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Abstract: Recently, ride-sharing services are becoming more 

popular in commercially application, which have attracted many 

researchers' attention. The ride-sharing provides significant 

economic, societal and environmental benefits in a sharing 

economy, such as reducing pollution, travel costs and traffic 

congestions. This kind of problem essentially is to maximize the 

matched ride-sharing pairs, and obviously is an optimization 

problem. There are lots of platforms for dynamic peer to peer 

ride-sharing, however, existing researches can be improved 

better. For example, how to reduce the algorithm computing time, 

and maximize the matching effectiveness to gain more economic 

benefits. In this work, we first introduce the problem of ride-

sharing with time guarantee on road network, and then design a 

novel heuristic simulated annealing genetic algorithm. In 

addition, we carefully adjust the parameters with different 

constraints, and conduct extensive verification experiments with 

realistic datasets derived from Beijing car services, the results 

demonstrate the advancement of our methodologies. 

Keywords—Road Network, Ride-sharing, Simulate Annealing 

Algorithm, Gentic Algorithm 

I.  INTRODUCTION 

Recently, we witness the rapid growth of the sharing 
economy, in which the resource owners temporarily transfer 
their properties to someone to acquire the benefits, the ride-
sharing is the one of the most representative applications, that 
means someone acts as a driver and offers the ride-sharing 
service to bring together travelers with similar trip. Nowadays, 
the ride-sharing has become very prevalent application, 
consequently appearing lots of startups companies, typical like 
DIDI, Uber, and Lyft. There are lots of increasing researches, 
however, most existing methods have several limitations, for 
example, the efficiency is not high, and the methods need deep 
analysis of specific issues of the problems, or the extendibility 
is weak. Generally speaking, solving this kind of optimal 
problem is not easy. People have studied various approaches 
to address it [1,2,3], such as the integer linear programming, 
the branch-and-bound problem and the approximation 
algorithm [4].  

 In this work, we focus on the ride-sharing problem with 
time windows. There are many challenges to address such 
problems: First, it has been proved as an NP hard problem 
[10]; Second, to calculate the sharing ratio, it needs to 
calculate the shortest path, it is time-consuming; Third, for the 
1
drivers, their main concerns are the economic benefits, thus it 

is not only needed to minimize detour distance at most in carry  
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services, but also to maximum the number of matched pairs, it 
is a bi-objective problem, which can be solved by the 
simulated annealing(abbr.SA) or genetic algorithm(abbr.GA). 
Simulated annealing is a probabilistic technique for 
approximating the global optimum in a large search space, and 
the genetic algorithm is derived from the process of natural 
selection and genetic evolutionary. With the above mentioned 
knowledge, we present a framework which combines the 
simulated annealing algorithm with the genetic algorithm. The 
contributions of this work are summarized as follows: First, 
we establish the map grid, it can effectively reduce the shortest 
path calculation time. Second, we designed a formulation to 
describe the problem, and then develop a novel simulated 
annealing genetic algorithm(abbr. SAGA). Third, we conduct 
extensive experiments on the real dataset, and our results show 
the superiority of our approach. 

 The rest of this paper is organized as follows: we propose 
the related important work on ride-sharing and kinds of 
approaches in Section 2, and then model the problem in 
Section 3, afterwards, we illustrate our algorithm in detail in 
Section 4. Experimental results are presented in Section 5. We 
outline the conclusions of the paper in Section 6. 

II. RELATED WORKS 

The ride-sharing problem has attracted increasing attention,  
In this section, we introduce the related work and summarize 
the key technologies for different algorithms [5,6]. The studies 
can be classified into three categories, approximation 
algorithms, filter and refine algorithms, heuristic algorithms. 

Ta et al. [7] proposed a new ride-sharing model that each 
driver has a requirement restriction with the shared route 
percentage, two variants of the ride-sharing problem are 
proposed, i.e., multiple drivers and a single rider and multiple 
drivers and multiple riders. To improve the efficiency, an 
approximate method with error bound guarantee was proposed, 
that meant updating the lower and upper bounds of the 
maximal graph matching until the bounds gap was small. The 
ides was very innovative and useful. 

In [8], a highly generalized model for the taxi and delivery 
services in the market economy was proposed. The model can 
efficiently used with surge pricing mechanism. To solve the 
above problem, they proposed an approximation algorithm 
which was transferred to the multiple disjoint paths (MDP) 
problem, and carefully proved their algorithm had a tight 
approximate ratio with the original problem.   
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Furuhata et al. [9] proposed a review of ride-sharing to 
understand the key aspects of existing ride-sharing systems. 
The main characteristics to describe different aspects of ride-
sharing systems were described. They classified the existing 
problem into six categories depending the target segments and 
criteria. The objective of the work was to identify key 
challenges thus helped to build the effective formal ride-
sharing mechanisms. 

Ma et al. [10] demonstrated a large-scale taxi ride-sharing 
for a dynamic ride-sharing problem, the framework included 

two steps：the first was a definition of a searching algorithm 

by taking advantage of a spatial-temporal index, then a 
scheduling algorithm was proposed. To address the heavy 
computational load, a lazy method was described by 
partitioning the road network into several grids. The 
approximated distance finally approved the effectiveness of 
their approach. 

Thangaraj et al. [11] described a platform named Xhare-a-
Ride (XAR) system for dynamic peer-to-peer ride-sharing. 
Three kinds of geographical hierarchical discretization 
including region using grids, landmarks and clusters, were 
used to help to eliminate shortest path computation during 
search. The notions were valuable for integration with multi 
modal trips. 

Alarabi et al. [12] presented an effective framework named 
SHAREK which can embed inside existing approaches to 
improve the performance and quality. The model took into 
consideration the users' maximum willing waiting time and the 
cost of both riders and drivers. Three consecutive phases 
named Euclidian temporal pruning, Euclidian cost pruning, 
and Semi-Euclidean skyline-aware pruning were used to avoid 
the expensive shortest path computations.  

 Qian et al. [13] introduced SCRAM in order to provide 
recommendation fairness without sacrificing driving 
efficiency, the by-product of a framework named SCRAM 
was the capability of offering actual driving routes rather than 
rough driving directions. The recommended routes were 
evaluated from three aspects, i.e., priority principle, decaying 
principle, sharing principle. The successive probability of 
picking up customers had higher priority than the driving cost, 
and the probabilities of road sections were appraised 
decreasingly with the distance from the starting point. 

 Huang et al. [14] proposed a large scale service guarantee 
real-time ride-sharing, and demonstrated kinetic tree 
algorithms which can satisfy dynamic scheduling requests. 
They depicted a hotspot-based algorithm to avoid duplicates 
computation, the drop-off locations were grouped which led to 
a large number of valid schedules to satisfy the rider-driver 
constraints. 

In [15,16], a genetic and insertion heuristic algorithm for a 
single rider was proposed. The main idea was to fine the best 
trips which can be shared by more than one driver with time 
constraints. They first modeled the ride-sharing problem with 
the time constraints, then illustrated the detailed 
implementation steps of the genetic algorithm. They also 
defined five different mutation operators basing on diverse 

services time constraints. The experimentation results 
indicated their algorithm was feasible. 

III. PROBLEM DEFINITION 

In this section, we formally propose the preliminaries and 
define the notions of our ride-sharing problem, and then depict 
the framework of our system. 

A. Preliminaries 

 Definition 1. G = (V, E) is used to model a road network, 
where a vertex set V is associated with a geographical position, 
including the longitude and latitude. An edge set E is 
associated with the weight such as the distance or travel cost 
between two different vertices.  

Definition 2. (Rider). A rider ri=(r
s
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e
i, tr

e
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L
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) is 

defined as a rider who intends to go to the destination r
e
i from 

r
s
i within an interval bounded by the earliest time tr

e
 and the 

latest time tr
L
. (Driver). A driver di=( d
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e
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is defined as a driver who plans to go to the destination d
e
i 

from d
s
i,, at the latest start time td

L
 with a acceptable detour 

distance ratio λmax. D denotes the drivers set, R denotes the 
riders set. 

Definition 3. (Sharing ratio for driver) considering the 
driver's minimum detour distance λ max, we introduce the 
sharing ratio to measure the ride-sharing effectiveness. 
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δ (di,rj)stands for the shortest distance of rider rj, the 

 de o , jit ur d r  refers to the cost of detour distance to pick up or 

put down the riders. We assume that if the sharing ratio is less 
than the ratio bound (λmax), the match is valid. Some key 
notations are summarized in Table 1 [7]: 

Table 1. Some Key Notaions 

Notation Definition 

r
s
i rider's start point 

r
e
i rider's destination point 

tr
e
 rider's earliest start time 

tr
L
 rider's latest start time 

tr-r
L
 rider's latest reach time 

td
e
 driver's earliest start time 

td
L
 driver's latest start time 

d
s
i, driver's start point 

d
e
i driver's destination point 

λ max driver's maximum acceptable detour ratio 

ξ (d,r) detour distance for matched pair  

B. Problem definition 

The ride-sharing problem is defined as follows: For a set 
of drivers and a set of riders on a road network G(V,E), when 
the riders send series requests, we aim to satisfy the requests 



and acquire the maximum sharing matching ratio denoted 

by  
,

,detour
ji r

i j

d D R

d r
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  under the temporal and distance 

factors [9]. In Figure 1, there are 3 drivers and 3 riders, we 
aim to match the drivers and riders with the minimum detour 
distance. 
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Fig. 1. Example of ride-sharing between drivers and riders 

IV. A SIMULATED ANNEALING GENETIC ALGORITHM  

Our goal is to minimize the detour distance for whole 
riders' requests, it is obvious a global optimization problem. A 
brute force method is to enumerate all possible driver-rider 
pairs. However, traditional approaches are rather time 
consuming and inefficiency. To tackle the challenges, we first 
divide the map into many regular squares to quickly find the 
approximate shortest distance, and then introduce a heuristic 
simulated annealing genetic algorithm (SAGA) to address the 
optimal driver-rider pairs matter. 

A. Grid construction 

To calculate the shortest path on road networks, Ma et 
al.[10] presented a spatial gird which did pre-calculation and 
stored the shortest path by dividing the map into small fixed 
square areas [18]. Their main ideas lay in the approximate 
path and distance. Similarly, we also utilize this basic ideas, 
select the history hottest visited places on behalf of the grid's 
location, and then construct the shortest distance matrix and 
the shortest path matrix. For any two arbitrary points, we first 
figure out which girds they geographically belong to, then we 
acquire the shortest distance by querying the corresponding 
grid matrix. 

B. Formulation representation 

The bi-objective function that minimizes the total distance 
and maximizes the number of the valid matched pairs is 
provided in Equation 2. The α, β, γ define the relative weight 
factors. Let xi,j=1 if the driver-rider pair is matched from node 
i to node j. The formulation is, 
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where Constraint (3) enforces the matched pairs have only 
two choices: 0 or 1. Constraints (4) ensures that the number of 
drivers and riders leaving the starting is equal to the number of 
drivers and riders arriving at the destination. Constraints (5) 
and Constraints (6) ensures the total matched driver-rider are 
less than the total initial given drivers. Constraints (7) ensures 
driver's latest start time is earlier than rider's earliest start time. 
Constraints (8) ensures driver's latest start time is earlier than 
rider's latest start time. Constraints (9) ensures driver's detour 
distance is less than the driver's default acceptable detour 
distance.  

C. Procedure of SAGA 

The procedure of SAGA is described in Figure 2. The 
GASA process firstly starts by given some important 
parameters such as population size, initial temperature, 
number of generations, probability of crossover and mutation. 
An initial population of chromosome is also generated, every 
chromosome is a candidate solution for problem [17].   

Generate initial random 
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parameters

Calculate every 

chromosome’s 

neighborhood f(j)=U(i) 

Set new chromosome 

as f(j)

Y

Accept new chromosome 

with above probability

Select new chromosome by fi(tk) 
probability distribution

 Chromosome crossover

Chromosome mutation

new next generation 

population

End

N

N

Loop M1 times

Loop M2 times

Start

Meet the stop 
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Fig. 2. SAGA procedure for ride-sharing 
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For every chromosome, we use the objective function 
(Equation 2) as a fitness function. The selection of fitness 
function directly affects the convergence speed of genetic 
algorithm. A random value U(i) as f(j) is selected from the 
neighborhood of f(i), then probability function  

k

f ( j) - f (i)
(- )

t
exp is calculated. If the value is greater than 

constant one, then accept the neighborhood f(j) as the new 
chromosome, else accept the new one with above probability. 
After above steps have been executed in M1 cycles, new 
population named NewPopOne where the size is equal to the 
initial population is generated. Later, the fitness of each 

chromosome represented by function min

k

f ( ) - f
(- )

t

i
exp is 

calculated, afterward, new chromosome with the probability 
distribution determined by above fitness function is generated,  
that process which is executed in M2 cycles finally results in 
the next new population named NewPopTwo. In addition, the 
crossover and mutation strategies are executed to create 
offspring until the next new population is generated.  

The above mentioned steps are repeated until the results 
meet the expectation value or iteration operations are all 
completed. 

D. Problem coding 

We randomly assemble the driver-rider matched pairs 
successively in one chromosome, the length of the 
chromosome depends on the minimum of drivers or riders. 
The whole population is set as 50. Figure 3 presents the 
problem coding. 

parent 1: 

1 4 8 8 7 3 11 3 2 10 2 10 

parent 2: 

1 3 11 8 7 10 2 3 2 4 8 10 

parent i: 

......                       

Fig. 3. Chromsome initial coding 

E. Annealing Algorithm Fundamentals 

In general, the key to integrate the two algorithms lies in 
how to select the next generation, the SAGA selects the next 
generation with the higher probability of getting close to the 
target in the range of neighborhood, in which the algorithmic 
process is a constant random walk from one state to another. 
We can use Markov process to describe the transfer 
probability, acceptance probability. 

The challenge of Annealing Algorithm are as follows: 

(1) The initial temperature t0. When the initial temperature 
is high, it is more likely to search for the global optimal 
solution, but it takes a lot of computation time. On the other 
hand, the computation time can be decrease, but the global 
search performance may be affected.  

(2) The annealing speed. The global search performance is 
closely related to the number of iterations at each temperature 
t. "Full" search at the same temperature is quite necessary, but 
it also takes time to calculate. The increase of the number of 
loop cycles will inevitably lead to an augment in computation 
overhead. We use the following function [18]: 

1

k+1

0

1 0

t (1 ) (10)

(11)

k k

f

f

t t

t t

M t t





 




 

the t0 and the tf are default value, M1 is the number of 
iterations. In theory, SA can solve most of the optimization 
problems, but in practice, due to the global optimum annealing 
speed is too slow to be accepted. In this article, we select the 
cooling strategy as follows: 

min( )
f ( ) exp( ) (12)i k

k

f i f
t

t


   

while the fmin denotes the minimum of fitness value in 
population. According to the Metropolis criterion [21], the 
probability that particles tend to equilibrate at temperature t is 
exp (-ΔE / (kT)), where E is the internal energy at temperature 
T, k is Boltzmann's constant. Metropolis formulation are often 
expressed as follows: 
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 which means the algorithm is more likely to accept sort-
of-bad jumps rather than complete refuse to accept it, the 
probability gradually decreases over time till solution becomes 
global stability. 

F. Crossover 

The function of the crossover is to ensure the stability of 
the population and evolvement towards the optimal solution. 
Crossover can facilitate avoiding premature convergence. 
Chromosome crossover doesn't mean descendants are definite 
better than their parents, but represent the next generations 
have a better development tendency than the previous 
generation. There are many kinds of crossover methods, multi-
point crossover refers to exchanging the multiple crossover 
points in an individual chromosome. In this paper, we use the 
method of position-based multi-point crossover (PBC) [20]:  

As in Figure 4, first, we select a random pair of 
chromosomes (parents) in population, the location may not be 
continuous, but the two parents chromosomes were selected at 
the same location; Second, a pro-offspring with the guarantee 
that the selected gene position is located at the same with the 
parents position is generated. Third, we find the position of the 
gene selected in the first step in another parent, and then put 
the remaining genes sequentially into the pro-offspring 
generated in the previous step 2. 

parent 1: 

1 4 8 8 7 3 11 3 2 10 2 10 



proto-child: 

        7  3 11  3         

offspring 1: 
1 10  2  8  7  3 11  3 2  4  8  10  

 

parent 2: 

1 3 11 8 7 10 2 3 2 4 8 10 

Fig. 4. Chromosome crossover   

G.  mutation 

The role of mutation is to ensure the vast diversity of the 
population with the operation that change the value of a 
particular gene from one generation of a population, that also 
can avoid the possible convergence of local convergence. In 
this work, the probability of mutation is set as 0.01~0.1.  

V. PERFORMANCE EVALUATION 

In this section, we conduct experiments and evaluate the 
performance of our algorithm by using real trajectories dataset. 
We use the Beijing road data with about 300,000 vertices and 
400,000 edges, and utilize two historical trajectories datasets, 
the Taxi, which contains about 100,000 trajectories of user 
orders generated by more than 5,000 public taxicabs in one 
month in Beijing, Ucar [7], which contains about 300,000 
trajectories of user orders generated by more than 4,000 public 
taxicabs in two weeks in Beijing. The riders' trajectories 
include start and destination point, earliest start time, latest 
start time, latest reach time, the drivers' trajectories includes 
start and destination point, earliest start time, latest start time. 
We also simulate some drivers trajectories by using history 
hottest start and destination points. Experimental settings: All 
experiments are run on a machine equipped with 3.6 GHz Intel 
Core i7-4790 CPU, 16GB RAM, window7 OS and algorithms 
implemented in Python 27. 

We evaluate the algorithms mainly from two aspects, the 
running time, the shared path ratio. We compare our algorithm 
with the XAR [11], TGA [15]. We conduct our experiments 
for different number of drivers from 3000 to 15000 with a 
fixed number of riders (i.e., 9000). By default, t0 = 100, tf = 10, 
and M1=1000 for SAGA algorithm. We make use of the grid 
matrix in Section 4 when compute the shortest distance. 

A. Efficiency  

We assess the efficiency by fixing the number of drivers as 
9000 while varying the number of riders from 3000 to 12000 

presented by x-axis. In Figure 5a, 5b, we set the same number 
of iterations as 800 for SAGA and GA. Figure 5 shows the 
results corresponding to different algorithms. We can see that 
SAGA is greater than the pure genetic algorithm(GA). 
Meanwhile, since the SAGA takes advantage of a fast 
acceleration adaptation function, the running time is not too 
high. From Figure 5c and Figure 5d, our algorithm running 
time is superior to XAR and TGA. 

B. Effectiveness 

Figure 6 shows the performance of average shared path 
ratio. The number of iteration is set as 800 for SAGA and GA. 
We have the following observations that the matched ratio of 
SAGA is higher than the GA, because the SAGA search in the 
range of chromosome neighborhood, thereby avoiding falling 
into local optimal. Figure 6c and Figure 6d show that our 
algorithm ratio is within 72%-75%, and is better than baseline 
algorithms within 65%-54%.  

C.  The effects of the parameter：descent speed M1  

We evaluate how the annealing descent speed affects the 
running time and the matching ratio. We set parameter M1 as 
500, 1000, 1500 for SAGA_t1, SAGA_t2, SAGA_t3 
respectively, the results are shown in Figure 7. The larger the 
M1 is, the faster the evolution change. We have the following 
observations in Figure 7, as M1 grows, the running time also 
increase, this is because it requires more loop iteration 
calculations. Meanwhile, from Figure 7b and Figure 7d, the 
approximate matched ratio enlarge as well, because it is 
possible to gain more candidate chromosomes from the 
neighborhood of old chromosomes.  

VI. CONCLUSION 

In this work, we utilize real dataset to model a ride-sharing 
problem and present a simulated annealing genetic algorithm  
to address it. The proposed SAGA outperforms commonly 
baseline algorithms including XAR and TGA. We run a 
careful iterative turning process, and the extensive 
experiments on large car services datasets show the advantage 
of our algorithm.  

There are three interesting directions for the future work, 
(a)we will incorporate traffic conditions to assemble the 
candidate riders, (b)consider the ride-sharing with social 
networks, (c)introduce artificial intelligence algorithm to solve 
the ride-sharing problem.  
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Fig. 5. Comparison of running time taken by SAGA, GA, XAR,TGA 
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Fig. 6. Comparison of share path ratio taken by SAGA, GA, XAR,TGA 
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Fig. 7. Performance of running time and share path ratio by varying descent speed M1
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