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Abstract

Wikipedia is a rich source of information across many
knowledge domains. Yet, recovering articles relevant to a
specific domain is a difficult problem since such articles
may be rare and tend to cover multiple topics. Furthermore,
Wikipedia’s categories provide an ambiguous classification
of articles as they relate to all topics and thus are of limited
use. In this paper, we develop a new methodology to isolate
Wikipedia’s articles that describe a specific topic within the
scope of relevant categories; the methodology uses super-
vised machine learning to retrieve a decision tree classifier
based on articles’ features (URL patterns, summary text,
infoboxes, links from list articles). In a case study, we re-
trieve 3000+ articles that describe software (computer) lan-
guages. Available fragments of ground truths serve as an
essential part of the training set to detect relevant articles.
The results of the classification are thoroughly evaluated
through a survey, in which 31 domain experts participated.

1 INTRODUCTION

Wikipedia is a very large-scale, continuous community
effort to collect and organize (informal) knowledge in al-
most all domains. In general, the quality of the articles and
the mere principles of collection and organization challenge
automated procedures in the quest of extracting and struc-
turing Wikipedia knowledge [1–4]. Recovering articles de-
scribing topics in a certain domain is a reoccurring prob-
lem [5–7]. This paper presents a supervised machine learn-
ing approach for recovering Wikipedia articles relevant to
an ontological class.

We conduct a case study on software languages defined
as a set of digital artifacts, for which syntax, type system,
semantics, and pragmatics can be (in)formally defined, doc-
umented, and implemented [8]. For the purpose of this re-
search, we assume that Wikipedia’s notion of ”computer
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language” – a notion that is used all across computer sci-
ence and beyond – is essentially equivalent to the notion of
”software language”; see also [9] for a discussion.

An important barrier is that, in a large number of cases, a
single Wikipedia article covers multiple subjects. Looking
at the very first sentences of the article about MATLAB (see
Figure 1), several topics are mixed together (e.g., user inter-
faces, numerical computing, and software languages). The
category graph is impacted as well (e.g., linear algebra and
array-programming languages are both mentioned). There
are also two infoboxes—one about MATLAB the language,
the other about MATLAB the software.

Moreover, Wikipedia’s category graph cannot be
directly used for classification within the domain [10];
categories serve purposes other than classification, for
example, collecting articles related to a common topic;
see https://en.wikipedia.org/wiki/Category:

Java_(programming_language). Wikipedia’s guide-
lines partly explain why multiple topics appear in an article:
there should not be a new article, when the description
benefits from explaining two or more subjects in the
context of an existing article1. Such rules and editing
practices, though reasonable, complicate classification,
i.e., automated identification of articles (instances) and
underlying categories (classifiers). For some domains, like
animals [5], categories that represent scientific classifica-
tion are consistently used and provide a decision ground for
still identifying relevant articles. In the domain of software
languages such crucial features do not exist for articles
or are used inconsistently. Alas, the recovery of relevant
articles becomes looking for needles in a hay stack.

Significance of the multiple-subject problem. We ini-
tially explored articles that link to (subcategories of) the cat-
egory ‘Computer languages’ and search for the top ten fre-
quent nouns (’NN’ tag recovered with part-of-speech tag-
ger). We noticed that nouns from the music and astron-
omy domain are dominant. Fig. 2 reports the number of
articles for the top ten most frequent nouns in the category

1https://en.wikipedia.org/wiki/Wikipedia:Notability#
Whether_to_create_standalone_pages
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Figure 1. General structure of a Wikipedia article and some indicators.

tree of ’Computer languages’ tree that we cut off at a depth
of seven. Within the category tree, we observed subjects
that belong to other domains, such as ’songs’, ’stars’, ’al-
bum’ and ’music’. Except for the minority that describes
domain specific languages in the respective domains, most
of the article are obviously irrelevant to software languages.
Fig. 2 also provides evidence that relatedness-based sub-
categorization connect to irrelevant subjects.

Figure 2. Top 10 most frequent nouns in arti-
cles below ’Formal languages’ category.

Research question and contributions. Overall, our
case study is an instance of the problem of extracting
domain-specific knowledge from Wikipedia [7, 10, 11]:
How can we classify Wikipedia articles by their relevance
to a given domain when relevant articles are rare and mul-
tiple main topics are covered by articles? Our objective is
essentially to detect members (here: Wikipedia articles) of
a certain class (here: software languages).

We develop a seed-based learning methodology for iden-
tifying articles relevant to a domain-specific class while
leveraging the available limited ground truth (based on

Github and TIOBE) and identifying indicators by inspect-
ing a learnt decision tree that include URL patterns, sum-
mary text, infoboxes, list articles and category graph. We
then present a case study which, in itself, results in the most
comprehensive corpus on software languages available to-
day. The results are evaluated by domain experts through a
survey.

2 SEED-BASED LEARNING

We now detail how we exploit fragments of ground truths
and instrument a decision tree classifier. The datasets in-
cluding plotted decision trees are available online2. Fig-
ure 3 provides an overview of our approach. i.) For train-
ing, we recover articles describing elements that appear in
trustworthy external resources. ii.) Based on such seed, we
define the scope in which we want to isolate relevant ar-
ticles and label 4000 randomly sampled articles from this
scope for additional training data. iii.) From the training
data, we build a feature matrix with categorical values that
state whether a structural feature, such as the programming
language infobox template, is present. iv.) We configure a
binary classifier that decides whether an article is relevant.

2.1 Seed Matching

As first step, we have identified and reused two trustwor-
thy external data sets: both act as seeds for recognizing rele-
vant articles. GitHub presents statistics on which languages

2https://github.com/softlang/wikionto/



Figure 3. The ingredients of the approach. The seed in the training data influences decisions.

are used for any repository. The complete list of languages
that are recognized can be extracted3. The TIOBE index
presents statistics on how often software languages (mainly
programming languages) are mentioned on the web. The
list includes variations of names4.

Identifying each language on Wikipedia from the lists
is challenging. We encountered favorable and problematic
cases. To our favor, most names can be matched with article
titles by leaving out annotations (e.g. ’(programming lan-
guage)’) or by using Wikipedia redirects. However, manual
reviewing remains crucial to make sure that languages are
matched correctly, e.g., ’Red’ is matched with ’Red (pro-
gramming language)’ and not with the color. In some cases,
we succeeded by varying the writing style for the name,
e.g., by unfolding acronyms, such as EBNF. In less favor-
able cases, we had to rely on Wikipedia’s search engine to
detect mentions in the text of existing articles. Only if the
existing article describes the seed language as its main topic
in the summary, we take it as the recalled article. To ensure
availability of the necessary features for classification, we
exclude stub articles from further analysis.

The resulting merged seed contains 327 recalled seed
languages where 110 overlap. 158 seed languages are only
casually mentioned in articles and 99 seed languages remain
unrecognized.

2.2 Category Scope Exploration

We narrow the scope of our analysis to articles that are
reachable by links to (subcategories of) chosen upper cate-
gories. Technically, we have manually identified common
upper categories so that the seed is linked to them. At first,
we hypothesized that all relevant languages link to ’Com-
puter languages’, but we found ’Augmented BackusNaur
form’ as a seed member that links to ’Formal languages’,
where ’Computer languages’ is a subcategory. Moreover,
for seed articles such as ’CSV’, we noticed the upper cate-
gory ’Computer file formats’ that is disconnected from ’For-
mal languages’. Such formats are categorized in a different
manner, but they do conform to the definition of software
language. Our experiments show that all seed articles are

3https://github.com/github/linguist/blob/master/lib/
linguist/languages.yml

4https://www.tiobe.com/tiobe-index/
programming-languages-definition/#instances

Table 1. Number of seed articles per depth.
0 1 2 3 4 5 6-8

Formal languages 2 6 85 136 70 16 7
Computer file formats 8 22 11 7 0 0 3

linked to (subcategories of) two disconnected roots in the
category tree at a maximum depth of eight. Table 1 illus-
trates at what depth from the chosen root categories seed
articles exist.

2.3 Feature Extraction

Next, we describe which features we extract from the
content types discussed in Section 1. To counter lack of
decisive features and to reduce dimensionality, we exclude
stub articles and only consider features that appear in at
least ten articles. For now, we also exclude articles at a
distance to the upper categories that is higher than 8. As
a resulting dataset, the extraction returns an article-feature
matrix with 104, 186 × 46, 173 entries with label ‘1’ for
present and ‘0’ otherwise. Then, the set of 4000 randomly
sampled articles and the seed form the training set. To avoid
memory issues and enable loading the whole article-feature
matrix, we use sparse matrices.

In the evaluation, we discuss that irrelevant articles in
the training set are actually members of many other domain
classes and have many different features. Hence, the result-
ing decision tree decides by features present in seed articles.
In fact, GitHub and TIOBE seeds have a more general in-
terest: Seed articles provide representative features for
recognizing relevant articles. We show which features of
seed articles provide a representative positive indication and
hence may be found in a fit decision tree.

Infobox Templates. In the scope, there exist 864 distinct
infobox template names. 263 seed articles use an infobox
template. We found the templates on ‘programming lan-
guage’ (215), ‘file format’ (32), ‘technology standard’ (3)
and ‘software license’ (1). Especially, the templates ’pro-
gramming language’ and ’file format’ provide a strong pos-
itive indication, but they do not exist for every relevant arti-
cle.

URL Pattern. We extract all words separately in braces
from every article’s title as they provide a semantic anno-



tation for disambiguation. Only around a third of the seed
articles has such an annotation. The words in braces ap-
pearing more than once with their frequency are: ’language’
(125), ’programming’ (114), ’software’ (6), ’stylesheet’ (3)
and ’markup’ (2). ’programming’ always appears together
with ’language’.

Lemmas in Summary. From the summary, we extract
all words, filter them by a stop word list and apply lemma-
tization on the remainder. We recovered 5449 lemmas from
seed articles while 457, 164 distinct lemmas can be recov-
ered from all articles. We enumerate the top five lem-
mas from the seed: ’language’ (301), ’programming’ (253),
’use’ (216), ’develop’ (120), ’design’ (117). Lemmas are
often used for topic models [12]. They are essential to dis-
tinguish the domain of software languages and co-occurring
topics in articles from other unrelated domains such as nat-
ural languages.

Dependency Pattern. Following [10], we identified
multiple kinds of relationships that can be extracted from
the first sentence. Hypernyms provide a reliable feature as
most articles on Wikipedia begin with a sentence containing
’is a’. Based on the dependency graph, we extract the hy-
pernym [13], if the sentence does not start with ’A’. This al-
lows us to ignore subset relationships as in ‘A programming
language is a formal language[...]’. To reach higher cover-
age, we infer instantiation from relationships such as part-
of as in ‘Perl 6 (also known as Raku[5]) is a member of the
Perl family of programming languages’, where ‘languages’
is the extracted hypernym. In the seed, we found ’language’
(235), ’format’ (16) and ’dialect’ (10) as the most frequent
hypernyms. The hypernym ’language’ and ’dialect’ are also
recovered when analyzing articles on natural languages.

Wikipedia List Entries. As an internal resource, we
consider Wikipedia lists of things [14]. Such lists collect
names of entities of a certain kind and optionally provide
additional information, e.g., ’List of dog breeds’. First, we
recover the list of lists by searching for ’list of’ in the title
of articles in the scope. Binary Features state in which lists
an article is linked. In the seed, we found 267 articles linked
in such lists, such as the ’List of programming languages’.

3 EVALUATION

We investigate the results from evaluating a classifier
based on labels by experts (RQ1). Since we chose to use
a decision tree classifier, we can present technical insights
on how decisions are made and explain the effects of using
a representative seed (RQ2). We conclude with presenting
how many software language articles and categories are es-
timated in the scope (RQ3).

3.1 Precision & Recall (RQ1)

We provide qualitative insights on How well does the
classifier perform beyond the seed?

To gain an evaluation set that is as objective as possible,
we conducted a survey in which 31 domain experts from
our research groups and external collaborators participated.
In each question in the survey, participants decided whether
a presented article explicitly describes a software language
as one primary topic. We received 990 articles labelled by
at least two experts. In order to gain additional insights on
problems with decision making, we emphasized the pos-
sibility of commenting on each question. For 43 articles,
experts did not agree. The articles present border cases, for
which experts are not sure. For example, articles do not di-
rectly refer to logic formulae as a software language, but
such formulae are often digitally encoded, follow a syntax,
well-formedness rules (thus, a type system) and have se-
mantics and pragmatics. For the future of SLEBOK [8],
such border cases can be used to further investigate on the
borders of the term software language. A refinement of def-
initions would then again lead to better expert labels to, for
now, problematic articles. Such refinement hopefully leads
to a better categorization on Wikipedia itself.

As long as experts cannot reliably decide for an article
whether a software language is described, a machine cannot
as well. As a consequence, we exclude these articles. Since
only ~4% is excluded, the threat to validity is reasonably
low. We took the remaining expert labels as the evaluation
set and explored several configurations with a k-best feature
selection and synthetic oversampling with SMOTE [15].
With k = 23, the learned classifer performs with an f1-
score of 0.7, balanced accuracy of 0.9, recall of 0.81 and
specificity of 0.99.

3.2 Indicator Discovery (RQ2)

For imbalanced datasets, a classifier usually over-
fits towards the major class unless countermeasures are
taken [15]. This problem is countered in two ways. i.)
By adding the seed as an addition to the random sample
to our training set, the rate of relevant articles in it is not
representative which can be seen as a form of manual over-
sampling. ii.) Actually, we isolate articles relevant to a sin-
gle class from articles relevant to many other classes (e.g.,
songs, stars, software). Feature selection based on Gini
index or entropy pick features according to their score in
discriminating classes, in our case relevant versus not rel-
evant. Consequently, the features frequently appearing in
seed articles are preferred, since the irrelevant articles have
a huge amount of different features and thus single features
recall a lesser percentage. At last, synthetic oversampling
with SMOTE further improves results. This peculiarity mo-



Table 2. How many articles and categories exist in total, identified by the seed, and classified as relevant.

Articles Categories
Total Seed Relevant Total Seed Relevant

Formal Languages 101641 301 2897 21822 353 1339
Computer File Formats 6116 46 745 235 18 79

tivates further inspection of the learned decision tree as an
answer to what features indicate articles on software lan-
guages.

The templates ’programming language’ and ’file format’
provide a strong positive indication, but they do not exist for
every relevant article. While the hypernym ‘language’ also
provides strong indication, it cannot be used alone. Oth-
erwise, natural language related articles are confused to be
relevant. Lemmas, lists and URL pattern help in discrimi-
nating relevant articles from articles with overlapping fea-
tures. Below, we list the most important indicators in the
decision tree categorized by their source (see Section 2.3).
Infobox Templates: file format, programming language;
URL Pattern: programming, language; Lemmas: syn-
tax, code, programming, compiler, design, general-purpose,
language, support, compile, object-oriented, use; Depen-
dency Pattern: language; Wikipedia List Entries: List
of programming languages, List of programming languages
by type, List of file formats, List of C-family programming
languages, List of object-oriented programming languages.

3.3 Article and Category Relevance (RQ3)

We give quantitative insights as an answer to the ques-
tion: How many articles and categories remain relevant
for the domain of software languages? Table 2 summa-
rizes the degree of the reduction per root category based on
the configuration from Section 3.1. Based on the predicted
reduction, we find 2797 more articles in the scope than
there are already in the seed. That is, we significantly
augment the identification of software languages.

For the root category ‘Computer file formats’, the clas-
sifier predicts a lot of irrelevant articles. When inspecting
infobox templates used in these articles, we observe a topic
mix with, for example, software, websites and companies.
Here, a threat remains that the articles do not directly ad-
dress formats in several articles in a recognizable way. In
comparison to ‘Formal languages’, a higher percentage of
categories is estimated as relevant. Accordingly, we observe
that the subcategory tree is more consistently maintained.

Inspecting single categories backs up subjective hy-
potheses based on manual inspection of the usefulness of
specific categories. For example, out of 22546 articles that
are (transitive) members ’Statistical data types’, only 52 are
classified as relevant. The number of articles indicated to be

relevant in a category becomes a more objective estimation
for its usefulness.

Table 2 provides a summary when inspecting all cate-
gories based on the assumption that the number of rele-
vant articles hints at the relevance of categories. Out of
21822 categories below ’Formal languages’, 353 categories
contain seed members and 1339 categories remain relevant.
Only 6% of transitive subcategories under ’Formal lan-
guages’ are estimated to be useful within the scope.

4 RELATED WORK

Previous attempt: In [16], the category graph is pruned by
manually excluding categories not serving for classification
of software languages in a common sense, subject to a small
suite of criteria. In contrast to our work, the approach relies
on manual selection of categories instead of automatically
classifying articles by combining several indicators.
Domain ontology: Wikipedia is a frequent target for
knowledge discovery. To the best of our knowledge, no ap-
proach tries to detect articles describing a class from an in-
consistently maintained domain, where relevant articles are
rare and require to combine multiple indicators. For de-
riving domain ontologies, various distinct approaches can
be found. The approaches range from supporting manual
crafting [17, 18] to unsupervised crafting from text [12].
Wang et al [5] extract a domain ontology for animals from
Wikipedia based on the category graph, article graph and
section structure in articles. For the animals domain, most
pages are maintained well and describe exactly one concept
in a consistent order. Mirylenka et al [10] extract subset,
membership, part-of, sub-topic and other relationships by
analyzing the varying nature of subcategorization. Dong et
al [6] learn subsumptions from articles describing domain
concepts based on Hearst pattern. In a related approach [7],
the concept set is learned by matching articles with Stack-
overflow tags. Based on the aricle- and category graph,
the concept set is expanded and further relationships are
learned. Related works discover knowledge from different
structural features, such as the title [10,19], text [13,20], an
article’s section structure [5], links to other articles [7, 20],
infoboxes [3], lists [14], etc.
External knowledge: The usefulness of WordNet varies
depending on the coverage of terms in a domain. While
WordNet is a known assistant in more common knowl-



edge domains, low coverage is reported in more specific
domains [2,5]. Our experience confirms it for software lan-
guages. Various knowledge graphs exist. DBpedia Live [21]
mirrors Wikipedia while refining it with more ontologi-
cal knowledge. YAGO [4] is a knowledge graph derived
from Wikipedia, WordNet and Geonames that explicitly fo-
cuses only on structured knowledge aspect that is then again
linked by Dbpedia as well. Wikidata [18] is widely manu-
ally crafted and tries to reach a clean knowledge graph from
scratch. A type encompassing the term software language
is not maintained by any of the mentioned resources.

5 CONCLUSION

In a domain where only a small set of positively labeled ar-
ticles can be used as a ground truth, we did find strong indi-
cators for classifying 3000+ articles as relevant for software
languages. We showed that a learned decision tree classifier
provides reasonably high recall and low false-positive-rate
and allows one to inspect isolated articles inside Wikipedia.
While learned random forests might provide higher accu-
racy, we are specifically interested in higher interpretability
of decision trees. 31 domain experts thoroughly evaluated
our classifier by labelling over 990 Wikipedia articles.

A natural follow up of this work is a collaborative en-
gagement with experts to further extract and improve fine-
grained classification knowledge into a high-quality domain
ontology that will help students and professional develop-
ers to better understand software languages. We are in the
process of repeating the experiments for the domain of soft-
ware (in a broad sense). The general problem is the same:
We are confident that our learning methodology can identify
the body of domain knowledge within Wikipedia. There are
also specific challenges ahead due to particularities of the
domains (for example, ’Computing platforms’ as a category
is disconnected from ‘Software’).
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