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Abstract— In the software development process, the 
acceptance testing may be used by non-technician users to 
define software requirements. In this article, we use the US-
UIDs (User Scenarios through User Interaction Diagrams) as 
automated acceptance tests in order to provide 
communications and collaboration between programmers and 
users. We propose three metrics for measuring the data 
uniformity in the US-UIDs. These metrics are investigated in 
four projects. The resulting measures from the investigations 
of the four projects are used to build a scale with classes to 
classify the uniformity of the US-UIDs. The classes 
(duplication, uniformity, irregularity) were created from 
empiric evaluation and compared to the measures from the 
offered metrics. The classification purpose is to identify the 
US-UIDs as uniform or irregular. 

Keywords: US-UID; User Scenarios Through User 
Interactions Diagrams; ATDD; Uniformity; Acceptance Test; 
Automated Test; Executable Test; Executable Requirement; 
Quality Factor; Requirements; Requirements Specification; 
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I.  INTRODUCTION 
Analogous to the Test-Driven Development (TDD) [1], 

the Acceptance Test-Driven Development (ATDD) includes 
team members with different perspectives (client, developer, 
tester) collaborating to write acceptance testing before 
deploying the functionality [2]. Teams that try ATDD 
generally find that only by defining acceptance tests when 
discussing requirements outcomes there will be a better 
understanding. However, the acceptance tests force us to 
reach a solid agreement about the exact behavior that the 
software should expose [3]. 

The User Scenarios through User Interaction Diagrams 
(US-UIDs) are suggested to allow that non-technician users 
define software functional requirements in the ATDD 
approach [4, 5]. The US-UIDs are used to specify primarily 
the values of the information exchanged between the user 
and the computer in tasks that represent functional 
requirements, mainly in information systems and can be 
used as automated acceptance tests [6].  

To use a US-UID as an automated test, the following 
steps are performed: specification of the US-UID, 
nomination of the fixtures that represents the US-UID 

elements, and creation of the glue code that will link these 
fixtures to the SUT (System Under Testing) code [6]. 
Although data uniformity problems are generated in the 
specification step, the identification of these problems 
occurs usually in all three steps of test automation.  

Figure 1 shows a pair of US-UIDs to exemplify the 
uniformity problem in the data. The example considers only 
a part of the original US-UIDs to show data with uniformity 
problem. Both US-UIDs show the same functionality, the 
specification of the authentication system, but show 
different values to the information. The example highlights 
two uniformity problems, where the first is related to the 
values of the user inputs “Mary” and “John”. Both values 
are different from one another but have the same sense. The 
sense is clearly a user name. This sense can be extracted 
through the experience with people names and with data 
from close elements in the US-UID. In this authentication 
system, it is hard to deconstruct the sense of user names for 
these values, however, for specific systems with little 
known specialties between the stakeholders, the non-
uniform data causes loss of sense. The second uniformity 
problem is related to the system outputs “Enter” (Figure 1, 
US-UID A) and “Log In” (Figure 1, US-UID B). Both 
systems outputs represent in SUT implementation the button 
text for the action of entering in the system. For 
communication purposes, the stakeholder can understand 
the text of these two system outputs that, although different, 
have the same sense. However, as an automated test, there 
will be a problem with the implementation. As the system 
outputs of a US-UID are also assertions and the assertions 
rely and capture the SUT values, it is inviable that an 
implementation, in an automated manner, could answer to 
two distinct values (“Enter” and “Log in”) in the same way, 
unless the same action is duplicated in the SUT. 

The irregular data generation occurs mainly in the 
shared specification, i.e., when more than one stakeholder 
specifies US-UIDs to a same system. Thus, when there is 
more than one person specifying different US-UIDs, usually 
there is no care to keep the data uniform, as each person 
uses the data domain that he/she knows for the test. Other 
way to generate non-uniform data is by the partial repetition 
of a US-UID path. The partial repetition is necessary 
because there cannot be deviations and branches in the US-
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UIDs [4, 5]. Therefore, when you repeat manually parts of 
the US-UIDs, it is usual to change small details and not 
apply the changes in all the US-UIDs, that way, there will 
be a uniformity problem that will be spread in all test 
automation steps. Furthermore, as the US-UIDs of a project 
increases, more difficult becomes the uniformity problems 
identification.  

 
Figure 1.  Two fragments of US-UIDs with dat uniformity problems  

The general purpose of this work is to suggest metrics 
for measuring data uniformity from US-UIDs. The specific 
purpose is the empiric evaluation of the metrics to create a 
classification that allows the identification of US-UIDs with 
irregular data. 

This paper is organized as follows. The second section 
shows the theory basics about the US-UIDs. The proposal is 
detailed in the third section. The fourth section shows the 
projects of the evaluation. The fifth section shows the 
results of the evaluation. Finally, the sixth section shows the 
conclusions. 

II. BACKGROUND 
The US-UIDs are used for specifying software 

requirements. The US-UIDs have been suggested as a 
specialization of the UID technique [7], where the abstract 
information is replaced with concrete values from the user 
scenarios. The applicability of the US-UIDs is usually made 
by non-technician users to create acceptance testing before 
the development. In agile development teams, the US-UID 
can be used for communication and collaboration between 
the stakeholders in software development. 

Figure 2 shows an example of US-UID with the 
interactions of the sum operation using of a calculator. 
According to Longo and Vilain [4], this example was 
adopted to explain to non-technician users how to specify 
the US-UIDs. With the knowledge acquired from the 
example, non-technician users have participated in 
experiments to evaluate the correctness and the 
completeness of the US-UIDs [4, 5]. 

 
Figure 2.  Example of a US-UID of a calculator sum operation, as 

suggested by Longo and Vilain [4, 5] 

In this example, the user enters the values of the sum 
operation (3 + 1 =) and the system shows the result (4). In 
the example, five states of interaction are shown, meaning 
each state of interaction (ellipse) contains the user input and 
the system output values. The state of interaction flow is 
represented by the arrow direction through the states of 
interaction. The initial state is the first state of interaction 
that follows the arrows and the end state is the last state in 
the flow. Table I shows the language symbols from the US-
UIDs. 

TABLE I.  SYMBOLS FOR THE LANGUAGE OF US-UIDS [1, 2] 

Symbol Use 

 

Ellipse – represents a state of interaction. 

 Arrowed line – represents the direction flow, i.e., the 
transition between interactions states. 

 
Rectangle – represents the user input, its value is 
represented by a set of characters placed within the 
rectangle. 

Characters 
sequence  

Value – represents the system output, where a set of 
characters is placed within the ellipse. 

 

A. Mathematical Model of the US-UIDs 
The US-UIDs can be represented in a mathematical 

model. Thus, as suggested by Longo et al. [6], the structure 
of a US-UID is formed by a set of states of interaction and 
each state of interaction is, in turn, formed by a set of user 
inputs and a set of system outputs. A state of interaction is 
represented by: 

𝛿" = 𝜀"%, 𝜀"', 𝜀"(, … , 𝜀"*, 𝜊"%, 𝜊"', 𝜊",, … , 𝜊"- ,
∀𝑖	(𝑖 = 1; 	𝑘 ), ∀𝑗	(𝑗 = 1; 	𝑛 ),
(∀𝑙	 𝑙 = 1;𝑚 )	

(1) 

Given a state of interaction, 𝑛 is the amount of system 
outputs and 𝑚 is the amount of user inputs, ο",  is the 𝑙-th 
system output from 𝑖-th state of interaction, ε<=  is the 𝑗-th 
user input of the 𝑖 -th state of interaction. A US-UID is 
represented as follows: 

 
𝜏? = 𝛿?%, 𝛿?', … , 𝛿?", … , 𝛿?@ ,	 

																														 ∀𝑖	(𝑖 = 1; 𝑘 ), ∀𝑡	(𝑡 = 1; 𝑑 )		
(2) 

 
The 𝑘 is the amount of states of interaction of the US-

UID. The δ?" is the 𝑖-th state of interaction of the 𝑡-th US-



UID. As a restriction, the set must have at least a state of 
interaction. 

III. PROPOSAL 
The lack of uniformity in data may cause problems in 

the communication and collaboration between the 
stakeholders, when defining the fixture names and the glue 
code. Therefore, it is important to evaluate the data 
uniformity in the US-UID specification step. For evaluation, 
easy-to-apply uniformity metrics are useful, especially, 
computational metrics, with measures of easy availability 
for the stakeholders. 

This paper proposes three metrics to measure the 
uniformity of US-UIDs data. The proposed metrics are of 
absolute uniformity, absolute irregularity and relative 
uniformity. The metrics for absolute uniformity and 
absolute irregularity are created by comparing pairs of US-
UIDs. A set of pairs of US-UIDs is generated from a set of 
US-UIDs. The set of pairs of US-UIDs is defined by: 

𝜓 =
𝜏%, 𝜏' , 𝜏%, 𝜏E , … , 𝜏?, 𝜏F , … , 𝜏 GH% , 𝜏G , … , 𝜏G, 𝜏 GH% ,
∀𝑡	(𝑡 = 1; 𝑑 ), ∀𝑞	(𝑞 = 1; 𝑑 ), 𝑡 ≠ 𝑞,	d	>	1	

      (3) 

where, 𝑑 is the amount of US-UIDs from generated set. The 
set generated with the pairs of US-UIDs should have at least 
two US-UIDs. Both 𝜏? and 	𝜏F are two any US-UIDs from a 
US-UIDs set. (𝜏?, 𝜏F) is a pair formed by distinct US-UIDs. 
For the pairs formation, the restriction is that the formed 
pairs cannot exist with the same US-UIDs, such as 𝑡	 ≠ 𝑞. 

A. Metrics for the absolute uniformity 
The absolute uniformity is calculated for each pair 

(𝜏?, 𝜏F) where each pair of US-UID is split by user inputs 
and system outputs. The user inputs and system outputs are 
also compared in pairs.  

A pair of uniform system outputs is formed by a system 
output of 𝜏?  and by another system output of 𝜏F . The 
criterion to form the pairs of system outputs is that the data 
must be identical. The measure of the absolute uniformity of 
system outputs from a pair (𝜏?, 𝜏F)  is calculated by the 
following formula:  

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV = 1	𝑖𝑓	𝜊", ∈ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?") 

 
(4) 

The expression ο", ∈ τF	 means that the system output 
ο", belongs to one of the system outputs among all the states 
of interaction τF . The absolute uniformity of the system 
outputs is equal to the count of all system outputs from all 
states of interaction of a US-UID that have a pair compared 
to another US-UID. The absolute uniformity of the user 
inputs (UniformInput(kU,kV)) is built in a similar way to the 
metrics for system outputs. 

B.  Metrics for the absolute irregularity  
In this study, absolute irregularity is the complement of 

absolute uniformity. The metrics for the absolute 
irregularity is built for a pair (𝜏?, 𝜏F)  of US-UIDs. The 
construction of this metric is similar to the metrics for 
absolute uniformity, in that the metrics for absolute 
irregularity is sectioned by user inputs and system outputs. 
The absolute irregularity of the system outputs from a pair 
(𝜏?, 𝜏F) of US-UIDs is calculated in relation only to system 
outputs belonging to 𝜏?. So, the system outputs belonging to 
𝜏? that do not have a pair are counted as being irregular. The 
criteria for not forming a pair of system outputs is that a 
system output belongs to 𝜏? and that no other belongs to  𝜏F 
with identical data. The absolute irregularity of the system 
outputs of a pair (𝜏?, 𝜏F)  is calculated by the following 
formula:  

𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV

= 1	𝑖𝑓	𝜊", ∉ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?") 

 

 

(5) 

The expression 𝜊", ∉ 𝜏F means that the system output 𝜊", 
does not belong to the system outputs among all states of 
interaction τF . The irregularity metrics for user inputs 
(NonUniformInput(kU,kV)) is built in a similar way to the 
metrics for system outputs.  

C. Metrics for the relative uniformity 
The relative uniformity metric is computed from the 

absolute uniformity and absolute irregularity metrics. So, for 
the measure of the relative uniformity we have the following 
equation:  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑈𝑛𝑖𝑓𝑜𝑚𝑖𝑡𝑦 kU,kV 	

= 	
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	+ 	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	
+	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

+		𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV
+	𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV

∗ 100 

 (6) 

The outcome measured from the relative uniformity 
takes the values in the range [0%, 100%]. For each 
comparison pair τ?, τF  the relative uniformity is 
calculated. This way, for a set of pairs of US-UIDS, the 
average of the relative uniformity can be used as a 
quantitative value that represents the general uniformity. 

D. Computational implementation of the metrics 
The uniformity metrics have been implemented in a 

computational version1. The computational version allows 
applying the metric in a large set of US-UIDs. The version 
has been implemented with the paradigm of object-oriented 

                                                             
1 https://github.com/douglashiura/us-uid 



programming and Java programming language. The 
implementation has been developed to measure the US-
UIDs specified in the framework Sc3n4r10 [6]. It handles 
the US-UIDs in files in JSON format2. This way, the files in 
JSON formats are converted in Java objects and then 
applied to the metrics. 

IV. EVALUATION OF METRICS  
To evaluate the metrics, the US-UIDs of four projects 

are taken into account. In each project, the metrics are 
applied, and the outcomes compared. The projects are 
specified in different ways and have a uniformity gap 
between them. In this section, research issues are also 
shown and discussed for applicability of the metrics on the 
projects. 

A. Project P1: 8-Puzzle 
The 8-puzzle is a game that consists in a grade with 

three lines and three columns. The grade has a sequence of 
numbers from 1 to 8 and a blank. The purpose of the game 
is to start in a random state and put in order the sequence of 
numbers. This project is comprised by the US-UIDs from 
Longo and Vilain [4, 5] study that measured the 
completeness and the correctness of the requirements 
specified by non-technician users. In the original 
experiment, fourteen participants specified the winning state 
of the game. During the specification, each participant 
should consider at least one move in the grade. Essentially, 
the US-UIDs specified in this project are duplicated, 
showing only small differences, as all participants had to 
specify the same requirement. This way, presumably, the 
data from the US-UIDs should be 100% uniform. 

B. Project P2: Web Application 
The web application is a system that has been developed 

for evaluation and monitoring of the courses chain from e-
Tec Brazil3. The system contains a database with surveys 
and evaluation outcomes about Brazilian Federal Education 
Institutes. A student evasion module has been developed 
with the specifications of the US-UIDs a priori. For the 
evasion module, four US-UIDs have been specified. The 
specification work was developed by two users and two 
experts in US-UIDs. After being specified, the US-UIDs 
were automated with tests and reviewed for quality 
improving, where the best data uniformity was considered. 
In this project, the US-UIDs were developed with the best 
correctness and completeness as possible. 

C. Projects P3 and P4: Messaging System 
The message system is an experiment where the 

requirements were chosen by the participants themselves. 
The participants were requested to think about the 
requirements for an application similar to WhatsApp, 
Telegram, Hangout or Messenger and, then, specify the 
requirements as US-UIDs. Two projects were performed in 
the same experiment. In the project P3, a participant, along 
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with an expert, specified the US-UIDs. The expert reviewed 
the US-UIDs produced in order to minimize uniformity 
problems. The project P4 was performed with four 
participants and without the expert's help. In the project P4, 
we tried to simulate the situation of shared specification 
where the irregularity of the data of the US-UIDs occurs. 
For both of these projects, the controlled factor is the aid 
from expert. By the practical knowledge, we know that the 
aid from expert is significantly important for a better quality 
of the uniformity. 

D. Uniformity a priori of the projects 
The four projects were selected with characteristics that 

contribute to a gap in the uniformity of US-UID data among 
the projects. The unevenness on the uniformity of each 
project is considered for subsequent evaluation of the 
sensitivity of the proposed metric. Table II shows the 
classification a priori of the uniformity of the projects. The 
classification was made by an expert on US-UIDs. For the 
classification, the characteristics of each project and the 
manual review from an expert were considered. The manual 
identification of the uniformity problems is complex when 
the amount of US-UIDs increases. Other factor that 
complicates the manual evaluation is the number of 
elements belonging to the US-UIDs evaluated. For example, 
when there are lots of elements as states of interaction in the 
US-UIDs, the evaluation becomes complex as well. For the 
manual evaluation of the US-UIDs from an expert, the 
number of elements should be small, around four US-UIDs, 
because, above this amount, lots of doubts may be raised for 
the manual evaluation. The projects were evaluated in a 
general way by the specialist, i.e., an evaluation was 
performed to each project.   

TABLE II.  CLASSIFICATION A PRIORI OF THE PROJECT UNIFORMITY 

Project Classification of the uniformity 
P1 Duplication 
P2 and P3 Uniformity 
P4 Irregularity 

 

The characteristics of the three classes are: 

• Duplication: occurs when the same requirement is 
specified in lots of US-UIDs, although small 
peculiarities occur in each specification. 

• Uniformity: occurs when the diagrams are being 
specified carefully and taking into account the 
domain data. In projects P2 and P3, uniformity was 
maintained with the help of experts. 

• Irregularity: occurs when the diagrams are specified 
by different people and each person considers only 
the data of their own knowledge and not of the 
general domain. In project P4, it was observed that 
uniformity was not maintained since each 
participant individually specified the US-UIDs and 
without the expert's help. 



V. RESULTS OF THE METRICS EVALUATION 
This section shows the results and the analysis of 

applicability of the measures of uniformity from projects. 

A. Relative Uniformity 
The relative uniformity was calculated to all pairs of US-

UID for the four projects. Figure 3 shows a graphic with the 
box plot of the relative uniformity of each project. 

 
Figure 3.  Visual comparison of the distribution of relative uniformity of 

each pair of US-UIDs for each project 

On the right side of the chart there are three intervals for 
the three classifications of uniformity defined by the expert 
to each project. The relative uniformity interval for the 
duplication class is [47.1% to 100%]. The relative 
uniformity interval for the uniformity class is [32.4% to 
100%]. The relative uniformity interval for the irregular 
class is [0% to 90%]. Ideally, the intervals should be 
continuous with no overlapping, however, the projects keep 
the real characteristics, i.e., they are not projects with all 
controlled data, removing discrepancies. This way, to 
classify the measures of relative uniformity, it is more 
suitable to consider a scale of classes of continuous intervals 
and with no overlapping. The suitable scale can be built 
using intervals closer to medians, but after analyzing the 
sensitivity of the metric. 

1) Sensitivity of the metrics 
The result of the Kruskal-Wallis ANOVA statistical 

analysis for uniformity measure of the projects shows the 
statistical measure (H=422.3), with degrees of freedom 
equal to (3) and probability of significance (Pvalue = 0.0000). 
This way, for a level of significance of 5% (α=0.05), the 
test suggests that there is a difference in measures of 
uniformity between the projects, therefore, the alternative 
hypothesis (H1) is asserted. Thus, a post hoc test is needed 
to identify among which projects there is a difference in the 
measure of relative uniformity. Table III shows a 
comparison of the measures of relative uniformity among 
the projects.  

TABLE III.  COMPARISON POST HOC AMONG THE AVERAGES OF 
RELATIVE UNIFORMITY AS PER THE PROJECTS 

Projects Pvalue Statistical Decision (𝛂 = 𝟎. 𝟎𝟓) 

P1 x P2 1.0000 H0: Insensitive 
P1 x P3 0.1265 H0: Insensitive 
P1 x P4 0.0000 H1: Sensitive 
P2 x P3 1.0000 H0: Insensitive 
P2 x P4 0.0000 H1: Sensitive 
P3 x P4 0.0000 H1: Sensitive 

The statistical analysis suggests that there is no 
significant difference among the measures of uniformity in 
the projects P1, P2 and P3, but there is a significant 
difference for the measures of relative uniformity between 
the projects P1 and P4, P2 and P4 and P3 and P4. This way, 
we can notice that the classes of duplication and uniformity 
that are classified manually by the expert are not sensitive to 
the metric, i.e., the metric is not able to classify between 
duplication and uniformity. However, the metric is sensitive 
and can classify among the classes of uniformity and 
irregularity as per the evaluation from expert. For the 
projects P2 and P3 that are classified as uniform, the metric 
is insensitive, i.e., the metric does not measure differences, 
because, in fact, there are no significant differences in the 
measure of relative uniformity between the projects P2 and 
P3. 

B. Absolut Uniformity and Irregularity 
The absolute uniformity is the count of the pairs of user 

inputs and system outputs sectioned in uniform and 
irregulars. Figure 4 shows the box plots for visual 
comparison of the absolute uniformity and irregularity of 
each project. The first characteristic that we can notice is 
that the amount of pairs of system outputs is greater than the 
amount of pairs of user inputs in all projects. This first 
characteristic is compatible with the fact that in the US-
UIDs there are more system outputs than user inputs. The 
second characteristic is that there are more uniform system 
outputs in the projects that were classified as duplicate and 
uniform (P1, P2 and P3). Adversely, for the project 
classified as irregular (P4), there are more irregular system 
outputs. The third characteristic that we can notice is that 
there are less uniform user inputs than irregular ones in all 
projects. However, this third characteristic is less 
accentuated in project P3 if compared with the project P4, 
where we can conclude that the system outputs also 
influence the uniformity, but it is more difficult to analyze 
and keep the uniformity during the specification of the US-
UIDs. The fourth characteristic is about the influence on the 
automation process of the tests in the uniformity. During the 
test automation process, US-UIDs are reviewed to improve 
quality. Project P2 considers this process. Also, project P2 
has more uniform system outputs than others projects. In 
practice, the testing automation process is done by the 
programmers and, in this process, with the help from the 
stakeholders, the US-UIDs are corrected and implemented. 
In general, programmers are more rigorous with the review 
process and tend to review US-UIDs to improve uniformity. 



 
Figure 4.   Visual comparison of the absolute uniformity of the user inputs and system output. 

VI. CONCLUSIONS 
This paper shows three metrics for measuring data 

uniformity of the US-UIDs. The metric of relative uniformity, 
based on metrics of uniformity and absolute irregularity, is 
important for measuring and classifying the US-UIDs. The 
metric takes values from measure of uniformity in the interval 
[0% to 100%], where 0% is irregular and 100% is uniform.  

In order to evaluate the metric, four empirically pre-
evaluated projects were used by an expert. The evaluation from 
expert considered three classes for classifying the uniformity: 
duplication, uniformity, irregularity. With the results of the 
applicability of the metrics, it was concluded that, through the 
measure of relative uniformity, only two classes are suitable. 
The metric of relative uniformity is not sensitive for three 
classes of the projects. Based on the results, the suitable classes 
are uniformity and irregularity. The class of irregularity takes 
the interval [0% to 45%] from the measure of relative 
uniformity. The class of uniformity takes the interval [45% to 
100%] from the measure of relative uniformity. The value 45% 
of relative uniformity is the boundary between both classes, but 
in both projects classified as uniform and irregular, a measure 
overlapping has occurred, where this point was arbitrary 
defined as the most suitable for boundary between both classes. 
So, this classification is suitable to evaluate the US-UIDs 
during the process of specification and reviewing them, if 
necessary, before starting the testing automation process.  

The measures of absolute uniformity and irregularity are 
complementary and can be used to evaluate and compare the 
types of elements in the US-UIDs. The elements of type of 
system outputs are more present in the US-UIDs and are also 
more uniform, however, it was unable to create a classification 
like the relative uniformity one. However, through the projects, 
the elements of system outputs have weights of uniformity 
different than the user inputs.  

With the specifications of uniform data of the US-UIDs, it’s 
expected avoid reworking and improve the communication 
between users and developers. However, the evaluation of 
quality criteria not always has significant results in practice [8], 
so, it also should be investigated how to apply the metrics 
during the specification of the US-UIDs and how to guide the 
users in uniformity troubleshooting. 

 The main contributions of this work are the proposed 
metrics, the computational implementation of the metrics and 
the evaluation of four projects. Moreover, the US-UIDs used in 
the evaluation are available (https://github.com/douglashiura/ 
us-uid-uniformity) for future investigations of this acceptance 
testing format for the software development.  

REFERENCES 
[1] BECK, Kent, “Test-driven development: by example,” Addison-Wesley 

Professional, 2003. 
[2] Gärtner, Markus, “ATDD by example: a practical guide to acceptance 

test-driven development,” Addison-Wesley, 2012. 
[3] Hendrickson, Elisabeth, "Driving development with tests: ATDD and 

TDD," STARWest 2008, 2008. 
[4] Longo, Douglas Hiura, and Patrícia Vilain, "Creating User Scenarios 

through User Interaction Diagrams by Non-Technical Customers," 
SEKE. 2015, pp. 330-335. 

[5] Longo, Douglas Hiura, and Patricia Vilain, "User scenarios through user 
interaction diagrams," International Journal of Software Engineering and 
Knowledge Engineering 25.09n10, 2015, pp.1771-1775. 

[6] Longo, D. H., Vilain, P., da Silva, L. P., & Mello, R. D. S, “A web 
framework for test automation: user scenarios through user interaction 
diagrams,” In Proceedings of the 18th International Conference on 
Information Integration and Web-based Applications and Services. 
ACM, 2016 pp. 458-467. 

[7] Vilain, P., Schwabe, D., de Souza, C., “A diagrammatic tool for 
representing user interaction in UML,” <<UML>> 2000- The Unified 
Modeling Language. Springer, 2000,  pp.133-147. 

[8] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S., 
“Improving user story practice with the Grimm Method: A multiple case 
study in the software industry,” In International Working Conference on 
Requirements Engineering: Foundation for Software Quality.). Springer, 
Cham, 2017, pp. 235-252.  


