
Semantic Rule Based Program Monitoring
Luke Tudor, Jing Sun

School of Computer Science
University of Auckland, New Zealand
Emails: ltud719@aucklanduni.ac.nz;

jing.sun@auckland.ac.nz

Hai Wang
School of Engineering and Applied Science

Aston University, United Kingdom
Email: h.wang10@@aston.ac.uk

Bingyang Wei
Department of Computer Science

Texas Christian University, United States
Email: b.wei@tcu.edu

Abstract—Program monitoring aims at making sure the func-
tionalities of the software are always correctly performed during
runtime. Semantic Web provides a context enriched framework
for data representation and manipulation. This paper proposed
the use of ontological rules and reasoning engines to monitor
the dynamic behaviours of computer systems in handling of
exceptional circumstances, both positive and negative, that occur
at runtime within the software processes. A prototype framework
was proposed on how to integrate the rule based monitoring
technique together with the targeted system. To validate the
proposed solution, a light control system case study together
with the Unity game engine were used to develop a simulation
environment for the evaluation purpose. Compared to existing
solutions, the approach outlined can provide an effective software
behavioural monitoring outcome.

I. INTRODUCTION

In the past, research has been done into how software
program monitors can be used to verify runtime correctness of
an application by providing means of identifying errors when
they occur. The goal of these monitoring systems is to provide
a way to formally verify the correctness of the system in a way
like automatic software testing, with the stipulation that this
testing is done during the running of the system. Depending on
the purpose of the program monitor, such as a debugging tool
for developers, a logger or a system-wide message monitor,
the exact way that these monitors are implemented changes
with their purpose. These monitors can also provide many
other features including precise error cause locations, methods
to provide alerts about certain errors occurring or ways to
recover from errors, e.g., by reverting a database to a previous
state. However, these systems all have in common a way to
specify what constitutes an error in the program and a way
to provide feedback about that error, typically by logging or
throwing an exception. Despite the potential application of
program monitors in possibly increasing the overall quality
of software, software program monitors are not commercially
widespread and are not a part of typical software development
workflow [1]. Recently, advances in the semantic web and
ontologies have opened new possibilities for formal program
modelling and verification. Additionally, these semantic web
technologies provide powerful means for verifying constraints
and conditions using rules and reasoning engines which could
be useful for monitoring software program behaviour [2].

DOI reference number: 10.18293/SEKE2019-043

Since ontologies are a promising way to model software
program data and thus monitor programs, the goal of this
project is to investigate whether ontologies can be used in this
way, and if they can, how best ontologies may be used for
monitoring program data at runtime. Consequently, evaluation
of how effective ontology-based monitoring is should be done.
Because program monitors provide many different feature sets,
levels of correctness and speed, amongst other factors. To
determine the effectiveness of ontology-based monitoring, the
best way to integrate a reasoning engine to the monitoring
system should be explored, since the reasoning engine will
be performing the runtime verification. Finally, the proposed
system should be easy to use and more useful for develop-
ers, providing a possible alternative to conventional software
testing methods.

From prior research, the monitoring approach used depends
to a large extent on the intended use of the program monitor.
Therefore, care must be taken to ensure that the monitor is fit
for purpose. Since the intention of this project is to provide a
monitor that can allow for error checking at program runtime
at a single application level without developer interaction,
such a system need not determine the origin of error states,
nor does it require the implementation of sophisticated data
recovery techniques. Additionally, although there exists within
more recent research proposals for systems that integrate
hardware into the monitoring of low fault-tolerant applications,
to increase monitoring speed and protect against hardware
faults [3], such a system would not be suitable for this purpose
since the proposed system should be hardware agnostic for
ease of use.

Examining past solutions, not all systems provide guaran-
teed fault detection. The most common cause is not mistakes
in the proposed systems themselves, but in poor coverage
provided by the predominantly control-flow driven monitoring
techniques employed. Note that programs that have stricter
runtime requirements with respect to real-time computing have
more rigorous speed evaluations than those that do not, imply-
ing that for such systems, performance is of a greater concern
than for systems where relatively slow human interaction
comprises the bulk of the total process. Regarding the use
of ontologies for modelling program data, there is evidence
that such activity is possible. Other data formats such as XML
are already used as intermediates for transferring data between
different programs using middleware technology [4]. Since on-



tologies are designed as an expansion of such technology, with
more sophisticated and standardised reasoning capabilities, it
stands to reason that the functionality of semantic web and
ontologies is a superset of the functionality of XML [5].

The objectives of this research are to design a system that
can be used by software developers to monitor the runtime
behaviour of programs and demonstrate how such a system
can be used. To accomplish these objectives, the modelling
of program data using ontologies needs to be explored and
demonstrated for use in the ontology monitoring system. Also
related to the modelling of program data is the way that
rules and reasoning engines can be integrated into the system
to provide the constraint checking necessary for this type
of program monitoring to work. Furthermore, the proposed
system should be easy to integrate into monitored programs,
allow for specification of many different types of constraints
on the data and be fast enough so that it could be realistically
used in an actual software system.

This project aimed at achieving a usable, reliable and
useful way to allow for integration of any software program
into a runtime behavioural monitoring system and ways to
verify correctness using many rules and constraints that can
be easily and quickly changed to accommodate fluctuating
requirements. Since this system focusses on providing a tool
for developers and is difficult to evaluate independently of its
use, a case study is proposed to test the monitoring system and
to show how such monitoring can be extended to any generic
program given an ontology structure. It should be noted that
although the goal of this system is to simply provide a means
for checking errors in programs, there exists the potential to
implement some business logic in the defined rules on the
ontology such that when reasoned about. These rules can make
useful changes in the program data based on these functional
requirements. Therefore, in the system demonstration, business
logic inferences to maintain data consistency are demonstrated
as they show off a superset of the potential uses of ontologies
compared to the relatively simplistic logging of error states.

The rest of the paper is organised as follows. Section II
presents the design of the system including software archi-
tecture decisions, technologies used, and the general methods
used to integrate the program monitor with the monitored
program and associated ontology. Section III presents the
implementation of the system, including the construction of
the monitoring system, the use of ontology and reasoners
and an exploration of the case study as an example of a
possible use case of the proposed system. In section IV, an
evaluation of the monitoring system is discussed including the
success of the testing methodology, comparison with previous
program monitors, discussion of proposed system features,
lessons learned and possible improvements. Finally, Section
V concludes the contributions and discusses the future work.

II. SYSTEM DESIGN

The system proposed for integrating program monitoring
into a piece of software is to create an instance of the program
monitor within the monitored program using external APIs,

and then using this monitor instance to update and receive
updates from the ontology. This approach allows for easy
integration with any monitored program by simply importing
the relevant library whilst providing a high degree of control to
the monitored program in deciding what properties are impor-
tant within the monitored program. However, for the program
monitor to work, an ontology and externally defined rules must
be made available to the program monitor. This can be done
within the monitored program by providing the location of
these two files to the program monitor instance at construction
time. Since updates from the program monitor should not be
polled for by the monitored program, an interrupt style listener
paradigm is used so that the monitored program can register
an interest with the values of properties and provide code that
runs when those updates are triggered. An overall data flow
of the monitoring system in show in Figure 1.

Fig. 1. Data flow through monitoring system

This call-back-like approach is known as the listener pattern
and is an easy way to integrate program modules that do
not need to be aware of when the other module runs given
that updates are received eventually. For triggering updates,
controllers are obtained from the program monitor instance to
provide means to change property values from within the mon-
itored program. The final part is the ontology model, which
is updated firstly from the monitored program, then again by
the reasoner if any updates are caused by the rules firing. This
overall approach can be summarised as an implementation of
the model-view-controller pattern (MVC) [9], which is often
used for systems with a high degree of user interaction.

III. IMPLEMENTATION DETAIL

Conceptually, the monitoring system lies between the moni-
tored program and its corresponding ontology; the monitoring
itself works by checking the entire ontology against all the
rules every time the Jena API is called by a property changer
to update the given ontology. The timing of the rules firing is
managed by the Jena framework, however, since Jena is open
source, the rules engine could be made to run at different
times. Since the controller objects in the monitored program
use the call-back principle to specify changes, it is easy to
change value types and access core Jena functionality with
little additional work.



These statement changers or monitor controllers require
direct access to the ontology model and must be requested
from the program monitor instance rather than be constructed
directly. At construction time, the full URL of the resource
and property to be updated is supplied by the controller to the
program monitor instance to obtain the resource and property
Jena objects associated with those URLs. However, since the
ontology objects for each entity change values, these property
values must be located each time the object pointed to is
updated. After an update is made to the ontology, all listeners
are notified synchronously of the current value of the property
objects that they are listening for. As with the controllers,
a reference cannot be kept for a listened object, so each
listener supplies URLs for the resource and property to use
to retrieve listened for objects each time an update occurs.
These updates are then passed to the listeners using the call-
back-like method, invoking a change in the monitored program
somewhere. After all listeners are notified, control is passed
back to the monitored program for the next update.

Before the monitoring system should be integrated into the
target system, consideration must be made for the construction
of the ontology and associated rules. The ontology should be
constructed such that all possible conditions that might be
reasonably monitored are represented in an externally logical
form and such that the ontology can provide an accurate rep-
resentation of the important data in the program. This means
that each object in the program that represents something in
the physical world should be represented in the ontology;
more specifically, objects that have value outside of necessary
software development usage within programs, like array lists
or hash tables would only appear in the monitored program. In
other words, an ontology should represent the context schema
of a program. The classes of the ontology should represent the
types of object to be modelled, the entities should represent the
instances of those objects within the program and the ontology
properties should represent the fields or attributes that are of
interest within these entities. From these parts, a complete
model of the ontology of a system can be constructed. For
this project, OWL [5] ontology reasoning was used. Jena
supports OWL DL (Description Logic) specifically, which
allows more powerful reasoning than would be provided by a
less expressive ontology language such as RDF. Notably, when
using the proposed monitoring system, the ontology should be
modified by an external tool such as Protege [10] which is
designed for easy editing and analysis of ontologies.

IV. CASE STUDY AND EVALUATION

A. The Light Control System

To demonstrate the proposed system, a case study is re-
quired that demonstrates how monitored programs can be
integrated with the monitoring system and how effective
the proposed system is at monitoring programs. A building
management system was chosen for the demonstration since
building management systems are typically well-defined, con-
tain many complex rules and constraints and are suitable
for demonstration in an interactive environment such as a

game engine. Additionally, such a simulation could be feasibly
extended to a physical sensor network if the associated simu-
lation is successful at capturing all the necessary functionality
in a similar way. The basis for the chosen building manage-
ment system is provided in [12]. This description provides a
high level of detail about a typical smart building complex
with constraints related to context-aware features such as the
temperature and light intensity controls [13].

Fig. 2. Simplified ontology example.

In this example, there are at least three entities which may
be formalised by an ontology, i.e., the motion detector, the
light and the room which contains both these objects. There-
fore, this interaction can be represented by a SWRL [11] rule
which updates the ‘?light on?’ property to false whenever the
motion detector in the same room has the ‘?motion detected?’
property evaluate to false. Figure 2 shows a simpler version of
this scenario (without the connecting room entity) to illustrate
how rules can be used to infer relationships using a reasoning
engine. Extending this scenario to every room in the building
with a motion detector allows the same rule to be used in each
case.

B. Evaluations

For validating the monitoring system, 10 rules of varying
complexity and approach were constructed to show that when
updates relevant to each rule are received, that rule is fired,
producing some change in the system ontology. Of these
10 rules, each was tested within the simulation environment
and all rules were found to fire when expected and with the
expected results. These rules were constructed such that every
rule possible was paired with a rule that fired under opposite
conditions and produced the opposite result. The motivation
behind this rule construction methodology was to ensure that
in a test environment, that the updates and rule changes were
repeatable. The rules that did not have an opposite satisfied this
condition of repeatability by including the object part of the
triple condition within the rules as a wildcard or free variable,
using this variable input to compute a variable output. This
meant that some rules could contain the same functionality as
two rules in the case of a Boolean literal object, or that rules
which used integers could contain the same functionality as
an infinite number of more specific rules. This behaviour is
of interest since assertions are typically static during runtime,
and different cases of assertions cannot be compressed into
a single assertion. Thus, it seems that rules can sometimes
provide more powerful condition checking than assertions.



For the testing environment, rooms were constructed within
a simplistic mock building within the game engine so that
each rule could be tested in isolation and without interference
as many times as desired. This approach is a generalisation
of typical testing techniques, with the main differences being
that rules could be tested systematically by following a defined
path through the different rooms, whilst allowing for rules to
be fired at any time and with any frequency, more closely
mirroring actual human interaction with a system. Although
this style of testing is less automatic than traditional testing
means, errors associated with timing and user experience are
much easier to identify if each test is run eventually. In
addition to the freeform testing provided by the simulation
environment, a JUnit test suite was used early in the project
lifecycle to evaluate the reasoning engine before the simulation
environment had been completed. As with the simulation
environment, all rules were fired when expected and produced
the expected results.

A benefit of using the system is that ontologies can easily be
reused and transferred between multiple formats, this contrasts
with other program monitoring approaches which are more
specific to each monitored program which may require more
redesign work for slightly different applications. Another ben-
efit compared to assertion-based systems is that the code is not
cluttered with annotations that obscure the code intent or need
extensive work to change if the monitored behaviour changes
due to new requirements. This constraint checking work is
delegated to the rules file, which provides a more cohesive
interface for changing checked behaviour. Compared to the
more common control-flow based monitoring, the proposed
system is simpler to understand conceptually and easier to
reason about from a monitoring perspective. This is because
checking the control flow through a conditional or function
often assumes some flow higher up in the control of the
program, which can make it complicated to get a total view
of the system status.

The proposed system can be compared to other program
monitoring approaches based on each system’s relative feature
set. The features of several other program monitors are sum-
marised in this paper. In comparison to systems that require
specialised hardware, such as [3], this approach provides
guaranteed correctness, given that the rules and ontology
are constructed correctly without the hassle of customised
hardware. Software only monitors to insert assertions automat-
ically have been proposed [7], however it and other automatic
assertion generating programs do not guarantee correctness
unlike [3]. Systems that use constraints to monitor program
execution also exist [6], however, these systems can be too
heavyweight for smaller projects and do not provide the
benefits of using ontologies as discussed previously. Assertion
based monitors like [8] can also be used, but the main
disadvantage of assertions to monitor control flow, is that
control flow monitoring can become too complex to easily
modify and rules must be changed from within each software
module monitored. Although the monitoring system described
in this paper solves the previously discussed problems, it is not

without disadvantages, the most notable being the additional
work required to make and maintain the ontology and the
performance of the system.

V. CONCLUSION

Program monitoring aims at ensuring functionalities of the
software system are always correctly performed during run-
time. This paper demonstrates not only that semantic ontology
and its reasoning engines can be integrated with software ap-
plications to allow for rule-based monitoring, but also outlines
a method for doing so. Additionally, the effectiveness of such
a tool was evaluated with respect to how well a reasoning
engine could determine errors in software and how useful the
tool would be for software developers. This project has found
that it is not only possible to create a powerful and flexible
tool to monitor programs using rules and ontologies, but also
the tool can be easily integrated with existing applications.
These contributions were gathered based on implementing
and testing a semi-realistic case study integrated with a game
engine simulation environment to provide real-time feedback
on ontology updates and rule firing. In addition, comparisons
to related work were conducted with useful evaluations. In the
future, a feature that would be greatly increase usability would
be the ability to convert rules from more common languages
such as SWRL into the Jena specific rule format.

REFERENCES

[1] A. Bertolino,Software Testing Research: Achievements, Challenges,
Dreams, Future of Software Engineering (FOSE ’07), Minneapolis, MN,
2007, pp. 85-103.

[2] Kishore, Rajiv, Ramesh, Ram (Eds.), ONTOLOGIES: A Handbook of
Principles, Concepts and Applications in Information Systems, Boston,
MA: Springer US, 2007.

[3] J.R. Azambuja, M. Altieri, J. Becker and F.L. Kastensmidt, HETA: Hybrid
Error-Detection Technique Using Assertions, in IEEE Transactions on
Nuclear Science, vol. 60, no. 4, pp. 2805-2812, Aug. 2013.

[4] Steve Graham, Doug Davis, Simeon Simeonov, Glen Daniels, et al.,
Building web services with Java, Que Publishing, June 28, 2004.

[5] W3C Recommendation 10 February 2004, OWL Web Ontology Language
Overview, 2004.

[6] W.N. Robinson, Implementing Rule-Based Monitors within a Framework
for Continuous Requirements Monitoring, Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, Big Island, HI,
USA, 2005, pp. 188a-188a.

[7] N. Oh, P.P. Shirvani and E.J. McCluskey, Control-flow checking by
software signatures, in IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111-122, March 2002.

[8] D. Bartetzko, C. Fischer, M. Mller and H. Wehrheim, Jass - Java with
Assertions, Electronic Notes in Theoretical Computer Science, vol. 55,
pp. 103-117, Oct. 2001.

[9] G.E. Krasner and S.T. Pope, A description of the model-view-controller
user interface paradigm in the smalltalk-80 system, Journal of Object
Oriented Programming, vol. 1, pp. 26-49, 1988.

[10] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson and M.A.
Musen, Creating Semantic Web contents with Protege-2000, in IEEE
Intelligent Systems, vol. 16, no. 2, pp. 60-71, March-April 2001.

[11] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean, SWRL: A semantic web rule language combining OWL and
RuleML, W3C Member Submission, vol. 21, pp. 79, 2004.

[12] S. Queins, M. Becker, M. Kronenburg, C. Peper, R. Merz and J. Schfer,
The Light Control Case Study: Problem Description, J.UCS: The Journal
of Universal Computer Science, vol. 6, 2000.

[13] J. Sun, H. H. Wang and H. Gu, Semantic Enabled Sensor Network
Design, in proceedings of 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pages 179-184,
July 7-9, 2011.


