
Model View Controller in iOS mobile applications
development

Dragoş Dobrean and Laura Dioşan
Faculty of Mathematics and Computer Science, Babes Bolyai University

Cluj Napoca, Romania
{dobrean,lauras}@cs.ubbcluj.ro

Abstract—Due to the increased number of mobile applications
and their popularity, many software developers have begun to
focus on mobile platforms. While this focus has positive effects
(e.g. a larger developer community, new open source projects,
new tools), it also has a down side. With the migration of devel-
opers from different software development areas, where they have
used other programming paradigms or architectural approaches,
the topic of software architecture on mobile platforms become
more trending and hype in the mobile development communities.
Even though several new architectural solution were proposed
for solving some of the issues which arise from using the
classical architectural patterns popularised by the creators of
the mobile platforms, we want to emphasise the principles of
software architecture in mobile computing, why they have to
be respected and how their adoption impacts the development
process. Therefore, this paper focuses on showing that the Model
View Controller (MVC) — one of the most common classical
architectural patterns — can be used successfully for building
mobile applications and the problems which might arise are by
products of the wrong usage of the pattern rather than pattern
issues. We show that by analysing the most common architectural
misuses of the MVC pattern in both open-source and private
projects and offers solutions to those problems.

Index Terms—Apple’s Model View Controller (MVC), Mobile
Software Architecture, Architectural Smell, iOS.

I. INTRODUCTION

Mobile applications have become an important part in the
life of the modern man. The involved devices have become
indispensable companions in our lives. We use them for social
interactions as well as for business activities, for increasing
our productivity or for self improving and entertainment.
According to GSMA Intelligence two thirds of the world
are connected by mobile devices [1]. In order to be able to
sustain this high rate of adoption and popularity of the mobile
applications, many developers migrated from building other
types of software to building mobile applications.

This blend of domains has brought many new trends to
the mobile platforms (for instance, functional programming
which has become used in large mobile projects [2], [3]).
However, this union of domains has also had downsides: new
or inexperienced developers of those who have migrated from
other platforms did not understand fully how all the mobile
development concepts work, how are they supposed to be used,
and there were not many places in which they could learn how

DOI reference number: 10.18293/SEKE2019-048

to properly use those. Mobile software architecture has become
greatly affected by this phenomena [4]–[6].

It is an established fact that a good software architecture
and design could increase the system quality: performance,
evolvability, maintainability and reliability [7]. When weak
design decisions affect the software properties, the archi-
tecture is often subject to various problems (code smells,
design smells or architectural smells). Related work regarding
software architectural smells can be found in [8] where the
authors showcase 11 architectural smells grouped in 4 differ-
ent categories (Interface-Based Smells, Change-Based Smells,
Concern-Based Smells and Dependency-Based Smells). All of
issues can also apply to mobile platforms software applica-
tions. In [9] and [10] 4 of the architectural smells are analysed
in depth and shown on 2 industrial software systems. Other
work has been done in [11] where the authors have analysed
the architectural erosion of Open-Source Software projects.

Although the drawbacks of architectural erosion have been
already recognized [9], [10], [12], [13], the authors of these
studies have focused on classical systems, rather than mobile
ones: Velasco et al. [14] presented several architectural smells
that are relevant to MVC, while Aniche et al. [15] identified
six classes in the context of web applications constructed on
MVC pattern.

Our initial effort drives to identify the possible MVC
problems in the context of mobile applications, to characterise
them and to describe how they can be fixed. In this paper, we
aim to answer the following research questions:

• RQ1: What are the problems of MVC in the context of
mobile applications?

• RQ2: Is there a classification for the MVC architectural
problems?

• RQ3: How can the problems be fixed?
To the best of our knowledge, an MVC analysis in the iOS

context was not been performed until now. Previous works
[14], [15] are focused on web or classic flavours of MVC and
on the problems caused only by the violation of constraints
which MVC style defines between its components or layers. In
the mobile context, the weaknesses of Android’s design have
been analysed and a passive flavour of MVC was proposed in
[16].

The rest of the paper will focus on the iOS platform on
its architectural pattern encouraged by Apple, Model View
Controller (MVC) [17]. Architectural issues explained in this



Fig. 1. Apple’s Model-View-Controller architectural overview

paper also apply to other platforms which use MVC for build-
ing applications (macOS, Windows, etc.), while the naming
conventions might be different the concepts and issues are the
same. MVC was chosen as is one of the most know presenta-
tion architectural pattern while being present on all the mobile
applications platforms in various flavours. In addition, MVC
is highly versatile, having different flavours as Model-View-
View-Model (MVVM) [18], Model View Presenter (MVP)
[19], etc.

The following section talks about MVC and Apple’s flavour
of it. Section

II. APPLE’S MVC

Model View Controller is one of the most widespread pre-
sentational architectural patterns, being used to create desktop,
mobile and web applications [20]–[22]. The purpose of MVC
is to provide a simple separation of concerns for an application
that embeds a user interaction component. One of the most
important aspects of this pattern is that the application should
work, and fulfil all its requirements even if we remove the
View and Controller layers. The data manipulation and the
business logic should reside the Model and it should not be
affected in any way by those other layers.

Apple’s version of MVC [17] is different from the concep-
tual, generic one [23]. The classic MVC [23] was coined when
there did not exist the concept of mobile applications; in order
to compensate for this fact, Apple promoted a flavour of MVC,
which is better suited for mobile and desktop applications.

It is composed from the same three layers (Model, View,
Controllers) and the only thing changed is their way of inter-
action and the data flow. The layers are more decoupled and
it does not rely so heavily on the Observer/Delegate pattern;
it is still being used, but it is not as used as intensively as on
the classical pattern. In Apple’s flavour, the Observer/Delegate
pattern is more aimed to provide callbacks from one layer to
another than to observe Model layer properties.

The accent in the Apple’s flavour of MVC is on the
Controller, as can be seen in Fig.

This emphasis shift can also be seen in the way they have
named their framework components. At the centre of every
iOS application, we find the View Controllers which act as
bridges between the data of the application (Model) and the
user interfaces (View).

In Fig.
Advantages This flavour of MVC simplifies (from the

classic MVC) the data flow between the layers, making the
data flow clearer. In addition, it also reduces the coupling

between the layers; the link between the Model and The
View (from the classic MVC) no longer exits, making the
components more isolated.

Disadvantages The Controller layer becomes the central
piece of the architecture; it needs to ensure the proper com-
munication between the Model and the View layer and vice-
versa. This task makes the Controller layer to grow to be
quite complex, which can lead to architectural issues (massive
view controllers) as well as OOP issues (violation of single
responsibility principle).

III. ANALYSIS

As instances of poor design decision, the architectural
smells originate in the improper use of a design solution or
of software architecture-level abstractions. In what follows
we attempt to facilitate the identification of such problems
in the context of mobile applications involving the MVC
pattern. We provide a short description of each problem and its
causes (trying to answer RQ1), the architectural smell’s class
it belongs to (as answer to RQ2) and one or more possible
solutions (answer to RQ3).

In order to be able to answer those questions we needed to
inspect different sized codebases, we have chosen 5 codebases,
with different variations of MVC that added architectectural
layers from: MVVM [18], MVP [19] VIPER [24].

• Wikipedia – education and information app [25]
• Firefox – a mobile web-browser [26]
• Trust – cryptocurrency wallet [27]
• E-Commerce — private
• Game – private

TABLE I
CODEBASES SIZE

Application Blank Comment Code Source
Firefox 23392 18648 100111 open-source
Wikipedia 6933 1473 35640 open-source
Trust 4772 3809 23919 open-source
E-Commerce 7861 3169 20525 private
Game 839 331 2113 private

As can be seen in Table

A. Complexity

1) Issues: Mobile applications have grown to be complex
software systems where they do much more than just fetching
some data from a web service and displaying them on the
screen. While for a simple application the MVC pattern would
be sufficient, if we add extra complexity, such as working
with databases, caching, virtual reality, audio, photo or video
manipulation, we might ran into some issues.

Although using another presentational pattern (e.g. MVVM
[18] or MVP [19]) might solve some of the problems, if the
application becomes more complex, even these patterns will
not be sufficient to maintain it flexible to change, testable and
easy to be understood and worked on.



2) Solutions: MVC is an architecture to be used on small-
medium sized applications. If we talk about a complex appli-
cation then an architectural approach needs to be designed in
order to fulfil its use-case. MVC provides the basis for this new
architecture and its three degree of separation should definitely
be implemented. But, in addition and in order to make the
codebase maintainable, we might introduce additional layers,
such as Presenters from MVP, View - Models from MVVM
or Routing objects from VIPER [19], [24], [28], [29].

3) Findings: Trust, E-Commerce and the Game had the
clearest defined architecture. Analysing the codebase is easy
to get a grasp on how the app works and the codebases were
consistent in both naming and design pattern used. Firefox,
being the largest codebase and given its functionality, is a
more complex one and it is the hardest from the codebases
to understand and uses multiple layers. Wikipedia relies on
multiple open source libraries and internal UI libraries which
introduce extra obfuscation and makes the codebase harder to
comprehend.

B. Misunderstandings

1) Issues: Another common problem we encounter when
talking about MVC is that people usually have different
concepts of what MVC is and how should it be used. People
coming from ASP.net MVC [30] development might have
a total different idea of how the MVC components should
communicate from those who are developing mobile appli-
cations. As we have already seen, different companies have
different definitions for what MVC is and how it should be
used with their frameworks. This problem has a real impact
when developers migrate from one platform to another and try
to use the same MVC definitions on a new framework.

Almost all people with some knowledge about the MVC
agree that the Model should contain data useful for application
[31], the View is responsible with presenting the data to the
user and the Controller layer acts as a mediator of some sort
between the other two layers. Those are very vague definitions
of MVC and 2 people can disagree on what should be put in
the Model and what should reside in the View or Controller
layer.

Developers of MVC frameworks usually give their defini-
tion of what MVC meant for them or how should this be
used; however, those definitions usually are vague as well. The
reason of this ambiguity can be rooted in the generality of the
frameworks, which should adapt to many types of applications.
A constrained architecture, which would fulfil all potential
use-cases is not feasible and it is considered redundant for
applications that do not need a high level of architectural
complexity.

2) Solutions: The first step into ensuring that an archi-
tectural pattern is correctly implemented is to have clear
definitions of its elements and everyone involved in the project
to be well aware of. In order for this to happen, it is important
that the lead developer or the system architect to understand
clearly the scope of the product and to be able to draw
architectural guidelines which would fit the project.

3) Findings: From the analysed projects, Trust, Firefox and
the E-Commerce app were the ones in which there was a clear
defined architecture which could be inferred from the codebase
and it was consistently used. The Game app was the smallest
and its architecture didn’t require any specific guidelines given
its complexity. In the case of Wikipedia, the code was not
consistent, and the guidelines were not clear.

C. Model

1) Issues: Most of the problems which appear in this layer
are design pattern issues; the usage of too many singleton
objects and the violation of SOLID principles [32] are the
root cause of the problems which can appear at this level. The
result will be a damaged architecture at a micro level — high
coupling between items in the same layer.

Among the common mistakes in the model are the fact
that objects which interact with a database or a web backend
service have reference to the ones using those (usually View
Controllers). These references can create retain cycles —
Dependency-Based Smells [8] — and also impact the MVC
architecture by making the Model layer have knowledge about
the Controller layer.

The problems which appear at this level are usually from the
Interface-Based Smells category as defined in [8], [11]. Is not
uncommon to find Ambiguous Interfaces or Concern Overload
where a component performs a large amount of tasks and have
a scarce number of interfaces. For instance, the objects which
communicate with the backend for fetching data are most of
the time responsible for creating the connection, converting
the input parameters to what types of information does the
backend service expect, parsing of the response it receives
and mapping it to a codebase defined entity.

2) Solutions: This issue can be solved using the Ob-
server/Delegate pattern, where the Model layer provides call-
backs for its events and the Controller layer takes various
actions based on those events.

3) Findings: All the analysed codebases presented issue on
the Model layer as each one of them has wrong, direct depen-
dencies between the Model layer and the View or Controller
layer. The most problematic ones were the E-commerce and
Firefox. In all the codebases excepting the Game, we find the
Concern Overload and the Ambiguous Interfaces smells [8],
[11].

D. View

1) Issues: In large projects, which do not have major
architectural issues, the Controller objects configure the Views
by directly passing the Model item as an argument. This
common practice creates a dependency between the View and
the Model, which is not presented in the Apple’s way of
defining the MVC (Fig.

An example would be a list of new movies in a booking
application: the cell that is responsible for displaying a new
movie will usually receive from the Model, a Movie entity,
which contains much more data then what is needed to be
displayed (the ID from the database, a list of actors, number



of people who already booked it, etc.). This is an overlooked
issue with MVC and usually the developers accept it, even if
this is an architectural mistake nevertheless.

The mentioned problem belongs to Co-change Coupling
smells [11], an architectural issue which occurs frequently at
this level. The coupling is predominantly done between the
View and the Model layer. However, this can also appear in
the View and Controller layer.

2) Solutions: In order to overcome this difficulty, new ob-
jects can be defined for keeping the configuration of the view
(when the view needs a lot of configuration information from
the model), or this information can be passed as parameters
to the view using primitive types.

The new defined items for the configuration of the View rise
another problem: where should those items reside? They know
nothing about the View so is not in the View layer; however,
they are only used and have meaning in a context in which
those Views exist. An approach to solve this problem would be
to treat these items as belonging to the Model as they handle
the business logic display part, they can be seen as mappers
between entities and views or data transfer objects.

Another approach, if the developed application needs this
kind of complexity, is to use another architectural pattern
namely MVP [31], which inherits from MVC; basically, it is a
variation of MVC, where there is a new layer for configuration
objects, called Presenter. The Presenter, however, is a more
specialised object: besides configuration information, it also
contains information regarding the state of the View (selected,
unselected, highlighted, whether or not some of the fields
should be pre-filled etc.).

3) Findings: All the analysed codebases have shown Co-
change Coupling smells, the most severe ones was the E-
commerce one. The open-source apps also exhibited this issue,
however at a much lower degree.

E. Coordinating Controllers

1) Issues: Just like in the case of Apple’s MVC, there are
different flavours of MVC where there is a combination of
roles (View and Controller) into a single entity called View
Controller. This entity owns the View and it responds to its
events. The View Controller is responsible for responding to
input received from the View and for displaying and moving
those Views on the screen. Those kind of controlling objects
usually derive from a superclass. For instance, on the iOS
SDK, the superclass is UIViewController, on Android we have
the Activity superclass.

There are cases where the complexity of the application
requires another kind of controller objects — Coordinating
Controllers. Coordinating type of controllers are simple objects
that manage the application; they usually decide when a certain
action should happen and keep track of the state of the
application [33]. Those kinds of objects are responsible for
deciding on what state (flow) of the application to go next
(when a certain event occurred) based on the current state,
for setting up the initial state and managing the lifecycle of
contained objects.

By flow and state we mean what use case scenario is
presented on the screen at a certain moment in time; flow
is a broad term and in the context of this paper we are using
it to describe a use case (e.g. sign up), if we were to have a
higher granularity, the flow can be split in multiple sub-flows
(e.g. the forgot password of the sign up flow).

Therefore, the Controller layer can be split into two cat-
egories: View Controllers and Coordinating Controllers. The
View Controller objects have come to be generally accepted as
the Controller objects by most of the practitioners in this field.
However, this is not always the case and there is an important
distinction between Coordinating Controller objects and View
Controllers [17].

Unfortunately, this degree of separation in the context
of Controller layer is not so well understood on the iOS
platform. All these concepts appear in AppKit development
scene (desktop application for macOS), as this platform is
older and more evolved. Usually this form of separation within
the Controller layer is not needed, as the applications are not
complex enough to justify it. The problems start arising when
the application becomes complex and the people working have
a lack of architectural knowledge on how to scale it or the
architectural state in which they need to arrive is unknown or
insufficiently defined.

Frequently, the responsibilities of Coordinating Controllers
get stuffed in the View Controller objects increasing their
complexity and changing their purpose as now, they also
have to take care of knowing the state of the application and
correctly transitioning between the states in every possible
configuration. By taking this responsibility in other custom
objects (Coordinating Controllers), the View Controller object
become slimmer and they are no longer depending on each-
other.

This practice is fairly popular or familiar and is usually
implemented in applications where a clear architectural guide-
line is not defined or not sufficiently described and defined
for all the potential corner cases. A lighter common version
of this coordination is to have an object which all the View
Controllers inherit from, where all the common navigation
flows are stacked in.

This sort of behaviour (merging responsibilities) is common
for small applications where the UI is quite simple (one–
three screens), where the extra Coordinating Controller objects
would not provide real value, or for beginner developers. Most
of the applications which are fairly complex have multiple
flows (sign up, sing in, browse items, add to cart, checkout,
previous orders, feedback, settings, profile, etc.). These ap-
plications are the ones which suffer massively from the lack
of coordinating layer as their View Controller objects become
bloated with navigation and configuration logic. This kind of
complexity creates architectural issues especially when the
application needs to be changed because many components
fulfil the same functionality, for instance the correct navigation
from one screen to another (Scattered parasitic functionality
[8]).



Fig. 2. Firefox iOS application screenshot [26]

2) Solution: The solution to this problem (complex appli-
cation with multiple use-cases and flows) is to have mul-
tiple Coordinating Controller objects for every flow of the
application or for every sub-flow of the application; each
of these flows will have a single, well defined use case
(login in the user, uploading a picture, making a payment,
etc.). All the application’s flows and navigation will be then
expressed via those building blocks (Coordinating Controller
objects for certain flows or sub-flows). By using this approach,
we reduce the complexity of View Controller objects. They
become concerned only with displaying the data and mediating
between View and Model layers. All the navigation and
configuration logic now resides in the Coordinating Controller
objects. In addition, we can easily change the flows of the
application even at runtime, we can Unit Test the navigation
from one screen to another and the correct configuration of the
View Controller objects, which, in the case of massive view
controllers, is rather hard.

3) Findings: Firefox, Trust and the E-commerce apps were
the ones in which the Coordinating Controllers were correctly
used. Wikipedia was the worst analysed app from the Co-
ordinating controllers point of view, the Scattered parasitic
functionality [8] is predominantly present in the codebase.

F. View Controllers

1) Issues: Another issue which is overlooked is that de-
velopers usually use one view controller per screen (the UI
elements shown on the full size of the screen). While this is
the right approach for simple screens such as a ”Terms and
conditions” screens or even a ”Login” screen, if we talk about
complex UI interfaces (e.g. the browse screen from Firefox)
this is totally wrong.

The browse screen from the Firefox application (see Fig.
A large amount of the problems which we encounter in

the MVC approach on iOS deals with the View Controller.

In fact, it has access to both View and Model layers and
acts like a binder between them; an example would be if
the data obtained from the Model is not well formatted, the
View Controller will format it for the View and this is not
clearly its responsibility. A View Controller should only be
concerned with presentational aspects of a certain part of the
application and for handling the user input received from the
View. Obviously problems can appear at other levels, as well
on Coordinating Controllers or Model level, but these usually,
like in the case of View Controllers, have the root cause the
low granularity of the architectural components and can be
solved by increasing the granularity of the elements (splitting a
certain item in multiple others and use the Composition design
pattern).

In addition, the View Controller objects are also bloated
with handling View logic and states. By view logic and state
we mean keeping the internal state of the view which cannot be
inherited from the Model. For instance, knowing which items
were selected on the screen, what slider is enabled etc., before
applying these changes to the Model. This sort of logic should
be implemented in custom objects; most of the times the MVP
pattern is used for solving this issue, but as a workaround in
MVC, these can reside in subclasses of View components or
in custom objects defined in the Model layer.

At this level, the major architectural smell is Concern
Overloading [11], as like previously shown, the View Con-
troller object become bloated with an excessive amount of
responsibilities.

2) Solutions: The solution to this problem is to use multiple
view controllers for the UI elements; for instance, we could
have a View Controller object responsible for the turn by turn
navigation advices, we could have another one for the map
and so on. Furthermore, if these elements are complex by
their own, they could be split further in more View Controller
objects which should respect the single responsibility princi-
ple. By using this approach we would obtain view controllers
that respect the single principle responsibility ensures a good
separation of concerns, they contain less code, and they
become testable.

As in the case of Coordinating Controllers where we could
have Coordinating Controller objects, which depend on other
Coordinating Controller objects we can apply the same logic
to creating user interfaces and using multiple child View Con-
troller objects to construct a single screen of the application.
By using this approach, each View Controller object will have
single responsibility and purpose.

3) Findings: All the codebases shown signs of Concern
Overloading [11], the issues are however bigger as the code-
base increased. In the case of the apps which were using
Coordinating Controllers (E-Commerce, Trust, Firefox) the
issues were lower than in the case of Wikipedia where the
View Controller classes were way more complex as they also
had to handle navigation logic.



IV. CONCLUSIONS

By our study we have tried to provide interesting insights
about several common problems of MVC for both mobile
developers and scientific community which are commonly
found in open-source or private projects. We describe these
problems in detail as well as their corresponding architectural
smells. Furthermore, several solutions to those problems have
been proposed which shed some light on architectural corner
cases which were less explored by practitioners.

As we have shown previously in this paper, MVC can be
used as the presentational software architecture for a mobile
application. If the concepts are implemented correctly this
does not produce any of the popular issues, neither massive
view controllers nor the violation of the single responsibility
principle.

What is important to be understood is that based on the
complexity of the application the entities in the MVC ar-
chitecture should be more granular, in order to be flexible,
testable and maintainable. Based on this complexity, new types
of layers or sublayers can appear which are close related to
the requirements of the application.

Based on the observations made throughout many years of
developing commercially those kinds of applications, the pre-
sentational architectural concept used was never an issue for
the flexibility, extensibility and testability of the application;
the issue always came from its bad implementation, or the
misusage of programming language featurese

Our further work will continue on developing tools for
ensuring that a certain architectural pattern or certain archi-
tectural rules are respected with every commit made by a
developer. By following this direction we can educate devel-
opers regarding the architectural aspects of a mobile software
application, we will help them produce cheaper and cleaner
code.

REFERENCES

[1] GSMA. (2017) Global mobile trends. link.
[2] A. Cowkur. (2017) Functional programming for Android developers.

link.
[3] ObjC.io. (2016) Functional programming. link.
[4] E. Bessarabova. (2017) MVP vs MVC vs MVVM vs VIPER. What is

better for iOS development? link.
[5] K. Kocsis. (2018) Architectural patterns, MVC, MVVM: What is the

hype all about? link.
[6] E. Maxwell. (2017) MVC vs. MVP vs. MVVM on Android. link.
[7] H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,

“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol. 119,
pp. 31–44, 2016.

[8] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating
architectural decay and sustainability of software systems,” in Software
Architecture (WICSA), 2016 13th Working IEEE/IFIP Conference on.
IEEE, 2016, pp. 178–181.

[9] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in Software Maintenance and Reengineering,
2009. CSMR’09. 13th European Conference on. IEEE, 2009, pp. 255–
258.

[10] ——, “Toward a catalogue of architectural bad smells,” in International
Conference on the Quality of Software Architectures. Springer, 2009,
pp. 146–162.

[11] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2018,
pp. 176–17 609.

[12] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, “Mapping architectural
decay instances to dependency models,” in Proceedings of the 4th
International Workshop on Managing Technical Debt. IEEE Press,
2013, pp. 39–46.

[13] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software engineering notes, vol. 17, no. 4,
pp. 40–52, 1992.

[14] P. Velasco-Elizondo, L. Castañeda-Calvillo, A. Garcı́a-Fernandez, and
S. Vazquez-Reyes, “Towards detecting MVC architectural smells,” in
International Conference on Software Process Improvement. Springer,
2017, pp. 251–260.

[15] M. Aniche, G. Bavota, C. Treude, A. Van Deursen, and M. A. Gerosa,
“A validated set of smells in Model-View-Controller architectures,” in
Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on. IEEE, 2016, pp. 233–243.

[16] K. Sokolova, M. Lemercier, and L. Garcia, “Towards high quality mobile
applications: Android passive MVC architecture,” International Journal
On Advances in Software, vol. 7, no. 2, pp. 123–138, 2014.

[17] Apple. (2012) Model-View-Controller. link.
[18] A. Sinhal. (2017) MVC, MVP and MVVM design pattern. link.
[19] M. Potel, “MVP: Model-View-Presenter the taligent programming

model for C++ and Java,” Taligent Inc, p. 20, 1996.
[20] R. Eckstein. (2013) Java SE application design with MVC. link.
[21] D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in mobile

applications,” arXiv preprint arXiv:1001.3489, 2010.
[22] M. J. Yuan, Enterprise J2ME: developing mobile Java applications.

Prentice Hall Professional, 2004.
[23] G. E. Krasner, S. T. Pope et al., “A description of the Model-View-

Controller user interface paradigm in the Smalltalk-80 system,” Journal
of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.

[24] S. M. Alam. (2017) VIPER design pattern for iOS application develop-
ment. link.

[25] Wikimedia. (2018) Wikipedia iOS application. link.
[26] Mozilla. (2018) Firefox iOS application. link.
[27] Trust. (2018) Trust wallet iOS application. link.
[28] R. Garofalo, Building enterprise applications with Windows Presentation

Foundation and the Model View View Model Pattern. Microsoft Press,
2011.

[29] ObjC.io. (2014) Architecting iOS apps with VIPER. link.
[30] Microsoft. (2013) ASP.NET MVC overview. link.
[31] M. Fowler. (2006) GUI architectures. link.
[32] R. C. Martin, “Design principles and design patterns,” Object Mentor,

vol. 1, no. 34, p. 597, 2000.
[33] Apple. (2012) Controller. link.

https://www.gsma.com/globalmobiletrends/
https://medium.freecodecamp.org/functional-programming-for-android-developers-part-1-a58d40d6e742
https://talk.objc.io/collections/functional-programming
https://themindstudios.com/blog/mvp-vs-mvc-vs-mvvm-vs-viper/
https://old.kristofk.com/mvc-mvvm-viper/
https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://www.oracle.com/technetwork/articles/javase/mvc-136693.html
https://medium.com/@smalam119/viper-design-pattern-for-ios-application-development-7a9703902af6
https://github.com/wikimedia/wikipedia-ios/tree/master
https://github.com/mozilla-mobile/firefox-ios
https://github.com/TrustWallet/trust-wallet-ios
https://www.objc.io/issues/13-architecture/viper/
https://docs.microsoft.com/en-us/previous-versions/aspnet/dd381412(v=vs.108)
https://martinfowler.com/eaaDev/uiArchs.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/ControllerObject.html

	Introduction
	Apple's MVC
	Analysis
	Complexity
	Issues
	Solutions
	Findings

	Misunderstandings
	Issues
	Solutions
	Findings

	Model
	Issues
	Solutions
	Findings

	View
	Issues
	Solutions
	Findings

	Coordinating Controllers
	Issues
	Solution
	Findings

	View Controllers
	Issues
	Solutions
	Findings


	Conclusions
	References

