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Abstract—In recent years, various automatic summarization
techniques have been proposed to extract important information
from bug reports. However, existing techniques mainly focus on
common text features and ignore human intentions implied in
bug reports. In fact, each bug report generally contains multiple
intentions which are distributed in different sentences. Bug report
readers are usually more interested in content that contains
intentions of certain categories (e.g. fix solution, bug description).
Based on the above observation, we introduce an intention
taxonomy and implement the intention classification algorithm in
this paper. Furthermore, we propose a new Intention-based Bug
Report Summarization approach, namely IBRS, which leverages
intention taxonomy to enhance bug report summarization. We
evaluate our approach on Intention-BRC corpus and the exper-
imental result shows that IBRS outperforms the state-of-the-art
approaches in terms of precision, recall, F-score, and pyramid
precision.

Index Terms—Bug Report, Text Summarization, Intention
Taxonomy, Intention Mining

I. INTRODUCTION

A software project’s bug report repository provides a rich
source of information for a software developer working on the
project. A bug report is composed of a title, descriptions and
comments from several developers. We analyse 40,000 bug
reports from different open source projects and find that bug
reports are usually very long (more than 10 comments in one
bug report on average) and their content is mixed with code
and debugging information. An example bug report is shown in
Figure 1. It is part of the #434108 bug report of Eclipse which
contains 14 comments. In such a long bug report, it is time-
consuming for a reader to grasp the important information they
need.

One of the most effective ways to save bug report readers’
time is to provide them with summaries of bug reports. The
main idea of the state-of-the-art bug report summarization
techniques is to extract useful sentences in bug reports. Rastkar
et al. [1] first proposed BRC model. They marked 36 bug
reports (BRC corpus) and trained 3 classification models on
BRC corpus, meeting corpus and email corpus to score each
sentence in a bug report. Finally, they found that the result
is sensitive to the type of corpus. It suggests that the text of
bug reports has unique characteristics compared with other
common texts. Mani et al. [2] used an unsupervised method.
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Fig. 1. A Bug Report Sample from Eclipse.

They classified the sentences roughly and dropped two kinds
of the sentences (Question and Code). Finally they applied sev-
eral unsupervised methods such as Grasshoppe, Diverse Rank
to get summaries of bug reports. The sentences classification
in their paper plays a role as a noise reduction mechanism.
Moreover, the concept of intention has been applied to various
software artifacts, e.g. app reviews [3], development emails
[4]. We observe that sentences posted in bug reports also
contain different purposes.

In this paper, we define 7 intention categories in bug
reports and then explore the connection between summaries
and sentence intentions in bug reports. Finally we improve
the bug report summarization approach by taking sentences
intentions into account. This paper mainly makes following 3
contributions:

1) We introduce an taxonomy of intentions in bug reports,



which classifies intentions into seven categories: Bug
Description, Fix Solution, Opinion Expressed, Infor-
mation Seeking, Information Giving, Meta/Code and
Emotion Expressed.

2) We propose a mixed model of linguistic patterns match-
ing and machine learning to classify the sentences of a
bug report by their intentions.

3) We propose an intention-based bug report summariza-
tion approach(IBRS), which takes advantage of the
informations that intentions implies.

The rest of this paper is organized as follows. Section II
describes the related work. Section III gives an overview of
IBRS approach. In Section IV, we describe the experiments
we conducted and the evaluation results. We present threats to
validity and future work in Section V. And we concludes our
work in Section VI.

II. RELATED WORK

Summarization techniques are mainly classified into two
categories: extractive [5] approach and abstractive approach
[6], [7]. In recent years, summarization researches began to ex-
pand to software artifacts such as user stories [8], source code
[9] and bug reports. For bug reports, sentence-level extractive
model is the main summarization technique, which extracts
the central sentences from the original text in accordance with
a certain compression ratio.

Rastka et al. [10] first proposed a model to extract sum-
maries automatically from bug reports and created a bug
report corpus called BRC corpus. They extracted more than
20 features from each sentence and trained Logistic Re-
gression models to select sentences from a bug report. He
Jiang et al. [11] found the relationship between the writing
style consistency and the quality of the written report by
mining authorship characteristics in bug repositories. And they
proposed a new summarization method named Authorship
Characteristics based Summarization (ACS). In addition, they
also proposed a PageRank-based Summarization Technique
(PRST) [12], which utilizes the textual information contained
in bug reports and additional information in associated dupli-
cate bug reports. Lotufo et al. [13] proposed an unsupervised
bug report summarization approach that estimates the attention
a user would hypothetically give to different sentences in a bug
report when pressed with time. In addition, Yeasmin et al. [14],
[15] applied the Lotufo’s model to practice and constructed a
visualized summarization model.

Previous researches have yielded good results by mining
different features of bug reports. Moreover, intentions of sen-
tences have been used in many other software artifacts except
for bug reports, providing us with a new perspective to explore
the characteristics of bug reports. Sorbo et al. [4] proposed a
novel, semi-supervised approach named DECA (Development
Emails Content Analyzer) that used Natural Language Parsing
to classify the sentences in development emails according
to their purpose. They said that their work can be used in
summarizing work and they have already generated app review
summary based on intention classification [3].

Fig. 2. IBRS Approach Overview

III. APPROACH

This section introduces the framework of IBRS as shown in
Figure 2. It consists of features extractor, intention classifier
and Intention-based Bug Report Summarization Model. Our
goals are to build a taxonomy for intentions in bug reports,
construct an automatic intention classifier to get sentences
intentions and take advantage of the sentences intentions to
improve the original bug report summarization approach.

A. Intention Taxonomy

In the work of Sorbo et al. [4], they divided the intention of
development email sentences to 6 categories, including feature
request, opinion asking, problem discovery, solution proposal,
information seeking and information giving. Through observa-
tion, we find that many of their intention categories are similar
to intentions in bug reports. For example, problem discovery
in development emails is closely related to bug description in
bug reports. Solution proposal in development emails is closely
related to fix method in bug reports. However, bug reporters
mainly focus on the discussion of bugs. Through reading bug
reports and referring to the intentions of development emails,
we define a total of 7 different intentions for bug reports as
shown below.
• Bug Description. To describe a bug (i.e. What is the

problem and how does it occur). E.g.“The problem here
is that nsSearch-Suggestions.js is passing the wrong pre-
vious Result to form history.”

• Fix Solution. To describe how to fix a bug. E.g. “The
simple fix it to just discard the service’s form history
result copy when startSearch() is called with a null
previous result.”

• Opinion Expressed. To Express the developers’ ideas.
E.g. “Yes, agreed the pref is not ideal for this purpose.”

• Information Seeking. Developers ask for information.
E.g. “Can I commit gtkshow.c to gtk+ when I remove
gtk show help?”

• Information Giving. Developers give their suggestions
or other information. e.g. “You could winding kde-
base/apps/konsole back a few revisions to see if the
problem disappears.”



• Meta/Code. A sentence that mainly consists of code,
stack information and other meta data. E.g. “CreateFile-
Operation op1 = new CreateFileOperation(file,...);”

• Emotion Expressed. Greeting words or feeling expressed
of something. E.g. “Good point.” “Hi Martin”

B. Intention-BRC Corpus

In order to mine the intentions in bug reports, we annotate
the intention of each sentence in the BRC corpus. BRC corpus
is created by Rastka et al [1]. There are 36 bug reports (2360
sentences) in it, which from 4 different open-source software
projects: Eclipse Platform, Gnome, Mozilla and KDE. They
assigned three annotators to each bug report to select sentences
that should occur in the summary of this report. For each bug
report, the set of sentences which be marked as summary by
more than one annotators is called the gold standard summary
(GSS). They also roughly classified each sentence and labelled
the categories. However, the categories annotations in the
corpus are not very accurate and some of the categories
annotations are missing. We re-annotate each sentence in
the corpus according to the intention taxonomy we defined.
Moreover, we correct some incorrect ID of sentences in BRC
corpus. After that, we call the modified corpus as Intention-
BRC Corpus in this paper and make it public1.

C. Intention Mining

The category information of intentions can be used as a
distinctive feature in bug reports. To prove this, in this section,
we analyse the Intention-BRC Corpus.

The annotation result shows that there are 374 sentences
labelled as Bug Description, 164 sentences labelled as Fix
Solution, 239 sentences labelled as Opinion Expressed, 85
sentences labelled as Information Seeking, 588 sentences
labelled as Information Giving, 744 sentences labelled as
Meta/code, 166 sentences labelled as Emotion expressed. We
wonder whether different categories of intentions are well-
differentiated from other features of a bug report. So we
analyse the following data:

The probability of a sentence that appears in the sum-
mary. In fact, when people reading a bug report, they always
pay different attention to sentences of different intentions. For
example, “Good point” and “The simple fix it to just discard
the service’s form history result copy when startSearch() is
called with a null previous result” are sentences with different
intentions. Obviously, the last sentence is more likely to appear
in summary. We counted the number of sentences with each
intention that appeared in summary in Intention-BRC Corpus
as c1, the number of sentences that not appeared in the
summary as c2. Figure 3 shows the result. The probabilities
for sentences with Bug Description and Fix solution intentions
to appear in summary are significantly higher than the others.

We define parameters Pi as the probability to be selected
as summary for intention category i. In our definition, Pi is
proportional to the ratio of the number of occurrences in the

1https://github.com/HuaiBeibei/IBRS-Corpus

Fig. 3. Sentence Count for Each Intention

summary and the total number of sentences of intention i.
Formally,

Pi =

∑
s∈seni

I(s ∈ sumary)∑
I(s ∈ seni)

=
c1

c1 + c2
(1)

seni represents the set of sentences with intention i.
Sentences length of each intention. In general, the length

of sentences with different intentions are different due to the
amount of information and information types involved are
different. For example, the Bug Description is to describe a
problem (e.g. how the problem occurs) and the sentences of
this intention is usually very long. We calculate the average
sentence length for each category, formally,

Li =

∑
length(s ∈ seni)∑

I(s ∈ seni)
(2)

Sentences position of each intention. We observe that there
is also a big difference in the location distribution of sentences
with different intentions. For example, problems are usually
described first in a bug report, therefore Bug Description sen-
tences usually appear at first comment. Similarly, we calculate
the average location of sentences for each category, formally,

Ci =

∑
comment position in report(s ∈ seni)∑

I(s ∈ seni)
(3)

Si =

∑
position in comment(s ∈ seni)∑

I(s ∈ seni)
(4)

Table I shows the calculation result of PLCS for each
intentions. Through the above data analysis, we can see that
the categories of intentions can show differences in multiple
feature dimensions. It shows that the intention implicitly
expresses several features of bug reports to some extent.

D. Intention Classification

In order to automatically obtain the intention of sentences
in bug reports, we train an intention classifier. Sorbo et
al. [4] proposed an approach called DECA to classify the



TABLE I
PLCS FOR EACH INTENTION

Intention category P L C S

Bug Description 0.594 16.660 3.786 5.805
Fix Solution 0.756 17.226 8.726 4.006

Opinion Expressed 0.310 16.272 8.732 3.967
Information Seeking 0.129 12.388 8.612 3.967
Information Giving 0.378 17.252 7.932 6.129

Meta/Code 0.114 9.212 6.056 23.659
Emotion expressed 0.095 4.723 6.837 5.753

sentences in development emails. They created 2312 heuristics
to detect common linguistic patterns in sentence to predict
their intention. However, finding linguistic patterns is a tedious
work and it is impossible to define all patterns. Therefore,
we create a mixed model which consists of linguistic patterns
matching and machine learning classifying. For each sentence
to classify, we first try to find the linguistic patterns matching
it to get the intention category. If no patterns matched we input
it to the trained machine learning classifier to get the intention
category.

Machine learning classifier. First, we pre-process the
textual content by applying stop-word removing, stemming
and lowering. Then we use bag-of-words model to construct
a Term-by-Documents Matrix M where Mi,j represents the
weight of the i-th term contained in the j-th sentence. We
weight word using the tf (term frequency), which weight each
word i in document j as:

tfi,j =
ni,j∑
k nk,j

(5)

where ni,j is the frequency of word i appear in document
j. We use tf instead of tf-idf indexing for the use of the
inverse document frequency (idf ) penalizes too much on terms
appearing many times in documents. In our work, we need
these frequent words (such as “bug”, “think”) guide our
machine learning classifier.

Linguistic patterns. We define several regular expressions
and reuse part of the 231 heuristics (Some of the heuristics can
also apply to our intention taxonomy, e.g. problem discovery
could be regard as bug description, solution proposal could
be regard as fix solution). Following are some examples to
identify intentions using linguistic patterns. Each example
consists of a linguistic pattern and a matching sentence from
bug reports.
• Example 1: Identify Code Category.

- \w+\s\w+\s\(.+\)
- “int ftp connection (FtpConnection *conn, const

Ftp550Handler *handlers, const FtpFile *file)”.
• Example 2: Identify Information Seeking Category.

- [how|what|left|Do|Does|Is].+\?
- “Does this happen every time?”

• Example 3: Identify Information Giving Category.

2http://www.ifi.uzh.ch/seal/people/panichella/
DECA Implemented Heuristics.pdf

- [someone] could [verb]
- “You could winding kdebase/apps/konsole back a

few revisions to see if the problem disappears”

E. Improved Automatic Summarization of Bug Reports

Different from the previous methods, we combine the inten-
tion feature to the summarization model. The score of sentence
s can be expressed by the following formula:

Fs = (1− α) ∗BRSs + α ∗ Pintention(s) (6)

BRSs is the score output by the original BRC model.
intention(s) is the intention category of sentence s and
Pintention(s) is the probability weight for this intention cat-
egory. In fact, we can add the intention feature to machine
learning model to learn the α. Following are the features we
used to train IBRS model:

1) structural features are related to the structure of the bug
report (e.g., the position of the sentences).

2) participant features are directly related to the conversa-
tion participants (e.g., whether the sentence is made by
the same person who filed the bug report).

3) length features related to the length of the sentence
4) lexical features are related to the occurrence of unique

words in the sentence that we could use to calculate the
sentence similarity with bug report title.

5) Intention features are related to the weight of intention
category of the sentences.

IV. EXPERIMENTS

A. Research Questions

In this paper, we are interested in the following research
questions and conduct two experiments to evaluate our ap-
proach:

RQ1: How does our intention classifier perform? For this
question, we construct the intention classifier and evaluate it
on Intention-BRC corpus.

RQ2: Does the sentence intention feature improve the
result of bug report summary model? To answer this
question, we add the intention feature to the original summary
model to construct IBRS and evaluate it in experiment II.

RQ3: What is the impact of missclassification to IBRS?
To answer this question, we use labelled intentions in corpus
rather than the predicted intentions of the intention classifier
to construct IBRS and evaluate it in experiment II.

B. Experiment I on Intention classifier

Algorithm 1 show the main algorithm of our intention
classification approach. We choose Random Forest (RF) [16]
classifier and implement leave-on-out method on RF to make
sure the sentence to classify not appear in the train set.

To evaluate the result of the intention classification, For each
category, we calculate the precision, recall and F-score. The
result of the classifier is shown in Table II.

Answer for RQ1: Through experimental verification, we can
correctly identify the intention of 59% of the sentences from



Algorithm 1 Intention Classification
Split the BRC corpus by sentences
for each sentence s ∈ BRC corpus do

for each linguistic patterns defined do
if the sentence i match the pattern then

return the intention the pattern represent
end if

end for
return the sentence predicted by the trained RF classi-
fication

end for

TABLE II
EVALUATION MEASURES OF EXPERIMENT I

CLASS TP FP FN Precision Recall F-score

Bug Description 182 186 192 0.49 0.47 0.48
Fix Solution 19 63 145 0.23 0.12 0.16

Opinion Expressed 27 39 212 0.41 0.11 0.17
Information Seeking 60 36 25 0.63 0.71 0.67
Information Giving 364 375 224 0.49 0.62 0.55

Meta/Code 679 251 65 0.73 0.92 0.81
Emotion Expressed 52 27 114 0.66 0.31 0.42

Overall Performance 1383 977 977 0.59 0.59 0.59

bug reports. Especially, our intention classification approach
performs better at several categories, for example, Meta/Code,
Information Seeking, Information Giving. This is because the
sentences with these intentions have more obvious structural
features. For example, code sentences’ keywords have a strong
distinction, such as “public”, “static”, etc. Information Seek-
ing sentences are often in the form of questions and usually
contain obvious keywords such as “what”, “how’’, “why”,
etc. The worse performing results are from Fix Solution and
Opinion Expressed. There are two main reasons. One reason is
that the count of these two category samples is much smaller
than the others (7% Fix solution sentences and 10% Opinion
Expressed sentences). The other reason is that the diversity of
sentence structure of these two categories. In addition, since
bug report repository is a relatively open platform, developers
do not write a standardized language when reporting (for
example, they usually use abbreviated form).

C. Experiment II on IBRS

This experiment combines the intention classifier and BRC
model. Similar to the method in experiment I, we also use a
leave-one-out procedure (i.e. leave one bug report out). The
process of the IBRS experiment is as following:

1) Leave one bug report out of the training set. For every
sentence in bug report corpus, we get their intention
category using the intention classifier trained without
sentences in this bug report.

2) We use the remained set in intention-BRC corpus to train
the IBRS model. We map the intention label to get the
sentence intention feature(P) from Table I and add the
intention features so that our new summary model can
take the category of intention into account.

TABLE III
EVALUATION MEASURES OF EXPERIMENT II

Approach Precision Recall F-score Pyramid Precision

BRC 0.57 0.35 0.43 0.66
BRC* 0.54 0.34 0.42 0.64
IBRS 0.59 0.37 0.45 0.69

IBRS* 0.65 0.41 0.50 0.72

Fig. 4. Pyramid Precision For IBRS and BRC*

3) For the left bug report, we map the sentences to get the
sentence intention feature. Then use the IBRS to get the
sentence score. We sort the sentences by their scores and
select top 20% (for that 20% is approximately equal to
the proportion of GSS in the corpus) as summary.

To evaluate the result, we calculate the precision, recall,
F-score and pyramid precision [1] for the IBRS model. In
order to compare with original models, we also reproduce the
BRC experiment proposed by Rastkar et al. To answer RQ3,
we also change the experiment to use the labelled intentions
rather than the predicted intentions at step 1). The result is
shown in Table III.

In our reproduced experiment, we get precision of 54% and
recall of 34% (We correct several errors in the corpus of BRC
annotations that may have caused a slight difference between
the reproduced results and the experimental results of Rastkar
et al.) as showed in second row in Table III marked as BRC*.
The original result of BRC approach is shown in first row.
The result of IBRS is shown is third row. IBRS* shown in
last row is the result of IBRS model trained using correctly
labelled intentions.

We also calculate pyramid precision for every single bug
report. Figure 4 shows the values of pyramid precision for
the BRC* and IBRS approach. The bug reports have been
sorted based on the pyramid precision of IBRS. The figure
shows that 22 of 36 reports (61% of total reports) get better
summary using IBRS.

Answer for RQ2: Our IBRS out-performs the BRC* ap-
proach on precision (5% improved), recall (3% improved), F-
score (3% improved) and pyramid precision (5% improved).



61% of bug reports get summaries with better pyramid pre-
cision using IBRS. The only different between the BRC*
and IBRS is that IBRS takes the sentence intention category
feature into account. It proves that the intention feature indeed
improves the work of automatic summarization for bug reports.

Answer for RQ3: From the result of IBRS*, it shows that
IBRS* outperforms the IBRS 6% on precision. IBRS* is
trained with labelled intention while IBRS trained with the
intention classifier of 59% precision. Although IBRS improves
the summarization for bug reports, the misclassification limits
the promotion of summarization to some extent. It proves
that intentions can enhance the summarization work better.
Improving the accuracy of the intention classifier is one of
our future work.

V. DISCUSSION

A. Threats to Validity

In this paper, we use Intention-BRC corpus that consists
of 36 bug reports. This may bring threats to the validity
of intention taxonomy for the corpus are not larger enough.
However, the 36 bug reports are from 4 different popular
project and can represent the characteristics of most of bug
reports. The size of the corpus also bring threats to the
evaluation of the experiment. We apply the leave-one-out
method to ensure that the assessed samples do not participate
in training and make maximum use of corpus. In addition,
we select 20% sentences as summary of a bug report may
bring threats to the quality of the summary content. The state-
of-the-art researches usually count the average proportion of
sentences in summary to total sentences as an indicator of the
number of sentences to extracted. 20% is the proportion of
GSS to total sentences in corpus, so it is a relatively reasonable
extraction ratio.

B. Future Work

There is a lot of room to improve on intention classifier. In
our future work, we are interested in improving the accuracy
of the intention classifier by adding more heuristics and trying
new ways to characterize bug report text (e.g. DBRNN-A [17]
instead of our bag-of-words (BOW)).

Moreover, the intentions of sentences can be used in many
other ways. For example, we can rearrange or even reconstruct
the summary text of the bug report based on the intention
of the sentence. There are many redundant sentences with
similar meaning in the summary text, we can further abstract
the sentences with same intention into a abstract text. [18].

VI. CONCLUSION

In this paper, We achieve significant improvement to the au-
tomatic summarization for bug report by introducing intention
feature to original approach. We assume that bug report text
usually contains different intentions. We introduce the inten-
tion taxonomy and propose IBRS (Intention-based Bug Report
Summarization). To evaluate the performance of the intention
classifier and IBRS model, we design two experiments. The
result shows the precision rate of intention classifier is 59%.

Based on the intention classifier, we implement IBRS model,
which outperforms the original BRC model with precision
of 59% (5% improved), recall of 37% (3% improved) , f-
score of 45% (3% improved)and pyramid precision of 69%
(5% improved). The results of experiments show that mining
intentions indeed improves the bug reports summarization.
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