
Metrics for Data Uniformity of User Scenarios
through User Interaction Diagrams

Douglas Hiura Longo and Patrícia Vilain
Informatics and Statistics Department,
 Federal University of Santa Catarina,

Florianopolis, Brazil
douglashiura@inf.ufsc.br, patricia.vilain@ufsc.br

Abstract— In the software development process, the
acceptance testing may be used by non-technician users to
define software requirements. In this article, we use the US-
UIDs (User Scenarios through User Interaction Diagrams) as
automated acceptance tests in order to provide
communications and collaboration between programmers and
users. We propose three metrics for measuring the data
uniformity in the US-UIDs. These metrics are investigated in
four projects. The resulting measures from the investigations
of the four projects are used to build a scale with classes to
classify the uniformity of the US-UIDs. The classes
(duplication, uniformity, irregularity) were created from
empiric evaluation and compared to the measures from the
offered metrics. The classification purpose is to identify the
US-UIDs as uniform or irregular.

Keywords: US-UID; User Scenarios Through User
Interactions Diagrams; ATDD; Uniformity; Acceptance Test;
Automated Test; Executable Test; Executable Requirement;
Quality Factor; Requirements; Requirements Specification;
Metrics.

I. INTRODUCTION
Analogous to the Test-Driven Development (TDD) [1],

the Acceptance Test-Driven Development (ATDD) includes
team members with different perspectives (client, developer,
tester) collaborating to write acceptance testing before
deploying the functionality [2]. Teams that try ATDD
generally find that only by defining acceptance tests when
discussing requirements outcomes there will be a better
understanding. However, the acceptance tests force us to
reach a solid agreement about the exact behavior that the
software should expose [3].

The User Scenarios through User Interaction Diagrams
(US-UIDs) are suggested to allow that non-technician users
define software functional requirements in the ATDD
approach [4, 5]. The US-UIDs are used to specify primarily
the values of the information exchanged between the user
and the computer in tasks that represent functional
requirements, mainly in information systems and can be
used as automated acceptance tests [6].

To use a US-UID as an automated test, the following
steps are performed: specification of the US-UID,
nomination of the fixtures that represents the US-UID

elements, and creation of the glue code that will link these
fixtures to the SUT (System Under Testing) code [6].
Although data uniformity problems are generated in the
specification step, the identification of these problems
occurs usually in all three steps of test automation.

Figure 1 shows a pair of US-UIDs to exemplify the
uniformity problem in the data. The example considers only
a part of the original US-UIDs to show data with uniformity
problem. Both US-UIDs show the same functionality, the
specification of the authentication system, but show
different values to the information. The example highlights
two uniformity problems, where the first is related to the
values of the user inputs “Mary” and “John”. Both values
are different from one another but have the same sense. The
sense is clearly a user name. This sense can be extracted
through the experience with people names and with data
from close elements in the US-UID. In this authentication
system, it is hard to deconstruct the sense of user names for
these values, however, for specific systems with little
known specialties between the stakeholders, the non-
uniform data causes loss of sense. The second uniformity
problem is related to the system outputs “Enter” (Figure 1,
US-UID A) and “Log In” (Figure 1, US-UID B). Both
systems outputs represent in SUT implementation the button
text for the action of entering in the system. For
communication purposes, the stakeholder can understand
the text of these two system outputs that, although different,
have the same sense. However, as an automated test, there
will be a problem with the implementation. As the system
outputs of a US-UID are also assertions and the assertions
rely and capture the SUT values, it is inviable that an
implementation, in an automated manner, could answer to
two distinct values (“Enter” and “Log in”) in the same way,
unless the same action is duplicated in the SUT.

The irregular data generation occurs mainly in the
shared specification, i.e., when more than one stakeholder
specifies US-UIDs to a same system. Thus, when there is
more than one person specifying different US-UIDs, usually
there is no care to keep the data uniform, as each person
uses the data domain that he/she knows for the test. Other
way to generate non-uniform data is by the partial repetition
of a US-UID path. The partial repetition is necessary
because there cannot be deviations and branches in the US-

DOI reference number: 10.18293/SEKE2018-075.

UIDs [4, 5]. Therefore, when you repeat manually parts of
the US-UIDs, it is usual to change small details and not
apply the changes in all the US-UIDs, that way, there will
be a uniformity problem that will be spread in all test
automation steps. Furthermore, as the US-UIDs of a project
increases, more difficult becomes the uniformity problems
identification.

Figure 1. Two fragments of US-UIDs with dat uniformity problems

The general purpose of this work is to suggest metrics
for measuring data uniformity from US-UIDs. The specific
purpose is the empiric evaluation of the metrics to create a
classification that allows the identification of US-UIDs with
irregular data.

This paper is organized as follows. The second section
shows the theory basics about the US-UIDs. The proposal is
detailed in the third section. The fourth section shows the
projects of the evaluation. The fifth section shows the
results of the evaluation. Finally, the sixth section shows the
conclusions.

II. BACKGROUND
The US-UIDs are used for specifying software

requirements. The US-UIDs have been suggested as a
specialization of the UID technique [7], where the abstract
information is replaced with concrete values from the user
scenarios. The applicability of the US-UIDs is usually made
by non-technician users to create acceptance testing before
the development. In agile development teams, the US-UID
can be used for communication and collaboration between
the stakeholders in software development.

Figure 2 shows an example of US-UID with the
interactions of the sum operation using of a calculator.
According to Longo and Vilain [4], this example was
adopted to explain to non-technician users how to specify
the US-UIDs. With the knowledge acquired from the
example, non-technician users have participated in
experiments to evaluate the correctness and the
completeness of the US-UIDs [4, 5].

Figure 2. Example of a US-UID of a calculator sum operation, as

suggested by Longo and Vilain [4, 5]

In this example, the user enters the values of the sum
operation (3 + 1 =) and the system shows the result (4). In
the example, five states of interaction are shown, meaning
each state of interaction (ellipse) contains the user input and
the system output values. The state of interaction flow is
represented by the arrow direction through the states of
interaction. The initial state is the first state of interaction
that follows the arrows and the end state is the last state in
the flow. Table I shows the language symbols from the US-
UIDs.

TABLE I. SYMBOLS FOR THE LANGUAGE OF US-UIDS [1, 2]

Symbol Use

Ellipse – represents a state of interaction.

 Arrowed line – represents the direction flow, i.e., the
transition between interactions states.

Rectangle – represents the user input, its value is
represented by a set of characters placed within the
rectangle.

Characters
sequence

Value – represents the system output, where a set of
characters is placed within the ellipse.

A. Mathematical Model of the US-UIDs
The US-UIDs can be represented in a mathematical

model. Thus, as suggested by Longo et al. [6], the structure
of a US-UID is formed by a set of states of interaction and
each state of interaction is, in turn, formed by a set of user
inputs and a set of system outputs. A state of interaction is
represented by:

𝛿" = 𝜀"%, 𝜀"', 𝜀"(, … , 𝜀"*, 𝜊"%, 𝜊"', 𝜊",, … , 𝜊"- ,
∀𝑖	(𝑖 = 1; 	𝑘), ∀𝑗	(𝑗 = 1; 	𝑛),
(∀𝑙	 𝑙 = 1;𝑚)	

(1)

Given a state of interaction, 𝑛 is the amount of system
outputs and 𝑚 is the amount of user inputs, ο", is the 𝑙-th
system output from 𝑖-th state of interaction, ε<= is the 𝑗-th
user input of the 𝑖 -th state of interaction. A US-UID is
represented as follows:

𝜏? = 𝛿?%, 𝛿?', … , 𝛿?", … , 𝛿?@ ,	

																														 ∀𝑖	(𝑖 = 1; 𝑘), ∀𝑡	(𝑡 = 1; 𝑑)		
(2)

The 𝑘 is the amount of states of interaction of the US-

UID. The δ?" is the 𝑖-th state of interaction of the 𝑡-th US-

UID. As a restriction, the set must have at least a state of
interaction.

III. PROPOSAL
The lack of uniformity in data may cause problems in

the communication and collaboration between the
stakeholders, when defining the fixture names and the glue
code. Therefore, it is important to evaluate the data
uniformity in the US-UID specification step. For evaluation,
easy-to-apply uniformity metrics are useful, especially,
computational metrics, with measures of easy availability
for the stakeholders.

This paper proposes three metrics to measure the
uniformity of US-UIDs data. The proposed metrics are of
absolute uniformity, absolute irregularity and relative
uniformity. The metrics for absolute uniformity and
absolute irregularity are created by comparing pairs of US-
UIDs. A set of pairs of US-UIDs is generated from a set of
US-UIDs. The set of pairs of US-UIDs is defined by:

𝜓 =
𝜏%, 𝜏' , 𝜏%, 𝜏E , … , 𝜏?, 𝜏F , … , 𝜏 GH% , 𝜏G , … , 𝜏G, 𝜏 GH% ,
∀𝑡	(𝑡 = 1; 𝑑), ∀𝑞	(𝑞 = 1; 𝑑), 𝑡 ≠ 𝑞,	d	>	1	

 (3)

where, 𝑑 is the amount of US-UIDs from generated set. The
set generated with the pairs of US-UIDs should have at least
two US-UIDs. Both 𝜏? and 	𝜏F are two any US-UIDs from a
US-UIDs set. (𝜏?, 𝜏F) is a pair formed by distinct US-UIDs.
For the pairs formation, the restriction is that the formed
pairs cannot exist with the same US-UIDs, such as 𝑡	 ≠ 𝑞.

A. Metrics for the absolute uniformity
The absolute uniformity is calculated for each pair

(𝜏?, 𝜏F) where each pair of US-UID is split by user inputs
and system outputs. The user inputs and system outputs are
also compared in pairs.

A pair of uniform system outputs is formed by a system
output of 𝜏? and by another system output of 𝜏F . The
criterion to form the pairs of system outputs is that the data
must be identical. The measure of the absolute uniformity of
system outputs from a pair (𝜏?, 𝜏F) is calculated by the
following formula:

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV = 1	𝑖𝑓	𝜊", ∈ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?")

(4)

The expression ο", ∈ τF	 means that the system output
ο", belongs to one of the system outputs among all the states
of interaction τF . The absolute uniformity of the system
outputs is equal to the count of all system outputs from all
states of interaction of a US-UID that have a pair compared
to another US-UID. The absolute uniformity of the user
inputs (UniformInput(kU,kV)) is built in a similar way to the
metrics for system outputs.

B. Metrics for the absolute irregularity
In this study, absolute irregularity is the complement of

absolute uniformity. The metrics for the absolute
irregularity is built for a pair (𝜏?, 𝜏F) of US-UIDs. The
construction of this metric is similar to the metrics for
absolute uniformity, in that the metrics for absolute
irregularity is sectioned by user inputs and system outputs.
The absolute irregularity of the system outputs from a pair
(𝜏?, 𝜏F) of US-UIDs is calculated in relation only to system
outputs belonging to 𝜏?. So, the system outputs belonging to
𝜏? that do not have a pair are counted as being irregular. The
criteria for not forming a pair of system outputs is that a
system output belongs to 𝜏? and that no other belongs to 𝜏F
with identical data. The absolute irregularity of the system
outputs of a pair (𝜏?, 𝜏F) is calculated by the following
formula:

𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 TU,TV

= 1	𝑖𝑓	𝜊", ∉ 𝜏F												
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												

-

,]%

@

"]%

,

∀𝛿?" 𝛿?" ∈ 	 𝜏?), (∀𝜊",|𝜊", ∈ 	 𝛿?")

(5)

The expression 𝜊", ∉ 𝜏F means that the system output 𝜊",
does not belong to the system outputs among all states of
interaction τF . The irregularity metrics for user inputs
(NonUniformInput(kU,kV)) is built in a similar way to the
metrics for system outputs.

C. Metrics for the relative uniformity
The relative uniformity metric is computed from the

absolute uniformity and absolute irregularity metrics. So, for
the measure of the relative uniformity we have the following
equation:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑈𝑛𝑖𝑓𝑜𝑚𝑖𝑡𝑦 kU,kV 	

= 	
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	+ 	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV 	
+	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV

+		𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡 kU,kV
+	𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐼𝑛𝑝𝑢𝑡 kU,kV

∗ 100

 (6)

The outcome measured from the relative uniformity
takes the values in the range [0%, 100%]. For each
comparison pair τ?, τF the relative uniformity is
calculated. This way, for a set of pairs of US-UIDS, the
average of the relative uniformity can be used as a
quantitative value that represents the general uniformity.

D. Computational implementation of the metrics
The uniformity metrics have been implemented in a

computational version1. The computational version allows
applying the metric in a large set of US-UIDs. The version
has been implemented with the paradigm of object-oriented

1 https://github.com/douglashiura/us-uid

programming and Java programming language. The
implementation has been developed to measure the US-
UIDs specified in the framework Sc3n4r10 [6]. It handles
the US-UIDs in files in JSON format2. This way, the files in
JSON formats are converted in Java objects and then
applied to the metrics.

IV. EVALUATION OF METRICS
To evaluate the metrics, the US-UIDs of four projects

are taken into account. In each project, the metrics are
applied, and the outcomes compared. The projects are
specified in different ways and have a uniformity gap
between them. In this section, research issues are also
shown and discussed for applicability of the metrics on the
projects.

A. Project P1: 8-Puzzle
The 8-puzzle is a game that consists in a grade with

three lines and three columns. The grade has a sequence of
numbers from 1 to 8 and a blank. The purpose of the game
is to start in a random state and put in order the sequence of
numbers. This project is comprised by the US-UIDs from
Longo and Vilain [4, 5] study that measured the
completeness and the correctness of the requirements
specified by non-technician users. In the original
experiment, fourteen participants specified the winning state
of the game. During the specification, each participant
should consider at least one move in the grade. Essentially,
the US-UIDs specified in this project are duplicated,
showing only small differences, as all participants had to
specify the same requirement. This way, presumably, the
data from the US-UIDs should be 100% uniform.

B. Project P2: Web Application
The web application is a system that has been developed

for evaluation and monitoring of the courses chain from e-
Tec Brazil3. The system contains a database with surveys
and evaluation outcomes about Brazilian Federal Education
Institutes. A student evasion module has been developed
with the specifications of the US-UIDs a priori. For the
evasion module, four US-UIDs have been specified. The
specification work was developed by two users and two
experts in US-UIDs. After being specified, the US-UIDs
were automated with tests and reviewed for quality
improving, where the best data uniformity was considered.
In this project, the US-UIDs were developed with the best
correctness and completeness as possible.

C. Projects P3 and P4: Messaging System
The message system is an experiment where the

requirements were chosen by the participants themselves.
The participants were requested to think about the
requirements for an application similar to WhatsApp,
Telegram, Hangout or Messenger and, then, specify the
requirements as US-UIDs. Two projects were performed in
the same experiment. In the project P3, a participant, along

2 https://www.json.org/
3 http://saas.etec.ufsc.br/

with an expert, specified the US-UIDs. The expert reviewed
the US-UIDs produced in order to minimize uniformity
problems. The project P4 was performed with four
participants and without the expert's help. In the project P4,
we tried to simulate the situation of shared specification
where the irregularity of the data of the US-UIDs occurs.
For both of these projects, the controlled factor is the aid
from expert. By the practical knowledge, we know that the
aid from expert is significantly important for a better quality
of the uniformity.

D. Uniformity a priori of the projects
The four projects were selected with characteristics that

contribute to a gap in the uniformity of US-UID data among
the projects. The unevenness on the uniformity of each
project is considered for subsequent evaluation of the
sensitivity of the proposed metric. Table II shows the
classification a priori of the uniformity of the projects. The
classification was made by an expert on US-UIDs. For the
classification, the characteristics of each project and the
manual review from an expert were considered. The manual
identification of the uniformity problems is complex when
the amount of US-UIDs increases. Other factor that
complicates the manual evaluation is the number of
elements belonging to the US-UIDs evaluated. For example,
when there are lots of elements as states of interaction in the
US-UIDs, the evaluation becomes complex as well. For the
manual evaluation of the US-UIDs from an expert, the
number of elements should be small, around four US-UIDs,
because, above this amount, lots of doubts may be raised for
the manual evaluation. The projects were evaluated in a
general way by the specialist, i.e., an evaluation was
performed to each project.

TABLE II. CLASSIFICATION A PRIORI OF THE PROJECT UNIFORMITY

Project Classification of the uniformity
P1 Duplication
P2 and P3 Uniformity
P4 Irregularity

The characteristics of the three classes are:

• Duplication: occurs when the same requirement is
specified in lots of US-UIDs, although small
peculiarities occur in each specification.

• Uniformity: occurs when the diagrams are being
specified carefully and taking into account the
domain data. In projects P2 and P3, uniformity was
maintained with the help of experts.

• Irregularity: occurs when the diagrams are specified
by different people and each person considers only
the data of their own knowledge and not of the
general domain. In project P4, it was observed that
uniformity was not maintained since each
participant individually specified the US-UIDs and
without the expert's help.

V. RESULTS OF THE METRICS EVALUATION
This section shows the results and the analysis of

applicability of the measures of uniformity from projects.

A. Relative Uniformity
The relative uniformity was calculated to all pairs of US-

UID for the four projects. Figure 3 shows a graphic with the
box plot of the relative uniformity of each project.

Figure 3. Visual comparison of the distribution of relative uniformity of

each pair of US-UIDs for each project

On the right side of the chart there are three intervals for
the three classifications of uniformity defined by the expert
to each project. The relative uniformity interval for the
duplication class is [47.1% to 100%]. The relative
uniformity interval for the uniformity class is [32.4% to
100%]. The relative uniformity interval for the irregular
class is [0% to 90%]. Ideally, the intervals should be
continuous with no overlapping, however, the projects keep
the real characteristics, i.e., they are not projects with all
controlled data, removing discrepancies. This way, to
classify the measures of relative uniformity, it is more
suitable to consider a scale of classes of continuous intervals
and with no overlapping. The suitable scale can be built
using intervals closer to medians, but after analyzing the
sensitivity of the metric.

1) Sensitivity of the metrics
The result of the Kruskal-Wallis ANOVA statistical

analysis for uniformity measure of the projects shows the
statistical measure (H=422.3), with degrees of freedom
equal to (3) and probability of significance (Pvalue = 0.0000).
This way, for a level of significance of 5% (α=0.05), the
test suggests that there is a difference in measures of
uniformity between the projects, therefore, the alternative
hypothesis (H1) is asserted. Thus, a post hoc test is needed
to identify among which projects there is a difference in the
measure of relative uniformity. Table III shows a
comparison of the measures of relative uniformity among
the projects.

TABLE III. COMPARISON POST HOC AMONG THE AVERAGES OF
RELATIVE UNIFORMITY AS PER THE PROJECTS

Projects Pvalue Statistical Decision (𝛂 = 𝟎. 𝟎𝟓)

P1 x P2 1.0000 H0: Insensitive
P1 x P3 0.1265 H0: Insensitive
P1 x P4 0.0000 H1: Sensitive
P2 x P3 1.0000 H0: Insensitive
P2 x P4 0.0000 H1: Sensitive
P3 x P4 0.0000 H1: Sensitive

The statistical analysis suggests that there is no
significant difference among the measures of uniformity in
the projects P1, P2 and P3, but there is a significant
difference for the measures of relative uniformity between
the projects P1 and P4, P2 and P4 and P3 and P4. This way,
we can notice that the classes of duplication and uniformity
that are classified manually by the expert are not sensitive to
the metric, i.e., the metric is not able to classify between
duplication and uniformity. However, the metric is sensitive
and can classify among the classes of uniformity and
irregularity as per the evaluation from expert. For the
projects P2 and P3 that are classified as uniform, the metric
is insensitive, i.e., the metric does not measure differences,
because, in fact, there are no significant differences in the
measure of relative uniformity between the projects P2 and
P3.

B. Absolut Uniformity and Irregularity
The absolute uniformity is the count of the pairs of user

inputs and system outputs sectioned in uniform and
irregulars. Figure 4 shows the box plots for visual
comparison of the absolute uniformity and irregularity of
each project. The first characteristic that we can notice is
that the amount of pairs of system outputs is greater than the
amount of pairs of user inputs in all projects. This first
characteristic is compatible with the fact that in the US-
UIDs there are more system outputs than user inputs. The
second characteristic is that there are more uniform system
outputs in the projects that were classified as duplicate and
uniform (P1, P2 and P3). Adversely, for the project
classified as irregular (P4), there are more irregular system
outputs. The third characteristic that we can notice is that
there are less uniform user inputs than irregular ones in all
projects. However, this third characteristic is less
accentuated in project P3 if compared with the project P4,
where we can conclude that the system outputs also
influence the uniformity, but it is more difficult to analyze
and keep the uniformity during the specification of the US-
UIDs. The fourth characteristic is about the influence on the
automation process of the tests in the uniformity. During the
test automation process, US-UIDs are reviewed to improve
quality. Project P2 considers this process. Also, project P2
has more uniform system outputs than others projects. In
practice, the testing automation process is done by the
programmers and, in this process, with the help from the
stakeholders, the US-UIDs are corrected and implemented.
In general, programmers are more rigorous with the review
process and tend to review US-UIDs to improve uniformity.

Figure 4. Visual comparison of the absolute uniformity of the user inputs and system output.

VI. CONCLUSIONS
This paper shows three metrics for measuring data

uniformity of the US-UIDs. The metric of relative uniformity,
based on metrics of uniformity and absolute irregularity, is
important for measuring and classifying the US-UIDs. The
metric takes values from measure of uniformity in the interval
[0% to 100%], where 0% is irregular and 100% is uniform.

In order to evaluate the metric, four empirically pre-
evaluated projects were used by an expert. The evaluation from
expert considered three classes for classifying the uniformity:
duplication, uniformity, irregularity. With the results of the
applicability of the metrics, it was concluded that, through the
measure of relative uniformity, only two classes are suitable.
The metric of relative uniformity is not sensitive for three
classes of the projects. Based on the results, the suitable classes
are uniformity and irregularity. The class of irregularity takes
the interval [0% to 45%] from the measure of relative
uniformity. The class of uniformity takes the interval [45% to
100%] from the measure of relative uniformity. The value 45%
of relative uniformity is the boundary between both classes, but
in both projects classified as uniform and irregular, a measure
overlapping has occurred, where this point was arbitrary
defined as the most suitable for boundary between both classes.
So, this classification is suitable to evaluate the US-UIDs
during the process of specification and reviewing them, if
necessary, before starting the testing automation process.

The measures of absolute uniformity and irregularity are
complementary and can be used to evaluate and compare the
types of elements in the US-UIDs. The elements of type of
system outputs are more present in the US-UIDs and are also
more uniform, however, it was unable to create a classification
like the relative uniformity one. However, through the projects,
the elements of system outputs have weights of uniformity
different than the user inputs.

With the specifications of uniform data of the US-UIDs, it’s
expected avoid reworking and improve the communication
between users and developers. However, the evaluation of
quality criteria not always has significant results in practice [8],
so, it also should be investigated how to apply the metrics
during the specification of the US-UIDs and how to guide the
users in uniformity troubleshooting.

 The main contributions of this work are the proposed
metrics, the computational implementation of the metrics and
the evaluation of four projects. Moreover, the US-UIDs used in
the evaluation are available (https://github.com/douglashiura/
us-uid-uniformity) for future investigations of this acceptance
testing format for the software development.

REFERENCES
[1] BECK, Kent, “Test-driven development: by example,” Addison-Wesley

Professional, 2003.
[2] Gärtner, Markus, “ATDD by example: a practical guide to acceptance

test-driven development,” Addison-Wesley, 2012.
[3] Hendrickson, Elisabeth, "Driving development with tests: ATDD and

TDD," STARWest 2008, 2008.
[4] Longo, Douglas Hiura, and Patrícia Vilain, "Creating User Scenarios

through User Interaction Diagrams by Non-Technical Customers,"
SEKE. 2015, pp. 330-335.

[5] Longo, Douglas Hiura, and Patricia Vilain, "User scenarios through user
interaction diagrams," International Journal of Software Engineering and
Knowledge Engineering 25.09n10, 2015, pp.1771-1775.

[6] Longo, D. H., Vilain, P., da Silva, L. P., & Mello, R. D. S, “A web
framework for test automation: user scenarios through user interaction
diagrams,” In Proceedings of the 18th International Conference on
Information Integration and Web-based Applications and Services.
ACM, 2016 pp. 458-467.

[7] Vilain, P., Schwabe, D., de Souza, C., “A diagrammatic tool for
representing user interaction in UML,” <<UML>> 2000- The Unified
Modeling Language. Springer, 2000, pp.133-147.

[8] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S.,
“Improving user story practice with the Grimm Method: A multiple case
study in the software industry,” In International Working Conference on
Requirements Engineering: Foundation for Software Quality.). Springer,
Cham, 2017, pp. 235-252.

