
STEM: A Simulation-Based Testbed for

Electromagnetic Big Data Management

Mengyuan Lyu1, 3, Peiquan Jin1, 2, Zhou Zhang1, 2, Shouhong Wan1, 2, Lihua Yue1, 3

1 School of Computer Science and Technology, University of Science and Technology of China
2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences

3 Science and Technology on Electronic Information Control Laboratory, Chengdu 610036, China

Hefei, China

lmys@mail.ustc.edu.cn, jpq@ustc.edu.cn, zzwolf@mail.ustc.edu.cn, {wansh, llyue}@ustc.edu.cn

Abstract—With the development of networked radars and

wireless communication technologies, electromagnetic data is

becoming a new type of big data. Compared with other kinds of

big data, such as Internet big data, financial big data, and

healthcare big data, electromagnetic big data has some special

properties. For example, they usually contain rich and varying

labels that describe the features of electromagnetic space.

However, existing big-data benchmark tools cannot support the

generation and test of electromagnetic big data. In this paper, we

aim at providing a simulation-based testbed for electromagnetic

big data. The testbed, named STEM, can simulate real-world

electromagnetic big data. It supports generating real-time

electromagnetic data streams with varying labels. In addition, it

is reusable, reconfigurable, and flexible for users to generate

workloads for different scenarios. After a brief introduction on

the architecture of STEM, we present the implemental details of

STEM. Then, we present a case study as well as performance

evaluation to demonstrate the usability and flexibility of STEM.

Keywords- Electromagnetic big data; Testbed; Simulation

I. INTRODUCTION

According to an IDC report, the global data will grow to
163 zettabytes by 2025, which is ten times to the 16.1
zettabytes of data generated in 2016 [1]. The increasing of data
volumes in different areas, such as web search [2], social
networks [3], moving objects databases [4-5], and
electromagnetic spaces, leads to the big data era.
Electromagnetic big data is a new type of big data, which is
advanced with the development of electromagnetic space
networks, networked radars, and wireless communication
technologies. Compared with other kinds of big data, such as
Internet big data, financial big data and healthcare big data,
electromagnetic big data has its own characteristics. First, it
contains rich label information, e.g., time and location labels,
which is very important for the analysis and use of the data.
Besides, unlike the common multi-sensor data whose file size
is dozens of kilobytes [6], electromagnetic big data is a kind of
single-sourced big data, meaning that each electromagnetic
device can produce high-speed data streams with a large
volume of data. In an electromagnetic space network, multiple
radar devices can simultaneously generate high-speed
electromagnetic data flows up to 100Gbps. To address these
challenges, a testbed for accurately evaluating the performance

of electromagnetic big data related approaches has been a
critical and important issue.

Existing benchmarks, such as YCSB [7], BigDataBench [8]
and BigBench [9], have their own data generators. However,
the generated benchmark data cannot exhibit the characteristics
of electromagnetic big data. As a result, it is difficult to
accurately measure the performance of electromagnetic big
data. Another problem in testing electromagnetic big data is
that we lack real environments. So far, it is much hard to
construct a real electromagnetic space network that contains
multiple satellites and radar devices. Moreover, a specific
electromagnetic space network is not able to support the
diversity of test requirements.

In this paper, aiming to build a reconfigurable and flexible
environment for electromagnetic big data researches, we
propose a simulation-based testbed called STEM (Simulation-
based Testbed for Electromagnetic big data Management).
STEM is designed to be reusable and flexible to allow users to
customize different electromagnetic environments. In addition,
it provides a friendly user interface. The main contributions of
the paper are summarized as follows:

(1) We present a simulation-based testbed named STEM for
electromagnetic big data. STEM can simulate real-world radar
echoes and integrate the characteristics of electromagnetic big
data into the simulation process.

(2) The proposed STEM provides a user-friendly interface
and flexible configuration options for data generation, which
help users to modify field data (such as labels) to satisfy new
requirements and customize the electromagnetic environment.

(3) We present a case study of STEM on MongoDB [10] to
demonstrate its reusability and configurability.

The remainder of the paper is structured as follows. Section
Ⅱ introduces related work. Section Ⅲ presents the architecture
of STEM. In Section Ⅳ, we show the key technologies of
STEM. Section Ⅴ presents a case study of STEM on
MongoDB. And finally we conclude the paper in Section Ⅵ.

II. RELATED WORK

Many existing big data benchmark tools have their own
data generators. Some of data generators are extensible, while
others are inextensible. For example, LinkBench [11] uses an
inextensible data generator which is designed to generate
synthetic data with similar characteristics to real social graph
data, while BigDataBench uses an extensible data generator

DOI reference number: 10.18293/SEKE2018-083

mailto:lmys@mail.ustc.edu.cn
mailto:jpq@ustc.edu.cn
mailto:zzwolf@mail.ustc.edu.cn

named BDGS [12], which contains a text generator, a graph
generator and a table generator. No matter using which kind of
data generator, they both have pros and cons.

Benchmarks with inextensible data generator usually can
produce meaningful results for specific application, such as
HiBench [13] (for Hadoop system), LinkBench and TPC-DS
[14] (for RDBMS). None of them can generate data with
similar characteristics to electromagnetic data. For example,
HiBench contains eight workloads, which can be classified into
four categories: Micro Benchmarks, Web Search, Machine
Learning and HDFS Benchmarks. LinkBench, as mentioned
before, can generate social graph data like Facebook network.
TPC-DS implements a multi-dimensional data generator—
MUDD, which is designed for structured data type. For these
application-specific limitations, some researchers turn to
extensible data generator.

Though extensible data generator can produce various kinds
of big data, it still has limitations. First, the data’s veracity is
questionable. For example, PGDF [15], a parallel data
generation framework applied in BigBench, uses distribution
functions to generate distributed big data. But its distribution
functions’ data source is provided by RNG (Random Number
Generator). Second, the lack of flexibility is also a common
issue. Besides PGDF, another data generator—BDGS, which is
implemented on BigDataBench, uses the data model derived
from real data sets. But electromagnetic big data contains a
wealth of label information and the labels can be changeable
for fitting different requirements. A data generator like BDGS,
would lead to more redundant work on deriving data models.
Another example is YCSB, a popular benchmark for NoSQL
system, also have two limitations mentioned above. Its
workloads consist of records, each with several fields which are
random strings of ASCII characters and it also need to modify
the data configuration every time, which is inconvenient.

An ideal way for electromagnetic big data tests is to run
tests in a real electromagnetic environment. However, it is
costly and hard. Instead, a simulation-based testbed is more
suitable for electromagnetic big data researches, due to its
flexibility and reconfigurability. Compared with previous
methods, our proposal can simulate real-world radar echoes. In
addition, it provides a user-friendly interface and flexible
configuration options for users to customize the
electromagnetic environment. To the best of our knowledge,
our proposal is the first testbed that supports the simulation of
electromagnetic big data.

III. ARCHITECTURE OF STEM

Fig. 1 shows the architecture of STEM. It mainly consists
of three modules: the EES (Electromagnetic Environment
Setting) module, the SDT (Simulation and Data Testing)
module, and the TEM (Tools for Easy Management) module.
The detailed architecture is described as follows.

The EES Module. This module is designed to customize
electromagnetic environments. It contains three components:
Target Setting, Label Setting, and Device Setting. Every
component is designed to be flexible and configurable. Users
can add, delete, or edit elements within each component. The
Target Setting component provides two operational modes,
namely automatic generation and manual setting. This makes
the system

Figure 1. Architecture of STEM

easier for users to operate. After setting up the three
components, the EES Module can generate a configuration of
electromagnetic environment for the SDT Module.

The SDT Module. This module includes two sub-modules:
the Echo Simulation module and the Data Testing module. The
Echo Simulation module plays the role of data generator. It can
generate electromagnetic data based on the configuration which
is set by the EES Module, and then send them to the Data
Testing module. The Data Testing module is designed to
evaluate the performance of a database in electromagnetic big
data. Currently, we’ve implemented it on MongoDB, which is
the most popular NoSQL database system according to the DB-
Engines Ranking [16]. Testing results and the data generated
by Echo Simulation module will be sent to the TEM Module for
visualization.

The TEM Module. This module provides some
management tools for easy use. For example, the Real-Time
Statistic in the TEM Module can display the results produced
by the SDT Module in line chart and numbers. The line chart
can clearly reflect the trend of the results, while the numbers
can accurately show the value. Meanwhile, the Real-Time
Statistics can convert the electromagnetic data into signal
waveform synchronously in order to express it more vividly. In
addition, we design some other management tools, such as
Config View, User Management and Timer. Config View can
help users check the configuration. User Management divides
users into administrators and regular user, and grants different
authorities. Timer can set the running time of whole system for
saving users’ time.

IV. IMPLEMENTATION OF STEM

In this section, we describe the implemental details of
STEM.

A. Implementation of the EES Module

The EES Module is a software layer that simulates the real
electromagnetic environments. We divide it into three parts

Figure 2. The class diagram of Devices Setting

according to the principle and characteristics of
electromagnetic data, which are Devices Setting, Targets
Setting, and Labels Setting. These components provide
functionalities with similar interfaces for users to customize the
environments. We are going to take the Device Setting as an
example to introduce the similar parts of these interfaces. Then,
we describe the differences between the Labels Setting and
Targets Setting.

Devices Setting. Fig. 2 shows the class diagram of Device
Setting. In our models, a radar device is represented as the
following structure: {DeviceID, Pulse Width, Band Width,
Period, Center Frequency}. The DeviceID is used to facilitate
access to specific device. Pulse Width, Band Width, Period and
Center Frequency are the parameters of a device, which
generally won’t change. In order to prevent these invariant
parameters from being transmitted over and over again, we put
device information into the database and use “DeviceID” to
replace these parameters during transmission. As for some
parameters that can be changed during the work, such as
pitching angle and azimuth angle, we treat them as labels and
put them in Label Setting module.

In order to make the module flexible and configurable, we
offer some interfaces for users to construct they own devices.
AddDevice() and EditDevice(SelectedID) provide a new
graphical interface for user input, The interfaces and the
descriptions are shown in Table 1.

Each interface provides guidance for easy use and can handle
users’ operation errors, like DeviceID is repeated or didn’t
select the devices to delete. The other two sub-modules offer
similar interfaces, like AddTarget(), DeleteLabel(List
<SelectedID>) and so on. The differences will be discussed in
their own sections.

Targets Setting. Fig. 3 gives a simple class diagram of
Target Setting. Considering that there may be a lot of targets
needed to be set in one experiment, so we offer two operations
mode: Manual and Automatic. The Manual mode is similar to
what we use in Devices Setting. It involves the following
interfaces like AddTarget(), DeleteTarget(List <SelectedID>)
and so on. If there is no requirement on simulating specific
targets, we can leave this to the Automatic mode, which can
automatically generate the targets.

TABLE I. DEVICE INTERFACES AND DESCRIPTIONS

Interface Description

AddDevice() Create a new radar device

DeleteDevice(List <SelectedID>)
Delete the radar devices selected

by users

EditDevice(SelectedID)
Edit a radar device selected by

users

AddDeviceToSim(List <SelectedID>)
Add the selected devices into the

simulation list

Figure 3. The class diagram of Targets Setting

For the sake of simplicity, each target is modeled as a point,
which means that we ignore its size and shape. Thus, the model
we use to describe a target can be expressed as {TargetID,
Distance, Scattering Coefficient, Velocity}. In our previous
design, we also need to set the appearance and disappearance
timing of the target. But it will bring much inconvenience. For
example, suppose that an identical target appears intermittently
within the radar field of view, we have to repeatedly set its
appearance and disappearance timing while other parameters
remain the same. Considering this, we remove these two
parameters from the target model and offer other two
parameters needed to be set only once for users: Idle Time
Upper and Existence Time Upper. The Idle Time Upper
defines the maximum time between the disappearance of the
last target and the occurrence of next target. And the Existence
Time Upper defines the maximum time that a target can be
exposed within the radar field of view. Therefore, the
appearance and disappearance timing of the target are
determined by system while users only need to define the
boundaries.

Labels Setting. The rich label information is one of the key
characteristics of electromagnetic data. The labels can be
divided into two categories: some valuable information for the
analysis of the electromagnetic data, such as the time and space
label, and the parameters that can be changed during the
working of a radar device, as mentioned in the Device Setting
of this section.

A label can be simply described as: {LabelID, Description,
Bytes, Count}. Similarly, we design some interfaces like
AddLabel(), DeleteLabel(), EditLabel() and AddLabelToSim()
for user-friendly extension. The difference is that we add a
little limitations due to the importance of the time and space
labels, for example, the time and space labels cannot be deleted
and they are added to the simulation list by default even if not
be selected.

Now we can give a general introduction to the final data
structure. The electromagnetic data model can be divided into
four parts: Labels, IdBytes, DeviceID and Amplitude. Fig. 4
gives an example of electromagnetic data.

As mentioned in the Devices Setting of this section, the
elements we use to represent a radar device generally remain

Figure 4. An example of electromagnetic data

stable. Thus, in order to prevent these invariant parameters
from being transmitted, we use the DeviceID like “001” to
replace these parameters for saving space and maintain a
Devices Configuration in the database for accelerating the
search on devices. We also use IdBytes to point out the bytes it
takes for reading it later, which equals 3 in Fig. 2. Amplitude is
calculated by the SDT Module, we will introduce it in the next
section.

The label part is represented by a byte array. After setting
up the Labels Setting module, the format of labels will be
applied to every piece of data generated by devices. Through
this way, we do not need to record the bytes for every label, i.e.,
the Labels Configuration is space efficient, which is similar to
the Devices Configuration. In the example shown in Fig. 2, we
can see from the Labels Configuration that the first 200 bytes
are the label parts, containing five labels which occupy 30 * 2,
70, 50 and 20 bytes, respectively. The next four bytes are an
integer with the value of 3, which means that the next three
bytes are the DeviceID. The rest is the Amplitude.

B. Implementation of the SDT Module

The SDT Module is the core module of STEM. The most
important component in the SDT module is the echo model.
Next, we describe the echo model as well as the echo
simulation process.

Echo Model. In the design of radar echo model, we have
borrowed some ideas and methods in the [17]. We select the
LFM (linear frequency modulation) pulse as the simulation
object, which is the most widely used pulse compression signal
and not sensitive to the Doppler frequency shift. For the LFM
pulse, the radar emit signal can be expressed as in (1), where
rect() is a rectangle function which defined in (2), T represents
pulse width, fc is center frequency, K is frequency modulation
rate and B is band width.

 2/ exp 2 / 2 , = /E cS t rect t T j f t Kt K B T

1 / 1/ 2

0 / 1/ 2

t Tt
rect

T t T

Suppose that there is a point target approaching a radar
device whose distance to the target is R0, at a radial velocity v.

Figure 5. An example of Echo Simulation Process

The pulse repetition frequency of radar is set as Tr. When the
nth pulse is emitted, the distance between the target and the
radar can be expressed in (3).

 0 , /n

r rR t R vnT n t T

Then, we define the echo by (4). Here, the symbol A
represents the scattering coefficient. τ(t) is time delay function
and n(t) is a random function for simulating the environment
noise.

 , 2 /n

R ES t AS t t n t t R t c v

Echo Simulation. Next, we give the process of the echo
simulation process. Fig. 5 gives an example with the Timer in
the TEM Module and with the choice of Automatic mode in
Target Setting of the EES Module. If no Timer is used, the end
of system is controlled by the Pause Button. If choosing
Manual mode in Target Setting, we do not need to get new
target during the process.

The parameters we need to input into the system is Fs
(sampling frequency) and T (time limit set by the Timer).
GetShowTime() and GetLeaveTime() are designed to calculate
target’s appear and disappear time based on the Idle Time
Upper and the Existence Time Upper, which are set in the
Targets Setting. Flag is used to determine if there is a target.

The process in Fig. 5 can be described as follows:
(1) LeaveTime and t (represents time) is set to zero, Flag

is set to false and ShowTime is calculate by
GetShowTime().

(2) If Flag = false, which means there is no target, go to
(3), otherwise it means that target appears, go to (4).

(3) If t < ShowTime (the next target has not appeared yet),
the echo that radar has received is just the noise, so
Amplitude is determined by n(t). Otherwise it means t
is equivalent to or over ShowTime, which also means
that there would be a new target in the radar range
immediately. Thus, we need to design this new target

by using GetNewTarget(), calculate its LeaveTime and
set Flag to true. Then, we go to (5).

(4) If t < LeaveTime, which means the target is still in the
radar range, the echo is calculate by SR(t). Otherwise it
means that this target will disappear. In such a
situation, we need to calculate the next target’s appear
time and set Flag to false. Then, we go to (5).

(5) t = t + 1/Fs.
(6) If t < T, return to (2), otherwise the process is ended.

V. EVALUATION

In this section, we describe a case study of using STEM for
evaluating the storage performance on MongoDB in
electromagnetic big data. The results show that STEM is easy
to reconfigure to simulate different electromagnetic
environments and evaluate the performance in electromagnetic
big data.

A. Experiment Setup

The experiment is based on the network architecture as
shown in Fig. 6. It consists of five server nodes and several
client nodes. The server nodes constitute a distributed storage
cluster for simulating the data receiver and each server node is
equipped with Intel 2.1GHz dual CPU, 128GB DDR4 memory,
twelve 4T 7200RPM SAS drives and two 240GB SSDs. The
client nodes are common computers, mainly used for data
acquisition. The server nodes and the client nodes are
connected by ten gigabit LAN.

Our STEM runs on the clients of Data Acquisition. First,
the client nodes run STEM to set the environment. Then, all the
client nodes run the SDT Module at the same time to generate
data and transmit the data to the server nodes. The states of the
servers are monitored by STEM.

B. Use Cases of STEM

We present two cases of using STEM. In the first case, the
electromagnetic environment set by each client node is ten
radars, automatic targets and 300 labels (each is 50 KB, the file
size limit in MongoDB is 16 MB), we test the throughout rate
of MongoDB under different number of processes.

The second one is designed to test the throughput of
MongoDB under different numbers of labels. Its environment
is set to ten radars, automatic targets and ten processes. For the
sake of simplicity, all the labels are set to having the same size
(50 KB). Both experiments are run for five minutes.

Figure 6. Experiment Network Deploment Architecture

Figure 7. The setting interface of STEM

Figure 8. The running screenshot of STEM

The experimental process consists of three steps:
(1) Every client node finish the experiment environment

setting, click the Next button to the running page;
(2) Every client node sets the Timer to five minutes, then

click the Run button to run the system;

(3) Just wait for five minutes and click the Back button to
the setting page, reset the environment setting, and
back to (2).

Fig. 7 shows the setting page of STEM, and Fig. 8 shows
the running screenshot of STEM.

C. Results

Fig. 9 shows the highest throughput (top throughput) as
well as the average throughput under different processes. We
can see that when the number of processes reaches 13, the top
throughput reaches 1126 MB/s, which is close to the upper-
bound of the network speed. Basically, the top throughput
increases linearly with the increase of the process and the
average throughput reaches the bottleneck when the number of
processes reaches 11, which is nearly 788 MB/s.

Fig. 10 shows the throughput under different numbers of
labels when the number of processes is 10. The average
throughput increases with the increasing of the numbers of
labels. On the other hand, the top throughput does not show an
apparent trend. Specially, the top throughput reaches 1105
MB/s when the number is 20, which is close to the result of 11
processes and 300 labels. A possible reason is that the small
numbers of labels make the number of files that can be
generated and inserted per second increase, as shown in Fig. 11.

Figure 9. Throughout under different processes

Figure 10. Thoughout under different size of labels

Figure 11. Insert Count under different size of labels

VI. CONCLUSIONS AND FUTRUE WORK

In this paper, we propose a simulation-based testbed for
electromagnetic big data researches, which aims to provide
effective support for evaluating the performance of
electromagnetic big data management, such as throughput test
and real-time processing measurement. The proposed testbed is
designed to be reusable, flexible, and reconfigurable. Currently,
STEM is able to evaluate the storage performance of
electromagnetic big data on MongoDB, such as the test of write
throughput, the average throughout, and the insert counts per
second.

Our future work will concentrate on supporting multiple
types of databases, offering more kinds of performance tests,

and improving the efficiency of data generation. We plan to
support HBase, Cassandra and other popular database systems
in future. In addition, we will adopt other performance tests
like query processing to make the testbed multifunctional and
the parallel computing on every radar to make data generation
more efficient.

ACNOWLEDGEMENT

This work is supported by the National Science Foundation
of China (61672479 and 61472376), and a fund from the
Science and Technology on Electronic Information Control
Laboratory. Peiquan Jin is the corresponding author.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The evolution of
data to Life-Critical,” https://www.seagate.com/files/www-content/our-
story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf, Accessed
in April 2018.

[2] J. Zhao, P. Jin, Q. Zhang, and R. Wen. “Exploiting location information
for Web search”. Computers in Human Behavior, 2014, 30: 378-388.

[3] L. Zheng, P. Jin, J. Zhao, and L. Yue. “A fine-grained approach for
extracting events on microblogs”, International Conference on Database
and Expert Systems Applications (DEXA), 2014, pp. 275-283

[4] P. Jin, L. Zhang, J. Zhao, L. Zhao, and L. Yue, “Semantics and modeling
of indoor moving objects”, International Journal of Multimedia and
Ubiquitous Engineering, 2012, 7 (2): 153-158

[5] C. Huang, P. Jin, H. Wang, N. Wang, S. Wan, and L. Yue. “IndoorSTG:
A flexible tool to generate trajectory data for indoor moving objects.,
2013 IEEE 14th International Conference on Mobile Data Management
(MDM), 2013, pp. 341-343

[6] X. Hao, P. Jin, and L. Hua, “Efficient Storage of Multi-Sensor Object-
Tracking Data,” IEEE Transactions on Parallel and Distributed Systems,
2015, 27(10): 2881-2894

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” ACM Symposium
on Cloud Computing (SoCC), 2010, pp. 143-154.

[8] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, et al, “Bigdatabench: a big
data benchmark suite from internet services,” IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 488-499.

[9] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, et al, “BigBench: towards
an industry standard benchmark for big data analytics,” ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2013,
pp.1197-1208.

[10] MongoDB. https://www.mongodb.com/.

[11] T. G. Armstrong, V. Ponnekanti, D. Borthakur, M. Callaghan,
“LinkBench: a database benchmark based on the Facebook social graph,”
ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2013, pp.1185-1196.

[12] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, et al, “BDGS: a scalable big
data generator suite in big data benchmarking,” Workshop on Big Data
Benchmarks, 2013, pp. 138-154.

[13] S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, “The HiBench
benchmark suite: characterization of the MapReduce-Based data
analysis,” IEEE International Conference on Data Engineering (ICDE)
Workshops, 2010, pp. 41-51.

[14] R. O. Nambiar and M. Poess, “The making of TPC-DS,” International
Conference on Very Large Databases (VLDB), 2006, pp. 1049-1058.

[15] T. Rabl, M.Frank, H. M. Sergieh and H. Kosch, “A data generator for
cloud-scale benchmarking,” Technology Conference on Performance
Evaluation and Benchmarking, 2010, pp. 41-56.

[16] DB-Engines Ranking. https://db-engines.com/en/ranking.

[17] M. A. Richards, “Fundamentals of Radar Signal Processing, Second
Edition”, 2017.

https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.mongodb.com/
https://db-engines.com/en/ranking

