
Analysing Product Lines of Concurrent Systems with Coloured Petri Nets

Elena Gómez-Martı́nez Esther Guerra Juan de Lara

Universidad Autónoma de Madrid, Madrid, Spain
{MariaElena.Gomez, Esther.Guerra, Juan.DeLara}@uam.es

Abstract

Petri nets are a popular formalism to model and analyse
concurrent systems. They can be combined with software
product lines to support the specification of concurrent sys-
tem families, like variants of controllers, process models,
or configurations of flexible assembly lines. Specifically, a
Petri net product line (PNPL) comprises a (black and white)
Petri net decorated with variability inscriptions, and a fea-
ture model controlling the derivation of admissible nets of
the family. However, the derivable nets cannot be reconfig-
ured at runtime, and the techniques to analyse properties of
such reconfigurations are limited.

To tackle these issues, we present a method to embed a
PNPL into a standard Coloured Petri net. This embedding
permits using the extensive simulation and analysis capa-
bilities of powerful tools like CPN Tools, and enables the
reconfiguration of the product nets at run-time. In this pa-
per, we report on the translation of PNPLs into Coloured
Petri nets, characterize the properties that can be analysed
with this translation, and describe tool support on the basis
of a case study in the area of flexible production systems.

1 Introduction
Petri nets [1] are a popular formalism to model and anal-

yse concurrent systems. Their graphical nature makes mod-
elling intuitive, and their strong theoretical basis enables
powerful analysis possibilities. However, they are limited
when the analysis of (possibly large) families of similar sys-
tems – like variants of process models [2], robots [3], con-
figurations in flexible assembly lines [4] or reconfigurable
manufacturing systems [5] – is required.

To solve this issue, in previous work, we proposed the
notion of Petri net product line (PNPL) [6] as a compact
way to specify families of net variants based on product
line techniques. In essence, a PNPL combines a (black and
white) Petri net annotated with presence conditions, and a
feature model to express the allowed variability. Several
Petri net analysis techniques have been lifted to enable the
analysis of all nets of the family at once, instead of a case-
by-case analysis [6]. However, the analysis is limited to
structural properties (like marked graph, state machine and
free-choice) and the reconfiguration between variants is not
possible at run-time. This hinders the use of PNPLs in

Generator

Conv-1 Conv-2
...

[P
ar
tA
]

FlexCell

PartA PartB[P
ar
tB
]

PNPL

...

tr
an

sf
o
rm

at
io
n CPNswitch

PartA

switch
PartB

[isValid(a,b)]

{A=a, B=b}

Current

Config
Generator

...{A=a, B=b}

Conv-1 Conv-2

{A
=a

, B
=b

}

[PartA(a,b)] [PartB(a,b)]

{A=a, B=b}

run-time
features

design-time
features

Simulation
Analysis (state space)
Run-time reconfiguration

1

2

3

4

gA gB gA gB

initial
config.

Figure 1. Overview of the approach.
applications requiring dynamic reconfigurations, like self-
adaptive cyber-physical systems [7, 8].

To alleviate these issues, we propose to transform PN-
PLs into equivalent standard Coloured Petri nets (CPNs), as
Fig. 1 shows. CPNs [9] extend Petri nets with data types,
so that tokens can carry data, and arcs can query and pro-
duce tokens according to specified conditions. Our mapping
synthesizes a CPN that explicitly represents the current con-
figuration as a coloured token, emulates the presence con-
ditions on the net elements via suitable arcs, and permits
reconfiguring the system to a new feature configuration (cf.
label 3 in Fig. 1). Prior to synthesizing the CPN (label 2),
the user selects the features that may change at run-time,
those fixed at design-time, and an initial configuration. Our
mapping into CPNs enables the simulation of the running
system and opens the door to useful analysis possibilities,
e.g., based on model checking (label 4).

We have implemented the described mapping on an
Eclipse plugin called TITAN. This tool supports the graphi-
cal modelling of PNPLs and the lifted analysis of structural
properties. For this work, we have extended TITAN to trans-
form a given PNPL into a CPN that can be simulated and
analysed within CPN Tools [10].

2 Background
In this section, we introduce Petri nets (Sec. 2.1), PNPLs

(Sec. 2.2) and CPNs (Sec. 2.3) using an example in flexible
manufacturing systems.

2.1. Petri Nets
Petri nets [1] are a graphical formal notation to represent

concurrent systems. A Petri net is a bipartite graph with two
types of nodes: places (graphically depicted as circles) and
transitions (drawn as rectangles). Places can be connected
to transitions, and vice versa, via arcs. Petri nets have a
marking, representing the distributed state of the net. The

DOI reference number: 10.18293/SEKE2022-015

genA cnvA
proc

cnv1

cnv2
assembly

ctrlin

out1

out2

inc1

inc2

fix

prod pack

genB cnvB prod1

prod2

Figure 2. Petri net modelling an assembly line.

marking is given by sets of tokens (depicted as black circles
within places) associated to each place.

Fig. 2 shows an example Petri net inspired by [6]. It rep-
resents an assembly line. Transitions genA and genB model
generators of parts of types A and B, which transition proc
processes and sends to any of two parallel conveyor belts
(represented by places cnv1 and cnv2). After a quality con-
trol, transition fix sends the defective parts back. In a fi-
nal step, two machines (represented by transitions prod and
pack) process the parts, until they are assembled.

Petri nets can be simulated by the so-called token game.
A transition is enabled if each input place has at least one
token. Enabled transitions may fire at any moment. Firing
a transition removes one token from each input place of the
transition, and adds a token to each of its output places. In
Fig. 2, transitions genA, genB and pack are enabled. Fir-
ing pack would add a token to place assembly, and would
remove one token from prod1 and prod2.

2.2. Petri Net Product Lines
Petri nets are powerful to represent concurrent systems,

but they are less suitable to capture families of similar sys-
tems in a compact way. For example, each possible con-
figuration of a flexible assembly line – with different types
of input parts, fabrication layouts, and output products –
should be represented as a separate net. This is problematic
if there are many configurations, the features of the assem-
bly line can change, or properties of the whole family need
to be analysed (e.g., can the assembly line manufacture a
certain type of part in all configurations?).

PNPLs [6] combine Petri nets with product lines [11, 12]
to tackle this problem. A PNPL comprises a feature model
(FM) [13] describing the variability space, and a Petri net
(called 150% net) whose elements define presence condi-
tions (PCs). The latter are boolean formulae over features of
the feature model. Specific Petri net products can be derived
from the PNPL by selecting a configuration. This derivation
process removes all elements from the 150% net whose PC
evaluates to false after substituting the selected configura-
tion features by true, and the rest by false.

Fig. 3 shows an example PNPL with the possible config-
urations of a flexible assembly line. The feature model in
Fig. 3(a) allows selecting one or more kinds of input parts
(PartA, PartB), a fabrication layout (optional QualityControl,
optional Parallel conveyor), and one or more kinds of output

genA

[PartA]
[Parallel]

[QualityControl]

[Prod1]

[Prod2]

[Prod1Prod2]

cnvA

proc

cnv1

cnv2

assmbly

ctrlin

out1

out2

inc1

inc2

fix

prod pack

genB cnvB

[PartB]

prod1

prod2

FlexibleAssemblyLine

InParts Process OutProducts

PartA PartB QualityControl Parallel Prod1 Prod2

cross-tree constraints: Prod2 PartA PartB

(a)

(b)

Mandatory

Optional

Or Group

Legend:

Alternative

Figure 3. PNPL of a flexible assembly line. (a)
Feature model. (b) 150% net.

products (Prod1, Prod2). A constraint forces that both types
of input parts are selected to produce Prod2.

The 150% net in Fig. 3(b) has the same underlying net as
Fig. 2, but its elements have PCs (shown in square brackets).
We use dashed, coloured regions to assign the same PC to
several elements. As an example, if a configuration does
not select feature PartB, then transition genB , place cnvB

and their adjacent arcs would be removed from the derived
product net.

2.3. Coloured Petri Nets
Coloured Petri nets (CPNs) [9] extend Petri nets by al-

lowing tokens to carry data. The data structure is given by
assigning a type (a colour) to the places. In CPN Tools,
colours are specified with the Standard ML functional lan-
guage [14], which supports defining datatypes like enumer-
ations, product, union, list, and record types.

Arcs in CPNs are annotated with expressions, which
can encapsulate complex computations. They may also in-
clude free variables, that need to be bound to suitable val-
ues found in the tokens. Transitions can have guards, which
are boolean expressions that need to evaluate to true for the
transition to be enabled. They can be used to test values
from the variables bound in input arcs.

3 Analysing PNPLs with CPNs
Next, we present the transformation of PNPLs into CPNs

(Sec. 3.1) and the analysis possibilities (Sec. 3.2).

3.1. Transforming PNPLs into CPNs
Our approach to analyse behavioural properties of PN-

PLs relies on CPNs. The rationale for this transformation
is to be able to activate or deactivate the elements in the net
structure (places, transitions, arcs) by means of expressions
or guards in the CPN, according to the selected feature con-
figuration. To achieve this, we use the feature model (FM)
and the 150% net to guide the transformation.

3.1.1 Transforming the feature model.
To translate the feature model into a CPN, we initially gen-
erate two colour sets to encode a configuration. We create
a generic type called FEATURE (a boolean); and a record
colour set CONFIGURATION with n fields of type FEA-
TURE, being n the number of features in the FM. Each
FEATUREi stores whether the field is selected (true) or not
(false) for a particular configuration. For the running exam-
ple of Fig. 3, the created colour sets are the following:

colset FEATURE = BOOL;
colset CONFIGURATION = record
INPARTS : FEATURE * PARTA : FEATURE * PARTB : FEATURE *
PROCESS : FEATURE * QUALITYCONTROL : FEATURE *
PARALLEL : FEATURE * OUTPRODUCTS : FEATURE * PROD1 : FEATURE *
PROD2 : FEATURE;

Then, a place CONFIG with one token and the colour
set CONFIGURATION is added to the CPN to represent any
configuration, valid or not, generated from the FM. Values
for tokens are extracted from an initial configuration set
beforehand by the user. Moreover, to allow changing the
feature selection at runtime, one transition Switch Featurei

per feature is included in the CPN. This transition is con-
nected with the place CONFIG by two arcs: one input arc
that reads the current value of the feature, and one outgoing
arc switching its value. To reduce the size of the result-
ing CPN and consequently, its analysis time, we make the
following optimization: if a feature needs to be selected in
every valid configuration (i.e., it is mandatory) then we do
not generate a transition to switch its value. In our run-
ning example, for instance, we do not generate such Switch
transitions for features InParts, Process, OutProducts and
FlexibleAssemblyLine. Similarly, the corresponding Switch
transitions are not generated for the non-dynamic features
that are fixed at design time (cf. step 2 in Fig. 1).

For the created transitions, the switched value is col-
lected in a variable of type FEATURE. We also include two
variables, named c and d, with type CONFIGURATION to
store the current and the previous configuration, respec-
tively. Therefore, the defined variables for the running ex-
ample of Fig. 3 are the following:

var InParts, PartA, PartB, Process, QualityControl,
Parallel, OutProducts, Prod1, Prod2 : FEATURE;

var c, d : CONFIGURATION;

The next step is to validate whether the current selection of
features corresponds to a valid configuration. With this pur-
pose, we incorporate a transition called isValid that reads a
token from the place CONFIG. This transition has a guard,
implemented as a function in the CPN ML language, which
encodes the feature model as a propositional formula fol-
lowing the rules proposed in [15]. Therefore, only valid
configurations satisfy this guard and enable the transition.
Firing the transition passes the token with the variable c
containing the value of all features for this valid configura-
tion to the place CURRENT, and removes the old one. Thus,

Figure 4. CPN for the feature model of the
PNPL (some arc expressions omitted).

this place contains the token with the current configuration
which will be used to activate and deactivate elements in the
150% net.

The next listing shows the function implementing the
guard to validate configurations for the running example.
It uses implication and bidirectional functions that we have
defined explicitly, since they do not exist in ML.

fun implies (p,q) = not p orelse q;
fun iff (p, q) = ((not p orelse q) andalso (p orelse not q));
fun isValid (PARAM_FlexibleAssemblyLine, PARAM_Prod1,

PARAM_QualityControl, PARAM_Prod2, PARAM_InParts,
PARAM_PartB, PARAM_Process, PARAM_PartA, PARAM_Parallel,
PARAM_OutProducts) =

iff(PARAM_InParts,PARAM_FlexibleAssemblyLine) andalso
iff(PARAM_Process,PARAM_FlexibleAssemblyLine) andalso
iff(PARAM_OutProducts,PARAM_FlexibleAssemblyLine) andalso
(PARAM_PartA orelse PARAM_PartB) andalso
(implies(PARAM_QualityControl,PARAM_Process) andalso
implies(PARAM_Parallel,PARAM_Process)) andalso

(PARAM_Prod1 orelse PARAM_Prod2) andalso
implies(PARAM_Prod2,(PARAM_PartA andalso PARAM_PartB));

Fig. 4 shows the fragment of the CPN resulting from the
feature model depicted in Fig. 3(a), where features Quality-
Control and Parallel are static and hence there are no Switch
transitions for them.

3.1.2 Transforming the 150% net.
The structural elements of the 150% net (places, transitions,
arcs) have an almost direct translation into the CPN. The
type of all the places is INT and they are marked according
to the initial marking of the 150% net. To access the current
configuration, every transition of the 150% net is connected
by a bidirectional arc to the place CURRENT. The arc ex-
pression is the variable c, which stores the current configu-
ration.

We model the PCs by means of arc expressions and tran-
sition guards. They allow to activate or deactivate elements
of the net, since both determine if a transition is enabled
(for a given marking). Specifically, the PCs of transitions
are directly transformed into transition guards in the CPN.
Regarding places, there is no way to activate or deactivate
them in the CPN, hence, we emulate this behaviour by ex-
pressions in their input and output arcs. The PCs of arcs

are translated into if-then-else expressions, where the if -
condition is the PC of the arc, the then-part is a new token to
the output place, and the else-part is no token. For instance,
the arc expression of the arc from transition pack to place
assembly of the 150% net in Fig. 3 is:

if (#FEAT_Prod1 c andalso #FEAT_Prod2 c) then 1ˋ1 else 0ˋ1

where operator ♯ retrieves the field values within records.
Overall, the expression adds a token only if the PC
(Prod1∧Prod2) evaluates to true on the current configura-
tion (given by c). As noted, PCs are parsed into the field
names of the record colour set CONFIGURATION, and log-
ical operators (and and or) are adapted to the ML language
(andalso and orelse).

The resulting CPN model can be analysed using CPN
Tools [10] in order to study behavioural properties. Fig. 5
shows the CPN obtained from the running example.

3.2. Analysing the PNPL
Most CPNs analyses are based on the occurrence graph:

a graph-based representation of the state-space of reachable
markings [9]. In PNPLs, this state-space represents all pos-
sible executions of the net, in all possible configurations al-
lowed by the change of dynamic features. Once PNPLs are
transformed into CPN, some of their properties that can be
analysed are [10]:

Boundedness. A place is bounded if it can admit a limited
number of tokens. CPN Tools reports the minimum and
maximum bounds for each place. In PNPLs, the places as-
sociated to the feature model are bounded, and the bounds
reported for the places in the 150% net are calculated for
any possible configuration (no place in any configuration
of our PNPL is bounded).

Home markings are those reachable from every reachable
marking of the net. They may represent cyclic behaviours
that might be desirable in all valid configurations (our
PNPL lacks home markings).

Liveness is concerned with transitions staying active. CPN
Tools reports dead markings (those where no firing is pos-
sible and the execution ends), live transitions (there is a
firing sequence containing the transition in any reachable
marking), and dead transitions (not enabled in any reach-
able marking). In PNPLs, the interest is on liveness of
transitions of the 150% net, which refers to all possible
configurations of dynamic features. Our PNPL lacks dead
markings and dead transitions in any configuration.

Model checking allows formulating properties in temporal
logics, to be checked on the state-space [16]. In PNPLs,
these formulae can combine features of the feature model
with properties of the markings in the 150% net. In our
running example, we could check if, given a selection of

static features, then for every configuration of the dynamic
features, a token eventually reaches either prod1 or prod2

in every execution (so that products are produced). This
is not the case in configurations with QualityControl.

4 Tool Support
We have built the tool TITAN (Tool for Petri net product

line analysis) to support our approach. It is an Eclipse plug-
in and uses the Eclipse Modeling Framework (EMF) [17]
as the underlying modelling technology. It is available on
https://github.com/antoniogarmendia/titan.

The tool integrates a graphical editor to define the 150%
Petri net and its PCs. The editor is based on Sirius [18],
a framework to create graphical modelling environments.
TITAN also extends FeatureIDE [19] – a widely used plug-
in in the field of product line engineering – to specify the
feature model, the feature configurations and generate the
product nets. TITAN supports the lifted analysis of struc-
tural properties of the PNPL, following the approach de-
scribed in [6]. For this purpose, it relies on two libraries: the
Sat4J solver [20] for solving boolean satisfaction problems
(used to analyse properties state-machine, marked graph,
free-choice and extended free-choice), and the JaCoP Java
library as constraint programming (CP) solver [21] (used to
analyse P- and T-invariants).

The architecture of TITAN is extensible via extension
points with new analysis techniques and exporters to the
input format of other Petri net tools. In addition to CPN
Tools [10], which includes the presented transformation of
PNPLs into CPNs, TITAN has exporters of the 150% net to
GreatSPN [22], TimeNET [23] and WoPeD [24].

Fig. 6 shows TITAN with the running example. On the
left, the Eclipse explorer contains the FeatureIDE project,
which includes the PNPL of the running example, and the
generated CPN file with its configuration file. The middle
part shows the 150% net and its PCs. The right side displays
the feature model. The result of the T-invariant analysis is
presented on the bottom.

5 Related Work
Our proposal realises the notion of dynamic software

product line (DSPL) for Petri nets. DSPLs [25] allow con-
trolling the variability of adaptive systems at runtime. A
DSPL can be seen as a system where the feature configura-
tions correspond to system adaptations. Some authors anal-
yse different aspects of DSPLs (but not for Petri nets). For
instance, Sawyer et al. [26] use constraint solving to find the
optimal configuration of self-adaptive systems, Olaechea
et al. [27] employ trace checking to analyse the quality
of service of all configurations of a DSPL, Göttmann et
al. [28] translate DSPLs into timed automata to analyse the
worst/best execution time of reconfiguration sequences, Ay-
ala et al. [29] analyse DSPLs to predict the impact of recon-

Figure 5. CPN for the 150% net and PCs of the PNPL.

Figure 6. Screenshot of TITAN.

figurations on the system behaviour, and Quinton et al. [30]
detect inconsistencies that may arise upon evolving a DSPL.
Compared to them, our proposal relies on a translation of
Petri nets into CPNs, which enables the analysis of proper-
ties based on model checking and the reachability graph.

Other works translate SPLs into Petri nets for analysis.
For example, Martı́nez et al. [31] translate Orthogonal Vari-
ability Modeling (OVM) models capturing the variability of
an SPL, into Petri nets which are analysed to uncover vari-
ants that do not appear in any SPL configuration. Their goal
(analysing OVM models) is different from ours (analysing
Petri net families), and the analysed properties also differ.

Closer to our approach, some works extend Petri nets
with variability and variability-aware analysis techniques.
Feature nets (FNs) [32] add variability to nets by attach-
ing PCs to either transitions or arcs (but not to both at the
same time as we do). The analysis of FNs is lifted to a vari-
able reachability graph extended with PCs; instead we reuse
proven standard analysis tools for CPNs out-of-the box. Dy-
namic FNs (DFNs) [32] extend FNs by enabling the firing
of transitions to update the feature selection; instead, we use

a feature model to decouple the net structure from its vari-
ability. Adaptive Petri nets [33] use modules to represent
the variability of Petri nets. When selecting a configuration,
the net is flattened by merging all the modules into a stan-
dard Petri net with inhibitor arcs. In our case, we capture the
variability with a feature model, and the features are repre-
sented in the resulting CPN and can change at run-time.

Finally, Petri nets have been used to implement dynamic
reconfigurations in different domains. Weyers [34] uses ref-
erence Petri nets (a kind of CPN) to model adaptive graphi-
cal user interfaces. Grobelna [35] represents reconfigurable
modules of FPGAs as Petri nets, and model checks the satis-
faction of the system requirements. Zhang [36] uses object-
oriented CPNs with changeable structures to model recon-
figurable manufacturing systems. We believe that our work
could serve to define and provide analysis capabilities to
these and other reconfigurable Petri net-based approaches.

6 Conclusions and Further Work
In this paper, we have presented a mapping from PNPLs

into CPNs. The mapping enables the run-time adaptation of
the net, and allows using the tooling and analysis methods
available for CPNs. We have demonstrated the feasibility
of the approach by an implementation atop the TITAN tool,
which is able to target CPN Tools.

In the future, we plan to translate the analysis results
from CPN Tools back into TITAN. We will also enrich PN-
PLs with time, to profit from the timing analysis capabilities
of CPN Tools. Finally, we would also like to work on ani-
mating the token-game, lifting it to the PNPL level.

Acknowledgement
Work funded by the Spanish Ministry of Science

(RTI2018-095255-B-I00) and the R&D programme of
Madrid (P2018/TCS-4314).

References

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] M. L. Rosa, W. M. P. van der Aalst, M. Dumas, and F. Milani, “Busi-
ness process variability modeling: A survey,” ACM Comput. Surv.,
vol. 50, no. 1, pp. 2:1–2:45, 2017.

[3] S. Garcı́a, D. Strüber, D. Brugali, A. D. Fava, P. Schillinger, P. Pellic-
cione, and T. Berger, “Variability modeling of service robots: Expe-
riences and challenges,” in Proc. VaMoS. ACM, 2019, pp. 8:1–8:6.

[4] Z. Nabi and T. Aized, “Modeling and analysis of carousel-based
mixed-model flexible manufacturing system using colored Petri net,”
Adv. in Mech. Eng., vol. 11, no. 12, pp. 1–14, 2019.

[5] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net
controllers for reconfigurable manufacturing systems with an im-
proved net rewriting system-based approach,” IEEE Trans Autom.
Sci. Eng., vol. 6, no. 1, pp. 156–167, 2009.

[6] E. Gómez-Martı́nez, J. de Lara, and E. Guerra, “Extensible structural
analysis of Petri net product lines,” Trans. Petri Nets Other Model.
Concurr., vol. XV, no. 12530, pp. 1–23, 2021.

[7] D. Perez-Palacin, J. Merseguer, and R. Mirandola, “Analysis
of bursty workload-aware self-adaptive systems,” in Proc. ICPE.
ACM, 2012, pp. 75–84.

[8] R. Seiger, S. Huber, and T. Schlegel, “Toward an execution system
for self-healing workflows in cyber-physical systems,” Softw. Syst.
Model., vol. 17, no. 2, pp. 551–572, 2018.

[9] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods
and Practical Use, ser. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1992.

[10] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets and
CPN tools for modelling and validation of concurrent systems,” Int.
J. Softw. Tools Technol. Transf., vol. 9, no. 3–4, pp. 213–254, 2007,
see also https://cpntools.org/.

[11] L. Northrop and P. Clements, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[12] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering. Foundations, Principles and Techniques. Springer-
Verlag Berlin Heidelberg, 2005.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-90-TR-021, 1990.

[14] R. Milner, R. Harper, D. MacQueen, and M. Tofte, The Definition of
Standard ML, revised edition ed. MIT press, 1997.

[15] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Information
Systems, vol. 35, no. 6, pp. 615–636, 2010.

[16] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model
checking,” in Handbook of Model Checking. Springer, 2018, pp.
1–26.

[17] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Pro-
fessional, 2009.

[18] Sirius, https://www.eclipse.org/sirius/.

[19] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich,
and G. Saake, Mastering software variability with FeatureIDE.
Springer, 2017.

[20] D. L. Berre and A. Parrain, “The Sat4j library, release 2.2,” JSAT,
vol. 7, no. 2-3, pp. 59–6, 2010.

[21] K. Kuchcinski and R. Szymanek, “JaCoP - Java Constraint Program-
ming solver,” in CP Solvers: Modeling, Applications, Integration,
and Standardization, 2013.

[22] E. G. Amparore, “Reengineering the editor of the greatspn frame-
work,” in Proc. PNSE@Petri Nets, ser. CEUR Workshop Proceed-
ings, vol. 1372. CEUR-WS.org, 2015, pp. 153–170.

[23] A. Zimmermann, “Modelling and performance evaluation with
timenet 4.4,” in QEST, ser. LNCS, vol. 10503. Springer, 2017, pp.
300–303.

[24] T. Freytag and M. Sänger, “WoPeD - An Educational Tool for Work-
flow Nets,” in BPM (Demos), ser. CEUR Workshop Proceedings, vol.
1295. CEUR-WS.org, 2014, p. 31.

[25] S. O. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[26] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Using
constraint programming to manage configurations in self-adaptive
systems,” Computer, vol. 45, no. 10, pp. 56–63, 2012.

[27] R. Olaechea, J. M. Atlee, A. Legay, and U. Fahrenberg,
“Trace checking for dynamic software product lines,” in Proc.
SEAMS@ICSE. ACM, 2018, pp. 69–75.

[28] H. Göttmann, L. Luthmann, M. Lochau, and A. Schürr, “Real-time-
aware reconfiguration decisions for dynamic software product lines,”
in Proc. SPLC. ACM, 2020, pp. 13:1–13:11.

[29] I. Ayala, A. V. Papadopoulos, M. Amor, and L. Fuentes, “ProDSPL:
Proactive self-adaptation based on dynamic software product lines,”
J. Syst. Softw., vol. 175, p. 110909, 2021.

[30] C. Quinton, M. Vierhauser, R. Rabiser, L. Baresi, P. Grünbacher, and
C. Schuhmayer, “Evolution in dynamic software product lines,” J.
Softw. Evol. Process., vol. 33, no. 2, 2021.

[31] C. Martı́nez, H. P. Leone, and S. M. Gonnet, “A petri net approach for
representing orthogonal variability models,” International Journal of
Computers & Technology, vol. 9, no. 1, pp. 995–1003, 2013.

[32] R. Muschevici, J. Proença, and D. Clarke, “Feature nets: Behavioural
modelling of software product lines,” Softw. Syst. Model., vol. 15,
no. 4, pp. 1181–1206, 2016.

[33] C. Mai, R. Schöne, J. Mey, T. Kühn, and U. Assmann, “Adaptive
Petri nets: A Petri net extension for reconfigurable structures,” in
Proc. ADAPTIVE. Springer, 2018, pp. 15–23.

[34] B. Weyers, “Formal description of adaptable interactive systems
based on reconfigurable user interface models,” in The Handbook
of Formal Methods in Human-Computer Interaction. Springer In-
ternational Publishing, 2017, pp. 273–294.

[35] I. Grobelna, “Model checking of reconfigurable FPGA modules
specified by petri nets,” J. Syst. Archit., vol. 89, pp. 1–9, 2018.

[36] L. L. Zhang and A. Ittoo, “Development of an rms model based
on colored object-oriented petri nets with changeable structures,” in
Proc. IEEM. IEEE, 2009, pp. 1719–1724.

