
Formal specification and model checking
of Saber lattice-based key encapsulation mechanism in Maude

Duong Dinh Tran∗, Kazuhiro Ogata∗, Santiago Escobar†, Sedat Akleylek‡ and Ayoub Otmani§
∗Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan

Email: {duongtd, ogata}@jaist.ac.jp
†VRAIN, Universitat Politècnica de València, Valencia, Spain

Email: sescobar@upv.es
‡Ondokuz Mayis University, Samsun, Turkey

Email: sedat.akleylek@bil.omu.edu.tr
§University of Rouen Normandie, France

Email: ayoub.otmani@univ-rouen.fr

Abstract—The security of most public-key cryptosystems
currently in use today is threatened by advances in quantum
computing. That is the reason why recently many researchers
and industrial companies have spent lots of effort on con-
structing post-quantum cryptosystems, which are resistant to
quantum attackers. A large number of post-quantum key
encapsulation mechanisms (KEMs) have been proposed to
provide secure key establishment - one of the most impor-
tant building blocks in asymmetric cryptography. This paper
presents a formal security analysis of Saber lattice-based KEM.
We first formally specify the mechanism in Maude, a rewriting
logic-based specification/programming language equipped with
many functionalities, such as a reachability analyzer (or the
search command) that can be used as an invariant model
checker, and then conduct invariant model checking with the
Maude search command, finding an attack.

Keywords-KEM; Maude; post-quantum cryptography;
lattice-based cryptography; model checking.

I. INTRODUCTION

The most popular asymmetric (or public-key) primitives
used today will become insecure under sufficient strong
quantum computers running Shor’s algorithm [1]. This is
because the hard mathematical problems on which asym-
metric primitives rely are hard only under conventional
computers, but can be efficiently solved by a sufficient large-
scale quantum computer. As a response to the quantum attack
threat, there is extensive research to find new schemes which
are secure even in the presence of quantum adversaries. In the
past few years, many post-quantum asymmetric primitives

D. D. Tran and K. Ogata have been supported by JST SICORP Grant
Number JPMJSC20C2, Japan.

S. Akleylek has been partially supported by TUBITAK under Grant
No.121R006.

S. Escobar has been partially supported by the grant RTI2018-094403-
B-C32 funded by MCIN/AEI/10.13039/501100011033 and ERDF A
way of making Europe, by the grant PROMETEO/2019/098 funded by
Generalitat Valenciana, and by the grant PCI2020-120708-2 funded by
MICIN/AEI/10.13039/501100011033 and by the European Union NextGen-
erationEU/PRTR.

DOI reference number: 10.18293/SEKE2022-097

have been proposed as replacements for those traditional
ones currently in use. The National Institute of Standards and
Technology of USA (NIST) also started the Post-Quantum
Cryptography Project in 2017, calling for proposals of post-
quantum cryptographic protocols that are secure against
both conventional and quantum computers1. There were
82 submissions to this standardization project, implying
the importance of this problem. Among these submissions,
there are large numbers of proposals for post-quantum key
encapsulation mechanisms (KEMs), which aim to securely
establish a symmetric key between two parties. This is
understandable because the key exchange algorithm can be
said to be the most important building block of cryptosystems.

Security analysis of cryptographic primitives and/or pro-
tocols can be fundamentally divided into two approaches:
computational security and symbolic security. Proof in
the computational model requires a definition of secure
cryptographic construction (primitive, protocol), and some
assumptions about the computationally hard problem. The
proof can be regarded as a mathematical reduction, such
that it makes sure that the only chance to violate the
security of such a construction is to solve the infeasible
problem. However, computational proofs are often not easy
to understand for non-experts in cryptography. On the other
hand, symbolic analysis is easier to understand, computer-
verified, and suitable for automation. Our approach presented
in this paper belongs to the latter.

We formally specify and model check Saber KEM [2]. In
addition, Kyber [3] (precisely CRYSTALS-Kyber) and SK-
MLWR [4] (the KEM proposed in [4] is called SK-MLWR
in the present paper) are also tackled, but because of space
limitation, they are not presented in this paper. We provide
the specifications of them at https://github.com/duongtd23/
kems-mc. Saber is a KEM whose security is based on the
hardness of the Module Learning With Rounding (MLWR)

1https://csrc.nist.gov/projects/post-quantum-cryptography

https://github.com/duongtd23/kems-mc
https://github.com/duongtd23/kems-mc
https://csrc.nist.gov/projects/post-quantum-cryptography

problem, which belongs to lattice-based cryptography. We
use Maude [5], a programming/specification language based
on rewriting logic, to first formally specify the Dolev-Yao
generic intruder [6] as well as these KEMs. By employing
the Maude search command, a Man-In-The-Middle (MITM)
attack is found. Although this kind of attack is not a novel
attack for KEMs, the formal specifications in Maude and
the model checking experiments are worth reporting. Our
ultimate goal is to come up with a new security analysis/ver-
ification technique for post-quantum cryptographic protocols,
which use quantum secure primitives, such as Saber. Formally
specifying such primitives is necessary for analyzing the
security later on. What is described in the paper is our initial
step toward the goal.

Related work. In 2012, Blanchet [7] has surveyed various
approaches to security protocol verification in both symbolic
model and computational model. In the symbolic model,
there is a large number of tools existing for verifying
cryptosystems, such as ProVerif [8], Maude-NPA [9], and
Tamarin [10]. The symbolic protocol verifier ProVerif, which
was developed by Blanchet, can automatically prove security
properties of cryptographic protocol specifications. ProVerif
is based on an abstract representation of the protocol by a
set of Horn clauses, and it determines whether the desired
security properties hold by resolution on these clauses. The
practicability of ProVerif has been demonstrated through
case studies, such as [11]. ProVerif can handle an unbounded
number of sessions (executions) of protocols, but termination
is not guaranteed in general because the resolution algorithm
may not terminate. To mitigate this challenge, Escobar et
al. [12] proposed some techniques to reduce the size of
the search space in Maude-NPA, such as generating formal
grammars representing terms (states information) unreachable
from initial states and using super lazy intruder to delay the
generation of substitution instances as much as possible. Even
though, the termination of the tool is not always guaranteed.
Among many case studies that demonstrated the capabilities
of Maude-NPA, [13] presented one case study with Diffie-
Hellman key agreement protocol. Tamarin [10] is another tool
for symbolic security verification of cryptographic protocols.
Tamarin provides two ways of constructing proofs: fully
automated mode and interactive mode. The tool may not
terminate in the fully automated mode. In the interactive
mode, the tool allows users to provide lemmas that must be
proved.

In the computational security approach, game-based model
is known as a standard model for proving security. Security
for cryptographic primitives or protocols is defined as an
attack game played between an adversary and some benign
entity, which is called the challenger. The security proof
typically leads to a proof that any supposed adversary can
get an advantage over the challenger if and only if he/she
is able to solve some computationally hard problem (e.g.,

discrete logarithm, integer factorization). CryptoVerif [14] is
a tool for mechanizing proof in the computational model. It
can generate proofs by sequences of games automatically or
with little user interaction. Alwen et al. [15] have employed
CryptoVerif to analyze the security of the Hybrid Public Key
Encryption (HPKE), which is a candidate for a new public
key encryption standard.

II. SABER KEY ENCAPSULATION MECHANISM

A. Key encapsulation mechanism

A key encapsulation mechanism is a tuple of algorithms
(KeyGen, Encaps, Decaps) along with a finite keyspace K:
• KeyGen()→ (pk, sk): A probabilistic key generation

algorithm that outputs a public key pk and a secret key
sk.

• Encaps(pk) → (c, k): A probabilistic encapsulation
algorithm that takes as input a public key pk, and outputs
a ciphertext (or encapsulated message) c and a key
k ∈ K.

• Decaps(c, sk) → k: A (usually deterministic) decapsu-
lation algorithm that takes as input a ciphertext c and a
secret key sk, and outputs a key k ∈ K.

A KEM is ε-correct if for all (pk, sk)← KeyGen() and
(c, k)← Encaps(pk), it holds that Pr[Decaps(c, sk) 6= k] ≤
ε. We say it is correct if ε = 0.

B. Saber

Let Zq denote the ring of integers modulo q. Let R
and Rq denote the polynomial ring Z[X]/(Xn + 1) and
the quotient polynomial ring Zq[X]/(Xn + 1), respectively.
Single polynomials are written without markup, bold lower-
case letters represent vectors with coefficients in R or Rq , and
bold upper-case letters denote matrices. If X is a probability
distribution over a set S, then x ← X denotes sampling
x ∈ S according to X . U denotes the uniform distribution
and βµ is a centered binomial distribution with parameter µ
(the samples are in [−µ/2, µ/2]). � and � are bitwise shift
operations, and when they are used with polynomials and
matrices, they are applied to each coefficient. F ,G,H are
hash functions that are used in Saber. gen is a function that
generates a pseudorandom matrix A ∈ Rl×lq from a seed
seedA.

Fig. 1 describes the three algorithms (KeyGen, Encaps,
Decaps) of Saber.KEM. It employs the three algorithms
(KeyGen, Enc, Dec) of Saber.PKE, which are shown in
Fig. 2. Note that h, h1, and h2 are constants; while εq,
εp, εT , and µ receive different values on different security
levels. The possible values for all of them can be found
in [2]. Let us suppose that Alice performs KEM.KeyGen
step and sends a public key pk to Bob. Upon receiving pk,
Bob randomly chooses a m, performs KEM.Enc step, and
sends back to Alice a ciphertext c. Upon receiving c, Alice
performs KEM.Dec step, and computes the value of c′. With
a very high probability c′ is equal to c, implying that m′ on

Alice’s side equals m on Bob’s side with an overwhelming
probability. After that, they can derive the same key K.

KEM.KeyGen()
(seedA,b, s) = PKE.KeyGen()
pk = (seedA,b)
pkh = F(pk)
z = U({0, 1}256)
sk = (z, pkh, pk, s)

return (pk, sk)
pk−−→

KEM.Dec(c, sk)
c←−−

m′ = PKE.Dec(s, c)
(K̂′, r′) = G(pkh,m′)
c′ = PKE.Enc(pk,m′; r′)
if c = c′ then

return K = H(K̂′, c)
else return K = H(z, c)

KEM.Enc(pk)
m← U({0, 1}256)
(K̂, r) = G(F(pk),m)
c = PKE.Enc(pk,m; r)
K = H(K̂, c)
return (c,K)

Figure 1. Saber.KEM

PKE.KeyGen()
seedA ← U({0, 1}256)
A = gen(seedA) ∈ Rl×lq

r = U({0, 1}256)
s = βµ(R

l×1
q ; r)

b = ((AT s+ h) mod q)� (εq − εp) ∈ Rl×1
p

return (pk := (seedA,b), s)

PKE.Enc(pk = (seedA,b),m; r)
A = gen(seedA) ∈ Rl×lq

s′ = βµ(R
l×1
q ; r)

b′ = ((As′ + h) mod q)� (εq − εp) ∈ Rl×1
p

v′ = bT (s′ mod p) ∈ Rp
cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT) ∈ RT
return c := (cm,b

′)

PKE.Dec(s, c = (cm,b
′))

v = b′
T
(s mod p) ∈ Rp

m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

return m′

Figure 2. Saber.PKE

III. FORMAL SPECIFICATION OF SABER

A. Formalization of polynomials, vectors, and matrices

We first introduce sort Poly that represents polynomials:
sort Poly . subsort Int < Poly .
op _p+_ : Poly Poly -> Poly [ctor assoc comm prec 33] .
op _p*_ : Poly Poly -> Poly [ctor assoc comm prec 31] .
op _md_ : Poly Nat -> Poly [ctor prec 32] .
op _p-_ : Poly Poly -> Poly [prec 33] .
op neg_ : Poly -> Poly [ctor] .

where Int and Nat are sorts of integers and natural numbers,
respectively. The notation subsort Int < Poly indicates
that any integer is also a polynomial. p+, p*, and p- denote
the addition, multiplication, and subtraction, respectively,
between two polynomials. neg denotes the negation of
a polynomial, while md denotes the modulo operation.

assoc comm indicates that _p+_ and _p*_ are declared to
be associative and commutative. prec 33 attached with
p+ and _p-_ indicates that these operators have the same
precedence 33, which is lower precedence than that of _p*_
(i.e., 31). Let P1, P2, and P3 be Maude variables of Poly.
We define some properties of the operators as follows:
eq P1 p+ 0 = P1 . eq P1 p* 0 = 0 . eq P1 p* 1 = P1 .
eq P1 p* (P2 p+ P3) = (P1 p* P2) p+ (P1 p* P3) .
eq P1 p+ neg(P1) = 0 . eq neg(neg(P1)) = P1 .
eq P1 p- P2 = P1 p+ neg(P2) .
eq neg(P1 p+ P2) = neg(P1) p+ neg(P2) .
eq neg(P1 md K) = neg(P1) md K .

In a similar way, we introduce sorts Vector and Matrix
representing polynomial vectors and matrices, respectively;
operators v+, dot, and m* representing the addition & inner
product of two polynomial vectors, and multiplication of a
polynomial matrix and a vector, respectively. Let V1, V2, and
V3 be Maude variables of Vector. The declarations of the
three operators and the distributive property of vectors are
specified as follows:
op _v+_ : Vector Vector -> Vector [assoc comm prec 33].
op _dot_ : Vector Vector -> Poly [prec 31] .
op _m*_ : Matrix Vector -> Vector [prec 31] .
eq (V1 v+ V2) dot V3 = (V1 dot V3) p+ (V2 dot V3) .
eq V3 dot (V1 v+ V2) = (V3 dot V1) p+ (V3 dot V2) .

B. Formalization of honest parties
Two constructors for the two kinds of messages used in

Saber are as follows:
op msg1 : Prin Prin Prin PVPair MState -> Msg [ctor] .
op msg2 : Prin Prin Prin PVPair MState -> Msg [ctor] .

where Prin and Msg are sorts denoting principals and
messages, respectively. PVPair is the sort of polynomial
and vector pairs. MState is the sort representing message
states, receiving one of the following three values: sent -
the message was sent, replied - the message was sent and
the receiver replied with another message, and intercepted
- the message was intercepted by the intruder. The first,
second, and third arguments of each of msg1 and msg2 are
the actual creator, the seeming sender, and the receiver of
the corresponding message. The first and last arguments
are meta-information that is only available to the outside
observer, while the remaining arguments can be seen by
every principal.

We model the network as an AC-collection of messages
that can be used by the intruder as his/her storage. Conse-
quently, the empty network (i.e., the empty collection) means
that no messages have been sent. The intruder can fully
control the network, that is he/she can intercept any message,
glean information from it, and fake a new message to any
honest party. In this paper, a state is expressed as an AC-
collection of name-value pairs called observable components.
To formally specify Saber in Maude, we use the following
observable components:
• (nw : msgs) - msgs is the AC-collection of messages

in the network;

• (keys[p] : keys) - keys is an AC-collection of the
computed shared keys of principal p. Each entry of
keys is in form of key(K,q), where K is the shared key
and q is the principal whom p believes that he/she has
communicated with;

• (prins : ps) - ps is the collection of all principals
participating in the mechanism;

• (seed[p] : sd) - sd is the random seed seedA (used in
Fig. 2) of principal p;

• (r[p] : r0) - r0 is the random seed r (used in Fig. 2)
of principal p;

• (m[p] : m0) - m0 is the random seed m (shown in
Fig. 1) of principal p;

• (rd-seed : rds) - rds is a list of available values as
the random seed seedA (we use list, but not set, to
reduce the state space for searching). Each time when a
principal queries for a random value of seedA, the top
value in rds is removed and returned to the principal;

• (rd-r : rdrs) - rdrs is a list of the available values as
random seed r;

• (rd-m : rdms) - rdms is a list of the available values
as random seed m;

• (glean-keys : gkeys) - gkeys is the AC-collection of
shared keys gleaned by the intruder;

• (seeds : sds) - sds is the collection of the random
seeds seedA used by the intruder;

• (rs : rs) - rs is the collection of the random seeds r
used by the intruder;

• (ms : ms) - ms is the collection of random seeds m
used by the intruder;

Each state in SSaber is expressed as {obs}, where obs
is an AC-collection of those observable components. We
suppose that there are two honest principals alice and bob
together with a malicious one, namely eve, participating in
Saber.KEM. The initial state init of ISaber is defined as
follows:
{(nw: empty) (keys[alice]: empty) (keys[bob]: empty)
(prins: (alice ; bob ; eve)) (rd-seed: (seed1, seed2))
(rd-r: (r1, r2)) (rd-m: (m1, m2)) (glean-keys: empty)
(seed[alice]: 0) (seed[bob]: 0) (m[alice]: 0)
(m[bob]: 0) (seeds: empty) (rs: empty) (ms: empty)}

With the honest parties, we specify three transitions:
keygen, encaps, and decaps, which correspond to the three
steps of the mechanism. We declare Maude constants esp,
esq, esT, p, q, h1, and h to denote εp, εq , εT , p, q, h1, and
h, respectively. Let OCs be a Maude variable of observable
component collections, A, B, and C be Maude variables of
principals (possibly intruder), and PS be a Maude variable
of principal collections. Let SD, R, P1, P2, and M, be Maude
variables of polynomials; PL and PL2 be Maude variables of
polynomial lists. Let G, F, and H denote the hash functions
G, F , and H, respectively. Let MS be a Maude variable of
networks. The rewrite rule keygen is defined as follows:
crl [keygen] : {(rd-seed: (SD, PL)) (rd-r: (R, PL2))

(seed[A]: P1) (r[A]: P2) (prins: (A ; B ; PS))
(nw: MS) OCs}
=> {(rd-seed: PL) (rd-r: PL2)
(seed[A]: SD) (r[A]: R) (prins: (A ; B ; PS))
(nw: (MS ; msg1(A,A,B, pvPair(SD, VB), sent))) OCs}
if MA := gen-A(SD) /\ S := gen-s(R) /\
VB := shiftRV((tp(MA) m* S v+ h) mdv q, esq - esp) .

where MA and VB are Maude variables of polynomial matrices
and vectors. tp, shiftRV, and mdv denote matrix transpose,
vector bitwise right shift, and vector modulo operations.
gen-A and gen-s denote the function gen and the sampling
procedures, outputting the matrix A and the vector s,
respectively. The rewrite rule says that when there exist
a polynomial SD in rd-seed and a polynomial R in rd-r, A
picks it as a random seed r, builds a message msg1 exactly
following the KeyGen step, and sends it to B. seed[A] and
r[A] are set to SD and R, respectively, and the two values
are removed from rd-seed and rd-r.

The rewrite rule encap is defined as follows:
crl [encaps] : {(rd-m: (M, PL)) (m[B]: P1) (keys[B]: KS)
(nw: (msg1(C,A,B, pvPair(SD,VB), sent) ; MS)) OCs}
=> {(keys[B]: (KS ; key(H(1st(Kr), CB) , A)))
(nw: (msg1(C,A,B, pvPair(SD, VB), replied) ;
msg2(B,B,A, CB, sent) ; MS)) (rd-m: PL) (m[B]: M) OCs}
if Kr := G(F(pvPair(SD,VB)), M) /\

CB := enc(SD,VB,M,2nd(Kr)) .

where KS is a Maude variable representing a collection
of shared keys, Kr is a Maude variable denoting a pair
of polynomials, in which 1st and 2nd are its projection
operators. Following the PKE.Enc(pk,m; r) in Fig. 2, enc
is defined as follows:
ceq enc(SD, VB, M, R) = pvPair(CM, VB’)
if MA := gen-A(SD) /\ S’ := gen-s(R) /\
VB’ := shiftRV((MA m* S’ v+ h) mdv q, esq - esp) /\
V’ := tpV(VB) dot S’ /\
CM := shiftR(((V’ p+ h1) p- (2 ˆ (esp - 1)) p* M) md p,

esp - esT) .

where tpV(VB) denotes the transpose vector of VB and
shiftR denotes the polynomial bitwise right shift. The
rewrite rule encaps says that when there exists a message
msg1 sent from A to B in the network, B builds a message
msg2 exactly following the Encaps step, and sends it back
to A. B also computes the shared key with A, and the state
of the message msg1 is updated to replied.

The rewrite rule decaps can be defined likewise. Note
that we only consider the overwhelming case, i.e., Alice
successfully recovers m in Decaps step. We assume that
the error tolerance gaps made by error components always
be silent, making m′ equal m. To this end, we need to
define some properties of the bitwise shift operation and
polynomials. The first property is as follows: (2εp−εT cm �
(εp − εT)) ≈ cm. It is specified by the following equation:
ceq 2PT p* shiftR(CM, PT) = CM
if PT := esp - esT /\ 2PT := 2 ˆ PT .

where PT and 2PT are variables of integers.
If all coefficients of s and s′ are small in comparison with p

and q, then we have the second property as follows: (((As′+

h) mod q)� (εq−εp))T s ≈ (((AT s+h) mod q)� (εq−
εp))s

′. The property is specified by the following equation:
ceq tpV(shiftRV((MA m* S’ v+ h) mdv q, esq - esp))
dot S p+ neg(tpV(shiftRV((tp(MA) m* S v+ h) mdv q,
esq - esp)) dot S’) = 0
if isSmall?(S) and isSmall?(S’) .

where isSmall? is a predicate, returning true if all co-
efficients of S (or S’) are small in comparison with
q. Note that the result of gen-s is always defined to
be “small,” which is done by the following equation:
eq isSmall?(gen-s(R)) = true .

Finally, to specify the property ((h2 − h1 +
2εp−1m) mod p) � (εp − 1) ≈ m, we introduce the
following equation:
ceq shiftR((h2 p+ neg(h1) p+ 2P1 p* M) md p, esp - 1)
= M if 2P1 := 2 ˆ (esp - 1) .

C. Formalization of intruders

We suppose that there is one intruder, namely eve,
participating in the mechanism. When there exists a message
msg1 sent from A to B in the network, the intruder can
intercept that message, fake a new message, and send it
to the receiver. This behavior is specified by the following
rewrite rule:
crl [keygen-eve] : {(seeds: (SD ; PC1)) (rs: (R ; PC2))
(nw: (msg1(A,A,B, pvPair(SD-A,VB-A), sent) ; MS)) OCs}
=> {(seeds: (SD ; PC1)) (rs: (R ; PC2))
(nw: (msg1(A,A,B, pvPair(SD-A,VB-A), intercepted) ;
msg1(eve,A,B, pvPair(SD, VB), sent) ; MS)) OCs}
if MA := gen-A(SD) /\ S := gen-s(R) /\
VB := shiftRV((tp(MA) m* S v+ h) mdv q, esq - esp) .

where PC1 and PC2 are Maude variables of polynomial
collections. The intercepted message must have state sent at
the beginning, which means that the message has not reached
the receiver. eve then constructs a new faking message from
available values SD and R for the random seeds seedA and r.
These two kinds of random values cannot be gleaned from
the network, but eve can only construct them by randomly
choosing a new value as the rewrite rule build-ds as follows:
rl [build-sds] : {(rd-seed: (SD, PL)) (seeds: PC1) OCs}
=> {(rd-seed: PL) (seeds: (SD ; PC1)) OCs} .
rl [build-rs] : {(rd-r: (R, PL)) (rs: PC2) OCs}
=> {(rd-r: PL) (rs: (R ; PC2)) OCs} .

There are two more rewrite rules encaps-eve and
decaps-eve to specify the intruder’s behavior. encaps-eve
says that when eve has intercepted a message msg1 sent
from A to B, eve fakes a new message msg2, sends it to A,
and computes a shared secret key with A. decaps-eve says
that when eve has faked a new message msg1, sent it to B,
and B on his/her belief that the message truly comes from A
has replied to A a message msg2, eve intercepts the message
msg2, and computes a shared secret key with B.

IV. MODEL CHECKING AND
MAN-IN-THE-MIDDLE-ATTACK

We introduce the following search command:

Alice.Step-1
(seedA,b, s) = PKE.KeyGen()
pk = (seedA,b)
pkh = F(pk)
return (pk, sk := (phk, pk, s))

Eve.Step-2(pk = (seedA,b))
(seedAe,be, se) = PKE.KeyGen()
pke = (seedAe,be)
pkhe = F(pke)
return (pke, ske := (phke, pke, se))

Bob.Step-3(pke = (seedAe,be))
m← U({0, 1}256)
(K̂, r) = G(F(pke),m)
c = PKE.Enc(pke,m; r)
return (c,Kb := H(K̂, c))

Eve.Step-4(pk = (seedA,b))
me ← U({0, 1}256)
(K̂e, re) = G(F(pk),me)
ce = PKE.Enc(pk,me; re)
return (ce,Ka := H(K̂e, ce))

Alice.Step-5(ce, sk := (phk, pk, s))
m′ = PKE.Dec(s, ce)
(K̂′, r′) = G(pkh,m′)
c′ = PKE.Enc(pk,m′; r′)
if c′ = ce then return Ka := H(K̂′, c′)

Eve.Step-6(c, ske := (phke, pke, se))
m′e = PKE.Dec(se, c)
(K̂′e, r

′
e) = G(pkhe,m′e)

c′e = PKE.Enc(pke,m
′
e; r
′
e)

if c = c′e then return Kb := H(K̂′e, c)

Figure 3. A counterexample found by Maude

search [1] in Saber : init =>*
{(keys[alice]: key(K1,bob)) (keys[bob]: key(K2,alice))
(glean-keys: (key(K1,alice) key(K2,bob) KS)) OCs} .

where K1 and K2 are Maude variables that denote arbitrary
shared keys. K1 may or may not equal K2. The command
tries to find a state reachable from init such that: alice
in her belief obtains the shared key K1 with bob, bob in
his belief obtains the shared key K2 with alice, and eve
owns both K1 and K2. Maude found a counterexample, and
this kind of vulnerability belongs to MITM attacks. Fig. 3
shows how this attack happens on Saber, which is visualized
from the path leading to the counterexample Maude returned.
There are mainly six steps as follows:
Step-1: Alice wants to construct a shared key with Bob. She
starts by performing KEM.KeyGen, generating a public key
pk and a secret key sk. She keeps sk, and send pk to Bob.
Step-2: Eve intercepts the first message sent from Alice to
Bob. She follows the KEM.KeyGen step to generate a pair
(pke, ske), impersonating Alice to send pke to Bob.
Step-3: Bob receives pke thinking it is from Alice. As a
response, he takes a random m, performs KEM.Enc with
the input pke, and obtains a ciphertext c and a shared key
Kb. He sends the ciphertext c back to Alice, and keeps the

key Kb, which he believes that it is the shared key obtained
by him and Alice.
Step-4: Eve intercepts the replied message which contains
the ciphertext c sent from Bob to Alice. Then, she takes
a random me, performs PKE.Enc with inputs pk and me,
and obtains a ciphertext ce and a shared key Ka. She sends
the ciphertext ce back to Alice as a response for the first
message.
Step-5: Alice receives the ciphertext ce thinking it is from
Bob. She performs KEM.Dec with inputs ce and sk, obtains
the shared key Ka. She believes that Ka is the shared key
obtained by her and Bob.
Step-6: Eve performs KEM.Dec with inputs c and ske, and
obtains the shared key Kb.

The reachable state space in the experiment is fi-
nite. Indeed, if we try to run the following command:
search in SABER : init =>* {OCs} ., the number of
returned solutions is finite, implying that the state space is
finite. This can be understandable. The key point is that the
numbers of possible values that each observable component
(i.e., a name-value pair) can receive are finite.
Remark. Readers may argue that this kind of attack is not
a novel attack because Saber KEM does not go along with
any solution for authentication. We agree on it. The paper
instead illustrates one symbolic approach for reasoning KEMs
rather than focusing on this kind of attack. Our ultimate
goal is to come up with a new security analysis/verification
technique for post-quantum cryptographic protocols, such
as quantum-resistant TLS. Such protocols use post-quantum
cryptographic primitives, such as KEMs. Formally specifying
such primitives is necessary to analyze the security. What is
described in the paper is our initial step toward the goal.

V. CONCLUSION

The paper has presented an approach to security analysis
of Saber.KEM in the symbolic model. We first used Maude as
a specification language to formally specify the mechanism.
After that, by employing Maude search command, an MITM
attack was found. The occurrence of the attack is basically
because a KEM alone does not come with an authentication
solution.

Amazon Web Service team has proposed a post-quantum
TLS protocol [16] that uses a hybrid key exchange method:
a traditional key exchange algorithm together with a post-
quantum KEM. The reason why a post-quantum KEM is
required is clear. However, why do we still need to employ a
traditional key exchange algorithm? One reason is that most
post-quantum KEMs are not studied/analyzed deeply, and
thus, nothing guarantees that there is not any potential flaw in
them. Thus, deep security analysis of such KEMs in particular
and other post-quantum cryptographic primitives/protocols
is an important challenge to guarantee their reliability. One
piece of our future work is to formally verify the security
of the post-quantum TLS protocol against both classical and

quantum computers. To this end, the most important task
is to come up with a new intruder model because intruders
will be able to utilize quantum computers on which quantum
algorithms, such as Shor’s one [1], run in the post-quantum
era.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete loga-
rithms and factoring,” in Proceedings 35th Annual Symposium
on Foundations of Computer Science, 1994, pp. 124–134.

[2] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren,
“Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM,” in AFRICACRYPT 2018,
2018, pp. 282–305.

[3] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYS-
TALS - kyber: A CCA-Secure Module-Lattice-Based KEM,”
in 2018 IEEE EuroS&P, 2018, pp. 353–367.

[4] S. Akleylek and K. Seyhan, “Module learning with rounding
based key agreement scheme with modified reconciliation,”
Computer Standards & Interfaces, vol. 79, p. 103549, 2022.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. L. Talcott, Eds., All About Maude, 2007,
vol. 4350.

[6] D. Dolev and A. C. Yao, “On the security of public key
protocols,” IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–
207, 1983.

[7] B. Blanchet, “Security protocol verification: Symbolic and
computational models,” in POST 2012, ETAPS 2012, vol. 7215.
Springer, 2012, pp. 3–29.

[8] ——, “Automatic Verification of Security Protocols in the
Symbolic Model: The Verifier ProVerif,” in FOSAD 2012/2013
Tutorial Lectures, vol. 8604, 2013, pp. 54–87.

[9] S. Escobar, C. Meadows, and J. Meseguer, “A Rewriting-
Based Inference System for the NRL Protocol Analyzer and
Its Meta-Logical Properties,” Theor. Comput. Sci., vol. 367,
no. 1, p. 162–202, Nov. 2006.

[10] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin, “Auto-
mated Analysis of Diffie-Hellman Protocols and Advanced
Security Properties,” in IEEE CSF 2012, 2012, pp. 78–94.

[11] R. Küsters and T. Truderung, “Using ProVerif to Analyze
Protocols with Diffie-Hellman Exponentiation,” in IEEE CSF
2009, 2009, pp. 157–171.

[12] S. Escobar, C. A. Meadows, and J. Meseguer, “State Space
Reduction in the Maude-NRL Protocol Analyzer,” in ESORICS
2008, vol. 5283, 2008, pp. 548–562.

[13] S. Escobar, J. Hendrix, C. A. Meadows, and J. Meseguer,
“Diffie-Hellman Cryptographic Reasoning in the Maude-NRL
Protocol Analyzer,” in Proceeding 2nd International Workshop
on Security and Rewriting Techniques, 2006.

[14] B. Blanchet, “A computationally sound mechanized prover for
security protocols,” IEEE Trans. Dependable Secur. Comput.,
vol. 5, no. 4, pp. 193–207, 2008.

[15] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, and
D. Riepel, “Analysing the HPKE standard,” in EUROCRYPT
2021, vol. 12696, 2021, pp. 87–116.

[16] M. Campagna and E. Crockett, “Hybrid Post-Quantum Key
Encapsulation Methods (PQ KEM) for Transport Layer
Security 1.2 (TLS),” RFC Editor, RFC, 09 2021.

	Introduction
	Saber Key Encapsulation Mechanism
	Key encapsulation mechanism
	Saber

	Formal specification of Saber
	Formalization of polynomials, vectors, and matrices
	Formalization of honest parties
	Formalization of intruders

	Model checking and Man-In-The-Middle-Attack
	Conclusion
	References

