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Abstract—Virtual assistants such as Siri or Google Assistant
are omnipresent. However, their development remains costly. One
must either manually model the problem domain or provide
thousands of labeled samples.

We propose to automatically create virtual assistants based on
Active Ontologies for interacting with databases. Our approach
generates Active Ontologies; we use the database structure
to derive a concept hierarchy and database values together
with synonyms to extract information from user queries. Our
approach also learns common phrases from samples, e.g. from
existing Dialogflow agents. We extract pre- and postfixes and
attach them to concepts, e.g. at to detect a succeeding location.
The generated Active Ontologies reply to previously unseen
and composed requests. The approach is not limited to virtual
assistants but can be applied to any system with a textual or
voice-based conversational interface such as chatbots.

We evaluate our approach in three domains: tourism, hotel,
and web cams. The study shows that automatically generated Ac-
tive Ontologies extract relevant information from user utterances
with a precision of 58%. The precision increases to 79% (recall
46%, F1 58%) when we use sample utterances. Our approach
successfully transfers between domains, e.g. we learn phrases
from the tourism domain and use them to reply to hotel requests
without any adjustments.

I. INTRODUCTION

Virtual assistants and other systems with conversational
interfaces (CI) are used by an ever-growing number of people.
Users ask Siri for their next meeting, talk to chatbots, or tell
Alexa to turn on the lights. While these systems are a blessing
for casual users, they remain a curse for developers. They are
complicated to build and hard to maintain. Today’s virtual
assistants are either trained on thousands or even millions
of (manually) labeled samples, or their linguistic competence
is modeled manually, i.e. they are built by domain experts.
Both require serious manual effort to make the system appear
human-like to the user. However, users will soon expect CIs
for all kinds of applications. Thus, the efficient creation of CIs
(i.e. developer assistance, transferability, automation, etc.) will
become one of the major challenges in software engineering.

We propose to generate systems with CIs largely automati-
cally. As underlying technology we use Active Ontologies [1],
[2] (AO) that originally were at the core of Apple’s Siri.
AOs are hierarchical domain models equipped with processing
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rules. In terms of structure they are trees, where the leaves
react to words in user utterances. The inner nodes join infor-
mation and the root creates a services call, e.g. a restaurant
reservation.

As a prerequisite for our generation process, we assume
that a service provider stores information in a database, e.g.
the addresses, ratings, and names of restaurants. Having this
information, our AOs are supposed to answer requests such as,
“Show me restaurants in Lisbon.” We automatically generate
AOs from the databases in two steps. First, we use the structure
of the database to infer the concept hierarchy of the AO.
Second, we add leaf nodes to provide the AO with linguistic
competence. We generate those from database values and add
synonyms obtained from Wiktionary1. Optionally, if a data set
of sample user utterances is present, we can further improve
the linguistic competence. We extract related phrases for each
concept. For example, we can learn the phrase where can I
find for the concept location from examples like, “Where
can I find an Italian restaurant.” Our generated AOs reply
to previously unseen request, e.g. finding a hotel in a city
(which was learned from finding web cams and listing tourist
attractions in a city). Moreover, they correctly respond to
complex requests composed of two or more simple requests,
e.g. asking for both, the location and opening hours of a
restaurant, at the same time. The developer reviews the result
of the generation process and adapts the AO. Usually, this
involves altering the type of inner nodes and adding common
phrases to leaf nodes.

The remainder is structured as follows. First we introduce
the basic elements of Active Ontologies in section II. Then, we
discuss related work in section III. In section IV we present
our approach and the generative process in detail together
with a discussion about its inherent limitations. Afterwards,
we evaluate our approach in section V. We conclude our work
and discuss further improvements in section VI.

II. ACTIVE ONTOLOGIES

Active Ontologies were first proposed by Guzzoni et al. [1],
[2]. Originally, they were used to build virtual assistants.
However, they can be used as a generic CI. We present

1Wiktionary: https://www.wiktionary.org/
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Fig. 1. An AO for the problem domain “reservations”. The AO is can create
service calls to cinema and restaurant reservation systems. The root node is
colored in gray, the inner nodes in light gray, and leaf nodes are white.

the fundamental elements and basic processing of AOs. All
upcoming examples refer to the AO depicted in Figure 1.
Detailed descriptions may be found in the above reference.

AOs combine concept hierarchies with processing rules.
On the one hand, they model the domain as an ontology.
On the other hand, AOs process natural language requests
and turn them into service calls. The concepts and relations
form trees, i.e. an AO is a concept hierarchy of a problem
domain. Information is processed bottom-up. The leaf nodes
react to words in the user utterances. The concept nodes (i.e.
the inner nodes) join information and gradually create an
abstract representation of the utterance. Finally, the root node
gathers all information and initiates a service call. Basically, all
nodes react to input as follows. When they receive a message
(i.e. a piece of information), they decide whether they send
information upwards or not. For the creation of new messages,
nodes often use parts of the received information. Additionally,
they attach a confidence to the fired message. This may support
the decision-making processes of nodes at higher levels. The
decision whether, what, and with which confidence they fire
depends on the particular usage. All of that is implemented by
rule sets. In the following we describe common node types.

Basic leaf nodes (called vocabulary nodes) simply match a
predefined set of keywords, e.g. city names. Often, pre- and
postfix nodes are used. They define a pre-/succeeding word or
phrase, e.g. the prefix “from” to match the departure airport
for flight booking systems. Another common type of leaf node
is the regex node that matches input with a regular expression,
e.g. to detect ZIP codes. Usually, there are two types of inner
nodes: gather nodes and selection nodes. Gather nodes simply
collect information sent by their child nodes; e.g. an address
gather node might collect ZIP, city, and street facts. Selection
nodes decide which information will be passed on; e.g. a
subject selection node might decide whether the user talks
about restaurants or cinemas. Most commonly, selection nodes
decide on the basis of the confidences of the respective inputs.

However, other strategies are possible. The most common type
of root node is the call node. It creates a service call and passes
it to the service broker. The service broker is a sub-system
that selects the most suitable service provider(s) for the call.
A language generation module post-processes the response to
the service call. The result is presented to the user.

III. RELATED WORK

In this section, we first review proprietary virtual assis-
tants (see subsection III-A). Then, we present platforms for
developers to create systems with CIs, e.g. chatbots and the
like (see subsection III-B). Finally, we discuss work from
the research area natural language interfaces to databases (see
subsection III-C).

A. Proprietary Virtual Assistants

Virtual assistants both for home environments (e.g., Amazon
Echo, Google Home) and mobile use (e.g., Apple Siri, Google
Assistant, Microsoft Cortana) are omnipresent. However, little
is known about the technology behind these assistants. US
patent no. 8,677,377 [3] suggests that Apple’s Siri makes
use of Active Ontologies. Amazon’s Alexa interacts with
third-party services through so-called ”skills”. Google uses a
knowledge graph to answer user queries2 and Amazon states
that they use “deep learning technologies”3 to develop Alexa.

B. Platforms for Conversational Interfaces

Besides proprietary assistant systems, all major companies
provide platforms for developers to create CIs, e.g. IBM
Watson4 , Microsoft LUIS5 , Facebook’s WIT6 , Amazon Lex7

, and Google’s Dialogflow8 .
Dialogflow provides an API for developers to add natural

language processing capabilities to applications. One can build
CIs to create chatbots and the like. Developers build so-called
agents. Agents determine the user’s intent from an utterance.
Each agent deals with one or more intents, e.g. requests
for weather forecasts or web cams. When an agent grasps
an intent, it extracts relevant information and passes it to a
connected service. Since users may express intents in different
ways, it is necessary to provide Dialogflow agents with a
variety of different phrases for each intent. The developer
does not only have to provide the phrases but also annotate
actions and parameters in all phrases. One must also specify
the parameter mapping, i.e. which word must be translated to
which parameter in the service call.

Almond [4], developed by the Stanford University, is an
open and crowd-sourced platform to build virtual assistants.
Almond is composed of three modules: a virtual assistant,
the knowledge base Thingpedia, and the runtime environment

2Andreas Blumauer, Semantic Web Company: https://semantic-web.com/
2018/08/23/knowledge-graphs-connecting-dots-increasingly-complex-world/

3Amazon Alexa: https://developer.amazon.com/de/alexa/science/
4Watson Assistant: https://www.ibm.com/cloud/watson-assistant/
5LUIS: https://www.luis.ai/
6wit.ai: https://wit.ai/
7Amazon Lex – Build Conversational Bots: https://aws.amazon.com/lex/
8Dialogflow: https://dialogflow.com/
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Fig. 2. The process to automatically create AOs. We use an (initially empty) internal representation that is successively populated from different sources:
database structures and values, synonyms from Wiktionary, and – optionally – sample utterances from Dialogflow or similar sources.

ThingSystem. The virtual assistant translates natural language
queries to the specialized programming language ThingTalk.
The code is executed on ThingSystem, which creates ser-
vice calls to the respective providers. Developers contribute
to Thingpedia, a crowd-sourced public knowledge base of
open APIs and their natural language interfaces. They specify
trigger-actions such as If-This-Than-That (IFTTT) structures.
The virtual assistant uses trigger-actions during code genera-
tion. The evaluation of the prototype shows that about 40%
of tasks provided by a user familiar with the system are
understood by Almond.

C. Natural Language Interfaces to Databases

Natural language interfaces to databases (NLIDB) have
been studied since the late sixties; the associated conference
(NLDB) is in the 24th iteration. Androutsopoulos et al. [5]
give an introduction to the research area. Pazos R. et al. [6]
review the state of the art. In the following, we briefly present
representatives for common approaches.

Many NLIDB systems use specialized grammars. Rao et
al. [7] use a semantic grammar to translate natural lan-
guage to SQL queries. With customized production rules SQL
queries are directly derived from the words in the utterances.
Some NILDB systems employ intermediate representations
to grasp the intent of the natural language query. C-Phrase
[8] uses an intermediate representation based on first order
logic supplemented by additional higher-order predicates. It
uses synchronous context-free grammars and lambda calculus
expressions to convert natural language queries into the inter-
mediate representation. Then, the intermediate representation
is converted to an SQL query. More recent NILDB approaches
use machine learning techniques. Neelakantan et al. [9] use
neural networks to map from language to SQL. Zhong et al.
[10] employ reinforcement learning to improve quality.

All the above need developer-generated information: sample
sentences, specialized grammars, or rules sets. We derive AOs
directly from the database with minimal human effort.

IV. AUTOMATIC GENERATION OF ACTIVE ONTOLOGIES

We aim to create CIs for virtual assistants, chatbots, and
the like (semi-)automatically. This way, we lower the effort
for service providers to make their data accessible through
a natural language interface. The sole precondition for our
approach is that the service provider stores all information it
wants to provide through the CI in databases. For example, if
a service provider wants to publish information about touristic
attractions it must store addresses, ratings, and the like of
restaurants, museums, or galleries in accessible databases.

As underlying technology we use Active Ontologies. Usu-
ally, AOs are built manually. However, we have shown that it
is possible to create AOs (semi-)automatically from web forms
[11], [12]. In this work, we leverage the information provided
by databases.

In contrast to web forms, databases always provide values,
i.e. instances of concepts. We use the database values and
synonyms to raise the linguistic competence of our AOs.
Moreover, if sample utterances are present, we are able to
add even more linguistic competence through an automatic
extraction of common phrases. Our AOs are able to react to
previously unseen user requests. Furthermore, they reply to
composed requests.

Figure 2 shows an overview of our approach. We use an
internal representation that is populated step by step. First, we
extract the database structure and infer the concept hierarchy.
Then, we create basic leaf nodes from the values in the
database tables. Next, we add synonyms from Wiktionary,
where applicable. If utterance samples are present, we add
common phrases to the respective concepts. Finally, we gen-
erate the Active Ontology from the internal representation.

In the upcoming subsections we first describe the extraction
of the concept hierarchy of the AOs from database schemes
(subsection IV-A). Then we show how we increase the lin-
guistic competence, i.e how we add the leaf nodes to the AOs
(subsection IV-B). Finally, we discuss the limitations of the
approach, i.e. what a developer must review or add to the
automatically generated AOs (subsection IV-C).



A. Taxonomy Extraction from Database Structures

AOs are hierarchic domain models. Inner nodes typically
join information (gather nodes) to create a more complete
view to the user’s request. We observed that database schemes
follow the same intuition. For example, a database table restau-
rant may store information about addresses. The addresses
again may be composed of a ZIP, a city, and a street. The
restaurant table itself maybe used in different contexts. Thus,
the restaurant table defines a concept that includes the sub-
concepts address, ZIP, city, and street. For our prototype we
use deductive databases. 9. However, our approach can also
be applied to relational databases as both database types store
data in a structured way.

The structure is used to create the concept hierarchy of
the Active Ontology, i.e the hierarchy of inner nodes. The
database type only affects the way the database structure is
extracted. Deductive databases contain triples that consist of an
internal ID, the name of the property, and the property value. A
property value may refer to another internal ID. For example,
information about a restaurant is represented as follows:

[id01, @type, restaurant]
[id01, name, The Golden Eagle]
[id01, address, id01.address]
[id01.address, city, Karlsruhe]
[id01.address, ZIP, 76131]

We collect all property names and create a concept for
each. Through the references in property values we infer
hierarchies. For the above example the hierarchy in Figure 3
arises. Concept nodes can either be converted into gather or
selection nodes. For our prototype we decided to only create
gather nodes, because this is the best choice in most cases.
Even though we found that for some concepts selection nodes
would be the better choice, we were not able to come up with
a generic rule to make this decision.

B. Leaf Node Generation

Now that we have created the hierarchy of concepts we
need to extend the AO with linguistic competence. Up to now,
the AO can join information only (and create a service call).
However, it can not gather any information from a natural
language request at all. Therefore, we create leaf nodes that
match certain words or phrases in the utterance. We connect
these leaf nodes to the respective inner nodes. For example, to
create a leaf node that recognizes restaurants by their names

9A deductive database is a database equiped with a rule set. The rules
are written in dialog, a simplified variant of logic programming [13], [14].
The deductive component of the database deviates additional knowledge
from the data via rule executions. Queries are also composed in datalog.
Ramakrishnana and Ullman describe deductive database systems as, “[...]
database management systems whose query language and (usually) storage
structure are designed around a logical model of data. As relations are
naturally thought of as the ‘value’ of a logical predicate, and relational
languages such as SQL are syntactic sugarings of a limited form of logical
expression, it is easy to see deductive database systems as an advanced form
of relational systems. [15]”

restaurant

@type name address

ZIP city street

Fig. 3. A hierarchy extracted from database property names.

we can use the list of restaurants obtained from the database
and attach it to the inner node name.

Besides vocabulary nodes, we generate all kinds of common
node types (see section II), e.g. pre- and postfix nodes and
specialized nodes such as date nodes. We use information from
different sources to create leaf nodes. Next, we describe the
sources, which kind of information we extract, the strategies
to create leaf nodes, and which type of leaf nodes we create
respectively.

1) Database Values: We create vocabulary, regex, and date
nodes from database (property) values. For all string-valued
properties we create vocabulary nodes. We join all values
that belong to the same property (name). Thus, all names of
restaurants are joined in a single vocabulary node. For numeric
database values, e.g. phone numbers, ZIP codes, lengths, and
the like, we use regex nodes. This way, we are able to extract
any numeric information from the natural language input.
Finally, to cope with specific phrases that contain date or time
information such as “the day after tomorrow” we use date
nodes. Date nodes recognize such phrases in the input and
transform them into a machine-readable format.

2) Lexical Databases and Dictionaries: To amplify the
linguistic competence of Active Ontologies one can add syn-
onyms from lexical databases or dictionaries such as WordNet
[16], [17], Wiktionary, or OpenThesaurus10. For our prototype
we used Wiktionary for two reasons. First, as the values in our
test databases are from Austrian service providers we need to
recognize German utterances; Wiktionary provides the most
extensive collection of German synonyms. Second, synonyms
listed in Wiktionary are of high quality.

To retrieve synonyms, we first query Wiktionary for syn-
onyms of the respective word. For each synonym we again
look for synonyms. If no synonyms are available, we extract
the so-called similar words. For each similar word we also
search for synonyms. The list of synonyms and similar words
is stored in a leaf node. Note that the leaf node does not pass
the synonym to its parent nodes. Instead, the value of the
associated property is used. For example, the leaf node that
is supposed to recognize the word “Gaststätte” (German for
“restaurant”) and all its (German and English) synonyms, e.g.
“inn”, “restaurant”, or “eatery” passes the value Gaststätte to
its parent nodes even if it recognizes the word “restaurant”

10OpenThesaurus: https://www.openthesaurus.de
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in an utterance. This also reliefs us from the issue that some
values are German and others are English.

3) Utterance Samples: So far the generated AOs are ca-
pable to match keywords (or phrases) and their synonyms;
they additionally detect dates and other regex-specified values.
However, some user queries do not mention keywords directly.
For example, a user might ask, “Where can I get pasta and
tiramisu?” The utterance neither mentions restaurants directly
nor the keyword “address”. However, obviously the user is
interested in the address of an italian restaurant. To overcome
this limitation we automatically add common phrases that hint
at a concept. Technically, such phrases form pre- and postfix
nodes. We extract the phrases from sample utterances.

We are aware that sample utterances are not available for all
domains/services. Thus, this step is optional. Alternatively, a
developer can manualy add pre- and postfix nodes to the AO.

For our prototype we use sample utterances from Dialogflow
agents. Therefore, we extract all sample utterances from an
agent and use the intent and entities as labels. With the help
of the intent we are able to discover the appropriate AO
part, e.g. restaurant requests. The entities have been linked
to the respective database properties by the developer of
the Dialogflow agent. Thus, we can determine the according
concept in the AO. Additionally, often synonyms for entities
are given. We add these to the synonym vocabulary nodes
attached to the respective concept.

To extract pre- and postfixes we consider all entities in an
utterance. We use all words preceding an entity as prefix and
all succeeding as postfix. Of course, we stop discovery at
the next entity. We consolidate all pre- and postfixes from
all utterances for the same entity. Then we create one pre-
and one postfix node per entity and attach them to the re-
spective concept node. Given the Dialogflow sample utterance,
“[Find me a [place to sleep]ent:type in [Lisbon]ent:city]int:hotel”,
we can identify the synonym place to sleep for the concept
@type of the hotel AO part. Additionally, we extract the
prefixes find me a (concept @type) and in (concept city) as
well as the postfix in (concept @type).

C. Limitations

To automatically generate AOs, we have to make design
decisions. For example, since we cannot automatically decide
between selection and gather nodes, we create gather nodes
for all concepts. However, in rare cases selection nodes are
more appropriate. A developer can determine which node type
is most suitable and select it accordingly. Another design
decision concerns database values. We create word lists (for
vocabulary nodes) for all string-valued properties. However,
regex nodes might be more suitable to extract particular words
or phrases, e.g. sub-strings.

In some cases, the extracted pre- and postfixes are either to
specific or not specific enough. Modifying the phrases could
improve matching with utterances. Entirely missing prefixes
cause false positive matches and consequential conflicting
hypotheses. Therefore, we expect that adding missing pre- and
postfixes improves the accuracy of the AOs considerably. The

same applies to synonyms; a manual review improves accuracy
since an automatic extraction of synonyms is error-prone.

V. EVALUATION

We evaluate our approach in three domains: tourism, hotels,
and webcams. For each we have a deductive database and
Dialogflow agents. The tourism dataset comprises information
about local restaurants, ski rentals, events and the like. The ho-
tel and web cam datasets contain information about the names
and locations of hotels and web cams. In total, we included
3,861 data elements: 1,873 elements from the tourism, 1,303
from hotel, and 685 from web cam dataset.

We generate AOs for each domain in different variants.
The basic AOs are created from the databases and synonyms
only. All other configurations use sample utterances from
Dialogflow agents to add pre- and postfix nodes. We use
phrases from individual domains and all possible combinations
of domain. For each domain we use all available samples
provided by the agents for phrase extraction.

Note that any AO is enriched with pre-/postfixes where
applicable. In other words, if we extract phrases from the
web cam domain only but the other domains share concepts
(e.g. locations) the respective phrases are added to all AOs.
With that, we asses the impact of phrase extraction (the more
the better?) and synergy effects (can we employ phrases from
other domains?).

The database values are a mixture of English and German
words. However, the sample utterances are in German. During
AO generation we translate database values in the synonym
mapping step (see subsubsection IV-B2). The generated leaf
nodes are defective in some cases due to incorrect translations.
However, we cannot measure the effect (if existing).

To asses the quality of our generated AOs we compare them
to the Dialogflow agents. Therefore, we match the replies for
a request returned by the AOs against Dialogflow. We assume
that replies given by the Dialogflow agents are always correct,
since all sample utterances have been manually annotated with
intent and entity labels by developers. The Dialogflow agents
contain 1,652 sample utterances (tourism: 1,140, hotels: 378,
web cams: 134) with 4,597 entities (tourism: 2,430, hotels:
727, web cams: 1,440). To limit the effort, we analyzed
a randomly sampled subset. We used 100 test utterances
per domain for the configuration with no sample utterances,
i.e. AOs built from databases and synonyms, and for the
configuration with samples from all domains. For the other
configurations we used 50 samples each.

The results of our study are depicted in Table I; the highest
values for each configuration and per measure are highlighted.
The first column shows the configuration for the phrase
extraction, i.e from which domain we took samples during
AO generation: (T)ourism, (H)otel, and (W)eb cam. For all
configurations we determine accuracy, recall, precision, and
F1 for the test utterances for individual domains (T, H, and
W) and all domains (∀). Note that we determine accuracy on a
per-reply level, i.e. we count only answers that exactly match
the Dialogflow result as correct. For precision, recall, and F1



TABLE I
EVALUATION RESULTS FOR DIFFERENT PHRASE EXTRACTION SETTINGS. WE EITHER USED NONE, PHRASES FROM TOURISM (T), HOTEL (H), AND

WEBCAM (W) AGENTS, OR VARIOUS COMBINATIONS.

Phrase Accuracy Recall Precision F1

Extr. T H W ∀ T H W ∀ T H W ∀ T H W ∀
none 0.11 0.00 0.16 0.09 0.12 0.06 0.29 0.18 0.34 0.60 0.79 0.58 0.18 0.11 0.42 0.27
T 0.30 0.02 0.22 0.18 0.50 0.22 0.29 0.35 0.72 0.45 0.42 0.55 0.59 0.30 0.34 0.40
H 0.14 0.00 0.06 0.06 0.04 0.10 0.26 0.17 0.13 0.40 0.75 0.48 0.06 0.16 0.39 0.25
W 0.14 0.02 0.24 0.13 0.19 0.31 0.51 0.34 0.42 0.63 0.84 0.66 0.26 0.42 0.63 0.45
T+H 0.26 0.04 0.22 0.17 0.43 0.25 0.55 0.28 0.71 0.47 0.45 0.52 0.55 0.35 0.37 0.36
T+W 0.32 0.02 0.40 0.24 0.44 0.33 0.55 0.46 0.78 0.52 0.96 0.79 0.57 0.40 0.70 0.58
H+W 0.02 0.14 0.34 0.16 0.18 0.24 0.55 0.33 0.26 0.50 0.78 0.51 0.21 0.32 0.65 0.43
T+H+W 0.30 0.08 0.28 0.22 0.45 0.35 0.50 0.45 0.74 0.62 0.79 0.78 0.54 0.43 0.61 0.57

we compare each element (i.e. entity in Dialogflow, concept
in the AO) of the service call separately.

If an element is identified correctly, it is considered a true
positive. Elements that were extracted mistakenly, i.e. they
do not match an element extracted by the Dialogflow agent,
are false positives. Any missing elements account for false
negatives. Assuming that the service call elements for the
exemplary request, “Find me a hotel in Lisbon,” are:

• Dialogflow: [hotel]ent:type, [Lisbon]ent:location
• Active Ontology: [hotel]ent:type, [sauna]ent:feature

In this example, hotel is a true positive, Lisbon a false negative,
and the sauna accounts for a false positive.

The results indicate that our approach is feasible. Using the
databases and synonyms for values only we achieve a precision
of 58% (recall 18% and F1 27%). However, the accuracy
(9%) shows that there is still much room for improvement.
The evaluation also shows that enriching the AOs with sample
utterances improves the quality in almost all cases. The best
accuracy (40%), recall (55%), precision (96%), and F1 (70%)
are achieved for web cam requests when we use sample
utterances from both the tourism and web cam domains.
This clearly shows that phrases from other domains improves
the linguistic competence of AOs. The effect can be further
assessed with the results from the tourism domain with phrases
extracted from the web cam domain (row H). Accuracy, recall,
and precision improve in comparison to the configuration
without any phrase extraction. This is due to shared concepts
in both domains and similar sample utterances. For example,
our approach extracts the prefixes are there for the concept
@type and in for location from the web cam sample:
“Are there [live pictures]ent:type in [Salzburg]ent:location?”11

The prefixes can be applied to requests from the tourism
domain such as, “Are there ski schools in Seeberg?”12

However, extracting sample utterances from the hotel do-
main often degrades the results as one can see, e.g. in the rows
H and H+W. This is due to requests with many enumerations
that occur frequently such as, “I am looking for a designer
hotel with free parking, sauna, whirlpool, wifi, tennis court,

11Original: “Gibt es [Live Bilder]ent:type in [Salzburg]ent:location?”
12Original: “Gibt es Skischulen in Seeberg?”

and a restaurant voucher.”13 Pre- and postfixes extracted from
such samples produce both false positives and false negatives.
For example, if the sample does not have an entity annotation
for free parking our approach extracts the prefix with free
parking for the concept feature (instance sauna) that causes
false positives. Vice versa, if free parking has an annotation
our approach misses the (correct) prefix with as we discontinue
phrase extraction at the next annotation.

The best results for the hotel domain are achieved if we
extract phrases from the web cam domain (see rows W, T+W,
T+H+W). The results for tourism and web cams both improve
when phrase samples from their own domain are used.

Accuracy values are low. However, using any kind of sample
utterances increases the accuracy in all domains in almost all
cases and reaches 40% in the best case.

We identified three errors classes that primarily affect the
results. Rare errors are false positive elements due to missing
pre-/postfixes. Concepts never mentioned in sample utterances
are still part of the AO. These concept nodes have vocabulary,
regex, or date nodes attached. Therefore, they might match
requests even though the request have different intents. For
example, a hotel might have a laundry but no sample mention-
ing it. The hotel AO then has a vocabulary node that reacts to
any “laundry” in user requests. This may create false positives
from requests such as, “I’m looking for laundries.”

Another error class is the incorrect selection of service calls.
Our approach consolidates all concepts from each domain in
a single AO. This way, we assure that only one service call
is created from all hypothesis (combinations of elements).
In some cases correct hypothesis have lower confidences
than incorrect ones. If so, the root node chooses the wrong
hypothesis and creates an incorrect service call.

Missing or incorrect synonyms form the third error class.
Missing synonyms cause false negatives, while incorrect syn-
onyms may produce false positives. An example for the latter
is the German synonym Haufen (engl. pile/bunch) for the word
Berg (engl. mountain) that is often used in colloquial idioms.
This causes the AO part responsible for information on ski
tours (to particular mountains) to react to phrases such as “ein
Haufen Leute” (engl. “a bunch of people”).

13Original: “Ich suche ein Designerhotel mit gratis Parkplatz, Sauna,
Whirlpool, WLan, Tennisplatz und einem Restaurantgutschein.”



VI. CONCLUSION AND FUTURE WORK

We have presented an approach to automatically create
virtual assistants from databases. Our virtual assistants use
Active Ontologies to model the problem domain and process
user utterances.

To generate AOs we first infer a concept hierarchy from
database schemes and create word lists and regular expressions
from extracted database values. We extend the word lists with
synonyms from Wiktionary. Additionally, if sample utterances
are present, we build pre- and postfix nodes to enhance the
linguistic competence of our AOs.

Our evaluation in the domains tourism, hotel, and web
cams shows that our approach successfully generates AOs
that extract relevant information from user utterances. When
we use sample utterances, precision and recall increases. Our
approach successfully learns phrases from a domain (e.g.
tourism) and uses it for queries from another (e.g. hotel).

We plan to improve the AO generation process. For the time
being, we create one AO per domain. We experiment with
smaller AOs, that may extract intents with higher confidences.
This also evades the duplication of subtrees (e.g. for addresses
of restaurants and cinemas).

Another improvement involves the general structure of the
AOs. In some caeses multiple pre- and postfix nodes fire
at the same time, which makes intent extraction ambiguous.
An additional layer of selection nodes that selects the most
reasonable pre-/postfix may be beneficial.

We observed that some phrase segments are more meaning-
ful than others. Therefore, we have implemented an alternative
to pre-/postix nodes. Instead of using full pre-/postfix phrases
we extract single words and create a vocabulary node for each.
We attach all of them to an additional layer of gather nodes
that represent the original pre-/postfixes. This way, we create
subtrees that capture bags of words. We calculate the TFIDF
for each word per intent (each intent is a document and all
intents correspond to the document set). The TFIDF value is
used as confidence for the new vocabulary nodes.

A first case study shows the potential of this approach. We
used 239 sample utterances from Dialogflow agents for the
intent “request opening hours”. Additionally, we created 13
synthetic requests for addresses (e.g., What is the address of
the restaurant The Toothless Shark in Cologne?).

We created bag-of-words subtrees for both intents and
integrated them into the AO. On the test set the AOs answered
opening hours request with an accuracy of 65% and addresses
with an accuracy of 23%. The low accuracy for the latter is
due to the small number of sample utterances.

With the bag-of-words subtrees the AOs can extract multiple
intents from single user utterance. For the time being, virtual
assistants such as Dialogflow cannot combine different intents.
Thus, our approach improves the state of the art. Composed
requests such as, “Give me the address and the opening hours
of the hotel Tivoli Oriente in Lisbon,” achieve an accuracy of
40%. In the future, we plan to further investigate the bag-of-
words-approach and evaluate it on a larger data set.
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