
Formal Verification of the Lim-Jeong-Park-Lee Autonomous Vehicle Control
Protocol using the OTS/CafeOBJ Method

Tatsuya Igarashi Masaki Nakamura Kazutoshi Sakakibara

Toyama Prefectural University, Toyama, Japan

Abstract- The Lim-Jeong-Park-Lee protocol (LJPL protocol)
has been proposed as an efficient distributed mutual exclusion
algorithm for intersection traffic control. The LJPL proto-
col has been specified and verified formally using the Maude
model checker. Because of the limitation of computation, the
existing model checking approach restricts the number of ve-
hicles participating the protocol. In this paper, we model the
LJPL protocol as an observational transition system, describe
its specification in CafeOBJ, the algebraic specification lan-
guage, and verify its safety property using the proof score
method, where mutual exclusiveness can be proved for an ar-
bitrary number of vehicles ∗.

Keywords-component; autonomous vehicles; the Lim-Jeong-
Park-Lee protocol; algebraic specification; observational transi-
tion system; proof score method

I. Introduction

In [1], an efficient distributed mutual exclusion algorithm
for intersection traffic control, called the Lim-Jeong-Park-
Lee protocol (LJPL protocol), has been proposed, where
each lane of the intersection has a queue of vehicles (Fig-
ure 1). All vehicles in a queue can enter the intersection if
the top vehicle of the queue arrived first among the waiting
vehicles in the other conflict lanes. Since the vehicles ex-
cept the top one do not need extra permissions to enter the
intersection, the protocol has been shown to be effective.

In [2], the LJPL protocol has been formally specified and
some properties are verified by Maude tool†. In Maude,
a state transition system is specified as a rewrite specifi-
cation. A desired property is verified by fully automated
model checking. In principle, model checking restricts the
state space finite. Thus, by the Maude model, only finite
combinations of initial states can be treated. In [2], it is
mentioned that an initial state with five vehicles has been
proved to be safe and the authors had encountered the state
explosion problem for the case of more than a dozen vehi-
cles.

∗DOI reference number: 10.18293/SEKE2022-028.
This work was supported by JSPS KAKENHI Number JP19K11842.
†http://maude.cs.uiuc.edu

In our study, we model the LJPL protocol as an obser-
vational transition system (OTS) [3, 4, 5], where a state of
the system is not represented explicitly but can be identi-
fied through a given set of observation functions. A state
transition is also defined through observations. By such an
approach, we may obtain more abstract system specifica-
tions independent from the structure of states. Especially
our model does not fix the number of vehicles participating
the protocol. An OTS can be specified in CafeOBJ lan-
guage‡, which supports not only specification description
based on equational specifications but also specification ex-
ecution based on term rewriting theory. Roughly speaking,
when we add a new equation t0 = t1 to a given specification
S P, reduce a term t2 by the CafeOBJ processor and obtain
t3 as a reduced term, then it guarantees that the implication
t0 = t1 ⇒ t2 = t3 holds for all models of the specifica-
tion. By combining specification executions, we may con-
struct complicated proofs, such as case splitting and induc-
tions. To make a complete proof through interaction with
CafeOBJ processor is called the proof score method, or the
OTS/CafeOBJ method. For the OTS/CafeOBJ specification
of the LJPL protocol, we verify the safety property such that
vehicles of different conflict lanes cannot enter at same time
by the proof score method.

II. Lim-Jeong-Park-Lee protocol

We give a brief introduction of the LJPL protocol in this
section. See [1, 2] for more detail.

The intersection of the LJPK protocol is a crossroad rep-
resented in Figure 1. The lanes are labeled by lane0 , . . . ,
lane7. Each of four directions has two lane: the straight or
right turn lanes (even numbered) and the left turn lanes (odd
numbered). When some vehicle is crossing the intersection,
some vehicle can enter the intersection and some are not. A
lane l conflicts with a lane l′ if a vehicle in l may collide
with a vehicle in l′ when they enter the intersection at same
time. For example, lane0 conflicts with lane2, lane5, lane6
and lane7.

‡https://cafeobj.org/intro/ja/

1

lane0

lane1

lane2lane3

lane4

lane5

lane6 lane7

Figure 1. The intersection of the LJPL protocol

In the LJPL protocol, a vehicle passes the intersec-
tion through the following states: running, approaching,
stopped, crossing and crossed. In the running state, the ve-
hicle is running before the intersection. From the running
state to the approaching state, the vehicle approaches the
queue of a lane. From approaching to stopped, the ve-
hicle is added to the queue and the arrival time of the top
vehicle of the queue is set to the vehicle. From stopped to
crossing, the vehicle enters the intersection if the time of
the vehicle is less than the time of the top vehicle of each
conflict lane. From crossing to crossed, the vehicle leaves
the intersection.

III. An OTS/CafeOBJ specification of the LJPL
protocol

In this section, we give an OTS/CafeOBJ specification
of the LJPL protocol. We assume the reader is familiar
with observational transition systems and CafeOBJ alge-
braic specification language, and introduce the notions and
notations briefly through the specification of the LJPL pro-
tocol. See [3, 4, 5] for full syntax and semantics of OTS/-
CafeOBJ specifications.

A Data modules

An OTS/CafeOBJ specification consists of data modules
and a system module. We first give a data module VID for
vehicles.

mod* VID{
[Vid < Vid+]
op dummy : -> Vid+
op _=_ : Vid+ Vid+ -> Bool {comm}
eq (I:Vid = dummy) = false .
eq (V:Vid+ = V) = true . }

The module declaration with mod* denotes the loose de-
notation, where the module denotes all models (algebras)
which satisfies all equations in the modules. The name of
the module is VID. Two sorts Vid and Vid+ are declared

with a relationship Vid < Vid+. Each sort denotes a (car-
rier) set in a model. Hereafter we deal with a sort as a set if
no confusion occurs. Sort Vid is interpreted as a subset of
Vid+. We intend to use Vid as a set of (identifiers of) vehi-
cles and Vid+ as a set of vehicles including a dummy one.
There are two operator declarations with op. The name of
the first operator is dummy, which takes the empty arity and
returns Vid+. The empty arity operator denotes a constant
of the returned sort. The commutative operator = takes
two arguments of Vid+ and returns a boolean value. There
are two equations which all models satisfy. A term X:S is
a variable of Sort S , which denotes an arbitrary element of
the sort. The first equation declare that all elements of Vid
are not equivalent to the dummy vehicle. By the second
equation, each vehicle is equivalent to itself.

The following is a data module for (identifiers of) lanes.
For all i, j ∈ {0, 1, . . . , 7, 999}, we give the values of lanei =
lane j and lanei < lane j by equations. The dots part (...)
are omitted.

mod! LID{
[Lid]
ops lane0 lane1 lane2 lane3 lane4 lane5 lane6 lane7

lane999 : -> Lid
op _=_ : Lid Lid -> Bool {comm}
op _<_ : Lid Lid -> Bool
eq (L:Lid = L) = true .
eq (lane0 = lane1) = false
eq (L:Lid < L) = false .
eq (lane0 < lane1) = true
eq (lane5 < lane3) = false }

The module declaration with mod! denotes the tight de-
notation, where the module denotes only the initial model,
where each element of the model has a corresponding
term constructed from operators in the module (no dupli-
cation), and an equation is deducible from the equations
of the module, whenever the both hand sides of the equa-
tion are interpreted into a same element (no confusion). In
the model of LID, Sort Lid has exactly nine elements of
lane0∼lane999. The constants lane0∼lane7 stand for
lanes of the intersection. The constant lane999 stands for a
special lane where all vehicles belong before coming the in-
tersection. We define the order of lanes as lane i is smaller
than lane j iff i < j.

We specify a tight data module VSTAT of the labels of
vehicles’ states, where Sort Vstat and constants running,
approaching, stopped, crossing and crossed of Sort
Vstat are declared with an equivalent predicate = sim-
ilarly. We also specify a data module TIMEVAL with the
built-in sort Rat of rational numbers, Sort Rat+ of rational
numbers with the infinity oo and predicates < , <= , =
on Rat+. We omit the details of VSTAT and TIMEVAL.

Since the LJPL protocol manages a queue of vehicles,
we specify a data module QUEUE of queues as follows:

mod! QUEUE{
pr(VID) [Queue]
op empty : -> Queue

op _,_ : Vid Queue -> Queue
op put : Queue Vid -> Queue
op remove : Queue -> Queue
op top : Queue -> Vid+ ... }

Module QUEUE imports Module VID with the protect
mode, where a model (carrier sets) of the importing module
includes a model of the imported module as it is. The first
two operators empty and , are constructors of queues.
The set Queue of queues is defined inductively. Constant
empty denotes the empty queue. Term e,queue is a queue
whose top element is e and the tail is queue if e is of Vid and
queue is of Queue. For example, Term e0,e1,e2,empty is
a term of Queue. Operator put, remove and top are stan-
dard operations of queues. Term put(queue,e) stands for
the result queue by adding an element e to a queue as the
last element. Term remove(queue) is the result queue by
deleting the top of queue. Term top(queue) is the top el-
ement of queue. For example, Operator put is defined by
the following equations in QUEUE:

eq put(empty,I:Vid) = I,empty .
eq put((J:Vid,Q:Queue),I:Vid) = J,put(Q,I) .

For example, Term put((a,b,empty),c) is equivalent
to Term a,b,c,empty since put((a,b,empty),c)

= a,put((b,empty),c) = a,b,put(empty,c) =

a,b,c,empty. Similarly, the other operators are defined
inductively.

B The system module : observers

We give a system module of the LJPL protocol. First,
we give observers and a definition of an initial state of our
system module.

mod* OTS{
pr(LID + VSTAT + QUEUE + TIMEVAL)
[Sys]
bop lid : Sys Vid+ -> Lid
bop vstat : Sys Vid+ -> VStat
bop t : Sys Vid+ -> Rat
bop lt : Sys Vid+ -> Rat+
bop q : Sys Lid -> Queue
bop now : Sys -> Rat

Our system module, OTS, imports all data modules de-
fined above with the protecting mode. Sort Sys is declared
as a hidden sort, which denotes the state space of the sys-
tem. An operator with the hidden sort in its arity is called
a behavioral operator. A behavioral operator is divided into
two categories: it is called an observer if the returned sort
is not hidden and a transition if it is hidden. Six observers
are declared in OTS: lid(s,i) is the lane ID of a vehicle i
at a state s. vstat(s,i), t(s,i) and lt(s,i) are the state,
the arrival time, and the arrival time of the top vehicle in
the queue of the lane of a vehicle i at a state s respectively.
q(s,l) is the queue of a lane l. now(s) is the elapsed time
at a state s.

The following specifies an initial state.

op init : -> Sys
eq lid(init,I:Vid) = lane999 .
eq vstat(init,I:Vid) = running .
eq t(init,I:Vid) = oo .
eq lt(init,I:Vid) = oo .
eq q(init,L:Lid) = empty .
eq now(init) = 0 .

Constant init is an element of Sys, which we call the
initial state. The initial state is not defined explicitly but is
defined through observers. The first equation specifies the
initial lane of all vehicles is lane999. The state is defined
as running. The arrival times are defined as the infinity oo,
which means that they have the lowest precedence to enter
the intersection.

For the dummy vehicle, its lane, state, arrival times are
defined as lane999, stoped and oo for all states respec-
tively. The queue of lane999 is defined as empty for all
states. We omit the equations for the dummy vehicle.

C The system module : transitions

State transitions are declared as follows:

bop set : Sys Vid Lid -> Sys
bop approach : Sys Vid -> Sys
bop check : Sys Vid -> Sys
bop enter : Sys Vid -> Sys
bop leave : Sys Vid -> Sys
bop tick : Sys Rat -> Sys

Term set(s,i,l) is the result state after applying the
transition set for a vehicle i and a lane l at the state s. Sim-
ilarly, other transitions are declared as operators which take
a current state and return the result state with some param-
eters. Transition tick(s,x) is a special transition which
advances elapsed time by x.

For a transition τ, the effective condition c−τ is a condi-
tion under which the transition τ can be applied. The fol-
lowing is a definition of the effective condition c-set of the
transition set §.

op c-set : Sys Vid -> Bool
eq c-set(S:Sys,I) =
(vstat(S,I) = running && lid(S,I) = lane999) .

ceq set(S,I,L) = S if not c-set(S,I) .

The operator c-set is declared and is defined by the first
equation such that set is effective for a vehicle I if I’s state
is running and lane is lane999. The last equation is a con-
ditional equation, where the body equation holds when the
condition part is true. The condition part of the last equa-
tion is not c-set(S,I), that is, set is not effective for I.
Then, the body equation says that the result of applying set
does not change a state. The application of the transition is
considered to be ignored when it is not effective.

The following is the set of all equations defining set
when it is effective.
§Hereafter we use D, I, J, S and L (L’) as variables of Rat, Vid, Vid+,

Sys and Lid respectively.

ceq lid(set(S,I,L),J) =
(if I = J then L else lid(S,J) fi)
if c-set(S,I) .

ceq vstat(set(S,I,L),J) = vstat(S,J) if c-set(S,I) .
ceq t(set(S,I,L),J) = t(S,J) if c-set(S,I) .
ceq lt(set(S,I,L),J) = lt(S,J) if c-set(S,I) .
ceq q(set(S,I,L),L’) = q(S,L’) if c-set(S,I) .
ceq now(set(S,I,L)) = now(S) if c-set(S,I) .

The first equation specifies that the lane ID of a vehicle J
after set(S,I,L) is defined as L if I = Jwhen set is effec-
tive, and it is unchanged if I , J. Only lane ID is changed
and the other observed values are unchanged as defined by
the following five equations. By Transition set, a vehicle
can be assigned to any lane.

To define a system behavior completely, for all combina-
tions of an observer o and a transition τ, we need to define
the value observed by o of the result state after applying τ
to a state s, denoted by o(τ(s)). Since there are lots of equa-
tions in our system module, we show subset of them in this
paper.

Transition approach is defined as follows:

eq c-approach(S,I) =
(vstat(S,I) = running && not(lid(S,I) = lane999)) .

ceq vstat(approach(S,I),J) = (if I = J then approaching
else vstat(S,J) fi) if c-approach(S,I) .

ceq t(approach(S,I),J) = (if I = J then now(S)
else t(S,J) fi) if c-approach(S,I) .

ceq q(approach(S,I),L) = (if L = lid(S,I) then
put(q(S,L),I) else q(S,L) fi) if c-approach(S,I) .

Transition approach is effective if the state is in
running and the lane is not lane999, that is, immediately
after set. By approach(S,I), the state of I becomes
approaching. The arrival time is set to the current time
now(S) and I is added to the queue of the belonging lane.

Transition check is defined as follows:

eq c-check(S,I) = (vstat(S,I) = approaching &&
top(q(S,lid(S,I))) = I

|| vstat(S,getpre(q(S,lid(S,I)),I)) = stopped
|| vstat(S,getpre(q(S,lid(S,I)),I)) = crossing)) .

ceq vstat(check(S,I),J) = (if I = J then stopped
else vstat(S,J) fi) if c-check(S,I) .

ceq lt(check(S,I),J) = (if
I = J && (top(q(S,lid(S,I))) = I
|| vstat(S,getpre(q(S,lid(S,I)),I)) = crossing)
then t(S,I) else if
I = J && vstat(S,getpre(q(S,lid(S,I)),I)) = stopped
then lt(S,getpre(q(S,lid(S,I)),I)) else lt(S,J)
fi fi) if c-check(S,I) .

Transition check is effective when the state of the ve-
hicle is approaching and either it is top of the queue or
the previous vehicle’s state is stopped or crossing, where
getpre(q,i) returns the previous vehicle of i in a queue q.
The state of the vehicle becomes stopped. The last equa-
tion specifies that the arrival time of the previous vehicle in
the queue is set to the vehicle as lt.

Transition enter is defined as follows:

eq c-enter(S,I) = (vstat(S,I) = stopped
&& top(q(S,lid(S,I))) = I && ...)

ceq vstat(enter(S,I),J) = (if lid(S,I) = lid(S,J) &&

vstat(S,J) = stopped then crossing else
vstat(S,J) fi) if c-enter(S,I) .

Transition enter is effective when the vehicle’s state is
stopped, it is top of the queue and the arrival time lt is
smaller than that of the top vehicle of each conflict lane.
We omit a part of the right-hand side of the first equation
of c-enter. The states of all vehicles in the same queue
(stopped) become crossing, that is, they enter the inter-
section at once.

Transition leave is defined as follows:

eq c-leave(S,I) =
(vstat(S,I) = crossing && top(q(S,lid(S,I))) = I) .

ceq vstat(leave(S,I),J) = (if I = J then crossed
else vstat(S,J) fi) if c-leave(S,I) .

ceq q(leave(S,I),L) = (if L = lid(S,I) then
remove(q(S,L)) else q(S,L) fi) if c-leave(S,I) .

Transition leave is effective when the vehicle’s state is
crossing and it is top of the queue. The vehicle’s state
becomes crossed and it is removed from the queue.

Finally, Transition tick is defined as follows:

eq now(tick(S,D)) = now(S) + D .

Transition tick(S,D) is always effective and it increase
the current time by D.

D Specification execution

The CafeOBJ reduction command reduces a term to a
term equivalent to the input term based on term rewriting
theory. The following is an example of reduction.

open OTS
eq s1 = set(set(set(set(

init,a,lane0),b,lane3),b2,lane3),c,lane4) .
eq s2 = approach(approach(approach(s1,a),b),c) .
eq s3 = approach(tick(s2,1),b2) .
eq s4 = check(check(check(check(s3,a),b),c),b2).
eq s5 = enter(enter(enter(s4,c),b),a) .
red vstat(s5,a) . red vstat(s5,b) .
red vstat(s5,b2) . red vstat(s5,c) .
close .

State s1 is equivalent to a term obtained by applying four
set transitions with vehicles a, b, b2, c with lanes lane0,
lane3, lane3, lane5 respectively. We apply Transition
approach to vehicles a, b, c, and advance time by one time
unit and apply approach to b2 (State s3). Then, we apply
check to all vehicles and apply enter to a, b, c. State s5 is
the result state. Note that lane lane0 does not conflict with
lane lane3 and lane4 but lane lane3 conflict with lane4.

By the last four reduction commands, we check states of
all vehicles. CafeOBJ returns crossing for a in lane0,
crossing for b and b2 in lane3, and stopped for c in
lane4. Vehicles a and b, b2 are crossing since they do
not conflict with each other. Vehicle c failed to enter (from
stopped to crossing) since b in a conflict lane has already
entered. Although b2’s arrival time is later than c’s arrival
time, b2 entered since it belongs to the same queue with b.

IV. Formal verification of the LJPL protocol

In this section we verify the safety property of the LJPL
protocol, that is, no two vehicles enter the intersection
if they belong to conflict lanes, by using the proof score
method. First we formalize a safe state by operators and
equations.

mod INV{ pr(OTS) ...
eq concur(L,L’) = ((L = L’) ||
(L = lane0 && (L’ = lane1 || L’ = lane3 || L’ = lane4))
||

eq inv1(S,I,J) = (not(I = J)
&& vstat(S,I) = crossing && vstat(S,J) = crossing)
implies concur(lid(S,I),lid(S,J)) . }

The first equation specifies a predicate concur such that
concur(L,L’) is true if lanes L does not conflict with L’.
Then, the invariant property inv1 is defined by the last
equation. The invariant property inv1(S,I,J) is true if
vehicles I and J do not belong to conflict lanes whenever
I and J are different and their states are crossing. The
invariant property is a state predicate. If inv1(s,i, j) is
true for all states s reachable from the initial state and ve-
hicles i and j, the LJPL protocol is safe. In OTS/CafeOBJ
specifications, reachable states are represented by terms like
τn(· · · (τ1(τ0(init)))), which stands for the result state af-
ter applying transitions τ0, τ1, . . . , τn to the initial state in
this order. Since reachable terms are infinite, we prove this
claim by induction on the structure of reachable states. The
base step is proved for the initial state init and the induc-
tion step is proved for s′ = τ(s) for each transition τwith the
assumption of inv1(s,i, j) as the induction hypothesis.

Base step The following is a fragment of a proof score,
called a proof passage, for the base step.

open INV .
ops i j : -> Vid .
red inv1(init,i,j) .
close .

Constants i and j are declared as arbitrary vehicles. The
reduction command red takes a term and returns a term
reduced by using declared equations. CafeOBJ processor
returns true as the result of the above reduction, that guar-
antees that the base step is proved successfully.

Induction step The following is a module for proving in-
duction steps.

mod ISTEP{ pr(INV) ...
ops s s’ : -> Sys
eq istep1(I,J) = inv1(s,I,J) implies inv1(s’,I,J) . }

Constants s and s’ are declared as arbitrary states. For
each induction step of a transition τ, we declare an equation
s′ = τ(s). Thus, in induction steps, we prove the implica-
tion inv1(s,i, j)⇒ inv1(s’,i, j) for each vehicles i and
j. Predicate istep1 is declared for proving the implication.

The following is a proof passage for Transition set in
the case that the effective condition is false.

open ISTEP .
ops i j k : -> Vid . op l : -> Lid .
eq c-set(s,k) = false .
eq s’ = set(s,k,l) .
red istep1(i,j) .
close .

The above reduction returns true. Thus, if set is not ef-
fective, the induction step for set is proved. The following
is the case that it is effective.

open ISTEP .
ops i j k : -> Vid .
op l : -> Lid .
eq vstat(s,k) = running .
eq lid(s,k) = lane999 .
eq s’ = set(s,k,l) .
red istep1(i,j) .
close .

Note that we declare two equations instead of
c-set(s,k) = true. They are same meaning from
the definition of c-set in the system module. Unfortu-
nately, the above reduction does not return true. The
result of the reduction is a term like (if (k = i) then
l else lid(s,i) fi) = (if (k = j) then ...)

.... This result means that CafeOBJ cannot prove the
input property to be true or false. In such a case, we revise
the proof passage such that CafeOBJ can prove it. Such a
procedure is called an interactive theorem proving.

In this case, the result term includes k = i. If it is true
or false, CafeOBJ may proceed reduction more. Thus, we
apply a case splitting about k = i. We make two copies
of the above failed proof passage, add equations k = i and
(k = i) = false for each copy. Since k = i ∨ (k =
i) = false = true, if the both copies return true then the
original proof passage is true. If results are not true or false,
we apply case splitting until it is reduced into true or false.

Lemma discovery If a proof passage returns false, there
are two possibilities, the invariant property is not true or the
considered state is unreachable from the initial state.

Consider the following proof passage which returns
false.

open ISTEP .
ops i j k : -> Vid .
eq vstat(s,k) = stopped . eq top(q(s,lid(s,k))) = k .
eq lid(s,k) = lane0 . eq top(q(s,lane0)) = k .
eq vstat(s,top(q(s,lane2))) = stopped
eq s’ = enter(s,k) .
eq i = k . eq (j = k) = false . eq lid(s,j) = lane2 .
eq (lid(s,j)= lane0) = false . eq vstat(s,j) = crossing .
red istep1(i,j) .
close .

In this case, the vehicle i = k is the top of Lane lane0
and waits for enter. Although the vehicle j is crossing in
lane2, the top of lane2 is stopped. In the LJPL protocol,
a vehicle in a queue should not be the state of crossing if

the top vehicle of its lane is in the state of stopped. Thus,
this case of the proof passage is considered to be unreach-
able state from the initial state.

To solve this proof passage, we introduce a lemma ex-
tracted from the unreachable state. The following is a
lemma we introduce.

eq pred1(S,empty) = true .
eq pred1(S,(I,Q)) = (if vstat(S,I) = crossing

then false else pred1(S,Q) fi) .
eq pred2(S,empty) = true .
eq pred2(S,(I,Q)) = (if vstat(S,I) = stopped

then pred1(S,Q) else pred2(S,Q) fi) .
eq inv2(S,I) = pred2(S,q(S,lid(S,I))) .

Predicate inv2 is the lemma we introduce and Predicates
pred1 and pred2 are auxiliary predicates for defining the
lemma. Predicate pred1(S,Q) is true if the queue Q does
not have crossing vehicles. Predicate pred2(S,Q) is true
if no crossing vehicles exist after any stopped vehicle.
The invariant inv2(S,I) is defined by pred2 with State S
and the queue of the lane of Vehicle I. We add the invariant
to the proof passage as the premise of the target implication
as follows:

open ISTEP
eq (lid(s,j)= lane0) = false . eq vstat(s,j) = crossing .
red inv2(s,j) implies istep1(i,j) .
close .

Then, the reduction does not return false. We proceed
case splitting and lemma discovery repeatedly and all proof
passages (cases) for inv1 become true after introducing
more two lemmata inv3 and inv4.

eq inv3(S,I) =
(vstat(S,I) = approaching || vstat(S,I) = stopped ||
vstat(S,I) = crossing) implies (I in q(S,lid(S,I))) .

eq inv4(S,I) = vstat(S,I) = crossing implies
not pred1(S,q(S,lid(S,I))) .

Verification of lemmata In the previous section we
showed the main invariant property inv1 holds under the
assumption of three lemmata. In order to complete a proof
we need to prove those lemmata. They can be proved by the
induction on reachable states similarly. Although we do not
need more lemmata about the induction on reachable states,
we needed to introduce another kind of lemmata, for exam-
ple, pred2(set(s,k,L),q) = pred2(s,q), which can be
proved by the induction on the data structure of queues q.

Finally, we obtain a complete proof score for inv1 with
609 proof passages which all return true, where three lem-
mata about reachable states and 17 lemmata about queues
are introduced. Since the data module VID of vehicles de-
notes the loose denotation, the system specification OTS de-
notes all systems following the LJPL protocol with arbitrary
number of vehicles. Our verification result guarantees that
the LJPL protocol is safe for any vehicles.

V. Conclusion

We described an OTS model of the LJPL protocol in
CafeOBJ language and verified a safety property by the
proof score method. The main contribution of our study
is to give a formal verification of the safety property of the
LJPL protocol for arbitrary number of vehicles.

Through the experience of formal verification of the
LJPL protocol, we faced lemmata about queues as well as
lemmata inv1∼inv4 about reachable states. Although to
find an appropriate lemma about reachable states we may
need an insight into a target system, the lemmata about
queues seem to have some pattern. To investigate a way to
construct a semi-automated support tool for the proof score
method for such data types is one of our future work.

In [2], not only the safety property we deal with in this
study but other important properties of intersection con-
trol protocols have also been verified, e.g. the deadlock-
freedom and the starvation-freedom properties. To specify
and verify such properties in our OTS/CafeOBJ specifica-
tion is another one of our future work.

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number JP19K11842.

References

[1] J. Lim, Y. Jeong, D. Park, and H. Lee, An efficient
distributed mutual exclusion algorithm for intersection
traffic control, The Journal of Supercomputing, vol.74,
pp.1090-1107, 2018.

[2] Moe Nandi Aung, Yati Phyo, Kazuhiro Ogata, Formal
Specification and Model Checking of the Lim-Jeong-
Park-Lee Autonomous Vehicle Intersection Control
Protocol，SEKE 2019，pp.159-208，2019.

[3] K. Ogata, and K. Futatsugi, Proof scores in the OT-
S/CafeOBJ method, FMOODS 2003, LNCS 2884,
pp.170-184. Springer, 2003.

[4] K. Ogata and K. Futatsugi, Modeling and verification
of real-time systems based on equations, Science of
computer programming, 66(2), pp.162-180, 2007.

[5] Masaki Nakamura, Shuki Higashi, Kazutoshi Sakak-
ibara, Kazuhiro Ogata, Specification and verifica-
tion of multitask real-time systems using the OTS/-
CafeOBJ method, IEICE Transactions on Informa-
tion and Systems, Vol.E105-A, No.5, pp.-, 2022. (ac-
cepted)

