
Data-sparsity Service Discovery using Enriched

Neural Topic Model and Attentional Bi-LSTM

Li Yao, Bing Li, Jian Wang

School of Computer Science,

Wuhan University,

Wuhan, China

e-mail: jianwang@whu.edu.cn

Abstract—In recent years, the amount of Web services has

increased dramatically, and service discovery aiming to help users

identify appropriate services matching their requirements thus

becomes increasingly important. Many studies based on machine

learning techniques have been reported to improve the

performance of service discovery. A major obstacle in Web service

discovery is the data sparsity in service descriptions. Towards this

issue, in this paper, we propose a novel approach based on

enriched neural topic model (NTM) and attentional Bi-LSTM. To

alleviate the data sparsity issue, we enrich the semantics of each

word in service descriptions and queries using external knowledge

sources like Wikipedia and combine NTM and the attention

mechanism to minimize the noise brought in the enrichment

process. Experiments conducted on a real-world dataset show that

our approach outperforms several state-of-the-art methods.

Keywords-Web service; service discovery; attention mechanism;

neural topic model; Bi-directional LSTM

I. INTRODUCTION

Service-oriented architecture (SOA) facilitates a new
paradigm for system development and integration, where system
functionalities are encapsulated as loosely coupled and
interoperable services. A growing number of Web services or
cloud services have thus been created and published to meet the
interoperability and flexibility requirements of modern software
development in the cloud. The proliferation of Web services
offers convenience for developers; however, it also brings
difficulties in quickly selecting appropriate candidate services
from large scale service registries.

In existing service registries, Web services are usually
described in WSDL (Web Service Description Language) or
simple natural language texts. Since keyword matching adopted
in most service search engines may suffer from retrieving
irrelevant services or missing relevant ones, many efforts have
been made to address the service matching problem [1-5]. These
approaches could be approximately classified into two types.
The first group of approaches annotates services and queries
using domain ontologies and leverage ontology reasoning for
service matching. However, building such problem-specific
ontologies and annotating services is time-consuming and
sometimes impractical. The other group of approaches using
machine learning or deep learning techniques for service
matching. For example, topic models like Latent Dirichlet
Allocation (LDA) [8] are introduced to obtain the topic

distribution vectors of services and queries and calculate their
similarities. Topic models are also combined with word
embeddings [11] to alleviate the sparsity of semantic
information by leveraging the advantages of embedding models
in transforming words from discrete representations into high
dimensional continuous vector space. Furthermore, many
sequential models like LSTM [9] are also adopted as encoders
of input texts.

These machine learning or deep learning techniques have
made remarkable progress in many NLP (natural language
processing) tasks [3, 4, 17]. However, there are still many
obstacles to leveraging them in service discovery. On the one
hand, the words in service descriptions and queries are limited
and extremely sparse, which makes the complex models hard to
extract effective feature vectors from input texts. On the other
hand, the useful words extracted from service descriptions
represented in service description languages like WSDL can
hardly form a natural sentence and are lack of context
information, which are necessary for the model training of these
sequential models. To address this issue, we propose a novel
deep learning-based service matching model. In our model, we
enrich the semantics of each word in service descriptions and
queries using external knowledge sources (e.g., Wikipedia).
Because the enrichment process will inevitably bring noise, we
leverage a neural topic model to extract topic distributions from
enriched service descriptions and employ the attention
mechanism in weighing the various words in texts according to
their topic distributions. The contributions of this paper are
summarized as follows:

• We propose a novel service discovery approach by
combining Bi-LSTM and the neural topic model.

• We present a semantics enrichment technique to
generate better topic distributions for service
descriptions.

The rest of the paper is organized as follows. Section Ⅱ
discusses related work. Section Ⅲ introduces the details of our
approach, and Section Ⅳ shows the results of experiments.
Finally, Section Ⅴ concludes the paper and puts forward our
future work.

II. RELATED WORK

As a fundamental topic in services computing, Web service
discovery or matching has been extensively investigated in the

DOI reference number: 10.18293/SEKE2020-113

past decade. Web service discovery aims to identify appropriate
services according to user requirements, which could be
functional or nonfunctional. In this paper, we focus our attention
on matching functional requirements. Existing studies on service
discovery can be approximately categorized into two types:
ontology-based approaches, and machine learning or deep
learning-based approaches.

To overcome the limitation of keyword matching based on
the structure of WSDL documents, many ontology-based
matching techniques have been proposed. SAWSDL-MX [22]
and OWLS-MX [1] are the representatives of this type. These
approaches firstly annotate services and queries using domain
ontologies and then leverage ontology-based semantical
reasoning for service matching, which can obtain ideal discovery
performance based on ontological reasoning. However, the
major obstacle is the absence of appropriate ontologies for the
matching tasks since general-purpose ontologies will not work,
and it is time-consuming and sometimes impractical to construct
such problem-specific ontologies and annotate services and
queries using the ontologies.

With the prevalence of machine learning techniques, some
researchers leverage machine learning algorithms in service
discovery. At first, many clustering techniques are employed to
group similar Web services in advance. For example, Liu et al.
[3] and Elgazzar et al. [4] extracted functionality-related
elements, including content, type, message, port, and service
name from WSDL documents, which are regarded as the input
of subsequent clustering and matching processes. Zhang et al.
clustered service goals to improve discovery results [2, 5].
Recently, deep learning has become a mainstream tool for NLP
tasks, and there are also some attempts to employ techniques
such as word embedding in service discovery. For example, Tian
et al. [7] combined word embedding and LDA to improve the
performance of service discovery. Xiong et al. [17] leveraged the
strategy in service recommendation to generate textual features
from service descriptions.

To produce better feature vectors of service descriptions and
queries, attention mechanisms, together with LSTM, are also
widely adopted. For example, Cao et al. [15] applied attention
mechanisms and LSTM in Web service classification. Shi et al.
[16] leveraged attention-based LSTM in service
recommendation. In their work, service descriptions are
enriched internally to address the semantic sparsity. Besides,
Yang et al. [14] proposed a service classification approach by
combining CNN with LSTM.

Inspired by the studies that attempt to enrich service
descriptions and queries [6], in this paper, we introduce
explanations for each word according to its description on
Wikipedia into service descriptions and queries as the external
knowledge and enrich the descriptions to alleviate the data
sparsity problem. What’s more, in our model, a neural topic
model based on VAE (variational auto-encoder) [20] is
employed to extract topics, and an attention-based Bi-LSTM is
used as the encoder of service descriptions, which can help
obtain more accurate vector representations.

III. PROBLEM DEFINITION AND SOLUTION

In this section, we first state the problem to be studied. In
Section III.B, an overview of our approach is presented. In the
rest parts, we introduce modules of the proposed model in detail.
In Table I, we list the symbols frequently used in this section and
their corresponding meanings.

TABLE I. SYMBOLS USED IN THIS PAPER

A. Problem Definition

Suppose there are some candidate services in a registry.
Given a user query, the problem to be addressed in this paper is
how to properly match and rank services in the registry
according to the user query. During this process, descriptions of
services and queries (represented in WSDL or natural language
texts) are the only information we can leverage. More formally,
let 𝑂𝑞 denote the feature vector of a query 𝑞 and given a service

description 𝑠𝑖 (consisting of 𝐿 words) in 𝑆, the feature vector 𝑂𝑖
of 𝑠𝑖 can be extracted. The matching score between 𝑠𝑖 and 𝑞 is
𝑟�̂� =𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑖 , 𝑂𝑞) . Consequently, the matching scores of all

services are 𝑅�̂� = {𝑟1̂, 𝑟2̂, … , 𝑟�̂�} , and our proposed approach
aims to return a list of services 𝑆𝑘 with 𝑘 highest scores.

B. Overview of Our Approach

Towards this problem, we proposed a Web service discovery
approach based on attentional Bi-LSTM and enriched NTM
(neural topic model), named as AENTM. As shown in Fig. 1,
our model consists of three parts:

1) Neural Topic Model
Each description of a service or a query is represented as a

bag-of-word vector 𝑋𝐵𝑜𝑊, and then the topic distribution 𝜃𝑠 is
generated from 𝑋𝐵𝑜𝑊 by a multi-layer perceptron. Besides, the
module needs to reconstruct 𝑋𝐵𝑜𝑊 from 𝜃𝑠.

2) Attention-based Bi-LSTM Encoder

A description of a service or a query, 𝑠𝑖, is converted into an
embedding matrix, and then fed into Bi-LSTM. The output is the
hidden state matrix 𝐻𝑠 , which contains the context feature of
each word in 𝑠𝑖.

Symbol Meaning

𝑆 A set of descriptions of services and queries

𝑠𝑖 A description of a service or a query

𝑋𝐵𝑜𝑊 The bag-of-words vector of 𝑠

𝐸𝑠 The embedding matrix of 𝑠

𝐻𝑠 The output hidden state matrix of 𝑠 in LSTM

𝐴𝑠 The weight vector of 𝑠

𝑂𝑠 The feature vector of 𝑠

𝜃𝑠 The topic distribution of 𝑋𝐵𝑜𝑤

𝐿 The number of words in 𝑠

𝑑𝑖𝑚 The dimension of word embeddings

𝑉 The size of the vocabulary in 𝑆

𝐾 The topic number in a topic model

𝑘 The number of top-ranked services in 𝑅�̂�

ℎ The hidden size of LSTM

𝑟�̂� The matching score of 𝑠𝑖 with a query

𝑅�̂� A list of matching scores of candidate services

Figure 1. The overall framework of the proposed model.

An attention mechanism takes 𝐻𝑠 along with 𝜃𝑠 as input, and
produces a weight vector 𝐴𝑠 for 𝑠𝑖 . Consequently, the feature
vector 𝑂𝑠 is produced by the multiplication of 𝐴𝑠 and 𝑂𝑠.

3) Similarity Calculation:
This module calculates the cosine similarity between feature

vectors of service descriptions and queries, and the results are
viewed as matching scores between them.

C. Enriched Neural Topic Model

NTM [20] is firstly proposed in a short text classification
model to address data sparsity. According to the successful
application of the neural variational inference mechanism in
topic modeling [18, 19, 21], topic distributions generated by the
neural topic model is analogous to Bayesian non-parametric
topic models. Inspired by [20], the neural topic model in our
approach is based on a variational automatic encoder trained on
the overall corpus composed by descriptions of services and
queries. Assume that the description of 𝑠𝑖 consists of words
{𝑤1, 𝑤2, … , 𝑤𝐿}, it is represented as a bag-of-word vector 𝑋𝐵𝑜𝑊
before being fed into the neural topic model. In the neural topic
model, the topic vector extracted by the model is represented as
𝜃 ∈ ℝ𝐾. Note that in this paper, we only describe the structure
and the data flow. More details can be found in [19, 20].

The first layer of NTM extracts hidden vector 𝜋, from which
the input of reparameterization is generated. Then, the latent
vector 𝑧 is the result of a reparameterization with parameter pair
(𝜇, 𝜎). Both 𝜇 and 𝜎 are generated from 𝜋 through a multi-layer
perceptron. To normalize 𝑧, a softmax function is applied to
generate topic vector 𝜃 ∈ ℝ𝐾. Given the vector 𝜃, the following
parts of the topic model are supposed to reconstruct the input
vector 𝑋𝐵𝑜𝑊, which will be employed as a decoder.

The calculation process of the neural topic model is
described as follows.

𝜋 = 𝑟𝑒𝑙𝑢(𝑾𝜋 ⋅ 𝑋𝐵𝑜𝑊 + 𝑏𝜋), (1)

𝜇 = 𝑟𝑒𝑙𝑢(𝑾𝜇 ⋅ 𝜋 + 𝑏𝜇), (2)

𝑙𝑜𝑔𝝈 = 𝑟𝑒𝑙𝑢(𝑾𝜎 ⋅ 𝜋 + 𝑏𝜎), (3)

𝐷𝑟𝑎𝑤 𝒛~𝓝(𝜇, 𝜎2), (4)

𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑟𝑒𝑙𝑢(𝑾𝜽 ⋅ 𝒛 + 𝑏𝜃)), (5)

�̂�𝐵𝑜𝑊 = 𝑟𝑒𝑙𝑢(𝑾𝝓 ⋅ 𝜃 + 𝑏𝜙), (6)

where 𝑾∗ and 𝒃∗ are parameters to be learned, 𝑟𝑒𝑙𝑢 is an
activation function, and softmax is the normalized function for
outputting topic distributions.

Due to the requirements of backward propagation, it is
important to adjust Equation (4) such that gradients of
parameters in the model are able to propagate. The
reparameterization can be described as:

𝑢 = 𝐷𝑟𝑎𝑤 𝑢~𝓝(0,1), (7)

𝑧 = 𝑢 ∗ 𝜎 + 𝜇. (8)

Equations (9) and (10) reveal the transformation from input
to a latent topic distribution, which is regarded as an encoder in
VAE. In addition, a decoder is employed to infer the output in
the form of bag-of-words from 𝜃. In our model, a multilayer
perceptron is treated as a decoder, and according to basic VAE,
the loss function is defined as:

ℒ = 𝐷𝐾𝐿(𝑞(𝑧)||𝑝(𝑧|𝑥)) − 𝔼𝑞(𝑧)[𝑝(𝑥|𝑧)], (9)

where 𝑝(𝑧|𝑥) represents the distribution of 𝑧 with the input 𝑥,
𝑞(𝑧) is the standard normal distribution, and 𝑝(𝑥|𝑧) is the
probability distribution output by the decoder when taking 𝑧 as
input.

As mentioned in the previous section, the descriptions of
services and queries are extremely sparse. To alleviate the issue,
we introduce explanations from Wikipedia for each word in the
description. In other words, for each word 𝑤𝑖 in a description,
our approach will search its corresponding explanation page in
Wikipedia and extract the first paragraph explaining 𝑤𝑖 . Note
that there are a few words that have no corresponding
explanation pages, and we ignore these cases and do not enrich
them.

The enrichment operation can thus bring auxiliary
information to the NTM module, which aims to improve the
quality of topic distribution as well as the attention module
further.

D. Attention-based Bi-LSTM

LSTM is widely applied in extracting features from texts.
Our model leverages a bi-directional LSTM (Bi-LSTM) to
capture information in the context of each word in the input
sequence. Furthermore, an attention mechanism is adopted to
weigh each word in the input sequence. More specifically, with
the latent topics induced by the NTM described previously and
the output of Bi-LSTM, the attention module produces a weight
vector in the output of Bi-LSTM. Finally, the weight vector 𝐴𝑠
and the hidden states 𝐻𝑠 are multiplied to obtain the feature
vector of the service description or query 𝑠𝑖 .

Figure 2. Attention-based Bi-LSTM Module

As shown in Fig 2, firstly, given a sequence of words 𝑠𝑖 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝐿}, we take the embedding of each word as the
input of Bi-LSTM. The output of Bi-LSTM is the hidden state
of each word. Next, hidden states of Bi-LSTM are concatenated
with topic distribution 𝜃𝑠 , and then processed into an
unnormalized weighted vector 𝑎𝑠 ∈ ℝ𝐿×1.

𝐸𝑠 = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠𝑖), (12)

(𝐻𝑠
 ⃖ , 𝐻𝑠

) = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐸𝑠), (13)

𝐻𝑠 = [𝐻𝑠
 ⃖ , 𝐻𝑠

], (14)

𝑎𝑠 = 𝑾𝒂 ⋅ 𝑡𝑎𝑛ℎ(𝑾𝜽 ⋅ 𝜃𝑠 + 𝑾𝒉 ⋅ ℎ𝑖), (15)

𝐴𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑠), (16)

𝑂𝑠 = 𝐴𝑠
𝑇 ⋅ 𝐻𝑠, (17)

where 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 denotes the operation that maps words to
vectors using a pre-trained embedding model, and 𝐻𝑠 is the
result of the concatenation of two direction hidden states of Bi-

LSTM (𝐻𝑠
 ⃖ , 𝐻𝑠

). 𝐴𝑠 in Equation (16) is the normalized 𝑎𝑠 . As

the result of Equation (17), 𝑂𝑠 ∈ ℝ𝐿×2ℎ represents the feature
vector of 𝑠𝑖, which is fed into the similarity module subsequently.

Note that the encoder part of queries and services share the
same attention-based Bi-LSTM module.

E. Similarity Calculation Module

The similarity calculation module produces matching scores
from the input feature vectors of services and queries. Since the

corpus or words of queries and services can be processed
together, services and queries share the same NTM as well as the
same attention-based Bi-LSTM. We adopt the widely-used
cosine similarity to calculate their matching scores:

�̂� = 𝑅 ⋅ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑠, 𝑂𝑞), (18)

where 𝑂𝑠 and 𝑂𝑞 denote the feature vectors of a service and a

query, respectively. In particular, the result of the cosine
function belongs to the interval [−1,1]. Nevertheless, in some
circumstances, different levels that measure the similarity
between the query and the service may exist. Here, 𝑅 is a
coefficient that scales the output of the cosine function to match
different situations.

IV. EXPERIMENTS

In this section, we evaluate our approach and explore the
factors that influence the performance of our model on a public
Web service dataset.

A. Experimental settings

1) Dataset Description: SAWSDL-TC1 is a WSDL

collection for the service retrieval test, which consists of 1080

Web services and 42 queries represented in WSDL documents.

These services belong to nine domains. A set of graded

relevance (ranging from 1 to 3) for each query is provided,

where 3 represents the highest relevance and 1 represents the

least relevance. We utilized several preprocessing steps,

including spelling correction, tokenization, stopword removal,

and lemmatization, to extract words from documents. We

employed the GooleNews2 as the pre-trained embedding.

Words absent in the dictionary of pre-trained embeddings were

removed in the descriptions. As mentioned before, we

leveraged Wikipedia to provide external knowledge for words

in descriptions.

2) Evaluation Metrics: We adopted several commonly used

evaluation metrics, including Precision, Recall, F1, and

Normalized Discounted Cumulative Gain (NDCG), to evaluate

the performance of our model. We evaluated the performance

of top k services in the ranking list, where k ranges from 5 to 30.

3) Competing Approaches: We compared our proposed

model with several state-of-the-art approaches.

• LDA [8]: LDA is a representative topic modeling
method. We employed LDA to generate topic
distributions for service descriptions and calculated the
cosine distances of topic distributions between queries
and candidate service descriptions.

• Lucene3: Lucene is a popular and high-performance text
search method, which is the basis of many search
engines. In our experiments, service descriptions were
indexed according to Lucene.

• Doc2Vec [13]: Doc2Vec is an unsupervised model
based on Word2vec. We trained a doc2vec model on
queries and service descriptions, and calculated the
cosine distance between their feature vectors.

1 http://projects.semwebcentral.org/projects/sawsdl-tc/

2 https://code.google.com/archive/p/word2vec/
3 https://www.elastic.co/

https://code.google.com/archive/p/word2vec/
https://www.elastic.co/

Figure 3. Performance comparison of different models

Figure 4. Impact of the topic number

• WMD [12]: WMD is a widely used method to
measure the similarity of two documents or sentences
based on a pre-trained word embedding. We used the
pre-trained embeddings trained on the GoogleNews.

• LSTM [9]: To explore the effect of the attention
mechanism and NTM module, we experimented on a
Bi-LSTM with the same configuration in our model.

• CNN+LSTM [14]: CNN is a popular encoder in text-
similarity calculation tasks [10]. In this experiment,
we encoded texts by two CNNs, and then sent the
output of the CNN encoder to a Bi-LSTM.

4) Parameter settings: The coefficient 𝑅 in Equation (18)

was set to 3 since the highest relevance level is 3. The

learning rate for the encoder part was set to 0.0003 and

trained with 30 epochs. The hidden size of Bi-LSTM was 150.

To ensure the reliability of our experiment, we conducted a

5-fold validation on the dataset.

B. Performance comparison

According to the result presented in Fig. 3, our approach
outperforms all competing methods across all ranking
positions, which shows the advantages of our approach in
addressing the data sparsity issue of Web services. More
specifically, as a representative IR technique, Lucene suffers
from a recall problem, and thus the performance decreases
when k increases. It is indicated that LDA addresses the issue
and achieves a good result in the precision, recall, and F1, but
it still suffers from lower NDCG scores. Compared with LDA,
deep learning approaches such as LSTM and WMD can
achieve similar performance on F1, while they show better
results on NDCG. Nevertheless, CNN+LSTM performs even
worse than LDA, which indicates that the architecture is not
very suitable for this task.

C. Impact of the topic number

We analyze the effects of parameter settings in our
approach. The topic number of a topic model is a vital
parameter that affects the performance as well as the quality
of the topic distribution. In our approach, the topic number is
still a hyperparameter that needs to be tuned on different
datasets. Fig. 4 shows the change of performance when the
topic number changes on the dataset. It is indicated that when
the topic number is set to 130, our approach can obtain the best
performance on all four metrics.

D. Response Time

Response time is an important consideration in service
discovery. The response time of all approaches is shown in
Table Ⅱ. Note that the deep learning methods were performed
with the help of a GPU (1080Ti), and other approaches were
calculated on a CPU (Intel Xeon E5-2630).

TABLE II. RESPONSE TIME COMPARISON

Method Response Time (ms)

LDA 428.74

LSTM 14.25

CNN+LSTM 23.36

AENTM 41.60

Lucene 2.29

WMD 4259.66

Doc2Vec 169.27

As shown in Table Ⅱ, as a proven high-performance
information retrieval technique, Lucene is the fastest approach.
WMD costs the longest response time due to its high time
complexity. The response time of LSTM, AENTM, and
CNN+LSTM is relatively low. Although our AENTM model
is relatively complicated, it does not take a much longer time
to match services.

E. Effects of enrichment

As mentioned before, the services in the dataset belong to
nine domains. To show the effects of the description
enrichment, we reduced the topic distributions of descriptions
(with 110-dimension vectors) generated by NTM to 2-
dimension vectors, and then clustered them into nine clusters,
as shown in Fig. 5. Moreover, the quality of clustering is
usually measured by the CH score. We found that after the
enrichment, the CH score increases from 2638 to 3180. Both
the CH score and the visualization can demonstrate that after
the enrichment of service descriptions, topic distributions
generated by NTM become more distinguishable and cohesive,
which further suggests that the enrichment can strengthen the
semantics of descriptions to a certain extent.

Figure 5. Change of topic clusters before/after the enrichment

V. CONCLUSIONS

In this paper, we propose a service discovery model by
integrating enriched NTM with attention-based Bi-LSTM. An
enrichment method is also adopted to leverage knowledge on
Wikipedia to alleviate the lack of sufficient semantics in
service descriptions. Experiments conducted on an open
dataset show that our approach outperforms several state-of-
the-art methods on discovery performance.

In the future, we plan to improve our approach from the
following aspects. Firstly, the enrichment in our model
employs the data on Wikipedia directly, which also brings lots
of noise. The explanation should be selected precisely, and it
may be helpful if techniques like attention mechanisms are
applied. Secondly, in our experiment, the NTM module is hard
to train due to the VAE part it leveraged, which needs to be
further investigated.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2018YFB1402800), the National Natural
Science Foundation of China (No. 61832014), and the Natural
Science Foundation of Hubei Province of China (Nos.
2017CKB894 and 2018CFB511).

REFERENCES

[1] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with OWLS-MX,” in Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, May
2006, pp. 915-922.

[2] N. Zhang, J. Wang, K. He, and Z. Li, “An approach of service
discovery based on service goal clustering,” in 2016 IEEE International
Conference on Services Computing (SCC), June 2016, pp. 114-121.
IEEE.

[3] W. Liu, and W. Wong, “Web service clustering using text mining
techniques,” IJAOSE, 3(1), 2009, pp. 6-26.

[4] K. Elgazzar, A.E. Hassan, and P. Martin, “Clustering wsdl documents
to bootstrap the discovery of web services,” in 2010 IEEE International
Conference on Web Services, July 2010, pp. 147-154. IEEE.

[5] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X.F. Liu, “Web service
discovery based on goal-oriented query expansion,” Journal of Systems
and Software, 142, 2018, pp. 73-91.

[6] X. Hu, N. Sun, C. Zhang, and T.S. Chua, “Exploiting internal and
external semantics for the clustering of short texts using world
knowledge,” in Proceedings of the 18th ACM conference on
Information and knowledge management, November 2009, pp. 919-
928.

[7] G. Tian, J. Wang, Z. Zhao, and J. Liu, “Gaussian LDA and word
embedding for semantic sparse web service discovery,” in International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, November 2016, pp. 48-59. Springer, Cham.

[8] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, 3(Jan), 2003, pp. 993-1022.

[9] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural
computation, 9(8), 1997, pp. 1735-1780.

[10] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional
Neural Network for Modelling Sentences,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics,
2014, pp. 655-665.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient
estimation of word representations in vector space,” ICLR Workshop,
2013.

[12] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in International conference on
machine learning, 2015, pp. 957-966.

[13] Q. Le, and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188-1196.

[14] Y. Yang, W. Ke, W. Wang, and Y. Zhao, “Deep Learning for Web
Services Classification,” in 2019 IEEE International Conference on
Web Services (ICWS), 2019, pp. 440-442. IEEE.

[15] Y. Cao, J. Liu, B. Cao, M. Shi, Y. Wen, and Z. Peng, “Web services
classification with topical attention based Bi-LSTM,” in International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, 2019, pp. 394-407. Springer, Cham.

[16] M. Shi, and J. Liu, “Functional and contextual attention-based LSTM
for service recommendation in Mashup creation,” IEEE Transactions
on Parallel and Distributed Systems, 30(5), 2018, pp. 1077-1090.

[17] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid collaborative
filtering for web service recommendation,” Expert systems with
Applications, 110, 2018, pp. 191-205.

[18] Z. Cao, S. Li, Y. Liu, W. Li, and H. Ji, “A novel neural topic model
and its supervised extension,” in 29th AAAI Conference on Artificial
Intelligence, IAAI, 2015, pp. 2210-2216.

[19] Y. Miao, E. Grefenstette, and P. Blunsom, “Discovering discrete latent
topics with neural variational inference,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70, 2017, pp.
2410-2419. JMLR. org.

[20] J. Zeng, J. Li, Y. Song, C. Gao, M.R. Lyu, and I. King, “Topic Memory
Networks for Short Text Classification,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018, pp. 3120-3131.

[21] Y. Xiao, T. Zhao, and W.Y. Wang, “Dirichlet variational autoencoder
for text modeling,” arXiv preprint arXiv:1811.00135.

[22] M. Klusch, P. Kapahnke, and I. Zinnikus, “Hybrid adaptive web
service selection with SAWSDL-MX and WSDL-analyzer,” in
European Semantic Web Conference, May 2009, pp. 550-564. Springer.

