
Towards Reference Architecture for a Multi-layer

Controlled Self-adaptive Microservice System

Peini Liu, Xinjun Mao, Shuai Zhang, Fu Hou

College of Computer

National University of Defense Technology

Hunan, China 410073

Email: peini.liu@foxmail.com, xjmao@nudt.edu.cn, zhangshuai16a@nudt.edu.cn, houfu@nudt.edu.cn

Abstract—With the features of high distribution in deployment

and independence in running, the microservice systems that

operate in heterogeneous infrastructures and open Internet

environment are expected to be self-adaptive to adapt to various

changes of both operating contexts and application requirements.

This requires the adaptability of the microservice systems to be

diverse and flexible, and independent of implementation

technologies and platforms. This paper presents a reference

architecture for self-adaptive microservice systems with the

abilities of multi-layer controlled self-adaptations, including

infrastructure-controlled layer and application-controlled layer.

Such reference architecture presents a blueprint to cope with

diverse changes from different levels in microservice systems and

supports the interactions between layers. We have implemented a
practical platform called SAMSP based on the reference

architecture and Kubernetes and evaluated our approach using a

sample. The experimental results are promising, and demonstrate

the feasibility and effectiveness of our proposed reference

architecture.

Keywords-microservice system; reference architecture; self-

adaptive microservice system; multi-layer control loops

I. INTRODUCTION

Microservice, a popular architectural style, attracting more
and more attention in both academia and industry areas, is
widely adopted now by many large companies such as Amazon
[1], Netflix [2], LinkedIn [3]. This architecture style is
considered to the best efforts for cloud computing and service-
oriented system engineering [4].

In the early years of service-oriented architecture, the
monolithic architectural style has been an approach to build web
applications. These applications were built as a single unit, and
all the logic for handling a request runs in a single process [5].
As system under this architecture is lack of independence and
flexibility, services have to get scaled and evolved together,
which result in a huge waste of server resources. Hence, the
monolithic architectural style is not suitable enough to construct
ultra-large-scale information system anymore. To overcome the
challenges, microservice has become a new architectural style to
build such complex system [6]. It decomposes a large complex
software application into a suite of small services, with each
service running in its own process and communicating by
lightweight mechanisms [7]. The microservice architecture style
brings many benefits for service-oriented systems, such as

scalability [8], functional separation [9], loose coupling [7] and
fast delivery [10].

However, microservice system still faces serval challenges.
Firstly when turning into microservice, since these highly
distributed microservices often run on containers deployed on
cloud and are organized to realize an application, we have to take
a software architecture with adaptability. Secondly, as the
microservice system is evolving because of changes of context
and requirements, system must adapt to handle the challenges.
In addition, the agile and DevOps methodology expect the
system runs without downtime and integrates continuously.
Therefore, system is no longer running in a known context and
with static requirements, meaning that the system needs to
reconfigure and restructure themselves to meet the dynamic
changing world [11].

Obviously, it is infeasible for operators to take all the
changes into consideration and manually control such system.
However, self-adaptive system brings some inspiring
approaches to adapt system at runtime, which help to preserve
and optimize the system’s operation in dynamic changes [12, 13].
For example, Rainbow [14], an architecture-based approach,
allows the self-adaptive system to be aware of the software
structure and drives the self-adaptation by the external control.
Another reflection approach can use the reflected ability of
software to examine and possibly modify its structure (structural
reflection) or behavior (behavioral reflection) at runtime [15].
These two methods inspire us to build MAPE control loops as
an autonomic manager to monitor the states of microservice
system, to analyze the changing and to plan and execute the
actions at runtime [16].

Our work presents a reference architecture for a multi-layer
controlled self-adaptive microservice system. The self-
adaptation idea comes from self-adaptive systems which can
manage system itself according to the high-level goals [16]. The
reference architecture makes microservice system to be aware of
its dynamic contexts continuously and the changing
requirements in order to adjust its behavior and structure at
runtime. The innovation of this architecture is using autonomic
computing MAPE control loop to form multi-layer control loops.
On the one hand, self-adaptive microservice system might run
on third-party provided infrastructure servers, and the system
workload at the infrastructure layer has to be adapted through
infrastructure-controlled loop. On the other hand, self-adaptive

DOI reference number: 10.18293/SEKE2018-086

Operating system

Context

Application Context

-contextA : Int

System Context

-contextB : Int

External Context

-contextC : Int
Hardware

Non-functional

requirement

-QoSType : Int

-QoSConstraint : Int

Functional

requirement

Software resource

-sResourceType:Int

Microservice instanceMicroservice Dependency

Changes

changes : Int

Requirements

-requirementType:Int -contextType : Int

Network Topology

-topology : Graph

Figure 1. Diversity of changes in self-adaptive microservice system.

microservice system has multiple microservices organized to
realize an application, and the applications’ requirements and
performance at the application layer have to be assured through
application-controlled loop.

The remainder of this paper is organized as follows: Section
2 analyses the diverse changes and multiple layers in self-
adaptive microservice system. Section 3 proposes a reference
architecture for a multi-layer controlled self-adaptive
microservice system; Section 4 presents a practical
implementation of the reference architecture; a sample and a
promising experiment based on reference architecture are given
in Section 5; Section 6 compares with related work and section
7 concludes and discusses the future work.

II. DIVERSE CHANGES AND MULTIPLE LAYERS IN SELF-

ADAPTIVE MICROSERVICE SYSTEMS

Self-adaptive microservice system has challenges to facing
the diverse changes. Inspired by Cherif Sihem et al.[17] who
bring a context model of SOA that divided into several parts—
Infrastructure, Platform, and Application. Figure 1 represents the
diversity of changes in self-adaptive microservice system.

Changes in self-adaptive microservice system contain the
context and the application requirements, each of which has its
own rules and presents a part of self-adaptation. The former
changes have three basic elements that provide different levels
of context from different perspectives. For example, (1) external
context is a part of the external world and includes hardware
resource, operating system and other related system. System can
sense these context but cannot directly control. (2) system
context is internal system environment with software system
resources like microservice instance. (3) application context
includes system network topology, and they are concerned with
specific application. The latter changes are from users and
include application functional and non-functional requirements.
For instance, (1) functional requirements are about the
organization of applications. (2) non-functional requirements are
the QoS related to the application performance.

Each part of changes has its own adaptation rules that can be
conducted. However, from the result of adaptation, the system
needs to achieve adaptation by reconfiguring microservice
instances or restructuring the microservice topology. So we can

provide adaptation facilities isolated in the infrastructure and
application two layers. Thus, a key challenge is how to structure
and coordinate the two layers to handle the diverse changes.

To overcome the challenge, the structure with two control
layers upon the microservice system is shown, and a conceptual
model of multi-layer controlled self-adaptive microservice
system is proposed in order to clarify the layers and their
interactions. In Figure 2, the self-adaptive microservice system
is composed of multi-layered control layers and the microservice
system. Microservice system is a target system that achieves the
function of business. Managing system has multiple controlled
layers, and each of the layer manages different types of
adaptation: (1) the infrastructure-controlled layer (ICL) senses
the system context and external context to manage the containers
with the platform predefined rules, system adaptation often
appears as reconfiguration; (2) the application-controlled layer
(ACL) senses the application related changes like requirements
and application context, system adaptation can be restructured
or with the lower control loops help.

en
v
iro

n
m

en
t

Infrastructure-controlled Layer

Application-controlled Layer

(a)

(e) (f)

(d)

(b)

Microservice System

(c)
requirments

external

context

Figure 2. The conceptual model of multi-layer controlled self-adaptive

microservice system.

III. REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE

MICROSERVICE SYSTEMS

Nowadays, microservice system needs a reference to support
continuous changes in context and requirements. Facing the
challenge in Section Ⅱ, in this section we proposed a reference
architecture for self-adaptive microservice system as a guideline

Microservice

System

Microservice

Registry

legend

Dependency

Control flow

Data flow

File flow

Self-adaption Managing System

P EM A

Adaption

Strategy

Registry

ACL

EM

ICL

A P

(d)

(b)

(f)(e)

(a)

(c)

Instantiate

M Monitor

A

P

E

Analyze

Plan

Execute

Registry

Microservice

Microservice

Instance

M

M E

E

Image

Registry

MSI

MS

E
n

v
ir

o
n

m
en

t

External context

requirments

Microservice image

Container

MSa MSb

MSIa1 MSIb1

MSa'

MSIa2

Figure 3. The reference architecture for multi-layer controlled self-adaptive microservice system.

for engineers on how to design, develop and adapt such systems
in a specific domain. Our reference architecture is inspired by
the control theory and find an effective instantiation –‘MAPE
model’ to build control loops. In fact, our contribution is to
design the architecture by considering these aspects explicitly:
(1) decoupling the different layer control loops required to
satisfy each part of changes; (2) achieving self-adaptation goals
through the collaboration between two layers.

A detailed view of the reference architecture for multi-layer
controlled self-adaptive microservice system is given in Figure
3. The reference architecture defines the functional elements, as
well as the control, data or file interactions among the internal
elements of each layer and the multiple layers. In addition, the
reference architecture characterizes the collaboration among the
multi-layer to assure that it can be applied partially in case
someone does not need some parts of adaptation. These details
are explained in the following sections.

A. Microservice system

As a target system, the microservice system consists of a set
of microservices, which are organized in applications through
lightweight protocols. There are two concepts in a microservice
system: one is a microservice instance (MSI), which refers to a
real entity that handles requests to accomplish the appropriate
functions. The other is a microservice (MS), which can be
understood as an abstraction of a set of microservice instances
which exactly have the same capabilities.

At run time, the microservices are discovered by each other
through the microservice registry. In particular, the microservice
itself does not process the request but distribute the request to its
corresponding microservice instances to perform the functions.
The microservices instance is the smallest running unit that runs
in a container and is deployed on cloud, giving us an inspiration
to operate the container to manage microservices instances.
Meanwhile, microservices also shield the operation details

through the abstract microservices interface and well maintain
the topology of the application. Once the topology changes due
to the change of the dynamic context or the change of
applications’ requirements, the adaptive system can timely
observe the microservices and dependencies between them to
restructure the application. Therefore, the microservice system
needs to sense the running status information of the microservice
instance and the topology of the organized microservice
application to determine whether the target system is healthy.

B. Infrastructure-controlled layer

The infrastructure-controlled layer (cf. ICL in Figure 3)
solves the adaptive problem at the infrastructure level of the
adaptive microservice system. It consists of a MAPE control
loop: the Monitor senses the external context from the
environment and the system context from the microservices
instances (cf. Interaction (a) in Figure 3) and collects monitoring
data. Analyze analyzes the system-related information, and
triggers the system-level policy in plan by the event whether the
context changes. Finally, Execute in the control loop adjusts the
system configuration according to the policy, so that the system
adaptation can be implemented by scheduling the place that
containers deployed, scaling the number of containers and
limiting or increasing the resources of the container (cf.
Interaction (b) in Figure 3).

C. Application-controlled layer

The application-controlled layer (cf. ACL in Figure 3) as the
upper layer of self-adaptive microservices system, also consists
of a MAPE control loop: Monitor senses the context from the

application organized by the microservices— the application
topology (cf. Interaction (e) in Figure 3) or the requirement
changes by users through adaptation strategy, and Analyze
analyzes the application functional requirements information
and triggers the strategy written by the application developer in
Plan when the topology changes, e.g., changing the dependency

Drools
Topology

Engine
ELK

Adaption

Strategy

Registry

ACL

Harbor
requirments

Microservice image

Requirement

Analyze

Microservice

System

Etcd

legend

Dependency

Self-adaption

Managing System

Instantiate

Component

Registry

Microservice

Microservice

Instance

E
n
v
ir

o
n
m

en
t

Monitor Analyze Plan Execute

Kubernetes

API server
Heapster

ICL

AutoSystem
External context

Container

cAd

visor

Logs

tash

Kub

elet

MSa MSb

Docker

MSIa1

Docker

MSIa2 MSIb1

MSa'

Docker Link

Figure 4. SAMSP - A practical implementation of the reference architecture.

between two microservices. Finally, Execute in the loop
achieves the system adaptation according to the tactics that
adjust the microservices organized in application and their
related dependency (cf. Interaction (f) in Figure 3).

Moreover, ACL governs a part of changes with the
collaboration of the ICL. We define the application-related
runtime information at the ICL layer as variables to be controlled
in ACL. In the circumstances, ICL Monitor uploads the related
data to ACL Analyze (cf. Interaction (c) in Figure 3) to judge
whether it satisfies the application non-functional requirement
and decide to obtain the results in Plan. At last, ACL Plan sends
the approach to ICL Execute (cf. Interaction (d) in Figure 3) to
mentor the runtime adaptation.

IV. A PRACTICAL IMPLEMENTATION OF THE REFERENCE

ARCHITECTURE

This section describes a practical implementation of the
reference architecture that is built based on Kubernetes1. Our
implementation provides an extended platform called SAMSP
with a toolkit to realize the multi-layer self-adaptation. The
whole implementation architecture of the reference architecture
is depicted in Figure 4.

In the design stage, application logic and adaptive logic are
separated. For one, we develop microservices with independent
function and use jersey.jar to implement the Restful interaction
protocol. After the development, we structure their environment
through Docker2 images and put them into Image registry
Harbor3. For the other, some self-adaptation goals are considered
by using self-adaptation strategy language to describe and
registered in our adaptation strategy registry.

When it comes to runtime stage, in microservice system,
microservice instantiate several microservice instances, running
in containers and deployed on distributed cloud servers. We use
a container orchestration Kubernetes to help us deploy our
microservice instances containers, also, some plugins like Etcd4
which is used for microservice discovery. As an important role
in monitoring system status, cAdvisor2 collects the performance
of the microservice instances, and the logstach obtains a calling
chain in local.

In ICL, in the monitor stage, we use Heapster5 to collect the
status of clusters and microservices instances’ performance like
CPU usage, memory usage, etc. in local cAdvisor2. In analyze
and plan stages, the Autosystem component that expanded from
HPA (Horizontal pod autoscaler) in Kubernetes to analyze the
status of the system and choose optimal values for the
configurable parameters. In the execute stage, the Kubernetes
API server hands out the new configuration parameters to the
cluster kubelet to adapt the changing context.

In ACL, firstly, ACL needs to load the adaptation strategies
from the adaptation strategy registry. In the control loop,
internally, ELK6 (ElasticSearch, Logstash, Kibana) are used to
collect the organization of the application from local logstash.
After the requirement check from requirement analyze, Drools7
as our application rules engine will fire the self-adaptation
strategy we have defined and use topology engine to change the
dependency between the microservices or build a new structure.
As for collaborating with ICL, the requirement analyze asks the
application-related property from ICL and the Kubernetes API
server obtains an application required results from Drools to
operate the containers.

V. CASE STUDY AND EXPERIMENTS

To illustrate the feasibility of our proposed reference
architecture and the effectiveness of its self-adaptation, in this
section, we use a book information system (BIS) as a running

1 https://kubernetes.io/
2 https://www.docker.com/
3 http://vmware.github.io/harbor/
4 https://coreos.com/etcd/
5 https://github.com/kubernetes/heapster/
6 https://www.elastic.co/products
7 https://www.drools.org/

example [18]. This application provides the book information
support to help users to know the book through the internet.
Basically, the BIS application shows the information of books
by composing a book review microservice with a book content
microservice. Meanwhile, the book contents can be provided by
some different book content information providers, such as
Wikipedia, Baidupedia and several school library systems.

A. Sample development based on BIS

Here, the generic adaptation scenarios for microservice
system are divided in two aspects, the infrastructure level
adaptation and the application level adaptation. (see Table 1)

TABLE I. GENERIC ADAPTATION SCENARIOS OF MICROSERVICE

SYSTEM

Layer Type of changes Scenarios

ICL
External context S1: Microservice instance unavaliable

System context S2: Microservice instance overload

ACL

Application context S3: Microservice unreachable

Functional

Requirements
S4: Application function enhancement

Non-functional

Requirements

S5: Application-related QoS

constraints violation

A real BIS application has been set up based on our reference

architecture. This BIS adopts microservice, and the ICL/ACL

can be implemented exactly as Section IV. The ICL layer is used

to enhance the reliability and the performance of the system by

reconfiguring the microservice instances. It takes effect on S1

and S2 in Table 1. In S1, if one of these book review

microservice instances is unavailable, the rest of the book review

microservice instances need to accept the requests from the

unavailable microservice instance, and to restart this failed

microservice instance. (2) S2: if one of them is overloaded,

reconfiguring the number of the microservice instances or

scheduling it to an available server will achieve better system
performance.

However, if all instances failed, the microservice will be
unreachable. So the ACL is responsible to handle this through
restructuring the organization of the application. For instance, in
S3, if the book content microservice is unreachable, the ACL
will be notified the situation. In response, this layer will register
the alternative service (e.g. Wikipedia or Baidupedia) into the
system, adjust the dependency between these related
microservices and relink that service to the latest available
microservices. For requirement changes, in S4, if the application
needs a new function, e.g., book rating, ACL will handle the
functional requirements by pushing a new microservice into
image registry and a new configuration into the ICL to make use
of the microservice that is newly added. Finally, as for the
collaboration between the ACL and ICL, the scenario is that, if
the user requires the average response time of the service to be
no more than 1.5s (i.e. S5). To satisfy this, ACL will sense the
average response time information from ICL and trade-off the
planning when the condition has been violated, at last execute
the plan in ICL.

B. Experiments Analysis

To evaluate the self-adaptation effect and performance in the
self-adaptive microservice system compared to the original
microservice system without self-adaptation, we conduct an
experiment on a distributed testbed Locust8. In this experiment,
some of the adaptation scenarios from Table 1 have been
selected (e.g. S1: Microservice instance failure, S2:
Microservice instance overload, S5: Application-related QoS
constraints violation). We observe the microservice’s average
response time (ART) in 30min to evaluate the performance when
microservice faces diverse changes.

Figure 5 shows the results of system performance with and
without adaptation during the whole running time. The solid line
shows that, without adaptation, once the average response time
rises when facing the changes, it never falls again. On the other
hand, the dashed line shows that if SAMSP works in the
adaptation, average response time rises but soon return to
optimal level. Table 2 shows the details of the changes in the
periods, and also compared the results of our case. The results
indicate that self-adaptation is effective and significantly
improves system performance in this experiment.

Figure 5. System performance with and without adaptation.

TABLE II. SCENARIOS PERIOD AND RESULTS OF THE CASE STUDY

Time (s) Scenarios
ART without

adaptation(ms)

ART with

adaptation(ms)

0-300
System stable

running
51.11 47.15

301-900

S2: Book information

microservice

overload

644.81 408.32

901-1200

S1: Book information
microservice instance

failure

895.51 231.26

1201-

1800

S5: Book information
microservice QoS

constraints violation

5559.90 1454.25

Total time 2148.94 646.67

VI. RELATED WORK

We find some work related to self-adaptive microservice
system, and also we take a look at some models for designing a
self-adaptive system and the microservice architecture
nowadays. Some work is briefly described in this section.

8 https://www.locust.io/

An architecture for self-managing microservices is presented
at [19]. It proposed a novel architecture that enables scalable and
resilient self-management of microservices application on cloud.
The main approach is using the algorithm to select a leader to
assign management functionality to nodes and allowing atomic
service to become self-managing. However, the distributed
configuration management is much easier to conflict compared
to centralized architecture and cannot implement expensive
algorithms to elect leaders. A reference architecture from
Krasimir based on SOA and autonomic computing [20] provides
a way to transform the microservice instances by adding an
autonomic manager into a part of the service and build an
adaptation registry. However, in this approach, microservice
instances need to be transformed into an intelligent instance by
weaving code, which is quite difficult and expensive to
implement. In [21], Namiot provides an overview of
microservices architecture and implementation pattern.
However, it treats microservices as components and analyses its
communications in a design view. An autonomic computing
system supports a continuous process, J. Kephart in [22] discuss
a view of autonomic computing that has four elements: Monitor,
Analyze, Plan and Execute (MAPE). This model reflects a
general method for self-adaptive system.

Our research is different from previous work among the
following: (1) We analysis the diversity of changes and divide
adaptation into different layers; (2) We present a reference
architecture for self-adaptive microservice system with the
multi-layer control loops; (3) Our research ensures the coherence
between the reference architecture and implementation and
deploys a case in real system.

VII. CONCLUSION AND FUTURE WORK

Microservice system is distributed and deployed on the cloud,
which often uses container technology. It needs the capability of
self-adaptation to face the diverse changes and challenges. Our
contribution is discussing this question from an architecture
perspective, and presenting a reference architecture for a multi-
layer controlled self-adaptive microservice system, which
constitutes a guide to design self-adaptive microservice systems.

Our contributions are threefold: (1) designing a novel
reference architecture for multi-layer controlled self-adaptive
microservice system, which decouples different layer control
loops required to satisfy different parts of changes, and achieves
self-adaptation goals through reconfiguring or restructuring the
microservice system at runtime; (2) presenting an
implementation architecture of microservice systems based on
our reference architecture and K8S, and providing an extended
platform SAMSP with a toolkit; (3) validating our proposed
reference architecture in term of sample development and
experiments, and showing the feasibility and effectiveness of
architecture and platform for self-adaptive microservice
systems.

For further research, we would like to improve our reference
architecture in the following aspects: (1) enhance the self-
adaptation managing system to provide more common self-
adaptive abilities; (2) design a context model and relation model
for microservice systems as self-adaptation knowledge to
improve the control loop; (3) integrate accurate and efficient
algorithms to choose adaptation strategies optimally.

ACKNOWLEDGEMENT

This research is supported by research grants from Natural
Science Foundation of China under Grant No. 61532004 and
61379051.

REFERENCES

[1] Staci kramer. gigaom - the biggest thing amazon got right: The platform.

https://gigaom.com/2011/10/12/419-thebiggest-thing-amazon-got-right-
the-platform/, 2011.

[2] Tony mauro. nginx - adopting microservices at netflix: Lessons for

architectural design. http://nginx.com/blog/microservices-at-netflix-
architecturalbestpractices/, 2015.

[3] Steven ihde. infoq - from a monolith to microservices + rest: the evolution

of linkedin’s service architecture.
http://www.infoq.com/presentations/linkedin-microservices-urn, 2015

[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices

Architecture Enables DevOps: Migration to a Cloud-Native Architecture.
IEEE Computer Society Press, 2016.

[5] M Fowler, j lewis. monolith first.
http://martinfowler.com/bliki/MonolithFirst.html, 2015

[6] Mario Villamizar, Oscar Garcs, Harold Castro, Mauricio Verano, Lorena

Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic

and the microservice architecture pattern to deploy web applications in
the cloud. In Computing Colombian Conference, 2015.

[7] M fowler, j lewis. microservice a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html, 2015.

[8] Thomas F. Dllmann and Andr Van Hoorn. Model-driven generation of

microservice architectures for benchmarking performance and resilience
engineering approaches. In The Acm/spec, pages 171–172, 2017.

[9] Sara Hassan, Nour Ali, and Rami Bahsoon. Microservice ambients: An

architectural meta-modelling approach for microservice granularity, 04
2017.

[10] Tasneem Salah, M. Jamal Zemerly, Yeob Yeun Chan, Mahmoud

AlQutayri, and Yousof Al-Hammadi. The evolution of distributed

systems towards microservices architecture. In Internet Technology and
Secured Transactions, pages 318–325, 2017.

[11] Schmerl B, Kazman R, Ali N, et al. Managing Trade-Offs in Adaptable
Software Architectures. 2017.

[12] Danny Weyns. Software engineering of self-adaptive systems: an
organised tour and future challenges. 2017.

[13] Krupitzer C, Roth F M, Vansyckel S, et al. A survey on engineering

approaches for self-adaptive systems. Pervasive & Mobile Computing,
17(PB):184-206, 2015.

[14] Cheng Huang, David Garlan, and Bradley Schmerl. Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[15] J. Malenfant, M. Jacques, and F. N Demers. A tutorial on behavioral
reflection and its implementation. 1996.

[16] IBM corp. an architectural blueprint for autonomic computing, tech. rep.
http://www03.ibm.com/autonomic/pdfs/AC, 2005

[17] Cherif S, Djemaa R B, Amous I. ReMoSSA: Reference Model for

Specification of Self-adaptive Service-Oriented-Architecture. ADBIS.
p121-128, 2014.

[18] Danny Weyns and Radu Calinescu. Tele assistance: A self-adaptive
service-based system exemplar. 05 2015.

[19] Giovanni Toffetti, Sandro Brunner, Florian Dudouet, and Andrew

Edmonds. Anarchitecture for self-managing microservices.

InInternational Workshop on Automated Incident Management in Cloud,
pages 19–24, 2015.

[20] Krasimir Baylov and Aleksandar Dimov. Reference architecture for self-
adaptive microservice systems. pages 297–303, 2017.

[21] Dmitry Namiot and Manfred sneps sneppe. On micro-services
architecture. 2:24–27, 09 2014.

[22] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003

