
SeqBAC: A Sequence-Based Access Control Model

Diogo Domingues Regateiro¹, Óscar Mortágua Pereira², Rui L. Aguiar³

Instituto de Telecomunicações

DETI, University of Aveiro

Aveiro, Portugal

{diogoregateiro¹, omp², ruilaa³}@ua.pt

Abstract—Access control, when used in the context of database

applications, is aimed to supervise the requests made by legitimate

users to access sensitive data. These requests represent actions that

a user can perform on a database and they typically read or write

data. While this supervision can be formalized at a higher level,

e.g. using an access control model such as RBAC, in the end, the

data access is done through each authorized action. Therefore, the

current access control models enforce their policies on an action

by action basis, being unable to support relations of order between

them. In many database applications, access to data is not done

randomly, but by following very specific sequences of actions

which are not supervised. This paper argues that a better security

policy can be achieved by supervising these sequences. Thus,

previous research is leveraged to propose a formalized model,

capable of enforcing access control over the sequences of actions

that can complement existing access control models.

Keywords-information security, access control, sequence

enforcement, database security, SeqBAC.

I. INTRODUCTION

Access control is a mechanism that limits the activity of
legitimate users in a system. There are many strategies to enforce
access control in a system, of which we emphasize the main four:
discretionary access control (DAC), mandatory access control
(MAC), attribute-based access control (ABAC) and role-based
access control (RBAC). However, these access control models
are not one-size fits all solutions, and so many other access
control models exist [1][2][3][4][5]. Nevertheless, RBAC has
risen as the dominating access control model used, especially for
relational database applications. In this model, a user can only
perform some action if he has been given permission to enact the
role that governs said action. When it comes to data, actions are
usually single read or write operations.

However, actions are not always independent of one another,
some are used to collect values that are passed on to subsequent
actions or to achieve some higher-level use case. A basic
example of this would be a doctor prescribing some drug to a
patient while allergies must be accounted for. First, the
information about the patient would be selected, then any
information about potential allergies for that user queried. This
information is then used to filter the drugs that can be prescribed
and added to the patient’s profile. The referenced access control
models do not support this kind of relation between actions to be
encoded in the policies. A possible solution is for this
dependency logic to be put into the application layer.
Unfortunately, if the application is incorrectly implemented or

exploitable, it may be possible to bypass this logic. If this is the
case, it would be possible to perform authorized actions in
unforeseen ways, such as prescribing a drug without allergies
being checked. Another solution is to use stored procedures
defined on the DBMS. However, they are not always supported
and are not easily manageable since it is difficult to know which
actions are being used and in which order.

A solution to prevent this dependency logic between actions
from being bypassed is to design and validate the sequences in
which actions are being executed. This approach benefits from
the fact that designing sequences of actions can be done early in
a project lifecycle, helping with implementation later. Moreover,
a model based on these sequences could validate the sequences
automatically and in real-time. In contrast, manually written
code (e.g. application logic, stored procedures, etc.) is prone to
implementation mistakes. These mistakes can compromise the
correctness of the system, such as forgetting a crucial validation
check, which can go unnoticed for extended periods of time.
Additionally, by imposing an order of execution, it is possible to
provide values for parameters directly from previous actions.
This would lead to a more secure solution because it becomes
possible to know the origin of the values passed as parameters
instead of being only provided by the user.

Thus, we present a sequence-based access control model
(SeqBAC) that aims to be able to encode the relations between
actions that a user is authorized to perform and guarantee that
they are executed in the sequence that they were meant to be.
Additionally, the work presented in [6] could be used to
implement a tool that could generate the code necessary to
follow the defined sequences automatically and access the data.
A previous iteration of this model [7] has seen a proof of
concept, showing that such a concept is possible to execute and
implement at a very basic level. This paper formalizes the results
obtained from that proof of concept, expanding the concepts to
include sequence branching and subsequence calls.

This paper is divided as follows: section II provides some of
the state of the art, section III describes the model in terms of the
desired policy, section IV introduces the necessary definitions to
formalize the model, section V provides the model formalization
and section VI provides our conclusions about the work.

II. RELATED WORK

There are many access control models in the literature. From
the previously mentioned DAC, MAC, RBAC, and ABAC, to
the Bell-LaPadula [8] model for government and military

This work is funded by National Funds through FCT - Fundação para a
Ciência e a Tecnologia under the project UID/EEA/50008/2013 and
SFRH/BD/109911/2015.

DOI reference number: 10.18293/SEKE2018-099

applications, and many others [1][2][3][4]. Other access control
models based on finite state machines also exist[9][10], but they
usually operate at a higher level, controlling authentication and
other access control related tasks. The model proposed in this
paper aims to control the lower level database operations.

The Extensible Access Control Markup Language
(XACML) [11][12] has been proposed as a standard which
includes a language for defining access control policies based on
ABAC, an architecture for enforcing them and a processing
model which describes how requests are evaluated. However,
defining policies to control the sequence of actions a user may
perform on a system is not within the original scope of ABAC.
XACML could be extended to support the set of rules required
to implement SeqBAC policies, but it would just be one
implementation of the model herein described. Other access
control languages exist, such as the Enterprise Privacy
Authorization Language (EPAL) [12][13] which has been
proposed to protect the customer's data privacy within a
company, and it is another possible language where our model
may be implemented on.

Barker [5] states that existing access control models all use
the same basic concepts, which are then applied in a restrictive
manner. Thus, Barker proposes a meta-model for access control
based on these basic concepts and shows some examples of how
other access control models are supported by this model. This
approach was studied but ultimately seemed inadequate for the
access control model being presented, as actions have several
order relations between them, i.e. actions can exist in several
sequences, and this was not supported by Barker's meta-model.
Staab and Muller [14] also introduced the MITRA framework,
which is another meta-model for information flow where trust
and reputation architectures are in place.

Non-deterministic access control models could also be
considered for implementation of sequences of actions,
especially when branches are considered and users can follow
any of them. Several of these models exist, of which we
emphasize: probabilistic models to determine risk [15][16][17],
cognitive-based systems [18] and fuzzy theory-based models
[19][20]. Ultimately, the SeqBAC model presented here is
meant to be deterministic, which would allow security experts to
conduct auditing and to keep a level of assurance that no
unexpected access decision is made.

The model in this paper builds upon a CRUD expression
driven access control model [7][21] and generalizes it so that it
no longer depends on the RBAC model to authorize to execute
the actions. In [21], an architecture was proposed to enforce
access control based on RBAC, and driven by the CRUD
expressions that are naturally part of the domain of the
applications using the architecture. In [7], an extension to the
RBAC model was proposed to support basic sequences of
CRUD expressions to complement the role-based approach. We
allow sequences of CRUD expressions to be ruled by roles, and
users can follow these sequences if they are allowed to play the
role. However, this extension was limited to simple chains of
CRUD expressions and it lacked a proper formalized model.

While to the best of our knowledge no attempts have been
made to create a model that can enforce sequences of actions to
access the data, the process of altering an existing model to re-

purpose it for other scenarios is widely used in the literature.
Many examples of this practice exist [2] where the RBAC model
is extended with geographic information for the purposes of
using a user's location to allow or deny access to data. The
formalized model in this paper addresses this gap and
generalizes the work in [7] to sequences of actions.

III. BASE POLICY

In this section, the SeqBAC model being proposed will be
described in terms of the simplest base scenario that it aims to
support.

A simple policy could contain just an ordered set of actions
and parameter tuples, where an authorized user could execute
the first action, then the second, etc. However, scenarios such as
the drug prescription, described in section I, could require a
doctor to go back in the order of execution to add a different drug
to a prescription after a previous one had been found to cause
allergic reactions on a patient. Thus, it is necessary to define
which actions a user can take at some point in a use case
execution.

Since the policy is meant to restrict the order in which actions
can be performed on a database by a legitimate user in the terms
described above, such a policy should contain the following:

• A set of actions A and their input parameters P.

• A set E of directed transition relations between actions.

• The set of users U allowed to execute the policy.

The set of users can be defined explicitly or implicitly
through some condition the users must satisfy, such as be
playing some role, possess a set of attributes, etc.

This type of policy is more descriptive than other policies,
such as RBAC policies, due to the set of transition relations
between the actions. There is an initial action, which each user
executes first, and then the users can execute other actions by
following the transition relations between them. Given the fact
that actions are defined with transitions between them, a policy
in SeqBAC defines a sequence of actions, hereby known as an
action flowchart.

Hence, the SeqBAC model supervises a set of actions that
can be executed over the set of available data and will limit the
executions of these actions to certain sequences. This list of
actions is not required to be complete apriori for the model to be
used: new actions may be added at any given time by the
system's administrator or other authorized users. Furthermore,
the sequences of actions may branch, allowing the users multiple
actions to choose from to allow flexibility. Sequences of actions
may also be reused in other sequences when their purpose is
needed in several situations, and this will be pursued in more
detail in section V.C.

The importance of these policies is that, in many cases,
actions over data are not executed randomly. Instead, actions are
executed following some notion of order that is related some use
case. However, these sequences are not generally encoded in the
access control mechanisms, which enforces access control on an
action by action manner. This can lead to unintended results
when malicious users can execute actions by impersonating a

legitimate user.

To exemplify one such policy, consider the following set of
four actions {A, B, C, D} in the context of an online shop. Action
A queries the database for client information to authenticate it,
action B queries for the checkout cart of the client, action C
allows the client to review its payment options and action D
allows it to place an order. In this scenario, we will require action
A to be done always first, following it by action B to show the
current checkout cart to the client once the authentication
succeeds. Then, once the client decides to place the order, the
client may want to review and update their payment options
before doing so, making action C optional and finalizing with
action D.

Figure 1. Scenario representation of the relations between actions.

This scenario is represented in Figure 1, where each action is
represented by its letter and an arrow connects one action to the
next one that naturally follows as per description. If a malicious
user breaches the application and tries to obtain payment details,
it is unable to do so. The action to review the payment options is
in the middle of a sequence of actions, and to reach it the
malicious user would have to execute actions A and B. Since
action A is used for authentication, unless the malicious user
possesses the authentication credentials or breaches the DBMS
itself, it will be impossible to access the payment options of the
users.

IV. MODEL CONCEPTS

Formally, the SeqBAC model is a set of action flowcharts
associated with each user. It follows closely the existing
concepts that govern flowcharts, and as such we will use
flowchart notation to formalize the model.

First, consider the set of defined actions A defined in formula
1 and a parameter P defined in formula 2, where actions a1 to aN
are the actions defined in the system, name is a string of
characters and datatype represents the datatype of the associated
parameter in the database, if relevant.

 .A = {a1, a2, ... aN} (1)

 .P = (name, datatype) (2)

With these concepts, we can define the set of action nodes V
in our model's flowcharts, where each node is a pair of an action
and a set of parameters as shown in formula 3. An action allows
an authorized user to access or modify some subset of the data.

 .V = {(a, {P})}, a ∈ A (3)

Having defined the action nodes of the flowchart we now
need to define the transitions between them. The set of valid
transitions E are defined as a set of ordered 2-element from V,
which forms the unidirectional transitions between elements of
V. Formally, the set of transitions E is defined in formula 4.

 .E = {(u, v) : u, v ∈ V} (4)

Formula 5 defines the flowchart G, used to model a high-
level use case. Each flowchart is an ordered pair of a set of action
nodes V and a set of transitions E that connects two action nodes.

 .G = (V, E) (5)

Additionally, we define the functions ActionSet(G) to return
the set of action nodes of the flowchart G and TransitionSet(G)
to return the set of transitions.

Finally, formula 6 defines the set of flowcharts SOF that
makes up the model. Each user U is then given a subset of SOFU
which they are authorized to execute, as shown in formula 7.

 .SOF = {G1, G2, … GM} (6)

 SOFU ⊆ SOF (7)

V. MODEL DEFINITION

In order to enforce SeqBAC, a way to define how a user can
be tracked along a flowchart 𝐺 ∈ 𝑆𝑂𝐹, is needed. Furthermore,
the possible move operations that a user can perform at a given
node, as well as what type of information can flow from one
node to the next is required.

From the information provided in the previous section, a
definition of the SeqBAC model can now be created.

Definition 1: SeqBAC. The SeqBAC model has the following
components:

• A, P, and U denote actions, parameters, and users,
respectively;

• V denotes an action node, which is a tuple of an action
and a set of parameters necessary to execute the action;

• E ⊆ V × V is a relation between action nodes,
describing the authorized transitions;

• G = (V,E) and 𝑆𝑂𝐹 denote an action flowchart, with
the set of actions and the authorized transitions between
them and the set of all defined action flowcharts,
respectively;

• auth : U ⟶ 2G is a function that determines if a user is
allowed to access a certain action flowchart:
auth(ui) ⊆ SOF, ui ∈ U.

Given that enforcing access control over sequences of
actions is the primary concern, it is required to locate the position
of a user within a sequence at any time. To achieve this, the User
Access Pointer is defined.

Definition 2: User Access Pointer. Given a SOF, the user access
pointer (UAP) is a pair of elements (G, v) that uniquely
identifies a flowchart G ∈ SOF and the current node v ∈ V the
user is allowed to use.

This UAP allows a system to keep track of which flowchart
the user is using and on which node within it. We will now define
how the UAP can be updated in order to move the user within a
flowchart, which uses an operation called Stepping and it
involves moving along a transition of the flowchart.

Definition 3: Stepping. Consider the flowchart G and its UAP

on step n of the flowchart traversal, denoted UAPn. Stepping is
the process in which UAPn+1 is generated by referencing a new
node such that:

 ∀x∀y (
(UAPn = (G, x) ∧ UAPn+1 = (G, y)) ⇒

(x, y) ∈ TransitionSet(G)
) (8)

Definition 3 constraints moving from node to node, and
therefore updating the UAP, along the transitions between them
as previously informally described. When a UAP first references
the initial node of the flowchart, we consider it to be in step 1
(UAP1) and the step counter increments with each stepping. A
UAP on step 0 (UAP0) is not referencing any node and is used
when no flowchart is currently being traversed by the user.

There are several different situations in which Stepping may
be used, and they differ on the in-degree and the out-degree of
the nodes involved, i.e. the number of transitions in and out of a
node respectively, as well as the direction of the transitions
between them. The transition between nodes will be detailed first
without considering the information that can flow between them.

A. Stepping

We will now describe several scenarios in which Stepping
operations may occur and how they are handled within the
context of our model. The most trivial Stepping operation occurs
when we have two nodes A and B, where node A has an out-
degree of 1 and node B an in-degree of 1, as shown in Figure 2.
In this case, if the UAP is at node A, then by Definition 3 it
follows that it can only move to node B.

Figure 2. Stepping's trivial case.

We will now analyze the different type of Stepping
operations that can occur when the in-degrees and out-degrees
differ. When the out-degree of node A is bigger than 1, then we
have more than one node that can satisfy Definition 3 and we say
that it causes Splitting in the sequence. In this case, the user can
decide which node to go to. This case is analogous to the piece
of pseudo-code on Figure 3, where the action A is always
executed, and then either action B or C are executed depending
on some condition criteria.

Figure 3. Splitting example and associated code.

We can now consider the opposite situation, where the in-
degree of a node is bigger than 1. This is shown in Figure 4 and
it represents a situation where two or more branches of a
sequence join at the node. For the user, it is exactly the same
situation as in a trivial Stepping operation, but he would have
been able to reach that node through some other sequence of
nodes in the flowchart. In the example, node C is simultaneously
reachable from both nodes A and B. This case is analogous to the

piece of pseudo-code on Figure 4, where either action A or B are
executed depending on some condition criteria. Then, action C
is executed independently of the condition criteria.

Figure 4. Merging example and associated code.

So far, we've only discussed situations were Stepping moves
the user forward in a flowchart. However, if a transition exists in
both directions between two nodes, then it is possible for the user
to step between those two nodes as many times as it wants given
that the only restriction to Stepping is the Definition 3. We call
this situation a Cycle in the sequence, as demonstrated in Figure
5, and it could potentially be created with many in-between
nodes. While this can make sense in some situations, it should
be possible to restrict the number of times the user can go back
to the same node. Additional restrictions will be discussed in
section V.B.2). This case is analogous to the piece of pseudo-
code on Figure 5, where the actions A, B, etc. can be executed in
a cycle. The cycle ends when the execution transitions out of the
cycle, normally on the last node.

Figure 5. Cycle example and associated code.

One particular case of a Cycle is when one is created using
only one node that can transition to itself. We call this case a
Loop and it allows a user to reuse the same node several times,
possibly with information obtained from past accesses. Bulk
operations can benefit from this type of transition.

B. Information Flow

One important fact to consider is that most data access is not
static, i.e. parameters can be used to select or modify data. In
fact, some of the data used as input parameters might need to
have its source validated to ensure that the user does not access
data that he is not authorized to access. To achieve this type of
data validation it is proposed that nodes can use data from
previous nodes as parameters. We refer to this concept as the
information flow and we will define it in this section.

1) User Context
To handle the passing of information between nodes, we

need to create a user context that contains all the data a user
accessed and that a node can use to parameterize the data access.
To define this context, we will first define the Accessed predicate
that indicates whether a node v was accessed in the past or not.

Definition 4: Accessed(G, v). A node v ∈ ActionSet(G) for a
given flowchart G is said to have been accessed when a user's
UAP possessed a reference to node v on at least one step leading
up to the current step N:

while(some condition)

 do A

do B

…

end while

 do A

do B

…

end while

if(some condition) then

 do A

else

do B

end if

do C

do A

if(some condition) then

do B

else

do C

end if

∀v ∈ ActionSet(G) ∃n ≤ N (Accessed(G, v) ⇒ UAPn = (G, v)) (9)

Definition 5: User Context. Given a user U and each graph 𝐺
from its set of flowcharts SOFU , the User Context of user U
(UCU) is a pair of elements containing the current UAP on step
N (UAPN) and a set of previously accessed nodes by user U,

which can be referenced by the predicate AccessedSet(UCU).

 .UCU = (UAPN, {v :v ∈ ActionSet(G) ∧ Accessed(G, v)}) (10)

This UCU is updated each time a Stepping operation occurs
and it can be used by a node to obtain values to parametrize the
data access. This means that the user does not provide the
parameters himself, ensuring that the data is valid and that the
user can request it. However, the UC must be made secure to
prevent a user from breaching it in any way. Additionally, when
a user stop traversing a flowchart, the UCU should be emptied so
the previously accessed data cannot be used out of context.
Formally, the reset operation of the UCU empties the set of
accessed nodes and puts the current UAP back to step 0:

 Reset(UCU) : UCU = (UAP0, ∅) (11)

There are several ways to implement this method of passing
a result of a previous action to another as a parameter. However,
one way to do this could involve the usage of a protected server
that caches the request results sent to each client, and then it
would automatically pass the necessary information to each
action when the client requests it to be executed.

2) Information Flow Restriction
One important aspect to ensure that data is not accessed out

of context is the ability to prevent an action from using some
specific data obtained through a previous action as parameter
inputs. Thus, a method to remove unneeded data from the UC
and free resources on the system is desirable.

To address this, we introduce the ability to revoke access to
the data obtained from a previously accessed node. The
revocation is done automatically using a list of nodes targeted
for revocation, which we call the revocation list. This list can
exist in the transitions between nodes or on each node. We will
analyze both options.

Definition 6: Revocation List. Given a flowchart G ∈ SOF, a
revocation list R is a set of previously accessed nodes in
ActionSet(G) that must prevent further access to their data.

 R = {v' ∈ ActionSet(G)} (12)

Since the enumerated nodes in the list prevent any further
access to their data, it cannot be used as parameter values for
consequent access attempts. We must now update the user
context definition to contemplate the revocation list, i.e. the user
context for some user U and a flowchart G must now contain, at
a given step N, the list of previously accessed nodes that have
not appeared on any revocation list, as shown in formula 13.

.UCU = (UAPN, {v : v ∈ ActionSet(G) ∧ Accessed(G, v) \ R}) (13)

When the revocation list is encoded in the transitions
between nodes, the set of transitions will then be defined by an
ordered triplet of two nodes and a revocation list:

.E = {(u, v, R) : u, v ∈ V} (14)

When a Stepping operation is carried out, the revocation list

associated with it is processed and the nodes in the list can be

removed from the list of nodes in the user context.

In the other solution, i.e. placing the revocation list at each
node, the revocation list is associated with each node in the
flowchart G instead:

.V = {(a, {P}, R)}, a ∈ A (15)

Whenever a Stepping operation is carried out and some node
v is referenced by the UAP, following the restriction imposed in
Definition 3, the user context must be updated with the
revocation list by subtracting the list from the user context's list
of accessed nodes. Both approaches are valid and which one is
used depends solely on the ease of implementation.

C. Subsequence Calls

We will now describe the process by which sequences of
actions may be reused on other sequences, also known as a sub-
sequence call. Sub-sequence calls are operations that move the
UAP to the root of another flowchart G to perform some action
that is required by multiple other flowcharts, making it a
common action. Figure 6 shows this idea, where the node A' on
the flowchart to the right is a call to the entire sub-sequence to
the left. Two main types of sub-sequence calls are considered in
this work: dependent and independent.

Figure 6. Sub-sequence calls example.

Dependent calls are distinguished from independent calls by
their need to use the current UC. As the name implies, dependent
calls require the UC to be passed to the sub-sequence, allowing
access to the data obtained from the initial flowchart.

Independent calls, however, do not require the data from the
initial flowchart to perform the data access. This ensures that
data is not misused and passed only on a need-to-know basis.
Just like the Stepping operation, the sub-sequence call allows the
user to move to another node except the node exists on a
different flowchart. When the UAP reaches the end of the sub-
sequence G', the UC from it is copied to the initial flowchart G,
allowing the node the user moves into in the original flowchart
G to access the data obtained, if any. This doesn't violate the
definition of the User Context (Definition 5) since the set of
accessed nodes do not have to belong to a single flowchart.

More formally, when a call to a sub-sequence finishes and
returns a 𝑈𝐶′, the initial 𝑈𝐶𝑛 is updated to 𝑈𝐶𝑛+1 as follows:

 .UCn+1 = (UAPn, AccessedSet(UCn) ∨ AccessedSet(UC')) (16)

Note that the original UAP remains the same as it was before
the sub-sequence call was made, and it is only updated when the
user execution returns to the original flowchart. It is also
important to note that the dependent calls and the UC' returned
by the sub-sequence call can have revocation lists associated
with them as described in section V.B.2). However, since the
new UC' is copied from the original UC, the revocation list of a

dependent call only affects UC', leaving UC untouched. The UC
can be restricted using a revocation list after the sub-sequence
call terminates and the user moves to the next node via Stepping.

Additionally, when the UC is copied for the execution of a
sub-sequence, the node of the original sequence is not passed
along with it. This means that when a sub-sequence finishes
execution, the system still needs to know where to point the user
to continue the sequence execution. Therefore, every time a
subsequence call is performed, the current UC should be saved.

A natural solution to save the UCs in is a stack, in which the
last item to be stored is the first to the removed. This way, when
a sub-sequence is called, the UC used is put into the stack and
copied to the sub-sequence. When a sub-sequence terminates,
the last UC is removed from the stack, merged with the current
one, and the previous UAP recovered as shown in formula 16.

D. Implementation

While this paper is concerned primarily with defining the
SeqBAC model, it can also be beneficial to consider how such a
model can be implemented. The unique way that actions interact
with each other through transition relations makes it clear that a
graph is the type of structure seems to be the most appropriate
for storing SeqBAC policies. Furthermore, graph databases,
such as Neo4j, allow to define properties on each node and edge.
This feature could be used to store things such as subsequence
calls by referencing another graph, the revocation list for
accessed data pruning purposes and other data.

However, storing the actions and the relations between them
is not enough. If the access control system only checks if a user
is authorized to execute some action, then either the user knows
the sequences or can experience many authorization errors. This
can be expected to happen since there can be many ways to fulfill
a use case and a defined sequence may only account for a
specific way to do it. A solution to this implementation issue is
the development of a tool that can parse the defined sequences
and then generate the necessary code that follows them
automatically. A previous work, presented in [6], shows how this
could be used to integrate a similar idea into existing DBMS
solutions. This way, when an application using SeqBAC is being
developed, the developers do not need to master the policies
defined as action flowcharts.

VI. CONCLUSION

In this paper, the SeqBAC model was introduced and
formalized. The model was designed to enforce access control
policies over sequences of actions, allowing users to execute
them in controlled sequences, and extends a previous work.

This paper also considers how this model could be
implemented, addressing the issue of developers having to
master the defined sequences of actions with the proposal of
using a tool to parse the defined sequences and generating the
code to use them automatically. While this model requires some
work to define the sequences of actions when compared to other
models that allow unrestricted access to data, it helps to ensure
that the use cases are implemented correctly faster.

Regarding future work, an actual implementation of the
example discussed in section V.D is thought to be next natural

step. Additionally, tools to define policies, validate source-code
and generate mechanisms based on the defined policies are also
being considered. These would allow developers to know easily
what operations are available at any point during the execution
of a sequence, preventing the need for them to master the
policies, and to ensure the overall correctness of their code.

REFERENCES

[1] E. Bertino, P. A. Bonatti, and E. Ferrari, “Trbac,” Proc. fifth ACM Work.

Role-based access Control - RBAC ’00, no. May 2016, pp. 21–30, 2000.

[2] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca, “Geo-Rbac,”

ACM Trans. Inf. Syst. Secur., vol. 10, no. 1, p. 2–es, 2007.

[3] E. Tarameshloo and P. W. L. Fong, “Access control models for geo-

social computing systems,” in Proceedings of the 19th ACM symposium

on Access control models and technologies - SACMAT ’14, 2014, pp.

115–126.

[4] I. Ray and M. Toahchoodee, “A Spatio-temporal Role-Based Access

Control Model,” Data Appl. Secur. XXI, vol. 4602, pp. 211–226, 2007.

[5] S. Barker, “The next 700 access control models or a unifying meta-

model?,” Proc. 14th ACM Symp. Access Control Model. Technol., pp.

187–196, 2009.

[6] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Secure, Dynamic and

Distributed Access Control Stack for Database Applications,” Int. J.

Softw. Eng. Knowl. Eng., vol. 25, no. 09n10, pp. 1703–1708, Nov. 2015.

[7] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Extending RBAC

Model to Control Sequences of CRUD Expressions,” SEKE’14 - Intl.

Conf. Softw. Eng. Knowl. Eng., 2014.

[8] D. Bell and L. LaPadula, “Secure Computer Systems: A Mathematical

Model. Volume II.,” vol. II, no. May 1973, 1973.

[9] Bin Duan and Bing Liu, “Design of security state machine of access

control for control object based on IEC 61850,” in 2006 IEEE Power

Engineering Society General Meeting, 2006, p. 3 pp.

[10] M. Thirumaran, P. Dhavachelvan, D. Aishwarya, and R. Shanmugapriya,

“Finite State Machine based Access Control Mechanism for Web Service

Work Flow Management,” IERI Procedia, vol. 4, pp. 391–397, 2013.

[11] B. Parducci and H. Lockhart, “eXtensible Access Control Markup

Language (XACML) Version 3.0,” OASIS Standard, 2013.

[12] G. Yee, Privacy Protection for E-Services. Idea Group Inc (IGI), 2006.

[13] J.-W. Byun, Toward Privacy-preserving Database Management Systems

- Access Control and Data Anonymization. ProQuest, 2007.

[14] E. Staab and G. Muller, “MITRA: A Meta-Model for Information Flow

in Trust and Reputation Architectures,” arXiv Prepr. arXiv1207.0405, p.

19, Jul. 2012.

[15] R. McGraw, “Risk-Adaptable Access Control (RAdAC),” inPrivilege

Manag. Work. NIST–National Inst. Stand. Technol. Technol. Lab., 2009.

[16] D. R. dos Santos, R. Marinho, G. R. Schmitt, C. M. Westphall, and C. B.

Westphall, “A framework and risk assessment approaches for risk-based

access control in the cloud,” J. Netw. Comput. Appl., vol. 74, pp. 86–97,

Oct. 2016.

[17] S. Kandala, R. Sandhu, and V. Bhamidipati, “An Attribute Based

Framework for Risk-Adaptive Access Control Models,” in 2011 Sixth

International Conference on Availability, Reliability and Security, 2011,

pp. 236–241.

[18] IBM, “Cognitive Security White Paper,” 2016. [Online]. Available:

http://cognitivesecuritywhitepaper.mybluemix.net/. [Accessed: 11-Jan-

2017].

[19] C. Martínez-García, G. Navarro-Arribas, and J. Borrell, “Fuzzy Role-

Based Access Control,” Inf. Process. Lett., vol. 111, no. 10, pp. 483–487,

2011.

[20] J. Kacprzyk, S. Zadrożny, and G. De Tré, “Fuzziness in database

management systems: Half a century of developments and future

prospects,” Fuzzy Sets Syst., vol. 281, pp. 300–307, Dec. 2015.

[21] Óscar Mortágua Pereira, D. D. Regateiro, and R. L. Aguiar, “Role-Based

Access Control Mechanisms,” … (ISCC), 2014 IEEE …, vol. 2, no. 1,

pp. 1–7, Jun. 2014.

