AgileCritPath: Identifying Critical Tasks in Agile
Environments

Rachel Vital
PESC/COPPE
Universidade Federal
do Rio de Janeiro
Rio de Janeiro, Brazil
rachelvital @cos.ufrj.br

Glaucia Melo
David R. Cheriton
School of Computer
Science

Waterloo, Canada
gmelo@uwaterloo.ca

Abstract—Planning and monitoring the execution of software
development activities in agile environments are not trivial proce-
dures. One of the main flaws of agile planning is not considering
the dependencies that exist between project tasks. Dependencies
between tasks found in software development project plans may
lead to the emergence of critical paths, where tasks need to be
handled in a strict sequence because the completion of some tasks
depends on the completion of others. Not managing such critical
paths may reduce team performance and delay product delivery.
We performed a study to demonstrate that not identifying
dependencies may impair team performance and even increase
the risk of costly project delays. The study is divided into three
parts: (1) an exploratory study performed in the industry; (2)
the development of a tool, AgileCritPath, as a way to support
development teams in identifying critical project tasks; and (3)
an in vivo evaluation of AgileCritPath based on the Technology
Acceptance Model (TAM). The results of the exploratory study
provided empirical evidence that there is a need to identify and
control dependencies between the tasks in the development of
software in agile environments. Using the AgileCritPath tool,
allowed us to introduce the Critical Path Method concepts in
an agile software development organization. Moreover, the in
vivo evaluation demonstrated the benefits of managing tasks
dependencies.

Index Terms—Software Engineering, Critical Path Method,
Agile, Software Development.

I. INTRODUCTION

The software development principles behind the “Manifesto
for Agile Software Development” are widely used in software
development project management. Although the adoption of
such agile principles brings numerous benefits, including the
delivery of software products on time and budget [1], estimat-
ing and planning projects using agile methodologies is still
a complex process. Part of this complexity comes from the
difficulty of identifying dependencies between tasks, which is
a critical factor for coping with agile project failures [2].

Dependencies between tasks often lead to decreases in
team’s agility level [3] and can adversely impact the delivery
time of software products. For Bick and his colleagues [4],
managing task dependencies is a fundamental issue in agile
software development, because it can be used as a basis to
define the coordination between project tasks. Additionally,

DOI reference number: 10.18293/SEKE2019-004

Toacy Oliveira
PESC/COPPE
Universidade Federal
do Rio de Janeiro
University of Waterloo Rio de Janeiro, Brazil

toacy @cos.uftj.br

Don Cowan
David R. Cheriton

Paulo Alencar
David R. Cheriton
School of Computer School of Computer
Science Science
University of Waterloo University of Waterloo
Waterloo, Canada Waterloo, Canada
palencar@uwaterloo.ca dcowan@uwaterloo.ca

proper identification of task dependencies is important to
maximize project efficiency and reduce risks [5], [6], [7], [8],
[9], [10].

The critical need to manage dependencies found in agile-
based software development projects is a topic that has been
already explored in the literature [5], [11], [4], [12], but,
currently, empirical studies on the subject are still scarce.
There is a clear need to investigate this topic further, given
that the lack of knowledge about task dependencies may
have consequences for project duration, coordination, risk, and
efficiency.

To understand the problem of identifying the dependencies
properly between agile projects and software development
tasks, we conducted an exploratory study in a software devel-
opment organization. Through this study, we obtained empiri-
cal evidence that this is a real problem that can negatively af-
fect software development organizations, especially when they
use agile methods. After performing the exploratory study, we
used the techniques of the Critical Path Method (CPM) to
inform a team in a specific software development organization
that already uses agile methods about the critical tasks. We
have also developed a tool, which we call AgileCritPath,
to evaluate the adoption of CPM in an organization. The
evaluation followed the Technology Acceptance Model (TAM)
[13] approach.

This paper is structured as follows. After a brief introduction
in Section I, Section II describes supporting concepts. Section
III presents an Exploratory Study. Section IV presents the
AgileCritPath tool and a TAM evaluation of this tool. Finally,
Section VI presents conclusions and future work.

II. BACKGROUND

The increased adoption of agile practices has caused tradi-
tional project management to be redefined.

Many agile methods provide some level of management
for tasks, but out of the main techniques applied [14] none
guarantees that teams follow what was planned. Cohn [2], in
his book ”Agile Estimating and Planning”, addresses the main
flaws of agile planning. Among them, the author cites that
tasks are not independent and that it is an error for the agile

teams to plan the tasks as if they were separate, with no need
for task coordination.

In agile methods, the technical work of the development
team is defined through tasks. Each team estimates tasks and,
generally, they represent a small part of the expected work [2].
Tasks can be visualized using the Kanban board presented in
Figure 1. Kanban boards visually depict work at various stages
of a process using cards to represent tasks and columns to
represent each stage of the process. Cards are moved from
left to right to show progress and to help coordinate the teams
performing the work. The Kanban board is a visual approach
that teams use to monitor task execution.

7000 DOING) DoNE

Tehet D #42 Chrs

The wesh vewof thenew o,
coender feature

@ e
Fig. 1. Kanban board example.

Progress monitoring is an essential activity in Software
management, whereby it ensures that a project plan advances
according to budget, schedule, and quality expectations [15],
[16]. The implementation of progress monitoring mechanisms
in an agile environment is fundamental to the success of the
project.

Although the Kanban framework is widely adopted in
organizations, it does not show task dependencies. It is not
possible to see on the Kanban board which tasks can block
the execution of others and, for this reason, the flow of task
execution becomes unclear to the team.

The Agile Kanban method lacks a mechanism for progress
tracking. Thus, it needs to be integrated with other methods
because it does not have a standard definition for software
development and its specific practices have not yet been
rigorously defined [12].

However, although managers can have, based on the Kanban
board, support to understand progress status and progress
better, they can not get information about the impact of the
execution of the flow of tasks, especially when it comes to
task dependencies.

III. EXPLORATORY STUDY - IDENTIFYING CRITICAL
TASKS

To correctly understand the dynamics of the organization
concerning project planning in an agile environment, we con-
ducted an exploratory study in a specific software development
organization. Exploratory studies have proved to be adequate
in software engineering to study new ideas [17].

Through the exploratory study, we have: (1) observed the
existence of dependencies between tasks in real software

development projects that use agile methods; (2) applied
concepts based on the Critical Path Method to identify critical
tasks in projects that use agile methods; (3) collected, analyzed
and discussed the results. The exploratory study is divided into
the following steps: definition of the study, data collection,
data analysis, and presentation of results.

A. Definition

The study was conducted in a Brazilian software develop-
ment company that has a staff of 30 employees, most of whom
are software developers. The organization has been using agile
methods for at least 10 years. Teams are small, usually groups
of 3 to 8 people.

B. Data collection

The task execution log has been extracted from the Red-
mine! project management tool. Through the organization’s
task management system, we were able to identify which tasks
were planned and which tasks were performed. We retrieved
data from three iterations of the same project for analysis.

C. Data analysis

In this step, we identified the dependencies between tasks.
The dependency identification was performed with the help of
an experienced developer who was familiar with the scope of
the tasks, the processes of the organization, and knew the tech-
nological architecture used in the project. Task dependencies
were classified into Process and Context dependencies, follow-
ing a classification suggested in a taxonomy of dependencies

[5].

D. Results and discussion

From the analysis of the data, the projection of the maxi-
mum effort rate per period was obtained. Therefore, regardless
of the number of people on the team, we can not plan
activities with effort higher than the maximum effort rate. For
the calculation of the maximum effort rate, we consider the
estimated effort of the tasks performed by the team and their
respective dependencies.

Figure 2 illustrates the planning performed by the team (blue
line) and the maximum effort rate of the tasks (red line). The
red line represents the shortest time to complete the activities
and indicates the maximum rate of production (speed) at which
the team can work. Regardless of the number of people, the
tasks will not be completed before this deadline (red line). In
this case, we can see that the team planned a delivery that can
not be performed on the expected date.

Table I presents the number of dependencies identified in
the study and the number of tasks defined by the team, which
are extracted through the task execution log. The number of
dependencies is higher than the number of tasks, within the
three analyzed iterations.

Iredmine.org

250

200

89
62
150
35
9
100 105 08
1
, \
58

50 20 34

P
- & & 0\’\‘ m“\w
S @

-wPIanned «Maximum Effort Rate

Fig. 2. The burndown graph with maximum effort rate.

TABLE I
PERCEIVED DEPENDENCIES.

Release Task Dep Dq:p Pli()):;ss Buslel:)ess
Release 2.12 100 96 96% 52 44
Release 2.13 69 77 112% 53 24
Release 2.14 70 84 120% 67 17

Our results show that handling task dependencies may not
be straightforward when there are many tasks. Another factor
we noticed was that there were several tasks, and consequently,
dependencies, that are were not planned but were identified
during the iteration execution.

During the analysis of the Iteration execution log, we
verified that some tasks were discovered during the execution
of the iteration and, consequently, the execution flow of the
tasks changed because the new tasks had dependencies that
should have been considered. This shows that the identification
of critical tasks should occur throughout an iteration, and not
only at the end.

Based on the exploratory study we conclude that there is
evidence that when considering task dependencies it is possible
to find the critical tasks, which if delayed, can have serious
consequences, including the product release delays. Because
of this evidence, we decided to develop the work further and
implement AgileCritPath, a tool that could help developers
identify critical tasks. The tool implementation and details are
presented in Section IV.

IV. THE AGILECRITPATH TOOL

The AgileCritPath tool implements the Critical Path Method
to be used in agile environments and support teams to identify
and prioritize critical tasks that can block the execution of
other tasks and cause costly project delays.

A. Identifying Critical Tasks

During the exploratory study, we identified that some tasks
compromise or block the flow of execution of other tasks.
These tasks are referred to as Critical Tasks because they can
decrease the agility level of the team.

The critical path is the longest duration path through the net-
work. The tasks that lie on the critical path cannot be delayed

without delaying the release. In agile environments, Critical
Tasks are identified by building a network diagram of tasks.
This network diagram is built to represent task dependencies.
Figure 3 presents an example of a network diagram with seven
tasks. The solid lines represent dependencies between tasks,
and the dashed lines represent the association of the tasks
from the beginning to the end of the graph. Critical tasks are
identified as the tasks that make up the longest delivery path.

Critical Task

Estimated
effort: 8

Estimated
affort: 5

~* Estimated

! Estimatad affort: 1

effort: 3
Estimated
effort:

Task D
effort: 4

Task G

[TaskG |
7

Task G

Fig. 3. Network Diagram with Critical Tasks.

B. Proposed Model

Figure 4 illustrates in detail the mechanism used to find out
the Critical Task in GitHub projects.

-

(2) Loads the tasks and their respective p

(1) Open Network Connections from dependencies rma

l

i

Task Manager ~ 1
[N

=i |/ - mka
R o~ -_I“-
= 1 Task € —9 Task B
AgileCritPath su\ﬂﬁb i i l
1 \ l'usk!
Y SO

~,

["’

'24) Applies the Depth-First Search (DFS) ‘\ ,’ (3) The application creates the graph ™,
11 from the tasks

1

1

I

]
1
1
I Task B

=
E.
»
®

Fig. 4. Illustration of AgileCritPath.

In step (1), the application connects to the task manager to
load all tasks and their dependencies. In step (2), the associa-
tions between tasks are created according to the dependencies.
In step (3), the resulting graph is created. Tasks without
predecessors are automatically linked to the initial node of the
graph. The tasks without successors are automatically linked to
the final node of the graph. In step (4), the Depth-First Search
(DFES) algorithm is applied to find all paths in the graph. While
reading the path, the total effort to complete the task flow is
calculated.

All the found paths are displayed in descending order,
from the longest path to the shortest path, according to the
calculated effort for each path. Next to the path listing is the
status of the task, the developer responsible for the execution
of the task, and the effort of each task that makes up the path.
The path size is calculated by the sum of the planned effort

reported in the individual tasks that are part of the path. If the
task is finished, we consider the effort to complete the task.

Knowing all the paths in the network task is important
because we can identify the ‘“Near-Critical Paths”. Other
important paths through are considered the “Near-Critical
Paths” if they are at risk of becoming the Critical Path. To
make this information visible to the team, we display all the
paths found in the task network.

Repository: CritPathWeb
Paths found

Remaining g | Tesk
effort: E
)
Totaloffort:
i 7000
mogess | @
Remaining | Task Task
effort | Defiirtemado Escrover captulo1da
® wabaho aissortasa
Toratetior: | ST
101 ®2 92
Progro:
Romaining | Task Task Task Task e e
R o torma o pituolda pituio2 pitios pituio a pitios
o wabaho dissortag
oo ETOTI o 656 656 656
= |92 22 a2 2 3 3
Progress:

Fig. 5. Query results.

Figure 5 presents the result of querying the paths of a task
network from a GitHub repository.

C. Architecture model

AgileCritPath was developed following the architecture pre-
sented in Figure 6.

.~ Agile Critical Path “\

~
‘ Task Manager \

! ! N \
] : i \
' ZenHub) . — |
[} N [}

\ ' 1 | Manager Domain -
v) GitHub ! <hnp> ' AP| :
]

i ' [!
v [@ireller : : i
! H ! Core ACP i
| SLREDMINE | ' \
' ' ' ‘
\ ,‘

Fig. 6. The AgileCritPath architecture.

The application works autonomously and connects to the
task manager through an integration API (task manager API).
The Extract, Transform and Load (ETL) module performs the
necessary information processing, according to the information
available in the task manager. An ETL module was developed
to meet the integration requirements with GitHub, ZenHub and
Redmine. The ETL loads objects from the application domain,
which works in isolation from the task management tools. The
Core ACP module loads a task-oriented graph and implements
a Depth-First Search algorithm that searches for all paths in
the task network.

Planning in an agile environment is different from ap-
proaches used in traditional plan-oriented software develop-
ment models [18]. Rather than employing plans in projects
based on a set of predefined factors and constraints, agile
models rely on the human factor to self-organize. In this work,
we seek to offer systemic support, allowing the information
to be accessible to all team members, and the decisions about
the order of task execution to be made at any time.

V. THE AGILECRITPATH TOOL EVALUATION

The evaluation of the AgileCritPath tool was performed
according to the Technology Acceptance Model (TAM). The
TAM approach was proposed by Davis in 1989 [19] and
suggests the acceptance of a new IT technology depending
on two variables: (1) perceived ease of use and (2) perceived
utility usefulness. For Davis, people tend to use or not use
technology to improve their performance at work - perceived
utility. However, even if a person understands that a particular
technology is useful, its use may be impaired if the application
is too complicated, so effort does not compensate for use -
perceived ease.

A. Procedures

The general objective of using TAM was to evaluate the po-
tential of the AgileCritPath tool in an industrial environment.
The evaluation was performed in a company that has been
working in the area of software engineering for 20 years and
adopts development processes based on agile practices. The
project used in the evaluation was selected by the organization.
The selected company uses Redmine as a task management
tool. For the execution of the study, we modified our tool so
it could access Redmine.

B. Execution

The study was performed in-vivo. In-vivo studies are studies
that involve people in their own working environment under
realistic conditions [20]. Case studies made in an industrial
environment are an important type of in-vivo study since they
allow the analysis of a particular process in the context of a
software life cycle [21] .

To ensure that the study did not impact the organization’s
software development process, we restricted ourselves to ob-
serving the tasks performed in the team’s daily routine and
added to their lists the activities required to use the tool, as
presented in Figure 7.

Figure 7 presents the activities performed in the organiza-
tion. The activities in red are the activities we included so that
CPM could be used by the team.

At the iteration planning meeting, the team began to include
task dependencies. During the execution of the iteration,
the team performs daily meetings (daily Scrum meeting).
As suggested in Scrum [22], daily meetings should last 15
minutes, where the team discusses what has been done in
the last 24 hours, the plan for the next 24 hours, and what
task impediments (anything that keeps a team from being
productive) occurred. The meeting is held in front of a

Planning
Meeting

=

Planning Meeting's Activities
Definition of the functionalities that are going to be developed
Decomposition of functionalities in tasks
Inclusion of task effort estimation

Daily Meeting
Ld L

El I

Inclusion of task dependencies

Daily Meeting’s Activities
1. Report the tasks performed in the last 24 hours
2. Report planned tasks for the next 24 hours
3. Report impediments
4. Evaluate Critical Tasks

Fig. 7. The activities performed during an iteration.

Kanban board. The visualization of the paths calculated by
the AgileCritPath tool was presented at the end of the daily
meetings.

During the planning and execution of the iteration, the
participants had access to the AgileCritPath tool, and in the
daily meetings, the tasks that were part of the critical path were
presented to the team. The iteration lasted two weeks, and at
the end, the participants were asked to answer the questions
directed towards the evaluation of the tool.

At the end of the iteration, the participants completed
the Participation Consent and Clearance Form, Participants
Characterization Form and the TAM Model Evaluation. The
forms were completed individually and without any contact
between participants.

C. Discussion

A team of six employees participated in the study. Partici-
pation was free and voluntary. The questionnaire was sent to
all developers of the company. The participants, in general,
have a bachelor’s degree, except for one participant, who is in
the process of concluding a bachelor’s degree. The academic
experience varies greatly among the research group since
the team has 2 senior, 1 junior and 1 trainee members. All
participants are familiar with the basics of project management
and are knowledgeable about the Scrum methodology.

From the results of the study, based on the Perceived Utility
evaluation criterion, we verified that the participants agreed
that the use of the tool could improve the productivity and
quality of the work of the team members. All participants rec-
ognized the tool as useful for performing their tasks. Regarding
the Perceived Usability Facility variable, the team indicated
that identifying dependencies between tasks and identifying
the Critical Path as reasonably difficult activities. Even though
the team has indicated difficulties in identifying dependencies
and evaluating the critical path, 75% of respondents felt
inclined to use the tool during the planning and execution of
tasks. Despite having to make a more significant effort in task
dependency identification, the team recognized the benefits
that the use of the tool can provide.

The participants were asked to identify the benefits and
limitations of the tool. The key highlighted benefits were: the
visualization of dependencies between tasks, as a facilitator to
determine which tasks should be prioritized, and the improved
visualization of the total planned effort to complete critical
path tasks. As a tool limitation, the participants recognized
that it would be nice if the tool could display estimated versus
realized information of the tasks in progress and could provide
more metrics for monitoring work progress.

During the daily meetings using the tool, we were able to
capture observations made by the team as follows:

o The team observed that using the tool allows everyone
on the team to get a sense of what tasks are critical;

« The team found it interesting to leave the critical tasks to
the most experienced developers on the project, especially
when the deadlines for these tasks are tight;

« Visualizing the critical path is also a way of evaluating
the most complex points of the project;

o The team observed that the task priority they provide at
the time of task planning did not make sense and, in some
cases, the team acknowledges that they might have had
a greater gain prioritizing critical path tasks;

o The team evaluated the critical path analysis as a tool
complementary to the Kanban framework because in the
Kanban framework they could not keep track of the
dependencies between the tasks.

The lack of knowledge about dependencies between planned
tasks in agile environments emerges in a misaligned business
plan that the team may not be able to execute. Also, the
lack of awareness about the dependencies that exist between
the tasks of the software development process constitutes
a possible explanation for inefficient team coordination and
project delays.

The AgileCritPath tool enables organizations to use depen-
dency information across tasks to improve task prioritization
in agile environments by identifying which dependencies can
compromise or block the flow of task execution.

In this study, the evaluation of the usability of the Agile-
CritPath tool in the industry was conducted. Usability is one
of the aspects related to the quality of use of systems, being
one of the most important acceptance criteria for interactive
applications in general, and in particular for Web applications
[23]. The acceptance of technology is related to the quality
and use of its systems, the quality of the provided information
and user satisfaction [24]. Through the use of the acceptance
model, it was possible to evaluate the use of the AgileCritPath
tool in an industrial environment.

VI. CONCLUSION

Agile approaches are based on the idea that developers can
self-organize and perform their work collaboratively [4]. How-
ever, some studies suggest that large and complex software
development projects can benefit from the combination of the
flexibility inherent in agile teamwork and models that support
a plan-oriented structure [25], [26], [27].

Bick et al. [4] and Badampudi et al. [18] propose that
organizations should continue to adopt agile methods, includ-
ing the established practices of traditional methodologies that
guarantee more predictability, reliability, stability and effective
use of resources. In addition, through analysis of dependencies,
the team can evaluate the shorter time for product delivery.
Not considering the dependencies between tasks can generate
delivery plans that are not aligned with the reality of the
organization.

Considering dependencies on software projects is crucial to
identifying critical tasks. Critical tasks are tasks that can delay
the execution of others and thereby delay the delivery of the
product. In this paper, we present an exploratory study that
demonstrated that in a real software development scenario,
the number of dependencies could be large and difficult to
manage. Through the results of the exploratory study, we
proposed the use of the Critical Path Method (CPM) concepts
to identify critical tasks in agile projects. Critical Path Method
has already consolidated in traditional project management
models. In Agile Environments, this technique can help the
team identify critical tasks, and thus direct their efforts toward
tasks that can impact the development of other tasks.

The proposal presented in this article was materialized in the
AgileCritPath tool, which allows development teams to have a
view of dependencies between the tasks and, therefore, identify
at any time which tasks are critical. The tool is compatible
with any agile methodology and can support development
teams to make decisions easily and quickly. The tool was
developed in open source format and is available on GitHub
(https://github.com/Rachel Vital/CritPath).

The evaluation of the use of the tool was based on the TAM
technological acceptance model. During the evaluation, we
were also able to gather insights and encourage the adoption
of the tool in the industry. Through the responses obtained in
the TAM application, we were able to evaluate that, despite the
additional effort to identify the dependencies, the use of the
CPM in agile environments proved to be relatively simple and
viable in the selected organization. At the end of the evaluation
of the use of technology, we could verify that the whole team
was able to perceive the utility of the identification of critical
tasks.

As future work, we plan to evaluate the use of AgileCritPath
in continuous software development and DevOps environ-
ments. The application of the acceptance model could also
be conducted in other software development companies.

ACKNOWLEDGMENT

The authors thank the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Emerging Leaders
in the Americas Program (ELAP) and MITACS.

REFERENCES

[1] J. Lynch. Standish group 2015 chaos report - q&a with jennifer lynch.
[Online]. Available: https://www.infoq.com/articles/standish-chaos-2015

[2] M. Cohn, Agile Estimating and Planning. Pearson Education, google-
Books-ID: BuFWH{fRJssC.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. D. W. Lomas, J. Wilkinson, P. G. Maropoulos, and P. C. Matthews,
“Measuring design process agility for the single company product
development process.” vol. 9, no. 2, pp. 105-112.

S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coordination
challenges in large-scale software development: A case study of planning
misalignment in hybrid settings,” vol. 44, no. 10, pp. 932-950.

D. E. Strode, “A dependency taxonomy for agile software
development projects,” vol. 18, no. 1, pp. 23-46. [Online]. Available:
http://dx.doi.org/10.1007/s10796-015-9574-1

M. Korkala and F. Maurer, “Waste identification as the means for
improving communication in globally distributed agile software devel-
opment,” vol. 95, pp. 122-140.

M. Shen, G.-H. Tzeng, and D.-R. Liu, “Multi-criteria task assignment in
workflow management systems,” in System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference on. 1EEE, pp.
9-pp.

J. Duggan, J. Byrne, and G. J. Lyons, “A task allocation optimizer for
software construction,” vol. 21, no. 3, pp. 76-82.

Y. Jiang and J. Jiang, “Contextual resource negotiation-based task
allocation and load balancing in complex software systems,” no. 5, pp.
641-653.

J. Sutherland and K. Schwaber, “The scrum guide. the definitive guide
to scrum: The rules of the game.”

W. Aslam and F. [jaz, “A quantitative framework for task allocation in
distributed agile software development,” vol. 6, pp. 15380-15390.

H. Alaidaros, M. Omar, and R. Romli, “Identification of criteria affecting
software project monitoring task of agile kanban method,” in AIP
Conference Proceedings, vol. 2016. AIP Publishing, p. 020021.

Y. Lee, K. A. Kozar, and K. R. Larsen, “The technology acceptance
model: Past, present, and future,” vol. 12, no. 1, p. 50.

VersionOne. 12th annual state of agile report. [Online].
Available: https://explore.versionone.com/state-of-agile/versionone-
12th-annual-state-of-agile-report

M. L. Despa, “Comparative study on software development methodolo-
gies,” vol. 5, no. 3, pp. 37-56.

Hazir, “A review of analytical models, approaches and decision support
tools in project monitoring and control,” vol. 33, no. 4, pp. 808-815.
P. Runeson and M. Host, “Guidelines for conducting and
reporting case study research in software engineering,” vol. 14,
no. 2, pp. 131-164. [Online]. Available: http:/link-springer-
com.ez29.capes.proxy.uftj.br/article/10.1007/s10664-008-9102-8

D. Badampudi, S. A. Fricker, and A. M. Moreno, “Perspectives on
productivity and delays in large-scale agile projects,” in International
Conference on Agile Software Development. Springer, pp. 180-194.
F. D. Davis, “A technology acceptance model for empirically
testing new end-user information systems theory and results,”
http://hdL.handle.net/1721.1/15192, 7 1986, thesis (Ph. D.)-
Massachusetts Institute of Technology, Sloan School of Management,
1986.; MICROFICHE COPY AVAILABLE IN ARCHIVES AND
DEWEY.; Bibliography: leaves 233-250.

G. H. Travassos and M. O. Barros, “Contributions of in virtuo and
in silico experiments for the future of empirical studies in software
engineering,” in 2nd Workshop on Empirical Software Engineering the
Future of Empirical Studies in Software Engineering, pp. 117-130.

F. Shull, J. Carver, and G. H. Travassos, “An empirical methodology for
introducing software processes,” in ACM SIGSOFT Software Engineer-
ing Notes, vol. 26. ACM, pp. 288-296.

P. Deemer, G. Benefield, C. Larman, and B. Vodde. The scrum primer
version 2.0.

E. Insfran and A. Fernandez, “A systematic review of usability evaluation
in web development,” in International Conference on Web Information
Systems Engineering. Springer, pp. 81-91.

S. Petter, W. DeLone, and E. R. McLean, “The past, present, and future
of” IS success”,” vol. 13, no. 5, p. 341.

J. B. Barlow, J. S. Giboney, M. J. Keith, D. W. Wilson, and R. M.
Schuetzler. Overview and guidance on agile development in large
organizations.

L. Cao, K. Mohan, P. Xu, and B. Ramesh, “How extreme does extreme
programming have to be? adapting XP practices to large-scale projects,”
in System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on. 1EEE, pp. 10—pp.

N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, “Software process
diversity: conceptualization, measurement, and analysis of impact on
project performance.”

