
A Real-Time Ride-Sharing Matching Framework

Using Simulated Annealing Genetic Algorithm
Jie Xu

1
, Yong Zhang

1
, Chunxiao Xing

1
, Guigang Zhang

2

1
Research Institute of Information Technology, Beijing National Research Center for Information Science and Technology,

Department of Computer Science and Technology, Institute of Internet Industry, Tsinghua University, Beijing 100084, China
2
Institute of Automation, Chinese Academy of Sciences

{xuj15}@mails.tsinghua.edu.cn, {zhangyong05, xingcx}@tsinghua.edu.cn, {guigang.zhang}@ia.ac.cn

Abstract: Recently, ride-sharing services are becoming more

popular in commercially application, which have attracted many

researchers' attention. The ride-sharing provides significant

economic, societal and environmental benefits in a sharing

economy, such as reducing pollution, travel costs and traffic

congestions. This kind of problem essentially is to maximize the

matched ride-sharing pairs, and obviously is an optimization

problem. There are lots of platforms for dynamic peer to peer

ride-sharing, however, existing researches can be improved

better. For example, how to reduce the algorithm computing time,

and maximize the matching effectiveness to gain more economic

benefits. In this work, we first introduce the problem of ride-

sharing with time guarantee on road network, and then design a

novel heuristic simulated annealing genetic algorithm. In

addition, we carefully adjust the parameters with different

constraints, and conduct extensive verification experiments with

realistic datasets derived from Beijing car services, the results

demonstrate the advancement of our methodologies.

Keywords—Road Network, Ride-sharing, Simulate Annealing

Algorithm, Gentic Algorithm

I. INTRODUCTION

Recently, we witness the rapid growth of the sharing
economy, in which the resource owners temporarily transfer
their properties to someone to acquire the benefits, the ride-
sharing is the one of the most representative applications, that
means someone acts as a driver and offers the ride-sharing
service to bring together travelers with similar trip. Nowadays,
the ride-sharing has become very prevalent application,
consequently appearing lots of startups companies, typical like
DIDI, Uber, and Lyft. There are lots of increasing researches,
however, most existing methods have several limitations, for
example, the efficiency is not high, and the methods need deep
analysis of specific issues of the problems, or the extendibility
is weak. Generally speaking, solving this kind of optimal
problem is not easy. People have studied various approaches
to address it [1,2,3], such as the integer linear programming,
the branch-and-bound problem and the approximation
algorithm [4].

 In this work, we focus on the ride-sharing problem with
time windows. There are many challenges to address such
problems: First, it has been proved as an NP hard problem
[10]; Second, to calculate the sharing ratio, it needs to
calculate the shortest path, it is time-consuming; Third, for the
1
drivers, their main concerns are the economic benefits, thus it

is not only needed to minimize detour distance at most in carry

DOI reference number: 10.18293/SEKE2018-079

services, but also to maximum the number of matched pairs, it
is a bi-objective problem, which can be solved by the
simulated annealing(abbr.SA) or genetic algorithm(abbr.GA).
Simulated annealing is a probabilistic technique for
approximating the global optimum in a large search space, and
the genetic algorithm is derived from the process of natural
selection and genetic evolutionary. With the above mentioned
knowledge, we present a framework which combines the
simulated annealing algorithm with the genetic algorithm. The
contributions of this work are summarized as follows: First,
we establish the map grid, it can effectively reduce the shortest
path calculation time. Second, we designed a formulation to
describe the problem, and then develop a novel simulated
annealing genetic algorithm(abbr. SAGA). Third, we conduct
extensive experiments on the real dataset, and our results show
the superiority of our approach.

 The rest of this paper is organized as follows: we propose
the related important work on ride-sharing and kinds of
approaches in Section 2, and then model the problem in
Section 3, afterwards, we illustrate our algorithm in detail in
Section 4. Experimental results are presented in Section 5. We
outline the conclusions of the paper in Section 6.

II. RELATED WORKS

The ride-sharing problem has attracted increasing attention,
In this section, we introduce the related work and summarize
the key technologies for different algorithms [5,6]. The studies
can be classified into three categories, approximation
algorithms, filter and refine algorithms, heuristic algorithms.

Ta et al. [7] proposed a new ride-sharing model that each
driver has a requirement restriction with the shared route
percentage, two variants of the ride-sharing problem are
proposed, i.e., multiple drivers and a single rider and multiple
drivers and multiple riders. To improve the efficiency, an
approximate method with error bound guarantee was proposed,
that meant updating the lower and upper bounds of the
maximal graph matching until the bounds gap was small. The
ides was very innovative and useful.

In [8], a highly generalized model for the taxi and delivery
services in the market economy was proposed. The model can
efficiently used with surge pricing mechanism. To solve the
above problem, they proposed an approximation algorithm
which was transferred to the multiple disjoint paths (MDP)
problem, and carefully proved their algorithm had a tight
approximate ratio with the original problem.

https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Natural_selection

Furuhata et al. [9] proposed a review of ride-sharing to
understand the key aspects of existing ride-sharing systems.
The main characteristics to describe different aspects of ride-
sharing systems were described. They classified the existing
problem into six categories depending the target segments and
criteria. The objective of the work was to identify key
challenges thus helped to build the effective formal ride-
sharing mechanisms.

Ma et al. [10] demonstrated a large-scale taxi ride-sharing
for a dynamic ride-sharing problem, the framework included

two steps：the first was a definition of a searching algorithm

by taking advantage of a spatial-temporal index, then a
scheduling algorithm was proposed. To address the heavy
computational load, a lazy method was described by
partitioning the road network into several grids. The
approximated distance finally approved the effectiveness of
their approach.

Thangaraj et al. [11] described a platform named Xhare-a-
Ride (XAR) system for dynamic peer-to-peer ride-sharing.
Three kinds of geographical hierarchical discretization
including region using grids, landmarks and clusters, were
used to help to eliminate shortest path computation during
search. The notions were valuable for integration with multi
modal trips.

Alarabi et al. [12] presented an effective framework named
SHAREK which can embed inside existing approaches to
improve the performance and quality. The model took into
consideration the users' maximum willing waiting time and the
cost of both riders and drivers. Three consecutive phases
named Euclidian temporal pruning, Euclidian cost pruning,
and Semi-Euclidean skyline-aware pruning were used to avoid
the expensive shortest path computations.

 Qian et al. [13] introduced SCRAM in order to provide
recommendation fairness without sacrificing driving
efficiency, the by-product of a framework named SCRAM
was the capability of offering actual driving routes rather than
rough driving directions. The recommended routes were
evaluated from three aspects, i.e., priority principle, decaying
principle, sharing principle. The successive probability of
picking up customers had higher priority than the driving cost,
and the probabilities of road sections were appraised
decreasingly with the distance from the starting point.

 Huang et al. [14] proposed a large scale service guarantee
real-time ride-sharing, and demonstrated kinetic tree
algorithms which can satisfy dynamic scheduling requests.
They depicted a hotspot-based algorithm to avoid duplicates
computation, the drop-off locations were grouped which led to
a large number of valid schedules to satisfy the rider-driver
constraints.

In [15,16], a genetic and insertion heuristic algorithm for a
single rider was proposed. The main idea was to fine the best
trips which can be shared by more than one driver with time
constraints. They first modeled the ride-sharing problem with
the time constraints, then illustrated the detailed
implementation steps of the genetic algorithm. They also
defined five different mutation operators basing on diverse

services time constraints. The experimentation results
indicated their algorithm was feasible.

III. PROBLEM DEFINITION

In this section, we formally propose the preliminaries and
define the notions of our ride-sharing problem, and then depict
the framework of our system.

A. Preliminaries

 Definition 1. G = (V, E) is used to model a road network,
where a vertex set V is associated with a geographical position,
including the longitude and latitude. An edge set E is
associated with the weight such as the distance or travel cost
between two different vertices.

Definition 2. (Rider). A rider ri=(r
s
i, r

e
i, tr

e
, tr

L
, tr-r

L
) is

defined as a rider who intends to go to the destination r
e
i from

r
s
i within an interval bounded by the earliest time tr

e
 and the

latest time tr
L
. (Driver). A driver di=(d

s
i, d

e
i, td

e
, td

L
, d

s
i, t

e
i, λmax)

is defined as a driver who plans to go to the destination d
e
i

from d
s
i,, at the latest start time td

L
 with a acceptable detour

distance ratio λmax. D denotes the drivers set, R denotes the
riders set.

Definition 3. (Sharing ratio for driver) considering the
driver's minimum detour distance λ max, we introduce the
sharing ratio to measure the ride-sharing effectiveness.

 
 

 (1)
,

,
, det ,

i j

j

j j

i

i i

r
d r

r our d r

（d ）

（d ）+




 

δ (di,rj)stands for the shortest distance of rider rj, the

 de o , jit ur d r refers to the cost of detour distance to pick up or

put down the riders. We assume that if the sharing ratio is less
than the ratio bound (λmax), the match is valid. Some key
notations are summarized in Table 1 [7]:

Table 1. Some Key Notaions

Notation Definition

r
s
i rider's start point

r
e
i rider's destination point

tr
e
 rider's earliest start time

tr
L
 rider's latest start time

tr-r
L
 rider's latest reach time

td
e
 driver's earliest start time

td
L
 driver's latest start time

d
s
i, driver's start point

d
e
i driver's destination point

λ max driver's maximum acceptable detour ratio

ξ (d,r) detour distance for matched pair

B. Problem definition

The ride-sharing problem is defined as follows: For a set
of drivers and a set of riders on a road network G(V,E), when
the riders send series requests, we aim to satisfy the requests

and acquire the maximum sharing matching ratio denoted

by  
,

,detour
ji r

i j

d D R

d r
  

 under the temporal and distance

factors [9]. In Figure 1, there are 3 drivers and 3 riders, we
aim to match the drivers and riders with the minimum detour
distance.

V1

V4 V6

V2

V9

V11

V7

V3

V1 0

V8

V12

V5

d1(v1,v8)

d2(v7,v3)

 d3(v2,v10)

r1(v4,v8)

 r2(v3,v11)

 r3(v10,v2)...

Fig. 1. Example of ride-sharing between drivers and riders

IV. A SIMULATED ANNEALING GENETIC ALGORITHM

Our goal is to minimize the detour distance for whole
riders' requests, it is obvious a global optimization problem. A
brute force method is to enumerate all possible driver-rider
pairs. However, traditional approaches are rather time
consuming and inefficiency. To tackle the challenges, we first
divide the map into many regular squares to quickly find the
approximate shortest distance, and then introduce a heuristic
simulated annealing genetic algorithm (SAGA) to address the
optimal driver-rider pairs matter.

A. Grid construction

To calculate the shortest path on road networks, Ma et
al.[10] presented a spatial gird which did pre-calculation and
stored the shortest path by dividing the map into small fixed
square areas [18]. Their main ideas lay in the approximate
path and distance. Similarly, we also utilize this basic ideas,
select the history hottest visited places on behalf of the grid's
location, and then construct the shortest distance matrix and
the shortest path matrix. For any two arbitrary points, we first
figure out which girds they geographically belong to, then we
acquire the shortest distance by querying the corresponding
grid matrix.

B. Formulation representation

The bi-objective function that minimizes the total distance
and maximizes the number of the valid matched pairs is
provided in Equation 2. The α, β, γ define the relative weight
factors. Let xi,j=1 if the driver-rider pair is matched from node
i to node j. The formulation is,

  ,

, ,

) (), 2
i n

i j

D r R x D y R

i n

d

max(detou rr d x
     

  

subject to:

 {0,1}ijx  (3)

i j

i D j R

d r D R
 

   (4)

ij numberx D (5)

ij numberx R (6)

r

L

d

et t (7)

r

L L

dt t (8)

  max,i jd r  (9)

where Constraint (3) enforces the matched pairs have only
two choices: 0 or 1. Constraints (4) ensures that the number of
drivers and riders leaving the starting is equal to the number of
drivers and riders arriving at the destination. Constraints (5)
and Constraints (6) ensures the total matched driver-rider are
less than the total initial given drivers. Constraints (7) ensures
driver's latest start time is earlier than rider's earliest start time.
Constraints (8) ensures driver's latest start time is earlier than
rider's latest start time. Constraints (9) ensures driver's detour
distance is less than the driver's default acceptable detour
distance.

C. Procedure of SAGA

The procedure of SAGA is described in Figure 2. The
GASA process firstly starts by given some important
parameters such as population size, initial temperature,
number of generations, probability of crossover and mutation.
An initial population of chromosome is also generated, every
chromosome is a candidate solution for problem [17].

Generate initial random

population, set

parameters

Calculate every

chromosome’s

neighborhood f(j)=U(i)

Set new chromosome

as f(j)

Y

Accept new chromosome

with above probability

Select new chromosome by fi(tk)
probability distribution

 Chromosome crossover

Chromosome mutation

new next generation

population

End

N

N

Loop M1 times

Loop M2 times

Start

Meet the stop
condition

Fig. 2. SAGA procedure for ride-sharing

min()
exp() 1

k

f i f

t


 

min()
() exp()k

k

f i f
Calculate t

t


 ｉｆ

For every chromosome, we use the objective function
(Equation 2) as a fitness function. The selection of fitness
function directly affects the convergence speed of genetic
algorithm. A random value U(i) as f(j) is selected from the
neighborhood of f(i), then probability function

k

f (j) - f (i)
(-)

t
exp is calculated. If the value is greater than

constant one, then accept the neighborhood f(j) as the new
chromosome, else accept the new one with above probability.
After above steps have been executed in M1 cycles, new
population named NewPopOne where the size is equal to the
initial population is generated. Later, the fitness of each

chromosome represented by function min

k

f () - f
(-)

t

i
exp is

calculated, afterward, new chromosome with the probability
distribution determined by above fitness function is generated,
that process which is executed in M2 cycles finally results in
the next new population named NewPopTwo. In addition, the
crossover and mutation strategies are executed to create
offspring until the next new population is generated.

The above mentioned steps are repeated until the results
meet the expectation value or iteration operations are all
completed.

D. Problem coding

We randomly assemble the driver-rider matched pairs
successively in one chromosome, the length of the
chromosome depends on the minimum of drivers or riders.
The whole population is set as 50. Figure 3 presents the
problem coding.

parent 1:

1 4 8 8 7 3 11 3 2 10 2 10

parent 2:

1 3 11 8 7 10 2 3 2 4 8 10

parent i:

......

Fig. 3. Chromsome initial coding

E. Annealing Algorithm Fundamentals

In general, the key to integrate the two algorithms lies in
how to select the next generation, the SAGA selects the next
generation with the higher probability of getting close to the
target in the range of neighborhood, in which the algorithmic
process is a constant random walk from one state to another.
We can use Markov process to describe the transfer
probability, acceptance probability.

The challenge of Annealing Algorithm are as follows:

(1) The initial temperature t0. When the initial temperature
is high, it is more likely to search for the global optimal
solution, but it takes a lot of computation time. On the other
hand, the computation time can be decrease, but the global
search performance may be affected.

(2) The annealing speed. The global search performance is
closely related to the number of iterations at each temperature
t. "Full" search at the same temperature is quite necessary, but
it also takes time to calculate. The increase of the number of
loop cycles will inevitably lead to an augment in computation
overhead. We use the following function [18]:

1

k+1

0

1 0

t (1) (10)

(11)

k k

f

f

t t

t t

M t t





 




the t0 and the tf are default value, M1 is the number of
iterations. In theory, SA can solve most of the optimization
problems, but in practice, due to the global optimum annealing
speed is too slow to be accepted. In this article, we select the
cooling strategy as follows:

min()
f () exp() (12)i k

k

f i f
t

t


 

while the fmin denotes the minimum of fitness value in
population. According to the Metropolis criterion [21], the
probability that particles tend to equilibrate at temperature t is
exp (-ΔE / (kT)), where E is the internal energy at temperature
T, k is Boltzmann's constant. Metropolis formulation are often
expressed as follows:

1 () ()

p (13)() ()
exp() () ()

new old

new old

k

if E x E x

f j f i
if E x E x

t




 
 



 which means the algorithm is more likely to accept sort-
of-bad jumps rather than complete refuse to accept it, the
probability gradually decreases over time till solution becomes
global stability.

F. Crossover

The function of the crossover is to ensure the stability of
the population and evolvement towards the optimal solution.
Crossover can facilitate avoiding premature convergence.
Chromosome crossover doesn't mean descendants are definite
better than their parents, but represent the next generations
have a better development tendency than the previous
generation. There are many kinds of crossover methods, multi-
point crossover refers to exchanging the multiple crossover
points in an individual chromosome. In this paper, we use the
method of position-based multi-point crossover (PBC) [20]:

As in Figure 4, first, we select a random pair of
chromosomes (parents) in population, the location may not be
continuous, but the two parents chromosomes were selected at
the same location; Second, a pro-offspring with the guarantee
that the selected gene position is located at the same with the
parents position is generated. Third, we find the position of the
gene selected in the first step in another parent, and then put
the remaining genes sequentially into the pro-offspring
generated in the previous step 2.

parent 1:

1 4 8 8 7 3 11 3 2 10 2 10

proto-child:

 7 3 11 3

offspring 1:
1 10 2 8 7 3 11 3 2 4 8 10

parent 2:

1 3 11 8 7 10 2 3 2 4 8 10

Fig. 4. Chromosome crossover

G. mutation

The role of mutation is to ensure the vast diversity of the
population with the operation that change the value of a
particular gene from one generation of a population, that also
can avoid the possible convergence of local convergence. In
this work, the probability of mutation is set as 0.01~0.1.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments and evaluate the
performance of our algorithm by using real trajectories dataset.
We use the Beijing road data with about 300,000 vertices and
400,000 edges, and utilize two historical trajectories datasets,
the Taxi, which contains about 100,000 trajectories of user
orders generated by more than 5,000 public taxicabs in one
month in Beijing, Ucar [7], which contains about 300,000
trajectories of user orders generated by more than 4,000 public
taxicabs in two weeks in Beijing. The riders' trajectories
include start and destination point, earliest start time, latest
start time, latest reach time, the drivers' trajectories includes
start and destination point, earliest start time, latest start time.
We also simulate some drivers trajectories by using history
hottest start and destination points. Experimental settings: All
experiments are run on a machine equipped with 3.6 GHz Intel
Core i7-4790 CPU, 16GB RAM, window7 OS and algorithms
implemented in Python 27.

We evaluate the algorithms mainly from two aspects, the
running time, the shared path ratio. We compare our algorithm
with the XAR [11], TGA [15]. We conduct our experiments
for different number of drivers from 3000 to 15000 with a
fixed number of riders (i.e., 9000). By default, t0 = 100, tf = 10,
and M1=1000 for SAGA algorithm. We make use of the grid
matrix in Section 4 when compute the shortest distance.

A. Efficiency

We assess the efficiency by fixing the number of drivers as
9000 while varying the number of riders from 3000 to 12000

presented by x-axis. In Figure 5a, 5b, we set the same number
of iterations as 800 for SAGA and GA. Figure 5 shows the
results corresponding to different algorithms. We can see that
SAGA is greater than the pure genetic algorithm(GA).
Meanwhile, since the SAGA takes advantage of a fast
acceleration adaptation function, the running time is not too
high. From Figure 5c and Figure 5d, our algorithm running
time is superior to XAR and TGA.

B. Effectiveness

Figure 6 shows the performance of average shared path
ratio. The number of iteration is set as 800 for SAGA and GA.
We have the following observations that the matched ratio of
SAGA is higher than the GA, because the SAGA search in the
range of chromosome neighborhood, thereby avoiding falling
into local optimal. Figure 6c and Figure 6d show that our
algorithm ratio is within 72%-75%, and is better than baseline
algorithms within 65%-54%.

C. The effects of the parameter：descent speed M1

We evaluate how the annealing descent speed affects the
running time and the matching ratio. We set parameter M1 as
500, 1000, 1500 for SAGA_t1, SAGA_t2, SAGA_t3
respectively, the results are shown in Figure 7. The larger the
M1 is, the faster the evolution change. We have the following
observations in Figure 7, as M1 grows, the running time also
increase, this is because it requires more loop iteration
calculations. Meanwhile, from Figure 7b and Figure 7d, the
approximate matched ratio enlarge as well, because it is
possible to gain more candidate chromosomes from the
neighborhood of old chromosomes.

VI. CONCLUSION

In this work, we utilize real dataset to model a ride-sharing
problem and present a simulated annealing genetic algorithm
to address it. The proposed SAGA outperforms commonly
baseline algorithms including XAR and TGA. We run a
careful iterative turning process, and the extensive
experiments on large car services datasets show the advantage
of our algorithm.

There are three interesting directions for the future work,
(a)we will incorporate traffic conditions to assemble the
candidate riders, (b)consider the ride-sharing with social
networks, (c)introduce artificial intelligence algorithm to solve
the ride-sharing problem.

3000 6000 9000 12000 15000

0

50

100

150

ru
n
n
in

g
 t
im

e
(s

)

(a) TaxiDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
 (

s
)

(b) UcarDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
(s

)

(c) TaxiDataset, 9000 drivers

 SAGA

 XAR

 TGA

3000 6000 9000 12000 15000

30

60

90

120

150

180

ru
n
n
in

g
 t
im

e
(s

)

(d) UcarDataset, 9000 drivers

 SAGA

 XAR

 TGA

Fig. 5. Comparison of running time taken by SAGA, GA, XAR,TGA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(a) TaxiDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(b) UcarDataset, 9000 drivers

 SAGA

 GA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(c) TaxiDataset, 9000 drivers

 SAGA

 XAR

 TGA

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h
a
re

 p
a
th

 r
a
ti
o

(d) UcarDataset, 9000 drivers

 SAGA

 XAR

 TGA

Fig. 6. Comparison of share path ratio taken by SAGA, GA, XAR,TGA

3000 6000 9000 12000 15000

0

40

80

120

160

ru
n

n
in

g
 t
im

e
(s

)

(a) TaxiDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h

a
re

 p
a
th

 r
a
ti
o

(b) TaxiDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0

50

100

150

200

ru
n

n
in

g
 t
im

e
(s

)

(c) UcarDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

3000 6000 9000 12000 15000

0.0

0.2

0.4

0.6

0.8

s
h

a
re

 p
a
th

 r
a
ti
o

(d) UcarDataset, 9000 drivers

 SAGA_t1

 SAGA_t2

 SAGA_t3

Fig. 7. Performance of running time and share path ratio by varying descent speed M1

ACKNOWLEDGMENT

This work was supported by NSFC(91646202), the
National High-tech R&D Program of
China(SS2015AA020102), Research/Project 2017YB142
supported by Ministry of Education of The People's
Republic of China, the 1000-Talent program, Tsinghua
University Initiative Scientific Research Program.

REFERENCE

1. Bartolini E, Bodin L, Mingozzi A. The traveling salesman

problem with pickup, delivery, and ride‐ time constraints[J].

Networks, 2016, 67(2): 95-110.

2. Agatz N, Erera A, Savelsbergh M, et al. Optimization for

dynamic ride-sharing: A review[J]. European Journal of

Operational Research, 2012, 223(2): 295-303.

3. Deb K, Pratap A, Agarwal S, et al. A fast and elitist

multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions

on evolutionary computation, 2002, 6(2): 182-197.

4. Z. Chen, H. T. Shen, X. Zhou. Monitoring path nearest neighbor

in road networks. SIGMOD, pages 591–602, 2009.

5. Goel P, Kulik L, Ramamohanarao K. Optimal pick up point

selection for effective ride sharing[J]. IEEE Transactions on Big

Data, 2017, 3(2): 154-168.

6. Asghari M, Shahabi C. An On-line Truthful and Individually

Rational Pricing Mechanism for Ride-sharing[J]. 2017.

7. Ta N, Li G, Zhao T, et al. An Efficient Ride-Sharing Framework

for Maximizing Shared Route[J]. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 2017.

8. Jia Y, Xu W, Liu X. An Optimization Framework For Online

Ride-sharing Markets[C]//Distributed Computing Systems

(ICDCS), 2017: 826-835.

9. Furuhata M, Dessouky M, Ordó?ez F, et al. Ridesharing: The

state-of-the-art and future directions[J]. Transportation Research

Part B: Methodological, 2013, 57: 28-46.

10. Ma S, Zheng Y, Wolfson O. T-share: A large-scale dynamic

taxi ridesharing service[C]//Data Engineering (ICDE), 29th

International Conference on. IEEE, 2013: 410-421.

11. Thangaraj R S, Mukherjee K, Raravi G, et al. Xhare-a-Ride: A

Search Optimized Dynamic Ride Sharing System with

Approximation Guarantee[C]//Data Engineering (ICDE), 2017

IEEE 33rd International Conference on. IEEE, 2017: 1117-1128.

12. Alarabi L, Cao B, Zhao L, et al. A demonstration of SHAREK:

an efficient matching framework for ride sharing

systems[C]//Proceedings of the 24th ACM SIGSPATIAL. ACM,

2016: 95.

13. Qian S, Cao J, Mou?l F L, et al. SCRAM: a sharing considered

route assignment mechanism for fair taxi route

recommendations[C]//Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining. ACM, 2015: 955-964.

14. Huang Y, Bastani F, Jin R, et al. Large scale real-time

ridesharing with service guarantee on road networks[J]. Pro-

ceedings of the VLDB Endowment, 2014, 7(14): 2017-2028.

15. Herbawi W, Weber M. The ride matching problem with time

windows in dynamic ridesharing: A model and a genetic

algorithm[C]//Evolutionary Computation (CEC), 2012 IEEE

Congress on. IEEE, 2012: 1-8.

16. Herbawi W M, Weber M. A genetic and insertion heuristic

algorithm for solving the dynamic ridematching problem with

time windows[C]//Proceedings of the 14th annual conference on

Genetic and evolutionary computation. ACM, 2012: 385-392.

17. Shen B, Zhao Y, Li G, et al. V-Tree: Efficient kNN Search on

Moving Objects with Road-Network Constraints[C]//Data

Engineering (ICDE), 2017 IEEE 33rd International Conference

on. IEEE, 2017: 609-620.

18. Wenxun Xing, Jinxing Xie. Modern optimization calculation

method[M]. Tsinghua University Press, 2005

19. Pham D, Karaboga D. Intelligent optimisation techniques:

genetic algorithms, tabu search, simulated annealing and neural

networks[M]. Springer Science & Business Media, 2012.

20. Razali N M, Geraghty J. Genetic algorithm performance with

different selection strategies in solving TSP[C]//Proceedings of

the world congress on engineering. Hong Kong: International

Association of Engineers, 2011, 2: 1134-1139.
21.Van Laarhoven PJM. Simulated annealing[M]//Simulated
annealing: Theory and applications. Springer, Dordrecht, 1987.

