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Abstract — Rule-based systems are important in application 
domains such as artificial intelligence and business rule engines. 
When translated into an implementation, simple expressions in 
rules may map to a large body of code that requires testing. We 
show how rule-based systems may be tested efficiently, using 
combinatorial methods and a constraint solver in a test method 
that is pseudo-exhaustive, which we define as exhaustive testing of 
all combinations of variable values on which a decision is 
dependent. The method has been implemented in a tool that can 
be applied to testing and verification for a wide range of 
applications.  
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I. INTRODUCTION  
Rule-based systems have been important in a variety of 

application domains for many years. Some of the earliest 
artificial intelligence systems (AI) were designed to evaluate 
large rule sets, and this approach continues to be important for 
AI. In other domains, business rule engines automate complex 
enterprise resource planning (ERP) problems [1]. The terms 
used in rules may be expressed as Boolean (dichotomous) or 
relational conditions on inputs, values from databases, and 
environmental conditions such as time of day. Thus even a rule 
that contains only a few simple conditionals may invoke 
significant processing involved in computing the values used in 
the rule conditions. A rule-based system must work for any set 
of inputs, and can be implemented with a wide variety of rule 
engines. For example, JBoss, Oracle Policy Automation, 
OpenRules, Drools, IBM ODM, and many other tools exist to 
process rules supplied by users. But as with conventional 
software, exhaustive testing is nearly always intractable. This 
paper generalizes a practical method developed for testing 
access control systems [2], and introduces a tool that implements 
this method. 

 
The approach to testing rule-based systems is pseudo-

exhaustive, which we define as exhaustive testing of all 
combinations of variable values on which a decision is 
dependent. This approach is analogous to pseudo-exhaustive 
methods for testing combinational circuits [3], where the 
verification problem is reduced by exhaustively testing only the 
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subset of inputs on which an output is dependent, or by 
partitioning the circuit and exhaustively testing each segment. 
The general concept of exhaustively testing subsets of variable 
values on which a decision is dependent is applied here to rule-
based systems by transforming rule conditions to disjunctive 
normal form, then considering each term separately [2].  

 
Testing a rule-based system requires showing that the rules 

as specified, P, are correctly implemented. The implementation 
P' must be shown to produce the same response as P for any 
combination of input values used in rules. That is, for input 
values x1,…, xn, P'(x1,…, xn) = P(x1,…, xn). Positive testing to 
show that a rule produces a specified result is easy: instantiate 
conditions to true for each antecedent associated with the result 
and verify that the system returns the designated result. Negative 
testing, showing that no combination of input values will 
produce the same result when it should not, is much more 
difficult. With n Boolean variables there are 2n possible 
combinations of variables. For example, it would not be unusual 
to have 50 Boolean variables, resulting in 2"# ≈ 10'" 
combinations, which would appear to make full negative testing 
intractable. In this paper, we show how combinatorial methods 
can be used to make this testing problem practical, given 
assumptions that apply to many or most rule-based systems.  

II. TEST CONSTRUCTION 
We describe the derivation of complete test cases from rules 

converted to k-DNF structure (disjunctive normal form where no 
term contains more than k literals, and a term is a conjunction of 
one or more literals within the disjunction), using a constraint 
solver and a covering array generator. Two arrays are 
constructed for each possible rule consequent, such that every 
test in each array should produce the same result, with variations 
indicating an error. The method may be applied to rule systems 
with multiple outputs, where outputs are either discrete values 
or are defined by a predicate or expression with a Boolean result. 

  
 Rules are assumed to be given as expressions made up of 

variables with logical connectives in an antecedent, with a 
consequent given as a discrete value or simple predicate, 
structured as shown below where Ri are predicates evaluating 
the values of one or more variables, and resulti is the result 
expected when conditions of Ri evaluate to true: 

(R1 → result1) (R2 → result2) … (Rm → resultm) 



 

else  →  default 
which is equivalent to: 

(R1 → result1) (R2 → result2) … (Rm → resultm) 
 (~R1) (~R2)… (~Rm) →  default 

Each Ri may include multiple variables, conditions, and 
logical connectives. It is required that the rule antecedents Ri are 
mutually exclusive, i.e., for any set of input variable values, only 
one antecedent will be matched. We believe this requirement is 
not overly restrictive, as in most applications it would be an error 
for matches of more than one rule. (It would be possible to use 
the constraint solver to check that rule antecedents are mutually 
exclusive, but this feature has not been implemented.) 
 
Example 1:  Suppose we have a rule set as shown below: 
     if (a && (c && !d ||e))  R1; 
     else if (!a && b && !c)  R2; 
     else exit(); 
 

This code can be mapped to the following expression (note 
second line is "else", i.e., negation of predicates for R1 and R2): 

 (a(cd̅ +e) → R1) (a̅ b c̅ → R2) 
((∼(a(cd̅ +e)))(∼(a̅ b c̅ )) → exit) 

 
Literals can be conditions, such as age>18, or Boolean  

variables such as employee (yes, no), but the structure will be a 
series of expressions specifying subsets of conditions that 
produce each result, followed by a default rule when none of the 
attribute expressions have been instantiated to true.  

 

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	
1	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	
2	 0	 0	 1	 0	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 1	
3	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	 1	 1	 1	 0	 0	
4	 0	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 1	 0	 0	 1	
5	 1	 0	 0	 0	 1	 0	 0	 1	 0	 0	 1	 1	 1	 1	 0	
6	 1	 0	 1	 1	 0	 1	 1	 1	 0	 1	 0	 1	 1	 1	 0	
7	 1	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 0	 1	 0	 1	
8	 1	 1	 1	 0	 0	 0	 1	 1	 1	 1	 1	 0	 1	 1	 1	
9	 1	 0	 0	 0	 0	 1	 1	 0	 1	 0	 0	 1	 1	 1	 1	
10	 0	 1	 1	 1	 0	 1	 1	 0	 1	 0	 1	 1	 0	 1	 0	
11	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	
12	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 1	 0	 1	 0	 0	
13	 1	 0	 0	 1	 1	 0	 1	 1	 1	 1	 1	 1	 0	 1	 1	
14	 1	 0	 1	 0	 0	 1	 0	 0	 0	 0	 1	 1	 0	 0	 1	
15	 0	 1	 1	 0	 0	 1	 1	 0	 0	 1	 1	 0	 0	 0	 0	
16	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	 1	 1	 1	
17	 1	 1	 0	 1	 0	 0	 1	 1	 1	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 0	 0	
19	 0	 1	 0	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	
20	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	 1	 1	 0	 1	 1	
21	 1	 0	 0	 0	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	
22	 0	 1	 1	 1	 0	 1	 1	 1	 0	 1	 0	 0	 1	 1	 1	
Figure 1. 3-way covering array of 15 boolean parameters 
 

To make testing tractable, we use combinatorial methods 
[2][4]. To see the advantages of a combinatorial approach, refer 
to Fig. 1, which shows a covering array of 15 boolean variables. 
A covering array is an 𝑁 × 𝑘 array of N rows and k variables. In 
every 𝑁 × 𝑡  subarray, each t-tuple occurs at least once. In 
software testing, each row of the covering array represents a test, 
with one column for each parameter that is varied in testing. For 
example, Fig. 1 shows a complete 3-way covering array that 
includes all 3-way combinations of binary values for 15 

parameters in only 22 tests. The size of a t-way covering array 
of n variables with v values each is proportional to 𝑣.	𝑙𝑜𝑔	𝑛 
[6][7]. For Example 1, with five attributes and two possible 
decisions for each attribute, there are 25 = 32 possible rule 
instantiations. However, a covering array of all 3-way 
combinations contains only 12 rows. The number of variables 
for which all settings are guaranteed to be covered in a covering 
array is referred to as the strength; a 3-way array is of strength 
3. We use covering arrays of variables from rules that have been 
converted to k-DNF form. For example, abc + de contains two 
terms, one with three literals and one with two, so the expression 
is in 3-DNF form. The covering array does not contain all 
possible input configurations, but it will contain all k-way 
combinations of variable values. Where an expression is in k-
DNF, any term containing k literals that is resolved to true will 
clearly result in the full expression being evaluated to true. For 
example, an access control rule in 2-DNF form could be: “if 
employee && US_citizen || auditor then grant”. This rule 
contains one term of two attributes and one term of one attribute, 
so it is 2-DNF. Because a covering array of strength k contains 
every possible setting of all k-tuples and i-tuples for i < k, it 
contains every combination of values of any k literals. 

 
As noted in the Introduction, we exhaustively test all 

combinations of values on which a decision is dependent. For 
the example above, the decision grant depends on either of two 
terms being true:  employee && US_citizen or auditor. Any 
other setting of these three variables should result in deny. A 
truth table of all eight possible settings of these three variables 
would allow exhaustive testing of this set of rules. In general, 
exhaustive testing is intractable for nearly all applications, but 
note that at most two variables are required to produce a grant 
result. So if we test all 2-way combinations of settings of the 
input variables, we have achieved exhaustive testing of all 
combinations of variable values on which a decision is 
dependent, since no decision depends on more than two 
variables. (Later in the paper we show how this approach scales 
up to larger problems, and address the effectiveness for detecting 
errors when implemented rules contain more variables than are 
included in specified rules.)   

 
Covering array generation tools, such as ACTS [4][6], make 

it possible to include constraints that prevent inclusion of 
variable combinations that meet criteria specified in a first order 
logic style syntax. For example, if we are testing applications 
that run on various combinations of operating systems and 
browsers, we may include a constraint such as ‘OS = “Linux” 
=> browser != “IE”’. Constraints are typically used in situations 
such as this, where certain combinations do not occur in practice 
or are physically impossible, and therefore should not be 
included in tests. Modern constraint solvers such as Choco [8] 
and Z3 [9] make it possible to process very complex constraint 
sets, converting logic expressions into combinations that are 
invalid and can be avoided in the final array.  
 
Method:  Let R = rule antecedents (left side of an implication 
rule such as p in p → q) of one or more rules being tested in k-
DNF, and Ti are terms (conjuncts of one or more variables or 



 

terms) in R. We designate the result/consequent of the rule 
being tested as (+), and any other possible result as (-). For the 
example included in Example 1, terms Ti of R1 would be acd̅, 
and ae, and R1 would be designated as (+) and R2 or exit() 
designated as (-), for this test.  
 
Positive testing:  Generate a test set PTEST for which every test 
should produce a particular response. It must be shown that for 
all possible inputs, where some combination of k input values 
matches a (+) condition, a (+) result is returned. Construct test 
set PTEST =  {PTESTi}  with one test for each term Ti of R as 
follows:  PTESTi =  𝑇5(	7 ~𝑇9		)9;5  

 
The construction ensures that each term in P is verified to 

independently produce the expected response for that rule. 
Negating each term Tj, i ≠ j, prevents masking of a fault in the 
presence of other combinations that would return the same 
result. For example, if a rule condition is ab + cd →R1, inputs of 
1100, 1101, 1110 could be used for testing ab →R1. However, 
input 1111 would not detect the fault if the system ignores 
variable a or b, because the condition cd would cause a result of 
R1, and no other predicates in the rule would be evaluated. One 
such test is required for each term in a rule, so for m rules with 
an average of p terms each, the number of tests required is 
proportional to mp.  
 
Negative testing: Generate a test set NTEST for which every test 
should produce a response other than the result designated by 
the rule being tested. It must be shown that for all possible 
inputs, where no combination of k input values matches a rule, 
an alternative result is returned.  
 

NTEST = covering array of strength k, for the set of 
variables in all rules, with constraints specified by ~Ri.  
 

Note that the structure of the rule evaluation makes it 
possible to use a covering array for NTEST, compressing a large 
number of test conditions into a few tests. Converted to k-DNF, 
each rule antecedent includes a sequence of conditions that are 
each sufficient to trigger the specified result. Because rule 
antecedents are mutually exclusive, masking of one combination 
by another can only occur for NTEST when a test produces a 
negative response, i.e., a response that is not a consequent of the 
rule instantiated in PTEST. In such a case, an error has been 
discovered, which can be repaired before running the test set 
again. Since NTEST is a covering array, the number of tests will 
be proportional to vk log n, for v values per variable (normally 
v=2 since most will be Boolean conditions), and n variables.  

 
Rule antecedents are assumed to be mutually exclusive (to 

prevent masking as discussed above), but we allow for cases 
where multiple rules may have the same consequent (result). In 
such cases, rule antecedents are combined to produce the set of 
conjuncts used in generating PTEST and NTEST arrays. For 
example, if two rules are R1→ Q1 and R2→ Q1, then k-DNF 
terms for PTEST are produced from (R1+ R2) and constraints for 
NTEST are given by ~(R1+ R2). For m rules with the same 

consequent (result), the number of tests is multiplied by the 
constant m.  
       
Example 2: Table I gives a set of Boolean variables a through 
e, where each row defines values for the variables that determine 
an access control decision, either grant (+) or deny (-). Thus a 
covering array for the antecedent R of a rule in 3-DNF such as 
(acd̅ +	a̅bc̅ → grant) is given in Table 1. The total number of 3-
way combinations covered is the number of settings of three 
binary variables multiplied by the number of ways of choosing 
three variables from five, i.e., 2= >53A = 80.	 
 

TABLE I.  3-WAY COVERING ARRAY 
 a b c d e 
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 0	 1	 0	
4 0	 1	 1	 0	 1	
5 1	 0	 0	 1	 1	
6 1	 0	 1	 0	 0	
7 1	 1	 0	 0	 1	
8 1	 1	 1	 1	 0	
9 1	 1	 0	 0	 0	
10 0	 0	 1	 1	 0	
11 0	 0	 0	 0	 1	
12 1	 1	 1	 1	 1	

TABLE II.  3-WAY COVERING ARRAY WITH CONSTRAINT ~R 

 a b c d e 
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 1	 0	 0	
4 1	 0	 0	 1	 0	
5 1	 0	 1	 1	 0	
6 1	 1	 0	 0	 1	
7 1	 1	 1	 1	 1	
8 0	 0	 1	 0	 1	
9 1	 1	 0	 1	 0	

10 0	 0	 0	 1	 1	
11 1	 0	 0	 0	 0	
12 0	 1	 1	 1	 0	
13 1	 0	 0	 0	 1	
14 0	 1	 1	 0	 1	

      
Table II shows a covering array for this set of variables 

generated using ~R as a constraint. That is, the two terms of the 
rule, acd̅ and	a̅bc̅,  have been excluded from the array, but all 
other 1-, 2-, and 3-way combinations can be found in the array. 
Because acd̅ and	a̅bc̅ are the only conditions under which access 
should be granted, the array in Table II should result in a deny 
response from the system for every test. Collectively, tests 
include all 78 3-way settings of variables that will not instantiate 
the access control rule to true.  

III. FAULT DETECTION PROPERTIES 
Now consider the faults that this method can detect. Suppose 

that some combination of variables exists that produces a 
different response than required by the rule set P, for example 
because of errors in code that instantiates variable values. Tests 
contained in PTEST and NTEST will detect a large class of 



 

missing terms, added terms, or altered terms containing k or 
fewer variables. In this section we analyze faults that will be 
detected, and the underlying conditions in these faults. Table III 
illustrates the fault types and detection conditions for each.  

TABLE III.  EXAMPLE FAULTS AND DETECTION CONDITIONS. 

  Term C=correct 
term 

F=faulty 
term 

PTEST detect 
condition 

NTEST detect 
condition 

notes 

1 missing abc -- abc none  
2 added -- ab none ab  
3  abc a̅b none a̅bc, a̅bc̅  
4  abc ab none abc̅  
5  ab abc -- -- no fault 
6 altered abc abc̅ abc abc̅  
7  abc ab none abc̅  
8  abc a̅b abc a̅bc, a̅bc̅  

 
k-DNF detection property: It is shown in [2] that  

collectively, tests from PTEST and NTEST will detect faults 
introduced by added, deleted, or altered terms with up to k 
variables. We can also show [2] that if more than k attributes are 
included in the altered term, some faults are still detected. 
Specifically, where a correct term has more than k variables and 
is not a subset of a faulty term, the fault will be detected. If a 
correct term is a subset of a faulty term in this case, some faults 
will be detected.  

IV. SOFTWARE TOOL 
The prototype research tool, Pseudo-Exhaustive Verifier 

(PEV), was developed in Java, and utilizes several open source 
external Java libraries. The software is packaged as a Java 
Archive (.jar) file which is directly executable as a Graphical 
User Interface (GUI), or can be run as a Command Line 
Interface (CLI) from a terminal.  

 
The PEV software has been designed to accept rule sets 

comprised of Boolean variables, Boolean operators and 
relational expressions, implementing the algorithm described in 
Sect. II. The software parses the rule set, converts to Disjunctive 
Normal Form (DNF), inverts the DNF rule set, solves for 
positive conditions, and uses NIST’s Automated Combinatorial 
Testing for Software (ACTS) tool [6] to compute a covering 
array for negative conditions. 
 

Algorithm implementation: PEV utilizes several publicly 
available Java Archive libraries to generate test arrays. 
Transforming the input Boolean rule set to DNF is done using 
jbool_expressions [10], and the Choco constraint solver [11] is 
used for resolving relational statements. 
 

Parsing: Parsing is a critical step of the PEV software, which 
occurs before any testing is performed. Since the software needs 
to accept input from the user, any input must be modified and 
sanitized prior to use, to ensure compatibility with the various 
APIs used, as well as to catch any syntactical problems prior to 
testing... The parser strips extraneous whitespace, and then 
normalizes Boolean operators (&&, &, ||, |, !, ~), 
and attempts to match open and closing parenthesis. This 
sanitization ensures compatibility with the various APIs used 

throughout the software, and catches any syntactical problems 
prior to testing. 

 The software is not restricted to Boolean expressions, and 
has initial support for relational expressions (e.g., b < 3;). Note 
that a semicolon is used to identify a relational expression. 
During parsing, PEV will locate numeric relational expressions 
and replace them with temporary Boolean variables. After the 
replacement, the rule set is processed as normal. The relational 
values are solved at a later step and the results are recorded. 

 
Once the initial input rule set is parsed, the software will 

convert it to Disjunctive Normal Form (DNF) to be tested. The 
user will be presented with a breakdown of the DNF rule set 
(split on the OR statements), each part of which is a positive 
condition that needs to be solved. Additionally, the user can set 
minimum and maximum values for any relational variable found 
in the rule set. 

 
Solve for positive conditions:  Each individual expression 
between OR operators is an expression that, once solved, will 
produce one positive condition. These expressions represent the 
only possible positive conditions for the original rule set – so it 
is possible to produce exhaustive positive conditions. 
 
Consider Fig. 1, with the original input rule set: 
 
   emp & age>18; & (fa | emt | med) | b<3; 
 
Converted to DNF, this is: 
    

((age > 18; & emp & emt) | (age > 18; & emp 
& fa) | (age > 18; & emp & med) | b < 3;) 

 
Splitting on the OR operators, there are four individual 

expressions for the positive conditions (replacing relational 
expressions with temporary Boolean variables  
tmp0 = age > 18; and tmp1 = b < 3;): 

• tmp0 & emp & emt 
• tmp0 & emp & fa 
• tmp0 & emp & med 
• tmp1 

 
To solve these expressions, any variable present is evaluated 

with the following rules, as shown in Table V: 
• Non-negated variables evaluate to true 
• Negated variables evaluate to false 
• Variables not present evaluate to false 

 
 Solve for negative conditions:  Depending on the complexity 

of the input rule set, it may not be feasible to produce exhaustive 
negative condition output combinations. By utilizing 
combinatorial test methods, it is possible to generate covering 
arrays of sufficient strength to have good test coverage. The 
method for producing negative conditions can be found by 
generating the full covering array for all the unique Boolean 
variables within the rule set, and using the DNF rule set as a 
constraint – which will remove the positive conditions from the 
resulting output. 
 



 

 
Figure 1.  PEV software, after initial rule set parsed 

TABLE V - SOLVED POSITIVE CONDITIONS 
Expression tmp0 tmp1 emp emt fa med 
tmp0 & emp & emt 1	 0	 1	 1	 0	 0	
tmp0 & emp & fa 1	 0	 1	 0	 1	 0	
tmp0 & emp & med 1	 0	 1	 0	 0	 1	
tmp1 0	 1	 0	 0	 0	 0	

 
  A covering array for all negative conditions is computed as 

described in Sect. II. To perform this task, PEV creates an 
internal instance of the ACTS software, and passes a list of the 
unique Boolean variables from the rule set (including temporary 
Boolean replacements for relational expressions). The next step 
is to add the DNF rule set as a constraint to the system – so that 
the positive conditions are not included as negative results. 
Finally, the k-way combination is dynamically set after the k-
DNF transform, which finds the conjunction with the largest 
combination of Boolean variables. In this example, the value of 
3 is set (Table VI). PEV currently supports k = 2..6, because 
ACTS is used as the covering array generator, but there is no 
inherent limit to 6-way combinations and the method could 
support k > 6.  

 
Solve for relational expressions using the Choco Expression 
Parser and the Choco Constraint Solver. 
     Relational Expression Formatting:  The general format is: 
 

Variable OPERATOR Integer_Value; Or 
Integer_Value OPERATOR Variable; 
 

Every relational expression must end with a semicolon (;), 
and two or more relational expressions in a row (without 
Boolean operators between them) will be replaced with one 
temporary Boolean variable during parsing. An example is 
shown in Table VII.  

 
     After being extracted and replaced by temporary Boolean 
variables, and the Positive/Negative conditions are found, an 
instance of Choco Expression Parser is created, and the 
relational expressions are passed as parameters. The minimum 
and maximum range for the expression to test against must be 
set – the PEV GUI includes a section which will allow the 
adjustment of every relational variable min and max values 
(default set to 0 to 100). These values can be adjusted prior to 

testing the rule set so that a customized range can be found. The 
solutions to the solved expressions are then placed into the 
results where appropriate.  

TABLE IV.  SOLVED NEGATIVE CONDITIONS 

tmp0 tmp1 emp emt fa med 
1	 0	 1	 0	 0	 0	
1	 0	 0	 1	 1	 1	
0	 0	 1	 1	 1	 0	
0	 0	 0	 0	 0	 1	
0	 0	 0	 1	 0	 0	
0	 0	 1	 0	 1	 1	
1	 0	 0	 0	 1	 0	
0	 0	 1	 1	 0	 1	
1	 0	 0	 1	 0	 1	
0	 0	 0	 0	 1	 0	
1	 0	 0	 0	 0	 1	
1	 0	 0	 1	 0	 0	

 

TABLE V.  INPUT POLICIES AND RESULTING PARSED RULE SET 

Input Rule set Parsed Rule set 
a > 10; 20 < b; || n tmp0 || n 
a > 10; || 20 < b; || n tmp0 || tmp1 || n 

 
Results:  Once testing completes, PEV displays usage metrics 
and parameters which will result in positive conditions, and the 
covering array for negative conditions. At this point, the results 
can be saved as a comma separated value (.csv) file. 

V. V. TEST SET SIZE AND PRACTICAL IMPLICATIONS 
The process scales easily to systems with a large number of 

variables and rules. Because the number of rows in a covering 
array grows only with log n for n variables at a given number of 
values, a large increase in the number of variables requires only 
a few additional tests.  

The most significant limitation for this approach occurs 
where terms in rules contain a large number of values per 
variable. Because the number of rows of a covering array 
increases with vk, for v variable values, if terms in the rules have 
more than 10 to 12 values, it may not be practical to generate 
covering arrays. However, a large number of tests is not a 
barrier, because the structure of the solution resolves the oracle 
problem by ensuring that every test in PTEST should produce a 
response of (+) and every test in NTEST should produce a 
response of (-). Consequently, tests can be fully automated, 
making it possible to execute a large test set.  

VI. VI. RELATED WORK 
This paper generalizes a method developed originally for 

testing attribute-based access control systems [2], which had 
been incorporated into the Access Control Policy Testing tool 
ACPT [12]. The generalized method and new tool, PEV, were 
developed to make the method useful in development and testing 
for a wider range of applications. Pseudo-exhaustive test 
methods for circuit testing have an extensive history of 
application [1]. While our method is not derived from these 
earlier approaches, it shares the basic notion of determining 
dependencies, partitioning according to these dependencies, and 



 

testing exhaustively the inputs on which an output is dependent. 
We have previously applied this notion to software testing in a 
more general form, using the observation that faults depend on 
a small number of inputs, by covering all 2-way to 6-way 
combinations of inputs [13]. This earlier work generated a test 
oracle using a model checker with a formal specification of a 
system, instantiated with inputs from a covering array.  

 
     Relatively little work has been published on testing 
specifically for rule-based systems. Dalal et al. [15] describe a 
case study of a rule-based system in an evaluation of model 
based testing, including the use of the combinatorial testing tool 
AETG. However, their testing considered only high level 
properties, such as whether updates correlated with the 
assignment of jobs during a working day. That is, no tests were 
generated from the rules. Rule based systems have also been 
used in a number of studies of test data generation [16][17], but 
used rules in generating tests for other software, rather than 
testing the rule-based systems themselves. 

 
Among automated test generation systems, PEV falls into 

the class of tools with a specified test oracle, using the taxonomy 
of Barr et al. [14], because system rules serve as a specification 
of system behavior. Many such systems have been developed. 
The test oracles used in those systems were designed to answer 
the question "For a given set of inputs and initial state, what is 
the system output?", using a formal spec of some kind. Given 
such an oracle, test inputs must also be provided. Our method 
differs from these in that we address a narrower class of systems, 
but trade this limitation for complete coverage of inputs up to k-
way combinations, providing testing that is pseudo-exhaustive, 
i.e., exhaustive for all subsets of inputs on which a rule result is 
dependent.  

VII. CONCLUSIONS 
Rule-based systems are used extensively in applications such 

as enterprise resource planning and machine learning [20]. If 
rules contain at most k Boolean variables per conjunction, for an 
expression in k-DNF, then a k-way covering array can test all 
possible settings of such terms. Thus for any possible 
combination of n inputs, only k (k < n) matter in determining the 
truth of the expression. In most applications, the number of 
conditions in conjunction will be small, even though the number 
of rules may be very high, possibly several hundred or even into 
thousands. The number of rows in a k-way covering array of 
Boolean variables is proportional to 2k log n, and the ACTS 
covering array generator used in PEV produces arrays up to 6-
way. Therefore PEV can efficiently process thousands of 
conditions or rules with up to six conditions per conjunction, 
sufficient for practical use.  

 
      The method described here was initially used in access 
control policy testing [2], and PEV has extended its applicability 
to a broader range of potential use. We are also considering 
methods to improve the efficiency of the PEV tool, including 
use of SAT solvers for generating covering arrays [18][19]. It 
may be possible to integrate the methods described in this paper 
with SAT-solver based covering array generation, to produce 
more compact arrays.  

To make the tool more useful for practical application, 
features to allow import and export from common rule system 
formats, or decision table structures, may be helpful. We plan to 
investigate the possibilities depending on interest from users. 
We have received inquiries regarding compatibility with 
commercial tools, which could be considered for further 
development. Thus far, the major interest for this test method is 
for business rule systems, but it could be applied to traditional 
expert system applications as well.  
 
Note: Identification of products does not imply endorsement by NIST, nor that 
products identified are necessarily the best available for the purpose. 
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