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Abstract—Access control, when used in the context of database 

applications, is aimed to supervise the requests made by legitimate 

users to access sensitive data. These requests represent actions that 

a user can perform on a database and they typically read or write 

data. While this supervision can be formalized at a higher level, 

e.g. using an access control model such as RBAC, in the end, the 

data access is done through each authorized action. Therefore, the 

current access control models enforce their policies on an action 

by action basis, being unable to support relations of order between 

them. In many database applications, access to data is not done 

randomly, but by following very specific sequences of actions 

which are not supervised. This paper argues that a better security 

policy can be achieved by supervising these sequences. Thus, 

previous research is leveraged to propose a formalized model, 

capable of enforcing access control over the sequences of actions 

that can complement existing access control models. 

Keywords-information security, access control, sequence 

enforcement, database security, SeqBAC. 

I. INTRODUCTION 

Access control is a mechanism that limits the activity of 
legitimate users in a system. There are many strategies to enforce 
access control in a system, of which we emphasize the main four: 
discretionary access control (DAC), mandatory access control 
(MAC), attribute-based access control (ABAC) and role-based 
access control (RBAC). However, these access control models 
are not one-size fits all solutions, and so many other access 
control models exist [1][2][3][4][5]. Nevertheless, RBAC has 
risen as the dominating access control model used, especially for 
relational database applications. In this model, a user can only 
perform some action if he has been given permission to enact the 
role that governs said action. When it comes to data, actions are 
usually single read or write operations.  

However, actions are not always independent of one another, 
some are used to collect values that are passed on to subsequent 
actions or to achieve some higher-level use case. A basic 
example of this would be a doctor prescribing some drug to a 
patient while allergies must be accounted for. First, the 
information about the patient would be selected, then any 
information about potential allergies for that user queried. This 
information is then used to filter the drugs that can be prescribed 
and added to the patient’s profile. The referenced access control 
models do not support this kind of relation between actions to be 
encoded in the policies. A possible solution is for this 
dependency logic to be put into the application layer. 
Unfortunately, if the application is incorrectly implemented or 

exploitable, it may be possible to bypass this logic. If this is the 
case, it would be possible to perform authorized actions in 
unforeseen ways, such as prescribing a drug without allergies 
being checked. Another solution is to use stored procedures 
defined on the DBMS. However, they are not always supported 
and are not easily manageable since it is difficult to know which 
actions are being used and in which order.  

A solution to prevent this dependency logic between actions 
from being bypassed is to design and validate the sequences in 
which actions are being executed. This approach benefits from 
the fact that designing sequences of actions can be done early in 
a project lifecycle, helping with implementation later. Moreover, 
a model based on these sequences could validate the sequences 
automatically and in real-time. In contrast, manually written 
code (e.g. application logic, stored procedures, etc.) is prone to 
implementation mistakes. These mistakes can compromise the 
correctness of the system, such as forgetting a crucial validation 
check, which can go unnoticed for extended periods of time. 
Additionally, by imposing an order of execution, it is possible to 
provide values for parameters directly from previous actions. 
This would lead to a more secure solution because it becomes 
possible to know the origin of the values passed as parameters 
instead of being only provided by the user.  

Thus, we present a sequence-based access control model 
(SeqBAC) that aims to be able to encode the relations between 
actions that a user is authorized to perform and guarantee that 
they are executed in the sequence that they were meant to be. 
Additionally, the work presented in [6] could be used to 
implement a tool that could generate the code necessary to 
follow the defined sequences automatically and access the data. 
A previous iteration of this model [7] has seen a proof of 
concept, showing that such a concept is possible to execute and 
implement at a very basic level. This paper formalizes the results 
obtained from that proof of concept, expanding the concepts to 
include sequence branching and subsequence calls. 

This paper is divided as follows: section II provides some of 
the state of the art, section III describes the model in terms of the 
desired policy, section IV introduces the necessary definitions to 
formalize the model, section V provides the model formalization 
and section VI provides our conclusions about the work. 

II. RELATED WORK 

There are many access control models in the literature. From 
the previously mentioned DAC, MAC, RBAC, and ABAC, to 
the Bell-LaPadula [8] model for government and military 
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applications, and many others [1][2][3][4]. Other access control 
models based on finite state machines also exist[9][10], but they 
usually operate at a higher level, controlling authentication and 
other access control related tasks. The model proposed in this 
paper aims to control the lower level database operations. 

The Extensible Access Control Markup Language 
(XACML) [11][12] has been proposed as a standard which 
includes a language for defining access control policies based on 
ABAC, an architecture for enforcing them and a processing 
model which describes how requests are evaluated. However, 
defining policies to control the sequence of actions a user may 
perform on a system is not within the original scope of ABAC. 
XACML could be extended to support the set of rules required 
to implement SeqBAC policies, but it would just be one 
implementation of the model herein described. Other access 
control languages exist, such as the Enterprise Privacy 
Authorization Language (EPAL) [12][13] which has been 
proposed to protect the customer's data privacy within a 
company, and it is another possible language where our model 
may be implemented on. 

Barker [5] states that existing access control models all use 
the same basic concepts, which are then applied in a restrictive 
manner. Thus, Barker proposes a meta-model for access control 
based on these basic concepts and shows some examples of how 
other access control models are supported by this model. This 
approach was studied but ultimately seemed inadequate for the 
access control model being presented, as actions have several 
order relations between them, i.e. actions can exist in several 
sequences, and this was not supported by Barker's meta-model. 
Staab and Muller [14] also introduced the MITRA framework, 
which is another meta-model for information flow where trust 
and reputation architectures are in place. 

Non-deterministic access control models could also be 
considered for implementation of sequences of actions, 
especially when branches are considered and users can follow 
any of them. Several of these models exist, of which we 
emphasize: probabilistic models to determine risk [15][16][17], 
cognitive-based systems [18] and fuzzy theory-based models 
[19][20]. Ultimately, the SeqBAC model presented here is 
meant to be deterministic, which would allow security experts to 
conduct auditing and to keep a level of assurance that no 
unexpected access decision is made. 

The model in this paper builds upon a CRUD expression 
driven access control model [7][21] and generalizes it so that it 
no longer depends on the RBAC model to authorize to execute 
the actions. In [21], an architecture was proposed to enforce 
access control based on RBAC, and driven by the CRUD 
expressions that are naturally part of the domain of the 
applications using the architecture. In [7], an extension to the 
RBAC model was proposed to support basic sequences of 
CRUD expressions to complement the role-based approach. We 
allow sequences of CRUD expressions to be ruled by roles, and 
users can follow these sequences if they are allowed to play the 
role. However, this extension was limited to simple chains of 
CRUD expressions and it lacked a proper formalized model.  

While to the best of our knowledge no attempts have been 
made to create a model that can enforce sequences of actions to 
access the data, the process of altering an existing model to re-

purpose it for other scenarios is widely used in the literature. 
Many examples of this practice exist [2] where the RBAC model 
is extended with geographic information for the purposes of 
using a user's location to allow or deny access to data. The 
formalized model in this paper addresses this gap and 
generalizes the work in [7] to sequences of actions. 

III. BASE POLICY 

In this section, the SeqBAC model being proposed will be 
described in terms of the simplest base scenario that it aims to 
support.  

A simple policy could contain just an ordered set of actions 
and parameter tuples, where an authorized user could execute 
the first action, then the second, etc. However, scenarios such as 
the drug prescription, described in section I, could require a 
doctor to go back in the order of execution to add a different drug 
to a prescription after a previous one had been found to cause 
allergic reactions on a patient. Thus, it is necessary to define 
which actions a user can take at some point in a use case 
execution. 

Since the policy is meant to restrict the order in which actions 
can be performed on a database by a legitimate user in the terms 
described above, such a policy should contain the following: 

• A set of actions A and their input parameters P. 

• A set E of directed transition relations between actions. 

• The set of users U allowed to execute the policy. 

The set of users can be defined explicitly or implicitly 
through some condition the users must satisfy, such as be 
playing some role, possess a set of attributes, etc. 

This type of policy is more descriptive than other policies, 
such as RBAC policies, due to the set of transition relations 
between the actions. There is an initial action, which each user 
executes first, and then the users can execute other actions by 
following the transition relations between them. Given the fact 
that actions are defined with transitions between them, a policy 
in SeqBAC defines a sequence of actions, hereby known as an 
action flowchart.  

Hence, the SeqBAC model supervises a set of actions that 
can be executed over the set of available data and will limit the 
executions of these actions to certain sequences. This list of 
actions is not required to be complete apriori for the model to be 
used: new actions may be added at any given time by the 
system's administrator or other authorized users. Furthermore, 
the sequences of actions may branch, allowing the users multiple 
actions to choose from to allow flexibility. Sequences of actions 
may also be reused in other sequences when their purpose is 
needed in several situations, and this will be pursued in more 
detail in section V.C. 

The importance of these policies is that, in many cases, 
actions over data are not executed randomly. Instead, actions are 
executed following some notion of order that is related some use 
case. However, these sequences are not generally encoded in the 
access control mechanisms, which enforces access control on an 
action by action manner. This can lead to unintended results 
when malicious users can execute actions by impersonating a 



legitimate user. 

To exemplify one such policy, consider the following set of 
four actions {A, B, C, D} in the context of an online shop. Action 
A queries the database for client information to authenticate it, 
action B queries for the checkout cart of the client, action C 
allows the client to review its payment options and action D 
allows it to place an order. In this scenario, we will require action 
A to be done always first, following it by action B to show the 
current checkout cart to the client once the authentication 
succeeds. Then, once the client decides to place the order, the 
client may want to review and update their payment options 
before doing so, making action C optional and finalizing with 
action D. 

 

Figure 1. Scenario representation of the relations between actions. 

This scenario is represented in Figure 1, where each action is 
represented by its letter and an arrow connects one action to the 
next one that naturally follows as per description. If a malicious 
user breaches the application and tries to obtain payment details, 
it is unable to do so. The action to review the payment options is 
in the middle of a sequence of actions, and to reach it the 
malicious user would have to execute actions A and B. Since 
action A is used for authentication, unless the malicious user 
possesses the authentication credentials or breaches the DBMS 
itself, it will be impossible to access the payment options of the 
users. 

IV. MODEL CONCEPTS 

Formally, the SeqBAC model is a set of action flowcharts 
associated with each user. It follows closely the existing 
concepts that govern flowcharts, and as such we will use 
flowchart notation to formalize the model. 

First, consider the set of defined actions A defined in formula 
1 and a parameter P defined in formula 2, where actions a1 to aN 
are the actions defined in the system, name is a string of 
characters and datatype represents the datatype of the associated 
parameter in the database, if relevant. 

    .A = {a1, a2, ... aN}                                 (1) 

    .P = (name, datatype)                              (2) 

With these concepts, we can define the set of action nodes V 
in our model's flowcharts, where each node is a pair of an action 
and a set of parameters as shown in formula 3. An action allows 
an authorized user to access or modify some subset of the data.  

    .V = {(a, {P})}, a ∈ A                               (3) 

Having defined the action nodes of the flowchart we now 
need to define the transitions between them. The set of valid 
transitions E are defined as a set of ordered 2-element from V, 
which forms the unidirectional transitions between elements of 
V. Formally, the set of transitions E is defined in formula 4. 

    .E = {(u, v) : u, v ∈ V}                              (4) 

Formula 5 defines the flowchart G, used to model a high-
level use case. Each flowchart is an ordered pair of a set of action 
nodes V and a set of transitions E that connects two action nodes. 

    .G = (V, E)                                     (5) 

Additionally, we define the functions ActionSet(G) to return 
the set of action nodes of the flowchart G and TransitionSet(G) 
to return the set of transitions. 

Finally, formula 6 defines the set of flowcharts SOF that 
makes up the model. Each user U is then given a subset of SOFU 
which they are authorized to execute, as shown in formula 7. 

  .SOF = {G1, G2, … GM}                            (6) 

                                     SOFU ⊆ SOF                                  (7) 

V. MODEL DEFINITION 

In order to enforce SeqBAC, a way to define how a user can 
be tracked along a flowchart 𝐺 ∈ 𝑆𝑂𝐹, is needed. Furthermore, 
the possible move operations that a user can perform at a given 
node, as well as what type of information can flow from one 
node to the next is required. 

From the information provided in the previous section, a 
definition of the SeqBAC model can now be created. 

Definition 1: SeqBAC. The SeqBAC model has the following 
components: 

• A, P, and U denote actions, parameters, and users, 
respectively; 

• V denotes an action node, which is a tuple of an action 
and a set of parameters necessary to execute the action; 

• E ⊆ V × V  is a relation between action nodes, 
describing the authorized transitions; 

• G = (V,E) and 𝑆𝑂𝐹  denote an action flowchart, with 
the set of actions and the authorized transitions between 
them and the set of all defined action flowcharts, 
respectively; 

• auth : U ⟶ 2G is a function that determines if a user is 
allowed to access a certain action flowchart: 
auth(ui) ⊆ SOF, ui ∈ U.  

Given that enforcing access control over sequences of 
actions is the primary concern, it is required to locate the position 
of a user within a sequence at any time. To achieve this, the User 
Access Pointer is defined. 

Definition 2: User Access Pointer. Given a SOF, the user access 
pointer (UAP) is a pair of elements (G, v)  that uniquely 
identifies a flowchart G ∈ SOF and the current node v ∈ V the 
user is allowed to use. 

This UAP allows a system to keep track of which flowchart 
the user is using and on which node within it. We will now define 
how the UAP can be updated in order to move the user within a 
flowchart, which uses an operation called Stepping and it 
involves moving along a transition of the flowchart. 

Definition 3: Stepping. Consider the flowchart G and its UAP 



on step n of the flowchart traversal, denoted UAPn. Stepping is 
the process in which UAPn+1 is generated by referencing a new 
node such that: 

          ∀x∀y (
(UAPn = (G, x) ∧ UAPn+1 = (G, y)) ⇒ 

(x, y) ∈ TransitionSet(G)
)              (8) 

Definition 3 constraints moving from node to node, and 
therefore updating the UAP, along the transitions between them 
as previously informally described. When a UAP first references 
the initial node of the flowchart, we consider it to be in step 1 
(UAP1) and the step counter increments with each stepping. A 
UAP on step 0 (UAP0) is not referencing any node and is used 
when no flowchart is currently being traversed by the user.  

There are several different situations in which Stepping may 
be used, and they differ on the in-degree and the out-degree of 
the nodes involved, i.e. the number of transitions in and out of a 
node respectively, as well as the direction of the transitions 
between them. The transition between nodes will be detailed first 
without considering the information that can flow between them. 

A. Stepping 

We will now describe several scenarios in which Stepping 
operations may occur and how they are handled within the 
context of our model. The most trivial Stepping operation occurs 
when we have two nodes A and B, where node A has an out-
degree of 1 and node B an in-degree of 1, as shown in Figure 2. 
In this case, if the UAP is at node A, then by Definition 3 it 
follows that it can only move to node B. 

 

Figure 2. Stepping's trivial case. 

We will now analyze the different type of Stepping 
operations that can occur when the in-degrees and out-degrees 
differ. When the out-degree of node A is bigger than 1, then we 
have more than one node that can satisfy Definition 3 and we say 
that it causes Splitting in the sequence. In this case, the user can 
decide which node to go to. This case is analogous to the piece 
of pseudo-code on Figure 3, where the action A is always 
executed, and then either action B or C are executed depending 
on some condition criteria. 

 

Figure 3. Splitting example and associated code. 

We can now consider the opposite situation, where the in-
degree of a node is bigger than 1. This is shown in Figure 4 and 
it represents a situation where two or more branches of a 
sequence join at the node. For the user, it is exactly the same 
situation as in a trivial Stepping operation, but he would have 
been able to reach that node through some other sequence of 
nodes in the flowchart. In the example, node C is simultaneously 
reachable from both nodes A and B. This case is analogous to the 

piece of pseudo-code on Figure 4, where either action A or B are 
executed depending on some condition criteria. Then, action C 
is executed independently of the condition criteria. 

 

Figure 4. Merging example and associated code. 

So far, we've only discussed situations were Stepping moves 
the user forward in a flowchart. However, if a transition exists in 
both directions between two nodes, then it is possible for the user 
to step between those two nodes as many times as it wants given 
that the only restriction to Stepping is the Definition 3. We call 
this situation a Cycle in the sequence, as demonstrated in Figure 
5, and it could potentially be created with many in-between 
nodes. While this can make sense in some situations, it should 
be possible to restrict the number of times the user can go back 
to the same node. Additional restrictions will be discussed in 
section V.B.2). This case is analogous to the piece of pseudo-
code on Figure 5, where the actions A, B, etc. can be executed in 
a cycle. The cycle ends when the execution transitions out of the 
cycle, normally on the last node.  

 

      

 

Figure 5. Cycle example and associated code. 

One particular case of a Cycle is when one is created using 
only one node that can transition to itself. We call this case a 
Loop and it allows a user to reuse the same node several times, 
possibly with information obtained from past accesses. Bulk 
operations can benefit from this type of transition.  

B. Information Flow 

One important fact to consider is that most data access is not 
static, i.e. parameters can be used to select or modify data. In 
fact, some of the data used as input parameters might need to 
have its source validated to ensure that the user does not access 
data that he is not authorized to access. To achieve this type of 
data validation it is proposed that nodes can use data from 
previous nodes as parameters. We refer to this concept as the 
information flow and we will define it in this section. 

1) User Context 
To handle the passing of information between nodes, we 

need to create a user context that contains all the data a user 
accessed and that a node can use to parameterize the data access. 
To define this context, we will first define the Accessed predicate 
that indicates whether a node v was accessed in the past or not. 

Definition 4: Accessed(G, v). A node v ∈ ActionSet(G)  for a 
given flowchart G is said to have been accessed when a user's 
UAP possessed a reference to node v on at least one step leading 
up to the current step N: 

while(some condition) 

    do A  

do B 

… 

end while 

 
  do A  

do B 

… 

end while 

 

if(some condition) then  

   do A 

else  

do B 

end if 

do C 

 

do A 

if(some condition) then  

do B 

else  

do C 

end if 

 



∀v ∈ ActionSet(G) ∃n ≤ N (Accessed(G, v) ⇒ UAPn = (G, v))      (9) 

Definition 5: User Context. Given a user U and each graph 𝐺 
from its set of flowcharts SOFU , the User Context of user U 
(UCU) is a pair of elements containing the current UAP on step 
N (UAPN) and a set of previously accessed nodes by user U, 

which can be referenced by the predicate AccessedSet(UCU). 

       .UCU = (UAPN, {v :v ∈ ActionSet(G) ∧ Accessed(G, v)})    (10) 

This UCU is updated each time a Stepping operation occurs 
and it can be used by a node to obtain values to parametrize the 
data access. This means that the user does not provide the 
parameters himself, ensuring that the data is valid and that the 
user can request it. However, the UC must be made secure to 
prevent a user from breaching it in any way. Additionally, when 
a user stop traversing a flowchart, the UCU should be emptied so 
the previously accessed data cannot be used out of context. 
Formally, the reset operation of the UCU  empties the set of 
accessed nodes and puts the current UAP back to step 0: 

 Reset(UCU) : UCU = (UAP0, ∅)                  (11) 

There are several ways to implement this method of passing 
a result of a previous action to another as a parameter. However, 
one way to do this could involve the usage of a protected server 
that caches the request results sent to each client, and then it 
would automatically pass the necessary information to each 
action when the client requests it to be executed.  

2) Information Flow Restriction 
One important aspect to ensure that data is not accessed out 

of context is the ability to prevent an action from using some 
specific data obtained through a previous action as parameter 
inputs. Thus, a method to remove unneeded data from the UC 
and free resources on the system is desirable. 

To address this, we introduce the ability to revoke access to 
the data obtained from a previously accessed node. The 
revocation is done automatically using a list of nodes targeted 
for revocation, which we call the revocation list. This list can 
exist in the transitions between nodes or on each node. We will 
analyze both options. 

Definition 6: Revocation List. Given a flowchart G ∈ SOF, a 
revocation list R is a set of previously accessed nodes in 
ActionSet(G) that must prevent further access to their data.  

        R = {v' ∈ ActionSet(G)}                               (12) 

Since the enumerated nodes in the list prevent any further 
access to their data, it cannot be used as parameter values for 
consequent access attempts. We must now update the user 
context definition to contemplate the revocation list, i.e. the user 
context for some user U and a flowchart G must now contain, at 
a given step N, the list of previously accessed nodes that have 
not appeared on any revocation list, as shown in formula 13. 

.UCU = (UAPN, {v : v ∈ ActionSet(G) ∧ Accessed(G, v) \ R})  (13) 

When the revocation list is encoded in the transitions 
between nodes, the set of transitions will then be defined by an 
ordered triplet of two nodes and a revocation list: 

.E = {(u, v, R) : u, v ∈ V}                              (14) 

When a Stepping operation is carried out, the revocation list 

associated with it is processed and the nodes in the list can be 

removed from the list of nodes in the user context. 

In the other solution, i.e. placing the revocation list at each 
node, the revocation list is associated with each node in the 
flowchart G instead: 

.V = {(a, {P}, R)}, a ∈ A                              (15) 

Whenever a Stepping operation is carried out and some node 
v is referenced by the UAP, following the restriction imposed in 
Definition 3, the user context must be updated with the 
revocation list by subtracting the list from the user context's list 
of accessed nodes. Both approaches are valid and which one is 
used depends solely on the ease of implementation. 

C. Subsequence Calls 

We will now describe the process by which sequences of 
actions may be reused on other sequences, also known as a sub-
sequence call. Sub-sequence calls are operations that move the 
UAP to the root of another flowchart G to perform some action 
that is required by multiple other flowcharts, making it a 
common action. Figure 6 shows this idea, where the node A' on 
the flowchart to the right is a call to the entire sub-sequence to 
the left. Two main types of sub-sequence calls are considered in 
this work: dependent and independent.  

 

Figure 6. Sub-sequence calls example. 

Dependent calls are distinguished from independent calls by 
their need to use the current UC. As the name implies, dependent 
calls require the UC to be passed to the sub-sequence, allowing 
access to the data obtained from the initial flowchart. 

Independent calls, however, do not require the data from the 
initial flowchart to perform the data access. This ensures that 
data is not misused and passed only on a need-to-know basis. 
Just like the Stepping operation, the sub-sequence call allows the 
user to move to another node except the node exists on a 
different flowchart. When the UAP reaches the end of the sub-
sequence G', the UC from it is copied to the initial flowchart G, 
allowing the node the user moves into in the original flowchart 
G to access the data obtained, if any. This doesn't violate the 
definition of the User Context (Definition 5) since the set of 
accessed nodes do not have to belong to a single flowchart. 

More formally, when a call to a sub-sequence finishes and 
returns a 𝑈𝐶′, the initial 𝑈𝐶𝑛 is updated to 𝑈𝐶𝑛+1 as follows:  

 .UCn+1 = (UAPn, AccessedSet(UCn) ∨ AccessedSet(UC'))    (16) 

Note that the original UAP remains the same as it was before 
the sub-sequence call was made, and it is only updated when the 
user execution returns to the original flowchart. It is also 
important to note that the dependent calls and the UC' returned 
by the sub-sequence call can have revocation lists associated 
with them as described in section V.B.2). However, since the 
new UC' is copied from the original UC, the revocation list of a 



dependent call only affects UC', leaving UC untouched. The UC 
can be restricted using a revocation list after the sub-sequence 
call terminates and the user moves to the next node via Stepping.  

Additionally, when the UC is copied for the execution of a 
sub-sequence, the node of the original sequence is not passed 
along with it. This means that when a sub-sequence finishes 
execution, the system still needs to know where to point the user 
to continue the sequence execution. Therefore, every time a 
subsequence call is performed, the current UC should be saved.  

A natural solution to save the UCs in is a stack, in which the 
last item to be stored is the first to the removed. This way, when 
a sub-sequence is called, the UC used is put into the stack and 
copied to the sub-sequence. When a sub-sequence terminates, 
the last UC is removed from the stack, merged with the current 
one, and the previous UAP recovered as shown in formula 16. 

D. Implementation 

While this paper is concerned primarily with defining the 
SeqBAC model, it can also be beneficial to consider how such a 
model can be implemented. The unique way that actions interact 
with each other through transition relations makes it clear that a 
graph is the type of structure seems to be the most appropriate 
for storing SeqBAC policies. Furthermore, graph databases, 
such as Neo4j, allow to define properties on each node and edge. 
This feature could be used to store things such as subsequence 
calls by referencing another graph, the revocation list for 
accessed data pruning purposes and other data. 

However, storing the actions and the relations between them 
is not enough. If the access control system only checks if a user 
is authorized to execute some action, then either the user knows 
the sequences or can experience many authorization errors. This 
can be expected to happen since there can be many ways to fulfill 
a use case and a defined sequence may only account for a 
specific way to do it. A solution to this implementation issue is 
the development of a tool that can parse the defined sequences 
and then generate the necessary code that follows them 
automatically. A previous work, presented in [6], shows how this 
could be used to integrate a similar idea into existing DBMS 
solutions. This way, when an application using SeqBAC is being 
developed, the developers do not need to master the policies 
defined as action flowcharts.  

VI. CONCLUSION 

In this paper, the SeqBAC model was introduced and 
formalized. The model was designed to enforce access control 
policies over sequences of actions, allowing users to execute 
them in controlled sequences, and extends a previous work.  

This paper also considers how this model could be 
implemented, addressing the issue of developers having to 
master the defined sequences of actions with the proposal of 
using a tool to parse the defined sequences and generating the 
code to use them automatically. While this model requires some 
work to define the sequences of actions when compared to other 
models that allow unrestricted access to data, it helps to ensure 
that the use cases are implemented correctly faster. 

Regarding future work, an actual implementation of the 
example discussed in section V.D is thought to be next natural 

step. Additionally, tools to define policies, validate source-code 
and generate mechanisms based on the defined policies are also 
being considered. These would allow developers to know easily 
what operations are available at any point during the execution 
of a sequence, preventing the need for them to master the 
policies, and to ensure the overall correctness of their code. 
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