
A Document-based Parameter Correlation Metric
for Test Design

Hiroyuki Nakagawa
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: nakagawa@ist.osaka-u.ac.jp

Nobukazu Ishii
Information and Computer Sciences

School of Engineering Science
Osaka University

Osaka, Japan
Email: n-ishii@ist.osaka-u.ac.jp

Tatsuhiro Tsuchiya
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
Email: t-tutiya@osaka-u.ac.jp

Abstract—Efficient software testing requires precise test space
definition. To determine the test space, constraint elicitation is
one of the important processes in a test design; however, the
process usually requires manual capturing and precise definition
of constraints. We have developed a constraint elicitation process
that helps to define constraints from documents relevant to the
test model. In this paper, we propose a refined metric that
finds parameter combinations to be extracted more precisely.
This metric determines the parameter correlation on the basis of
word co-occurrences in the specification document. We conduct
experiments on some test models and demonstrate that our metric
allows us to find parameter combinations that form constraints
with a high recall rate.

I. Introduction
Software testing is an essential activity in the software

development process. In order to conduct the activity correctly
and efficiently, the testing technique requires precise test space
definition to perform testing. We consider a test space that is
modeled by a set of parameters, their values, and constraints
on the value combinations [1] [2]. The constraints define the
value combinations that are prohibited and should be excluded
from test cases. Constraint elicitation and handling is crucial in
test design [3] [4]; however, the constraint elicitation process
has not been well studied.

Our objective is to construct a constraint elicitation process
that helps us define constraints. In general, constraint elici-
tation processes have to solve two problems, that is, “How
do we find which parameter combinations form constraints?”,
and “How do we find which value combinations on the given
parameters define constraints?”.

We have designed the overview of a constraint elicitation
process [5]. To solve the first problem, we proposed a metric
for calculating the correlation between parameters, which uses
the distances between words in a document of a System
Under Test (SUT) to estimate parameter correlations, in the
previous work [5]. In this paper, we introduce an enhanced
metric to estimate the correlation between parameters more
precisely. Since constraints are defined on the relationships
between relevant parameters, such a metric helps to find
which parameter combinations should be considered to define
constraints. We previously proposed a metric for calculating

the correlation between parameters in [5], which sums up the
distances between words of two parameters in a specification
document of a System Under Test (SUT). We conduct exper-
iments on two real world applications, a web application and
a Unix command, to evaluate the validity of our metric. This
empirical evaluation indicates that our new metric allows us
to find parameter combinations that form constraints from a
specification document of SUT with a higher precision and
recall rate than the previous metric.

The rest of the paper is organized as follows: Section 2 gives
the background of this study by providing the explanation of
constraints; Section 3 gives the overview of our approach;
Section 4 describes how we find parameter combinations that
probably cause constraints using our metric; Section 5 presents
the results of two experiments on real world testing examples,
and Section 6 explains how we evaluate our approach with
the experimental results; Section 7 discusses related work, and
Section 8 concludes the paper.

II. Constraints

As an example of a System Under Test (SUT), consider a
web application which may be influenced by various factors
including operating systems, browsers and memory size. Sup-
pose that the three factors are chosen as test parameters. We list
the possible values of parameters in Table I. This test model
has three parameters, i.e., OS, Browser, and RAM (memory),
with their parameter values. A test case is a vector of parameter
values, such as (Windows, Chrome, 4GB).

Formally the test space is modeled by a set of parameters,
their values, and constraints on the value combinations. In par-
ticular, constraints define the combinations that never happen
and must be excluded from test cases. For example, when we
choose Mac for the parameter OS, we should choose as the

TABLE I: A cross-browser test model.

Parameter Values
OS Windows, Mac, Linux
Browser IE, Safari, Chrome
RAM 512MB, 1GB, 2GB, 4GB

DOI: 10.18293/SEKE2018-069

Test model
Parameter Values

A a1, a2, a3, ...

B b1, b2, b3, ...

C c1, c2, c3, ...

e.g.) Parameter pairs (A,
B) and (A, C) have

strong relationship

A=“a1” B=“b2”
A=“a2” C=“b1”

...

Constraints
Phase 1
Parameter

combination
identification

Phase 2
Value pair

determination

e.g.) If A=“a1”,
then the value of B

have to be “b2”

Fig. 1: An overview of the constraint elicitation process. This paper focuses on Phase 1. We have proposed a method [5] for
the activity in Phase 2.

browser Safari or Chrome, because Mac OS does not support
IE (Internet Explorer). This constraint is defined as follows:
OS = “Mac”⇒ Browser = “Safari” || “Chrome”.

In the presence of constraints it is necessary to design a test
suite such that all test cases satisfy the constraints. Otherwise,
some test cases would not be executable because of constraint
violation, resulting in redoing the test design process. A test
suite constructed with considering constraints is different with
one constructed without considering constraints because these
test spaces are not the same.

III. Constraint Elicitation Process

The objective of our study is to support identifying which
combinations of values define constraints. There are two
difficulties in the constraint elicitation: one exists in parameter
combination identification and the other exists in value com-
bination identification. In our example explained in Section
II, we first have to identify which parameter combinations,
such as parameters “OS” and “Browser”, form constraints.
Next, after identifying parameter combinations that cause con-
straints, we also have to determine which value combinations
cause constraints. In the above example, it corresponds to the
identification of the value combinations, such as “Mac” and
“Safari” on the parameter combination “OS” and “Browser”.

Figure 1 illustrates an overview of our constraint elicitation
process. This process consists of the following two steps:

• Phase 1: Parameter combination identification. We
identify which parameter combinations form constraints.
We find such combinations by analyzing a specification
document for the SUT. For this analysis, we use a metric
that we propose in this paper.

• Phase 2: Value pair determination. We determine which
value combinations cause constraints.

The goal of this paper is to help find which parameter combi-
nations have strong relationships in Phase 1. Although Phase 2
is beyond the scope of our paper, we have proposed a method
of determining value combinations that define constraints
using a web search engine [5]. We use hits of search results as
a metric. We support that excessively higher/lower hits indicate
that the corresponding value pairs are bound/uncommon pairs
and therefore they probably define constraints.

IV. Parameter Combination Identification

The objective of Phase 1 is to identify which parameter
combinations have strong relationships. Most constraints are
caused by strong relationships between parameters. In order to
find such strong relationships, we use a specification document
as a definitive source and a metric for calculating correlation
between parameters. The correlation ρ(f , g) between parame-
ters f and g represents how strong the relationship between
two parameters is. The value of the metric is calculated by us-
ing a diff(f , g) value, which represents how differently relevant
words of these two parameters appear in the document.

Our parameter combination identification process consists
of the following steps. A specification document for the test
model is given to the process as an input data. We assume that
the document is given as a sequence of English words.
• Step 1: select a set of words for each parameter. The

members of the set are the parameter name and values of
the parameter. If a value of the parameter is a common
word, such as “on” and “off”, the value is excluded from
the set. Instead, representative words that can explain the
parameter, such as the full name of the parameter, can
also be the members, if they exist. We call this set word
group.

• Step 2: split the given document into multiple small parts
(bins). In this paper, we construct bins all of which have
the same size, that is, all of the bins contain the same
number of words.

• Step 3: count the occurrences of words in every word
group within each bin.

• Step 4: construct relative frequency tables for each word
group using the results of Step 3.

• Step 5: sum up the difference of bin values between every
two word groups. These values provide the diff values.

• Step 6: output the reciprocals of the diff values as
correlation ρ values (ρ(f , g) ∝ 1/diff (f , g)).

We briefly explain our identification process using our cross-
browser testing example described in Section II. First, we
define word groups (Step 1). The word group is defined as
a set whose members are the parameter, the values of the
parameter, and relevant words. In our example, the word group
of OS contains the words such as “OS” and “Windows”. Next,

0

1

2

3

4

5

6

1-50 51-100 101-150

OS

0

5

10

15

1-50 51-100 101-150

Browser

0

5

10

15

20

1-50 51-100 101-150

RAM

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

OS Browser OS Browser OS Browser

1 50 51 100 101 150

(b)

Fig. 2: (a) Histograms for word groups in the cross-browser testing example. (b) The difference of bin values between relative
frequency tables for parameters OS and Browser. The sum of red bars corresponds to the diff(OS, Browser) value.

TABLE II: Frequency and relative frequency tables. The table
unifies three frequency tables (denoted by “Freq.”) and three
relative frequency tables (“Relative”).

Group Bin 0-50 51-100 101-150 Total
OS Freq. 4 1 5 10

Relative 0.4 0.1 0.5 1
Browser Freq. 12 5 13 30

Relative 0.4 0.17 0.43 1
RAM Freq. 2 15 3 20

Relative. 0.1 0.75 0.15 1

we split the document into small parts (Step 2). We assume
that a given document for the system consists of 150 words.
In this example, we split it into three parts, i.e., words from
the first to the 50th word as the first part, words from the
51st to the 100th word as the second part, and so on. Third,
we count the occurrences of the words in every word group
within each bin (Step 3). Figure 2(a) illustrates the counting
result of the example. After counting the words within each bin
for every word group, we construct relative frequency tables
(Step 4). Algorithm 1 explains the details of Step 4. Table
II lists the results of Step 4 in our example. Next, we sum
up the difference of bin values between every pair of two
word groups to calculate the diff(f , g) values (Step 5). Figure
2(b) represents the difference of bin values between relative
frequency tables for parameters OS and Browser. We sum up
these differences (red bars) and regard the total value as the
diff value. This value becomes low when the occurrences of
a word group is similar to those of the other word group.
Finally we calculate parameter correlations as the reciprocals
of the results of Step 5 (Step 6). Algorithm 2 explains the
details of Steps 5 and 6. Table III lists the correlation ρ
values of our example. This result indicates that the parame-
ter combination (OS, Browser) has strong relationship, and
therefore, the combination may cause constraints, such as
OS = “Mac”⇒ Browser = “Safari” || “Chrome”.

V. Experiments

In order to evaluate the validity of our metric, we conducted
experiments on some applications. We applied our process to
two applications: a real world web application (Exp 1) and a
Unix command (Exp 2).

Algorithm 1 Construct relative frequency tables from a doc-
ument.
[Input] doc: given specification document
[Input] wordgroup[][]: word groups
// wordgroup[n]: word group for the n th parameter

[Input] BINS: the number of bins
[Output] relFreqDist[][]: relative frequency tables
// relFreqDist[n]: a relative frequency table for the n th parameter
(word group)
// relFreqDist[n][i]: the relative frequency of i th bin for the n
th parameter (word group)

1: // split given document into a word list
2: words← split(doc);
3:
4: // count frequency
5: f reqDist[][]← initialized by 0;
6: currentBin ← 0;
7: binSize ← words.size() / BINS; // the number of words for each

bin
8: for i = 0 to words.size() −1 do
9: for j = 0 to wordgroup.size() −1 do

10: if wordgroup[j].contains(words[i]) then
11: f reqDist[j][currentBin]++;
12: end if
13: end for
14: if (i + 1)%binSize== 0 then
15: currentBin++; // move to the next bin
16: end if
17: end for
18:
19: // construct relative frequency tables
20: for i = 0 to wordgroup.size() −1 do
21: for j = 0 to BINS−1 do
22: relFreqDist[i][j]

← f reqDist[i][j] / sum(f reqDist[i])
23: end for
24: end for

A. Exp 1: Testing of web application

First, we conducted an experiment on a web application
testing. The target application is Confluence [6], which is a
web application designed for team collaboration. The SUT
model for the Confluence testing has seven parameters, i.e.,
database, server, client, browser, add-ons, and attachment file
type. We derived seven word groups corresponding to the
parameters for this experiment as illustrated in Table IV. We

TABLE III: Parameter Correlations (ρ values).

OS Browser RAM
OS - 7.14 0.77

Browser - - 0.86
RAM - - -

Algorithm 2 Calculate parameter correlation ρ(f , g) using
relative frequency tables.

[Input] f []，g[]: relative frequency tables for word groups f and g,
respectively
// f [i]: relative frequency of i th bin

[Input] BINS: the number of bins
[Output] correlation between parameters (word groups) f and g

1: for i = 0 to BINS−1 do
2: diff ← diff + | f [i] − g[i]|
3: end for
4:
5: return 1/diff; //parameter correlation

used the document [7] as an input document. We split the
document into 960 parts (330 words per bin) based on the
number of pages in this document. We determined the bin
size to let each bin roughly correspond to a page. In reality,
constraints such as the following ones exist in this test model:
• Constraint 1-a: Database = “Microsoft SQL Server”

⇒ Server = “Windows Server”.
• Constraint 1-b: Client = “Mac” ⇒ Browser , “IE”.
• Constraint 1-c: Macro = “Multimedia Macro”

⇒ File Type = “audio” ∥ “video” ∥ “animation”.
We regarded the following six combinations, (Database,
Server), (Browser, Client), (Browser, File type), (Browser,
Add-on), (File type, Add-on), and (File Type, Macro), as the
combinations to be extracted.

Table V lists the results of the correlation calculation. We
extracted the top 30% combinations, whose values are shaded
in Table V, from the calculation results. Observing the results
of this experiment, although we extracted the combination
(Server, Client), which is not involved in any constraints, the
metric allowed us to extract most of the correct combinations
that should be extracted.

We also observed the correctness of the proposed method.
We evaluated the proposed metric by comparing it with the
previous metric proposed in our preliminary work [5] as
the baseline metric. Briefly explained, our previous study
determines parameter correlation using the distance metric,
which sums up the distances between words of two parameters
in the document.

We use the following definition of the precision and recall:
Precision = |Correct ∩ Extracted|/|Extracted|; and Recall =
|Correct ∩ Extracted|/|Correct| , where Correct is the set of
correct pairs to be extracted and Extracted is the set of pairs
that the baseline or proposed method actually extracts from
the document. Figure 3 shows the precision and recall rates
of the two methods. From the figure, both precision and recall
rates of the proposed method are higher than the rates of the
baseline method.

B. Exp 2: Testing of a Unix command

Next, in order to evaluate the scalability of our approach, we
applied our metric to a Unix command, mount (Exp 2). The
SUT model for the testing on mount command has parameters
for options, such as -a, -o, and -t, and arguments, such as
ones for specifying devices, directories, and volume labels. We
constructed 29 word groups corresponding to the parameters
for this experiment. We used a manual of mount command [8]
as an input document1. We split the document into 400 parts
based on the number of lines in this document (32 words per
a bin). In reality, some of constraints exist in the test model
as follows:
• Constraint 2-a: “-O”= “ON” ⇒ “-a”= “ON”.
• Constraint 2-b: “-r”= “ON” ⇒ “-w”= “OFF”.
• Constraint 2-c: “-t”= “ON” ⇒ “vfstype” , “NULL”.
In this experiment, we changed the extraction rate (top 5%,

10%, or 15%) and observed each precision and recall rates.
From the results listed in Table VII, it was found that we
were able to extract most of the parameter combinations to be
extracted even if we extracted only top 5% combinations.

VI. Discussion

We now discuss our correlation metric in the light of our
experiments.

The experimental results in Exp 1 and Exp 2 demonstrate
that our metric could extract most of the parameter combi-
nations that form constraints. In Exp 1, both precision and
recall rates of the proposed method are higher than the rates
of our previous metric. While our previous metric evaluate the
strength of parameter relationship using the distance between
relevant words, the new metric uses co-occurrence of relevant
words. If the word frequency is largely different among word
groups, the latter metric works more properly than the previous
one.

The fact that recall rates in Exp 2 are better than pre-
cision rates indicates that our metric extracts parameters to
be extracted with low false negative rates. It means that the
process using the metric allows developers to find almost all
of the parameter combinations to be extracted by continuously
relaxing the threshold, i.e., extraction rate in Exp 2. This
process is equivalent to acquiring parameter combinations one
by one from the parameter combination list sorted by the
correlation metric in descending order. We can define the end
condition of extraction using the number of a series of wrong
extractions, which mean the extracted combinations are not
involved any constraints.

Precision, on the other hand, was not high. The main
reason is that the strong relationships do not always cause
constraints. While this fact decreases the precision rate, we can
still improve the precision rate. For example, we can improve
the construction of bins. The current process constructs bins
by dividing an input document equally so that the bins
contain the same number of words. The mapping of bins to

1This document can be shown by specifying the keyword “mount” with
“8- Maintenance Commands” option.

TABLE IV: Word groups for the Confluence testing (Exp 1). Group names correspond to the parameter names.

Group Words in word group
Database database, PostgreSQL, MySQL, Oracle, Microsoft SQL Server, H2
Browser browser, IE, Internet Explorer, Firefox, Chrome, Safari, Mobile Safari
Server server, Windows Server, Linux, Unix, Mac
Client client, Windows, Linux, iOS, Android, Mac
File type file type, file extension, upload file, image, Office, PDF, video, audio, animation, docx, doc, pptx, ppt, xlsx, xls, txt
Add-on add-on, plugin, Scroll versions, copy space, scroll PDF Exporter, Gliffy, Lucidchart, Balsamiq
Macro macro, Multimedia Macro, Space Attachments Macro, Office PowerPoint Macro, Gallery Macro, PDF Macro, View File Macro

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11

Precision

Baseline Proposed

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11

Recall

Baseline Proposed

Fig. 3: The transition of precision and recall rates in Exp 1. X axis represents the number of extracted pairs in descending
order.

TABLE V: Correlation values in Exp 1. Bold values represent
correct combinations to be extracted. Shaded values represents
combinations that our method extracted.

Browser Server Client File type Add-on Macro
Database 0.575 0.716 0.568 0.512 0.548 0.508
Browser 0.578 0.608 0.602 0.588 0.525
Server 0.698 0.528 0.58 0.522
Client 0.561 0.572 0.58

File type 0.575 0.603
Add-on 0.567

sentimental blocks, such as paragraphs or sentences, will make
the extraction more precise. The main objective of this paper is
to elicit constraints; however, we can use the metric for other
activities in the test design, such as test suite reduction [9] or
the identification of a subset of parameters that require higher
coverage strength in variable strength interaction testing [10].

The effectiveness of our parameter combination identifi-
cation also depends on how we select relative words of
parameters in their word groups. As demonstrated in Exp 1
and Exp 2, we added some characteristic words related to the
parameters, such as synonyms and full names of options, into
word groups. In order to choose more adequate word groups,
we need a mechanism of collecting relevant words. We could
use a query augmentation method, such as [11], or word2vec
[12][13] for this purpose.

VII. RelatedWork

Currently there are few studies on the constraint elicitation.
Blue et al. [14] presents a test suite reduction method, which
excludes test cases that contain prohibited value combinations.

Their method uses existing test cases and minimizes the test
suite with covering all combinations that are included in the
existing test cases. Their method is useful to define a small set
of test cases without violating constraints; however, the main
focus is on the extraction of minimized test cases from the
existing test cases.

Our approach, including our previous metric [5] explained
in Section V, uses word frequencies in a document to identify
the correlation between parameters. TF-IDF [15] is also known
as a method of reasoning the relationship between words.
Gabrilovich et al. [16] proposed a method called Explicit
Semantic Analysis (ESA), in which a word is represented as
a vector whose attributes represent the relevance of individual
concepts calculated using TF-IDF by using Wikipedia as an
input document. While these co-occurrence-based approaches
require a large number of document, our approach uses only
one document. This feature is useful because documents
related to the target systems are often limited.

The literature in the requirements engineering field has dealt
with linguistic techniques. Falessi et al. [17] evaluate the
performance of a large number of natural language processing
techniques. They define seven principles for evaluating the
performance of these techniques. Some of them could be
useful to improve the correlation metric. Query augmentation
techniques, such as one in [11], may improve the correct-
ness of extracted parameter combinations by enhancing word
groups.

VIII. Conclusions
We defined a metric for estimating a parameter correla-

tion for the test design. This metric allows us to identify

TABLE VI: Correlation values in the mount command testing (Exp2). Bold values represent correct combinations to be
extracted. Shaded values represent the top 5% combinations that our method extracted.

-V -v -a -F ... -r -w -L -U -t -O -o -B -R -M vfstype device dir uuid label num dirs opts
-h 1000 1.5 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.528 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.503
-V 1.5 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.528 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.503
-v 0.583 0.5 ... 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.505
-a 0.538 ... 0.5 0.5 0.5 0.5 0.679 1 0.519 0.5 0.5 0.5 0.538 0.524 0.536 0.5 0.5 0.5 0.5 0.526
-F ... 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.517 0.5 0.5 0.5 0.5 0.5 0.505
...
-r 0.667 0.5 0.5 0.5 0.5 0.538 0.5 0.5 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.5 0.511
-w 0.5 0.5 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.509
-L 1000 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.917 0.667 0.5 0.5 0.503
-U 0.5 0.5 0.519 0.5 0.5 0.5 0.5 0.51 0.5 0.917 0.667 0.5 0.5 0.503
-t 0.633 0.583 0.5 0.5 0.5 0.679 0.547 0.594 0.5 0.5 0.5 0.5 0.537
-O 0.519 0.5 0.5 0.5 0.583 0.51 0.536 0.5 0.5 0.5 0.5 0.517
-o 0.538 0.538 0.5 0.538 0.556 0.605 0.519 0.547 0.5 0.56 0.57
-B 0.625 0.5 0.5 0.503 0.5 0.5 0.5 0.5 0.857 0.509
-R 0.833 0.5 0.503 0.5 0.5 0.5 0.5 0.706 0.507
-M 0.5 0.503 0.5 0.5 0.5 0.5 0.6 0.501

vfstype 0.517 0.577 0.5 0.5 0.5 0.5 0.509
device 0.6 0.524 0.547 0.503 0.503 0.567

dir 0.55 0.526 0.5 0.5 0.519
uuid 0.909 0.5 0.5 0.507
label 0.5 0.5 0.524
num 0.5 0.501
dirs 0.509

TABLE VII: Experimental results in Exp 2.

Extraction rate Top 5% Top 10% Top 15%
Extracted combinations 23 44 69

Precision 0.55 0.23 0.15
Recall 0.73 0.91 1.00

parameter combinations that probably cause constraints. Our
experimental results demonstrated that our metric helps us
extract valid parameter combinations when we analyze speci-
fication documents for the SUT. Such parameter combination
extraction also helps other activities in the test design, such
as test suite reduction or the identification of a subset of
parameters that require higher coverage strength in variable
strength interaction testing.

The results presented in this paper indicate some possible
directions of further work and improvements. There are two
major directions for improving the elicitation mechanism to
identify more precise parameter combinations. First one is to
develop an additional mechanism to improve the precision rate.
The second direction is to define guidelines for applying the
metric, which include the criteria for defining thresholds and
word groups.

Acknowledgments
This work was supported by JSPS Grants-in-Aid for Scien-

tific Research (Grant Numbers 15K00097, 15K00098).

References
[1] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.

Patton, and B. M. Horowitz, “Model-based testing in practice,” in Proc.
of the 21st International Conference on Software Engineering (ICSE’99),
ser. ICSE ’99. ACM, 1999, pp. 285–294.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[3] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when using
combination strategies to test software,” in Proc. of the 18th Australian
Software Engineering Conference 2007 (ASWEC’07), April 2007, pp.
255–264.

[4] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach,” IEEE Transactions on Software Engineering, vol. 34,
no. 5, pp. 633–650, Sep. 2008.

[5] H. Nakagawa and T. Tsuchiya, “A search-based constraint elicitation
in test design,” IEICE Transactions on Information and Systems,
vol. E99-D, no. 9, pp. 2229–2238, Sep. 2016. [Online]. Available:
https://doi.org/10.1587/transinf.2015KBP0010

[6] Atlassian, “Confluence,” https://www.atlassian.com/software/
confluence/.

[7] ——, “Documentation for confluence 5.9,” https://confluence.atlassian.
com/alldoc/confluuence-documentation-directory-12877996.html.

[8] T. F. Foundation, “FreeBSD Man Pages,” https://www.freebsd.org/cgi/
man.cgi.

[9] P. J. Schroeder and B. Korel, “Black-box test reduction using input-
output analysis,” in Proc. of the 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’00). ACM, 2000,
pp. 173–177.

[10] M. Cohen, P. Gibbons, W. Mugridge, C. Colbourn, and J. Collofello, “A
variable strength interaction testing of components,” in Proc. of the 27th
Annual International Computer Software and Applications Conference
(COMPSAC 2003), Nov 2003, pp. 413–418.

[11] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards mining re-
placement queries for hard-to-retrieve traces,” in Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (ASE’10).
ACM, 2010, pp. 245–254.

[12] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proc. of the 26th International Conference on Neural Information
Processing Systems (NIPS’13) Volume 2. Curran Associates Inc., 2013,
pp. 3111–3119.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient es-
timation of word representations in vector space,” CoRR, 2013,
https://arxiv.org/abs/1301.3781.

[14] D. Blue, I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Interaction-based
test-suite minimization,” in Proc. of the 2013 International Conference
on Software Engineering (ICSE 2013). IEEE Press, 2013, pp. 182–191.

[15] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1983.

[16] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” in Proc. of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07).
Morgan Kaufmann Publishers Inc., 2007, pp. 1606–1611.

[17] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 1, pp. 18–44, Jan. 2013.

