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Abstract—Recent research on the automatic classification of app 
reviews either focused on grouping app reviews into categories 
relevant to software evolution, or employed app reviews as the only 
research data to improve app reviews classification. Although it 
was reported that app review classification can benefit from 
supplementing user reviews with the data from other sources, only 
a few studies employed app changelogs for this purpose. This 
paper explores how to augment app reviews with changelogs to 
improve the accuracy and performance of classifying functional 
and non-functional requirements in app reviews. Specifically, we 
propose AUG-AC as an approach to extract feature words from 
app changelogs and construct the augments for app reviews. Next, 
we designed a series of experiments to evaluate our approach, 
varying in the length of AC-based augments for app reviews. The 
results show that AUG-AC outperforms the existing method by 
using app changelogs as a source of data next to app reviews. 

Keywords-app reviews, app changelogs, requirements analysis, 
machine learning, data-driven requirements engineering 

I.    INTRODUCTION  
With the rapid growth of mobile applications, massive sets 

of data are provided by the crowds. Particularly, app reviews, a 
type of explicit feedback from the users, have been recognized 
as an important source of user requirements for app updating and 
maintenance [1-3]. However, current research [1-2] mainly 
concentrated on how to extract features or topics from a large 
number of app reviews and then classify these topics into 
categories relevant to software evolution. Several studies [4-7, 
14] also explored the use of user feedback from other sources in 
requirements elicitation. For example, Vu et al. [4] employed 
user reviews of packaged software in Amazon to pre-extract 
phrases for mining user opinions from app reviews, while Jiang 
et al. [5] combined product reviews from Amazon with app 
reviews as the research data. These authors [4-5] observed that 
user reviews of software have similar characteristics to app 
reviews: (1) the number of reviews is increasing rapidly every 
day; (2) review texts contain many noise words, including emoji, 
non-English words, misspelled words, user-defined 
abbreviations; and (3) most reviews are non-informative (as 
reported in [6], only around 30% of app reviews are informative 
for app updates). To reduce the manual effort in filtering out 
non-informative samples and identify valuable information for 
developers, this paper explores if other information of apps, 
especially the pieces with less noise (i.e. app changelogs), could 
be a significant help.  

App changelogs are posted by software vendors regularly in 
weeks or months. These official texts are written in a 
standardized way and comprise primary changes of the releases. 
A 2018 ICSE study [7] has successfully employed app 
changelogs to identify emerging issues in app reviews. We were 
motivated by these findings, and set out to explore how to use 
official app changelogs to improve the accuracy and 
performance of classifying requirements in app reviews. 
Especially, this paper intends to explore how to make use of app 
changelogs in the automatic classification of app reviews from 
the perspective of requirements types, and finally aid developers 
in the maintenance and updating of apps. 

The paper is structured as follows. Sect. II is on related works. 
Sect. III presents our approach. Sect. IV reports on the 
experimental results evaluating and comparing the accuracy and 
performance of our approach with others. Sect. V discusses our 
findings. Sect. VI is on validity threats. Sect. VII concludes. 

II.   RELATED WORK 
Considering the automatic classification of app reviews, 

some researchers proposed categories relevant to software 
maintenance and evolution. Maalej et al. [1] introduced several 
probabilistic techniques to classify app reviews into four 
categories, i.e. bug reports, feature requests, user experience, and 
text rating. Guzman et al. [2] proposed seven categories relevant 
to software evolution, viz. bug report, feature strength, feature 
shortcoming, user request, praise, complaint, and usage scenario. 
The categories proposed in these two studies partially overlap, 
since the authors intended to help app vendors and developers 
filter critical reviews relevant to different aspects of software 
maintenance. Other researchers considered the categories of app 
reviews from the perspective of requirements types. In particular, 
our previous works in [8-9] employed classic machine learning 
algorithms to identify and classify functional and non-functional 
requirements (FRs and NFRs) from app reviews. Another 
similar study [10] performed automatic analysis on app reviews 
for NFRs elicitation and prioritization. In all these studies, 
however, app reviews were the only type of research data to 
apply and compare specified classifiers.  

To the best of our knowledge, only very few studies 
employed research data from other sources to analyze app 
reviews. Those other sources include user reviews of software 
[4], of products [5], and app descriptions [14], etc. However, 
both [4, 5] aimed to extract and cluster user opinions, rather than 
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classifying requirements into different categories. In [14], Liu et 
al. used app descriptions, another typical data in app stores, to 
guide the analysis of user reviews. Gao et al. [7] used app 
changelogs to identify emerging issues from app reviews, 
instead of identifying and classifying requirements.  

In contrast to these previous studies, the focus of our work is 
mainly on how to augment app reviews with app changelogs in 
order to improve the accuracy and performance of classifying 
FRs and NFRs from app reviews. 

III.   OUR APPROACH 
To employ official app changelogs for the automatic 

identification and classification of requirements from app 
reviews, we propose an approach, called AUG-AC, to 
AUGment app reviews with the text feature words extracted 
from App Changelogs (AC). In this section, we give an overview 
of AUG-AC to explore how to improve the automatic 
classification of app reviews by employing official app 
changelogs. Each step of our approach will be detailed in a 
subsection.  

The experimental data collected and manually labeled in our 
previous work [13] will be reused to evaluate the performance 
and AUC-AC. The dataset includes 6000 app review sentences 
of three apps (one from Apple App Store and two from Google 
Play) and 2024 app changes filtered from 2005 official 
changelogs of 30 apps (3	
  𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠	
  ×10	
  𝑎𝑝𝑝𝑠 in Apple App 
Store). As described in [13], these app review sentences and 
changes were labeled with six types of requirements, including 
four types of NFRs defined in ISO 25010 [11] (i.e. Usability, 
Reliability, Portability and Performance), FR, and ‘Others’- the 
type referring to those review sentences and app changes that fit 
neither FRs nor the four NFRs listed above.  

A.   Overview 
Our approach consists of four main steps, as Figure 1 shows. 

Figure 1.    Overview of AUG-AC approach, focusing on the steps in grey. 

The first step is to preprocess the sampled app reviews and 
changelogs to get respective text feature words of each 
requirements type (Sect. III.B). The second step (which is the 
one foci of our work) creates a AC-based feature words 
dictionary for augmenting app reviews (Sect. III.C). The third 
step (the other focus of our work) augments app reviews with 
the text features extracted in the second step to train the classifier 
and group the app reviews into six pre-specified types of 
requirements (Sect. III.D). In the last step, those augmented app 
reviews generated in Sect. III.D construct the training set of the 
specified classifier. The accuracy of applying this classifier to 
categorizing app reviews in the test set will be evaluated by the 
standard metrics Precision, Recall and F-measure (Sect. III.E). 

B.   Text Preprocessing 
In this step, multiple Natural Language Processing (NLP) 

techniques were applied to the text of app review sentences and 
changes. Specifically, Natural Language Toolkit (NLTK) was 
adopted to perform stopword removal, punctuation removal, and 
lemmatization.  

Next, considering each type of requirements, we intended to 
extract text feature words from the app changelogs and treat 
them as the candidate augmented words for the app reviews 
labeled as this type. In general, the concerns of app changelogs 
grouped in each type of requirements may not always be well 
represented by the frequency and importance of a word. Thus, 
for each type of requirements, Latent Dirichlet Allocation (LDA) 
was employed to extract text feature words in app changelogs. 
By applying LDA, app changelogs labeled as a certain type of 
requirements into can be clustered into one topic and produce 
topic words for this cluster (i.e. each type of requirements). In 
this work, topic words of each cluster form the initial set of text 
feature words to be augmented to those app reviews that are 
labeled as the corresponding type of requirements.  

C.   Constructing AC-based Feature Dictionary 
This step aims to construct an AC-based feature dictionary, 

consisting of the text feature words that was extracted from app 
changelogs and to be augmented to app reviews. As already said 
in the beginning of Sect. III, six types of requirements have been 
specified as the category labels for both app reviews and 
changelogs. Accordingly, for each requirements type 𝑖, a AC-
based feature dictionary 𝐷1	
   is needed (1) to store the text feature 
words extracted from app changelogs typed as 𝑖  , and (2) to 
provide candidate AC-based augmented words for app reviews 
typed as 𝑖. In this paper, 𝐷1 is initialized as a set containing the 
top 20 features words 𝑡12 extracted from app changelogs labeled 
with requirements type 𝑖. 

Algorithm 1: Constructing AC-based Feature Dictionary 

Input: 𝐷1  – initial AC-based feature dictionary.  
Output: 𝐷13– extended AC-based feature dictionary.  
1 for each requirements type 𝑖  
2 import 𝐷1; 
3 Insert 𝐷1  to 𝐷13; 
4 for each 𝑡12 ∈ 𝐷1  
5 insert 𝑆𝑦𝑛𝑜𝑛𝑦𝑚(	
  𝑡12) into 𝐷13; 
6 insert 𝐴𝑛𝑡𝑜𝑛𝑦𝑚(	
  𝑡12) into 𝐷13; 
7 end for 
8 return 𝐷13; 
9 end for 

 

Furthermore, we conducted a pilot study to compare the text 
feature words extracted from app reviews and changelogs. The 
preliminary results indicate that the reflection of app reviews on 
app changelogs is often expressed as the synonyms and 
antonyms of a certain text feature word, rather than using the 
same terms. Since more text feature words benefit pre-training 
of the classifier, the size of 𝐷1 is recommended to be extended to 
cover more candidate AC-based augmented words. For this 
purpose, WordNet in NLTK was applied to the initial dictionary 
𝐷1 to generate the extended dictionary 𝐷13 for the requirements 
type 𝑖. More specifically, for each text feature word 𝑡12 in 𝐷1, all 
its synonyms and antonyms identified in WordNet were added 
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to generate 𝐷13. Algorithm 1 provides the details of constructing 
an AC-based feature dictionary for each type of requirements. 
This results in 𝐷13, which will be used in the next step of AUG-
AC to augment the app reviews labeled as requirements type 𝑖. 
In our work, 𝐷13 consists of two parts, i.e. (1) the top 20 text 
feature words extracted from the type 𝑖-labeled app changelogs 
and (2) all the synonyms and antonyms of these 20 words. 

D.   Augmenting App Reviews 
In this step, we select text feature words in the AC-based 

feature dictionary created in Sect. III.C, in order to augment app 
reviews. These augmented app reviews construct the training set 
of the classifier for app reviews classification.  

To achieve a higher accuracy in requirements classification 
from app reviews, we proposed to augment app reviews with the 
text feature words derived from those app changelogs whose 
requirements type is identic with that of the app reviews to be 
augmented. Specifically, for each type of requirements, we first 
used Word2Vec in NLTK to calculate the similarity between the 
AC-based text feature words and the app reviews labeled as the 
same type. Below, formula (1) was defined to perform the 
similarity calculation task, where 𝑟1< denotes the type 𝑖-labeled 
app review sentence 𝑘  expressed by a vector 𝑟1< =
𝑡1<,@, 𝑡1<,A, ⋯ 𝑡1<,C ⋯ 𝑡1<,D , 𝑡1<,C denotes the m-th feature word 

in 𝑟1< , 𝑡12  denotes the AC-based text feature word labeled as 
requirements type 𝑖 , 𝑤1<,C  denotes the weight of the feature 
word 𝑡1<,C (produced by BoW) in the app review sentence 𝑟1<, 
𝑠𝑖𝑚 𝑡1<,C, 𝑡12  denotes the similarity between the AC-based 
feature word 𝑡12  and the app review-based feature word 𝑡1<,C 
(calculated by Word2Vec), and 𝑛 denotes the number of AC-
based feature words to be augmented to the app review sentences.  

Sim 𝑟1<, 𝑡12 =
𝑤1<,C ∗ 𝑠𝑖𝑚 𝑡1<,C, 𝑡12J

KL@

𝑤1<,CJ
KL@ 	
  

	
  	
  	
  (1) 

Considering each app review sentence 𝑟1< , the similarity 
between 𝑟1< and 𝑡12, i.e. the value of Sim 𝑟1<, 𝑡12 , will be ranked. 
As a result, the top 𝑛 AC-based feature words	
  will be added to 
the end of this review sentence as the semantic augment. This 
means that 𝑛 can be treated as the length of AC-based augment 
for app reviews. Algorithm 2 describes how to augment app 
review sentences with AC-based text feature words extracted in 
Sect. III.B and generated in Sect. III.C. Note that in our work, 
the value of 𝑛  is pre-specified and fixed for augmenting app 
reviews. How much length of AC-based augments, i.e. the 
number of feature words augmented to app reviews, could bring 
more accurate prediction of app review classification will be 
discussed in Sect. IV. 

Algorithm 2: Generating AC-Augmented App Reviews 
Input: 𝐴𝑅1  – app reviews labeled as requirements type 𝑖 

𝑛 - the length of AC-based augment 
Output: 𝐴𝑢𝑔_𝐴𝑅1  – augmented 𝐴𝑅1  by adding 𝑛 words 
1 for each requirements type 𝑖  
2 for each 𝑟1< ∈ 𝐴𝑅1   
3 for each word 𝑡12 ∈ 𝐷13 
4 calculate Sim 𝑟1<, 𝑡12 ; 
5 end for 
6 sort 𝑡12 ∈ 𝐷13 by Sim 𝑟1<, 𝑡12  in descending order； 
7 add the first 𝑛 𝑡12  to 𝑟1<  to produce 𝑛𝑒𝑤_𝑟1<; 

8 insert 𝑛𝑒𝑤_𝑟1<  into 𝐴𝑢𝑔_𝐴𝑅1； 
9 Return 𝐴𝑢𝑔_𝐴𝑅1; 
10 end for 
11 end for 

E.   Classifier Training and Evaluation 
According to the experimental results in [1,9,13], Naïve 

Bayes has been reported to outperform other machine learning 
algorithms in the automatic classification of app reviews. 
Therefore, this work adopted Naïve Bayes as the classification 
technique to categorize FR and NFRs from app reviews. To 
evaluate the performance of Naïve Bayes, 10-fold cross 
validation was applied to reduce its overfitting in identification 
and classification of app reviews. In addition, we adopted the 
standard metrics Precision, Recall and F-measure to evaluate 
the accuracy of Naïve Bayes on the automatic classification of 
app reviews.  

Weighted	
  average	
   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc

𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc
	
  	
  	
  (2) 

More specifically, for each requirements type i, 	
  Precisionj 
is the fraction of the app reviews that are correctly classified as 
requirements type i, Recallj is the fraction of the app reviews of 
requirements type i that are correctly classified as type i, and 
F − measurej  is the harmonic average of the precision and 
recall. Furthermore, we introduced weighted average precision, 
recall and F-measure (see formula (2) below) to evaluate the 
accuracy of classifying app reviews into categories of each 
requirements type. In formula (2), 𝑁𝑢𝑚𝑏𝑒𝑟1 denotes the number 
of app review sentences labeled as requirements type 𝑖 in the test 
set of Naïve Bayes. 

IV.   RESULTS 
This section reports the results of our experimental study and 

compares the accuracy of Naïve Bayes in the automatic 
classification of requirements from app reviews. The Naïve 
Bayes algorithm was programmed with Python. All the 
experiments were conducted on a 2.50GHz Core i5 CPU with 
8GB RAM under Windows 10.  

A.   Impact of Length of Augments on App Reviews 
Classficiation 
As mentioned in Sect. III.C, the length of AC-based 

augments depends on the number of AC-based text feature 
words that added to the specified app reviews. Figure 2 shows 
the precision, recall and F-measure of the automatic 
classification of augmented app reviews with increasing number 
of AC-based augmented words (from 5 to 70 words) with an 
interval of 5 words, by applying Naïve Bayes. Note that in these 
experiments, the maximum length of AC-based augments is set 
as 70 words. The reasons are: (1) in [9], Lu and Peng have 
reported that augments with 1.9 times of the length of an app 
review sentence leaded to the best results in app reviews 
classification; and (2) in our dataset, the longest app review 
sentence has 37 words, and 70 words are around 1.9 times of the 
maximum length of included app review sentences.  

As observed in Figure 2, F-measure is growing rapidly when 
less than 35 AC-based feature words are augmented to app 
reviews. There are two peaks when the length of augments is 35 



and 45 words respectively. When the number of added AC-
based feature words is greater than 50, the value of F-measure 
decreased or fluctuated within a narrow range. 

 
Figure 2.    Accuracy of classifying augmented app reviews with varying 

number of AC-based text feature words. 

Furthermore, Table I zooms in the Precision, Recall and F-
measure for classifying each type of requirements in app reviews, 
by employing AC-based augments with different lengths. 
Typically, the experiments run on the app reviews augmented by 
6 (i.e. the average length of app reviews in our dataset) and 37 
(i.e. the maximum length of app reviews in our dataset) AC-
based text feature words. The results were listed in the columns 
for precision, recall and F-measure in Table I. We found that for 
two types or requirements – Reliability and Other, the accuracy 
of app reviews classification seldom differs in the lengths of 
augments for app reviews. Whereas, for ‘Usability’, 
‘Portability’, ‘Performance’ and ‘FR’ typed app reviews, the 
longer AC-based augment leads to much higher accuracy of 
classifying app reviews.  Specifically, we analyzed the influence 
of the proportion of each type of requirements identified in app 
reviews or changelogs on the accuracy of classifying app 
reviews with different length of AC-based augments.  

As shown in Figure 3(a), for two types of requirements – 
‘Usability’ and ‘FR’, the higher proportion of app changelogs 
labeled as these two requirements types leads to more accurate 
identification and classification of these two types of 

requirements in app reviews. Similarly, for the other two 
requirements types – ‘Portability’ and ‘Performance’, the lower 
proportion of app changelogs resulted in a lower accuracy of 
classifying app reviews labeled as these two types. Whereas, it 
is surprising to find that lower proportion of app changelogs 
typed as ‘Reliability’ and ‘Other’ produced the two highest 
accuracy of classifying these two types of requirements in app 
reviews. Regarding the proportion of six specified types of 
requirements in app reviews, Figure 3(b) indicates that the 
higher (lower) accuracy of classifying app reviews labeled as a 
certain requirements type usually responds to the higher (lower) 
proportion of app reviews labeled as this type of requirements. 

 
(a) 

 
(b) 

Figure 3.    Influence of the proportion of each type in (a) app changelogs and 
(b) app reviews on the F-measure of classifying augmented app reviews. 

TABLE I.    PROPORTION OF APP REVIEWS/CHANGELOGS AND ACCURACY OF REQUIREMENTS CLASSIFICATION IN AUGMENTED APP REVIEWS 
(AC = APP CHANGELOGS, AR = APP REVIEWS) 

Type Proportion 
of AR 

Proportion 
of AC 

Length of Augment = 6 words Length of Augment = 37 words 
Precision Recall F-measure Precision Recall F-measure 

Reliability 0.172 0.199 0.641  0.544 0.586 0.586 0.588 0.587 

Usability 0.104 0.285 0.845 0.239 0.370 0.656 0.408 0.502 

Portability 0.034 0.073 0.100  0.004 0.007 0.410 0.040 0.071 

Performance 0.025 0.068 0.200 0.018 0.034 0.400 0.037 0.068 

FR 0.126 0.222 0.582 0.289 0.386 0.468 0.486 0.476 

Other 0.538 0.053 0.672  0.951 0.785 0.750 0.873 0.807 
Weighted 

average   0.641  0.665  0.611 0.656  0.678 0.652 



B.   Comparision with AUG-BoW 
Similar to AUG-BoW in [9], our proposed AUG-AC also aims 
at augmenting app reviews for more accurate classification of 
app reviews. As we mentioned in Sect. II, AUG-AC differs in 
employing official app changelogs to augment app reviews for 
the identification and classification of requirements in app 
reviews. To compare and evaluate the performance of these two 
methods, we conducted a series of experiments varying in the 
methods for generating augments and the length of augments. 
As listed in the first row of Table II, we repeated AUG-BOW in 
sampled app reviews in our dataset; while in the second to the 
fourth row of Table II, the experiments evaluated AUG-AC in 
the cases that the lengths of augments were the average length 
of app reviews (i.e. 6.15 words), 1.9 times of this average length, 
and the maximum length of included app reviews (i.e. 37 words) 
respectively. 

TABLE II.    RESULTS ON CLASSIFYING APP REVIEWS AUGMENTED WITH 
DIFFERENT TECHNIQUES. 

Techniques Length of 
augment Precision Recall F-measure 

AUG-BoW 
[9] 

1.9 ×  length of an 
app review [9] 0.651 0.642 0.569 

AUG-AC 6 words 0.646 0.666 0.610 

AUG-AC 15 words 0.650 0.674 0.631 

AUG-AC 37 words 0.656 0.678 0.652 

Our experimental results are in Table II. Therein, we observe 
that once our proposed AUG-AC was applied to generate AC-
based augments for app reviews, the accuracy of app reviews 
classification increases regardless of the length of augments. 
That is, our proposed AUG-AC outperformed AUG-BoW [9] by 
employing app changelogs for classifying requirements in app 
reviews. Furthermore, we compared the time spent on the 
automatic classification of augmented app reviews when 
applying AUG-BoW and AUG-AC in our dataset respectively. 
For this purpose, the time spent in two typical experiments – in 
the 1st and 4th row of Table II, was calculated. Note that in this 
work, we only concentrated on the time spent on augmenting app 
reviews with app changelogs by these two methods. The reason 
is that both AUG-BoW and AUG-AC adopted Naïve Bayes as 
the classifier, and these two techniques may take the same time 
period to classify augmented app reviews. The results are: (1) 
AUG-BoW took 1315.77 seconds to construct ‘customized’ 
augments for each app review in the training set of Naïve Bayes, 
and (2) AUG-AC took 106.64 seconds to complete the 37-word 
augments for any included app reviews. It was obvious that app 
reviews classification based on AUG-AC completed much faster 
than that based on AUG-BoW. 

V.   DISCUSSION  

A.   Analysis on the length of AC-based augments 
Regarding the length of AC-based augments, we observed 

that the longer AC-based augments leaded to a higher accuracy 
in classifying app reviews. However, the accuracy did not 
continuously increase by augmenting app reviews with more 
than around 40 text feature words. The reason could be that in 
our AC-based feature dictionary, the AC-based feature words to 
be added to app reviews were ranked according to their topic 

relevance with the specified type of requirements. In turn, the 
top 40 feature words selected for the construction of AC-based 
augments were the most ‘type-sensitive’ ones, and also enough, 
to provide much more accurate results in the app reviews 
classification.  

Next, the proportion of each type of requirements in app 
reviews and changelogs was not always similar, indicating that 
these two data sources concentrated on different types of 
requirements. Taking ‘Usability’ NFR as an example, its 
proportion in app changelogs is around 2.7 times of that in app 
reviews. This finding implies that although apps may be 
upgraded to fit different types of user requirements, the official 
changelogs always pay more attention to this type of 
requirement. The reason could be that for user, changes typed as 
‘Usability’ were critical for making decision on whether this 
release is appropriate for their demands. Regarding to the ‘Other’ 
type, the much lower proportion of app changelogs indicates that 
they have less noise than app reviews.  

Furthermore, we found that the rank of the proportion of 
different types of requirements in app reviews nearly follow the 
rank of accuracy in classifying these requirements types in app 
reviews. The reason could be that both the training and test set 
of Naïve Bayes consisted of app reviews. In contrast, the rank of 
the proportion of different types of requirements in app 
changelogs did not always correspond to the rank of accuracy in 
classifying app reviews. For example, lower proportion of 
‘Reliability’ and ‘Other’ types in app changelogs contributed to 
more accurate results in app review classification. One reason 
could be that for these two types of requirements, the AC-based 
text feature words that were used to augment app reviews are 
quite similar to the feature vectors of app reviews. The other 
reason could be that compared with the other four types of 
requirements, those that employed AC-based text feature words 
are much more ‘topic sensitive’ to identify app reviews typed as 
‘Reliability’ and ‘Other’. All the findings are positive to our 
exploration on using app changelogs to classify requirements in 
app reviews, and encourage further research on this topic.  

B.   Comparison between AUG-AC and AUG-BoW 
Considering the accuracy of app reviews classification, we 

found that our proposed AUG-AC method outperformed AUG-
BoW provided in [9] – the work that inspired our ideas to 
improve the accuracy of app reviews classification with app 
changelogs. Compared with AUG-BoW, AUG-AC spent much 
less time in augmenting app reviews. The main reason is that in 
AUG-AC, the augments of app reviews were constructed by 
calculating the similarity between the AC-based feature words 
of a certain type of requirements and the app reviews labeled as 
this type. That is, for each type of requirements, 20 feature words 
extracted from app reviews and their synonyms and antonyms 
(around 300 words) selected from WordNet are candidates to be 
calculated and ranked. Whereas, AUG-BoW augmented app 
reviews by calculating the similarity between extracted text 
feature words of a certain requirements type and all the app 
reviews labeled as any type of requirements. These findings can 
be deemed as the main advantage of our AUG-AC and the main 
difference between AUG-BoW and AUG-AC. 



VI.   THREATS TO VADILITY  
We followed the guidelines in [15-16] to evaluate the 

possible threats to validity of our experimental results.  

Construct validity: Our work reused the dataset in [13]. All 
the app reviews and changelogs in this dataset were analyzed by 
three coders independently, on the premise that they had a 
consistent understanding on different types of requirements, 
especially on NFR types defined in ISO 25010. As indicated in 
[13], we believe this threat to construct validity is partially 
mitigated by following the aforementioned labelling process. 

Internal validity: There is an internal threat to validity 
concerning how the proposed AUG-AC and the Naïve Bayes 
classifier were programmed. We implemented them by Python. 
The results of this exploratory study may vary if AUG-AC and 
Naïve Bayes are implemented in other ways, e.g. in Weka. Thus, 
how to improve the implementation of AUG-AC and Naïve 
Bayes remains to be studied. Another internal validity threat is 
that, not all the app changelogs and reviews were collected from 
the same platform. Especially, the changelogs of WhatsApp 
were collected from Apple App Store and the app reviews were 
from Google Play. Different concerns of users in different 
platforms may lead to the fact that the AC-based text feature 
words provide insufficient semantics to app reviews, which may 
further result in inaccurate classification of app reviews. 
Therefore, more research is needed on app reviews and 
changelogs from the same platform.  

External validity: We investigated the user reviews of three 
apps and changelogs of 30 apps which span over three categories 
and two major mobile operating systems. We believe that the 
threats to external validity are partially alleviated. Due to the 
time and resource limitation, we did not cover many apps, and 
we plan cover more categories of apps to increase the external 
validity of the study results. 

VII.   CONCLUSIONS AND FUTURE WORK 
This work explored to augment app reviews with official app 

changelogs, in order to improve the accuracy of classifying 
requirements, including FR and four types of NFRs, in app 
reviews. For this purpose, AUG-AC was proposed to augment 
app reviews with not only the text feature extracted from app 
changelogs but also their synonyms and antonyms generated by 
Word2Vec, in the case that both the employed app changelogs 
and the app reviews to be augmented are labeled as the same 
type of requirements. Next, a series of experiments was designed 
to evaluate the performance of AUG-AC by varying the length 
of AC-based augments. The experimental results indicate that 
the AC-based augment of app reviews implemented by AUG-
AC can improve the accuracy of classifying requirements in app 
reviews.  

To further evaluate the performance of AUG-AC, our next 
steps are: (1) re-evaluation of AUG-AC on a balanced dataset by 
leveraging the proportions of different types of requirements in 
current dataset; (2) evaluation of AUG-AC with app reviews and 
changelogs of other apps in other categories of Apple App Store 

or other app repositories (e.g. Google Play, other Android app 
stores, etc.); and (3) validation of AUG-AC by using the dataset 
labeled by more types of NFRs (e.g. Security). 
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