid valve
2-F7 Braking air reservoir
2-F8 Braking air reservoir
2-F9 Braking air reservoir

2-F10 Braking air reservoir
1-F11 Speed Sensor
1-F12 Speed Sensor
1-F13 Speed Sensor
1-F14 Speed Sensor
2-F15 Slipper
2-F16 Slipper
2-F17 Slipper
2-F18 Slipper
5-F19 Or gate
5-F20 Or gate
5-F21 Or gate

54

Another feature of the hierarchical model is that each of its
modules can be individually analyzed. During the entire system
analysis procedure, the correlations among modules have to be
paid attention to.

C. Calculation of probability indicators
Safety probability indicators are computed based on the GO-
Bayes model of the braking system. First, obtain the fault
parameters for each component by statistically analyzing
historical operating cumulative data of the system. Component
fault rate is the total number of the system failures divided by
the total number of components, and then divided by the time
duration. Secondly, we can calculate the component fault
probability and normal work probability at time k according to
the correlations among failure rate indices.

(1) Original data

Component failure rate data for each component comes mainly
from the historical operation statistics. Assume steady-state
operation 100h as shown in Table 7,

TABLE 7 Initial data of components in the model

Code Failure Rate(10E-06/h) Fault Rate

1-A1 3 2.9996E-04
2-A2 4.5 4.4990E-04
2-A3 6 5.9982E-04
2-A4 0.5 4.9999E-05
2-B1 1 9.9995E-05
2-B2 1.2 1.1999E-04
2-B3 2.5 2.4997E-04
3-B4 0.7 6.9998E-05
1-B5 8 7.9968E-04
2-C1 3 2.9996E-04
2-C2 1 9.9995E-05
2-C3 0.5 4.9999E-05
2-C4 3 2.9996E-04
2-C5 10 9.9950E-04
2-C6 10 9.9950E-04
2-C7 1.5 1.4999E-04
2-C8 1.5 1.4999E-04
3-C9 5 4.9988E-04

2-C10 3 2.9996E-04
2-C11 10 9.9950E-04
2-C12 10 9.9950E-04

2-C13 1.5 1.4999E-04
2-C14 1.5 1.4999E-04
3-C15 5 4.9988E-04
3-D1 2 1.9998E-04
1-D2 42 4.1912E-03
2-D3 9 8.9960E-04
3-D4 4 3.9992E-04
3-D5 0.8 7.9997E-05
3-D7 2 1.9998E-04
2-E1 3 2.9996E-04
2-E2 4 3.9992E-04
3-E3 3.5 3.4994E-04
1-E4 1 9.9995E-05
3-E5 3 2.9996E-04
1-E6 7 6.9976E-04
2-E7 1.2 1.1999E-04
2-F1 3 2.9996E-04
2-F2 3 2.9996E-04
3-F3 3.5 3.4994E-04
3-F4 3.5 3.4994E-04
3-F5 3.5 3.4994E-04
3-F6 3.5 3.4994E-04
2-F7 1 9.9995E-05
2-F8 1 9.9995E-05
2-F9 1 9.9995E-05
2-F10 1 9.9995E-05
1-F11 15 1.4989E-03
1-F12 15 1.4989E-03
1-F13 15 1.4989E-03
1-F14 15 1.4989E-03
2-F15 9 8.9960E-04
2-F16 9 8.9960E-04
2-F17 9 8.9960E-04
2-F18 9 8.9960E-04

 (2) Calculation results

Based on the above model structure, we calculate the
reliability and unreliability of each component's output, and
then reverse reasoning to obtain each component's input
probabilities. We can obtain the system output reliability that is
9.7079E-01, unreliability is 2.9205E-02. In Table 8, the inverse
probability of the following components is relatively larger.
That is to say, (1-D2, 1.4351E-01), (2-D3, 3.0803E-02), (1-F11,
1-F12, 1-F13, 1-F14, 5.1322E-02), (2-F15, 2-F16, 2-F17, 2-
F18, 3.0803E-02) indicate the component fault will most likely
lead to system fault. Hence, we have to focus on tracking them.

TABLE 8 Safety analysis results of braking system

Code Output unreliability Output reliability Component input Component

（Cumulative probability

of fault）
（Normal work
probability）

inverse Probability inverse Probability

1-A1 2.9996E-04 9.9970E-01 1.0271E-02 1.0271E-02
2-A2 7.4972E-04 9.9925E-01 2.5671E-02 1.5405E-02
2-A3 1.3491E-03 9.9865E-01 4.6194E-02 2.0538E-02
2-A4 1.3990E-03 9.9860E-01 4.7903E-02 1.7120E-03
2-B1 1.4989E-03 9.9850E-01 5.1322E-02 3.4239E-03
2-B2 1.6187E-03 9.9838E-01 5.5425E-02 4.1086E-03
2-B3 1.8683E-03 9.9813E-01 6.3970E-02 8.5591E-03
3-B4 2.7362E-03 9.9726E-01 9.3691E-02 2.3968E-03
1-B5 7.9968E-04 9.9920E-01 2.7382E-02 2.7382E-02
2-C1 1.6986E-03 9.9830E-01 5.8160E-02 1.0271E-02
2-C2 1.7984E-03 9.9820E-01 6.1578E-02 3.4239E-03
2-C3 1.8483E-03 9.9815E-01 6.3287E-02 1.7120E-03
2-C4 2.1477E-03 9.9785E-01 7.3538E-02 1.0271E-02
2-C5 3.1450E-03 9.9685E-01 1.0769E-01 3.4224E-02
2-C6 3.1450E-03 9.9685E-01 1.0769E-01 3.4224E-02
2-C7, 2-C8 4.1414E-03 9.9586E-01 1.4180E-01 5.1357E-03

55

javascript:showjdsw('showjd_0','j_0')

3-C9 4.9378E-03 9.9506E-01 1.6907E-01 1.7116E-02
2-C10 2.1477E-03 9.9785E-01 7.3538E-02 1.0271E-02
2-C11, 2-C12 3.1450E-03 9.9685E-01 1.0769E-01 3.4224E-02
2-C13, 2-C14 4.1414E-03 9.9586E-01 1.4180E-01 5.1357E-03
3-C15 4.9378E-03 9.9506E-01 1.6907E-01 1.7116E-02
3-D1 7.1146E-03 9.9289E-01 2.4361E-01 6.8474E-03
1-D2 4.1912E-03 9.9581E-01 1.4351E-01 1.4351E-01
2-D3 3.6334E-03 9.9637E-01 1.2441E-01 3.0803E-02
3-D4 8.0078E-03 9.9199E-01 2.7419E-01 1.3694E-02
3-D5 1.5056E-02 9.8494E-01 5.1551E-01 2.7391E-03
5-D6 6.6279E-03 9.9337E-01 2.2694E-01 0
3-D7 1.5252E-02 9.8475E-01 5.2226E-01 6.8474E-03
2-E1 3.0354E-03 9.9696E-01 1.0393E-01 1.0271E-02
2-E2 3.4341E-03 9.9657E-01 1.1759E-01 1.3694E-02
3-E3 3.8824E-03 9.9612E-01 1.3294E-01 1.1982E-02
1-E4 9.9995E-05 9.9990E-01 3.4239E-03 3.4239E-03
3-E5 1.7367E-02 9.8263E-01 5.9467E-01 1.0271E-02
1-E6 1.5942E-02 9.8406E-01 5.4585E-01 2.3960E-02
2-E7 1.7485E-02 9.8251E-01 5.9871E-01 4.1086E-03
2-F1,2-F2 1.7780E-02 9.8222E-01 6.0880E-01 1.0271E-02
3-F3, 3-F4, 3-F5, 3-F6 1.9595E-02 9.8040E-01 6.7096E-01 1.1982E-02
2-F7, 2-F8, 2-F9, 2-F10 1.9693E-02 9.8031E-01 6.7432E-01 3.4239E-03
1-F11, 1-F12, 1-F13, 1-F14 1.4989E-03 9.9850E-01 5.1322E-02 5.1322E-02
2-F15, 2-F16, 2-F17, 2-F18 2.0575E-02 9.7942E-01 7.0451E-01 3.0803E-02
5-F19 2.3363E-02 9.7664E-01 7.9996E-01 0
5-F20 2.3363E-02 9.7664E-01 7.9996E-01 0
5-F21 2.9205E-02 9.7079E-01 1.0000E+00 0

D. Experimental Analysis
We can conclude from the above safety analysis:

(1) When a system shows abnormal conditions, we have to
obtain real-time inverse probability through the fault backward
reasoning method. The inverse probability of components (3-
B4, 1.3070E-02), (1-B5, 1.4932E-01), (3-D1, 3.7340E-02), (1-
D2, 7.8258E-01), and (1-F11, 4.7087E-01) is significantly
larger than the others’, which shows that these parts may be
abnormal. We should thus focus on tracking them. In addition
by using the system diagram model to analyze 3-B4, 1-B5, 3-
D1, and 1-D2, which are working parts connected together, the
abnormal output of 3-D1 indicates that the failure possibility
of these four components is very large, and the failure
possibility of (1-D2, 7.8258E-01) is the highest. It represents
Electronic Control Unit instruction, error rate of which is

higher, because it has many electronic circuit components.
While (1-F11, 4.7087E-01) is an independent failure, in fact, it
represents the speed sensor with a self-resetting function. Its
false detection occurs frequently. If an abnormal event is
detected when its probability of failure is less than 1/2, we
should check and maintain them.
(2) Traditional fault probability calculation depends on the
forward deduction of historic data. By contrast, the GO-Bayes
method provides structural models of a system and inverse
reasoning probability. The models’ output and inverse
probability reflect more accurately the system’s reliability than
traditional fault probability. Figure 22 is a metro train’s braking
system based on FTA. Table 9 shows GO-Bayes’ advantage
compared with FTA.

56

Braking system
faults

System of
power shortage
or out of work

Too much braking
force (traumatic

death)

x1
Anti-Slip

device failurex2 x3 x17
Relay valve lack

of pressure x18 x19

Common
system failure

Parking brake
failure

Emergency
brake failure

Parking brake is
not alleviated x22

Parking brake out
of work

Parking brake
solenoid valve out of

work

Too much
parking

brake force
x23 x24 x28

x29 x30

The driver failed to
implement

emergency brake

Automatic triggering
emergency brake

failure

x25

x33Lack of brake
cylinder pressure

Common brake
control failure

x6x5

x4

Total duct
pressure is
insufficient

x9x7

EBCU control
disorder x8

x10
Abnormal

pressure detection
value of air spring

x11 x12 x14x13

Too much
relay valve

output pressure

Skid device
out of work

x16x15

Too large
total duct
pressure

Brake control
disorder

x20 x21 x14x6

x16x15

x24x23

x26 x27 x28

x32x31

Common
braking is not

relieved

Figure 22 A metro train’s braking system based on FTA

TABLE 9 GO-Bayes compared with FTA

Model Feature GO- Bayes FTA
Modeling oriented success Failure
Modeling method bi-direction induction deductive

Modeling consistency basically identical differences according to everyone’s understanding
Structure similar principle diagram hierarchical logic diagram
Volume compact, small size multi-layer, huge volume

Elements component, logic diagram fault event, logic gate
Description reflect original system structure reflect the failure cause and effect

Notation more operators with rich expression less operators with poor expression

V. CONCLUSION
This paper presents a new structural GO-Bayes method. It

is a comprehensive system safety analysis and evaluation
modeling methodology. Using a system diagram model, we can
obtain the system’s normal work probability output, which is
essential for fault backward reasoning. The paper discusses
basic components or units and their related analysis results. The
application of the proposed method to a metro vehicle braking
system shows its contribution to safety analysis and assessment.
The results can be used to trace, maintain and improve system
components and eventually ensure the entire system’s safe
operation.

ACKNOWLEDGMENT
This work was supported by China High Technologies

Research Program (2015BAG19B02) (KIK15007531).

REFERENCES
[1] Yang, J.; Wu, Z.Z.; Chen, T.Z. Review of the urban road traffic safety

evaluation methods. Proceedings of the Fourth International Conference
on Transportation Engineering.December 2013, pp.2503-2508.

[2] Pugel, A.E.; Simianu, V.V.; Flum, D.R. Use of the surgical safety
checklist to improve communication and reduce complications. Journal
of infection and public health, 2015, 8(3), pp.219-225.

[3] Long, J.B.; Birmingham, P.K.; De Oliveira, Jr.G.S. Transversus
Abdominis Plane Block in Children: A Multicenter Safety Analysis of
1994 Cases From the PRAN (Pediatric Regional Anesthesia Network)
Database. Survey of Anesthesiology, 2015, 59(3), pp.139-140.

[4] Saunders, R.P.; Wilcox, S.; Baruth, M. Process evaluation methods,
implementation fidelity results and relationship to physical activity and
healthy eating in the Faith, Activity, and Nutrition (FAN) study.
Evaluation and program planning, 2014, pp.43: 93-102.

[5] Ibánez, L.; Hortal, J.; Queral, C. Application of the Integrated Safety
Assessment Methodology to Safety Margins. Dynamic Event Trees,

57

Damage Domains and Risk Assessment. Reliability Engineering &
System Safety, 2015.

[6] Purba, J.H.; Lu, J.; Zhang, G. A fuzzy reliability assessment of basic
events of fault trees through qualitative data processing. Fuzzy Sets and
Systems, 2014, 243, pp.50-69.

[7] Appelbaum, P.S.; Robbins, P.C.; Monahan, J. Violence and delusions:
Data from the MacArthur violence risk assessment study. American
Journal of Psychiatry, 2015.

[8] Zhou, L.M.; Cai, G.Q.; Yang, J.W.; Jia, L.M. Monte-Carlo Simulation
Based on FTA in Reliability Analysis of Gate System.The 2nd
International Conference on Computer and Automation
Engineering.February 26-28, 2010, pp.713-717.

[9] Xu, W.Z. Comparative study of the GO method and fault tree reliability
modeling. Journal of Beijing institute of light industry, 1999, 17(2).

[10] Shen, Z.P.; Huang, R.X. Z. Shen, R. Huang. Principle and application of
GO - a method for reliability analysis of system. Beijing:Tsinghua
University Press, 2008.

[11] Takkishi, M.; Michiyuki, K. GO-FLOW: A New Raliability Analysis
Methodology. Nuclear science and engineering, January 1988, 98(1),
pp.64-78.

[12] Xie, B.L.; Liu, Q. A New Inference Method on Fuzzy Control and
Simulation. 2011 International Conference on Mechanical, Industrial,
and Manufacturing Engineering (MIME 2011). January 2011, pp.159-
161.

[13] Cooper, G.F.; Herskovite, E. A bayesian method for the induction of
probabilistic networks from data[J].Machine learning,1992,9(4):pp.309-
347.

[14] Holmes, C.C.; Mallick, B.K. Bayesian regression with multivariate
linear splines. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 2001, 63(1), pp.3-17.

[15] Wang, H.B.; Wang, Z.W. Study on the method and procedure of
logistics system modeling and simulation. 2nd International Conference
on Science and Social Research(ICSSR 2013), June 2013, pp.776-780.

[16] Qin, T.H.; Wang, Y.F. Application oriented simulation modeling and
analysis with ExtendSim. Beijing Tsinghua University Press, 2009.

58

Testing a Storytelling Tool for Digital Humanities
Fabio Pittarello

Università Ca’ Foscari Venezia
Via Torino 155 - Venezia, Italia

pitt@unive.it

Abstract—This work presents an evaluation of ToBoA-3D, a
social web platform for the annotation of 3D models and the
creation of stories. ToBoA-3D was evaluated through a pilot study
realized in a real educational context, the 2014 edition of the Fall
School in Digital Humanities, held at the Università Ca’ Foscari
Venezia in collaboration with the École Polytechnique Fédérale
de Lausanne (EPFL). The tool was presented during the School’s
lectures and then used by the students for creating stories during
the labs’ activities. The results of the study were collected through
direct observation and a questionnaire. The answers evidenced
positive feedbacks for the core features of the platform and led
to define an initial set of guidelines for its educational use.

Keywords: annotation; cultural heritage; digital humanities;
education; pilot study; storytelling; web3d

I. INTRODUCTION

The availability of 3D representations for scholars is a great
opportunity to support the processes of teaching and learning,
especially for those disciplines that are deeply involved in the
study of objects that have a 3D shape. A further exploitation of
3D objects can be obtained by their annotation that permits, for
example, to search annotated content across a set of different
3D worlds, overcoming the navigation mechanisms provided
by the authors of each model. ToBoA-3D [1] is a social
web platform that permits to exploit the educational potential
of annotated 3D worlds. It can be used for collaborative
annotation, navigation and search of 3D worlds; the users can
even add new 3D environments to the web repository and
share them with the other users. The latest evolution of the
platform [2] introduces the possibility to create educational
stories on the top of the annotated worlds and to share them
on the web. While ToBoA-3D can be personalized for different
knowledge domains, so far the development has been focused
on art and architecture. In this work we describe how ToBoA-
3D was tested in a real educational context, a necessary step
for evidencing its points of strength and weaknesses and de-
signing more extensive educational experiences. The occasion
for the pilot study came from the Fall School in Digital
Humanities, held in Venice in October 2014, in the context of
the collaboration between the Università Ca’ Foscari Venezia
and the EPFL (École Polytechnique Fédérale de Lausanne).
Digital Humanities are an area of research and teaching at
the intersection of computing and humanistic disciplines. This
area combines the methodologies of the traditional humanities
with tools and methods provided by computer science. The
faculty of the Venice Fall School was compliant with this
intersection, being composed by art and architecture historians
but also computer scientists, which transmitted to the students

complementary knowledge about the School’s educational
themes. The School was focused on the Venetian Renaissance
and included class lessons, visits to historical sites and labs.
About 20 students, mainly PhD students in Humanities, were
selected for participating to the School, programmed for a
full week. During this week a group of students had the
opportunity to learn how to use ToBoA-3D and to apply
this knowledge to the School’s themes. The results of the
experience were collected through direct observation and a
questionnaire and led to define a set of guidelines for the future
use of ToBoA-3D.

II. RELATED WORKS

The related literature encompasses different fields, from
annotation of 3D worlds to storytelling. Because of space
limits we’ll give only some hints, addressing to [1] [2] for
further references. As far as annotation is concerned, there
are different proposals for adding high-level semantics to the
components of 3D environments, based on specifications such
as MPEG-7, Collada or X3D. Most proposals use annotations
referred to taxonomies or ontologies, but there are also systems
that permit to use free tags [1]. The latter ones offer a
more expressive and informal approach suited also to common
people. Their benefits for cultural heritage have already been
underlined in [3]. Annotation is however a first step towards
a more advanced use of 3D worlds. Scopigno et al. [4]
underline that the greater challenge for digital technologies
is the creation of tools that use 3D models for supporting
cultural heritage research. We claim that the introduction
of storytelling for annotated 3D worlds can bring further
advantages for researchers and pupils. Computer-enhanced
storytelling represents an evolution of traditional storytelling.
It takes advantage of technology for creating and delivering
stories, but also for designing and managing new narrative
models and proposing new relations between the narration,
the reader and the context. The analysis of narratology, the
science that studies the structure of the story, has greatly
helped the building of models and architectures for interac-
tive storytelling [5]. Several studies have demonstrated the
usefulness of storytelling for educational experiences [6]. In
the cultural heritage domain storytelling is used for engaging
students during the learning process, associating the narration
to multimedia components [7], real scenes [8], augmented [9]
and virtual reality [10]. While other tools offer repositories
of assets for speeding the creation of stories, ToBoA-3D fully
exploits the potential of collaboration and knowledge sharing.

DOI reference number: 10.18293/VLSS2015-011
59

III. THE TOBOA-3D PLATFORM

Each user can contribute to the ToBoA-3D platform in
different fashions, uploading 3D models, annotating the com-
ponents that define the 3D environments or building narrations.
All the 3D environments belonging to the platform can be
explored both using a first-person navigation style or query-
ing the system for retrieving interesting objects and places
contained inside of them. Altough users are not required to
perform all the types of activities, a typical session with
ToBoA-3D includes a mix of them. As far as the creation
of narrations is concerned, the author creates a story starting
from a list of personal bookmarks, corresponding to visited
3D viewpoints related to annotated objects and locations, and
selects an ordered set of them for defining the stages of
a linear story. Each stage is then associated to multimedia
content that will be automatically played during the narration.
Additional content, such as textual descriptions, images and
links to web resources, can be included. The interface for
listening to stories is displayed in Fig.1. The story is auto-
matically played synchronizing the delivery of the information
associated to each stage with the automatic navigation to the
associated 3D locations. If the story is narrated across different
environments belonging to the platform, the system takes care
of downloading automatically the required environment. The
story can be stopped at any time, for allowing the listener
to focus on details, exploring the 3D view or accessing the
associated hypermedia. Stories can be navigated also selecting
the single stage from the list available on the lower panel
of the interface. Two key features of ToBoA-3D are that the
results of all the activities are shared and that their authors
are easily identifiable. The first feature enables all the users
to take advantage of the work done by the other members
of the community (e.g., upload of 3D models, annotations),
avoiding to start from scratch for authoring. The second feature
offers interesting scenarios for research and teaching. For
example ToBoA-3D permits students to annotate a set of 3D
architecture components after a lesson focused on classical
orders and then the teacher to check the annotations made by
each student, marked with the student’s ID. Further details
about the ToBoA-3D functionalities are available in [2].

IV. TOBOA-3D AT THE FALL SCHOOL

The goal of the Fall School was to investigate, through
a set of coordinated lectures and visits to Venetian palaces
and collections, new ways of visualizing the evolution of
architecture and artwork display. The School was focused in
particular on investigating the evolution of the Grimani Palace
in Venice and of the artwork collection contained in its main
room, the so-called Tribuna. During the preparatory work
we discussed with the other organizers how to present and
use the annotation platform during the School’s activities. A
skilled 3D modeler created a simplified model of the Grimani
Palace and its Tribuna that was used as the scenario for an
educational narration built with ToBoA-3D. The narration was
created with the contribution of Cristiano Guerneri, one of the
architecture historians involved in the School. It was organized

as a self-paced linear story, guiding the students with a virtual
camera through the locations of the palace. The first part of
the School included lectures held by art historians and focused
on the main School’s theme, but also talks related to the
use of new technologies for cultural heritage, among which
ToBoA-3D. The last two days of the school were dedicated
to technological labs, held in parallel for small groups of
students. For this reason, only four students out of twenty
had the chance to attend the ToBoA-3D lab. In spite of the
low number of students, the results were interesting. The
initial phase of the ToBoA-3D lab was dedicated to a tutorial
illustrating the different features of the platform. The students
were then invited to try the techniques acquired on some test
3D environments prepared for the School. Finally the students
listened to the introductory story by the art historian that ended
with the presentation of two tasks to accomplish:

• the creation of a narration describing a tour through the
rooms of the palace, enriched with the snapshots taken
during the visit to the real building;

• the creation of a a story related to an hypothesis of
reallocation of the artworks of the Tribuna Grimani,
which are currently placed in a different site.

The students interpreted both the themes proposed, altough
with some simplifications due to time constraints. The first
story was an humorous interpretation where one of the students
played the part of a Venetian nobleman and guided the listeners
through the rooms of the palace (see Fig.1 on the left). The
second story was a more serious narration, focused on the
hypothesis of reallocation of the artworks in the Tribuna
Grimani (see Fig.1 on the right; the red dots in the 3D scene
represent the original position of the artworks).

V. RESULTS OF THE PILOT STUDY

The four students were PhD candidates representatives of
different research domains: visual arts and architecture (two
students), computer science and interaction design, literature.
While we should not consider this study as exhaustive, their
answers have a great value for identifying the points of
weakness and strength of the platform from different facets.
Only two of them (the computer scientist and one of the
art historians) had a fair knowledge of modeling techniques
and interactive 3D environments. None of them had previ-
ous experience related to the annotation of 3D worlds. The
results of the pilot study were collected through discussions
with students and a final questionnaire, composed of closed
and open questions, and articulated in 6 sections focused
on annotation, search, storytelling, sharing, workflow and
usability/engagement. We obtained positive results for most
of the features of ToBoA-3D. While we don’t have the space
to analyze the single results, we underline how the pilot
study led to define more precisely the profile of the students
interested in using this platform and the set of tasks that should
define a complete experience. These results will be useful
for designing a more advanced study or more extensive and
complete educational experiences based ToBoA-3D:

60

Fig. 1. The two stories created by the students at the Digital Humanities Venice Fall School

• design educational experiences for students interested in
visual representation; the study revealed that ToBoA-3D
resulted more appealing to students with a background
focused on visual representation rather than on literature;
we suggest, as a complementary guideline, that for longer
term experiences such as a master course, the introduction
of a basic 3D modeling course would be useful for giving
a basic knowledge of 3D representation and attracting
students with different cultural backgrounds;

• include search and information sharing among the ac-
tivities of the educational experience; in the pilot study
students were shown the functionalities related to search
and information sharing and declared their interest for
them; however, starting also from the observations of
the students, we estimate that it would be interesting to
include specific tasks focused on these activities in the
structure of the educational experience, proposing for ex-
ample to search an annotated set of 3D worlds in relation
to a given goal or to ask a group students to annotate
individually the same set of objects and then check the
annotations of their fellows for identifying different point
of view; probably these activities would augment the
awareness of the potential of these techniques and would
stimulate their application to individual research;

• include knowledge checking as part of the educational
experience; while the educational experience proposed
in this experience included a set of goals defined by a
teacher, for time constraints it was not possible to fulfill
all the teacher’s requests and to check the results; a full
educational experience should include a final check by the
teacher of the individual work and a feedback to students.

Other suggestions came from the feedback related to the
ToBoA-3D functionalities. While we obtained positive judg-
ments for the core features of ToBoA-3D, most of the students
complained about the quality of the 3D models, realized under
heavy time constraints. This is an issue that we’ll take into
account for the future educational experiences. The students
suggested improvements to the platform as well. While the
students with an humanistic background focused more on
content and structure, suggesting for example the possibility to

create stories with branching structures, the computer science
student focused on interaction design issues, suggesting ways
to refine the interface or adding additional functionalities.
While the positive findings encourage us to propose the
use of the platform in real educational contexts, the future
development will take care of all the points of weaknesses
underlined by the users and improve further its features.

ACKNOWLEDGMENTS

Thanks to Ivano Gatto for all the contributions given to
the development of the ToBoA-3D platform. I acknowledge
Frédéric Kaplan and Isabella Di Lenardo (EPFL), which co-
organized the Fall School in Digital Humanites, and Cristiano
Guarneri (Università IUAV), which gave a great contribution
for the educational story for the students.

REFERENCES

[1] F. Pittarello and I. Gatto, “ToBoA-3D: an architecture for managing top-
down and bottom-up annotated 3d objects and spaces on the web,” in
Proc. of Web3D ’11, 2011, pp. 57–65.

[2] I. Gatto and F. Pittarello, “Creating web3d educational stories from
crowdsourced annotations,” Journal of Visual Languages & Computing,
vol. 25, no. 6, pp. 808–817, 2014.

[3] J. Trant, “Exploring the potential for social tagging and folksonomy
in art museums: Proof of concept,” New Review of Hypermedia and
Multimedia, vol. 12, no. 1, pp. 83–105, 2006.

[4] R. Scopigno, M. Callieri, P. Cignoni, M. Corsini, M. Dellepiane,
F. Ponchio, and G. Ranzuglia, “3D Models for Cultural Heritage: Beyond
Plain Visualization,” Computer, vol. 44, no. 7, pp. 48–55, Jul. 2011.

[5] M. Cavazza and D. Pizzi, “Narratology for interactive storytelling:
A critical introduction,” in Proc. of TIDSE’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 72–83.

[6] J. Ohler, Digital Storytelling in the Classroom: New Media Pathways to
Literacy, Learning, and Creativity. Corwin Press, 2008.

[7] K. Kwiatek and M. Woolner, “Let me understand the poetry: Embedding
interactive storytelling within panoramic virtual environments,” in Proc.
of EVA ’10, 2010, pp. 199–205.

[8] J. Halloran, E. Hornecker, G. Fitzpatrick, M. Weal, D. Millard,
D. Michaelides, D. Cruickshank, and D. De Roure, “The literacy
fieldtrip: using ubicomp to support children’s creative writing,” in Proc.
of IDC ’06, 2006, pp. 17–24.

[9] Z. Zhou, A. D. Cheok, J. Pan, and Y. Li, “An interactive 3d exploration
narrative interface for storytelling,” in Proc. of IDC ’04. New York,
NY, USA: ACM, 2004, pp. 155–156.

[10] S. Mystakidis, N. Lambropoulos, H. M. Fardoun, and D. M. Alghazzawi,
“Playful blended digital storytelling in 3d immersive elearning environ-
ments: A cost effective early literacy motivation method,” in Proc. of
IDEE ’14. New York, NY, USA: ACM, 2014, pp. 97–101.

61

Abstract— With the advent of World Wide Web and the

widespread of on-line collaborative tools, there is a increasing
interest towards automatic tools for Sentiment Analysis to provide
a quantitative measure of “positivity” or “negativity” about
opinions or social comments. In this paper, we provide an
overview of the most diffused techniques for sentiment analysis
based on the lexical-based approaches as a quick reference guide
in the choice of the most suitable methods for solving a specific
problem in the sentiment analysis field.

Index Terms— Sentiment analysis, Computational linguistics,
Text Classification .

I. INTRODUCTION
eople’s opinion has always driven human choices and
behaviors, even before the diffusion of Information and

Communication Technologies. With the advent of World Wide
Web and the widespread of on-line collaborative tools such as
blogs, focus groups, review web sites, forums, social networks
(e.g Facebook, Twitter, MySpace, etc.), users more and more
use to make available to everyone their tastes and liking, and
in general, their opinions and sentiments about an event, a
topic, a public person, a political faction, a TV program, etc.

In such a context, there is an increasing need to have
available automatic tools for Sentiment Analysis (or Opinion
Mining) and Tracking in order to provide a quantitative
measure of “positivity” or “negativity about opinions
(polarity) or comments related to a certain topic of interest and
to track along the time such information.

More in details, sentiment analysis aims at finding the
opinions of authors (thought leaders and ordinary people)
about specific entities, by analyzing a large number of
documents (in any format such as PDF, HTML, XML, etc.).

It can be considered as a sub-discipline of Computational
Linguistics, indeed it is a Natural Language Processing and
Information Extraction task [14], or challenged by the use of
classical Machine Learning based approaches.

The most studied languages in the opinion mining field are
English and Chinese, but there are several researches on other
languages like Italian, Thai and Arabic [12].

Opinion mining allows to identify problems by listening,
rather than by asking, ensuring an accurate reflection of reality
[14].

The analyzed textual information can be of two types: facts
and opinions. The facts are objective expressions that describe
entities, conversely the opinions deal with people’s emotions,
sentiments and feelings and so they are subjective.

Generally, we can see an opinion (or a sentiment) as a
quintuple: <o, f,s, h, t>, where o is the object evaluated by the
opinion holder h, f is a feature of the object o, t is the time
when the opinion has been expressed and s is the value of the
opinion (for example positive or negative) [1][14].

Sentiment analysis techniques have as main goal the
automatic extraction of the polarity measure “attached” to an
object and can adopt several methods and techniques derived
both from Computational Linguistics and Machine Learning
theory. Here, we focus our attention on lexical-based
techniques belonging to the branch of Computational
Linguistics approaches.

The paper is organized as follows. Section II contains a
review of the most diffused lexical-based approaches. Finally,
Section III reports some conclusions and final considerations
about our study.

II. AN OVERVIEW OF LEXICAL BASED SENTIMENT
ANALYSIS TECHNIQUES

In lexical-based approach a predefined list of words is used

to determine a specific sentiment. A relevant problem regards
ambiguity of natural language: sentiment value for a given
word depends on the specific context.

There are several approaches to sentiment lexicons’
creation. A manual construction is often difficult and very
time consuming. In the literature, the most used methods can
be classified as Corpus-based and Dictionary-based.

A Quick Survey on Sentiment Analysis
Techniques: a lexical based perspective

Flora Amato1, Francesco Colace2, Luca Greco2 , Vincenzo Moscato1, Antonio Picariello1
1DIETI- Department of Electrical Engineering and Information Technology

Università degli Studi di Napoli “Federico II”, Napoli - Italy
{flora.amato, vmoscato, picus}@unina.it

2DIEM - Department of Information Engineering, Electrical Engineering and Applied Mathematics

Università degli Studi di Salerno, Fisciano (Salerno) - Italy
{fcolace,lgreco}@unisa.it

P

KSI
Typewritten Text

KSI
Typewritten Text
DOI reference number: 10.18293/VLSS2015-020

KSI
Typewritten Text

KSI
Typewritten Text
62

KSI
Typewritten Text

i. Corpus-based Approach
In this approach, a set of seed words grows by using a

corpus of documents of a specific domain. Therefore a
specific domain lexicon is constructed on the basis of a
labeled corpus of documents.

One of the first works in this field is [6] where, given some
seed adjectives, a corpus is used to identify additional
sentiment adjectives. A key point regards the presence of
conjunctions: for example the conjunction ‘and’ between two
adjectives can refer to the same sentimental polarity. A graph
with same or different orientation links between adjectives is
created. These adjectives are then separate with a clustering
algorithm into two subsets.

Another example is [8] where a corpus of 10000 blog posts
from LiveJournal.com is used; the posts are labeled “happy”
or “sad”. A happiness factor is assigned to words by
calculating their frequency: the ratio between the number of
occurrences of a word in the happy blogposts and its
frequency in the entire corpus.

Among the most recent studies there is the work in [4]. The
key of this approach is searching the connotative polarity
between a conative predicate and its semantic argument. It is
done by using a graph-based algorithm that use PageRank [9]
and HITS [7] that collectively learn connotation lexicon
together with connotative predicates.

ii. Dictionary-Based Approach
In this approach a small set of seed words is first manually

collected and then is expanded with words synonyms and
antonyms. This is done by using online resources
(dictionaries). The most well-known example is Wordnet that
is an online lexical database for English language.

A great disadvantage of this approach is that the lexicon
acquired is independent from a specific domain.

! WordNet-Affect
WordNet-Affect [11] is a linguistic resource, composed by

2,874 synsets and 4,787 words, developed considering
WordNet Domains, that is a multilingual extension of
Wordnet.

It aims at providing correlations between affective concepts
and affective words by using a synset model.

A subset of synsets, which are able to represent affective
concepts, is derived from WordNet. Then, these synsets are
labeled with one or more affective categories.

The Core of WordNet Affect is created by considering a
lexical database, called Affect, composed by 1,903 words that
are mostly adjectives and nouns.

Lexical and affective information are associated to each
term; they includes parts of speech, definitions, synonyms and
antonyms.

In order to assign an affective category to terms, an attribute
called Ortony is used. Terms can be classified in emotional
terms, non-emotional affective terms, non-affective mental
state terms, personality traits, behaviors, attitudes etc.

Ortony information is projected on the subset selected from
Wordnet but doesn't cover all Affect items and for this reason

some labels are manually assigned. When the subset is
completely labeled, WordNet-Affect Core is defined and can
be extended exploiting WordNet relations.

! SentiWordNet
SentiWordNet is a lexical resource proposed in [2].
SentiWordNet is built with a ternary classification, indeed

each synset (set of synonyms) is labeled as positive, negative
or objective by using a set of ternary classifiers. If all of them
will give to the synset the same label, therefore that label for
that synset will have the maximum score; otherwise this score
will be proportional.

Each classifier follows a semi-supervised approach that is a
learning process where the training set Tr = L!∪!U!so!that:!L is
a small subset of manually labeled training data, and U is a
subset of training data labeled by the process by using L, and
other available resource, as input.

In [2] L is divided into: LP, Ln, that are two small synsets
respectively for positive and negative training data, and Lo for
the objective ones.

Lp and Ln are expanded with K iterations obtaining the
following result for the i-th iteration:

 Trp
i (resp Trn

i) will contain, in adding to Trp
i-1 (resp Trn

i-1),
all the synsets that are related to synsets in Trp

i-1 (resp Trn
i-1)

by WordNet lexical relations and have the same Positive(resp.
Negative) polarity, and the synsets that are related to synsets
in Trn

i-1 (resp Trp
i-1) and have the opposite polarity.

Tro
K coincides with Lo and it consists of 17,530 synsets that

doesn’t belong either to Trp
K or to Trn

K. To each synset is
associated a vectorial representation by applying a cosine-
normalized tf*idf to its gloss, that is a textual representation of
its semantic.

Hence now the training synset, for a class ci, can be given to
a standard supervised learner that generates two binary
classifiers. One of these will distinguish positive and
not_positive terms, and takes Trp

K ∪ Tro
K in the training phase,

the other one will classify terms as negative or not_negative,
and takes Trn

K ∪ Tro
K in the training phase.

It produces a resulting ternary classifier that will classify the
entire WordNet.

SentiWordNet has been developed in several versions, but
the most significant is SentiWordNet 3.0 that, in the automatic
annotation of WordNet, adds to the semi-supervised learning
step a random-walk step for refining the scores. This version is
compared with the previous one, and an improvement in
accuracy of about 20% is found.

! Context Dependent Opinion Observer (CDOO)
CDOO is a system implemented in C++ and it is based on a

method that tries to infer the semantic orientation of opinion
sentences by associating contextual information to opinion
words obtained from WordNet.

This approach goes through four steps.
In the first step, after a preprocessing phase, opinion

sentences are extracted from the inputs by using feature
keywords directly.

In the second step Context independent opinions that don't
63

require any contextual information are analyzed to determine
the semantic orientation. In this step opinion words from
Wordnet are simply considered and in particular are utilized
adjective synonym set and antonym set.

In the third step distinct-dependent opinions are analyzed:
adjacent sentences are needed to define the semantic
orientation by using Linguistic rules, especially conjunction
rule.

In the fourth and final step Context indistinct opinions that
need contextual information from other reviews are analyzed.
In order to collect contextual segments sets for given features,
a large number of online reviews are considered.
Subsequently, contextual information is extracted from the
segment sets by using Emotional-ATFxPDF to compute
weight of terms in text segment set. Then the orientation of the
opinion is calculated using semantic similarity.

! SenticNet
SenticNet is inspired by SentiWordNet but it assigns to

each concept c only one value pc belonging to [-1,1].
The polarity of a concept c is defined in the following way:

9
)()()()(cApttcSnstcAttncPlsn

pc
+−+

=

where Plsn is Pleasantness, Attn is Attention, Snst is
Sensitivity, Aptt is Aptitude.

They start from Hourglass model and for example, in order
to find positive concepts correlated with Pleasantness, they
begin to search concepts semantically correlated to words like
"joy", "serenity" and uncorrelated to words like "sadness".

Two different techniques are used: Blending and Spectral
Assumption. When polarity is assigned, SenticNet is encoded
in RDF triples using a XML syntax.

The current version of SenticNet contains almost 15,000
concepts.

In recent studies SenticNet is often associated to WordNet-
Affect. For example in [10] researchers assign to SenticNet
concepts, which are not present in WordNet-Affect, emotion
labels. It is actually an expansion of WordNet-Affect based on
SenticNet. By analyzing several features and utilizing a SVM
framework for classification, they obtain an accuracy of
85.12% in their best result.

! Panas-t
 The original PANAS is created by Watson and Clark and

they analyzed 10 moods on a 5-point scale [13].
They also expanded it in PANAS-x where eleven specific

affects are considered: Fear, Sadness, Guilt, Hostility,
Shyness, Fatigue, Surprise, Joviality, Self-Assurance,
Attentiveness, and Serenity. To each affect a list of adjectives
is associated.

In [5] it is expanded in Panas-t which is an adaptation that
analyzes short text from Online Social Media and in particular
from Twitter.

They consider a dataset composed by tweets from all the
public accounts registered before August 2009. First tweets
that explicitly contain feelings (and hence tweets that contain

words like "I am", "feelings", "myself") are identified.
Then a preprocessing phase is performed where individual

terms are isolated, using white-space boundaries, and
punctuation and other non-alphanumeric characters are
removed.

It is assumed that a tweet can be mapped to the first
sentiment s that appears in the tweet. This can be done by
verifying the position of the adjectives.

III. CONCLUSIONS

The paper provided an overview of the most diffused
techniques for sentiment analysis based on the lexical-based
approaches and the related systems.

 The paper wants to be a quick reference guide in the choice
of the most suitable lexical-based approaches for a specific
problem of sentiment analysis.

REFERENCES
[1] F. Colace, L. Casaburi, M. De Santo, L. Greco, “Sentiment detection in

social networks and in collaborative learning environments”, Computers
in Human Behavior, Available online 27 December 2014, ISSN 0747-
5632, http://dx.doi.org/10.1016/j.chb.2014.11.090.

[2] A.Esuli, and F.Sebastiani – “Sentiwordnet: A publicly available lexical
resource for opinion mining”, Proceedings of LREC. Vol. 6. 2006.

[3] R.Feldman – “Techniques and Applications for Sentiment Analysis”,
Magazine - Communication of the ACM (April,2013).

[4] S.Feng, B.Ritwik, and C.Yejin – “Learning general connotation of
words using graph-based algorithms”, Proceedings of the Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2011.

[5] P.Gonçalves, F.Benevenuto, and M.Cha - "Panas-t: A pychometric scale
for measuring sentiments on twitter", arXiv preprint arXiv:1308.1857
(2013). 14

[6] V.Hatzivassiloglou and K.R.McKeown – “Predicting the semantic
orientation of adjectives”, Proceedings of the 35th annual meeting of
the association for computational linguistics and eighth conference of
the european chapter of the association for computational linguistics.
Association for Computational Linguistics, 1997.

[7] J.M.Kleinberg – “Authoritative sources in a hyperlinked environment”,
Journal of the ACM (JACM) 46.5 (1999): 604-632. 1999.

[8] R.Mihalcea, and H.Liu – “A Corpus-based Approach to Finding
Happiness”, AAAI Spring Symposium: Computational Approaches to
Analyzing Weblogs. 2006.

[9] L.Page, S.Brin, R.Motwani and T.Winograd – “The PageRank citation
ranking: Bringing order to the web” 1999.

[10] S.Poria, A.Gelbukh, E.Cambria, P.Yang, A.Hussain and T.Durrani -
"Merging SenticNet and WordNet-Affect emotion lists for sentiment
analysis", Signal Processing (ICSP), 2012 IEEE 11th International
Conference on , vol.2, no., pp.1251,1255, 21-25 Oct. 2012.

[11] C.Strapparava, and A.Valitutti - "WordNet Affect: an Affective
Extension of WordNet", LREC. Vol. 4. 2004.

[12] G.Vinodhini, R.M.Chandrasekaran – “Sentiment Analysis and Opinion
Mining: A Survey”, International Journal of Advanced Research in
Computer Science and Software Engineering Volume 2,Issue 6 (June
2012).

[13] D.Watson, L.A.Clark, and A.Tellegen - "Development and validation of
brief measures of positive and negative affect: the PANAS scales",
Journal of personality and social psychology 54.6 (1988).

[14] M.Shelke, S.Deshpande, V.Thakre – “Survey of Techniques for Opinion
Mining”, International Journal of Computer Applications (0975-8887)
Volume 57-No.13 (November 2012).

64

