
Feedback Topics in Modern Code Review:
Automatic Identification and Impact on Changes

Janani Raghunathan, Lifei Liu, Huzefa Kagdi
Department of Electrical Engineering and Computer Science

Wichita State University
Wichita, Kansas 6760, USA

Email: {jxraghunathan, lxliu2, huzefa.kagdi}@wichita.edu

Abstract— Recent empirical studies show that the practice
of peer-code-review improves software quality. Therein, the
quality is examined from the external perspective of reducing
the defects/failures, i.e., bugs, in reviewed software. There is
a very little to no investigation on the impact of peer-code-
review on improving the internal quality of software, i.e., what
exactly is affected in code, due to this process. To this end, we
conducted an empirical study on the human-to-human discourse
about the code changes, which are recorded in modern code
review tools in the form of review comments. Our objective
of this study was to investigate the topics which are typically
addressed via the textual comments. Although, there is an existing
taxonomy of topics, there is no automatic approach to categorize
code reviews. We present a machine-learning-based approach
to automatically classify reviewer-to-reviewer and reviewer-to-
developer comments on proposed code changes. We applied this
approach on 468 code review comments of four open source
systems, namely eclipse, mylyn, android and openstack. The
results show that Evolvability categories are dominating topics.
In an attempt to verify these observations, we analyzed the code
changes that developers performed on receiving these comments.
We identified several refactorings that are congruent with the
topics of review comments. Refactorings are mechanisms to
improve the internal structure of software. Therefore, our work
provides initial empirical evidence on the effectiveness of peer-
code-review on improving internal software quality.

I. INTRODUCTION

Different types of maintenance help improve sustainability
and quality of large-scale software systems. Corrective mainte-
nance helps eliminating or reducing defects in the software;
thereby, improving the external software quality. Preventive or
Perfective types of maintenance may not necessarily address
the defects or features at hand directly; however, they improve
the design or code structure; thereby, improving the internal
software quality. Software testing is primarily used to identify
the defects and is often considered as an ubiquitous mechanism
to improve the external quality. Code review is a rejuvenated
phenomena with benefits in improving the software quality.

Extensive research shows the usefulness of code review in
improving the external quality [1], [2], [3], [4], which is an
important result. Unfortunately, there is little to no work on
investigating how code review improves the internal software
quality. Previous studies [5], [6], [7], [8], [9], [10], [11], [12]
show that the internal quality is also critical and equally (or
more) important. For example, evolvability or internal design
issues could lead to code decay and/or premature degradation.

Peer-code review is the process of reviewers critiquing the
code changes that developers submit to decide if those changes
are of acceptable quality and can be integrated to the main code
base of a software system. Nowadays, it is often lightweight,
informal and tool-based, which is termed as Modern Code
Review (MCR) [13]. MCR is popularly used in industrial and
open source software-development paradigms [14], [2], [15].
The primary discourse between reviewers and developers is
in the form of textual feedback about the code changes at the
line level or collectively within an enabling tool, e.g., Gerrit.

The primary objective of this paper is to investigate how
code review is effective in improving the internal software
quality, which we substantiated with three research questions:

RQ1: What are the common topics, related to both internal
and external qualities, discussed during code review?

RQ2: To what extent these common topics can be automati-
cally classified?

RQ3: How do the developers address the review comments
that reviewers provide to revise their code changes?

With respect to RQ1, we analyzed the code review reposi-
tories of four open source projects, namely eclipse, mylyn,
android and openstack, which are archived in Gerrit. We
manually investigated the three most relevant attributes of
information from Gerrit: the patch description as it contains
the reason the patch is submitted, the changed lines of code by
the developers and the review comments from the reviewers
for the proposed code changes. We classified each of the
review comments into the most appropriate topic based on
the taxonomy of Mantyla et al. [16]. Our results indicate that
topics related to both external and internal qualities are found
during the code review; however, those related to the internal
quality are dominating. As a prime example, 75% of the defects
identified during code review are evolvability type of defects
and hence the majority of the comments raised by the reviewers
are focussed on improving the internal software quality.

With respect to RQ2, we present an automatic approach to
identify the topics found in code reviews. Our approach builds
a machine-learning-based classifier to automatically categorize
the code change into its appropriate topic. The results of our
automatic classifier suggest that evolvability type of issues in
a code can be well predicted with an average precision and
recall of 0.45 and 0.41 respectively. Although, Mantyla et al.
[16] proposed the taxonomy, they did not offer any automaticDOI reference number: 10.18293/SEKE2018-097



solutions to classify topics or issues typically identified during
the code review. We also discuss application scenarios of this
automatic classification (see Section IV).

With respect to RQ3, we investigated the review comments
from mylyn, eclipse and android. We manually studied the
changes in the code for the review comments raised by the
reviewers. As every review comment corresponded to a specific
topic, we were able to correlate the action of a developer to a
particular topic. We observed that developers adopted different
refactorings to address different defect topics in code review.
We investigated the structural changes that took place in differ-
ent revisions of code review as a result of review comments and
observed that developers did perform refactoring to address the
review comments. By comparing those refactoring techniques
with the respective topics, we observed a substantial congruence
between the topics of feedback from reviewers and the specific
(categories) of refactorings developers performed to address
the review feedback in revising their code changes. Refactoring
is a mechanism to improve the internal design of the software.
Therefore, it is evident from our results that code review is
effective in improving the internal software quality.

II. BACKGROUND ON MCR AND TAXONOMY OF TOPICS

We define the key concepts involved in the modern code
review process, which is driven by supporting infrastructure
and tools, e.g., Gerrit.

Code Change: A code change is a set of modified source
code files submitted in order to fix a bug or add a feature.

Patch Description: A brief information about the patch and
the reason it is submitted. For instance, it contains information
about the bug id from Bugzilla, if the patch is submitted to
address a particular bug.

Review: A code review is a record of the interactions between
the owner of a change and reviewers of the change including
comments on the code and signoffs from reviewers.

Owner: An owner is the developer who makes the change
in the source code and submits it for review.

Reviewer: A reviewer on a particular review is a developer
who is assigned to and/or contributes to that review.

Review Comment: A review comment is textual feedback
written by a reviewer about the code change during the review
process. A review comment may be about the change in general
or may be explicitly tied to a particular part of the change
called the in-line comment.

The life-cycle of a review is as follows: Initially a developer
(owner) makes changes to the source code in response to a
bug report or feature request. Once complete, they submit the
code change for review. The owner may indicate the intended
reviewers, who are subsequently notified about the review
invitation. It should be noted that the invited reviewers do not
necessarily accept the invitation and contribute to the review.
Reviewers then inspect the change through the code review
tool (a web page in the case of Gerrit) and provide feedback
in the form of review comments to the owner. The owner may
update the change and submit the update to the review as a

result of such feedback. The code change is typically depicted
by showing the difference of the code before and after the
change. Eventually, a reviewer signs-off on the review, once
they believe the code change is of sufficient quality to be
checked into the code repository. If a change never received
sign-off, it is abandoned. It is critical that code review is both
effective (actually improves code changes and blocks poor code
from being checked into the repository) and timely (does not
act as a bottle-neck too by slowing down changes). Therefore,
automation and tool support are key to its success.

Mantyla et al. [16] divided defects detected from code review
into the following parent groups: evolvability, functional, and
false positives. Evolvability defects are sub-divided into Docu-
mentation, Visual Representation, and Structure. The Functional
category has seven groups: Resource, Check, Interface, Logic,
Timing, Support and Larger defects. Each of these defect
categories have a definition as defined by Mantyla et al. and
C. Bird et al. in their works [16] and [17] respectively. We
have used the taxonomy proposed by them to classify the
reviews in our dataset. Mantyla et al. [16] have broadly referred
to all types of issues found in code during code review as
defects, irrespective of whether it is an external defect affecting
the functionality of the software or an internal design flaw
affecting the internal quality of the software. For consistency
and simplicity, we adopted the same terminology. We have
referred to all types of issues found by the reviewers as different
types of defects or topics found in the code.

We define an evolvability defect as a defect in the code
that makes the code less compliant with standards, more error-
prone, or more difficult to modify, extend, or understand. The
functional defects are those that cause a system failure or fail
in their business logic. False positives are those class of defects
which were initially suspected to be defects but later on were
discovered to be as no defects during team meetings. Each
category is further divided into sub-categories.

III. EMPIRICAL STUDY: FORMULATION OF BENCHMARK

The purpose of this study was twofold: 1) to determine
which specific categories were prevalent in the open-source
systems under study, and 2) to curate a benchmark to assess
our automatic approach for classification (see Section IV).
There is no established dataset nor benchmark for our context
in the literature. Additionally, our effort can be considered
as an independent empirical verification or replication of the
categories of Mantyla et al. [16]. That is, we address:

RQ 1: What are the common topics, related to both internal
and external qualities, discussed during code review?

Dataset and Methodology: For our study, we collected the
patches from four open source systems namely eclipse, mylyn,
android and openstack between the periods Jan 2014 and Feb
2016 and classified the review comments into either of the
categories proposed by Mantyla et al. [16] and Bosu et al.
[17]. Each patch has a brief textual description called the
patch description, the owner who submitted it, the files that
are modified as part of the patch, the list of reviewers selected
to review the patch, the line of code that changed and the



review comment that the reviewers made on the changed line
of code. In order to create the benchmark, we considered the
following patch selection criteria: 1) patches that were merged
or abandoned, 2) that had either in-line or general review
comments from the reviewers. We also considered those patches
that had a relevant bug id in bug tracking system like Bugzilla to
better understand the patch and thereby classify the review more
accurately. Review #227221 from Mylyn, is an example of how
we classified an individual review into its appropriate defect
category. The reviewer Sam Davis commented on the changes
in the file BugzillaRestPostNewTask.java: This is creative but
I’d rather use ImmutableList from Guava. The owner Frank
Becker had used an ArrayList and the feedback suggested the
use of ImmutableList instead. It is evident from the changed
line of code and the keywords in the review comment, namely,
”use ImmutableList” that the reviewer is proposing an alternate
approach to the ower’s solution. As Mantyla et al. mentioned in
their work [16] that the comments that suggested function call
changes or a complete rethinking of the current implementation,
belonged to Solution Approach defect category. We classified
this review into Solution Approach category. In another example,
review #52373, the reviewer commented When you copy a big
chunk of code like this, it would help to add a comment saying
where it’s copied from because it’s a sign that we might want
to create a common implementation in the future. Similarly,
in this case, after inspecting the changed line of code and the
keywords from the review comment, namely, ”add comment”
suggest that reviewers are concerned about the documentation.
Hence, we categorized this review into Documentation category.

Results: While consolidating the results of our manual
analysis, we observed a total of 17 defect categories which
covered the majority of the defects identified during code review.
They are: Check Function, Check User Input, Check Variable,
Compare, Compute, Data and Resource Manipulation, Wrong
Location, Algorithm/Performance, Organization, Parameter,
Solution Approach, Support, Supported by Language, Textual,
Variable Initialization, Visual Representation and Compiler
Error. Table I shows the distribution of defect categories within
and across projects. They show that topics across evolvability
and functional categories are found in code review. They cover
both external and internal aspects of the reviewed code. It
is also evident from these results that 75% (352 out of 468
review comments) of the defects identified during code review
are evolvability type defects. Overall, we see that the internal
quality aspects are dominant.

IV. APPROACH: AUTOMATIC CLASSIFIER

As discussed in the previous section, the review topics
pervade both external and internal software qualities; however,
identifying them is non-trivial, tedious, non-scalable, among
other things. Therefore, we need to consider their automatic
identification. That is, we address:

RQ2: To what extent can we automatically classify the
common topics?

1https://git.eclipse.org/r/#/c/22722/4

TABLE I
DEFECT CATEGORY/TOPICS COMMONLY FOUND IN EACH PROJECT

Eclipse Platform(86) Mylyn(108) Android Platform(98) OpenStack(177)
Defect categories # of reviews % # of reviews % Total No. of reviews % # of reviews %

Evolvability Defects
Textual 39 45.35 25 23.36 38 38.8 51 28.8
Supported by language 8 9.3 7 6.54 10 10.2 8 4.54
Organization 6 7 14 13.08 8 8.16 36 20.45
Solution Approach 9 10.50 27 25.23 9 9.18 18 10.22
Visual Representation 8 9.3 3 2.8 18 18.37 9 5.11
Functional Defects
Compare 3 3.48 4 3.73 1 1.02 3 1.7
Compute 6 6.97 2 1.86 5 5.1 6 3.4
Check Function 9 8.41 3 3.06 33 18.8
Check Variable 4 4.65 11 10.28 6 6.12 8 4.54
Check User Input
Algorithm/ Performance 1 0.56
Wrong Location 1 1.16 3 2.8
Data and Resource Manipulation 1 1.16
Variable Initialization 1 0.93 2 1.13
Parameter 1 0.93
Support 1 0.93
Timing 1 0.56
Compiler Error 1

Methodology. We developed a classifier to automatically
categorize the reviews into appropriate defect categories or
topics, using natural language processing and machine learning.
The patch description contains information about the code
changes (i.e., patch) the developer submitted for review. The
lines of code suggest the changes in the source file that were
submitted as part of the patch. The review comments contain the
textual feedback the reviewers provide on the code changes. We
considered these three features from the code review repository
to train our model.

Each review comment along with its patch description, line
of code and the respective category (label) was considered a
document. The patch description and review comment of the
document were preprocessed by removing the stop words and
stemming. We did not perform any processing of the line of
code feature because they were programming syntax and we
had to preserve the information as it is required to accurately
identify the defect category. After preprocessing, we performed
the term-weighting where we produced a dictionary from all
of the terms in our document and assigned a unique integer Id
to each term appearing in it using the tf-idf metric.

The model was trained on the 7 most common defect cate-
gories namely Visual Representation, Supported by Language,
Solution Approach, Textual, Logic, Check and Organization
because our dataset did not have enough samples for all of the
17 defect categories to train our model. The labels (topics) for
each review were derived from our manual investigation (see
Section III). Of the 468 review comments from our manual
investigation across subject systems combined, we considered
240 review comments from three open source projects namely
eclipse, mylyn and android to train our model.

After the model was trained, we tested it with our test data
that consisted of 50 test cases. The test data consisted of
only the patch description and the line of code that changed.
The reason for that was to not include any forward looking
information as they would invalidate the results. For example,
review comments are available once the code review is already
under way. Therefore, there might be very little benefit in
predicting the review topics at that stage. We would like
to predict the topics as early as possible and with as little
information as possible. Similar to our training data, the test
data also underwent preprocessing like removing stop words
and stemming of the patch description. We fed the processed
training data to our classifiers and predicted its performance



on test data. Once the automatic classification for the test
data was performed, its predicted label was compared with the
identified label and the accuracy was estimated. We adopted
three different machine learning algorithms that are commonly
used for text classification: KNN (K Nearest Neighbors) with
a K value of 7, Naive Bayes and Support Vector Classification.
We observed that KNN performed the best.

Results: With KNN, we observed an accuracy of 20% and
an average precision and recall of 0.45 and 0.41 respectively.
Table II shows the results of our automatic recommendation
model. Our results indicate that we were able to predict both
evolvability and functional types of defects. Also, we observe
that the evolvability categories namely Textual, Organization,
Visual Representation and Solution Approach have much more
promising levels of precision and recall. Therefore, we surmise
that automatic topic classification holds a much better promise
in internal quality than external quality topics. Our effort is a
first step in automating the topic identification as soon as a
code change is submitted for review.

TABLE II
RESULTS OF AUTOMATIC DEFECT CLASSIFICATION

Defect categories Precision Recall

Textual 0.73 0.50
Supported by Language 0.00 0.00
Organization 0.31 0.50
Solution Approach 0.27 0.80
Visual Representation 1.00 0.50
Check 0.00 0.00
Logic 0.60 0.38
Avg/ Total 0.45 0.41

Application Scenario: This investigation also gave us an
insight on the reviewers’ expertise in identifying a specific
type of defect. Table III shows a list of all the reviewers that
participated in reviewing the 108 review comments from mylyn
project and the number of defects they identified under each
category. It is evident that Sam Davis has actively participated
in the code review process and he is more experienced in
identifying defect categories like Solution Approach and Textual.
On the other hand, with Sam Davis as the owner for two large
patches #478882 and #610913 of the total 20 patches that were
investigated in mylyn, there were only 2 defects identified
on his patch which were of the type Visual Representation
and Check. This suggests that active participation in code
review helps in building knowledge, improves the quality of the
developer and thereby significantly reduces the defect likelihood
in one’s code. This table also shows that many reviewers did
not contribute enough during the code review process. However,
this can be prevented by recommending appropriate reviewers
i.e. reviewers who are capable of identifying specific defects
in a patch, based on what defect types the patch is prone to.

Other application scenarios include prioritizing the code
changes (patches) based on the topics of concern, predicting
their acceptance likelihood and completion time, topic-specific
knowledge transfer, and overall project’s development and
maintenance status and overall maturity.

2https://git.eclipse.org/r/#/c/47888/
3https://git.eclipse.org/r/#/c/61091/

TABLE III
REVIEWERS AND CONTRIBUTED TOPICS IN MYLYN

Reviewer Textual Organization Visual Representation Solution Approach Supported by Language Check Logic

Sam Davis 17 13 27 4 16 9
Steffen Pingel 2 1 3 1
Landon Butterworth 3
Frank Becker 1
Doug Janzen 1
Colin Ritchie 2 2
Blaine Lewis 2 2 1

Discussion: We discuss the evolution of our automatic
classifier. We made several attempts to build a reasonably
strong model. In our first attempt, we considered the data
collected from eclipse, mylyn and android projects from our
manual investigation and considered all the 17 defect categories
that were identified during manual analysis. The training data
set consisted of 240 review comments and the test data set
consisted of 50 review comments. To build our classifier, we
chose the following features from Gerrit; patch description,
file name as it would be a good analysis to see the defect
type with respect to the file, owner name as it would give
information about the quality of the developer, line of code
that was changed in order to address the bug or implement a
new feature and the review comment written for the specific
line of change in the code. We processed the dataset to remove
the stop words and stemming and then trained our classifier
to predict the defect categories of the test dataset. We used
KNN, Naive Bayes and Support Vector Classification for our
classifier to automatically recommend the defect category. Our
first attempt was not successful. The accuracy came out to be
as low as 4%. The main reason was the insufficient dataset.
The samples for each defect category in the dataset were not
sufficient. Hence the model could not be trained well.

Because the size of dataset was small and the number of
defect categories was large, for our second trial, we reduced
the total number of defect categories by combining a few of
the similar categories and eliminating some of the rare defect
categories. We eliminated those defect categories that had very
few occurrences in the entire dataset. For instance, we combined
the categories Check User Input with Check Function as they
are similar. Check Function checks for the return value of a
function and Check User Input asks for a test case to verify the
return value of a function. Similarly, we combined Data and
Resource Manipulation with Variable Initialization as both of
them are related to Resource management. The Compiler Error
category is a very rare scenario because it is highly unlikely
for one to submit a file with compilation errors for code review
because of the automatic pre-checks typically in place. Only
one review comment belonged to the Compiler Error category
of all the 468 review comments that were investigated. Hence,
we eliminated this category in the second round. In total, we
considered a list of 13 defect categories for the second trial
to train our model and they are as follows: Check Function,
Check Variable, Compare, Compute, Organization, Parameter,
Resource, Solution Approach, Supported by Language, Textual,
Timing, Visual Representation, and Wrong Location. We
considered the same set of features as in our first trial (namely
patch description, owner name, file name, line of code and
review comment). The training and test datasets were the same
from the first trial (i.e 240 and 50 respectively). The only
difference was with the number of target defect categories



on which the model was trained. This time we obtained an
accuracy of 6%. The accuracy was still low because of the
small dataset and also the noise introduced in the dataset in
the form of file and owner names.

After these two unsuccessful trials, we realized that there
was a need to further reduce the total number of defect
categories. This time we considered only the most common
defect categories for our classifier. We chose only those
categories that were identified to be more prevalent in code
review. In other words, we chose those target categories that had
enough samples in our dataset. We also removed the features
like file name and owner name which were mostly acting as
noise in our dataset. In our third trial, we eliminated those
features and considered only the patch description, line of code
and review comment to train our classifier. This was the trial
that gave a significant improvement in the accuracy, precision
and recall and it was discussed in detail in the previous section.

For our next trial, we considered the data from all the four
projects. The training data consisted of 360 records and the
test data consisted of 108 records. We considered the same
features as 22 our last trial (patch description, line of code
and review comment). But this time, the average precision
and recall fell from our previous attempt. Upon analyzing the
results, we realized that the low accuracy in general was due
to the following reasons. Firstly, there was insufficient data set
and insufficient samples for each defect category. Secondly,
the results of the manual investigation could not be verified by
the concerned developer or the reviewer, hence the accuracy
of the manual investigation results, on which the automatic
classifier was built, could not be verified. Thirdly, our model
provides good precision and recall to identify evolvability
defects; however, there are not sufficient features in the code
review tool to help us perform automatic classification of
functional type of defects effectively. Another important reason
is the difference in the line of code feature which is an important
feature in our automatic model. openstack is a completely
different project with python as its programming; eclipse and
mylyn use the same programming language which is java,
whereas android has both C++ and Java code.

V. IMPACT ON REVISING CODE CHANGES

We wanted to investigate how developers receive the review
feedback and what actions they take to improve their code
changes. Was there any relationship between the topics they
were critiqued on and the corresponding actions they took to
resolve them. That is, we address:

RQ 3: How do the developers address the review comments
that reviewers provide to revise their code changes?

By analyzing the code review comments, we identified that
reviewers are more inclined towards identifying the internal
design flaws in the code as it is evident from our manual
investigation that 75% of the defects identified by the reviewers
are about the internal quality of the code. As a next step, to
validate these results, we wanted to study the steps that were
taken to address those review comments. We carefully studied
each revision of the patch, analysed the review comment and

therefore the underlying defect category and observed the
developer’s code change so as to address that defect for the
following projects: eclipse, mylyn and android.

From our empirical study, we observed that developers
incorporated specific refactorings that are congruent to the
defect category of the review comments. For instance, in the
review #22719 4, the reviewer Steffen Pingel suggested in his
review comment that a class be split into a separate class. This
comment is clearly about an issue in the organization of the
code as it is about rearranging the code such that the software
is more comprehensible and maintainable, and hence can be
categorized as Organization. If we observed the next revision
of the patch, we see that the developer has extracted that part
of the code and created a separate class as suggested by the
reviewer. In this case, the developer has incorporated Extract
class refactoring technique.

Similarly, in another review #60407 5, the reviewer suggested
a naming issue in a developer’s code. This defect can be
compared with the Textual defect category where emphasis
is given to proper naming or comments in the code which
otherwise can cause misleading information. In the next
revision of the changed code (patch), we observed that the
developer had changed the name of the method as per the
reviewer’s comments. This action can be compared to the
rename refactoring method as it is about renaming a class or
a variable or a method in order to make its purpose clear.

It can be seen from our observation that majority of the
defects identified during code review are evolvability type
of defects and in order to address those, developers adopted
refactoring techniques. Since refactoring is a mechanism to
improve the internal structure of the code, it is evident that
code review is useful in improving the internal software quality
or the evolvability of the software. Table IV shows the mapping
between various defect topics and the refactorings adopted by
the developers for each of those topics.

TABLE IV
MAPPING BETWEEN TOPICS AND REFACTORINGS

Defect categories Refactorings

Textual Rename method
Organization Extract method, Extract class, Move method
Solution Approach Substitute Algorithm
Supported by Language Hide Method

VI. THREATS TO VALIDITY

We discuss internal, construct, and external threats to validity.
Misclassification of review comments: The results of the

manual investigation could not be verified by the original
developer/reviewer or other proficient software engineers
thereby raising the risk of researcher’s bias.

Heterogeneous Dataset: Although all the open source
projects that we considered for our research uses the same code
review tool and the mechanism, the projects themselves are
different in nature (e.g., their main programming languages).

4https://git.eclipse.org/r/#/c/22719/1
5https://git.eclipse.org/r/#/c/60407/3



The line of code is a primary feature in our classifier, which
could have impacted our results.

Insufficient Dataset: Since manual investigation is a tedious
process, we could not gather enough data for all the defect
categories. Hence our dataset was relatively small.

Insufficient Features: Code review tool has possibly insuf-
ficient features for our automatic recommendation model to
classify functional defects effectively.

Generalization: Although we investigated four open source
systems, we do not claim that our results would generalize to
every single software system.

VII. RELATED WORK

There have been many efforts on studying the effectiveness
of code review in improving the external quality. However,
very few efforts have been done to emphasize the importance
of code review in improving the internal software quality.

Siy and Votta [15] proposed that 75 percent of the defects
found during code reviews are evolvability defects that affect
the evolution of the software instead of runtime behavior. C.
Bird et al. [17] in their work, identified the factors that led to
useful code review. They investigated the usefulness of code
review by performing an empirical study in Microsoft projects,
built and verified a classification model that can distinguish
between useful and not useful code review feedback. Recently,
McIntosh et al. [2] empirically showed that that poor code
review negatively affect software quality. In another study,
McIntosh et al. [18] reported that the percentage of reviewed
changes a code component underwent correlates inversely to
its chance of being involved in post-release fixes.

Rigby et al. [19] examined two peer review techniques:
review-then-commit and commit-then-review used by Apache
server project. They measured the frequency of reviews, the
level of participation in reviews, and the size of artifacts under
review in their studies. Beller et al. [20] found that the types of
changes due to modern code review in Open source software
are similar to those in the industry and academic systems from
literature, featuring a similar ratio of maintainability-related
to functional problems. Kemerer et al. [3] showed that code
review reduces the amount of defects in student projects. With
the available data they were also able to study the impact of
review rate on the inspection performance. They found high
review rates (i.e., a high number of reviewed LOC/hour) to be
associated with a decrease in inspection effectiveness.

VIII. CONCLUSIONS AND FUTURE WORK

We conducted an empirical study on the types of topics
in the reviewers’ feedback provided to developers on their
code changes. Four open source systems were the subject
of this investigation: eclipse, mylyn, android and openstack.
Furthermore, we presented an automated approach to predict
potential topics of reviewers’ feedback as soon as a developer
submits their code changes for review. Lastly, we also examined
the impact of these review comments on the revisions that
developers perform on their changes. We found that topics

relevant to both external and internal code qualities are
discussed in code review; however, those on the internal quality
are dominant. Also, developers use refactorings to address those
topics. The specific refactorings seem to align with the specific
nature of review feedback topics. In summary, we provide
evidence of the benefits of code review on internal code quality.
Our future work will be directed on improving the automatic
detection of these topics (e.g., accuracy) and developing their
applications to further empower the peer-code-review process.

To facilitate replication, among other things, we pro-
vide access to our online appendix http://serl.cs.wichita.edu/
codereview/topicmodel.

REFERENCES

[1] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, pp. 135–137, Jan. 2001.

[2] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014,
pp. 192–201, 2014.

[3] C. Kemerer and M. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,” Software
Engineering, IEEE Transactions on, vol. 35, pp. 534–550, July 2009.

[4] O. Laitenberger, “Studying the effects of code inspection and structural
testing on software quality,” pp. 237–246, IEEE, 1998.

[5] R. S. Arnold, “Software restructuring,” vol. 77, pp. 607–617, Apr 1989.
[6] “Refactoring: Improving the design of existing code,” (Boston, MA,

USA), Addison-Wesley Longman Publishing Co., Inc., 1999.
[7] N. Gorla, A. C. Benander, and B. A. Benander, “Debugging effort

estimation using software metrics,” vol. 16, pp. 223–231, Feb 1990.
[8] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,”

vol. 23, pp. 111 – 122, 1993.
[9] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman,

“Program indentation and comprehensibility,” vol. 26, pp. 861–867, Nov.
1983.

[10] P. W. Oman and C. R. Cook, “Typographic style is more than cosmetic,”
vol. 33, (New York, NY, USA), pp. 506–520, ACM, May 1990.

[11] H. D. Rombach, “A controlled expeniment on the impact of software
structure on maintainability,” vol. 13, (Piscataway, NJ, USA), pp. 344–
354, IEEE Press, Mar. 1987.

[12] T. Tenny, “Program readability: procedures versus comments,” vol. 14,
pp. 1271–1279, Sep 1988.

[13] C. Bird and A. Bacchelli, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference on
Software Engineering, IEEE, May 2013.

[14] P. C. Rigby and C. Bird, “Convergent software peer review practices,”
in Proceedings of the the joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE), ACM, 2013.

[15] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pp. 931–940, 2013.

[16] M. Mantyla and C. Lassenius, “What types of defects are really discovered
in code reviews?,” vol. 35, pp. 430–448, May 2009.

[17] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews:
An empirical study at microsoft,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pp. 146–156, May 2015.

[18] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proc. of the 22nd Int’l Conf. on Software Analysis, Evolution, and
Reengineering (SANER), pp. 171–180, 2015.

[19] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software peer
review practices: A case study of the apache server,” in Proceedings of
the 30th International Conference on Software Engineering, pp. 541–550,
ACM, 2008.

[20] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 202–211, ACM, 2014.


