
A Self-Adaptation Framework of Microservice

Systems

Shuai Zhang, Xinjun Mao, Peini Liu and Fu Hou

College of Computer

National University of Defense Technology

Hunan, China 410073

{zhangshuai16a, xjmao, liupeini16, houfu}@nudt.edu.cn

Abstract—Microservice has been more and more applied to build

software systems in industry field and research in academic field.

And software systems are increasingly expected to dynamically

self-adapt to accommodate resource variability, changing user

needs, and system faults. Compared with traditional software

systems, microservice systems have some characteristics, such as

the highly self-contained components and the dynamic running

instance, which pose challenges to traditional self-adaptation

methods. Therefore, it needs to propose corresponding

techniques and methods to cope with the characteristics of

microservice systems. This paper analyzes the special self-

adaptive requirements of microservice systems, proposes a

microservice reference model, which describes basic elements

and their relationships of microservice systems. Then we present

a microservice system self-adaptation framework MSSAF to

support the self-adaptation of microservice systems. We illustrate

the feasibility and effectiveness of our approach in the context of

a microservice system case.

Keywords-self-adaptation; microservice; reference model;

framework

I. INTRODUCTION

Microservices recently demonstrated to be an effective
architectural paradigm to cope with software complexity and
scalability [1]. Although microservice has received more and
more pay attention, there is no generally accepted definition for
microservice. A widely-recognized concept of microservice is
proposed by Martin Fowler and James Lewis [2]. The success
of the paradigm has been demonstrated in some domains,
including mission-critical systems [3]. However, while
microservice systems run in open and dynamic environment,
there are still many uncertainties, e.g. changing user
requirements and unpredictable system errors. To deal with the
uncertainties, microservice systems need dynamically self-
adapt to state changes of external environment and itself.

Microservice systems have some characteristics, e.g.
platform-dependent and one microservice may have multiple
instances. Since traditional software systems don’t have these
characteristics, the traditional self-adaptation methods have no
specific solutions.

To realize the self-adaptation of microservice systems more
efficient, this paper proposes a microservice reference model

and a microservice system self-adaptation framework MSSAF.
The microservice reference model describes the basic elements
and their relationships of microservice systems. Microservice
system self-adaptation framework MSSAF integrates some
necessary tools to provide support for the self-adaptation of
microservice systems. Based on these methods and tools, this
paper has achieved better cost-effectiveness in self-adaptation
of microservice systems.

The rest of this paper is structured as follows. Section II
discusses some related works. Section III describes a
microservice reference model. Section IV gives a detailed
description of microservice system self-adaptation framework
MSSAF. In section V, our works are illustrated by an
intelligence system which is a microservice system. Finally, we
summary this paper and discuss further works.

II. RELATED WORK

Nowadays microservice has become more and more
popular in software engineering field. There are some
summaries of existing studies on microservice find that most of
the studies focused on microservice application, method and
architecture [4]. Those studies mainly focus on maintainability,
extensibility, complexity, flexibility and so on, while there are
few studies related to the self-adaptivity of microservice.
Nicola Dragoni et al. describe the origin, current and future of
microservice in detail [1]. Franco Callegati et al. describe a
service-oriented architecture that exploits the microservices
orchestration paradigm to enable the creation of new services
[5]. Massimo Villari et al. present an Orchestration Broker for
each involved Fog computing node[6]. Despite these works
consider the characteristics of microservice, there is no self-
adaptation in their works. Sara Hassan and Rami Bahsoon refer
to microservice and self-adaptation in their work [7]. But they
consider the self-adaptation microservice from a design
viewpoint without concrete implementation.

The aim of self-adaptation is to let the system monitor itself
and based on its goals reconfigure or adjust itself to satisfy the
changing conditions, or if necessary degrade gracefully [8]. In
recent years, many researchers have proposed many methods to
study the self-adaptation from different aspects. Shang-Wen
Cheng and David Garlan propose a self-adaptation framework
Rainbow which is based on software architecture [9]. Denaro

DOI reference number: 10.18293/SEKE2018-091

Giovanni et al. proposes an approach to design self-adaptive
service-oriented architectures [10]. Marcello Thiry and Roger
Anderson Schmidt present relevant approaches of self-adaptive
systems driven by runtime models [11]. Besides, Luca Florio
and Nitto focus on how to add autonomic capabilities to
microservices without changing the way they are implemented
but exploiting their containers [12]. The paper considers that
microservice is a kind of distributed component, but they
mainly discuss about autonomic capabilities which are different
from self-adaptive capabilities.

In the above researches, there are few works related to self-
adaptation in the study of microservice. To cope with the
characteristics of microservice, this paper analyzes the
characteristics and proposes corresponding solution to realize
the self-adaptation of microservice systems.

III. MICROSERVICE REFERENCE MODEL

Microservice manages growing complexity by functionally
decomposing large systems into a set of independent services.
Despite microservice is an architectural pattern emerging out of
Service-Oriented Architecture (SOA), it shows some important
distinctive characteristics that are different from SOA:

Platform-dependent: There may be a lot of microservices
in microservice software systems, communications are
complexity and configurations are rather difficult and can also
be prone to error. To make up these limitation, corresponding
platforms must be developed to manage MSS.

Multi-instance: In microservice systems, instance is a
running entity of a microservice, and a microservice can have
multiple instances. At runtime, there are a lot of microservice
instances that interact to realize the application logic of
microservice systems.

The characteristics mentioned above propose some special
needs for the self-adaptation of microservice systems. Since
traditional self-adaptation methods don’t have special solutions
for these characteristics, the best effect cannot be achieved
when realizing the self-adaptation of microservice systems.
Therefore, it is necessary to propose some methods to deal with
the characteristics. Based on descriptions of microservice
architecture in some microservice literatures [13][14][15], we
propose a microservice reference model (show in Fig. 1). The
model consists of three layers, including system layer, service
layer and instance layer.

System layer consists of three parts, microservice system
realize the business logic, management platform provides
management capabilities for microservice system, and
limitations impose constraints on microservice system. Service
layer consists of some microservices and corresponding
protocols, microservice communicates with each other through
protocols to compose microservice systems. Instance layer
includes containers and microservice instances. Microservice
instances run in containers. A set of microservice instances
compose a microservice and they communicate with other
microservice instances to realize concrete functions. The reason
for such layering is as follow. System layer realizes business
logic, mainly focuses on high-level goals and doesn’t involve
concrete implementation. Service layer focuses on how

microservices cooperate to provide services for the system
layer. Instance layer mainly related to the specific
implementation. These three layers provide different
observation dimension for microservice systems, and clearly
express the characteristics which have mentioned earlier.

Fig. 1 Microservice reference model

IV. MSSAF: SELF-ADAPTATION MICROSERVICE SYSTEM

FRAMEWORK

The customizable self-adaptation framework has many
advantages. For example, it reduces the cost of development by
providing a substantial base of reusable infrastructure greatly.
And it allows engineers to tailor the framework to different
systems with relatively small increments of effort by providing
separate customization methods.

To make microservice systems self-adaptation, we refer to
the MAPE loop proposed by IBM [16]. For each part of the
MAPE loop, we provide a corresponding tool, meanwhile we
also provide some other necessary tools. Based on the
microservice reference model, this paper proposes a
Microservice System Self-Adaptation Framework (MSSAF)
(as shown in Fig. 2). To automate system self-adaptation, we
provide a self-adaptation strategy description language to
represent self-adaptation scenario.

MSSAF consists of three parts, including translation tools,
self-adaptation engine and microservice systems. Translation
tools is used to translate the self-adaptation strategies, the
results of translation are used to support self-adaptation engine
to complete the self-adaptation logic. Self-adaptation engine
communicates with other two parts to implement self-
adaptation. Management platform and microservice systems
correspond to the system layer of microservice reference model.

Fig. 2 Self-adaptation microservice system framework

The reason why MSSAF has no the service layer and
instance layer of microservice reference model is that we
mainly focus on the self-adaptation process of microservice
systems in MSSAF. The actual adjustment objects are the
microservice and microservice instance which are the parts of
microservice systems.

Self-adaptation engine consists of several components that
provide the monitoring, detection, decision, and action
capabilities of self-adaptation. Event Monitor obtains the
monitoring data of microservice systems from the management
platform. Constraint Analyzer uses informations which come
from Event Monitor to judge whether there is a constraint
violation. There are some alternative constraints, and the
thresholds are specified in self-adaptation strategies by users.
Rule Manager selects corresponding rules after triggering by
Constraint Analyzer. A self-adaptation rule consists of two
parts, including condition and action. The condition includes a
signal which is sent by Constraint Analyzer for indicating if the
rule is triggered, and it may include some essential constraints
which are specified at design time. The actions of self-
adaptation rules are the abstract operations of different objects.
Action Executer performs the actual operations for
microservice systems according to the actions of self-
adaptation rules which are managed by Rule Manager.

Translation tools include an Interpreter and a Loader.
Strategies cannot be directly executed and needs to be
interpreted before running. Since we provide some common
self-adaptation strategies, it needs a tool for static translation.
And when there is a need for adding new self-adaptation
strategies at runtime, it needs to provide a tool for dynamic
loading. Our translation tools can be customized for different
program languages and platforms.

V. ILLUSTRATION OF MSSAF WITH INTELLIGENCE SYSTEM

Since there are few related studies as similar as our works,
it cannot compare our works with others. This paper adopts an

intelligence system to illustrate the feasibility and availability
of MSSAF.

The intelligence system is used to collect and manage
intelligence from different sources and provides the functions
of search, analysis, distribution for these intelligences. Besides,
the intelligence system also provides a frontend service and a
user service for access and management. When there are many
users accessing the system in a short time, it will need expand
to reduce CPU load. Correspondingly, when user access is too
small, it will need shrink to be cost saving. To meet these
requirements, we use MSSAF to design and realize the self-
adaptation of the intelligence system.

To illustrate the feasibility of intelligence system self-
adaptation by using MSSAF, we use the CPU usage rate of
microservice instance as the quality attribute that self-
adaptation concerns. We monitor the CPU usage of a
microservice instance for a period of time, and take the average
as CPU usage rate of this instance, namely "MSICPUUsage".

Self-adaptation scenario: If there is a swift growth of
MSICPUUsage in a short period of time, and there is a
threshold, such as 40%. Once the MSICPUUsage exceeds this
threshold, the self-adaptation rule is triggered. When the
constraints in the self-adaptation rule are satisfied, this self-
adaptation rule will be executed. Finally, the specific
modification is mapped to the platform by a series of self-
adaptation actions.

Experiment: The experimental object is analysis
microservice (ams), the experimental setup is that the initial
instance number is 2, the refresh interval is 120s, the CPU
usage rate threshold is set to 40%, and the number of
microservice instance is limited to no more than 5. The
translation of strategy StrategyMSICPUOverload is shown in
Fig. 3.

Fig. 3 The translation of self-adaptation strategy StrategyMSICPUOverload

In the experiment, we use the Locust performance testing
tool to simulate the stress test, it sets as 500 users access 1000
times per second, and it stops after 10 minutes. Fig. 4 indicates
the changes of the number and CPU usage rate of microservice
instance during the experimental process.

Fig. 4 The diagram of experiment process

As shown in Fig. 4, analysis microservice have two
instances amsi1 and amsi2 at beginning. There are large
numbers of user accesses in 2 minutes, the CPU usage rate of
microservice instance increases rapidly, then the overloading
strategy is triggered. The increased amsi3 handles large
numbers of accesses in 4 minutes, CPU usage rate is too high,
and the overloading strategy will be triggered. The increased
amsi4 begins to handle user requests in 6 minutes, the first 3
instances’ CPU usage rates still exceed the threshold 40%, and
the overloading strategy continues to be triggered. The instance
amsi5 was added in 8 minutes, while other instances’ CPU
usage rates exceed the threshold, the strategy won’t be
triggered now because the self-adaptation rule set the number
of microservice instance to be no more than 5. The stress test
has stopped after 10 minutes, the CPU usage rates of the five
instances tend to get closer because of the load balancing.

Through the experiment above, we illustrate that MSSAF
can provide some preliminary self-adaptation capabilities for
microservice systems. From the experimental results, the self-
adaptation implementation of MSSAF can utilize the
characteristics of microservice systems very well and conduct
elastic expansion on more fine-grained. In short, MSSAF has
the potential to satisfy the self-adaptation and customization
requirements of microservice systems.

VI. CONCLUSION

To deal with the problems that microservice systems need
to be self-adaptation and traditional self-adaptation methods
cannot cope the characteristics of microservice systems, we
analyze the characteristics of microservice systems and propose
a microservice reference model. To implement the self-
adaptation of microservice systems and provide reuse
infrastructures, we propose a self-adaptation microservice
system framework MSSAF, which can implement the self-
adaptation of microservice systems. Through an example of an
intelligence system, we illustrate that MSSAF can provide self-
adaptation capabilities for microservice systems.

In future work, we would like to improve our approach by
enhancing these tools, such as adding strategy conflict
detection for Constraint Analyzer, adding strategy selection

algorithm for Rule Manager, etc. These may be our future
research directions. In addition, each component of self-
adaptation engine can be published as a microservice, then it
will be possible to realize the self-adaptation of self-adaptation
logic via multiple MAPE loops to expand the self-adaptation
capabilities.

ACKNOWLEDGMENT

This research is supported by research grants from Natural
Science Foundation of China under Grant No. 61532004 and
61379051.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomorrow,” Present and Ulterior Software Engineering, Springer, Cham,
2017.

[2] J. Lewis and M. Fowler, Microservices, http://martinfowler.com/articles
/microservices.html.

[3] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.
Safina, “Microservices: How To Make Your Application Scale,” arXiv
preprint arXiv:1702.07149, 2017.

[4] C. Pahl, and P. Jamshidi, “Microservices: A Systematic Mapping
Study,” in International Conference on Cloud Computing & Services
Science, 2016, pp. 137-146.

[5] F. Callegati, G. Delnevo, A. Melis, S. Mirri, M. Prandini, and P.
Salomoni, “I want to ride my bicycle: A microservice-based use case for
a MaaS architecture,” in IEEE Symposium on Computers and
Communications, 2017, pp. 18-22.

[6] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M. Fazio,
“Deployment orchestration of microservices with geographical
constraints for Edge computing,” in IEEE Symposium on Computers and
Communications, 2017, pp. 633-638.

[7] S. Hassan, and R. Bahsoon, “Microservices and Their Design Trade-
Offs: A Self-Adaptive Roadmap,” in IEEE International Conference on
Services Computing, 2016, pp. 813-818.

[8] D. Weyns, “Software Engineering of Self-Adaptive Systems: An
Organised Tour and Future Challenges,” Handbook of Software
Engineering, Springer, 2017.

[9] S.-W. Cheng, “Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation,” Dissertations & Theses - Gradworks, 2008.

[10] G. Denaro, D. Tosi, and D. Schilling, “Towards self-adaptive service-
oriented architectures,” in Workshop on Testing, 2006, pp. 10-16.

[11] M. Thiry, and R. A. Schmidt, “Self-adaptive Systems Driven by
Runtime Models,” in The International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2017, pp. 248-253.

[12] L. Florio, and E. D. Nitto, “Gru: An Approach to Introduce
Decentralized Autonomic Behavior in Microservices Architectures,” in
IEEE International Conference on Autonomic Computing, 2016, pp.
357-362.

[13] D. Namiot, and M. Sneps-Sneppe, “On Micro-services Architecture,”
International Journal of Open Information Technologies, vol. 2, no. 9,
pp. 24-27, 2015.

[14] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 113-116,
2015.

[15] M. Mazzara, K. Khanda, R. Mustafin, V. Rivera, L. Safina, and A.
Sillitti, “Microservices Science and Engineering,” in International
Conference in Software Engineering for Defence Applications, Springer,
Cham, 2016, pp. 11-20.

[16] G. Agarwal, R. Shah, J. Walrand, H. A. Alzoubi, S. S. Lee, M.
Rabinovich, O. Spatscheck, V. D. M. Jacobus, I. Avramopoulos, and M.
Suchara, “An Architectural Blueprint for Autonomic Computing,” IBM
White Paper, 2006, pp. 31.

