
Incorporating Presuppositions of Competency Questions into Test-Driven
Development of Ontologies

Jedrzej Potoniec1,2, Dawid Wisniewski1 Agnieszka Ławrynowicz1,2

1 Faculty of Computing and Telecommunications, Poznan University of Technology, Poland
2 CAMIL Center for Artificial Intelligence and Machine Learning, Poznan University of Technology, Poland

E-mail: {jpotoniec,dwisniewski,alawrynowicz}@cs.put.poznan.pl

Abstract

Ontology authoring is a complicated and error-prone pro-
cess since the knowledge being modelled is expressed using
logic-based formalisms, in which logical consequences of the
knowledge have to be foreseen. Many approaches intended
to make this task easier, use competency questions (CQs), be-
ing questions expressed in natural language to trace both the
correctness and completeness of the ontology at a given time.
However, CQs hold so-called presuppositions that have to
be satisfied by the ontology to obtain meaningful answers
from CQs. Moreover, CQs have to be expressed using a
formal language, like ontology query language (SPARQL-
OWL), to query the ontology. In this paper, we propose an
extension of test-driven ontology development approach by
formalization of presupposition satisfaction tests in terms
of SPARQL-OWL queries, as well as providing translations
of CQs into SPARQL-OWL queries if presupposition tests
are passed. We provide a detailed description of the pro-
posed framework and how to incorporate such tests in the
workflow of test-driven development of ontologies. It is the
first framework available for formalization of SPARQL-OWL
queries out of CQs with their presupposition tests.

1. Introduction

Competency Questions (CQs) are questions expressed in
natural language, which aim to define the scope of an ontol-
ogy as part of the ontology requirements specification [14].
They are, subsequently, formalized using a relevant language,
such as SPARQL [6], to automatically validate whether the
ontology meets the requirements [7, 4, 2].

Ontologies can be expressed in vastly varying modeling
styles, using varying modeling patterns [9], and varying
features of an ontology modeling language such as the Web
Ontology Language (OWL) [11]. Consider the following
CQ: What software has an open source licence?. If one

models different applications as different individuals, one
can easily construct a suitable query in SPARQL [6] to list
all instances of the class Software. However, if one models
different applications as different classes, one must query
for subclasses of the class Software instead.

The particular formalizations to express the tests have
also varied, depending on factors such as features of the
modeled domain, and included axioms and axiom sets [2],
SPARQL-OWL [7, 16] or even methods based on instance
assertions mimicking mock-objects [7].

In this paper, we consider formalising CQs using
SPARQL-OWL [8], a variant of SPARQL with an OWL
2 DL entailment regime, that enables to handle the formal se-
mantics of ontologies expressed in OWL 2 and assumptions
underlying reasoning in OWL. Specifically, OWL makes an
assumption, different from the Closed World Assumption
made in databases: the Open World Assumption states that if
a fact cannot be proved, it does not necessarily mean that it is
false. Firstly, SPARQL-OWL will allow us to use features of
the OWL and OWL reasoning. Secondly, it will also allow
us to express queries with answers different than true/false,
e.g., SELECT queries expressing list questions.

CQs not only encode explicit intents of their creators, but
also implicit assumptions, so-called presuppositions [13, 4].
The notion of presuppositions comes from linguistic prag-
matics, where a presupposition of a statement is a proposition
whose truth is a precondition to assess whether the sentence
is true or false. If the presupposition does not hold, then the
sentence cannot be assessed either as true or false. Consid-
ering a question sentence, a presupposition has to be true in
order for the question to have an answer. For example, the
question What software has an open source licence?
presupposes that software can have a licence, and if not, then
the question cannot be answered.

In this paper, we provide a methodology for formalizing
CQs into their corresponding formalized queries and asso-
ciated presupposition queries as testing artefacts with the
interpretation of their results. We consider the following sce-

DOI reference number: 10.18293/SEKE2021-165

nario: 1) Domain expert states CQs 2) Ontology engineer(s)
create(s) the ontology 3) During ontology development, CQs
are translated into SPARQL-OWL queries, so queries and
answers can be obtained and verified after vocabulary is mod-
elled. The scenario is analogous to software engineering,
where one states unit tests before the software exists, and
then, during development, these tests measure the quality
of the software and may help to decide when the authoring
process is complete.

We aim to address the following research questions: RQ1:
What does it mean that a CQ is answerable? RQ2: What
does it mean for CQ-driven ontology authoring that a presup-
position is satisfied or not when it comes to testing? RQ3:
How to handle presuppositions in the workflow of test-driven
development of ontologies?

Our contributions are as follows: (a) a formalization of
presuppositions using SPARQL-OWL ASK queries, (b) a
model for testing list questions that considers presupposition
tests with their interpretation, (c) incorporating presupposi-
tion tests into the workflow of test-driven ontology engineer-
ing, (d) a dataset of SPARQL-OWL queries enhanced with
their presupposition queries.

The remainder of the paper is structured as follows.
Sect. 2 describes related work. Sect. 3 introduces the formal-
ization of presuppositions as SPARQL-OWL ASK queries, a
model of testing, and describes the incorporation of presup-
positions into the test-driven ontology engineering workflow.
We conclude in Sect. 4.

2. Related Work

2.1. Analysis of CQs

Ren et al. [13] analysed CQs and determined patterns
in the form of CQ archetypes (e.g., “Which [CE1] [OPE]
[CE2]?”) containing placeholders for presupposed ontology
elements. Bezerra et al. [1] also proposed CQ patterns with
placeholders for ontology elements, e.g. “Does <class>+
<property><class>?”, functioning as Controlled Natural
Language.

Wiśniewski et al. [16] and Potoniec et al. [12] analysed
the natural language text of CQs itself, and a subsequent step
of semantic analysis in order to find patterns. Next, they anal-
ysed the relation between the found CQ patterns and their
respective SPARQL-OWL signatures (abstract representa-
tions of SPARQL-OWL query meaning), which revealed that
one CQ pattern may be realized by more signatures and vice
versa. Wiśniewski et al. [17] proposed a machine learning
based approach to parse CQs with a model trained on over
46,000 automatically generated CQs .

Fernández-Izquierdo et al. [5] collected a corpus of onto-
logical requirements annotated with lexico-syntactic patterns
(named CORAL). The lexico-syntactic patterns have OWL

constructs associated to them. These constructs were ex-
tracted from the ontology design patterns (ODPs) associated
with the given lexico-syntactic pattern.

2.2. Test-driven development of ontologies

There are several tools proposed for test-driven devel-
opment (TDD) for ontologies. Tawny-OWL [15], an ontol-
ogy development framework, provides predicate functions to
query the reasoner, and its answer is true/false. TDDOnto is a
Protégé plugin which avails of the Protégé’s syntax and uses
the reasoner through the OWL API [7]. TDDOnto2, which
extends TDDOnto, rigorously proves the correctness of the
testing algorithms of TDDOnto, Tawny-OWL, or SCONE [3].
It generalises the algorithms of Keet and Ławrynowicz [7] to
cover any OWL 2 class expression in the axiom under test.

When it comes to testing results, all the mentioned tools
except TDDOnto2 give only limited information about the
result of any test, being pass/fail in Tawny-OWL and SCONE.
More precisely, only “axiom entailed” by the ontology is a
pass and all the others statues are test failures. TDDOnto
also reports missing vocabulary. TDDOnto2 specifies failure
statuses more precisely, being either “inconsistent”, “inco-
herent”, or “absent”.

All TDDOnto2 tests are expressed using axioms which
can be tested in terms of their truth values availing of a rea-
soner, with a purpose of checking whether the knowledge
encoded directly via the axiom is already covered in the on-
tology (is entailed). However, when it comes to CQs, which
are questions associated often with ’gold standard’ answers,
they are more naturally expressed as queries, such as list
queries (i.e., queries with a result being a list of objects).
Therefore, in this paper, we explore such direction.

Another aspect of the mentioned tools is that they do not
consider presuppositions. Indeed, binary questions (such
as on the truth value of an axiom) do not have presupposi-
tions [13] since they simply ask whether there is an answer
satisfying the constraint. In this paper, contrary to the men-
tioned works, we consider presuppositions as we deal with
SPARQL-OWL SELECT queries.

3. Incorporating presuppositions into TDD for
ontologies

3.1. Presuppositions in CQs

Linguistic research on pragmatics reveals that a list ques-
tion, starting with WH-words like what, which etc. always
makes a presupposition that some object(s) fulfil the predi-
cate of the question [10]. A presupposition can be generated
by replacing the WH-word with the corresponding indefi-
nite pronoun, e.g., Who left the door open? presupposes
Someone left the door open [10]. It is possible to deny

the presupposition, e.g., No-one left the door open [10].
From this we infer that a CQ always assumes, either ex-

plicitly or implicitly, some domain for its answer. Moreover
some elements of the domain must be capable of fulfilling
the predicate (a positive presupposition), yet the elements
of the domain not necessarily fulfil the predicate (a negative
presupposition).

3.2. Model of testing with presuppositions

Let us denote by O an OWL 2 ontology [11], and by
C,D a named class or a class expression. Denote by Q a
formalization of a CQ in the form of a SPARQL-OWL query,
and a positive presupposition query by PQ+, and a negative
presupposition query by PQ−. Below, we formalize presup-
position tests availing of SPARQL-OWL queries plus the
interpretation of their results.

A presupposition query PQ is a SPARQL-OWL
ASK query with only the following basic graph pattern
(BGP) in the WHERE clause: C rdfs:subClassOf
owl:Nothing. Note, that we use such formulation since
there is no direct syntax for satisfiability checking.
Definition 3.1 (Presupposition test). Let Ψ(PQ) de-
note the solution sequence, as defined by [6], of the
presupposition query PQ under the OWL 2 DL en-
tailment regime over the ontology O. If O |=
Crdfs:subClassOfowl:Nothing, then Ψ(PQ) 6=
∅ and the answer to PQ is true, denoted µ(PQ) = true,
meaning the presupposition is not satisfied. Otherwise,
Ψ(PQ) = ∅ and the answer to PQ is false, denoted
µ(PQ) = false, meaning the presupposition is satisfied.

Furthermore, we define the model of testing for SPARQL-
OWL SELECT queries Q as for those queries that have pre-
suppositions. SPARQL-OWL ASK queries Q as correspond-
ing to binary questions do not have presuppositions [13]
since they simply ask whether there is an answer satisfying
the constraint.

Let us now introduce the model of testing. We start from
a CQ, for instance Which pizzas contain chocolate?. This
induces a positive (informal) presupposition There may
exist pizzas with chocolate, and a negative presupposition
There may exist pizzas without chocolate. Both the CQ,
and associated presuppositions are formalized as SPARQL-
OWL queries.

Any list question (formalized as SPARQL-OWL query)
can be considered as restricting a certain class expression C
with another class expression D, i.e., a question about C and
D. Then positive presupposition means that there are some
objects that are both C andD, and if negative presupposition
is satisfied, it means that there are objects that are C but
not D. Non-fulfillment of a positive presupposition means
that the ontology determines the answer: the intersection
of C and D is necessarily an empty set; failure to meet

CQ

FRUmali]ed CQV

SelecW WeVWV

SWRS

SaVV (Whe knRZledge iV
alUead\ SUeVenW)

miVVing YRcabXlaU\

YRcabXlaU\ SUeVenW

Add YRcabXlaU\

USdaWe RnWRlRg\ ZiWh
 a[iRm(V)

TUanVlaWe
naWXUal langXage CQ WR

SPARQL-OWL

fail

RXn WeVWV
(RnWRlRg\ inccRnViVWenW RU

incRheUenW?)

RXn WeVWV

fail

SaVV (enWailed) RefacWRU RnWRlRg\
 and UegUeVViRn

WeVWing

SWRS

VRcabXlaU\
SUeVenW

PRViWiYe
SUeVXSSRViWiRn

VaWiVfied

NegaWiYe
SUeVXSSRViWiRn

VaWiVfied

SWRS

anVZeU deWeUmined

SWRS
anVZeU deWeUmined

Figure 1. Incorporating presupposition tests into the work-
flow of TDD for ontologies. Grey boxes represent the steps
associated with our contribution, while white boxes repre-
sent the steps in the (simplified) preexisting methodology

negative presupposition means that the ontology determines
the answer: the intersection of C and D is equivalent to C.
If answers to all presuppositions of Q are false, then we can
ask the query Q and interpret the obtained result.

Definition 3.2 (Model for testing (SELECT query)). Given
a consistent and coherent ontology O, a SPARQL-OWL
query Q asking about the intersection of the class ex-
pressions Ci and Di, and its positive presuppositions
PQ+

i (there are objects being both Ci and Di), and a
corresponding negative presuppositions PQ−

i (there are
objects being Ci, but not Di), (i=1...n), then the result of
testing Q, PQ+

i , and PQ−
i against O is:

testO(Q) =

µ(Q) = C if ∃i µ(PQ+

i) = true (i.e, unsat.)

µ(Q) = ∅ if ∃i µ(PQ−
i) = true (i.e., unsat.)

compute the answer toQ if ∀i µ(PQi) = false

3.3. Presuppositions in TDD workflow

Test-driven approach to ontology authoring has been
shown to be theoretically and technologically a worthy solu-

tion and the recommended TDD ontology authoring work-
flow has been proposed [2]. Here, we extend the workflow
with new additions to incorporate checking question answer-
ability, presuppositions and list questions. The extended
workflow is depicted in Fig. 1. Grey boxes represent the
steps of the extended TDD workflow, which we incorpo-
rate and focus on in this paper. In particular, to determine
query answerability, we not only need to check whether there
is an answer to a query consistent with our intention, but
whether the query can be constructed at all, including check-
ing whether there is relevant vocabulary. Then, positive and
negative presupposition tests serve to further check whether
constructing a list query is meaningful.

Only after these steps, one can construct a SPARQL-OWL
query out of a natural language CQ.

3.4. Dataset

In https://tinyurl.com/3v4rfp6f we provide
a dataset constisting of SPARQL-OWL CQ query templates
and their corresponding SPARQL-OWL query templates for
presuppositions. The dataset is an extension of a preexisting
dataset of SPARQL-OWL formalization of CQs [12, 16]. In
the templates any IRIs referring to any concrete ontology
are replaced by placeholders denoted by angle brackets and
the same placeholder in the CQ query template and in the
presuppositions templates should be replaced by the same
value during materialization.

4. Discussion & conclusions

Answering RQ1, the notion of answerability of a CQ has
two levels. It may seem that it is sufficient for the necessary
vocabulary to be present in the ontology. While this always
yields some query, and thus some answers, it fails to con-
sider the reason for the answers, which may go against the
intent of the CQ. One must thus consider the presuppositions
inherent to the CQ and test them beforehand. Only when the
presuppositions are satisfied the answer to the query follows
the intent of the CQ.We thus claim that a CQ is (meaning-
fully) answerable if the necessary vocabulary is present and
all the presuppositions are satisfied.

Addressing RQ2, we introduced in Sect. 3.2 the notion of
a presupposition query. We formalized the way of handling
such a query in order to create a presupposition test and
offered guidelines to extract presuppositions from a CQ
formalized as a SPARQL-OWL query.

Regarding RQ3, we extended the workflow of TDD for
ontologies to incorporate presuppositions. In Sect. 3.3 we
explained that an unsatisfied presupposition denotes that an
answer for the CQ is predefined in a way that is incompatible
with the intent of the query.

Being able to automatically provide correct SPARQL-
OWL query recommendations and their presupposition tests
as formalizations of ontology competency questions for a
given ontology is a promising idea which can lead to reduc-
tion of time required to author the ontology. Using an already
existing dataset of CQs and their translations to SPARQL-
OWL helped us to get the first insight into the problem. We
hope that our model for extending TDD for ontologies with
presupposition tests, together with a new dataset, will incent
further research into more commonsense-aware knowledge
engineering.

References

[1] C. Bezerra et al. CQChecker: A tool to check ontologies in
OWL-DL using competency questions written in controlled
natural language. L&NLM, vol. 12:pp. 115–129, 01 2014.

[2] K. Davies et al. More effective ontology authoring with
test-driven development and the TDDonto2 tool. IJAIT, vol.
28(7):pp. 1950023:1–1950023:25, 2019.

[3] R. Denaux, D. Thakker, V. Dimitrova, and A. G. Cohn. Inter-
active semantic feedback for intuitive ontology authoring. In
Proc. of FOIS’12, pages 160–173. IOS Press, 2012.

[4] M. Dennis et al. Computing authoring tests from competency
questions: Experimental validation. In Proc. of ISWC, pages
243–259, 2017.

[5] A. Fernández-Izquierdo et al. CORAL: A corpus of ontologi-
cal requirements annotated with lexico-syntactic patterns. In
Proc. of ESWC, LNCS, pages 443–458. Springer, 2019.

[6] S. Harris and A. Seaborne. SPARQL 1.1 query language.
W3C recommendation, W3C, Mar. 2013.

[7] C. M. Keet and A. Lawrynowicz. Test-driven development
of ontologies. In ESWC, pages 642–657. Springer, 2016.

[8] I. Kollia et al. SPARQL query answering over OWL ontolo-
gies. In Proc. of ESWC, Part I, pages 382–396, 2011.

[9] A. Lawrynowicz et al. Discovery of emerging design patterns
in ontologies using tree mining. Semantic Web, vol. 9(4):pp.
517–544, 2018.

[10] J. Lyons. Semantics, vol. 2. Cambridge Univ. Press, 1977.
[11] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web

ontology language structural specification and functional-
style syntax (second edition). Technical report, W3C, 2012.

[12] J. Potoniec et al. Dataset of ontology competency questions
to sparql-owl queries translations. Data in Brief, 29, 2020.

[13] Y. Ren et al. Towards competency question-driven ontology
authoring. In ESWC, pages 752–767. Springer, 2014.

[14] M. C. Suárez-Figueroa and A. Gómez-Pérez. Ontology re-
quirements specification. In Ontology Engineering in a Net-
worked World, pages 93–106. Springer, 2012.

[15] J. D. Warrender and P. Lord. How, what and why to test an
ontology. CoRR, abs/1505.04112, 2015.

[16] D. Wisniewski et al. Analysis of ontology competency ques-
tions and their formalizations in SPARQL-OWL. JWS, 59,
2019.

[17] D. Wisniewski and A. Ławrynowicz. A tagger for glossary
of terms extraction from ontology competency questions. In
ESWC, Satellite Events, pages 181–185. Springer, 2019.

