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Abstract—Click-through rate (CTR) prediction aims to esti-
mate the probability of a user clicking on the item, which has
critical importance both in advertising system and recommender
system. Recently, deep learning-based methods have emerged
due to its strong feature extraction ability. Learning user/item
representations (aka. embeddings) is the core of these methods.
However, these existing efforts pay little attention to encoding
the relations among users and items in the embedding process,
which limits the embedding effectiveness. In this paper, we
propose a novel graph neural network framework for CTR
prediction, namely the deep graph attention neural network
(DGAN). Specifically, DGAN treats user-item interactions as a
bipartite graph, which can naturally integrate node information
and topological structure for modeling the relations. The key
component of DGAN is attentive embedding propagation that
recursively propagates embeddings from a node’s neighbors to
refine the node’s embedding, and exploits graph attention mech-
anism to determine which neighbors to focus on. Comprehensive
experiments are conducted on three public datasets and empirical
results demonstrate DGAN achieves substantial gains compared
with the mainstream models for CTR prediction.

Keywords—Click-Through Rate Prediction, Recommender
System, Deep Learning, Graph Neural Network, Embedding
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I. INTRODUCTION

Online advertising was born in the last century, which has
become the major profit means of most internet companies.
With the explosion of information on the internet, it is becom-
ing increasingly important to explore the way to accurately
and efficiently predict user behaviors with limited network
resources. Click-through rate (CTR) refers to the ratio of ad
clicks to ad impressions, which reflects user behaviors and
serves as a key indicator to measure the advertising effective-
ness. As such, predicting CTR becomes a critical task, which is
beneficial to optimize marketing content, improve advertising
effectiveness and ensure the quality of user experience.

Considering the superiority of deep learning, such as au-
tomatic high-order feature extraction, and inspired by its
immense success in computer vision [1], speech recognition
[2] and natural language processing [3], deep learning-based
methods have been proposed to conduct CTR prediction
task [4]–[6]. Compared with many previous works [7], [8],
these deep learning-based methods can avoid a lot of manual
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Fig. 1: An example of the user-item interaction graph.

feature engineering jobs and improve the model performance
substantially.

Despite the great success achieved by these existing ef-
forts, we argue that they are insufficient to learn effective
embeddings for users and items. The key reason is that they
treat each user-item interaction independently and overlook
the latent relations in the interactions. For example, as shown
in Figure 1, the path Mary → Mirage → Mike reveals the
similar behavior between Mary and Mike, as they all have
interacted with Mirage; the longer path Mary → Mirage →
Mike → Blue Sky implies that Mary may be interested in
Blue Sky, since her similar user Mike has ever watched Blue
Sky. Furthermore, from the holistic view of a path length1 of
3, Tom is more likely to have an interest in Mirage than Blue
Sky, because there are two paths connecting Tom and Mirage,
while only one path connects Tom and Blue Sky.

Being aware of aforementioned challenges and inspired by
the wide success of leveraging graph neural networks [9]–
[11], in this paper, we propose a novel graph neural net-
work framework for CTR prediction, namely the deep graph
attention neural network (DGAN). DGAN is a item-based
model, which takes user behavior sequence and a candidate
item as input, and outputs the probability of a user clicking
the item. Specifically, we first represent user-item interactions
as a bipartite graph, and then refine representation of each
input item by recursively propagating the embeddings from
its neighbors. Distinct from existing work [12], which treats

1In this paper, the length of a path refers to the number of edges it contains.
For example, the length of path Mary→ Mirage→ Mike is 2 and the length
of path Mary → Mirage → Mike → Blue Sky is 3.



neighbors equally, here we employ a graph attention mecha-
nism to discriminate the importance of different neighbors. By
doing so, latent relations among users and items are encoded
in the process of embedding propagation.

After several embedding propagation layers, we obtain
a refined representation vector for each item. To yield an
adaptive representation of user interests with respect to current
candidate item, we use an attention network to dynamically
calculate the correlation between candidate item and historical
behaviors, and take weighted sum to aggregate the user
behavior sequence. User interests embedding and candidate
item’s embedding are finally fed into an interaction layer for
CTR prediction.

The key contributions of this work are summarized as
following:
• We emphasize the critical importance of encoding rela-

tions among users and items in the embedding process
of deep learning-based models.

• We propose DGAN, a novel end-to-end CTR prediction
framework based on graph attention network, which
explicitly models relations among users and items by
conducting embedding propagation and employs an at-
tention module to capture the diversity characteristic of
user interests.

• To validate the efficacy of DGAN, we conduct em-
pirical studies on three real-world public datasets. The
experimental results show our DGAN outperforms other
mainstream models in the CTR prediction task.

The remaining parts of this paper are organized as follows.
Section II reviews some related works. Section III describes
proposed model DGAN in detail. Section IV presents the
experiments. Section V summarizes this work and discusses
future works.

II. RELATED WORK

In this section, we mainly present recent studies of the CTR
prediction and graph neural networks.

A. Click-Through Rate Prediction

Compared with traditional shallow learning, deep learning
shows great potential on feature representation and combina-
tion. As such, more and more researchers apply deep learning
to CTR prediction. Qu et al. [13] propose a product-based
neural network (PNN) that combines factorization machine
with multilayer perceptron (MLP). Cheng et al. [5] propose
a novel structure Wide&Deep that cleverly fuses the linear
model and the deep neural network. Guo et al. [14] propose a
factorization-machine based neural network (DeepFM), which
employs factorization machines and deep neural network to
model low-order and high-order feature interactions. Shan et
al. [15] propose a Deep Crossing model composed of an
embedding layer, a stacking layer and a cascade of residual
units for CTR prediction. Zhu et al. [16] propose a Deep
Embedding Forest (DEF) based on Deep Crossing, which
replaces the residual units in Deep Crossing by a forest layer

and improves prediction efficiency by pre-training. Zhou et al.
[17] propose a Deep Interest Network (DIN), which considers
the lack of modeling of user behavior diversity and local
activation in most CTR prediction studies. Zhou et al. [18]
propose Deep Interest Evolution Network (DIEN) to model
users’ sequential behaviors, which enriches the representation
of users and improves the prediction accuracy significantly.
Feng et al. [19] propose a novel CTR model named Deep
Session Interest Network (DSIN) that leverages users’ multiple
historical sessions in their behavior sequences. Despite the
substantial gains achieved by these efforts, little attention has
been paid to encoding relations among users and items in the
embedding process, which degrades the model performance.
In this paper, we employ graph neural network to fill this gap.

B. Graph Neural Networks

Graph Neural Network (GNN) is an extension of con-
volutional neural network to process underlying data with
irregular structure (such as graphs). Kipf et al. [20] propose
a convolutional architecture for semi-supervised learning on
graph-structured. Velickovic et al. [21] propose an attention-
based GNN architecture for node classification. Recently,
researchers also apply GNN to recommender systems. Berg
et al. [22] propose GC-MC, which employs GNN to learn
representations of users/items on user-item graph, but only
first-order neighbors are considered. Wang et al. [12] propose
NGCF, which incorporates GNN into collaborative filtering
and recursively performs propagation on user-item graph to
capture the collaborative signal in high-order connectivity.
However, neither GC-MC nor NGCF discriminate the impor-
tance of different neighbors. In this paper, we exploit the idea
of graph attention network [21] to tackle this problem.

III. METHODOLOGY

In this section, we illustrate our proposed Deep Graph At-
tention Neural Network (DGAN) framework in detail, whose
overall structure is shown in the Figure 2. We discuss the three
main components: 1) embedding layer; 2) attentive embedding
propagation layers; 3) attentive user interest extraction layer,
respectively.

A. Embedding Layer

Embedding is a widely used technique to transform large
scale sparse features into low-dimensional dense vectors,
which has been used in many mainstream recommender mod-
els [12], [17]. With embedding, users can be represented as
Eu = [eu1

, · · · , eum
] ∈ Rm×d , where m is the number of

users, d is the embedding size. Analogously, we can represent
items as Ei = [ei1 , · · · , ein ] ∈ Rn×d , where n is the number
of items.

B. Attentive Embedding Propagation Layers

We take inspiration from the recent advance of GNNs [21],
[23]. First, we introduce single layer propagation, and then
exploit the idea of [12] to perform multiple layers propagation.
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Fig. 2: An illustration of the DGAN model framework.

1) Single-layer Propagation: Obviously, histories of user-
item interactions not only directly reflect a user’s interests,
but also represent the features of item to a certain extent [24].
We perform embedding propagation between user/item and its
neighbors to encode these relations. For user-item interaction
pair (u, i), embedding propagated from u to i is defined as:

mi←u = attn(ei, eu)eu, (1)

where attn(·) is the graph attention function that takes embed-
dings ei and eu as input and outputs the attention coefficients
αiu, reflecting the importance of local neighbors on ei. Distinct
from traditional graph attention network [21], which simply
concatenates ei, eu and feeds it into a single-layer feedforward
neural network to compute coefficients αiu, we additionally
model user-item interaction via ei � eu, where � denotes
the Hadamard product. Inspired by DKN [25] multi-channel
mechanism, we treat user embedding eu , item embedding ei
, user-item interaction embedding ei � eu as three channels,
and concatenate the three embedding matrices as

Tiu = [W1ei||W2(ei � eu)||W3eu], (2)

where W1,W2,W3 ∈ Rd′×d are the trainable weight matrices.
After getting the multi-channel input Tiu, to increase the
learning ability, we feed it in double-layer feedforward neural
network D:

Hiu = D(Tiu). (3)

To make coefficients easily comparable across different nodes,
we normalize them by adopting the softmax function:

βiu = softmax(αiu) =
exp(Hiu)∑

k∈Ni
exp(Hik)

, (4)

where Ni denotes the neighbors of item i. By assigning
different neighbors with a different weight, the attention mech-
anism is capable of discriminating the importance of different
neighbors, so as to precisely capture latent relations among
users and items. Therefore, embedding propagated from user
u to item i is implemented as:

mi←u = βiueu. (5)

Given the embeddings propagated from neighbors, we take
weighted sum to aggregate them. Specifically, the aggregation
function is expressed as:

e
(1)
i = LeakyReLU(mi←i +

∑
u∈Ni

mi←u), (6)

mi←i =W1ei, (7)

where e(1)i denotes the refined embedding of item i after the
first propagation layer. Note that we additionally aggregate the
original embedding of item i via W1ei (W1 is the trainable
weight matrix defined in Equation 2), whose purpose is to
retain the original features of item i. Analogously, we can
obtain the refined embedding e(1)u for user u.



2) Multi-layer Propagation: We argue that the first-order
neighbors are not sufficient to encode relations among users
and items. Therefore, based on the single-layer propagation,
we follow a similar paradigm [12] to gather the embeddings
propagated from the longer path neighbors. Specifically, the
high-order propagation strategy is represented as follow:

e
(l)
i = LeakyReLU(m

(l)
i←i +

∑
u∈Ni

m
(l)
i←u), (8)

where l is path length. Similar to Equation 1 and 7, terms in
Equation 8 can be expressed as:

m
(l)
i←u = attn(e

(l−1)
i , e(l−1)u )e(l−1)u , (9)

m
(l)
i←i =W

(l)
1 e

(l−1)
i , (10)

where W (l)
1 ∈ Rdl×dl−1 is the trainable transformation matrix,

dl is the dimension; e
(l−1)
i is the representation of item

i yielded from previous (l − 1) propagation layers, which
further contributes to the representation of item i at layer l.
Analogously, the representation for user u at the layer l can
be obtained. Hereafter, high-order relation like path Mary →
Mirage → Mike → Blue Sky can be extracted in the process
of embedding propagation. Such high-order relation is crucial
to encode the user’s preference.

After propagating with l layers, we obtain a set of em-
beddings for item i, namely {e(0)i , e

(1)
i , · · · , e(l)i }. Obviously,

embeddings obtained from different propagation layers play
a different role in representing item i. Towards this end,
by exploiting the mechanism of layer-aggregation [23], we
concatenate them to constitute the final embedding for item i:

e(i) = e
(0)
i ||e

(1)
i || · · · ||e

(l)
i , (11)

where || is the concatenation operation. In this way, we encode
relations among users and items in the embedding process,
which not only enrich the initial embeddings, but also endow
our model with powerful expressive capability.

C. Attentive User Interest Extraction

Given user u with behavior sequence {cu1 , cu2 , · · · , cuNu
},

the embeddings of his clicked items can be expressed as
e(cu1 ), e(c

u
2 ), · · · , e(cuNu

). To obtain a representation vector of
user interests with respect to current candidate item, a general
way [4], [5] is to process the list of embedding vectors via a
pooling layer:

e(u) = pooling(e(cu1 ), e(c
u
2 ), · · · , e(cuNu

)). (12)

Average pooling seems a good choice to achieve above goal,
since it simply conducts element-wise average operations of
the list of embedding vectors. But the user interests embedding
obtained this way remains the same for a specific user, no
matter what candidate items are given. However, interests of
user with rich behaviors are diverse, and user u’s behaviors
ought to have different effects on the candidate item tj when
predicting whether user u will click tj . We model this process
by using an attention network [17]. The attention network is
illustrated in the left upper part of Figure 2. Specifically, for

each item cui clicked by user u and the candidate item tj , we
first conduct Hadamard product of their representation vectors,
then feed it into a feed-forward network G and use softmax
function to normalize the outputs:

wi = softmax(G(e(cui )� e(tj))). (13)

The attention network takes the embedding of candidate item
and a clicked item as input and outputs the impact weight.
Then, we can obtain the final user interests embedding with
respect to the candidate item by calculating the weighted sum
of his clicked items embeddings:

e(u) =

Nu∑
i=1

wie(c
u
i ). (14)

Finally, given a user interests embedding e(u) and candidate
item embedding e(tj), we perform inner product to calculate
the probability of a user u clicking the candidate item tj :

pu,tj = e(u)
T
e(tj). (15)

D. Model Optimization

In view of the good performance of binary cross-entropy
loss (aka. log loss) in deep recommender models, in this
paper, we adopt it as the objective function to optimize model
parameters, as follows:

Loss =
−1
N

∑
(u,tj)∈S

(yu,tj log pu,tj+(1−yu,tj ) log(1−pu,tj )),

(16)
Where S is training set, N denotes the number of samples in
S, pu,tj to be in (0, 1) represents prediction probability of a
user u clicking the candidate item tj , which is calculated by
the current model parameters. Target value yu,tj is a binarized
1 or 0, which denotes whether u has interacted with tj or not.

IV. EXPERIMENTS

In this section, we present our experiments in detail. We
start by introducing experimental datasets, baselines, evalua-
tion metrics, parameter settings, then compare the proposed
model with the baselines and analyze the results.

A. Dataset Description

Amazon(Electronics)2. Amazon Dataset is a widely used
benchmark dataset in E-commerce, which consists of product
reviews and metadata from Amazon. We use a subset called
Electronics to conduct experiments.

Amazon(Video Games)3. Video Games dataset is also a
subset of Amazon, which contains rich user behaviors.

Yelp20184. This dataset is adopted from the 2018 edition
of the Yelp challenge. Here local businesses like restaurants
and cinemas are treated as items. Specially, we take the subset
where the timestamp is from Jun, 2017 to Jun, 2018.

2http://jmcauley.ucsd.edu/data/amazon
3http://jmcauley.ucsd.edu/data/amazon
4https://www.yelp.com/dataset/challenge
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Fig. 3: Testing performance of DGAN in each iteration.

To ensure the quality of datasets, we filter the original
data which keeps each user with at least 10 interactions and
generate negative samples which are of equal size with the
positive ones. Samples in each dataset are split into 4:1 for
training, test. The detailed characteristics of the three datasets
are summarized in table I.

TABLE I: Statistics of datasets used in this paper.

Dataset Users Items Samples

Amazon(Electronics) 45,225 61,918 1,547,004

Amazon(Video Games) 24,303 10,673 414,954

Yelp2018 25,937 92,249 796,994

B. Baselines

• Wide&Deep [5]. Wide&Deep is widely used in industrial
applications, combining a (wide) linear part with a (deep)
non-linear part.

• PNN [13]. PNN uses a product layer to capture interactive
patterns between inter-field categories.

• DeepFM [14]. DeepFM is also a general deep model for
recommendation, which employs factorization machines
and deep neural network to model low-order and high-
order feature interactions.

• DIN [17]. DIN fully considers user behavior diversity. By
exploiting the idea of attention mechanism, it can learn
the different representation of users’ historical behaviors
with respect to the candidate item.

C. Evaluation Metrics

In the experiment, we adopt AUC (Area Under ROC Curve)
[26] to evaluate the performance of our framework and base-
lines. AUC is a widely used metric in CTR prediction field. It
reflects the ranking ability of the model, defined as follows:

AUC =
1

m+m−

∑
x+∈D+

∑
x−∈D−

(I(p(x+) > p(x−))), (17)

where D+ is the set of all positive samples, D− is the set
of all negative samples, function p(·) outputs the predicted

probability of the sample x, I(·) is the indicator function, m+

is the size of D+ and m− is the size of D−.

D. Parameter Settings

We implement our DGAN model in Tensorflow. The di-
mension of both user embeddings and item embeddings are
set as 32. The number of propagation layers is set as 3. The
learning rate is set as 0.01. The batch size is set as 512. We
use Adam [27] to train DGAN by optimizing the log loss.
The key parameter settings for baselines are as follows. The
embedding size is fixed to 128 for all baselines, which results
in better performance. Hyperparameters in the baselines are set
the same as DGAN. Each experiment is repeated five times,
and we report the average performance as results.

TABLE II: Results (AUC) on three public datasets.

Model Electronics Video Games Yelp2018

Wide&Deep 0.7675 0.8137 0.8541

PNN 0.7681 0.8152 0.8597

DeepFM 0.7697 0.8173 0.8684

DIN 0.7712 0.8215 0.8692

DGAN 0.7782 0.8302 0.8832

E. Results

Table II reports the results of comparison of different
models. Figure 3 shows the testing performance curve of
DGAN. The major findings are summarized as below:
• Wide&Deep performs comparably poorly than other

baselines. This indicates that manually designed features
are insufficient to extract the representation of items.

• Compared with Wide&Deep, the performance of PNN
verifies that automative high-order feature interactions
can improve the representation learning ability.

• DeepFM generally performs better than PNN. Such im-
provement might be attributed to the combination of
powerful factorization machines and a specially designed
neural network.



• DIN generally achieves remarkable improvements since
it uses attention mechanism to model user’s diverse
behaviors.

• DGAN consistently performs best in the three datasets.
Specially, DGAN outperforms the strongest baselines
with respect to AUC by 0.91%, 1.06%, and 1.61% in
Electronics, Video Games, and Yelp2018, respectively.
This is mainly because it considers the modeling of
relations among users and items, which is overlooked in
most click-through rate prediction studies.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel framework DGAN,
which incorporates graph neural network into recommenda-
tion. DGAN addresses two major challenges on the CTR pre-
diction task: 1) Distinct from traditional methods that encode
user or item independently, DGAN fully takes relations among
users and items into consideration by recursively propagating
embeddings on user-item graph structure. 2) With respect to
different candidate items, DGAN exploits an attention network
to obtain an adaptive embedding vector of user interests.
Extensive experiments are conducted on three datasets from
Electronics, Video Games, and Yelp2018. The results demon-
strate the rationality and efficacy of DGAN over several strong
baselines.

In future, we plan to integrate knowledge graph and social
networks into recommendation. This side information will be
beneficial to understand user behaviors and improve recom-
mendation interpretability. Moreover, with the great success
of the Transformer for machine translation task in natural
language processing, we will apply self-attention mechanism
to investigate the sequential recommendation.
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