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Abstract—In recent years, the amount of Web services has 

increased dramatically, and service discovery aiming to help users 

identify appropriate services matching their requirements thus 

becomes increasingly important. Many studies based on machine 

learning techniques have been reported to improve the 

performance of service discovery. A major obstacle in Web service 

discovery is the data sparsity in service descriptions. Towards this 

issue, in this paper, we propose a novel approach based on 

enriched neural topic model (NTM) and attentional Bi-LSTM. To 

alleviate the data sparsity issue, we enrich the semantics of each 

word in service descriptions and queries using external knowledge 

sources like Wikipedia and combine NTM and the attention 

mechanism to minimize the noise brought in the enrichment 

process. Experiments conducted on a real-world dataset show that 

our approach outperforms several state-of-the-art methods. 

Keywords-Web service; service discovery; attention mechanism; 

neural topic model; Bi-directional LSTM 

I.  INTRODUCTION 

Service-oriented architecture (SOA) facilitates a new 
paradigm for system development and integration, where system 
functionalities are encapsulated as loosely coupled and 
interoperable services. A growing number of Web services or 
cloud services have thus been created and published to meet the 
interoperability and flexibility requirements of modern software 
development in the cloud. The proliferation of Web services 
offers convenience for developers; however, it also brings 
difficulties in quickly selecting appropriate candidate services 
from large scale service registries. 

In existing service registries, Web services are usually 
described in WSDL (Web Service Description Language) or 
simple natural language texts. Since keyword matching adopted 
in most service search engines may suffer from retrieving 
irrelevant services or missing relevant ones, many efforts have 
been made to address the service matching problem [1-5]. These 
approaches could be approximately classified into two types. 
The first group of approaches annotates services and queries 
using domain ontologies and leverage ontology reasoning for 
service matching. However, building such problem-specific 
ontologies and annotating services is time-consuming and 
sometimes impractical. The other group of approaches using 
machine learning or deep learning techniques for service 
matching. For example, topic models like Latent Dirichlet 
Allocation (LDA) [8] are introduced to obtain the topic 

distribution vectors of services and queries and calculate their 
similarities. Topic models are also combined with word 
embeddings [11] to alleviate the sparsity of semantic 
information by leveraging the advantages of embedding models 
in transforming words from discrete representations into high 
dimensional continuous vector space. Furthermore, many 
sequential models like LSTM [9] are also adopted as encoders 
of input texts. 

These machine learning or deep learning techniques have 
made remarkable progress in many NLP (natural language 
processing) tasks [3, 4, 17]. However, there are still many 
obstacles to leveraging them in service discovery. On the one 
hand, the words in service descriptions and queries are limited 
and extremely sparse, which makes the complex models hard to 
extract effective feature vectors from input texts. On the other 
hand, the useful words extracted from service descriptions 
represented in service description languages like WSDL can 
hardly form a natural sentence and are lack of context 
information, which are necessary for the model training of these 
sequential models. To address this issue, we propose a novel 
deep learning-based service matching model. In our model, we 
enrich the semantics of each word in service descriptions and 
queries using external knowledge sources (e.g., Wikipedia). 
Because the enrichment process will inevitably bring noise, we 
leverage a neural topic model to extract topic distributions from 
enriched service descriptions and employ the attention 
mechanism in weighing the various words in texts according to 
their topic distributions. The contributions of this paper are 
summarized as follows:  

• We propose a novel service discovery approach by 
combining Bi-LSTM and the neural topic model.  

• We present a semantics enrichment technique to 
generate better topic distributions for service 
descriptions.  

The rest of the paper is organized as follows. Section Ⅱ 
discusses related work. Section Ⅲ introduces the details of our 
approach, and Section Ⅳ shows the results of experiments. 
Finally, Section Ⅴ concludes the paper and puts forward our 
future work. 

II. RELATED WORK 

As a fundamental topic in services computing, Web service 
discovery or matching has been extensively investigated in the 
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past decade. Web service discovery aims to identify appropriate 
services according to user requirements, which could be 
functional or nonfunctional. In this paper, we focus our attention 
on matching functional requirements. Existing studies on service 
discovery can be approximately categorized into two types:  
ontology-based approaches, and machine learning or deep 
learning-based approaches. 

To overcome the limitation of keyword matching based on 
the structure of WSDL documents, many ontology-based 
matching techniques have been proposed. SAWSDL-MX [22] 
and OWLS-MX [1] are the representatives of this type. These 
approaches firstly annotate services and queries using domain 
ontologies and then leverage ontology-based semantical 
reasoning for service matching, which can obtain ideal discovery 
performance based on ontological reasoning. However, the 
major obstacle is the absence of appropriate ontologies for the 
matching tasks since general-purpose ontologies will not work, 
and it is time-consuming and sometimes impractical to construct 
such problem-specific ontologies and annotate services and 
queries using the ontologies. 

With the prevalence of machine learning techniques, some 
researchers leverage machine learning algorithms in service 
discovery. At first, many clustering techniques are employed to 
group similar Web services in advance. For example, Liu et al. 
[3] and Elgazzar et al. [4] extracted functionality-related 
elements, including content, type, message, port, and service 
name from WSDL documents, which are regarded as the input 
of subsequent clustering and matching processes. Zhang et al. 
clustered service goals to improve discovery results [2, 5]. 
Recently, deep learning has become a mainstream tool for NLP 
tasks, and there are also some attempts to employ techniques 
such as word embedding in service discovery. For example, Tian 
et al. [7] combined word embedding and LDA to improve the 
performance of service discovery. Xiong et al. [17] leveraged the 
strategy in service recommendation to generate textual features 
from service descriptions. 

To produce better feature vectors of service descriptions and 
queries, attention mechanisms, together with LSTM, are also 
widely adopted. For example, Cao et al. [15] applied attention 
mechanisms and LSTM in Web service classification. Shi et al. 
[16] leveraged attention-based LSTM in service 
recommendation. In their work, service descriptions are 
enriched internally to address the semantic sparsity. Besides, 
Yang et al. [14] proposed a service classification approach by 
combining CNN with LSTM. 

Inspired by the studies that attempt to enrich service 
descriptions and queries [6], in this paper, we introduce 
explanations for each word according to its description on 
Wikipedia into service descriptions and queries as the external 
knowledge and enrich the descriptions to alleviate the data 
sparsity problem. What’s more, in our model, a neural topic 
model based on VAE (variational auto-encoder) [20] is 
employed to extract topics, and an attention-based Bi-LSTM is 
used as the encoder of service descriptions, which can help 
obtain more accurate vector representations. 

III. PROBLEM DEFINITION AND SOLUTION 

In this section, we first state the problem to be studied. In 
Section III.B, an overview of our approach is presented. In the 
rest parts, we introduce modules of the proposed model in detail. 
In Table I, we list the symbols frequently used in this section and 
their corresponding meanings. 

TABLE I.  SYMBOLS USED IN THIS PAPER 

A. Problem Definition 

Suppose there are some candidate services in a registry. 
Given a user query, the problem to be addressed in this paper is 
how to properly match and rank services in the registry 
according to the user query. During this process, descriptions of 
services and queries (represented in WSDL or natural language 
texts) are the only information we can leverage. More formally, 
let 𝑂𝑞 denote the feature vector of a query 𝑞 and given a service 

description 𝑠𝑖 (consisting of 𝐿 words) in 𝑆, the feature vector 𝑂𝑖 
of 𝑠𝑖 can be extracted. The matching score between 𝑠𝑖 and 𝑞 is 
𝑟�̂� =𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑖 , 𝑂𝑞) . Consequently, the matching scores of all 

services are 𝑅�̂� = {𝑟1̂, 𝑟2̂, … , 𝑟�̂�} , and our proposed approach 
aims to return a list of services 𝑆𝑘 with 𝑘 highest scores. 

B. Overview of Our Approach 

Towards this problem, we proposed a Web service discovery 
approach based on attentional Bi-LSTM and enriched NTM 
(neural topic model), named as AENTM. As shown in Fig. 1, 
our model consists of three parts: 

1) Neural Topic Model 
Each description of a service or a query is represented as a 

bag-of-word vector 𝑋𝐵𝑜𝑊, and then the topic distribution 𝜃𝑠 is 
generated from 𝑋𝐵𝑜𝑊 by a multi-layer perceptron. Besides, the 
module needs to reconstruct 𝑋𝐵𝑜𝑊 from 𝜃𝑠. 

2) Attention-based Bi-LSTM Encoder 

A description of a service or a query, 𝑠𝑖, is converted into an 
embedding matrix, and then fed into Bi-LSTM. The output is the 
hidden state matrix 𝐻𝑠 , which contains the context feature of 
each word in 𝑠𝑖.  

 

Symbol Meaning 

𝑆 A set of descriptions of services and queries 

𝑠𝑖 A description of a service or a query 

𝑋𝐵𝑜𝑊 The bag-of-words vector of 𝑠 

𝐸𝑠 The embedding matrix of 𝑠 

𝐻𝑠 The output hidden state matrix of 𝑠 in LSTM 

𝐴𝑠 The weight vector of 𝑠  

𝑂𝑠 The feature vector of 𝑠 

𝜃𝑠 The topic distribution of 𝑋𝐵𝑜𝑤 

𝐿 The number of words in 𝑠 

𝑑𝑖𝑚 The dimension of word embeddings 

𝑉 The size of the vocabulary in 𝑆 

𝐾 The topic number in a topic model 

𝑘 The number of top-ranked services in  𝑅�̂� 

ℎ The hidden size of LSTM 

𝑟�̂� The matching score of 𝑠𝑖 with a query 

𝑅�̂� A list of matching scores of candidate services 



Figure 1.  The overall framework of the proposed model. 

An attention mechanism takes 𝐻𝑠 along with 𝜃𝑠 as input, and 
produces a weight vector 𝐴𝑠 for 𝑠𝑖 . Consequently, the feature 
vector 𝑂𝑠 is produced by the multiplication of 𝐴𝑠 and 𝑂𝑠.  

3) Similarity Calculation: 
This module calculates the cosine similarity between feature 

vectors of service descriptions and queries, and the results are 
viewed as matching scores between them. 

C. Enriched Neural Topic Model  

NTM [20] is firstly proposed in a short text classification 
model to address data sparsity. According to the successful 
application of the neural variational inference mechanism in 
topic modeling [18, 19, 21], topic distributions generated by the 
neural topic model is analogous to Bayesian non-parametric 
topic models. Inspired by [20], the neural topic model in our 
approach is based on a variational automatic encoder trained on 
the overall corpus composed by descriptions of services and 
queries. Assume that the description of 𝑠𝑖  consists of words 
{𝑤1, 𝑤2, … , 𝑤𝐿}, it is represented as a bag-of-word vector 𝑋𝐵𝑜𝑊 
before being fed into the neural topic model. In the neural topic 
model, the topic vector extracted by the model is represented as 
𝜃 ∈ ℝ𝐾. Note that in this paper, we only describe the structure 
and the data flow. More details can be found in [19, 20]. 

The first layer of NTM extracts hidden vector 𝜋, from which 
the input of reparameterization is generated. Then, the latent 
vector 𝑧 is the result of a reparameterization with parameter pair 
(𝜇, 𝜎). Both 𝜇 and 𝜎 are generated from 𝜋 through a multi-layer 
perceptron. To normalize 𝑧, a softmax function is applied to 
generate topic vector 𝜃 ∈ ℝ𝐾. Given the vector 𝜃, the following 
parts of the topic model are supposed to reconstruct the input 
vector 𝑋𝐵𝑜𝑊, which will be employed as a decoder. 

The calculation process of the neural topic model is 
described as follows.  

𝜋 = 𝑟𝑒𝑙𝑢(𝑾𝜋 ⋅ 𝑋𝐵𝑜𝑊 + 𝑏𝜋),                  (1) 

𝜇 = 𝑟𝑒𝑙𝑢(𝑾𝜇 ⋅ 𝜋 + 𝑏𝜇),                         (2) 

𝑙𝑜𝑔𝝈 = 𝑟𝑒𝑙𝑢(𝑾𝜎 ⋅ 𝜋 + 𝑏𝜎),                         (3) 

𝐷𝑟𝑎𝑤 𝒛~𝓝(𝜇, 𝜎2),                                      (4) 

𝜃 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑟𝑒𝑙𝑢(𝑾𝜽 ⋅ 𝒛 + 𝑏𝜃)),           (5) 

�̂�𝐵𝑜𝑊 = 𝑟𝑒𝑙𝑢(𝑾𝝓 ⋅ 𝜃 + 𝑏𝜙),                         (6) 

where 𝑾∗  and 𝒃∗  are parameters to be learned, 𝑟𝑒𝑙𝑢  is an 
activation function, and softmax is the normalized function for 
outputting topic distributions.  

Due to the requirements of backward propagation, it is 
important to adjust Equation (4) such that gradients of 
parameters in the model are able to propagate. The 
reparameterization can be described as: 

𝑢 = 𝐷𝑟𝑎𝑤 𝑢~𝓝(0,1),                             (7) 

𝑧 = 𝑢 ∗ 𝜎 + 𝜇.                                            (8) 

Equations (9) and (10) reveal the transformation from input 
to a latent topic distribution, which is regarded as an encoder in 
VAE. In addition, a decoder is employed to infer the output in 
the form of bag-of-words from 𝜃. In our model, a multilayer 
perceptron is treated as a decoder, and according to basic VAE, 
the loss function is defined as: 

ℒ = 𝐷𝐾𝐿(𝑞(𝑧)||𝑝(𝑧|𝑥)) − 𝔼𝑞(𝑧)[𝑝(𝑥|𝑧)],           (9) 

where 𝑝(𝑧|𝑥) represents the distribution of 𝑧 with the input 𝑥, 
𝑞(𝑧)  is the standard normal distribution, and 𝑝(𝑥|𝑧)  is the 
probability distribution output by the decoder when taking 𝑧 as 
input.  

As mentioned in the previous section, the descriptions of 
services and queries are extremely sparse. To alleviate the issue, 
we introduce explanations from Wikipedia for each word in the 
description. In other words, for each word 𝑤𝑖 in a description, 
our approach will search its corresponding explanation page in 
Wikipedia and extract the first paragraph explaining 𝑤𝑖 . Note 
that there are a few words that have no corresponding 
explanation pages, and we ignore these cases and do not enrich 
them. 

The enrichment operation can thus bring auxiliary 
information to the NTM module, which aims to improve the 
quality of topic distribution as well as the attention module 
further.  

 



D. Attention-based Bi-LSTM 

LSTM is widely applied in extracting features from texts. 
Our model leverages a bi-directional LSTM (Bi-LSTM) to 
capture information in the context of each word in the input 
sequence. Furthermore, an attention mechanism is adopted to 
weigh each word in the input sequence. More specifically, with 
the latent topics induced by the NTM described previously and 
the output of Bi-LSTM, the attention module produces a weight 
vector in the output of Bi-LSTM. Finally, the weight vector 𝐴𝑠 
and the hidden states 𝐻𝑠  are multiplied to obtain the feature 
vector of the service description or query 𝑠𝑖 . 

 

Figure 2.  Attention-based Bi-LSTM Module 

As shown in Fig 2, firstly, given a sequence of words 𝑠𝑖 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝐿}, we take the embedding of each word as the 
input of Bi-LSTM. The output of Bi-LSTM is the hidden state 
of each word. Next, hidden states of Bi-LSTM are concatenated 
with topic distribution 𝜃𝑠 , and then processed into an 
unnormalized weighted vector 𝑎𝑠 ∈ ℝ𝐿×1.  

𝐸𝑠 = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠𝑖),                                   (12) 

(𝐻𝑠
 ⃖   , 𝐻𝑠

     ) = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐸𝑠),                                (13) 

𝐻𝑠 = [𝐻𝑠
 ⃖   , 𝐻𝑠

     ],                                                (14) 

𝑎𝑠 = 𝑾𝒂 ⋅ 𝑡𝑎𝑛ℎ(𝑾𝜽 ⋅ 𝜃𝑠 + 𝑾𝒉 ⋅ ℎ𝑖),        (15) 

𝐴𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑠),                                (16) 

𝑂𝑠 = 𝐴𝑠
𝑇 ⋅ 𝐻𝑠,                                                  (17) 

where 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 denotes the operation that maps words to 
vectors using a pre-trained embedding model, and 𝐻𝑠  is the 
result of the concatenation of two direction hidden states of Bi-

LSTM (𝐻𝑠
 ⃖   , 𝐻𝑠

     ). 𝐴𝑠 in Equation (16) is the normalized 𝑎𝑠 . As 

the result of Equation (17), 𝑂𝑠 ∈ ℝ𝐿×2ℎ  represents the feature 
vector of 𝑠𝑖, which is fed into the similarity module subsequently. 

Note that the encoder part of queries and services share the 
same attention-based Bi-LSTM module. 

E. Similarity Calculation Module 

The similarity calculation module produces matching scores 
from the input feature vectors of services and queries. Since the 

corpus or words of queries and services can be processed 
together, services and queries share the same NTM as well as the 
same attention-based Bi-LSTM. We adopt the widely-used 
cosine similarity to calculate their matching scores: 

�̂� = 𝑅 ⋅ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑠, 𝑂𝑞),                        (18) 

where 𝑂𝑠 and 𝑂𝑞 denote the feature vectors of a service and a 

query, respectively. In particular, the result of the cosine 
function belongs to the interval [−1,1]. Nevertheless, in some 
circumstances, different levels that measure the similarity 
between the query and the service may exist. Here, 𝑅  is a 
coefficient that scales the output of the cosine function to match 
different situations. 

IV. EXPERIMENTS 

In this section, we evaluate our approach and explore the 
factors that influence the performance of our model on a public 
Web service dataset.  

A. Experimental settings 

1) Dataset Description: SAWSDL-TC1 is a WSDL 

collection for the service retrieval test, which consists of 1080 

Web services and 42 queries represented in WSDL documents. 

These services belong to nine domains. A set of graded 

relevance (ranging from 1 to 3) for each query is provided, 

where 3 represents the highest relevance and 1 represents the 

least relevance. We utilized several preprocessing steps, 

including spelling correction, tokenization, stopword removal, 

and lemmatization, to extract words from documents. We 

employed the GooleNews2 as the pre-trained embedding. 

Words absent in the dictionary of pre-trained embeddings were 

removed in the descriptions. As mentioned before, we 

leveraged Wikipedia to provide external knowledge for words 

in descriptions.  

2) Evaluation Metrics: We adopted several commonly used 

evaluation metrics, including Precision, Recall, F1, and 

Normalized Discounted Cumulative Gain (NDCG), to evaluate 

the performance of our model. We evaluated the performance 

of top k services in the ranking list, where k ranges from 5 to 30. 

3) Competing Approaches: We compared our proposed 

model with several state-of-the-art approaches. 

• LDA [8]: LDA is a representative topic modeling 
method. We employed LDA to generate topic 
distributions for service descriptions and calculated the 
cosine distances of topic distributions between queries 
and candidate service descriptions. 

• Lucene3: Lucene is a popular and high-performance text 
search method, which is the basis of many search 
engines. In our experiments, service descriptions were 
indexed according to Lucene.  

• Doc2Vec [13]: Doc2Vec is an unsupervised model 
based on Word2vec. We trained a doc2vec model on 
queries and service descriptions, and calculated the 
cosine distance between their feature vectors. 

1 http://projects.semwebcentral.org/projects/sawsdl-tc/ 

2 https://code.google.com/archive/p/word2vec/ 
3 https://www.elastic.co/ 

https://code.google.com/archive/p/word2vec/
https://www.elastic.co/


 

Figure 3.  Performance comparison of different models  

 

Figure 4.  Impact of the topic number 

• WMD [12]: WMD is a widely used method to 
measure the similarity of two documents or sentences 
based on a pre-trained word embedding. We used the 
pre-trained embeddings trained on the GoogleNews. 

• LSTM [9]: To explore the effect of the attention 
mechanism and NTM module, we experimented on a 
Bi-LSTM with the same configuration in our model.  

• CNN+LSTM [14]: CNN is a popular encoder in text-
similarity calculation tasks [10]. In this experiment, 
we encoded texts by two CNNs, and then sent the 
output of the CNN encoder to a Bi-LSTM. 

4) Parameter settings: The coefficient 𝑅 in Equation (18) 

was set to 3 since the highest relevance level is 3. The 

learning rate for the encoder part was set to 0.0003 and 

trained with 30 epochs. The hidden size of Bi-LSTM was 150. 

To ensure the reliability of our experiment, we conducted a 

5-fold validation on the dataset. 

B. Performance comparison 

According to the result presented in Fig. 3, our approach 
outperforms all competing methods across all ranking 
positions, which shows the advantages of our approach in 
addressing the data sparsity issue of Web services. More 
specifically, as a representative IR technique, Lucene suffers 
from a recall problem, and thus the performance decreases 
when k increases. It is indicated that LDA addresses the issue 
and achieves a good result in the precision, recall, and F1, but 
it still suffers from lower NDCG scores. Compared with LDA, 
deep learning approaches such as LSTM and WMD can 
achieve similar performance on F1, while they show better 
results on NDCG. Nevertheless, CNN+LSTM performs even 
worse than LDA, which indicates that the architecture is not 
very suitable for this task. 

C. Impact of the topic number 

We analyze the effects of parameter settings in our 
approach. The topic number of a topic model is a vital 
parameter that affects the performance as well as the quality 
of the topic distribution. In our approach, the topic number is 
still a hyperparameter that needs to be tuned on different 
datasets. Fig. 4 shows the change of performance when the 
topic number changes on the dataset. It is indicated that when 
the topic number is set to 130, our approach can obtain the best 
performance on all four metrics. 

D. Response Time 

Response time is an important consideration in service 
discovery. The response time of all approaches is shown in 
Table Ⅱ. Note that the deep learning methods were performed 
with the help of a GPU (1080Ti), and other approaches were 
calculated on a CPU (Intel Xeon E5-2630). 

TABLE II.  RESPONSE TIME COMPARISON 

Method Response Time (ms) 

LDA 428.74 

LSTM 14.25 

CNN+LSTM 23.36 

AENTM 41.60 

Lucene 2.29 

WMD 4259.66 

Doc2Vec 169.27 

As shown in Table Ⅱ, as a proven high-performance 
information retrieval technique, Lucene is the fastest approach. 
WMD costs the longest response time due to its high time 
complexity. The response time of LSTM, AENTM, and 
CNN+LSTM is relatively low. Although our AENTM model 
is relatively complicated, it does not take a much longer time 
to match services. 



E. Effects of enrichment 

As mentioned before, the services in the dataset belong to 
nine domains. To show the effects of the description 
enrichment, we reduced the topic distributions of descriptions 
(with 110-dimension vectors) generated by NTM to 2-
dimension vectors, and then clustered them into nine clusters, 
as shown in Fig. 5. Moreover, the quality of clustering is 
usually measured by the CH score. We found that after the 
enrichment, the CH score increases from 2638 to 3180. Both 
the CH score and the visualization can demonstrate that after 
the enrichment of service descriptions, topic distributions 
generated by NTM become more distinguishable and cohesive, 
which further suggests that the enrichment can strengthen the 
semantics of descriptions to a certain extent.  

 

Figure 5.  Change of topic clusters before/after the enrichment 

V. CONCLUSIONS 

In this paper, we propose a service discovery model by 
integrating enriched NTM with attention-based Bi-LSTM. An 
enrichment method is also adopted to leverage knowledge on 
Wikipedia to alleviate the lack of sufficient semantics in 
service descriptions. Experiments conducted on an open 
dataset show that our approach outperforms several state-of-
the-art methods on discovery performance. 

In the future, we plan to improve our approach from the 
following aspects. Firstly, the enrichment in our model 
employs the data on Wikipedia directly, which also brings lots 
of noise.  The explanation should be selected precisely, and it 
may be helpful if techniques like attention mechanisms are 
applied. Secondly, in our experiment, the NTM module is hard 
to train due to the VAE part it leveraged, which needs to be 
further investigated. 
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