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Abstract—To support robust task execution in open
environment, autonomous robots (AR) should include reactive
capabilities to cope with the dynamics and uncertainties from
real-world environment. The uncertainties pose great challenges
for robots being sensitive to the environmental changes and
flexible to adjust self-behaviors. To this end, this paper aims
to improve the sensing and acting capabilities of autonomous
robots by novel behavioral theories, observation modes and
software architectures. Specifically, this paper has three main
contribution: (1) presents an accompanying model that specifies
a novel accompanying pattern for interacting robot behaviors;
(2) proposes four types of accompanying observation modes
that coordinate multiple robot sensing behaviors; (3) proposes
a concrete multi-agent software architecture that implements
aforementioned accompanying model and accompanying
observation modes. To demonstrate the applicability and
validity of our accompanying modes and MAS-based software
architecture, this paper conducts a case study to implement a
domestic service example, which requires the robot to run in
a highly dynamic environment and can adapt its behaviors to
unexpected situations.
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I. INTRODUCTION

Nowadays, more robots are increasingly applied in open
environments (e.g., family, hospital, battlefield) and expected
to autonomously behave without human beings intervention
to achieve assigned tasks [1], [2]. Typically, we call them
as autonomous robots (AR), which is a complex software-
driven system. The software (Autonomous robot software,
ARS) expects to (1) manage and control physical devices
(e.g., arm, motor, leg) of robots; (2) make decisions on robots
behaviors and drive robots to act; (3) perform computations
on robot sensing data.

In presence of dynamics and uncertainties, the autonomous
robot software is challenged with the following issues: (1)
no explicit behavior theories that specify interacting processes
between robot sensing and acting behaviors; (2) limited ob-
servation modes that effectively coordinate various robotic
sensing behaviors; (3) lack of suitable software architectures
that suitable to implement the novel behavior theories.
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In the field of the behavior of autonomous robots, there are
many researches focus on behavior-based model for robot [3]–
[5]. And in recent year, [6] presented a behavior-based hier-
archical architecture and defined fourteen robot behaviors to
assist telepresence control a humanoid robot. [7] reproduced
the kind of individual recognition and attention that a human
can provide in robot based on observed behavior. However, the
relationship between robotic behaviors and behavior theories
are not hot research directions. Sony company had simply
classified and described robotic behaviors in their behavior
module [8], but we think their behavior classification cannot be
used for AR’s behaviors because their method didn’t meet the
characteristics of AR. And for software architectures of ARS,
there are several researches has combined ARS with MAS
(multi-agent system). VOMAS (Virtual Operator Multi-Agent
System) [9] is developed to support spontaneous generation
of a task without the need to re-plan. COROS [10] is a
multi-agent software framework for cooperative robots in
which each of the agents represents a robot machine or a
monitoring/control workstation.

This paper aims to improve the sensing and acting capa-
bilities of autonomous robots by novel behavioral theories,
observation modes and software architectures. Specifically,
this paper has three main contribution: (1) presents an accom-
panying model that specifies a novel accompanying pattern
for interacting robot behaviors. (2) proposes four types of
accompanying observation modes that coordinate multiple
robot sensing behaviors. (3) proposes a concrete multi-agent
software architecture that implements aforementioned behav-
ior models and observation modes.

The rest of this paper is organized as follows: Section 2
analyzes the features of autonomous robot behaviors through
a motivating example and presents an accompanying model.
Section 3 proposes four types of accompanying observation
modes. Section 4 introduces a MAS-based architecture. Sec-
tion 5 illustrates a case study and conclusion is made in Section
6.

II. ACCOMPANYING BEHAVIOR THEORY

In this section we analyze the features of autonomous
robot behaviors through a motivating example, and present
the accompanying behavior model that specifies the novel
behavior patterns.



Figure 1. The motivating sample of autonomous robot

A. A motivating sample

Let us consider a domestic service robot example that moti-
vates our research (see Figure 1). The service robot operates in
an open home environment with several rooms and is designed
to care for elderly inhabitants. Specifically, the robot expects
to identify whether they have fallen off and provides the
necessary information services, e.g., calling an ambulance or
notifying the family. As the elderly person moves around, the
service robot should follow the person within a safe distance to
timely perceive his moving information, determine his safety
status, and answer his service requests.

• Scenario 1 (searching for the elderly person): the robot
should search for the target by moving through the rooms
autonomously and recognizing his body features. If the
target is lost, the robot repeats the search for the target.

• Scenario 2 (following the elderly person): when the target
is found, the robot follows the target when he moves. The
robot should follow the target closely to avoid losing the
target.

• Scenario 3 (lock on to the elderly person): when there is
someone else next to the target, the robot should lock on
to the target and avoid mistakes on recognizing the target
person.

Through the example, we have found some common fea-
tures of the autonomous robot behaviors: (1) the robot needs
to plan a rational route and timely process multi-feedback
from multiple robotic behaviors; (2) the robot should cope
with the environment uncertainties by adjusting its behaviors
to avoid obstacles or lock on to the right target. From the
concrete example, we can claim that: (1) close connection and
interaction between different behaviors of robots is important
for acting robustly in open environments; (2) massive sensing
information is necessary for robotic behavioral adjustment and
adaptation.

B. Accompanying behaviors

For a complex task, robots usually need to carry out diverse
behaviors to cooperatively reaching a common task goal. Some
of the behaviors are responsible for observing the environment
and sensing changes, whereas others drive physical actuator
devices to achieve physical tasks. In this view, robot behaviors
can be classified into two types: task behaviors that performed

by actuators (e.g., arms, legs, and motors), and observation
behavior typically performed by sensors or probes (e.g., sonar
and cameras).

Although the two types of behaviors are relatively indepen-
dent, the robot should enhance their synergy when achieving
tasks, so that task behaviors can obtain on-demand feedback
to adjust, optimize and self-manage the planned behaviors.
Such a synergistic relationship between task behaviors and
observation behaviors was defined as accompanying behavior.

C. Accompanying model for ARS

Furthermore, we found that accompanying relation doesn’t
only occur between observation and task behaviors, but can
also occurs between observation behaviors. Multiple obser-
vation behaviors is the basis of accompanying behavior. For
example, when robot follows the target, the robot should
use the camera to lock on the target and use the radar to
measure the distance between it and the target. There are
several features in accompanying relations with observation
behaviors:

• Interactivity: the observation and task behaviors of au-
tonomous robots must interact with each other frequently
and rapidly. The sensing information from observation
behaviors allows the task behaviors informed of the status
of task execution and make adaptation timely.

• Concurrency: when accompanying relation occurs, there
are always more than one observation behaviors execut-
ing. Multiple observation behaviors can observe the envi-
ronment in multi-dimension and improve the perception
ability.

• Temporality: when multiple observation behaviors exe-
cute in parallel, the processing of massive observation
information will show a kind of timing. Usually, these
information will be processed sequentially. However,
sometimes, one kind of information is more important for
task execution and it should be given a high processing
priority.

• Dependence: different accompanying behaviors reply on
different types of information while interacting with each
other. Some interactions depend on data-type messages,
and others may depend on event-type messages.

Based on the accompanying behavior and the analysis
above, we present an accompanying model for autonomous
robot software (see Figure 2). In the model, we divide these
behaviors into system-level behaviors that perform common
robotic capabilities (such as planning behavior, scheduling
behavior, etc), and application-level behaviors that relate to
specific tasks (task behavior and observation behavior).

As shown in Figure 2, multiple observation behaviors are
the core pf the accompanying model: (1) when accompany-
ing relation occurs between observation behaviors, it can let
software receive more accurate environmental information. (2)
when accompanying relation occurs between task behavior and
observation behaviors, it can let software know task execution
more accurately and rapidly. Therefore, accompanying model
have achieved two purposes for ARS: (1) On the one hand,



Figure 2. The accompanying model for autonomous robot software

multiple observation behaviors can enhance the sensitivity
of the robot to the dynamic environment by more than one
sensors. The accompanying behavior can help the robot make
plan more accurately by multi-feedback. (2) On the other hand,
accompanying model can assist autonomous robot software
adjust its behaviors and tasks more flexibly with interaction
between different behaviors.

III. ACCOMPANYING OBSERVATION MODES

This section identifies four types of accompanying modes
for the autonomous robot software in runtime phase.

A. Classification of accompanying observation modes

As robots operate in open environments, different observa-
tion behaviors can form into diverse accompanying relations.
In this section, we try to analyze the essential types of
accompanying observation in following cases:

• Purpose-oriented: in aforementioned sections, there are
two main purposes for accompanying relations based
on multiple observation behaviors. One purpose is to
improve the perception ability to the dynamic environ-
ment, while the other one is to facilitate flexibility and
adaptivity for robot behaviors. From this view, we divide
the accompanying observation modes into two major
categories: (1) environment perception modes, (2) task
assistant modes.

• Multi-dimension consideration: as illustrated in section 2,
there are many characteristics for accompanying behav-
iors, and these characteristics of different dimensions can
also result in diverse accompanying observation modes.
For example, for interactivity, sometimes observation be-
havior needs to interact with other observation behaviors
and sometimes neednt, considering this we design a
cooperation mode for the former situation.

Based on aforementioned classification principles, we have
identified four types of accompanying observation modes: ac-
cident mode, observation behaviors cooperation mode, priority

mode, non-priority mode. And the characteristics of these
modes in multiple dimensions as show in Table I. In Table I,
Interactivity means the types of behavior which interact with
each other in the mode; Concurrency means whether there
are multiple observation behaviors occurs at the same time;
Temporality means whether there are behaviors with high
processing priority; Dependence means the type of message
between behavioral accompanying in the mode.

TABLE I.
THE CHARACTERISTICS OF ACCOMPANYING OBSERVATION MODES IN

MULTIPLE DIMENSIONS.

Dimension
Environment Perception

Modes
Task Assistant

Modes
AM OM PM NPM

Interactivity OB, TBs
and SBs

OB and
OB

OBs and
TB

OBs and
TB

Concurrency No Yes Yes Yes
Temporality No No Yes No
Dependence Event-type Data-type Data-type Data-type
1 AM=Accident Mode, OM=Observation behaviors cooperation Mode,

PM=Priority Mode, NPM=Non-Priority Mode
2 OB=Observation Behavior, TB=Task Behavior, SB=System-level Behavior

B. Four types of accompanying observation modes

1) Accident mode: This mode is designed for some emer-
gencies in runtime for software operation safety, which is
a kind of event-type message dependence mode between
one observation behavior, task behaviors and system-level
behaviors. This mode can improve robotic emergency response
to sudden changes from the environment. Autonomous robot
software usually operates in a complex environment where
many unexpected statuses may occur. These statuses some-
times have side effects on robotic task execution, and the
software may not open all sensors to these uncertain statuses
all the time.

For possible accidents from the environment, the software
expects to plan corresponding observation behavior to detect
them. When accident occurs, the observation behavior will
send the event-type message to system-level behaviors. Then,
the software will let the robot block current execution task
and switch to pre-designed corresponding task to deal with
the accident. As soon as the accident is removed, the software
will let robot resume the task.

As described in the motivating example, when the depth
sensor finds that there is an obstacle in front of the robot, it
will send event-type message “Obstacle” to planning behavior,
and the software will let robot stop to avoid the obstacle until
there are no obstacle.

2) Observation behaviors cooperation mode: This mode is
designed for the interaction between observation behaviors in
runtime. The active interaction can help observation behaviors
adjust themselves rapidly and on this basis robot can receive
environmental information with more accuracy and efficiency.
This mode is a kind of data-type message dependence mode.

Under observation behaviors cooperation mode, when the
software needs multi-observation behaviors to observe a spe-
cific target or environment, observation behaviors can interact
with each other to adjust their observation strategies.



Figure 3. The processing sequence diagrams of Priority mode and Non-
priority mode

3) Priority mode: This mode is designed for observation
behaviors with different priorities. This mode is a kind of data-
type message dependence mode between one task behavior
and multi-observation behaviors. Generally speaking, different
priorities mean different processing orders. In some tasks,
the software should give some sensing information a higher
processing priority than others. In other words, the software
will process these sensing information more frequently and
rapidly.

Under priority mode, for specific tasks, the processing
priority of observation behaviors will be predefined in task
behaviors or assigned by planning behavior. After collecting
the sensing information, task behaviors will process these
information according to their processing priorities.

4) Non-priority mode: This mode is designed for behaviors
with the same processing priority and their information will
be fused by task behaviors. This is a kind of data-type
message dependence mode between one task behavior and
multi-observation behaviors.

Under non-priority mode, observation behaviors have the
same processing priority. The task behavior just need to receive
the sensing information sequentially and process them as
predefined according to tasks.

Figure 3 shows processing sequence of the same series
of behaviors under priority mode and non-priority mode. In
Figure 3, under priority mode, observation O1 has a higher
processing priority than O2 and O3. And under non-priority
mode, all observation behaviors have the same processing
priority and are processed sequentially.

IV. SOFTWARE ARCHITECTURE AND IMPLEMENTATION
APPROACH OF ACCOMPANYING OBSERVATION MODES

A. MAS-based software architecture

The Multi-Agent System (MAS) provides an effective so-
lution to address the development issues of high-level au-
tonomous robot software for both modeling and implemen-
tation aspects. The autonomous robot software is a complex
system that consists of a number of diverse and interacting
components. All of these components work together to achieve
the robots design objectives. Therefore, the autonomous robot
software can be decomposed and organized as multiple au-
tonomous agent entities. Furthermore, MAS maintains strong
concurrency of plan execution, flexible interactions among
diverse agent behaviors, and strong robustness of system
functionalities. These features of MAS can greatly benefit

Figure 4. MAS-based software architecture for ARS

the implementation of accompanying model and observation
modes, which require both concurrency and interaction mech-
anisms from implementation software architecture.

In this paper, we propose a multi-agent software architecture
to implement the autonomous robot software and provide sup-
port for accompanying modes (Figure 4). In the architecture,
each agent plays different role, takes distinct behaviours, and
cooperates with each other to achieve the common task goals.
Integrating with our previous works for the dual-loop control
model [11], the multi-agent software architecture provides sup-
port for accompanying model and observation modes through
agent communication mechanisms. However, in this MAS-
based architecture, we don’t consider the non-deterministic
characteristic of MAS such as learning [12], self-adaptation
and self-organization [13]. The description of the role that
each agent plays in this multi-agent model is as follows:

• The modeler agent establishes the world model on the
sensor inputs from sensor agents and offers the specifi-
cations of planning domain and problem to the planner
agent for task planning.

• The planner agent performs planning jobs, including
activities of establishing world models and planning over
a specific problem domain.

• The schedule agent acts as a mediator that dispatches the
generated plans to a specific actuator agent capable of the
corresponding action.

• An actuator agent is implemented as the abstraction
over the robot physical actuator and maintains a simple
reactive structure, which will dispatche sensing tasks to
sensor agents.

• A sensor agent controls an independent sensor device
of the robot and is implemented to perform a stimulus-
response behaviour aimed towards external state changes.

B. Implementation of accompanying observation modes

As shown in Figure 4, in our multi-agent software archi-
tecture, sensor agents (observation behaviors) can feedback
sensing information to actuator agents (task behaviors) and
high-level layer agents (system-level behaviors). Besides, sen-
sor agents can interact with each other. Furthermore, multiple
agents can be executed concurrently. These designs for the



architecture guarantee the implementation of accompanying
modes.

In the implementation of this MAS-based architecture, we
developed a multi-agent software framework AutoRobot [16]
for developing autonomous robot software applications. In
AutoRobot, MAS-based software architecture can be imple-
mented under JADE [14] and robot controllers can be imple-
mented under ROS [15]. For accompanying implementation,
JADE has provided three communication behaviors for agents:
One-shot, Cyclic and ThreeStep. Besides, we also design two
interaction mechanisms for agents’ communication: topics-
based mechanism and services-based mechanism. These above
communication behaviors and mechanisms guarantee the im-
plementation of the accompanying modes.

V. CASE STUDY

In this section, we implement the motivating example to
validate the effectiveness and applicability of accompanying
model and observation mode.

The hardware platform we adopted in the case study is the
Turtlebot2 mobile robot, including a mobile base and a Kinect
module that contains an RGB camera and a depth camera. The
software infrastructure consists of the AutoRobot server and
the ROS server.

A. Implementation of the motivating example

The case study for the aforementioned example is im-
plemented using a multi-agent system prototype from the
AutoRobot framework, and the concrete architecture for the
case study is illustrated in Figure 5.

Figure 5. The multi-agent implementation architecture of the case study

For this specific example and the Turtlebot2 capability, we
designed the following agent roles: 1) a WalkAgent to drive
the mobile base to move around, 2) an RGBSensorAgent and
DepthSensorAgent to obtain the RGB and depth images from
the RGB and depth cameras.

Moreover, we implement the low-level robot controllers into
ROS nodes that offer the fundamental robot functionalities.
Each of the ROS node programs, such as the RGBInfoNode,
corresponds to a high-level agent entity used to fulfil the
agent’s capability. The ROS nodes communicate with the high-
level agent programs through the Java nodes that implemented
by RosBridge middleware.

Under the implementation architecture, we implemented the
service scenarios of searching, following and locking on the
elderly inhabitants. In each scenario, the agent roles involved
in the scenario include all agents in Figure 5. Figure 6 shows
the actual effect of the implementation of these scenarios in
human’s view and robot’s view.

(a) Following scenario (b) Following scenario

(c) Lock on scenario (d) Lock on scenario
Figure 6. The implementation of scenarios in real world. In (a) and (b) robot
follows the target and avoids a chair. In (c) and (d) robot locks on the correct
target when other people is surrounding.

B. Implementation of accompanying model and accompanying
observation mode

The implementation details of accompanying model is
shown in Figure 7 which is the sequence diagram of agent
collaboration in the Following and Lock-on scenario. The
accompany behavior is occurs between WalkAgent, RGBSen-
sorAgent, DepthSensorAgent.

Figure 7. The sequence diagram of agent collaboration based on accompa-
nying model in the Following and Lock on scenario



Figure 8. The scanning way of Depth sensor and the cooperation between
agents in Follow Scenario in traditional way

Figure 9. The scanning way of Depth sensor and the cooperation between
agents in Follow Scenario with observation behaviors cooperation mode

The implementation details of one accompanying observa-
tion mode, observation behaviors cooperation mode, is shown
in Figure 8 and Figure 9. In our case study, when robot is
following the target, the software will open the observation
behaviors cooperation mode between RGBSensorAgent and
DepthSensorAgent. In Following Scenario, RGBSensorAgent
is responsible to determine the position of the target in robot’s
view, while DepthSensorAgent is responsible to determine
the distance between robot and the target. In a traditional
way, RGBSensorAgent and DepthSensorAgent will feedback
different sensing information to WalkAgent. Then WalkAgent
will handle this information to calculate the location of the
target and adjust the moving parameters. In real-world en-
vironments, the target may appear in any position in front
of the robot and the DepthSensorAgent should scan a very
large region to avoid losing of the target such as illustrated in
Figure 8. The process of scanning and calculating the distance
will cost lot of computing resource and spend more time than
RGBSensorAgent, which will cause the robot losing the target.

When under observation behaviors cooperation mode,
firstly, RGBSensorAgent will inform DepthSensorAgent
where the target is to reduce the scan region as illustrated in
Figure 9. And then RGBSensorAgent and DepthSensorAgent
will send sensing information to WalkAgent. In this way, the
processing time for the target location is greatly reduced and
the sensitivity of the robot to the location of the target is
greatly improved.

VI. CONCLUSION

This paper presents an accompanying model and four types
of accompanying observation modes for autonomous robot
software to solve the challenge about being sensitive to the en-
vironmental changes and flexible to adjust self-behaviors. Our
contributions are threefold. First, we investigate the features
of behaviors in autonomous robot software and present an ac-
companying model based on accompanying relations. Second,
we identify a number of important accompanying observation
modes. Third, we propose a MAS-based software architecture
to examine and specify the accompanying observation modes.
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