
Plagiarism Detection of Multi-threaded Programs
using Frequent Behavioral Pattern Mining

Qing Wang1,2, Zhenzhou Tian1,2∗, Cong Gao1,2, Lingwei Chen3
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, China

2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, China
3College of Information Sciences and Technology, Pennsylvania State University, PA, USA

*Corresponding: tianzhenzhou@xupt.edu.cn

Abstract—Software dynamic birthmark techniques construct
birthmarks using the captured execution traces from running the
programs, which serve as one of the most promising methods for
obfuscation-resilient software plagiarism detection. However, due
to the perturbation caused by non-deterministic thread schedul-
ing in multi-threaded programs, such dynamic approaches opti-
mized for sequential programs may suffer from the randomness
in multi-threaded program plagiarism detection. In this paper,
we propose a new dynamic thread-aware birthmark FPBirth
to facilitate multi-threaded program plagiarism detection. We
first explore dynamic monitoring to capture multiple execution
traces with respect to system calls for each multi-threaded
program under a specified input, and then leverage Apriori
algorithm to mine frequent patterns to formulate our dynamic
birthmark, which can not only depict the program’s behavioral
semantics, but also resist the changes and perturbations over
execution traces caused by the thread scheduling in multi-
threaded programs. Using FPBirth, we design a multi-threaded
program plagiarism detection system. The experimental results
based on a public software plagiarism sample set demonstrate
that the developed system integrating our proposed birthmark
FPBirth cope better with multi-threaded plagiarism detection
than alternative approaches.

Index Terms—Software plagiarism, Dynamic birthmark,
Multi-threaded program, Frequent pattern

I. INTRODUCTION

As modern social coding platforms, such as GitHub and
CodeShare, have been emerging as one of the most vibrant
and important information sources to software programming
ecosystem, the incentive for the developers to copy or abuse
the ready-to-use codes from others to expedite their own
software developments increases as well. For example, as
revealed in 2018, Redcore, a Chinese startup’s “self-made”
web browser, was found to plagiarize substantial code from
Google Chrome. Due to the openness of Android, application
(app) plagiarism has become even more prevalent through
repackaging [2] such that about 13% of apps hosted in third-
party marketplaces are repackaged [19], which poses serious
threats to the healthy development of software industry.

In order to detect the evolving software plagiarism, dif-
ferent birthmarking techniques [10], [7], [12], [15], [4] have
been developed. In these methods, software birthmark, which
is a set of features, is first extracted from a program to
uniquely identify the programs, and then birthmark similarities

DOI reference number: 10.18293/SEKE2020-135.

are measured to determine the potential plagiarism between
the programs. Compared to the static birthmark analysis on
programs’ lexical, grammatical or structural characteristics,
dynamic birthmarking techniques [12], [15], [4] construct
birthmarks using the captured execution traces from running
the programs, which can depict the behaviors and semantics
of the programs more accurately and thus enjoy better anti-
obfuscation ability. However, due to the perturbation caused
by non-deterministic thread scheduling in multi-threaded pro-
grams, existing dynamic approaches optimized for sequential
programs may suffer from the randomness in plagiarism
analysis for multi-threaded programs [13]. For instance, given
an input, birthmarks extracted from multiple runs of the same
multi-threaded program can be very different; in the extreme
cases, such constructed birthmarks may even fail to detect pla-
giarism between a multi-threaded program and itself [11]. Two
dynamic birthmarking methods (i.e., thread-related system call
birthmark (TreSB) [11] and thread-oblivious birthmark (TOB)
[13]) have been proposed, yet they still suffer from either weak
universality or limitation of overall behavior understanding in
multiple threads.

To address the aforementioned challenge, we run a number
of multi-threaded programs, and analyze their behaviors, from
which we observe that the same input may generally enforce
the same program function execution, while not all parts of
the program get involved in thread interleaving, so that its
multiple execution traces under the same input may be similar,
but not identical. This calls for a sophisticated method to
characterize the behavioral patterns from multiple execution
traces. Inspired by the success of motif recognition in DNA se-
quence analysis where difference-tolerant motifs are extracted
to identify common patterns of DNA sequence variations.
In this paper, we would like to shift such a paradigm that
generalizes motif formulation to abstract the behaviors of the
multi-threaded programs through their execution traces. More
specifically, we first explore dynamic monitoring to capture
multiple execution traces for each multi-threaded program
under the same input, and then elaborate Apriori to extract
significant frequent patterns over execution traces, based on
which, we construct a thread-aware birthmark, called FPBirth,
to model the behavior of the multi-threaded program and
reduce the impact of interleaving threads. The contributions
of this paper are summarized as follows:



Execution

Traces

Candidate 

set 

generation

FPBirth

Frequent 

pattern 

mining 

Frequent 

pattern 

reduce

Figure 1: Basic flow of FPBirth extraction.

• A new and dynamic behavioral representation learning
method for multi-threaded programs is proposed over their
multiple execution traces through candidate set generation
and frequent pattern mining. This allows a refined repre-
sentation to preserve semantics of execution traces while
tolerating differences among them as well.

• Based on extracted frequent patterns, a new thread-aware
birthmark FPBirth is constructed, which is leveraged to de-
sign a multi-threaded program plagiarism detection system.

• Comprehensive experimental studies on a public software
plagiarism sample set are conducted to demonstrate that
FPBirth is a reliable thread-aware birthmark, and plagiarism
detection system over it can achieve the state-of-the-art
results, which also outperforms TreSB and TOB.

II. PROBLEM STATEMENT

In this section, we first define the software plagiarism
detection problem. Given two multi-threaded programs p and
q, an input I and a thread schedule s to p and q, a thread-
aware dynamic software birthmark can be defined as a set
of characteristics f (p, I, s) extracted from program p when
executing p with the input I and schedule s if and only if
both of the following conditions are satisfied [14]:
- f (p, I, s) is obtained only from p itself when executing p

with input I and thread schedule s.
- Program q is a copy of p⇒ f (p, I, s) = f (q, I, s).

Obviously, this is an abstract guideline without considering
any implementation feasibility. In practice, even if there is a
plagiarism correlation between two programs, the constructed
birthmarks may not be exactly the same. Therefore, instead of
enforcing exact birthmark matching, we measure the similarity
between the original program p’s birthmark and the suspect
program q’s birthmark sim(f (p, I, s) , f (q, I, s)) to determine
the plagiarism. The higher the similarity, the more possible the
suspect program q copies code from the original program p.
We further set up a threshold ε to obtain the final results:

sim(pf , qf ) =


≥ 1− ε q is a copy of p
< ε q is not a copy of p
Otherwise Inconclusive

(1)

III. PROPOSED METHOD

In this section,we present the detailed method of how we
construct thread-aware birthmarks for multi-threaded programs
over their execution traces, which is illustrated in Figure 1.

A. Candidate Set Generation

The thread interleaving in multi-threaded programs leads
to changes in the program execution traces. To capture
such unique behaviors so that the constructed birthmarks are

Execution

Traces
Pre-

Processor
Candidate 

set

Slice 

merging

Gram-

based Slice

Figure 2: Basic process of pattern candidate set generation.

difference-tolerant to the changes among execution traces, we
take as input multiple execution traces from a multi-threaded
program under the same input, and extract frequent behavioral
patterns over execution traces to formulate birthmark. To
improve the effectiveness of frequent pattern mining, pattern
candidate set is first generated through pre-processor, gram-
based slice, and slice merging, which is displayed in Figure 2.

1) Pre-Processor: The pre-processor is to prune the cap-
tured execution traces, consisting of system calls related to
program and thread operations, where each record in the
system call sequence is specified as system call number, name,
and return value. However, the raw execution traces are not
applicable for direct FPBirth extraction. First, those system
calls that fail cannot correctly reflect the program’s behaviors
[5], which should be considered noises to be filtered out using
their return values. Second, those system calls that are invoked
randomly may perturb the execution traces, which should be
also removed. For example, futex, providing a way to keep
the thread blocked until certain conditions are met, can be
only called when the expected blocking time is long enough;
another kind of system calls that are responsible for memory
management, such as mmap and brk, may be invoked only
when a particular chunk of memory is involved.

2) Gram-based Slice: Due to its simplicity and scalability,
k-gram model [8] in natural language processing is then used
to slice up the pre-processed execution traces to form different
subsequences of k continuous system calls. Given a pre-
processed execution trace s = (e1, e2, · · · , en), a series of
subsequences split by k-gram can be defined as grams(s, k) =
{gi|gi = (ei, ei+1, · · · , ei+k)} (1 ≤ i ≤ n − k + 1). In this
respect, execution traces can be transformed into a set of short
sequences to facilitate fast pattern mining while not signif-
icantly compromising their important semantic information,
which thus greatly ensures the integrity of trace contents.

3) Slice Merging: To generate the candidate set for frequent
pattern mining, we further merge all the short sequences
sliced by k-gram over multiply execution traces of each multi-
threaded program under the same input. In other words, one
multi-threaded program with one input will specify one pattern
candidate set. As such, given a multi-threaded program p
and an input I , a pattern candidate set can be defined as
CanSetIp =

⋃m
i=1 grams(si, k) where si is p’s ith execution

trace under input I and m is the number of execution traces.

B. Frequent Pattern Mining

Frequent pattern mining is an important research topic in
data mining [3], which searches for recurring relationships in
a given data set with frequency not less than minimum support
threshold, and thus leads to discovery of associations among
itemsets. Therefore, based on the generated candidate sets, we



explore a frequent pattern mining method Apriori [1] to dig out
the most representative behavioral patterns to birthmark each
multi-thread program, which not only preserve semantics of
execution traces, but also have strong ability to resist variations
caused by thread interleaving.

The key of Apriori is the apriori knowledge that all non-
empty subsets of a frequent itemset must also be frequent.
Therefore, Apriori algorithm follows the iterative steps that
frequent t-itemsets (i.e., itemsets that contain t items and have
frequency not less than minimum support σ) are generated
by joining frequent (t− 1)-itemsets with itself until no new
frequent itemsets are identified. In this way, given a candidate
set CanSetIp, the generated frequent pattern set over it can be
defined as FreSetIp = {fi|count(fi) ≥ σ, 1 ≤ i ≤ l)} where
fi is ith frequent pattern in CanSetIp, and l is the number of
frequent patterns in FreSetIp.

To perform frequent pattern mining, the length of the input
sequences k, which is decided by k-gram slices, must be
appropriately considered: (1) excessive length will lead to an
explosion in the number of iterations and itemset candidates,
and the burden of program running, while (2) the length
being too short may enforce short frequent itemset generation;
since we utilize frequent itemsets as patterns to construct
the birthmark, frequent itemsets being too short will not be
able to depict any specific patterns and thus degrade their
expressiveness and representativeness to execution traces and
the corresponding birthmark’s semantics and accuracy to the
multi-threaded programs. That is to say, given the input
sequences of length k, the length of frequent itemsets t may
directly impact on the validity of the constructed birthmark.
As such, the length of the input sequences k, and the length
range of the frequent itemsets t will be empirically evaluated
in the experiments on the sample data to find the best trade-
off between the effectiveness and efficiency for multi-threaded
program plagiarism detection.

C. Frequent Pattern Reduction

Using frequent pattern mining over CanSetIp, we may gen-
erate the frequent pattern set FreSetIp with a large number of
frequent patterns, where according to the implementation of
Apriori algorithm, the resulting patterns with shorter length
are obviously more than the ones with longer length. On
the one hand, shorter patterns are weaker than longer ones
in representing program-specific semantic behaviors for less
context; on the other hand, shorter patterns themselves may
be embedded in longer patterns, which has a major drawback
to cause the redundancy, and thus mislead the effect of the
constructed birthmark over frequent patterns. Therefore, the
removal of such short frequent patterns is indispensable.

More specifically, we here propose a pattern removing
method before constructing the birthmark, named insignificant
pattern removing, where all the frequent patterns that are
included in others as continuous subsequences are insignifi-
cant and should be removed. For example, given the pattern
“ABCDE”, the following pattern “ABC” becomes insignificant

because it is a complete substring and gives no extra infor-
mation, while the pattern “ADE” will be retained due to its
variation on “ABCDE”.

Finally, the refined frequent pattern set is used to con-
struct the thread-aware dynamic software birthmark for the
program. Note that, for dynamic birthmarks, the number of
pattern occurrences is related to the execution behavior of the
program to some extent; that is, birthmark similarity should be
measured over pattern frequency instead of pattern existence.
To facilitate such a similarity calculation, we further transform
the frequent pattern set into key-value pair set where the keys
represent the frequent patterns and the values refer to their
corresponding frequencies. This key-value pair set acts as the
program’s dynamic birthmark under a specified input, named
FPBirth. Accordingly, given a frequent pattern set FreSetIp,
FPBirth can be defined as FPBirthI

p = {〈fi, sup(fi)〉|fi ∈
FreSetIp} where fi is ith frequent pattern in FreSetIp, and
sup(fi) is the frequency of pattern fi (i.e., support count).

IV. FPBIRTH-BASED SOFTWARE PLAGIARISM DETECTION

Using FPBirth, we can effectively and dynamically birth-
mark a multi-threaded program under a specified input. How-
ever, a FPBirth birthmark merely abstracts part of the seman-
tics and behaviors of the program under a single input, based
on which, the plagiarism detection decision is clearly biased
and not reliable. For instance, two different programs may
adopt the same standard exception handling mechanism, while
any inputs that invoke the exception handling will enforce
the same behavioral patterns for both programs. To address
this issue, we formulate different inputs and perform multiple
executions for each multi-threaded program under each of
these inputs to cover as many functional blocks as possible, so
that we can construct a series of FPBirth birthmarks to thor-
oughly represent the semantics and behaviors of the program.
Given an original program p, a suspect program q, and a set
of inputs {I1, I2, · · · , Id}, we accordingly generate a set of
FPBirth birthmark pairs for p and q, which can be denoted as
{(FPBirthI1

p ,FPBirthI1q ), · · · , (FPBirthIdp ,FPBirthIdq )}. Instead
of evaluating the similarity between a single pair of birth-
marks, we calculate the similarities for all pairs of birthmarks
and take their mean value as the measure of software similarity
between p and q, which can be denoted as follows:

sim (pf , qf ) =

d∑
i=1

sim
(
FPBirthIip ,FPBirthIiq

)/
d (2)

Based on sim (pf , qf ) and Eq. (1), we can obtain the final
plagiarism detection results, where the threshold ε is adjustable
for different sample data set. Note that we aim to outline a gen-
eral paradigm to explore the similarity between p and q, where
the measure models can be instantiated in different ways. In
this paper, we employ cosine similarity for measurement, since
it is commonly used in high-dimensional positive spaces with
the outcome being neatly bounded in [0, 1].



Table I: Benchmark multi-threaded programs

Name Size(kb) Version #Ver Name Size(kb) Version #Ver Name Size(kb) Version #Ver

pigz 294 2.3 21 chromium 80,588 28.0.1500.71 1 SOR 593.3 JavaG1.0 44
lbzip 113.3 2.1 1 dillo 610.9 3.0.2 1 blackschole 12.5 Parsec3.0 2
lrzip 219.2 0.608 1 Dooble 364.4 0.07 1 bodytrack 647.5 Parsec3.0 2

pbzip2 67.4 1.1.6 1 epiphany 810.9 3.4.1 1 fludanimate 46.4 Parsec3.0 2
plzip 51 0.7 1 firefox 59,904 24.0 1 canneal 414.7 Parsec3.0 2
rar 511.8 5.0 1 konqueror 920.1 4.8.5 1 dedup 127.2 Parsec3.0 2

cmus 271.6 2.4.3 1 luakit 153.4 d83cc7e 1 ferret 2,150 Parsec3.0 2
mocp 384 2.5.0 1 midori 347.6 0.4.3 1 freqmine 227.6 Parsec3.0 2

mp3blaster 265.8 3.2.5 1 seaMonkey 760.9 2.21 1 streamcluster 102.7 Parsec3.0 2
mplayer 4,300 r34540 1 Crypt 518.1 JavaG1.0 43 swaption 94 Parsec3.0 2

sox 55.2 14.3.2 1 Series 593.3 JavaG1.0 43 x264 896.3 Parsec3.0 2
arora 1,331 0.11 1 SparseMat 593.3 JavaG1.0 43

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We evaluate the effectiveness of our proposed detection
system over FPBirth on a public software plagiarism sample
set [11], including 234 multi-threaded programs of different
versions, derived from a series of obfuscations (e.g., SandMax,
Zelix, UPX) over 35 benchmark multi-threaded programs,
which are shown in Table I. The parameter settings to im-
plement our model for evaluation are specified as: k = 6 for
k-gram slice, which is also the length of the input sequences
for frequent pattern mining, minimum support σ = 4, the
length of frequent patterns ranging in t ∈ [3, 6]; for each input,
m = 4 for the number of execution traces captured. As for the
baselines, we compare our approach with two multi-threaded
program plagiarism detection methods TreSB and TOB.

B. FPBirth Evaluation

With these settings, we mainly evaluate the resilience and
credibility of the thread-aware birthmark FPBirth [12], which
can be described as follows [7]:
• Resilience. Let p be a program and q be a copy of p gener-

ated by applying semantics-preserving code transformations
τ . A birthmark is resilient to τ if sim (pf , qf ) ≥ 1− ε.

• Credibility. Let p and q be independently developed pro-
grams. A birthmark is credible if it can differentiate the
two programs, that is sim (pf , qf ) < ε.

In other words, resilience reflects the ability of birthmark to be
resistant to all kinds of semantic-retention code obfuscations,
while credibility characterizes the ability of birthmark to
distinguish independently developed software.

1) Resilience Evaluation: In this experiment, the bench-
mark program is taken as the original program while the
obfuscated program is taken as the suspect program so that
a series of original-suspect comparison pairs are formulated
to evaluate the resilience of FPBirth. The experimental results
with respect to the similarity distribution under three different
obfuscations (H1, H2 and H3) are illustrated in Figure 3(a),
where H1 uses different compilers and optimizations (e.g.,
llvm, gcc, o0 - oS) for weak obfuscation, H2 applies pro-
fessional obfuscation tools (e.g., SandMark, Zelix, ProGuard)
for strong obfuscation, and H3 uses UPX for packing. From
the results, we can observe that most of the comparison pairs

(a) Resilience evaluation (b) Credibility evaluation

Figure 3: FPBirth Evaluation.

enforce a similarity higher than 0.9; this indicates that FPBirth
birthmark enjoys an excellent resistance to the obfuscation
strategies involved in this public data set.

2) Credibility Evaluation: In this experiment, the programs
independently developed are selected from the data set to
evaluate the credibility of FPBirth. More specifically, the
selected experiment instances include 6 multi-threaded com-
pression/decompression software, 7 web browsers, and 5 audio
player software. We use FPBirth to birthmark the software
and then calculate the similarity between them. Figure 3(b)
shows the distribution of similarity over similar software and
different software, where S stands for software included in
the same category and D represents software distributed in
different categories. From the results, we can see that the
similarity between software belonging to different categories
is very low, with the mean similarity below 0.1. This indicates
that FPBirth birthmark can effectively distinguish different
kinds of software. Due to their remarkable consistency in
functions, the similarity between software in the same category
is slightly higher, but most of them still fall into a very
low similarity range. There are few comparison pairs with
a similarity between 0.2 and 0.3 as their designs adopt the
same algorithm or both rely on some functional modules.
For example, the average similarity between browser Dooble
and Epiphany is 0.28, since both browsers use WebKit layout
engines. Overall, FPBirth performs well in differentiating
independently developed software.

C. Comparisons with Traditional Birthmark Techniques

1) Comparative Analysis on Detection Effect: In this sec-
tion, we compare FPBirth with TreSB [11] and TOB [13],
two traditional thread-aware birthmark techniques, and SCSSB
[16], a dynamic birthmark technique also based on system



(a) URC (b) F-measure (c) MCC (d) Pattern length

Figure 4: Comparative analysis on detection performance and pattern length.

calls. To quantitatively validate the effectiveness of different
methods, we use URC (union of resilience and credibility) [17],
F-Measure, MCC (matthews correlation coefficient) [6], and
AUC (area under the curve) as the performance measures.
(i) URC. URC is an indicator designed for comprehensively
measuring the birthmarks in terms of resilience and credibility:

URC = 2× R× C
R+ C

(3)

where R represents the ratio of plagiarism pairs correctly
classified to all comparison pairs with plagiarism, and C
represents the ratio of independently developed pairs correctly
classified to all comparison pairs with independence (i.e.,
without plagiarism). The value of URC is between 0 and
1, and the higher the URC, the better the performance of
the birthmark. According to the criteria given in Eq. (1), the
plagiarism detection result is decided by the threshold ε. We
set the effective value range of the threshold as 0-0.5, that is,
1−ε ≥ ε. Figure 4(a) shows the comparison between FPBirth
and other birthmark techniques under different thresholds. As
the blue line shows, FPBirth performs better than the other
three birthmarking methods.
(ii) F-Measure and MCC. F-Measure and MCC are com-
monly used in the field of information retrieval and data
mining. In this regard, the “uncertain” part of the criteria
given in Eq (1) is removed here, and plagiarism detection is
described as a binary classification problem:

sim(pf , qf ) =

{
≥ ε q is a copy of p
< ε q is not a copy of p

(4)

For F-Measure measurement, the harmonic average of preci-
sion and recall is used here, which is described as:

F-Measure =
2× Precision×Recall
Precision+Recall

(5)

MCC is an evaluation metric considering true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN), and can be used to make a reasonable assessment of test
effectiveness in the case of unbalanced positive and negative
samples, which is denoted as:

MCC =

TP × TN − FP × FN√
(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

(6)

Figure 4(b) and Figure 4(c) respectively show the comparison
results between FPBirth and other birthmark techniques under

different thresholds, where FPBirth outperforms TreSB, TOB,
and SCSSB in most measurements.

(iii) AUC. With the help of AUC, we can further perform
the quantitative analysis of the technical performance of each
birthmark with respect to URC, F-Measure, and MCC. Table II
summarizes the specific AUC values of different measure
metrics for each birthmark technique. It can be observed that
all three AUC values of FPBirth are higher than those of tra-
ditional birthmark methods, which indicates that FPBirth can
cope better with multi-threaded program plagiarism detection.

Table II: Comparison of birthmark techniques over AUC

SCSSB TOBSA TOBSS TreSB FPBirth

URC 0.394 0.404 0.402 0.431 0.443
F-Measure 0.916 0.933 0.925 0.952 0.954
MCC 0.820 0.839 0.834 0.875 0.885

2) Comparative Analysis on Time Cost: FPBirth and other
three birthmark based detections mainly include trace capture,
birthmark generation, and similarity calculation. Considering
that the experiments are conducted on the same set of execu-
tion traces, in this section, we focus on comparing the time
cost of FPBirth with others in terms of birthmark generation
(Phase II) and similarity calculation (Phase III). Table III gives
the average time cost of each birthmark. From the results,
we can observe that the average time of FPBirth to generate
birthmark is higher than other methods. The reason behind
this is that other methods use k-gram directly to construct
birthmarks, while FPBirth takes extra time to mine the frequent
patterns that improves the birthmark’s thread-aware ability.
Since FPBirth constructs more representative frequent patterns,
it takes a little more time (9.9 ms on average) for similarity
calculation as well, which is still less than TOBSS using
maximum weighted dichotomy matching. Though it is more
time-consuming, FPBirth is still significant for multi-threaded
program plagiarism detection for its better detection effective-
ness. Our follow-up plan is to optimize the frequent pattern
mining process to improve FPBirth’s construction efficiency.

Table III: Comparison of of birthmarks over time cost (ms)

SCSSB TOBSA TOBSS TreSB FPBirth

Phase II 103 103 103 102 1556
Phase III 0.1 0.1 20 0.02 9.9



D. Evaluation on Pattern Length

As described in Section III-B, the length of frequent patterns
directly affects the validity of the constructed birthmark.
Therefore, this section specifically analyzes the impact of
pattern length on the detection performance. Figure 4(d)
displays the AUC values of URC, F-Measure and MCC for
plagiarism detection using FPBirth with respect to different
pattern lengths. We can see that F-Measure slightly increases
as the length increases, while URC and MCC suffer from a
drop at length 3, but keep going up afterwards and reach to the
best at length 5. Considering all three detection metrics, length
6 gives the best balance. This is the reason why we choose
k = 6 for k-gram slice and the length of the input sequences
for frequent pattern mining. In addition, given the length of the
input sequences, frequent patterns after mining and reduction
may still enjoy different pattern lengths ranging from 1 to 6.
As discussed, patterns being too short may exist in different
programs as common behaviors, which may not be able to
differentiate a program from others and should be removed.
From our experimental results, pattern lengths ranging from
3 to 6 provide the best detection performance, which is what
we’ve set up for our experiments.

VI. RELATED WORK

The existing software plagiarism detection work mainly falls
into two categories: static birthmark and dynamic birthmark.
For static birthmark, Xie et al. [17] introduced the weighted
short sequence birthmark, DroidMoss [19] took hash value
of bytecode fragments as birthmark, and ViewDroid [18]
presented a functional view graph birthmark; For dynamic
bithmark, Wang et al. [16] designed SCSSB (System Call
Short Sequence Birthmark) and IDSCSB, and SUPB [9]
constructed call sequence diagram of the program. These
traditional dynamic birthmarks cannot well address the un-
certainty caused by multi-threaded programs. Tian et al. [14]
introduced the concept of thread-aware birthmark for the first
time. Accordingly, two dynamic birthmarking methods TreSB
[11] and TOB [13] were proposed to detect multi-threaded
program plagiarism. Differently, our proposed FPBirth takes
the frequent patterns from execution traces of multi-threaded
programs as birthmark, which preserves the behavioral seman-
tics and also improves the difference-tolerant ability.

VII. CONCLUSION

This paper proposes a new dynamic thread-aware birthmark
FPBirth to detect the multi-threaded program plagiarism. More
specifically, we first explore dynamic monitoring to capture
multiple execution traces with respect to system calls for
each multi-threaded program under a specified input, and
then leverage Apriori algorithm to mine frequent patterns to
formulate our dynamic birthmark, which can not only depict
the program’s behavioral semantics, but also resist the changes
and perturbations over execution traces caused by the thread
scheduling in multi-threaded programs. Using FPBirth, we
design a multi-threaded program plagiarism detection system.
The experimental results based on a public software plagiarism

sample set demonstrate that the developed system integrating
our proposed birthmark FPBirth outperforms alternative ap-
proaches in multi-threaded plagiarism detection.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China (61702414), the
Natural Science Basic Research Program of Shaanxi
(2018JQ6078, 2020GY-010), the Science and Technology of
Xi’an (2019218114GXRC017CG018-GXYD17.16), the Inter-
national Science and Technology Cooperation Program of
Shaanxi (2018KW-049, 2019KW-008), and the Key Research
and Development Program of Shaanxi (2019ZDLGY07-08).

REFERENCES

[1] R. Agrawal, R. Srikant et al., “Mining sequential patterns”, in icde,
vol. 95, 1995, pp. 3–14.

[2] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets”, in
ICSE, 2014.

[3] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions”, DMKD, vol. 15, no. 1, pp. 55–86, 2007.

[4] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
characterization using runtime values and its application to software
plagiarism detection”, IEEE TSE, vol. 41, no. 9, pp. 925–943, 2015.

[5] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection”, in FSE, 2014, pp. 389–400.

[6] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme”, BBA-Protein Structure, 1975.

[7] G. Myles and C. Collberg, “Detecting software theft via whole program
path birthmarks”, in ISC, 2004, pp. 404–415.

[8] G. Mylos and C. Collberg, “K-gram based software birthmarks”, in ACM
symposium on Applied computing, 2005, pp. 314–318.

[9] J. Park, D. Son, D. Kang, J. Choi, and G. Jeon, “Software similarity
analysis based on dynamic stack usage patterns”, in RACS, 2015, pp.
285–290.

[10] H. Tamada, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Design
and evaluation of birthmarks for detecting theft of java programs”, in
IASTED Conf. on Software Engineering, 2004, pp. 569–574.

[11] Z. Tian, T. Liu, Q. Zheng, M. Fan, E. Zhuang, and Z. Yang, “Exploiting
thread-related system calls for plagiarism detection of multithreaded
programs”, JSS, vol. 119, pp. 136–148, 2016.

[12] Z. Tian, T. Liu, Q. Zheng, F. Tong, D. Wu, S. Zhu, and K. Chen,
“Software plagiarism detection: a survey”, Journal of Cyber Security,
vol. 1, no. 3, pp. 52–76, 2016.

[13] Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang, “Reviving
sequential program birthmarking for multithreaded software plagiarism
detection”, IEEE TSE, vol. 44, no. 5, pp. 491–511, 2017.

[14] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang, “Plagiarism
detection for multithreaded software based on thread-aware software
birthmarks”, in ICPC, 2014, pp. 304–313.

[15] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, “Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences”, IEEE Transactions on Software Engineering, vol. 41, no. 12,
pp. 1217–1235, 2015.

[16] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting software theft
via system call based birthmarks”, in 2009 Annual Computer Security
Applications Conference. IEEE, 2009, pp. 149–158.

[17] X. Xie, F. Liu, B. Lu, and L. Chen, “A software birthmark based on
weighted k-gram”, in 2010 IEEE International Conference on Intelligent
Computing and Intelligent Systems, vol. 1. IEEE, 2010, pp. 400–405.

[18] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: To-
wards obfuscation-resilient mobile application repackaging detection”,
in Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks. ACM, 2014, pp. 25–36.

[19] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces”, in Proceedings
of the second ACM conference on Data and Application Security and
Privacy. ACM, 2012, pp. 317–326.


