
Augmenting App Reviews with App Changelogs: An
Approach for App Reviews Classification

Chong Wang*, Tao Wang*, Peng Liang
School of Computer Science

Wuhan University, China
{cwang, liangp}@whu.edu.cn

Maya Daneva, Marten van Sinderen
School of Computer Science

University of Twente, the Netherlands
{m.daneva, m.j.vansinderen}@utwente.nl

Abstract—Recent research on the automatic classification of app
reviews either focused on grouping app reviews into categories
relevant to software evolution, or employed app reviews as the only
research data to improve app reviews classification. Although it
was reported that app review classification can benefit from
supplementing user reviews with the data from other sources, only
a few studies employed app changelogs for this purpose. This
paper explores how to augment app reviews with changelogs to
improve the accuracy and performance of classifying functional
and non-functional requirements in app reviews. Specifically, we
propose AUG-AC as an approach to extract feature words from
app changelogs and construct the augments for app reviews. Next,
we designed a series of experiments to evaluate our approach,
varying in the length of AC-based augments for app reviews. The
results show that AUG-AC outperforms the existing method by
using app changelogs as a source of data next to app reviews.

Keywords-app reviews, app changelogs, requirements analysis,
machine learning, data-driven requirements engineering

I. INTRODUCTION
With the rapid growth of mobile applications, massive sets

of data are provided by the crowds. Particularly, app reviews, a
type of explicit feedback from the users, have been recognized
as an important source of user requirements for app updating and
maintenance [1-3]. However, current research [1-2] mainly
concentrated on how to extract features or topics from a large
number of app reviews and then classify these topics into
categories relevant to software evolution. Several studies [4-7,
14] also explored the use of user feedback from other sources in
requirements elicitation. For example, Vu et al. [4] employed
user reviews of packaged software in Amazon to pre-extract
phrases for mining user opinions from app reviews, while Jiang
et al. [5] combined product reviews from Amazon with app
reviews as the research data. These authors [4-5] observed that
user reviews of software have similar characteristics to app
reviews: (1) the number of reviews is increasing rapidly every
day; (2) review texts contain many noise words, including emoji,
non-English words, misspelled words, user-defined
abbreviations; and (3) most reviews are non-informative (as
reported in [6], only around 30% of app reviews are informative
for app updates). To reduce the manual effort in filtering out
non-informative samples and identify valuable information for
developers, this paper explores if other information of apps,
especially the pieces with less noise (i.e. app changelogs), could
be a significant help.

App changelogs are posted by software vendors regularly in
weeks or months. These official texts are written in a
standardized way and comprise primary changes of the releases.
A 2018 ICSE study [7] has successfully employed app
changelogs to identify emerging issues in app reviews. We were
motivated by these findings, and set out to explore how to use
official app changelogs to improve the accuracy and
performance of classifying requirements in app reviews.
Especially, this paper intends to explore how to make use of app
changelogs in the automatic classification of app reviews from
the perspective of requirements types, and finally aid developers
in the maintenance and updating of apps.

The paper is structured as follows. Sect. II is on related works.
Sect. III presents our approach. Sect. IV reports on the
experimental results evaluating and comparing the accuracy and
performance of our approach with others. Sect. V discusses our
findings. Sect. VI is on validity threats. Sect. VII concludes.

II. RELATED WORK
Considering the automatic classification of app reviews,

some researchers proposed categories relevant to software
maintenance and evolution. Maalej et al. [1] introduced several
probabilistic techniques to classify app reviews into four
categories, i.e. bug reports, feature requests, user experience, and
text rating. Guzman et al. [2] proposed seven categories relevant
to software evolution, viz. bug report, feature strength, feature
shortcoming, user request, praise, complaint, and usage scenario.
The categories proposed in these two studies partially overlap,
since the authors intended to help app vendors and developers
filter critical reviews relevant to different aspects of software
maintenance. Other researchers considered the categories of app
reviews from the perspective of requirements types. In particular,
our previous works in [8-9] employed classic machine learning
algorithms to identify and classify functional and non-functional
requirements (FRs and NFRs) from app reviews. Another
similar study [10] performed automatic analysis on app reviews
for NFRs elicitation and prioritization. In all these studies,
however, app reviews were the only type of research data to
apply and compare specified classifiers.

To the best of our knowledge, only very few studies
employed research data from other sources to analyze app
reviews. Those other sources include user reviews of software
[4], of products [5], and app descriptions [14], etc. However,
both [4, 5] aimed to extract and cluster user opinions, rather than

*: The authors contributed equally to this work.
This work is supported by the National Key Research and Development

Plan under grant No. 2018YFB1003800, and the National Natural Science
Foundation of China under grant Nos. 61702378 and 61672387.

DOI reference number: 10.18293/SEKE2019-176

classifying requirements into different categories. In [14], Liu et
al. used app descriptions, another typical data in app stores, to
guide the analysis of user reviews. Gao et al. [7] used app
changelogs to identify emerging issues from app reviews,
instead of identifying and classifying requirements.

In contrast to these previous studies, the focus of our work is
mainly on how to augment app reviews with app changelogs in
order to improve the accuracy and performance of classifying
FRs and NFRs from app reviews.

III. OUR APPROACH
To employ official app changelogs for the automatic

identification and classification of requirements from app
reviews, we propose an approach, called AUG-AC, to
AUGment app reviews with the text feature words extracted
from App Changelogs (AC). In this section, we give an overview
of AUG-AC to explore how to improve the automatic
classification of app reviews by employing official app
changelogs. Each step of our approach will be detailed in a
subsection.

The experimental data collected and manually labeled in our
previous work [13] will be reused to evaluate the performance
and AUC-AC. The dataset includes 6000 app review sentences
of three apps (one from Apple App Store and two from Google
Play) and 2024 app changes filtered from 2005 official
changelogs of 30 apps (3	
 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠	
 ×10	
 𝑎𝑝𝑝𝑠 in Apple App
Store). As described in [13], these app review sentences and
changes were labeled with six types of requirements, including
four types of NFRs defined in ISO 25010 [11] (i.e. Usability,
Reliability, Portability and Performance), FR, and ‘Others’- the
type referring to those review sentences and app changes that fit
neither FRs nor the four NFRs listed above.

A. Overview
Our approach consists of four main steps, as Figure 1 shows.

Figure 1. Overview of AUG-AC approach, focusing on the steps in grey.

The first step is to preprocess the sampled app reviews and
changelogs to get respective text feature words of each
requirements type (Sect. III.B). The second step (which is the
one foci of our work) creates a AC-based feature words
dictionary for augmenting app reviews (Sect. III.C). The third
step (the other focus of our work) augments app reviews with
the text features extracted in the second step to train the classifier
and group the app reviews into six pre-specified types of
requirements (Sect. III.D). In the last step, those augmented app
reviews generated in Sect. III.D construct the training set of the
specified classifier. The accuracy of applying this classifier to
categorizing app reviews in the test set will be evaluated by the
standard metrics Precision, Recall and F-measure (Sect. III.E).

B. Text Preprocessing
In this step, multiple Natural Language Processing (NLP)

techniques were applied to the text of app review sentences and
changes. Specifically, Natural Language Toolkit (NLTK) was
adopted to perform stopword removal, punctuation removal, and
lemmatization.

Next, considering each type of requirements, we intended to
extract text feature words from the app changelogs and treat
them as the candidate augmented words for the app reviews
labeled as this type. In general, the concerns of app changelogs
grouped in each type of requirements may not always be well
represented by the frequency and importance of a word. Thus,
for each type of requirements, Latent Dirichlet Allocation (LDA)
was employed to extract text feature words in app changelogs.
By applying LDA, app changelogs labeled as a certain type of
requirements into can be clustered into one topic and produce
topic words for this cluster (i.e. each type of requirements). In
this work, topic words of each cluster form the initial set of text
feature words to be augmented to those app reviews that are
labeled as the corresponding type of requirements.

C. Constructing AC-based Feature Dictionary
This step aims to construct an AC-based feature dictionary,

consisting of the text feature words that was extracted from app
changelogs and to be augmented to app reviews. As already said
in the beginning of Sect. III, six types of requirements have been
specified as the category labels for both app reviews and
changelogs. Accordingly, for each requirements type 𝑖, a AC-
based feature dictionary 𝐷1	
 is needed (1) to store the text feature
words extracted from app changelogs typed as 𝑖 , and (2) to
provide candidate AC-based augmented words for app reviews
typed as 𝑖. In this paper, 𝐷1 is initialized as a set containing the
top 20 features words 𝑡12 extracted from app changelogs labeled
with requirements type 𝑖.

Algorithm 1: Constructing AC-based Feature Dictionary

Input: 𝐷1 – initial AC-based feature dictionary.
Output: 𝐷13– extended AC-based feature dictionary.
1 for each requirements type 𝑖
2 import 𝐷1;
3 Insert 𝐷1 to 𝐷13;
4 for each 𝑡12 ∈ 𝐷1
5 insert 𝑆𝑦𝑛𝑜𝑛𝑦𝑚(
 𝑡12) into 𝐷13;
6 insert 𝐴𝑛𝑡𝑜𝑛𝑦𝑚(
 𝑡12) into 𝐷13;
7 end for
8 return 𝐷13;
9 end for

Furthermore, we conducted a pilot study to compare the text
feature words extracted from app reviews and changelogs. The
preliminary results indicate that the reflection of app reviews on
app changelogs is often expressed as the synonyms and
antonyms of a certain text feature word, rather than using the
same terms. Since more text feature words benefit pre-training
of the classifier, the size of 𝐷1 is recommended to be extended to
cover more candidate AC-based augmented words. For this
purpose, WordNet in NLTK was applied to the initial dictionary
𝐷1 to generate the extended dictionary 𝐷13 for the requirements
type 𝑖. More specifically, for each text feature word 𝑡12 in 𝐷1, all
its synonyms and antonyms identified in WordNet were added

app
changelogs

1. Preprocessing 2. Constructing
feature dictionary

3. Augmenting
app reviews

4. Classifier
training

Classification of
app reviews

to generate 𝐷13. Algorithm 1 provides the details of constructing
an AC-based feature dictionary for each type of requirements.
This results in 𝐷13, which will be used in the next step of AUG-
AC to augment the app reviews labeled as requirements type 𝑖.
In our work, 𝐷13 consists of two parts, i.e. (1) the top 20 text
feature words extracted from the type 𝑖-labeled app changelogs
and (2) all the synonyms and antonyms of these 20 words.

D. Augmenting App Reviews
In this step, we select text feature words in the AC-based

feature dictionary created in Sect. III.C, in order to augment app
reviews. These augmented app reviews construct the training set
of the classifier for app reviews classification.

To achieve a higher accuracy in requirements classification
from app reviews, we proposed to augment app reviews with the
text feature words derived from those app changelogs whose
requirements type is identic with that of the app reviews to be
augmented. Specifically, for each type of requirements, we first
used Word2Vec in NLTK to calculate the similarity between the
AC-based text feature words and the app reviews labeled as the
same type. Below, formula (1) was defined to perform the
similarity calculation task, where 𝑟1< denotes the type 𝑖-labeled
app review sentence 𝑘 expressed by a vector 𝑟1< =
𝑡1<,@, 𝑡1<,A, ⋯ 𝑡1<,C ⋯ 𝑡1<,D , 𝑡1<,C denotes the m-th feature word

in 𝑟1< , 𝑡12 denotes the AC-based text feature word labeled as
requirements type 𝑖 , 𝑤1<,C denotes the weight of the feature
word 𝑡1<,C (produced by BoW) in the app review sentence 𝑟1<,
𝑠𝑖𝑚 𝑡1<,C, 𝑡12 denotes the similarity between the AC-based
feature word 𝑡12 and the app review-based feature word 𝑡1<,C
(calculated by Word2Vec), and 𝑛 denotes the number of AC-
based feature words to be augmented to the app review sentences.

Sim 𝑟1<, 𝑡12 =
𝑤1<,C ∗ 𝑠𝑖𝑚 𝑡1<,C, 𝑡12J

KL@

𝑤1<,CJ
KL@ 	

	
 	
 	
 (1)

Considering each app review sentence 𝑟1< , the similarity
between 𝑟1< and 𝑡12, i.e. the value of Sim 𝑟1<, 𝑡12 , will be ranked.
As a result, the top 𝑛 AC-based feature words	
 will be added to
the end of this review sentence as the semantic augment. This
means that 𝑛 can be treated as the length of AC-based augment
for app reviews. Algorithm 2 describes how to augment app
review sentences with AC-based text feature words extracted in
Sect. III.B and generated in Sect. III.C. Note that in our work,
the value of 𝑛 is pre-specified and fixed for augmenting app
reviews. How much length of AC-based augments, i.e. the
number of feature words augmented to app reviews, could bring
more accurate prediction of app review classification will be
discussed in Sect. IV.

Algorithm 2: Generating AC-Augmented App Reviews
Input: 𝐴𝑅1 – app reviews labeled as requirements type 𝑖

𝑛 - the length of AC-based augment
Output: 𝐴𝑢𝑔_𝐴𝑅1 – augmented 𝐴𝑅1 by adding 𝑛 words
1 for each requirements type 𝑖
2 for each 𝑟1< ∈ 𝐴𝑅1
3 for each word 𝑡12 ∈ 𝐷13
4 calculate Sim 𝑟1<, 𝑡12 ;
5 end for
6 sort 𝑡12 ∈ 𝐷13 by Sim 𝑟1<, 𝑡12 in descending order；
7 add the first 𝑛 𝑡12 to 𝑟1< to produce 𝑛𝑒𝑤_𝑟1<;

8 insert 𝑛𝑒𝑤_𝑟1< into 𝐴𝑢𝑔_𝐴𝑅1；
9 Return 𝐴𝑢𝑔_𝐴𝑅1;
10 end for
11 end for

E. Classifier Training and Evaluation
According to the experimental results in [1,9,13], Naïve

Bayes has been reported to outperform other machine learning
algorithms in the automatic classification of app reviews.
Therefore, this work adopted Naïve Bayes as the classification
technique to categorize FR and NFRs from app reviews. To
evaluate the performance of Naïve Bayes, 10-fold cross
validation was applied to reduce its overfitting in identification
and classification of app reviews. In addition, we adopted the
standard metrics Precision, Recall and F-measure to evaluate
the accuracy of Naïve Bayes on the automatic classification of
app reviews.

Weighted	
 average	
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc

𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc
	
 	
 	
 (2)

More specifically, for each requirements type i, 	
 Precisionj
is the fraction of the app reviews that are correctly classified as
requirements type i, Recallj is the fraction of the app reviews of
requirements type i that are correctly classified as type i, and
F − measurej is the harmonic average of the precision and
recall. Furthermore, we introduced weighted average precision,
recall and F-measure (see formula (2) below) to evaluate the
accuracy of classifying app reviews into categories of each
requirements type. In formula (2), 𝑁𝑢𝑚𝑏𝑒𝑟1 denotes the number
of app review sentences labeled as requirements type 𝑖 in the test
set of Naïve Bayes.

IV. RESULTS
This section reports the results of our experimental study and

compares the accuracy of Naïve Bayes in the automatic
classification of requirements from app reviews. The Naïve
Bayes algorithm was programmed with Python. All the
experiments were conducted on a 2.50GHz Core i5 CPU with
8GB RAM under Windows 10.

A. Impact of Length of Augments on App Reviews
Classficiation
As mentioned in Sect. III.C, the length of AC-based

augments depends on the number of AC-based text feature
words that added to the specified app reviews. Figure 2 shows
the precision, recall and F-measure of the automatic
classification of augmented app reviews with increasing number
of AC-based augmented words (from 5 to 70 words) with an
interval of 5 words, by applying Naïve Bayes. Note that in these
experiments, the maximum length of AC-based augments is set
as 70 words. The reasons are: (1) in [9], Lu and Peng have
reported that augments with 1.9 times of the length of an app
review sentence leaded to the best results in app reviews
classification; and (2) in our dataset, the longest app review
sentence has 37 words, and 70 words are around 1.9 times of the
maximum length of included app review sentences.

As observed in Figure 2, F-measure is growing rapidly when
less than 35 AC-based feature words are augmented to app
reviews. There are two peaks when the length of augments is 35

and 45 words respectively. When the number of added AC-
based feature words is greater than 50, the value of F-measure
decreased or fluctuated within a narrow range.

Figure 2. Accuracy of classifying augmented app reviews with varying

number of AC-based text feature words.

Furthermore, Table I zooms in the Precision, Recall and F-
measure for classifying each type of requirements in app reviews,
by employing AC-based augments with different lengths.
Typically, the experiments run on the app reviews augmented by
6 (i.e. the average length of app reviews in our dataset) and 37
(i.e. the maximum length of app reviews in our dataset) AC-
based text feature words. The results were listed in the columns
for precision, recall and F-measure in Table I. We found that for
two types or requirements – Reliability and Other, the accuracy
of app reviews classification seldom differs in the lengths of
augments for app reviews. Whereas, for ‘Usability’,
‘Portability’, ‘Performance’ and ‘FR’ typed app reviews, the
longer AC-based augment leads to much higher accuracy of
classifying app reviews. Specifically, we analyzed the influence
of the proportion of each type of requirements identified in app
reviews or changelogs on the accuracy of classifying app
reviews with different length of AC-based augments.

As shown in Figure 3(a), for two types of requirements –
‘Usability’ and ‘FR’, the higher proportion of app changelogs
labeled as these two requirements types leads to more accurate
identification and classification of these two types of

requirements in app reviews. Similarly, for the other two
requirements types – ‘Portability’ and ‘Performance’, the lower
proportion of app changelogs resulted in a lower accuracy of
classifying app reviews labeled as these two types. Whereas, it
is surprising to find that lower proportion of app changelogs
typed as ‘Reliability’ and ‘Other’ produced the two highest
accuracy of classifying these two types of requirements in app
reviews. Regarding the proportion of six specified types of
requirements in app reviews, Figure 3(b) indicates that the
higher (lower) accuracy of classifying app reviews labeled as a
certain requirements type usually responds to the higher (lower)
proportion of app reviews labeled as this type of requirements.

(a)

(b)

Figure 3. Influence of the proportion of each type in (a) app changelogs and
(b) app reviews on the F-measure of classifying augmented app reviews.

TABLE I. PROPORTION OF APP REVIEWS/CHANGELOGS AND ACCURACY OF REQUIREMENTS CLASSIFICATION IN AUGMENTED APP REVIEWS
(AC = APP CHANGELOGS, AR = APP REVIEWS)

Type Proportion
of AR

Proportion
of AC

Length of Augment = 6 words Length of Augment = 37 words
Precision Recall F-measure Precision Recall F-measure

Reliability 0.172 0.199 0.641 0.544 0.586 0.586 0.588 0.587

Usability 0.104 0.285 0.845 0.239 0.370 0.656 0.408 0.502

Portability 0.034 0.073 0.100 0.004 0.007 0.410 0.040 0.071

Performance 0.025 0.068 0.200 0.018 0.034 0.400 0.037 0.068

FR 0.126 0.222 0.582 0.289 0.386 0.468 0.486 0.476

Other 0.538 0.053 0.672 0.951 0.785 0.750 0.873 0.807
Weighted

average 0.641 0.665 0.611 0.656 0.678 0.652

B. Comparision with AUG-BoW
Similar to AUG-BoW in [9], our proposed AUG-AC also aims
at augmenting app reviews for more accurate classification of
app reviews. As we mentioned in Sect. II, AUG-AC differs in
employing official app changelogs to augment app reviews for
the identification and classification of requirements in app
reviews. To compare and evaluate the performance of these two
methods, we conducted a series of experiments varying in the
methods for generating augments and the length of augments.
As listed in the first row of Table II, we repeated AUG-BOW in
sampled app reviews in our dataset; while in the second to the
fourth row of Table II, the experiments evaluated AUG-AC in
the cases that the lengths of augments were the average length
of app reviews (i.e. 6.15 words), 1.9 times of this average length,
and the maximum length of included app reviews (i.e. 37 words)
respectively.

TABLE II. RESULTS ON CLASSIFYING APP REVIEWS AUGMENTED WITH
DIFFERENT TECHNIQUES.

Techniques Length of
augment Precision Recall F-measure

AUG-BoW
[9]

1.9 × length of an
app review [9] 0.651 0.642 0.569

AUG-AC 6 words 0.646 0.666 0.610

AUG-AC 15 words 0.650 0.674 0.631

AUG-AC 37 words 0.656 0.678 0.652

Our experimental results are in Table II. Therein, we observe
that once our proposed AUG-AC was applied to generate AC-
based augments for app reviews, the accuracy of app reviews
classification increases regardless of the length of augments.
That is, our proposed AUG-AC outperformed AUG-BoW [9] by
employing app changelogs for classifying requirements in app
reviews. Furthermore, we compared the time spent on the
automatic classification of augmented app reviews when
applying AUG-BoW and AUG-AC in our dataset respectively.
For this purpose, the time spent in two typical experiments – in
the 1st and 4th row of Table II, was calculated. Note that in this
work, we only concentrated on the time spent on augmenting app
reviews with app changelogs by these two methods. The reason
is that both AUG-BoW and AUG-AC adopted Naïve Bayes as
the classifier, and these two techniques may take the same time
period to classify augmented app reviews. The results are: (1)
AUG-BoW took 1315.77 seconds to construct ‘customized’
augments for each app review in the training set of Naïve Bayes,
and (2) AUG-AC took 106.64 seconds to complete the 37-word
augments for any included app reviews. It was obvious that app
reviews classification based on AUG-AC completed much faster
than that based on AUG-BoW.

V. DISCUSSION

A. Analysis on the length of AC-based augments
Regarding the length of AC-based augments, we observed

that the longer AC-based augments leaded to a higher accuracy
in classifying app reviews. However, the accuracy did not
continuously increase by augmenting app reviews with more
than around 40 text feature words. The reason could be that in
our AC-based feature dictionary, the AC-based feature words to
be added to app reviews were ranked according to their topic

relevance with the specified type of requirements. In turn, the
top 40 feature words selected for the construction of AC-based
augments were the most ‘type-sensitive’ ones, and also enough,
to provide much more accurate results in the app reviews
classification.

Next, the proportion of each type of requirements in app
reviews and changelogs was not always similar, indicating that
these two data sources concentrated on different types of
requirements. Taking ‘Usability’ NFR as an example, its
proportion in app changelogs is around 2.7 times of that in app
reviews. This finding implies that although apps may be
upgraded to fit different types of user requirements, the official
changelogs always pay more attention to this type of
requirement. The reason could be that for user, changes typed as
‘Usability’ were critical for making decision on whether this
release is appropriate for their demands. Regarding to the ‘Other’
type, the much lower proportion of app changelogs indicates that
they have less noise than app reviews.

Furthermore, we found that the rank of the proportion of
different types of requirements in app reviews nearly follow the
rank of accuracy in classifying these requirements types in app
reviews. The reason could be that both the training and test set
of Naïve Bayes consisted of app reviews. In contrast, the rank of
the proportion of different types of requirements in app
changelogs did not always correspond to the rank of accuracy in
classifying app reviews. For example, lower proportion of
‘Reliability’ and ‘Other’ types in app changelogs contributed to
more accurate results in app review classification. One reason
could be that for these two types of requirements, the AC-based
text feature words that were used to augment app reviews are
quite similar to the feature vectors of app reviews. The other
reason could be that compared with the other four types of
requirements, those that employed AC-based text feature words
are much more ‘topic sensitive’ to identify app reviews typed as
‘Reliability’ and ‘Other’. All the findings are positive to our
exploration on using app changelogs to classify requirements in
app reviews, and encourage further research on this topic.

B. Comparison between AUG-AC and AUG-BoW
Considering the accuracy of app reviews classification, we

found that our proposed AUG-AC method outperformed AUG-
BoW provided in [9] – the work that inspired our ideas to
improve the accuracy of app reviews classification with app
changelogs. Compared with AUG-BoW, AUG-AC spent much
less time in augmenting app reviews. The main reason is that in
AUG-AC, the augments of app reviews were constructed by
calculating the similarity between the AC-based feature words
of a certain type of requirements and the app reviews labeled as
this type. That is, for each type of requirements, 20 feature words
extracted from app reviews and their synonyms and antonyms
(around 300 words) selected from WordNet are candidates to be
calculated and ranked. Whereas, AUG-BoW augmented app
reviews by calculating the similarity between extracted text
feature words of a certain requirements type and all the app
reviews labeled as any type of requirements. These findings can
be deemed as the main advantage of our AUG-AC and the main
difference between AUG-BoW and AUG-AC.

VI. THREATS TO VADILITY
We followed the guidelines in [15-16] to evaluate the

possible threats to validity of our experimental results.

Construct validity: Our work reused the dataset in [13]. All
the app reviews and changelogs in this dataset were analyzed by
three coders independently, on the premise that they had a
consistent understanding on different types of requirements,
especially on NFR types defined in ISO 25010. As indicated in
[13], we believe this threat to construct validity is partially
mitigated by following the aforementioned labelling process.

Internal validity: There is an internal threat to validity
concerning how the proposed AUG-AC and the Naïve Bayes
classifier were programmed. We implemented them by Python.
The results of this exploratory study may vary if AUG-AC and
Naïve Bayes are implemented in other ways, e.g. in Weka. Thus,
how to improve the implementation of AUG-AC and Naïve
Bayes remains to be studied. Another internal validity threat is
that, not all the app changelogs and reviews were collected from
the same platform. Especially, the changelogs of WhatsApp
were collected from Apple App Store and the app reviews were
from Google Play. Different concerns of users in different
platforms may lead to the fact that the AC-based text feature
words provide insufficient semantics to app reviews, which may
further result in inaccurate classification of app reviews.
Therefore, more research is needed on app reviews and
changelogs from the same platform.

External validity: We investigated the user reviews of three
apps and changelogs of 30 apps which span over three categories
and two major mobile operating systems. We believe that the
threats to external validity are partially alleviated. Due to the
time and resource limitation, we did not cover many apps, and
we plan cover more categories of apps to increase the external
validity of the study results.

VII. CONCLUSIONS AND FUTURE WORK
This work explored to augment app reviews with official app

changelogs, in order to improve the accuracy of classifying
requirements, including FR and four types of NFRs, in app
reviews. For this purpose, AUG-AC was proposed to augment
app reviews with not only the text feature extracted from app
changelogs but also their synonyms and antonyms generated by
Word2Vec, in the case that both the employed app changelogs
and the app reviews to be augmented are labeled as the same
type of requirements. Next, a series of experiments was designed
to evaluate the performance of AUG-AC by varying the length
of AC-based augments. The experimental results indicate that
the AC-based augment of app reviews implemented by AUG-
AC can improve the accuracy of classifying requirements in app
reviews.

To further evaluate the performance of AUG-AC, our next
steps are: (1) re-evaluation of AUG-AC on a balanced dataset by
leveraging the proportions of different types of requirements in
current dataset; (2) evaluation of AUG-AC with app reviews and
changelogs of other apps in other categories of Apple App Store

or other app repositories (e.g. Google Play, other Android app
stores, etc.); and (3) validation of AUG-AC by using the dataset
labeled by more types of NFRs (e.g. Security).

REFERENCES
[1] W. Maalej, Z. Kurtanovic, H. Nabil, C. Stanik, “On the automatic

classification of app reviews”, Requirements Engineering, vol. 21, no. 3,
pp.311-331, 2016.

[2] E. Guzman, M. El-Haliby, B. ,“Ensemble Methods for App Re-view
Classification: An Approach for Software Evolution”, in Proc. of the 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE’15), Lincoln, USA, 2015, pp.771-776.

[3] S. Panichella, A. Di Sorbo, et al., “How Can I Improve My App?
Classifying User Reviews for Software Maintenance and Evolution”, in
Proc. of IEEE International Conference on Software Maintenance and
Evolution (ICSME’15), Bremen, Germany, 2015, pp.281-290.

[4] P.M. Vu, H.V. Pham, T.T. Nguyen, T. T. Nguyen, “Phrase-based
extraction of user opinions in mobile app reviews”, in Proc. of the 31st
IEEE/ACM International Conference on Automated Software
Engineering (ASE’16), Singapore, 2016, pp.726-731.

[5] W. Jiang, H. Ruan, et al, “For User-Driven Software Evolution:
Requirements Elicitation Derived from Mining Online Reviews”, In
Proceeding of the 18th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining (PAKDD’14), Taiwan, China,
2014, pp.584-595.

[6] N. Chen, J. Lin, S.C.H. et al, “AR-miner: Mining Informative Reviews
for Developers from Mobile App Marketplace”, in Proc. of the 36th
International Conference on Software Engineering (ICSE '14), Hyderabad,
India, ACM, 2014, pp.767-778.

[7] C. Gao, J. Zeng, M. R. Lyu and I. King, “Online App Review Analysis
for Identifying Emerging Issues”, in Proc. of the 40th International
Conference on Software Engineering (ICSE’18), Gothenburg, Sweden,
ACM, 2018, pp.48-58.

[8] H. Yang and P. Liang, “Identification and Classification of Requirements
from App User Reviews”, in Proc. of the 27th International Conference
on Software Engineering and Knowledge Engineering (SEKE’15),
Pittsburgh, USA, 2015, pp.7-12.

[9] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews”, in Proc. of the 21st
International Conference on Evaluation and Assessment in Software
Engineering (EASE’17), Karlskrona, Sweden, 2017, pp.344-353.

[10] E.C. Groen, S. Kopczynska, et al., “Users-The Hidden Software Product
Quality Experts?”, in Proc. of the 25th International Requirements
Engineering Conference (RE’17), Lisbon, Portugal, 2017, pp.80-89.

[11] ISO. ISO/IEC 25010, Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. FDIS, 2011.

[12] R. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer, ISBN 978-3-662-43838-1. 2014.

[13] C. Wang, F. Zhang, P. Liang, et al. “Can App Changelogs Improve
Requirements Classification from App Reviews? An Exploratory Study”,
In Proc. of the 12th International Symposium on Empirical Software
Engineering and Measurement (ESEM’18). ACM, Oulu, Finland, 2018,
pp.43:1-43:4.

[14] YZ. Liu, L Liu, HX Liu, and WY Wang, “Analyzing reviews guided by
App description for the software development and evolution”, Journal of
Software: Evolution and Process, vol. 30, no. 12, 2018, pp. ,

[15] Forrest Shull, Janice Singer, and Sjøberg Dag I. K. Guide to Advanced
Empirical Software Engineering. Springer, 2008.

[16] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Regnell
Bjorn, and Anders Wesslen. Experimentation in Software Engineering.
Springer, 2012.

