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Abstract— Nowadays, the challenge of knowledge discovery is 

to mine massive amounts of data available online. The most 

widely used approaches to tackle that challenge are based on 

machine learning techniques. In spite of being very powerful, 

those techniques require their parameters to be calibrated in 

order to generate models with better quality. Such calibration 

processes are time-consuming and rely on the skills of machine 

learning experts. Within this context, this research presents a 

framework based on software agents for automating the 

calibration of machine learning models. This approach 

integrates concepts from Agent Oriented Software Engineering 

(AOSE) and Machine Learning (ML). As a proof of concept, we 

first train a model for the IRIS dataset and then we show how 

our approach improves the quality of new models generated by 

our framework. 

Keywords. Agent oriented Software Engineering (AOSE); 

Machine Learning; Time-consuming  

I. INTRODUCTION 

The big data era is coming! According to [1], every minute 
on the internet over 4 million queries are made on Google, 
more than 200 million emails are sent and users share almost 
2.5 million pieces of content on Facebook, among other actions. 
The amount of data generated is growing exponentially [2] and 
we need to be prepared to face all the challenges upfront. Peter 
Norving at Google’s Zeitgeist Conference (2011) refers to this 
matter, stating: “We don’t have better algorithms. We just have 
more data”. 

Indeed, the huge volume of data available is a massive 
challenge to be accepted, but at the same time a vast 
opportunity to learn from the data to generate more expert 
artificial intelligence software and to enhance the knowledge 
discovery processes (KDD). One of the most popular and widely 
used approaches to generate knowledge is through the machine 
learning techniques. In order to be better rewarded from machine 
learning algorithms, we need to adjust their parameters. This 
calibration process makes the resulting models more accurate 
and, certainly, more profitable; but the drawback at stake is time. 
The tuning process is generally done by hand, is highly time 

consuming and strongly relies on the skills of machine learning 
experts, turning it into an extenuated, endless process. We 
foresee a chance to incorporate the Agent Oriented Software 
Engineering (AOSE) [23] area to automate the process of tuning 
the models prone to the generation of more accurate models and, 
at the same time, reduce efforts dedicated to produce more 
profitable models.  
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Agents are software components with autonomy, 
reactiveness, proactiveness and social capabilities [3]. Agent 
autonomy comes in handy when a system needs to make its own 
decisions. The agents can also use their proactiveness to guide the 
tuning process. As a result, it is possible to see how multiagent 
systems can contribute to the automation of machine learning. To 

solve this problem, we propose a framework based on software 
agents to handle the tuning of the machine learning models. 

The contributions are: (i) the framework will facilitate 
building new models that might display good performance 
based on the previously trained models. This includes a new set 
of possibilities in the selection of the ways and strategies that will 
guide the optimizations; (ii) the framework allows the creation of 
an ensemble of models to predict and negotiate a consensus 
among all the predictors in order to deliver a solution. In addition, 
the results of the system do not depend on a single trained model, 
but rather on a set of models that might be specialized at detecting 
specific characteristics; (iii) the framework reduces the time spent 
by the user to train a successful model with a multiagent system 
to support the training process. The idea is to configure some of 
the training and allow the framework to handle the training 
results, the timing and the long wait for the end of the training and 
the start of a new one without human interference, and (iv) to 
validate a case scenario, IRIS. This test case is an exploratory 
study taken as a proof of concept but instantiating the framework 

and exploiting the agents to generate new models. 

This paper is organized as follows. Section 2 gives an 
overview of the main concepts. Section 3 shows the related 
work. Section 4 presents the framework. Section 5 describes 
an exploratory study. Finally, Section 6 offers the conclusion 
and future work. 

II. BACKGROUND 

First, we will discuss the relation between multiagent systems 

and machine learning. After, the KDD process. 

A. Multiagent Systems and Machine Learning  

A multiagent system can be defined as an environment 
shared by autonomous entities that live, interact, receive 
information and can act in the environment [5]. These agents are 
abstractions with the following properties [6]: (i) autonomy — it 
is the capability of taking their own actions within their 
environment; (ii) reactivity — it is the capability of response to 
the changes in the environment, which involves a notion of 
perception of the environment; (iii) social ability — it is the 
capability of interaction with other agents and possibly humans, 

and (iv) proactive ability — it is the capability to take actions 
towards the agent’s goals. 



 

The exploratory study in Section 5 shows how agents’ 
properties are useful in the simulation of the training process 
to optimize the parameters of a model based on the previously 
trained models. It also evidences how the software agents are 
able to propose new models that might be more accurate. The 
idea of joining together these two areas seems very natural. In 
artificial intelligence, we consider that software agents are 
autonomous entities and are capable of making decisions without 
human interference. On the other hand, learning is a crucial part 
of the autonomy: the more skilled the agent, the better decisions 
it will take [7]. Indeed, in most dynamic domains it is extremely 
hard to predefine the agents’ actions, which mostly emerge with 
new behaviors in order to adapt themselves to the current 
situation. 

There are several aspects to take into account when dealing 
with machine learning in multiagent systems. First, the 
coordination of agents — there must be some coordination 
mechanism for agents to engage and interact in some way. 
Second, dealing with cooperation can be a problem when agents 
need to team up to achieve some goals. Third, the noisy 
environment — specifically, how to deal with supervised learning 
when the result can be biased by the noise. Finally, together with 
the noisy environment comes the partial knowledge; to deal with 
it, agents use strategies and metaheuristics to guide the search, as 
in [8]. Some approaches use a machine learning model in the 
agents’ activities cycle to take actions [5]. Other approaches use 
a multiagent system — known as multiagent learning (MAL) — 
to learn [9] [10]. In the latter approaches the integration of the 
agents’ capabilities and the learning algorithms are combined to 
solve a problem from another domain. Nevertheless, our 
approach is a multiagent system applied to a machine learning 
domain. 

B. KDD Methodologies 

The KDD process [11] [12] contains five stages: (i) Selection: 
This stage is to precisely define a target dataset. It can be done by 
directly selecting a dataset or a subset of features; (ii) Pre-
processing: This stage focuses on cleaning the data. It means that 
the data most of the times is generated crowded with null values 
and inconsistencies and needs to be cleaned in order to became 
profitable; (iii) Transformation: This stage aims at applying some 
transformation algorithms to generate the final dataset to explore. 
It is common to use dimensionality reduction algorithms, 
normalize the data, etc; (iv) Data Mining: This stage focuses on 
the search of the required patterns in the data according to the 

mining objectives, and (v) Interpretation/Evaluation: This stage 
consists of the interpretation and evaluation of the extracted 
patterns. 

III. RELATED WORK 

Many authors [13, 14, 15, 16, 17] broach the idea of creating 
systems to support the data mining process. A common 
discussion among all authors is about the target user and the 
environment — some systems are designed to be used by domain 
experts and others by data mining experts. Systems dedicated to 
non-experts, normally focus on the analysis of the domain’s 
specific features while other systems propose educational 
environments for novices to learn and interact. On the other hand, 
systems designed to be used by data mining experts focus on 
performance, optimizations and coding capabilities. Within the 
context of non-experts, [18] presents a simulation tool that aims 
at creating an initial intuition on neural networks with a very 

user-friendly interface and it has proven to be a great choice for 
educational purposes. However, the datasets available for 
analysis are fixed and focused only on gaining some 
understanding of the learning process. There are some 
commercial solutions, such as Google Prediction [19] and Azure 
Machine Learning [20]. Both are on line services and provide 

support to the data mining process by means of an intuitive 
interface and a huge collection of ready to use algorithms. 
However, Azure is not free and Google Prediction’s dataset 
size is limited to 250 megabytes. WEKA [17], [21] is a system 
that offers a collection of algorithms to explore real world 
datasets. It has three well defined categories of algorithms: (i) 
dataset processing, (ii) machine learning schemes, and (iii) output 
processing. By combining all these tools together, WEKA has 
proved essential to the analysis process and as an introductory 
tool for educational environments. However, all these algorithms 

are presented as black boxes and do not focus on distributed 
ways to improve the data mining processes. 

There are some solutions that target data mining experts 
and focus on tools to improve the techniques. MLI [15] 
presents an API to easily code machine learning algorithms, 
using their proposed operations for data loading and linear 
algebra to boost the performance; but it relies on the expertise of 
the programmers rather than the use of previously tested and well-
established implementations of the algorithms. ML Base [14] is 
another solution that provides a Domain Specific Language 
(DSL) with high level abstractions to simplify the process. It 
creates very elaborated plans — logical and physical — that come 
with several optimizations to gain performance and accuracy. The 
solution aims at solving a problem with a single model. However, 

the composition of models that create ensembles has been proven 
to outperform single models, and according to [16] many 
algorithms and large datasets can be slow and limited. The 
work [13] presents LARA, a DSL to reduce problems created 
when the pre-processing and the algebra are done by using 
different programming paradigms. It includes optimizations that 
are normally loose in the mismatch of the paradigms. In addition, 
LARA compiles to an intermediate representation to enable 
optimizations and finally compiles with different languages. On 
the other hand, it is embedded into Scala and it is focused on 
coding. Predict-ML [16] is a software that uses big clinical data 
to build predictive models automatically. It presents techniques 
to automatically select algorithms, hyper parameters and 
temporal aggregations of the clinical data, but the innovations 
are focuses on the clinical area and the system is still in the 
design phase. 

All these solutions focus on reducing usage complexity, 
tuning hyper parameters and gaining some understanding of the 
data, but none of the previous approaches aims at creating a 
shared environment to enhance the interaction between the users 
and the system. By using the agent’s capabilities, users and agents 

can both solve the data mining process, complementing each 
other’s weaknesses. 

A. Auto ML 

Auto ML is a new area in computer science pursuing the 
progressive automation of the machine learning process [22]. 
This area addresses all the aspects which are related to 
machine learning automation, such as search and selection of 
model, hyper parameters optimization, feature engineering, 
meta learning and transfer learning, among others. Within this 



 

context, a challenge to boost new solutions towards the Auto ML 
goals was created. This challenge includes a novel design 
element: code submission. The code runs in an open-source 
platform ensuring there is no human intervention during testing 
phases and that all proposed solutions run on hardware equality. 
The challenge contains six phases in which the dataset difficulty 
is progressively increased. After each phase, the competitors have 
a Tweakathon time to improve their method with access to the 
previously tested datasets. This challenge aims at advancing the 
theoretical state of the art about model selection, implementing 
useful automation solutions, a chance to compare results of the 
automatic software and the Tweakathon phase and to 
disseminate the top solutions and papers. 

IV. PROPOSED SOLUTION 

This section describes the main elements required to 
understand the solution proposed in this paper. In addition, we 
will provide an overview of the architecture and discuss the 
different components, including the data model and the software 
agents. 

A. The Archicteture 

The application is implemented using the software agents, as 
illustrated in Fig. 1. It contains a module for: (i) data storage 
(DB); (ii) data access (ORM); (iii) agents; (iv) optimizations 
(OPT), and (iv) API layer — which will bring the functionalities 
to the final user. 

 

Figure 1. The proposed architecture. 

The API is directly connected to the ORM. The ORM is in 
charge of all the operations that require data access. It allows the 
system to be independent from the physical data storage and it is 
also the only way to interact with the data. The data refers to the 
relevant concepts that appear in the domain and their 
relationships. All of them are physically saved in the DB module. 
Considering the user’s experience, the main flow of the 
application only involves the API, the ORM and DB modules. 
ORM provides stability and independence for the following 
layers to use, allowing: (i) the change of the data provider without 
changing the core of the project, and (ii) the design of the logic 
without specific read, write operations that might bind the 
solution to a particular data access. The software agents interact 
in this flow via ORM module and expertly use the main 
application flow the same way as normal users do. They retrieve, 
run and propose new experiments in a collaborative environment. 
By working together, the users (as domain experts) and the agents 
(as machine learning experts) increase the number of 
experiments, searching for a better model to identify the desired 
patterns. The agents in charge of the optimizations trust most of 

the algorithmic analyses in the fifth and last module dedicated to 
the Optimizations. The Trainer Agent and the Optimizer Agent 
are both hot spots [23]. Therefore, it is possible to add new 
models into the system by creating subclasses and implementing 
the particular details of the new model. 

By using the API, the users can evaluate the results, that 
is, they can check if the results meet the initial objective. This 
phase is crucial, because the models selected to be deployed will 
finally be in contact with non-controlled environments and 
real-life mining examples. Nevertheless, if the users determine 
that the models are not ready to be used, they can define a new 
experiment or allow the agents to search for better models. At all 
times, the users can monitor the results obtained and then, 

analyze, retrieve and compare several of the model’s 
parameters. 

B. Data Model 

Fig. 2 presents the data model of the concepts involved in 
the problem. We used the entity-relationship model (ERM) [24]. 
The entities are: (i) Task: Aims at capturing the training process 
of a successful model for a machine learning problem, i.e., it is a 
collection of experiments; (ii) Experiment: Defines an 
experiment, but this concept just contains the common aspects, 
such as running_time, train_accuracy, etc; (iii) Decision Tree: 
Defines a specific kind of experiment. In fact, it defines an 
experiment to train a decision tree and contains aspects such as 
max_depth; (iv) Support Vector Machine: Defines a support 
vector machine type of experiment and contains attributes such 
as kernel; (v) Neural Network: Defines a neural network type of 
experiment and contains attributes such as the model that 
specifies the structure of the network; (vi) Host: Defines a 
computer in the network, and basically selects the computer in 
which the model is going to be trained; (vii) Dataset: Represents 
a generic data collection, used as the examples to train a model; 
(viii) RData: Represents a particular type of dataset generated 
from a script executed in R [25] and contains the environment 
variables at the save point, and (ix) CSV: Represents a standard 
data exchange format. Most of the time it is a collection of 
comma separated fields. 

 

Figure 2. The architecture proposed. 

C. Agents Model 

Figure 3 shows and details the agent-based model 
proposed. In all the cases, the agent’s cyclic behavior was the 
best option for these software agents – for instance, in the 
exploratory study presented in Section 5 the agents have a 
cyclic behavior with 10 seconds between iterations. The 
Trainer Agent is responsible for training an experiment. In 



 

order to do so, it has to accomplish several subtasks. First of 
all, it needs to understand the type of experiment that the agent 
is going to execute. For each type of experiment, there are 
different parameters used to set up the training process. Based 
on these parameters the agent determines the type of dataset 
that is going to be used and it loads the data. At this point, the 
strategy pattern [26] was used to define which algorithm 
should be chosen to train and validate the results. After the 
validation, the agent has to collect all the variables being 
measured and write the experiment back. Fig. 4 describes this 
process. 

 

Figure 3. Agents Model. 

A specific trainer was created to override the specificities of 
each model and to set up some initialization variables, such as the 
type of experiment. To run an experiment, both the experiment 
and the datasets to be used in the training and testing must be 
previously defined. This process only runs the experiments and 
collects the results. On the other hand, due to the characteristics 
of the agent’s cyclic behavior, if there are no experiments 
programed to run, the agent waits a few seconds and asks again. 
Therefore, once a new experiment is added to the database, it will 
be automatically detected and executed at the right time. Another 
important detail is that the experiments are executed as if they 
were on a queue — one at a time in each host. But it is possible 
to program a set of experiments that the agents will automatically 
run until all the experiments have been executed. 

 

Figure 4. Trainer Agent Activity Diagram. 

The Optimizer Agent is responsible for generating new 
models that might have good performance and accuracy based on 
the previously executed experiments of the same type.  

 

Figure 5. Optimizer Agent Activity Diagram. 

To complete this task, the agent starts by selecting a dataset, 
because the performance and the accuracy are directly related 
with the dataset used in the training process. Once the dataset is 
selected the agent retrieves the best experiments of a given type 
and, based on the parameters, it generates and saves a new model. 
Notice here that for each type of experiment the Optimizer Agent 
was extended in order to create specific agents which selected the 
correct algorithm in each case. Fig. 5 describes the workflow of 
the Optimizer Agent. Observe that the Optimizer Agent needs a 
different strategy to create the new model, depending on the type 
of the experiment. 

D. Optimizers 

Each machine learning strategy comes with a lot of tricks and 
techniques to improve the performance of the model. Some of the 
techniques can include mathematical operations, such as 
transpose, reverse, etc., that can increase the dataset and have a 
direct impact on the performance as a result. Other techniques aim 
at increasing the number of features in the dataset to facilitate the 
training process and obtain a better model. Some examples 
include multiplication of numeric fields or the use of 
trigonometrical functions. In addition, there is a group of 
techniques that filter the outliers to obtain a more general model. 
All these approaches work directly on the dataset, but our focus 
here is to work with the existing datasets and calibrate the model’s 
parameters. Each one of the techniques has its own unique 
parameters, so, it was necessary to create an optimizer for each 
one. Namely: SVM Optmizer, DT Optimizer and NN Optimizer. 
The SVM Optimizer takes advantage of the kernel trick [27] and 
creates a new model based only on the best SVM experiment 
executed. If the best model memorizes the dataset, it then 
decreases the kernel to compact the data. On the other hand, if the 
model’s accuracy is low, then the agent increases the kernel to 
separate the data by adding new dimensions. The DT Optimizer 
uses a similar criterion to increase or decrease the max_depth of 
the decision tree while the NN Optimizer creates a new model by 
randomly combining the two best experiments executed. 

E. Details of the API 

Finally, we created an Application Programming Interface 
(API) that contains the new objects and functionalities required 
to set up an environment: create, train and validate the 
experiments; test the results, and use the best models for 
prediction.

 

Figure 6. API Class Diagram. 

Fig. 6 shows the API class diagram. The Task class defines a 
collection of experiments of the same problem and refers to the 
same machine learning problem. Every machine learning 
problem requires the analysis of data. The Dataset class 
represents a collection of data to be used and contains features 
such as the path in which it is stored. The data can be stored in 
different file formats. For this reason, each Dataset contains a 
DatasetType class to specify its type, such as RData, CSV, etc. 
An Experiment class represents the training process of a model 
and contains general variables being measured, such as time. It 
also contains more specific features, depending on the particular 
model being trained. In order to specify the types of experiments 
allowed to run within the platform, all the Experiments contain 



 

an ExperimentType class. The Predictor class defines an object to 
evaluate a model and the Committee class defines a collection of 
Predictors and contains a parameter to set the number of 
members. First, to use the API, we need to select a Task to work 
with and after that the experiments can be created, linked to the 
selected task. Each Experiment has a type defined in 
ExperimentType and can have training, validation and testing 
datasets associated to it, respectively. Each Dataset has a type 
defined in DatasetType. Finally, to predict, based on previously 
trained models, there are two possible classes: (i) Predictor, which 
selects the best trained model based on accuracy and uses it to 
predict, and (ii) Committee, which has a collection of predictors 
and returns a consensus among them. 

V. USER SCENARIO 

This section details an exploratory study taken as a proof of 
concept for the framework. The experiment is divided into two 
stages. First, we set up the environment and create the proper 
conditions to run the experiment — in this case, it was necessary 
to launch the agents’ platform, to configure the database access 
and to establish the initial experiment. Second, the agents start 
their work by training the first model and writing the results. The 
variables that were measured were the training and validation 
accuracy, as well as the start and end time. At this point, the 
Optimizer Agent analyzes the results of the finished experiments 
and proposes a new experiment using the same dataset. 

A. The Dataset 

The data used in this example was the IRIS dataset found in 
the UCI Machine Learning Repository [28]. It contains 150 
instances of three classes of iris plants. The predictable attribute 
is the type of plant, based on four other attributes: sepal length, 
sepal width, petal length and petal width — all the measurements 
are in centimeters (cm). This dataset has no missing values and 
two of the three types of iris are not linearly separable. Table 1 

shows a brief summary of the data. 

 

 

Table 1. Summary of the IRIS Dataset 

IRIS 
Sepal 

Length 

Sepal 

Width 

Petal 

Length 

Petal 

Width 

Min 4.3 2 1 0.1 

Median 5.8 3 4.35 1.3 

Mean 5.843 3.057 3.758 1.199 

Max 7.9 4.4 6.9 2.5 

B. Results 

The framework was instantiated as shown in Figure 7. 

The TrainingAgent and the OptimizationAgent were extended 

into the SVMTrainingAgent and the SVMOptimizationAgent 

respectively in order to implement specificities about how to 

train and optimize an SVM model [29]. In this case, for the 

optimization agent, we use a grid search approach allowing 

the parameter C the values 1.0, 1.5, and 2.0 and for the Degree 

the values 1, 2 and 3. The class SVMExperiment inherits for 

the SpecificExperiment hotspot and adds the parameters 

needed to train an SVM experiment. Finally, the FileData 

class and the CSVData are classes created to store a reference 

to the dataset. The starting point is an instance of the 

SVMExperiment class and we choose the following 

parameters, as shown in Table 2 (first line). 

 
Figure 7 Framework instance for the Iris experiment 

 

Table 2. Parameters of the executed experiments 

Id Kernel C Degree Coef0 Gamma Probability Shrinking 
Max 

Iterations 

Decision 

Function 

1 poly 1 1 0 Auto 0 1 ‑1 odr 

2 poly 1.5 1 0 Auto 0 1 ‑1 odr 

3 poly 1.5 2 0 Auto 0 1 ‑1 odr 

Table 3. Measures of the executed experiments 

Id Started Ended Time (in seconds) Validation Accuracy 

1 2017‑02‑27 19:09:43 2017‑02‑27 19:09:43 0.006163 0.96 

2 2017‑02‑27 19:09:53 2017‑02‑27 19:09:53 0.004834 0.96 

3 2017‑02‑27 19:10:03 2017‑02‑27 19:10:03 0.005739 0.97 

 

The training agents were essentially training the new models 
proposed, while the optimizer agents were trying to tune the 
parameters of the previously executed models and proposing new 

ones that might have a good accuracy. Table 2 in rows 2 and 3 
shows the experiments proposed by the Optimizer Agent and 
Table 3 shows the variables measured. The first row in table 2 



 

shows the beginning of the second stage where only the first 
model had been proposed. Then, the Trainer Agent trained the 
model, resulting in an accuracy of 0.96 (first row in Table 3). The 
Optimizer Agent performed a query to retrieve the trained models 
and based on the best one, it modified the allowed error 
(parameter C in Table 2) from 1.0 to 1.5 and proposed the second 
model. The Trainer Agent realized that there was a model to train 
and then trained it, resulting in an accuracy of 0.96, as well. Once 
again, the Optimizer Agent modified the degree of the function to 
propose the third model (parameter degree in Table 2) based on 
the first and the second models. As a result, the Trainer Agent 
trained the new model and obtained a better accuracy of 0.97.  

To obtain new models the Optimizer Agent balanced the 
allowed error and the degree of the polynomial function. It is 
possible to see in Table 3 that the last trained model performed 
better in the validation. Thus, in the next KDD phase the 
prediction algorithm will use the best models, based on their 
accuracy. 

VI. CONCLUSION AND FUTURE WORK 

This paper proposes a software framework based on 
multiagent systems to automate the process of calibrating 
machine learning models and reduce the amount of human time 
dedicated to the parameters adjustment. By means of this 
framework, the agents will tune the parameters of the models 
while the data mining experts are focused on providing the 
framework with potential parameter insights. Together, the 
agents and the data mining experts can complement each other’s’ 
capabilities in a shared software environment. We conclude that 
it is possible to take advantage of the characteristics of the 
software agents to train machine learning models, and also to 
make decisions about new models that might have good accuracy. 
The multiagent system inside the proposed solution is the core of 
the application because it requires autonomy to make decisions, 
proactivity to create new experiments, and reactivity to deal with 
overfitting and low accuracy. By automating this process, the 
users only need to set up the initial battery of experiments, which 
reduces the time dedicated to train a successful model. 

For future work, we have two goals. First, Selection of the 
first model: The framework needs initial models as inputs to 
begin the calibration processes, but it would be interesting if the 
system was capable of auto-generate starting models. Second, 
Features Selection: Another interesting problem is how to 
improve the performance of the training by first selecting the 
most important attributes. This could significantly impact the 
time spent to train a model. Other possible approaches to 
improve performance include the use of heuristics such as 
Principal Features Analysis (PFA) [30] or methods, such as 
Sequential Forward Selection (SFS) [31] and Sequential 
Backward Selection (SBS) [31]. 
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