
Modeling and Selecting Frameworks in terms of

Patterns, Tactics, and System Qualities

Hind Milhem*, Michael Weiss, Stephane S. Somé*
*School of Electrical Engineering and Computer Science (EECS), Department of Systems and Computer Engineering

*University of Ottawa, Carleton University

Ottawa, Canada
hbani043@uottawa.ca, michael_weiss@carleton.ca, ssome@eecs.uottawa.ca

Abstract—Selecting frameworks and documenting the rationale

for the choice is an essential task for system architects. Different

framework selection approaches have been proposed. However,

none of these connects frameworks to qualities based on their

implemented patterns and tactics. In this paper, we propose a way

to compare automatically the quality attributes of frameworks by

extracting the patterns and tactics from a framework’s source

code and documenting them to connect frameworks to

requirements upon which a selection can be made. We use a tool

called Archie (a tool used to extract tactics from a Java-based

system’s code) to extract the patterns/tactics from the

implementation code of frameworks. We then document and

model these patterns/tactics and their impact on qualities using the

Goal-oriented Requirements Language (GRL). The satisfaction

level of the quality requirements integrated with other criteria

such as the preferences of an architect provide architects with a

tool for comparing different frameworks and documenting their

rationale for choosing a framework. As a validation of the

approach, we apply it to realistic case studies with promising

results.

Keywords-Framework Selection; Architectural Tactic;

Architectural Pattern; Non-Functional Requirement (NFR);

Framework Modeling; Tactic/Pattern Extraction

I. INTRODUCTION

A framework is a highly reusable design for an application

or part of an application in a given domain. With the increasing

complexity of developing software systems and shorter delivery

times, it is essential to reuse existing designs in the form of

frameworks as much as possible. Many candidate frameworks

are usually available for a given application. Therefore,

selecting frameworks and documenting the underlying rationale

for the choice, become an important task for system architects.

Various previous work [1][2][3] have addressed the selection of

frameworks based on various characteristics and criteria such

as the features of the frameworks, the deployability and the

interoperability of the frameworks, and how they perform

(testing). However, none of these connects frameworks to

qualities to compare frameworks based on their exhibited

quality attributes expressed as Non-Functional Requirements

(NFRs) [4].

DOI reference number: 10.18293/SEKE2020-049

Architectural patterns and tactics [4] are reusable building
blocks for software development (including frameworks).
They are characterized in terms of factors that affect the various
quality attributes so that architecture can be understood in terms
of those quality attributes. Our main assumption is that the
implementation of a framework inherits from the quality
attributes associated to the patterns and tactics used in its
implementation.

In a previous work [5], we proposed an approach to select
frameworks based on their quality attributes. We associate
frameworks with quality attributes based on the architectural
patterns used in their implementation. Since the implementation
of frameworks is not always adequately documented, we use a
source code analysis tool (Archie [6][7][8]) to determine which
architectural patterns are used in the implementation of the
frameworks. We then model the relation between the
frameworks, patterns and quality a Goal model using the Goal-
oriented Requirements Language (GRL) [9].

This work builds on our prior work [5] by considering two

additional characteristics to select a framework in addition to

architectural patterns. This is because selecting a framework

based only on its patterns might not be sufficient. The two

additional characteristics are the architectural tactics and the

importance values of quality requirements (preferences of

architects). We use the Archie tool to find the tactics

implemented in frameworks. We then add the tactics and their

impact on quality attributes to the GRL model. We calculate the

importance values of the NFRs using the AHP method [10].

Adding the implemented tactics and the importance values of

the NFRs as other criteria to the model, in addition to the

patterns, would provide more details about how the

implemented patterns/tactics, considering the architects’

preferences in a framework, can together push or pull the

framework toward or away from given NFRs in an informed

way.

The remainder of this paper is organized as follows; Section

2 provides an overview of the related work. We present our

proposed approach in Section 3. In Sections 4, we present a case

study as an example to apply the approach to. Section 5 shows

the preliminary validation of the approach. In Section 6, we

mailto:hbani043@uottawa.ca
mailto:michael_weiss@carleton.ca
mailto:ssome@eecs.uottawa.ca

present threats to the validity of this work. In Section 7, we draw

initial conclusions and describes plans for future work.

II. RELATED WORK

Cervantes et al. [1] extract patterns and tactics from a

framework by applying a mapping process between the patterns

and tactics in a framework and those patterns and tactics, which

are employed in architecture design. They also mention that

patterns can be extracted from the provided services of a

framework and that framework selection is based on

architecture drivers (such as the team’s level of knowledge of a

framework, or the framework’s maturity). In comparison to our

work, patterns are identified manually. This approach does not

consider the patterns and tactics implemented in a framework

as a selection criterion. It also does not provide any details on

how to represent frameworks in terms of the patterns and tactics

they implement.

Mirakhorli and Huang [6][7][8] present an approach that

relies primarily on information retrieval and machine learning

techniques for discovering tactics in code. This is done by

training a classifier to recognize specific terms that occur

commonly across implemented tactics. The probabilities of

these terms (the probability that a particular term identifies a

class associated with a tactic) are determined using specific

mathematical equations. The resulting tool is called Archie and

is used in our work to identify architectural patterns and tactics

from source code. In comparison to our work, their work only

focuses on the tactics. Their work does not focus on the

selection method and modeling of architectures in terms of their

implemented patterns and tactics.

Sena et al. [12] analyze studies reporting on software

architectures of big data systems, to identify architectural

patterns, quality attributes, as well as problems and liabilities of

those patterns. They determined that various architectural

patterns, such as the Layered pattern, the Pipe and Filter pattern,

the Broker pattern, and the Shared Repository pattern have

significant impacts on the qualities and characteristics of big

data systems. We use the results of this work to determine the

main quality requirements and the determined patterns, as

discussed in the technical report [11]. In comparison to our

work, this work does not focus on the modeling of architectures

in terms of their implemented patterns. The extraction of the

patterns is done manually by analyzing studies reporting on

software architectures of big data systems.

Additional related work includes: Johnson [13], Aguiar and

David [14], Beck and Johnson [25], Ryoo et al. [29], and

Meusel et al. [30]. A key difference between our work and these

is that their work does not connect frameworks to quality

attributes based on both patterns and tactics. Their work also

does not focus on the selection method and modeling of

architectures in terms of their implemented patterns and tactics.

III. PROPOSED APPROACH

The proposed approach includes three general steps: First,

determining the patterns and tactics a framework implements.

Second, modeling the frameworks in terms of their patterns and

tactics. Third, choosing a framework.

In the following, we present the general steps (process) of

the approach.

A. Determining Patterns and Tactics Implemented in a

Framework

To determine the implemented patterns and tactics of a

framework, we follow the following sub-steps:

1) Determine the Context/Domain

The objective of this sub-step is to restrict the scope of the

search. This allows a more focused determination of the

candidate frameworks, the patterns, and the tactics according to

a specific context.

2) Choose the Patterns and Tactics that Need to be Checked

for A Framework in the Determined Context/Domain

The set of patterns and tactics applied to a problem is

typically restricted by the domain and context of that problem.

These patterns and tactics are the ones known to contribute to

solving aspects of the problem. Our approach searches for the

patterns and tactics relevant to the context of a problem in

frameworks used as part of the solution to this problem.

Therefore, a knowledge of these patterns and tactics is needed

as input.

In this work, we conduct a literature review to find the most

relevant and common patterns and tactics of a framework in the

determined context. The resulting list of tactics and patterns is

however reusable in the same domain.

3) Determine the Tool to be Used to Extract the Patterns

and Tactics of A Framework

Although a manual search of the implemented patterns and

tactics in a framework is possible, it is not practical for large

frameworks. Different alternative methods have been used in

the literature such as Archie [6][7][8], Matching methods

between the provided services of a framework and its

patterns/tactics [13], Pattern instantiation (assigning the roles

defined in a pattern to concrete classes, responsibilities,

methods, and attributes of a practical design) [14], and

Matching methods between the problem statement of an

architecture and the applied patterns [15].

In this work, we use Archie [6][7][8] to extract the patterns

and tactics from the frameworks’ source code. We chose Archie

because it is the only automated tool among the alternatives. So,

it makes the extraction process faster by decreasing time and

effort spent searching the patterns and tactics and their related

terms in the documentation, websites, and source codes of

frameworks. It is extensible so we can add or remove patterns

and tactics.

4) Apply the Tool on a Framework to Extract the Patterns

and Tactics it Implements

In this sub-step, we apply Archie on the candidate frameworks

and get a set of candidate patterns and tactics for each

framework. The interested reader may find more details about

this step in [11].

5) Validate the Candidate Set of Patterns and Tactics which

are Detected by the Selected Tool

We validate the results of applying Archie on the candidate

frameworks by looking for the occurrences of those

patterns/tactics, which are detected by Archie, manually in the

source code/documentation/websites of the candidate

frameworks. The goal of this step is to ensure the validity of our

results. For more details about this step, see [11].

B. Modeling Frameworks in terms of their Implemented

Patterns and Tactics

To model frameworks in terms of their implemented patterns

and tactics, we perform the following sub-steps:

1) Determining the Modeling Language to be Used to

Model Frameworks

Different modeling languages have been used to model

frameworks. Examples include The Goal-oriented Requirement

Language (GRL) [9], the NFR-framework [16], i* (i-star)

framework [17], and the softgoal modeling language [18].

In this work, we chose the GRL. The elements of the GRL

notation used are shown in Figure 1. The choice of GRL was

motivated by the facts that: it enables us to evaluate and

compare the impact of different design choices on quality

attributes, it is a part of an international standard (User

Requirements Notation – URN) [9], enables the modeling of

stakeholders and their goals, supports Key Performance

Indicators (KPIs) for quantitative reasoning, and supports

evaluation strategies and propagation algorithms to evaluate the

satisfaction of goals and actors under selected conditions [19].

Giving quantitative contributions of patterns and tactics helped

us calculate the satisfaction of NFRs.

2) Modeling the Patterns, Tactics, and their Contributions

on the NFRs

In this sub-step, we first extract from the description of the

patterns/tactics, the NFRs, the contributions of the patterns and

tactics on the NFRs. Then, we extract the design decisions,

which show the reason for the negative or the positive impact

of a pattern/tactic on an NFR. In this work, we follow Ong et

al.'s [20] approach to extract NFRs, design decisions, and the

contributions of the patterns and tactics on the NFRs. We added

to the description by underlining the benefits, liabilities, the

affected NFRs, and reasons for the positive or negative impact

of the patterns or tactics on the NFRs.

The benefits and liabilities of a pattern/tactic indicate the

positive and negative contributions on the NFRs respectively.

The reasons for the positive or negative impact of the

patterns/tactics on the NFRs correspond to design decisions

behind the application of a pattern/tactic. These design

decisions are expressed as sentences starting with an active verb

such as ‘define,’ ‘register,’ ‘change,’ ‘reuse,’ etc. We also have

followed the same method for the tactics.

We then derive GRL models, with the NFRs and the

contributions of the patterns and tactics on the NFRs, from the

description of each pattern/tactic. First, we start with the

patterns/tactics at the bottom of the model. Then, we put the

design decisions and NFRs at the topmost level of the model.

The complexity of the system dictates the number of levels of

design decisions.

Figure 1. Summary of the GRL notations [9]

Based on Figure 1, we select softgoals (clouds) elements to

represent NFRs and the design decisions, indicating that these

cannot be achieved in an absolute manner. Tasks (hexagons) are

selected to represent patterns, tactics, the parts of a framework

where a pattern/tactic is implemented, and frameworks,

representing ways of achieving a softgoal. An actor with

Boundary (dotted circle) is used to represent an architect of a

framework. Solid lines (Contribution links) indicate the desired

impacts of one element on another element. Contribution types

determined by labels. These labels indicate various degrees of

positive (+) or negative (-) contributions (see Figure 2 for the

complete set of labels). Decomposition links allow an element

to be decomposed into sub-elements [9]. AND, IOR and XOR

are supported decompositions. We use only AND

decomposition links to represent the connection between a

framework and its patterns and tactics because all the patterns

are required in a framework before the NFRs are satisfied. We

used it also to represent the connection between the parts of a

framework and the patterns and tactics because all the patterns

and tactics are needed to be implemented in a part of a

framework.

We use quantitative contribution values. There are different

methods to get the contribution values of a pattern/tactic to an

NFR such as AHP [10], Delphi [21], or by using indicators (one

of the GRL notations as we can see in Figure 1). We use a

matching method between the contribution between a

pattern/tactic and a given NFR from the literature

[22][23][24][25][26][27][28] and the contribution values used

in the GRL. More details about the calculations of the

contribution values are shown in [11].

3) Modeling Framework in terms of their Implemented

Patterns and Tactics

The GRL models of the patterns and tactics from the previous

sub-step, are used to build a bottom up GRL model for

frameworks, starting with the framework and its parts at the

bottom level of the model, connected with all its implemented

patterns and tactics. The parts of a framework show where its

patterns and tactics are implemented. A link between a pattern

and a tactic indicates that the tactic is used as part of the pattern

implementation. The resulting GRL model specifies that the

design decisions explain why a pattern/tactic impacts an NFR

the way it does. Consequently, the design decisions push or pull

the framework towards or away from NFRs, as shown in Figure

2.

Each NFR is assigned an importance value given by

architects to help compare and choose the best suited

framework. We calculate these importance values using the

AHP method, as shown in the [11].

C. Choosing a Framework

1) Evaluate the models of the candidate frameworks

To initially assign a satisfaction level to a pattern/tactic, we

assign a tactic or a pattern to be Satisfied (100) if a framework

implements a tactic or a pattern; else, if a framework does not

implement it, it is then assigned to be Denied (0). The initial

values are marked with a star (*) on the evaluation model. All

the patterns and tactics, which are implemented in a framework,

are initially assigned using a star (*). After the initial

assignment of satisfaction levels to the tactics and patterns of a

framework, we evaluate the satisfaction levels of the NFRs by

applying different evaluation strategies on the GRL models, as

we will see in Section IV(C).

2) Compare the Candidate Frameworks

In this last step, we compare the candidate frameworks based

on their implemented patterns and tactics considering the

importance values of the NFRs, which would be given by an

architect, as we will see in Section IV(C).

IV. CASE STUDY

To validate the approach, we applied our approach to an

industrial case study, which is a part of a project to develop a

cyber fusion center. The case study consists in choosing a

stream processing framework for big data. Architects had to

choose among different candidate frameworks. The selected

framework was to provide the backbone for the collection and

correlation of security events. Processing the events requires

routing information from sensors to various processing stages

that perform analytics on the events at different levels of

abstraction (such as detecting attacks and attack patterns).

Our industrial collaborators considered three candidate

frameworks: Apache Storm [29] (a component in Apache

Metron [30]), Apache Flink [31], and Apache Spark [32]. In the

following, we apply the main steps of our approach.

A. Determining Patterns and Tactics Implemented in a

Framework

We apply the following sub-steps to determine the

implemented patterns and tactics of the frameworks Apache

Storm, Apache Flink, and Apache Spark.

1) Determine the Context/Domain

We determined the context of this project to be as big data

systems in general and data streaming frameworks in specific.

All the candidate frameworks are real data streaming

frameworks.

2) Choose the Patterns and Tactics that Need to be Checked

for A Framework in the Determined Context/Domain

Figure 2. The general GRL model of a framework

To perform this sub-step, we conducted a literature review to

find the most relevant and common patterns and tactics of a

framework in the determined context.

Given the context of the problem, we conducted a literature

review to find the most relevant patterns and tactics of a big data

system in general and a data streaming system in specific. We

also determine the most common NFRs of a data streaming

framework. The results of this step and more details are shown

in [11].

3) Determine the Tool to be Used to Extract the Patterns

and Tactics of a Framework

We use the Archie tool [6][7][8] to extract the patterns and

tactics from the frameworks source code as discussed in [7].

4) Apply the Tool on A Framework to Extract the Patterns

and Tactics it Implement

Mirakhorli and Huang [6][7][8] trained a classifier in Archie

to recognize specific terms that occur commonly across

implemented tactics and calculate the weights of the tactics

(the probability that a particular term identifies a class

associated with a tactic). Archie tool considers thirteen tactics

[6][7][8] from three quality attributes to be detected in any Java-

based system. These tactics are Policy-Based Access Control

(PBAC), Role-Based Access Control (RBAC), Kerberos, Audit

trail, Session Management, and Authenticate from Security,

Checkpoint, Heartbeat, Ping/Echo, Active Redundancy, and

Load Balancing form Reliability, and Resource Scheduling,

and Resource Pooling from Performance.

In addition to these thirteen tactics, we added seven other

tactics and five patterns to be detected by the Archie tool. To

see the added patterns and tactics, we refer to [11]. The analysis

of the results of applying Archie to Storm, Flink, and Spark is

shown in [11].

5) Validate the Candidate Set of Patterns and Tactics which

are Detected by the Selected Tool

After applying the tool on the candidate frameworks, we

validated the results by looking for the occurrences of the

detected patterns/tactics, manually in the source

code/documentation/websites of the candidate frameworks

Storm, Flink, and Spark. The sample results of the validation

are shown in [11].

B. Modeling Frameworks in terms of their Implemented

Patterns and Tactics

We modeled the candidate frameworks Storm, Flink, and

Spark in terms of their implemented patterns and tactics

following the general model shown in Figure 2. The case study

considers NFRs relevant to data streaming systems such as

Scalability, Maintainability, Performance, Portability,

Availability, Reliability, Security, and Interoperability. For the

sake of readability, the presented model in Figure 3 is restricted

to Testability, Security, Reliability, Availability, and

Scalability. The high-level goal of the project is shown at the

top of the model connected to alternative candidate frameworks

at the bottom of the model. On top of each framework, there are

several parts for each framework connected to their

implemented patterns and tactics. The design decisions explain

why a pattern/tactic impacts an NFR the way it does at the top

of the model. Consequently, the design decisions push or pull

the framework toward or away from NFRs.

C. Choosing a framework

1) Evaluate the models of the candidate frameworks

We evaluate the model to calculate the satisfaction levels of

the NFRS (Figure 3). The evaluation is done by applying

different evaluation strategies on the GRL model. For example,

Figure 4 shows a first strategy where only the patterns and

tactics implemented in the Spark framework are initially

satisfied. Similarly, Figures 5 and 6 show strategies where only

the patterns and tactics implemented in Flink and Storm, are

initially satisfied. Color-coding is used to highlight what is

satisfied and what is denied. For example, the ‘Green’ colour

indicates that the element is satisfied, while the ‘Yellow’ colour

indicates that the element is neutral. The ‘Red’ colour indicates

that the element is denied.

2) Compare the candidate frameworks

Based on the evaluation results of the GRL models from the

previous sub-step, we can see that the three frameworks have

similar satisfaction levels of the Testability, Security, and

Scalability requirements as shown in Figures 4, 5, and 6. The

Testability requirement is satisfied with (42) satisfaction level

for all the frameworks. While the Security is satisfied with (50)

satisfaction level and Scalability with (56) satisfaction level for

all the frameworks.

The Storm framework has a higher satisfaction level for

Reliability and Availability, which is (63) compared to Spark

and Flink. This is because of the implementation of the three

Figure 3. The GRL model of the Storm, Flink, and Spark frameworks in terms of Testability, Security, Reliability, Availability, and Scalability

reliability tactics: Exception Handling, Heartbeat, and

Checkpoint. They all improve fault tolerance, which improves

reliability. Spark and Flink have the same satisfaction level for

Reliability, which is (42). Spark has the least satisfaction level

for Availability, which is (5). While Storm has (32) and Flink

has (30) satisfaction levels for Availability. This is because of

applying the Observer/Publish-Subscribe pattern in Storm and

Flink, which provides Asynchronous communication between

components without blocking to wait for a response. This helps

decouple publishers and subscribers so they can be active and

available at different points in time, resulting in improving the

availability of the frameworks. Both Storm and Flink use the

“Checkpoint” tactic to Record consistent states and have a path

to roll back to them if necessary. While Spark uses the “Active

Redundancy” tactic for recovery, preparation, and repair of the

errors. The architect is more satisfied with Storm than Flink and

Spark. As we see, the satisfaction value of the architect for

Storm is (48), while it is (43) for Flink and (37) for Spark. If an

architect favours Reliability and Availability over the other

requirements, we recommend Storm. However, if Testability,

Security, and Scalability are preferred, then any one of the three

frameworks could be equally recommended.

Figure 4. Strategy 1: Applying only the implemented patterns and tactics of the Spark

Figure 5. Strategy 2: Applying only the implemented patterns and tactics of

the Flink

Figure 6. Strategy 3: Applying only the implemented patterns and tactics of

the Storm

V. PRELIMINARY VALIDATION

The previous sections discuss the application of the

approach to a case study. We applied the approach in the

context of an industrial project where architects had to choose

among different frameworks Spark, Storm, and Flink. The

results were found satisfactory (and in agreement) with the

project architects. The architects confirmed that the approach

was helpful in choosing the best-fit framework to provide the

backbone for the collection and correlation of security events

in a cyber security center. We also compared the inferred

quality attributes (i.e. reliability, availability, and

performance) with benchmark comparison results such as

[33]. Inoubli [33] showed that both Storm and Flink use the

“Checkpoint” tactic for fault tolerance. While Spark uses

recovery techniques. This was compatible with our results in

Section IV(C). Our results showed that both Storm and Flink

implement the “Checkpoint” tactic to Record consistent

states and have a path to roll back to them if necessary. While

Spark uses the “Active Redundancy” tactic for recovery,

preparation, and repair of errors. Inoubli also showed that

Spark is the fastest framework in terms of the processing time

compared to Storm and Flink. This was compatible with our

results, which shown in [11], that the satisfaction level of the

Performance for Spark is (86) while it is (46) for both Storm

and Flink. This confirms that Spark is the fastest one while

Strom and Flink are quite similar in terms of the data

processing speed, as shown in Figures 12 and 13 in Section

IV(C).

Inoubli also reported that Flink and Storm share

similarities and characteristics with Spark. Flink, Storm, and

Spark implement similar patterns, such as the Layers and

Broker patterns and similar tactics, such as “Resource

Pooling” and “Resource Scheduling”. The compatibility with

Inoubli’s results offers some validation of the main tenet of

our works; the link between the implemented patterns and

tactics, and quality attributes.

 In another case study on Gradle and Maven tools [34],

we also compared the inferred quality attributes (i.e.

performance) with benchmark comparison results such as

[34]. The results of the experiment conducted in [34], showed

that Gradle is faster than Maven. This is because of the

performance features, which Gradle includes, such as the

parallelism and the incremental build and subtasks. In our

results, which are shown in [11], we got quite similar results

to the ones in [34].

In a case study on a Healthcare-Supportive System-System

of Systems (HSH-SoS) architecture [35], we use our

approach to support an analysis of the HSH-SoS architecture

in terms of its implemented patterns and tactics. Our objective

is to confirm that the approach can be used not only to

compare implementations but also to provide a rationale or

documentation about a framework/system architecture.

I. THREATS TO VALIDITY

Threats to validity can be classified as construct, internal,

and external validity. We discuss the threats, which

potentially impact our work, and the ways in which we

attempted to mitigate them.

External Validity evaluates the generalizability of the

approach. The primary threat is related to the assumption that

a framework inherits the aspects of quality associated to its

implemented tactics/patterns. It is possible that

patterns/tactics could be implemented the wrong way and not

provide their expected benefits. Although our initial

validation with case studies such as Gradle and Maven has

showed the validity of our assumption, more case studies will

however be required. As mitigation to this threat we

confirmed the proper implementation by performing a

manual inspection of the code. Another threat is that NFRs

derived from patterns/tactics such as performance might not

be sufficient to be able to compare the frameworks. We

consider the result provided by our approach as one

component of the criteria for a final decision on choosing a

framework. Other criteria including the cost, stability,

maturity, community support might also be considered.

 Construct Validity evaluates the degree to which Archie

was accurate in detecting the patterns and tactics of the

frameworks. In our case study, we have calculated the false

positives and false negatives numbers by checking if those

patterns/tactics detected by Archie are implemented in the

source code of a framework. We found that there were only

12% false positives in Storm, 16% in Flink, 4% in Spark, and

16% in both Gradle and Maven. The whole results showed

that most of the patterns and tactics, which were detected by

Archie for the frameworks, are implemented in the

frameworks. This confirms the high accuracy and

performance of the Archie tool. Archie also has been tested

on several systems ranging from 1,000 to 20,000 java files

[6][7].

Internal Validity reflects the extent to which a work

minimizes systematic error or bias so that a causal conclusion

can be drawn. A threat to validity is that the search for

specific patterns or tactics was solely performed by the

authors. In the case of the cyber fusion center project, we

mitigated this threat by elicited feedback from developers and

architects with extensive experience with the involved

frameworks.

VI. CONCLUSION AND FUTURE WORK

The approach described in this paper extracts the

implemented architectural patterns and tactics from

frameworks source codes to connect frameworks to quality

requirements upon which a selection can be made. We use an

information retrieval approach, with a tool called Archie, to

determine the implemented architectural patterns and tactics

in order to enable a more informed assessment by architects.

We then model the frameworks in terms of their implemented

patterns and tactics using the Goal-oriented Requirements

Language (GRL). This model provides architects with a

rationale about the satisfaction levels and the analysis of the

tradeoff of given NFRs for a framework. Providing such

rationale with considering the importance values of the NFRs

integrated with other criteria such as the cost, delivery time,

stability, and maturity of a framework would help an architect

to choose among several candidate frameworks.

In the future, we plan to improve our modeling of

frameworks with GRL indicators instead of simply matching

the impact of patterns on NFRs and the contribution values in

the GRL. The indicators in the GRL measure observable

values and convert them to GRL satisfaction values (from

zero for denied, to 100 for satisfied) that can be propagated

to other model elements through links. This would allow

getting the contribution values of the patterns and tactics

automatically.

 Another future work is to integrate the consideration of

criteria such as cost, delivery time, stability, and maturity of

a framework in addition to the patterns, tactics, and the

importance values of the NFRs to be able to choose a

framework in a more informed way.

REFERENCES

[1] H. Cervantes, P. V. Elizondo, and R. Kazman. 2013. A principled way
to use frameworks in architecture design. IEEE Software, March/April,
46-53.

[2] G. Grau, and X. Franch. 2007. A Goal-Oriented Approach for the
Generation and Evaluation of Alternative Architectures. European
Conference on Software Architecture (ECSA), pp 139-155.

[3] A. Zalewski. 2013. Modeling and Evaluation of Software Architecture.
Warsaw University of Technology Publishing Office.

[4] L. Bass, P. Clements, and R. Kazman. 2012. Software Architecture in
Practice. Addison-Wesley.

[5] H. Milhem, M. Weiss, and S. Some. 2019. Extraction of Architectural
Patterns from Frameworks and Modeling their Contributions to
Qualities. Pattern Languages of Programs (PLoP). 17 pages, Ottawa,
Canada.

[6] M. Mirakhorli. 2014. Preserving the Quality of Architectural Tactics in

Source Code.

[7] M. Mirakhorli and J. Cleland-Huang. 2016. Detecting, Tracing, and

Monitoring Architectural Tactics in Code. IEEE Transactions on

Software Engineering, Volume: 42, Issue 3, pp 205-220.

[8] M. Mirakhorli, A. Fakhry, A. Grecho, M. Wieloch, and J. Cleland-

Huang. 2014. Archie: A Tool for Detecting, Monitoring, and

Preserving Architecturally Significant Code. Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp 739-742, Hong Kong, China.

[9] G. Mussbacher, M. Weiss, and D. Amyot. 2007. Formalizing

Architectural Patterns with the Goal-oriented Requirement Language.

Proceedings of the Fifth Nordic Conference on Pattern Languages of

Programs.

[10] https://en.wikipedia.org/wiki/Analytic_hierarchy_process

[11] http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks

_Selection.pdf

[12] B. Sena, L. Garces, A. P. Allian and E. Yumi Nakagawa. 2018.

Investigating the Applicability of Architectural Patterns in Big data

Systems. Pattern Languages of Programs (PLoP), Portland, Oregon,

USA.

[13] R. E. Johnson. 1997. How frameworks compare to other object-

oriented reuse techniques. Communications of the ACM, 40(10), 39-

42.

[14] A. Aguiar, and G. David. 2011. Patterns for effectively documenting

frameworks. Transactions on Pattern Languages of Programming II,

79-124, Springer.

[15] K. Beck and R. Johnson. 1994. Patterns Generate Architecture.

ECOOP '94 Proceedings of the 8th European Conference on Object-

Oriented Programming, pp 139-149, London, UK.

[16] Mehta, R., Ruiz-López, T., Chung, L., & Noguera, M., “Selecting

among Alternatives using Dependencies: An NFR approach”,

Proceedings of the 28th Annual ACM Symposium on Applied

Computing, New York, NY, USA, pp 1292-1297, (2013).

[17] Bastos, L.R.D., & Castro, J.F.B., “Systematic Integration Between

Requirements and Architecture”, Software Engineering for Multi-

Agent Systems III, pp 85-103, Volume 3390 of the series Lecture Notes

in Computer Science, (2005).

[18] Zhu, M.X., Luo, X.X., Chen, X.H., & Wu, D.D., “A non-functional

requirements tradeoff model in Trustworthy Software”, Information

Sciences 191, pp 61 – 75, (2012).

[19] Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., &

Yu, E., “Evaluating Goal Models within the Goal-oriented

Requirement Language”, International Journal of Intelligent Systems,

pp 841-877, (August 2010).

[20] Ong, H., Weiss, M., & Araujo, I., “Rewriting a Pattern Language to

Make it More Expressive”, 2003.

[21] https://en.wikipedia.org/wiki/Group_decision-making

[22] N. Harrison. 2011. Improving quality attributes of software systems

through software architecture patterns.

[23] S. Bode and M. Riebisch. Impact Evaluation for Quality-Oriented
Architectural Decisions Regarding Evolvability. European Conference
on Software Architecture ECSA, 2010.

[24] A. Alebrahim, S. Fassbender, M. Filipczyk, M. Goedicke, and M.
Heisel. 2015. Towards a Reliable Mapping between Performance and
Security Tactics, and Architectural Patterns. EuroPLoP
'15 Proceedings of the 20th European Conference on Pattern
Languages of Programsv, Article No. 39, 43 pages.

[25] G. Me, C. Calero, and P. Lago. Architectural patterns and quality
attributes interaction. 2016 Qualitative Reasoning about Software
Architectures (QRASA).

[26] N. Harrison and P. Avgeriou. 2010. Implementing Reliability: The
Interaction of Requirements, Tactics and Architecture Patterns.
Architecting Dependable Systems VII pp 97-122.

[27] M. Kassab, G. El-Boussaidi, and H. Mili. 2011. A Quantitative
Evaluation of the Impact of Architectural Patterns on Quality
Requirements. Software Engineering Research,Management and
Applications 2011 pp 173-184, Pp 173-184.

[28] M. Kassab and G. El-Boussaidi. 2013. Towards Quantifying Quality,
Tactics and Architectural Patterns Relations. Proceedings of the
International Conference on Software Engineering and Knowledge
Engineering, SEKE.

[29] https://storm.apache.org

[30] Apache Metron, metron.apache.org

[31] Apache Flink, flink.apache.org

[32] https://spark.apache.org

[33] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. M. Nguifo, “An

experimental survey on big data frameworks”, Future Generation

Computer Systems, 546-564, 2018.

[34] https://gradle.org/maven-vs-gradle/

[35] L. Garces, B. Sena, and E. Y. Nakagawa, “Towards an architectural

patterns language for System-of-Systems”, HILLSIDE Proc. Of Conf.

on Pattern Lang. of Prog. V (October 2019), 24 pages.

https://en.wikipedia.org/wiki/Analytic_hierarchy_process
http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks_Selection.pdf
http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks_Selection.pdf
https://en.wikipedia.org/wiki/Group_decision-making
https://link.springer.com/conference/ecsa
https://link.springer.com/conference/ecsa
http://www.europlop.net/content/conference-0
http://www.europlop.net/content/conference-0
https://ieeexplore.ieee.org/xpl/conhome/7483924/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7483924/proceeding
https://link.springer.com/book/10.1007/978-3-642-17245-8
https://link.springer.com/book/10.1007/978-3-642-23202-2
https://link.springer.com/book/10.1007/978-3-642-23202-2
https://flink.apache.org/
https://spark.apache.org/
https://gradle.org/maven-vs-gradle/

