
Timing Analysis for Microkernel-based Real-Time
Embedded System

Rongfei Xu, Li Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

Ning Ge
School of Software
Beihang University

Beijing, China
gening@buaa.edu.cn

Jing Jiang
School of Computer Science and Engineering

Beihang University
Beijing, China

Abstract—Currently, more and more application-specific op-
erating systems (ASOS) are applied in real-time embedded
systems. With the development of microkernel technique, the
ASOS is usually customized based on the microkernel using
the configurable policy, which has various alternatives. In the
design of the real-time embedded system (RTES) based on such
ASOS, evaluating its timing performance at the early design
stage is helpful to guide the designer towards choosing the most
appropriate policy. However, the existing works lack a uniform
approach to support analyzing the various alternatives of the
configured policy. To solve this problem, this paper presents a
general-purpose timing analysis approach for the ASOS-based
RTES. In the analysis, a timing analysis tree is proposed to
characterize the tasks and the ASOS in the RTES. Then, each
of the alternative policies in the ASOS is refined by the uniform
execution rules in the tree. Finally, the task’s response time under
the various alternative policies is analyzed by a traversal of the
timing analysis tree using a uniform way. In the case study, we
take the scheduling policy as an example to show the use of our
approach on a real-life robot controller system.

Index Terms—real-time embedded system, microkernel-based
RTOS, application-specific operating system, alternative policy,
timing analysis

I. INTRODUCTION

In real-time embedded systems (RTES), the real-time op-
erating system (RTOS) is usually used to manage the tasks
in the system, and directly impacts their timing performance
[1]. The RTESs in various domains may suffer from the
general-purpose operating system (OS) due to their specif-
ic characteristics. Currently, many works are aimed at the
application-specific operating systems (ASOSs) to enhance
the performance of a certain application [2], e.g., microkernel
architectures are representative ASOSs. Nowadays, more and
more practical RTOSs are designed based on a microkernel,
such as QNX, Integrity, and FreeRTOS. A microkernel [3] is a
minimalistic kernel that contains the near-minimum amount of
functions and features required to implement an OS, it adopts
the ”separation of mechanism and policy” principle. Such
principle makes it convenient to build arbitrary OS services
using the configurable policy. When customizing an ASOS,
every configurable policy has various alternatives, each of

This paper is supported by the National Natural Science Foundations of
China (No. 61672078 and No. 61732019)

DOI:10.18293/SEKE2018-095

which has a different influence on the response time of the
task. Hence, in this work, we are interested in the timing
analysis of the design of the RTES, which is implemented
on a customized ASOS based on the microkernel with various
alternatives for the configurable policy.

In the real-time systems, the timing analysis approaches
can be divided into two categories: dynamic and static. The
dynamic approaches, which include the simulation and model
checking, suffer from the efficiency problem when applied
to the case mentioned here. For the simulation, each alterna-
tive policy requires generating a policy-dedicated simulation
model, which is not feasible for a general-purpose. For the
model checking, it also needs to concern the policy-dedicated
rules throughout the task model [4]. Thus, we resort to the
static analysis approaches, which include three classes [5]:
structure-based, path-based, and the technique using implicit
path enumeration (IPET). Both the path-based approach [6]
and the IPET [7] are inadequate for our case due to they do
not consider the OS. As for the structure-based approach, it
can only support the specific function of the OS [8], [9], and
is inadequate to analyze the various alternative policies here
in a general purpose way.

In this paper, we propose a timing analysis approach specific
for the RTES based on a microkernel-based ASOS, which is
customized by the configurable policy that has various alter-
natives. In order to perform the timing analysis for the various
alternatives uniformly, we first propose a structure of timing
analysis tree, which is used to characterize the tasks and the
ASOS in the RTES. Then, we define a canonical form of the
execution rules to refine the various alternatives in the timing
analysis tree. Based on the execution rules, we finally propose
a general-purpose analysis technique by a traversal of such
timing analysis tree for the various alternatives. In the case
study, we take the scheduling policy as an example to show
the use of our approach on a real-life robot controller system.
Comparing with the state-of-the-art methods, the superiority
of our approach is that it simplifies the analysis by fixing the
tasks and the ASOS mechanisms, and only replacing the part
of the configurable policy.

This paper is organized as follows: Sect. II discusses
the related works; Sect. III introduces the background and
overview of our approach; Sect. IV proposes the timing



analysis approach; Sect. V evaluates our approach on a real-
life case; and Sect. VI gives some concluding remarks and
perspectives.

II. RELATED WORKS

Currently, the timing analysis of the RTES includes two
different classes of methods [5], that is the dynamic methods
and the static methods.

The dynamic methods rely on the simulation or the model
checking. For the simulation-based methods, the works [10],
[11] mapped the MARTE model to the SymTA/S model for
timing analysis based on formal scheduling analysis tech-
niques and symbolic simulation; the work [12] proposed a
simulation-based timing analysis depending on a more detailed
system model, which described the execution control flow at
the code level. When used in our case, the simulation-based
methods need a model transformation (or refinement) for each
alternative policy, which is inflexible. For the model checking,
the work [13] presented an analysis method for the worst-case
execution time (WCET) using UML-MARTE model checker,
which was aimed at detecting wrong software designs and
refined the correct ones with respect to WCET; the work [14]
mapped the activity diagram of UML into the priority time
Petri net (PTPN) to enhance the formal schedulability test of
given real-time tasks; The work [15] mapped the workload
model of real-time systems into a Petri Nets formalism to
generate all transactions for the timing analysis. However, as
for our case, the model checking method needs to specify
the policy-dedicated rules throughout the task model, which
is flexible or even impossible.

The static methods include three classes [5]: structure-based,
path-based, and techniques using implicit path enumeration
(IPET). In the path-based method [6], the execution time
is determined by analyzing the paths in the task. In IPET
[7], the control flow and the basic-block execution time are
combined into the constraints to analyze the execution time
of the task. Both the path-based method and the IPET don’t
consider the OS’s functions in the execution of the task. In the
structure-based method [16], the execution time is analyzed
in a bottom-up traversal of the syntax tree of the task. The
syntax tree takes the functions or subtasks of a task as the
nodes, so the interactions between the nodes can be used
to concern the OS’s functions, such as synchronization [17],
instruction cache locking [9], etc. However, the structure-based
method can’t support analyzing the various realizations of the
function in a general purpose way. For example, the work [17]
proposed three analysis methods for the three instruction cache
locking strategies, i.e. static locking, semi-dynamic locking
and dynamic locking.

III. BACKGROUND AND OVERVIEW

A real-time embedded application is usually designed as a
set of tasks managed by the RTOS [18], i.e. the ASOS here.
The microkernel-based ASOS includes three basic mechanism-
s that cover the essential functions of the microkernel, i.e.
the task scheduling, the inter-process communication (IPC),

and the resource access [3]. Each mechanism can be extended
using a set of alternative policies. The task consists of a
sequence of functional blocks with some system calls [19].
The system call is realized by the basic system calls in the
ASOS. The functional block is used to realize an independent
function and composes the execution sequence of a task [19].

Analysis
input

Task ASOS

Control flow
analysis

Analysis
steps

Timing information
Execution 
sequence

Configured policy

Behavior refinement

ASOS behavior
analysis

Timing
analysis

Fig. 1. Overview of our approach

The overview of our approach is shown in Fig. 1. The
RTES design includes the tasks and the ASOS. The response
time of each task is analyzed based on its control flow,
which is characterized by the execution sequence of the task.
Such control flow is influenced by the ASOS behavior, which
varies with different configured policy. Here, we propose to
refine the ASOS behavior at the analysis stage. Besides, the
timing information needs to be specified for the tasks and the
ASOS. Specifically, the worst-case execution time (WCET) is
pre-defined for each functional block in the tasks and each
basic system call in the ASOS. For each alternative policy,
the timing analysis of the RTES design is implemented by
combining the control flow and the ASOS behavior to analyze
the tasks’ response time.

IV. TIMING ANALYSIS APPROACH

In our approach, we define an extensible timing analysis
tree (ETAT) to characterize the task and the ASOS, where the
alternative policy can be replaced flexibly (i.e. extensible). If
a new policy is configured, the only part needs to be modified
in the ETAT is the policy node together with its child node.

A. Extensible Timing Analysis Tree (ETAT)

In this section, we first define the semantics for the extensi-
ble timing analysis tree (ETAT); then, we propose a canonical
form to define the execution semantics for the ETAT, which
is used to refine the ASOS behavior to perform the timing
analysis. Based on the proposed canonical form, we introduce
the execution rules for the three mechanisms in ASOS, i.e.
scheduling, IPC and resource access.

1) Definition of ETAT: In the RTES, each task is modeled as
an ETAT, which consists of a set of nodes and edges. The node
is defined as TreeNode = (time cost, component attribute),
where the time cost attribute records the time cost of the rep-
resented component, the component attribute attribute charac-
terizes the attributes of the represented component. There are
three types of nodes in the ETAT as follows:



• object node specifies the tasks and the functional blocks.
• operation node specifies the ASOS behaviors, including

mechanisms and configurable policies
• parameter node specifies the basic system calls and

execution rules for the ASOS behavior.
The various relationships between the nodes are defined as

different types of edges in the ETAT. Each type of edge can
only exist between a pair of certain type of nodes. The are
five types of edges, which are listed as follows:
• use: A task or a functional block uses the mechanism or

the policy in the ASOS; The execution rules and the basic
system calls are used by the mechanism or the policy.

• realize: A policy is realized based on the mechanism.
• consist: A task consists of a set of functional blocks.
• sequence: The successor of a functional block in the

execution sequence is its sub-sequence.
• operate: The mechanism or the policy operates on the

task or the functional block.
2) Definition of the Execution Semantics: The ASOS be-

havior is refined by the execution rules in the ETAT, which
define the operating actions and the timing actions for the
behavior. Specifically, the operating action expresses the op-
eration for this behavior; the timing action indicates there is a
time cost for the operation. A canonical form for the execution
rules is defined as

State
[Condition]/Action−−−−−−−−−−−−→ State′ (1)

where State represents the current state of a task, Condition
means the condition affecting the execution of the task, and
Action is the operating or the timing action for the task
triggered by the satisfaction of conditions.

The execution rules for scheduling mechanism are defined
as shown in Fig. 2.
• Four basic states of a task (running, ready, blocked, sus-

pended) are represented by St Run, St Ready, St Block
and St Suspend, respectively.

• The set of conditions consists of Cond Preempted,
Cond First Run, Cond Wait Event, Cond Event Arrive,
and Cond Time Out.

– Cond Preempted represents the condition that makes
a task be preempted.

– Cond First Run represents that the task is selected
to run first among the tasks in the ready queue.

– Cond Wait Event represents that the task is waiting
for an event.

– Cond Event Arrive represent that the waited event
arrives.

– Cond Time Out represents that the waiting is time-
out.

• The operating actions (i.e. running, readying, blocking
and suspending) are represented by Act Run, Act Ready,
Act Block and Act Suspend respectively, and the timing
action is defined as Act Timing.

The execution rules for resource access mechanism are
defined as shown in Fig. 3.

ST_RUN

ST_BLOCK

ST_SUSPEND

[(CON_PREEMPTED = FALSE)

∧ (CON_WAIT_EVENT = FALSE)]

/ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE) 

∧ (CON_TIME_OUT = FALSE)]

/ACT_BLOCK ∧ ACT_TIMING

[(CON_PREEMPTED = TRUE)]

/ACT_READY ∧ ACT_TIMING

[(COND_FIRST_RUN = TRUE)]

/ ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE) 

∧ (CON_EVENT_ARRIVE = TRUE)]

/ACT_RUN ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE) 

∧ (CON_TIME_OUT = TRUE)]

/ACT_SUSPEND ∧ ACT_TIMING

[(CON_WAIT_EVENT = TRUE) 

∧ (CON_EVENT_ARRIVE = TRUE)] 

/ACT_READY ∧ ACT_TIMING

ST_READY

Fig. 2. Execution rules for scheduling

• Two basic states of St Run and St Block are involved.
• The conditions of Cond Request Resource and

Cond Req Resource Available are used.
– Cond Request Resource represents that the task re-

quests a resource during its execution.
– Cond Req Resource Available represents that the

requested resource is available right now.
• The operating actions include Act Run, Act Block, Ac-

t Check Resource , Act Get Resource and Act Timing.
Among them, Act Check Resource is to check whether
the resource is available, Act Get Resource is to obtain
the available resource.

ST_RUN
ST_BLOCK

[(CON_REQUEST_RESOURCE = TRUE)]

/ACT_RUN ∧ ACT_TIMING 

∧ ACT_CHECK_RESOURCE 

[(CON_REQ_RESOURCE_AVAILABLE = TRUE)]

/ACT_RUN ∧ ACT_TIMING 

∧ ACT_GET_RESOURCE 

[(CON_REQ_RESOURCE_AVAILABLE = FALSE)]

/ACT_BLOCK ∧ ACT_TIMING 

[(CON_REQ_RESOURCE_AVAILABLE = TRUE)]

/ACT_RUN ∧ ACT_TIMING ∧ ACT_GET_RESOURCE 

Fig. 3. Execution rules for resource access

The execution rules for IPC mechanism are defined as
shown in Fig. 4.
• Two basic states of St Run and St Block are involved.
• The conditions of Cond Request Communication and

Cond Req Connect Setup are used.
– Cond Request Communication represents that the

task requests a communication with other task during
its execution.

– Cond Req Connect Setup represents that the con-
nection for the requested communication is set up.

• The operating actions include Act Run, Act Block, Ac-
t Connect Setup, Act Communicate and Act Timing. A-
mong them, Act Connect Setup is to set up the con-
nection, Act Communicate is to communicate with other
task.

B. Timing Analysis for ETAT

The response time of a task consists of the scheduling
time, the interaction time (with other functional blocks), and
the WCET of the functional blocks in this task. Both the



ST_RUN
ST_BLOCK

[(CON_REQUEST_COMMUNICATION = TRUE)]

/ACT_RUN ∧ ACT_TIMING 

∧ ACT_CONNECT_SETUP 

[(CON_REQ_CONNECT_SETUP = TRUE)]

/ACT_RUN ∧ ACT_TIMING 

∧ ACT_COMMUNICATE 

[(CON_REQ_CONNECT_SETUP = FALSE)]/ACT_BLOCK ∧ ACT_TIMING 

[(CON_REQ_CONNECT_SETUP = TRUE)]/ACT_RUN ∧ ACT_TIMING ∧ ACT_COMMUNICATE

Fig. 4. Execution rules for IPC

scheduling time and the interaction time rely on the ASOS
behavior, and consist of the WCET of the basic system calls.
Such response time is analyzed by a traversal of the ETAT of
this task. During the traversal, the time cost of the root node
(i.e. the task node) indicates the current execution time of the
task, and is updated once the time cost of the scheduling node
or that of each functional block node is worked out. The time
spent at each object node of functional block is analyzed based
on its operation child-node. The time spent at each operation
node (include scheduling and interaction) is analyzed based
on its parameter child-node. When the ETAT is completely
traversed, the time cost of the root node indicates the response
time of the task.

Fig. 5. Timing analysis process

Given an ETAT T, the timing analysis process is shown in
Fig. 5. First, visit the root node of T to check whether T is
completely traversed (L. 1). If not, visit the scheduling child-
node of the root node to check whether the task is executable

(L. 5). Then, analyze the time cost of the scheduling child-
node, and update the time cost of the root node (L. 6,7). If the
task is executable, we visit the functional block child-node (say
fb) of the root node, then visit the functional block child-node
(say fb’) of fb, then visit the functional block child-node of fb’,
..., until all functional block nodes are visited (L. 20). For each
functional block node, we check its execution condition and
analyze its time cost based on the operation node (if exists) and
the parameter node (the analysis procedure will be introduced
later), then update the time cost of the root node (L. 14-16).
When all the functional block nodes are visited, the task is
set as completely traversed, the time cost on the root node
indicates the response time of the task.

Next, we specifically introduce the scheduling node and the
functional block node mentioned above. The time cost of the
scheduling node is the time spent at the scheduling operation.
The time cost of the functional block node includes the time
spent at the object itself and at the interaction operation (if
exists). Therefore, we focus on the two types of nodes, i.e.
the object node and the operation node. According to the
definition of ETAT, the basic structures of object node and
operation node are summarized in Fig. 6. For the object node,
it has a child node of the object type with a consist (for
task) or sequence (for functional block) edge between them.
If the object node has a scheduling operation or an interaction
operation, an operation node is generated as its another child
node with the use edge. For the operation node, it has a child
node of parameter with the use edge. If the operation node
has an extended operation (for policy), the realize edge is used
to link them. If the operation node has an other operand, a
child node of the object type is generated for the operand with
the operate edge.

object node operation node

operation node object node

consist\sequenceuse

operation node object node
parameter node

realize
use

operate

Fig. 6. Basic structure of object node and operation node

The timing analysis for the object node and the operation
node is presented as follows. As the object node of the task is
the root node to record the time cost, we focus on the object
node of the functional block here. For ease of illustration, we
call such a child node that has a use edge with its father node
as the use child-node in brief (the same for other edges).
• C1: For the object node of functional block, its time cost

includes the time spent at itself and at its use child-node
(if exists). The time spent at the functional block itself is
specified by the WCET value in its component attribute.
The use child-node is actually the operation node, whose
time cost is analyzed by the way in C2.

• C2: For the operation node, its time cost includes the time
spent at its use child-node, realize child-node (if exist)
and operate child-node (if exist). The time spent at the
use child-node is the time cost of the system call, which is



analyzed based on the execution rules (the timing actions
particularly) and the WCET of basic system calls. If
this operation node has a realize child-node, the realize
child-node is actually an operation node, whose time
cost is analyzed by the same way. If this operation node
has other operands except for its father node (as the
operation node is used by its father node, the father node
is one operand of this operation), the operate child-node
is actually an object node, whose time cost is analyzed
by the same way as C1.

V. CASE STUDY

A. Experimental setup

In this section, we will illustrate the application of our
approach to a real-life robot controller system [20]. The robot
controller system (RCS), which consists of three tasks, is
used to keep the robot operating normally. Among the tasks,
the balance task is to keep the balance of the robot by
calculating the input from the gyroscope and the inclinometer;
the navigation task is to avoid obstacles during the process
of going to the destination; the remote task is to receive a
remote command via the infrared. The services of the infrared
sensor, the gyroscope and the inclinometer are realized by
the interrupt service routines (ISR), which are correspond-
ing to infrared isr, gyro isr and inclino isr respectively. To
implement such RCS, we use the µC/OS-II kernel [21] to
configure the ASOS. The µC/OS-II kernel implements a static
priority scheduling policy, and has an optional policy of round
robin scheduling. In this case study, we analyze the timing
performance of the three tasks in the RCS to assess these two
scheduling policies.

For the ASOS, the WCET of the basic system calls in
the µC/OS-II kernel given in [22] is used in this case study.
About the two scheduling policies in the ASOS, the time slice
of the round robin (RR) scheduling is set as 10 thousands
CPU cycles, the priorities (P) for the three tasks in the
static priority (SP) scheduling are set as: P(balance) = 4,
P(navigation) = 6, P(remote) = 5. For the tasks, their timing
requirements are represented by the deadline (D), and set as (in
one thousand CPU cycles): D(balance) = 200, D(navigation) =
40, D(remote) = 4000. Within the tasks, the functional blocks
(FBs) together with their WCET are set as shown in Table. I.

B. Experimental process and results

First, we define the execution rules for the two scheduling
policies. As shown in Fig. 7, these execution rules refine
the preempted condition in the scheduling mechanism (as
shown in Fig. 2). Specifically, for the SP scheduling, an
arbitrary task T is preempted when there exists a ready
task with a higher priority than T; for the RR scheduling,
the task T is preempted when the time slice for T is used
up. It should be noted that the CON PREEMPTED in the
execution rules of scheduling mechanism (as shown in Fig. 2)
is set by the actions of ACT SET PREEMPTED TRUE or
ACT SET PREEMPTED FALSE in the execution rules of the
two scheduling policies.

TABLE I
WCET SETTINGS FOR FUNCTIONAL BLOCKS (IN ONE THOUSAND CPU

CYCLE)

Task Function block WCET
balance Initialization 5

GetInfoFromGyro 10
GetInfoFromInclino 10
Calculation 30
KeepBalance 50

navigation Initialization 1
SendDetector 3
FindObstacle 8
AvoidObstacle 5

remote Initialization 10
GetInfoFromInfrared 800
ExecuteCommand 3000

ro
u

n
d

-r
o

b
in

 

s
c
h

e
d

u
lin

g

s
ta

ti
c
-p

ri
o
ri
ty

s
c
h

e
d

u
lin

g

Fig. 7. Execution rules for two alternative scheduling policies

Then, we construct the timing analysis trees for the three
tasks as shown in Fig. 8, where the object nodes, the operate
nodes and the parameter nodes are represented by the colors
of green, orange and blue respectively in each timing analysis
tree. As space is limited, the attributes of each node in the
trees are not presented.

After the timing analysis, the response time of each task
under the two scheduling policies is presented in Table. II.
As seen, the static priority scheduling can meet the deadline
of the tasks, while the round robin scheduling can not. This
case study takes the two scheduling policies as an example
to illustrate the feasibility of our approach. Without loss of
generality, any other scheduling policies can also be analyzed
based on the timing analysis trees in Fig. 8 by defining their
execution rules.

TABLE II
TIMING ANALYSIS RESULTS (IN MILLISECONDS)

Task SP scheduling RR scheduling
balance 158 304

navigation 3845 5091
remote 36 47

VI. CONCLUSION AND PERSPECTIVE

In the domain of the real-time embedded system, more
and more application-specific operating systems (ASOS) are
customized based on the microkernel using the configurable
policy. The existing methods usually need an individual timing
analysis for each alternative policy. To simplify the analysis,
we propose a general-purpose timing analysis approach for
such ASOS-based RTES design. A real-life robot controller
system is used as a case study to show the feasibility of our



Timing analysis trees

b
a

la
n

c
e

n
a

v
ig

a
ti
o

n
re

m
o

te

Fig. 8. Timing analysis tree for the tasks

approach. Currently, our approach only supports the config-
urable policies of the three basic aspects, i.e. scheduling, inter-
process communication, and resource access. With the RTES
is becoming more and more complex, the more functions
are needed by the ASOS, such as network management, file
system, etc. In the near future, we will extend our approach
to support more configurations in the ASOS.

REFERENCES

[1] J. Schneider, “Why you cant analyze rtoss without considering appli-
cations and vice versa,” 2nd WS Worst-Case Execution-Time Analysis,
2002.

[2] Y. Sun, Y.-F. Ai, and G.-S. Yang, “An optimal scheduling algorithm for
vehicular application specific operating systems,” in Computer Science
and Software Engineering, 2008 International Conference on, vol. 2.
IEEE, 2008, pp. 184–189.

[3] J. Liedtke, “Towards real microkernels,” Communications of the ACM,
vol. 39, no. 9, pp. 70–77, 1996.

[4] E. M. Clarke, W. Klieber, M. Novek, and P. Zuliani, Model Checking
and the State Explosion Problem. Springer Berlin Heidelberg, 2011.

[5] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-
case execution-time problemoverview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, p. 36, 2008.

[6] F. Stappert and P. Altenbernd, “Complete worst-case execution time
analysis of straight-line hard real-time programs,” Journal of Systems
Architecture, vol. 46, no. 4, pp. 339–355, 2000.

[7] A. Ermedahl, “A modular tool architecture for worst-case execution time
analysis,” Ph.D. dissertation, Acta Universitatis Upsaliensis, 2003.

[8] G. Aupy, C. Brasseur, and L. Marchal, “Dynamic memory-aware task-
tree scheduling,” in Parallel and Distributed Processing Symposium
(IPDPS), 2017 IEEE International. IEEE, 2017, pp. 758–767.

[9] T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for multi-task
real-time embedded systems,” Real-Time Systems, vol. 48, no. 2, pp.
166–197, 2012.

[10] M. Hagner and U. Goltz, “Integration of scheduling analysis into
uml based development processes through model transformation,” in
Computer Science and Information Technology (IMCSIT), Proceedings
of the 2010 International Multiconference on. IEEE, 2010, pp. 797–
804.

[11] M. Hagner and M. Huhn, “Tool support for a scheduling analysis view,”
in MARTE workshop at DATE, vol. 8, 2008, pp. 41–46.

[12] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, “Simulation-based
timing analysis of complex real-time systems,” in Embedded and Real-
Time Computing Systems and Applications, 2009. RTCSA’09. 15th IEEE
International Conference on. IEEE, 2009, pp. 321–328.

[13] N. Ge, M. Pantel, and B. Berthomieu, “A flexible wcet analysis method
for safety-critical real-time system using uml-marte model checker,”
2016.

[14] Y. H. Kacem, A. Mahfoudhi, A. Magdich, C. Mraidha, and W. Karamti,
“Using mde and priority time petri nets for the schedulability analysis of
embedded systems modeled by uml activity diagrams,” in Engineering
of Computer Based Systems (ECBS), 2012 IEEE 19th International
Conference and Workshops on. IEEE, 2012, pp. 316–323.

[15] M. Naija, S. B. Ahmed, and J.-M. Bruel, “New schedulability analysis
for real-time systems based on mde and petri nets model at early design
stages,” in Software Technologies (ICSOFT), 2015 10th International
Joint Conference on, vol. 1. IEEE, 2015, pp. 1–9.

[16] A. Colin and I. Puaut, “Worst case execution time analysis for a
processor with branch prediction,” Real-Time Systems, vol. 18, no. 2-
3, pp. 249–274, 2000.

[17] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, vol. 3. IEEE, 1998, pp. 1931–
1937.

[18] Y. Harada, K. Abe, M. Yoo, and T. Yokoyama, “Aspect-oriented
customization of the scheduling algorithms and the resource ac-
cess protocols of a real-time operating system family,” in Smart C-
ity/SocialCom/SustainCom (SmartCity), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 87–94.

[19] F. Verdier, B. Miramond, M. Maillard, E. Huck, and T. Lefebvre, “Using
high-level rtos models for hw/sw embedded architecture exploration:
case study on mobile robotic vision,” EURASIP Journal on Embedded
Systems, vol. 2008, no. 1, p. 349465, 2008.

[20] T. Braunl, “Eyebot: a family of autonomous mobile robots,” in Neural
Information Processing, 1999. Proceedings. ICONIP’99. 6th Interna-
tional Conference on, vol. 2. IEEE, 1999, pp. 645–649.

[21] Micrium, “µc/os-ii real-time kernel,” http-
s://www.micrium.com/products/, 2017.

[22] M. Lv, N. Guan, Y. Zhang, R. Chen, Q. Deng, G. Yu, and W. Yi, “Wcet
analysis of the µc/os-ii real-time kernel,” in Computational Science and
Engineering, 2009. CSE’09. International Conference on, vol. 2. IEEE,
2009, pp. 270–276.


