

Revisting the Impact of Regression Models for

Predicting the Number of Defects

Man Wu1,2, Sizhe Ye4, Chunhua Li1*, Ziyi Ma3, Zhongwang Fu2
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

2School of Computer Science and Information Engineering, Hubei University, Wuhan, China
 3School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

4State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China

*Corresponding author email: li.chunhua@hust.edu.cn

Abstract— Predicting the number of faults in software

modules can be more helpful instead of predicting the modules

being faulty or non-faulty. Chen et al. (SEKE 397-402, 2015) and

Rathore et al. (Soft Computing 21: 7417-7434, 2017) empirically

investigate the feasibility of some regression algorithms for

predicting the number of defects. The experimental results

showed that the decision tree regression algorithm performed

best in terms of average absolute error (AAE), average relative

error (ARE) and root mean square error (RMSE). However, they

did not consider the imbalanced data distribution problem in

defect datasets and employed improper performance measures

for evaluating the regression models to evaluate the performance

of models for predicting the number of defects. Hence, we revisit

the impact of different regression algorithms for predicting the

number of defects using Fault-Percentile-Average (FPA) as the

performance measure. The experiments on 31 datasets from

PROMISE repository show that the prediction performance of

models for predicting the number of defects built by different

regression algorithms are various, and the gradient boosting

regression algorithm and the Bayesian ridge regression algorithm

can achieve better performance．

Keywords—predicting the number of defects; regression

algorithm; data imbalance; Fault-Percentile-Average;

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. Based on the
investigation of historical metrics, defect prediction aims to
detect the defect proneness of new software modules.
Therefore, defect prediction is often used to help to reasonably
allocate limited development and maintenance resources [1].
So far, many efficient software defect prediction methods using
statistical methods or machine learning techniques have been
proposed [2-4], but they are usually confined to predicting a
given software module being faulty or non-faulty by means of
some binary classification techniques.1

However, predicting the defect-prone of a given software
module does not provide enough logistics to software testing in
practice [5-6]. Some of the faulty software modules may have
comparatively vast quantities of faults compared to other

1 DOI reference number: 10.18293/SEKE2018-068

modules and hence require some additional maintenance
resources to fix them. So, it may result in a waste of limited
maintenance resources if simply predicting the defect-prone of
a given software module and allocating the limited
maintenance resources solely based on faulty and non-faulty
information. If we are able to predict the accurate number of
faults, software testers will pay particular attention to those
software modules that have more number of faults, which
makes testing processes more efficient in the case of limited
development and maintenance resources. Thus, predicting the
number of faults in software modules can be more helpful
instead of predicting the modules being faulty or non-faulty [6].

A. Motivation

A number of prior studies have investigated regression
models on predicting the number of faults. Some researchers
[7-12] have investigated genetic programming, decision tree
regression, and multilayer perceptron in the context of
predicting the number of defect, and found that these models
achieved good performance. Chen et al. [11] performed an
empirical study on predicting the number of faults using six
regression algorithms and found that the prediction model built
with decision tree regression had the highest prediction
accuracy in terms of precision and root mean square error
(RMSE). In another similar study, Rathore et al. [12] presented
an experimental study to evaluate and compare six regression
algorithms for predicting the number of defects. The results
found that decision tree regression, multilayer perceptron, and
linear regression achieved better performance in terms of
average absolute error (AAE) and average relative error (ARE),
measure of completeness, and prediction at level l measures.

However, the software defect datasets are imbalanced. In
other words, the number of defects in the majority of modules
is zero, and the minority of modules have one or more defects.
Using imbalanced defect data to derive a regression model and
then estimate the error value of the resulting learned model can
result in misleading over-optimistic estimates due to over-
specialization of the learning algorithm to the imbalanced
defect data [6]. Suppose that we have trained a regression
model to predict the number of defects in the project Ant 1.3
(see Table I), which contains 124 instances and 33 defects. An
AAE value of, say, 0.264 (=33/124) may make the regression
model seem quite accurate. But, an AAE value of 0.264 may

not be acceptable—the regression model could predict the
number of defects of all instances to be zero.

In addition, Yang et al. [13] pointed out that predicting the
precise number of defects of a module is hard to do due to the
lack of good quality data in practice. Actually, for those
existing approaches that tried to predict explicitly the number
of defects in a software module, they used these predicted
numbers to rank the modules anyway, to direct the software
quality assurance team in targeting the most faulty modules
first [14], [15]. Actually, for software defect prediction for the
ranking task, models with higher prediction accuracy (smaller
AAE or ARE) might give a worse ranking. For example,
assuming that there are three software modules M1, M2, and M3,
which have 2, 3, and 4 defects respectively, model A predicts
that M1, M2, and M3 have 2, 1, and 4 defects respectively,
while model B predicts that M1, M2, and M3 have 0, 1, and 2
defects respectively. Although model A has a better prediction
accuracy (according to AAE and ARE), model B gives tester
better ranking of these three software modules and can guide
the assignment of testing resources correctly. Hence, Weyuker
et al. [15] proposed FPA to reflect the effectiveness of the
different prediction models for predicting the number of
defects.

B. Our work

Considering on the issue that the existing studies [11-12]

employed improper performance measures (e.g., RMSE, AAE

and ARE) to evaluate the performance of models for

predicting the number of defects, thus resulting in wrong

conclusion, we revisit the impact of seven regression

algorithms for predicting the number of defects by using FPA

as the performance measure. These seven regression

algorithms are Bayesian Ridge Regression (BRR), Decision

Tree Regression (DTR), Gradient Boosting Regression (GBR),

Linear Regression (LR), Nearest Neighbors Regression (NNR),

Multilayer Perceptron Regression (MPR), and Support Vector

Regression (SVR). The experimental study is performed on 9

software projects collected from the PROMISE repository.

The FPA performances of the seven algorithms are analyzed

by the one-way ANOVA test and the multiple comparison test.

The experimental results show that the performance difference

of seven regression algorithms for predicting the number of

defects are statistically significant, and the model for

predicting the number of defects built by Gradient Boosting

Regression algorithm and Bayesian Ridge Regression

algorithm achieve better performance．

C. Organization

The remainder of this paper is organized as follows. Section
2 presents the related work. Section 3 describes the seven
regression algorithms for predicting the number of defects.
Section 4 introduces the experiment setup. Section 5
demonstrates the experimental results. Finally, Section 6
addresses the conclusion.

II. RELATED WORK

Many researchers have proposed various models for
predicting the module being faulty or non-faulty. Support
vector machine [16-17], neural networks [18], decision trees

[19] and Bayesian methods [20] paved the way for
classification-based methods in the flied of defect prediction.
These methods used software metrics to properly predict
whether a module is defect-prone or not. However, these
methods are confined with predicting a given software module
being faulty or non-faulty.

A number of prior studies have investigated regression
models on predicting the number of software faults. Graves et
al. [21] presented a generalized linear regression based method
for predicting the number of defects by using various change
metrics datasets collected from a large telecommunication
system, and found that modules age, changes made to module
and the age of the changes were significantly correlated with
the defect-prone. Afzal et al. [8] used genetic programming for
modeling software reliability growth to help in deciding project
release time and managing project resources. Rathore et al. [7]
proposed an approach to predict the number of faults in the
software system and developed defect prediction model using
neural network and genetic programming. In the subsequent
study [9], they proposed an approach to predict the number of
faults in the given software system using the Genetic
Programming (GP). The results showed that GP based models
could produce the significant results for the number of faults
prediction. In another paper [10], they explored the capability
of decision tree regression (DTR) for the number of faults
prediction in two different scenarios, intra-release prediction
and inter-releases prediction for the given software system. The
experimental results indicated that intra-project prediction
produced better accuracy.

Chen et al. [11] performed an empirical study on predicting
the number of faults using six regression algorithms and found
that the prediction model built with decision tree regression had
the highest prediction accuracy in terms of precision and
RMSE in most cases. In another similar study, Rathore et al.
[12] presented an experimental study to evaluate and compare
six regression algorithms for the number of faults prediction.
The results found that decision tree regression, genetic
programming, multilayer perceptron, and linear regression
achieved better performance in terms of AAE, ARE, measure
of completeness, and prediction at level l measures in many
cases. However, the two empirical studies employed improper
performance measures (e.g., RMSE, AAE and ARE) to
evaluate the performance of models for predicting the number
of defects, thus resulting in wrong conclusion.

III. REGRESSION ALGORITHMS

Figure 1 shows a typical process of predicting the number
of defects, which can be divided into four stages. In the first
stage, different from labeling a module defective or not for
predicting a given software module being faulty or non-faulty,
the number of defects in software modules is extracted. In the
second stage, the features for each software module are
extracted. Common features include complexity metrics,
changes, or structural dependencies. Therefore, we can
construct a training dataset for predicting the number of defects.
In the third stage, we can build a model for predicting the
number of defects with the help of some regression algorithms.
In the last stage, after extracting the same features from a new

software module, we can use the model to predict the number
of defects in the module.

Software

Archives

Instances Metrics Training

Instances

Instance

The number of defects

Regression techiques

(2) Feature

extraction

(3) Building

A prediction model

(4) Prediction&

evaluation

(1) Extracting the

number of defects

Fig. 1. The flow chart of predicting the number of defects

 In this paper, we select seven regression algorithms, i.e.,
Bayesian Ridge Regression (BRR), Decision Tree Regression
(DTR), Gradient Boosting Regression (GBR), Linear
Regression (LR), Nearest Neighbors Regression (NNR),
Multilayer Perceptron Regression (MPR), and Support Vector
Regression (SVR). We implement these regression algorithms
based on the python machine learning library sklearn. Unless
otherwise specified, the default parameter settings for different
regression models used in our experiments are specified by
sklearn. That is, we do not perform additional optimization for
each regression model. The brief introductions of the seven
regression algorithms are described as follows:

 (1) Bayesian Ridge Regression (BRR). It estimates a
probabilistic model of the regression problem by introducing
uninformative priors over the hyper parameters of the model.
The prior for the parameter ω is given by a spherical Gaussian:

𝑝(𝜔|𝜆) = 𝑁(𝜔|0, 𝜆−1𝐼𝑝) (1)

The priors over α and λ are chosen to be gamma
distributions, the conjugate prior for the precision of the
Gaussian. The resulting model is called Bayesian Ridge
Regression, and is similar to the classical Ridge. The
parameters ω, α and λ are estimated jointly during the fit of the
model. The remaining hyperparameters are the parameters of
the gamma priors over α and λ. These are usually chosen to be
non-informative. The parameters are estimated by maximizing
the marginal log likelihood.

(2) Decision Tree Regression (DTR). It predicts the value
of a target variable by learning simple decision trees inferred
from the data features. A decision tree is built top-down from a
root node and uses a splitting criterion to partition the data into
subsets that contain instances with similar values. The attribute
which maximizes the expected error reduction is chosen as the
root node. The process is run recursively on the non-leaf
branches, until all data is processed.

(3) Gradient Boosting Regression (GBR). It produces a
prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the model
in a stage-wise fashion like other boosting methods do. It
allows for the optimization of arbitrary differentiable loss
functions. In each stage a regression tree is fit on the negative
gradient of the given loss function.

(4) Linear Regression (LR). It is a statistical approach for
modeling the linear relationship between a dependent variable
y and one or more independent variables. A linear regression
model can be described according to Eq.(2).

Y=b0+b1 x1+b2 x2+…+ bn xn (2)

where Y is the dependent variable, x1, x2,…,and xn are the
independent variables, b1,b2,…,and bn are the regression
coefficients of the independent variables and b0 is the error
term.

(5) Nearest Neighbors Regression (NNR). It is based on the
k-nearest neighbors algorithm, and the regression value of an
instance is computed based the mean of the labels of its nearest
neighbors. The basic nearest neighbors regression uses uniform
weights: that is, each point in the local neighborhood
contributes uniformly to the classification of a query point.
Under some circumstances, it can be advantageous to weight
points such that nearby points contribute more to the regression
than faraway points.

(6) Multilayer Perceptron Regression (MPR). It consists of
a series of processing elements interconnected through the
connection weights in the form of layers. A multilayer
perceptron regression model can be described according to Eq.
(3) and Eq. (4).

𝑛𝑒𝑡𝑘 = 𝑤1𝑘𝑥1 + 𝑤2𝑘𝑥2 +⋯+ 𝑤𝑛𝑘𝑥𝑛 + 𝑏𝑘 (3)

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘) (4)
where Ok is the dependent variable, x1, x2,…,xn are the
independent variables, w1k,w2k,…,wnk are the weights
associated with each input layer, and function f(.) is a
activation function.

 (7) Support Vector Regression (SVR). It uses the same
principles as the SVM for classification, with only a few minor
differences. The main idea is always the same: to minimize
error, individualizing the hyperplane which maximizes the
margin, keeping in mind that part of the error is tolerated.

Training the original SVR means solving:

minimize
1

2
‖𝑤‖2 (5)

subject to{
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

 (6)

where 𝑥𝑖 is a training sample with target value 𝑦𝑖 . The inner
product plus intercept 〈𝑤, 𝑥𝑖〉 + 𝑏 is the prediction for that
sample, and 𝜀 is a free parameter that serves as a threshold: all
predictions have to be within an 𝜀 range of the true predictions.
Slack variables are usually added into the above to allow for
errors and to allow approximation in the case the above
problem is infeasible.

IV. EXPERIMENT SETUP

A. Data set

In this experiment, we employ 31 available and commonly
used datasets which can be obtained from PROMISE [22].
Table I tabulates the details about the datasets. The 31 datasets
have the same 20 features. For the complete details of the
software features, please refer to [14].

B. Performance measures

Considering k modules listed in increasing order of
predicted defect number as f1, f2, f3 ,…, fk, and assuming that ni
is the actual defect number in the module i, n=n1+n2+…+nk is

the total number of defects, and the top predicted modules

should have ∑ 𝑛𝑖
𝑘
𝑖=𝑘−𝑚+1 defects. The proportion of the actual

defects in the top m predicted modules to the whole defects is

1

𝑛
∑ 𝑛𝑖
𝑘
𝑖=𝑘−𝑚+1 . (7)

Then the FPA is define as

1

𝑘
∑

1

𝑛

𝑘
𝑚=1 ∑ 𝑛𝑖

𝑘
𝑖=𝑘−𝑚+1 . (8)

FPA is actually the average of the proportions of actual
defects in the top modules to the whole defects. A higher FPA
means a better ranking, where the modules with most defects
come first.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Release #Instance #Defects %Defects Max Avg

Ant

1.3 125 33 16 3 1.65

1.4 178 47 22.5 3 1.18
1.5 293 35 10.9 2 1.09

1.6 351 184 26.2 10 2.00

1.7 745 338 22.3 10 2.04

Camel

1.0 339 14 3.8 2 1.08
1.2 608 522 35.5 28 2.42

1.4 872 335 16.6 17 2.31

1.6 965 500 19.5 28 2.66

Forest
0.7 29 15 17.2 8 3.0

0.8 32 6 6.2 4 3.0

Jedit

3.2 272 382 33.1 45 4.24

4.0 306 226 24.5 23 3.01
4.1 312 217 25.3 17 2.75

4.2 367 106 13.1 10 2.21

4.3 492 12 2.2 2 1.09

Log4j
1.0 135 61 25.2 9 1.79

1.1 109 86 33.9 9 2.32

Prop

1 18471 5293 14.8 37 2.01

2 23014 4096 10.6 27 1.68
3 10274 1640 11.5 11 1.39

4 8718 1362 9.6 22 1.62
5 8516 1930 15.3 19 1.49

6 660 79 10 4 1.2

Synaps

1.0 157 21 10.2 4 1.31

1.1 222 99 27 7 1.65
1.2 256 145 33.6 9 1.69

Xalan
2.4 723 156 15.2 7 1.42

2.5 803 531 48.2 9 1.37

Xerces
1.3 453 193 15.2 30 2.8
1.4 588 1596 74.3 62 3.65

C. Experimental procdure

Tantithamthavorn et al. [23] investigated some model

validation techniques in the domain of defect prediction and

recommended out-of-sample bootstrap validation. Therefore,

we employ out-of-sample bootstrap validation to perform the

experiment. The out-of-sample bootstrap process is made up

of two steps:
(Step 1) A bootstrap sample of size N is randomly drawn

with replacement from an original dataset that is also of size N.

(Step 2) A model is trained using the bootstrap sample and
tested using the rows of the original sample that do not appear
in the bootstrap sample.

We repeat the out-of-sample bootstrap 10 times and the
average out-of-sample performance is reported as the
performance estimate.

D. Reasearch questions

In order to provide the guidance for the choice of various
regression algorithms for predicting the number of defects, we
address the following two research questions.

RQ1：Which regression algorithm can achieve the best

performance for predicting the number of defects among the
seven algorithms?

RQ2：Are the performances of models for predicting the

number of defects built with different regression algorithms
different?

V. EXPERIMENT RESULTS

A. Results for RQ1

The results (in terms of FPA) of the seven regression
algorithms for each dataset are reported in Table II.
Experimental results show that BRR and GBR produce the
higher FPA values on most of the datasets compared to other
considered regression algorithms for predicting the number of
defects. GBR outperforms other regression algorithms on 9
datasets and achieves the highest average FPA value (0.656).
LR, NNR and DTR are the third, fourth and fifth best defect
prediction algorithms in terms of the average FPA value,
respectively, while MPR and SVR produce relatively lower
FPA values compared to other regression algorithms.

TABLE II. FPA VALUES ON 31 DATASETS USING THE SEVEN

REGRESSION ALGORITHMS

Release BRR DTR GBR NNR LR MPR SVR

Ant-1.3 0.708 0.698 0.675 0.639 0.618 0.733 0.680
Ant-1.4 0.551 0.610 0.673 0.590 0.601 0.479 0.551

Ant-1.5 0.742 0.543 0.580 0.656 0.684 0.366 0.440

Ant-1.6 0.721 0.695 0.768 0.721 0.715 0.207 0.449
Ant-1.7 0.811 0.711 0.798 0.771 0.809 0.385 0.475

Camel-1.0 0.608 0.603 0.600 0.597 0.608 0.351 0.608

Camel-1.2 0.645 0.571 0.602 0.574 0.642 0.533 0.570

Camel-1.4 0.691 0.620 0.714 0.652 0.736 0.615 0.453
Camel-1.6 0.704 0.635 0.693 0.486 0.728 0.660 0.513

Forrest-0.7 0.801 0.468 0.718 0.827 0.801 0.641 0.494

Forrest-0.8 0.700 0.800 0.900 0.700 0.700 0.500 0.800

Jedit-3.2 0.846 0.562 0.853 0.789 0.835 0.383 0.503

Jedit-4.0 0.787 0.710 0.803 0.750 0.795 0.723 0.608

Jedit-4.1 0.738 0.619 0.689 0.628 0.738 0.469 0.463
Jedit-4.2 0.787 0.690 0.787 0.743 0.795 0.633 0.716

Jedit-4.3 0.286 0.267 0.267 0.286 0.286 0.955 0.286

Log4j-1.0 0.456 0.715 0.703 0.784 0.457 0.891 0.695

Log4j-1.1 0.735 0.659 0.640 0.642 0.472 0.722 0.547

Prop-1.0 0.588 0.539 0.595 0.555 0.584 0.498 0.392

Prop-2.0 0.542 0.506 0.533 0.497 0.543 0.461 0.447

Prop-3.0 0.488 0.451 0.472 0.466 0.486 0.539 0.426
Prop-4.0 0.631 0.566 0.618 0.597 0.632 0.609 0.508

Prop-5.0 0.552 0.444 0.540 0.508 0.550 0.561 0.430

Prop-6.0 0.588 0.479 0.547 0.567 0.584 0.607 0.501

Synaps-1.0 0.282 0.517 0.562 0.311 0.266 0.271 0.282
Synaps-1.1 0.755 0.753 0.702 0.538 0.740 0.750 0.589

Synaps-1.2 0.648 0.535 0.596 0.650 0.623 0.428 0.567

Xalan-2.4 0.545 0.543 0.541 0.595 0.584 0.537 0.533
Xalan-2.5 0.631 0.597 0.658 0.615 0.616 0.442 0.556

Xerces1-.3 0.769 0.740 0.754 0.762 0.804 0.230 0.442

Xerces-1.4 0.724 0.655 0.752 0.680 0.720 0.689 0.632

Average 0.647 0.597 0.656 0.619 0.637 0.544 0.521

Figure 2 shows the box-plot diagrams of FPA measure. X-
axis indicates the regression algorithms under consideration,
and Y-axis indicates the values of FPA measure produced by
the used regression algorithms. The different parts of box-plot
show the minimum, maximum, median, first quartile, and third
quartile of the samples. The line in the middle of the box shows
the median of the samples. SVR and MPR produce the lowest
median value, DTR, LR and NNR produce moderate median
FPA values, whereas BRR and GBR produce the highest
median FPA values. MPR produces the lowest minimum FPA
values, DTR, LR, BRR and SVR produce moderate minimum
FPA values, GBR and NNR produce the highest minimum
FPA values. For maximum value, SVR produces the lowest
FPA values, DTR, NNR, LR and MPR produce moderate FPA
values, and BRR and GBR produce the highest FPA values.
For first quartile value, SVR produces the lowest value, DTR,
NNR, LR and MPR produce moderate values, and BRR and
GBR produce the highest values. For the third quartile, MPR
and SVR produce the lowest value, DTR and NNR produce
moderate values, and BRR, GBR and LR produce the highest
values.

Fig. 2. Box-plot analysis for FPA measure for all the datasets

In total, Table II and Figure 2 illustrate that BRR and GBR
outperform other considered regression algorithms. DTR, NNR
and LR perform moderately, while MPR and SVR perform
relatively poor in compared to other used regression algorithms.
To answer the first question, Bayesian Ridge Regression and
Gradient Boosting Regression algorithms can achieve the best
performance for predicting the number of defects among the
seven algorithms.

B. Results for RQ2

To answer the second question, we carry out one-way
ANOVA test on the seven regression algorithms to examine if
the algorithms are statistically different or not. Analysis of
variance (ANOVA) is a collection of statistical models and
their associated procedures used to analyze the differences
among group means. Since the two-group case can be covered
by a t-test, the main idea of one-way ANOVA is to compare
means of two or more groups by using the F distribution. It is
more conservative than the t-test and performs well in terms of

comparing groups for statistical significance. The null
hypothesis for the one-way ANOVA test is that all the group
population means are the same, while the alternate hypothesis
is that at least one pair of means is different. Table III shows
the one-way ANOVA results.

The first row of the Table III lists five parameters, i.e.,
sums of squares, degrees of freedom, mean square, F and p-
value. Since F=4.59> 3.68, the results are significant at the 5%
significance level. In addition, it is clearly that the p-value
(0.0002) for this test is less than the typical cutoff 0.05. We
would reject the null hypothesis, concluding that there is strong
evidence that at least two regression algorithms are
significantly different from each other.

TABLE III. ANOVA FOR THE DATASETS

In the study, we further performed the multiple comparison
test using Tukey’s honestly significant difference criterion.
Figure 3 shows the multiple comparison result for the seven
regression algorithms. The figure displays graphs with each
group mean represented by a symbol (◦) and 95% confidence
interval as a line around the symbol. There are two situations in
the figure: two means are significantly different, if their
intervals disjoint. On the contrary, two means are not
significantly different, if their intervals overlap. From Figure 3,
we can summarize the following points:

(1) MPR and SVR algorithms have significantly worse
prediction performance than other algorithms.

(2) Although the other five algorithms show similar
performance (no significant difference), BRR and GBR
performs slightly better than DTR, NNR and LR.

Fig. 3. Multiple comparison for seven algorithms

As seen in Table III and Figure 3, we can conclude that the
models built by different regression algorithms for predicting
the number of defects have different performance.

Source Sum Sq. d.f. Mean Sq. F p-value

Approach 0.507 6 0.0845 4.59 0.0002

Error 3.865 210 0.0184
Total 4.37 216

C. Threats to Validity

In this subsection, we discuss several validity threats that
may have an impact on the results of our studies. (1) Although
the 31 datasets in our experiment have been widely used in
many software defect prediction studies, we still cannot claim
that our conclusion can be generalized to other datasets. (2) We
only study the seven regression algorithms without additional
optimization for a given dataset. (3) We only employ FPA as
the evaluation measure. Nonetheless, other evaluation
measures such as cost effectiveness graph [24] can also be
considered.

VI. CONCLUSION

The existing studies [11-12] employed improper
performance measures (e.g., RMSE, AAE and ARE) to
evaluate the performance of models for predicting the number
of defects. Therefore, in this paper, we evaluated and compared
the performance of seven regression algorithms (i.e., BRR,
DTR, GBR, LR, NNR, MPR, and SVR) for predicting the
number of defects in given software modules by using FPA as
the performance measure. The experiments were performed on
31 datasets from the PROMISE repository. In addition, the
one-way ANOVA test and the multiple comparison test are
performed to assess the relative performance of the seven
algorithms. The experimental results show that the
performance difference of seven regression algorithms for
predicting the number of defects are statistically significant,
and Gradient Boosting Regression algorithm and Bayesian
Ridge Regression algorithm achieve better performance for

predicting the number of defects．

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program

of China (2016YFB0800402), partially supported by the

National Natural Science Foundation of China under Grant

No.61232004 and the Fundamental Research Funds for the

Central Universities(2016YXMS020).

REFERENCES

[1] F. Rahman, D. Posnett, P. Devanbu , Recalling the imprecision of cross-
project defect prediction, Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering,2012, 61.

[2] X. Yu, M. Wu, Y. Jian, et al, Cross-company defect prediction via semi-
supervised clustering-based data filtering and MSTrA-based transfer
learning, Soft Computing, 2018: 1-12.

[3] X. Yu, J. Liu, W. Peng, et al, Improving Cross-Company Defect
Prediction with Data Filtering, International Journal of Software
Engineering and Knowledge Engineering, 2017, 27(09n10): 1427-1438.

[4] X. Yu, J. Liu, M. Fu, et al, A Multi-Source TrAdaBoost Approach for
Cross-Company Defect Prediction, SEKE, 2016: 237-242.

[5] X. Yu, J. Liu, Z. Yang, et al, The Bayesian Network based program
dependence graph and its application to fault localization, Journal of
Systems and Software, 2017, 134: 44-53.

[6] Yu X, Liu J, Yang Z, et al. Learning from Imbalanced Data for
Predicting the Number of Software Defects, 2017 IEEE 28th
International Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2017: 78-89.

[7] Rathore S S, Kuamr S, Comparative analysis of neural network and
genetic programming for number of software faults prediction, 2015
National Conference on Recent Advances in Electronics & Computer
Engineering (RAECE), 2015: 328-332.

[8] W. Afzal, R. Torkar, R.Feldt, Prediction of fault count data using genetic
programming, Multitopic Conference, 2008. INMIC 2008. IEEE
International. IEEE, 2008: 349-356.

[9] S. S. Rathore, S. Kumar , Predicting number of faults in software system
using genetic programming, Procedia Computer Science, 2015, 62: 303-
311.

[10] S. S. Rathore, S.Kumar, A Decision Tree Regression based Approach
for the Number of Software Faults Prediction, ACM SIGSOFT Software
Engineering Notes, 2016, 41(1): 1-6.

[11] M. Chen, Y. Ma, An empirical study on predicting defect numbers, 28th
International Conference on Software Engineering and Knowledge
Engineering, 2015: 397-402.

[12] S. S. Rathore, S. Kumar, An empirical study of some software fault
prediction techniques for the number of faults prediction, Soft
Computing, 2016: 1-18.

[13] Yang, Xiaoxing, K. Tang, and X. Yao, A learning-to-rank approach to
software defect prediction, IEEE Transactions on Reliability, 2015,
64(1): 234-246.

[14] K. Gao and T. M. Khoshgoftaar, A comprehensive empirical study of
count models for software fault prediction, IEEE Transactions on
Reliability, 2007, 56(2): 223-236.

[15] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, Comparing the
effectiveness of several modeling methods for fault prediction,
Empirical Software Engineering, 2010, 15(3): 277-295.

[16] D. Gray, D. Bowes, N. Davey, et al, Using the support vector machine
as a classification method for software defect prediction with static code
metrics, International Conference on Engineering Applications of Neural
Networks, Springer Berlin Heidelberg, 2009: 223-234.

[17] Z. Yan, X. Chen, P. Guo, Software defect prediction using fuzzy support
vector regression, International Symposium on Neural Networks,
Springer Berlin Heidelberg, 2010: 17-24.

[18] M. M. T. Thwin, T. S.Quah, Application of neural networks for software
quality prediction using object-oriented metrics, Journal of systems and
software, 2005, 76(2): 147-156.

[19] J. Wang, B. Shen, Y.Chen, Compressed C4. 5 models for software
defect prediction, 2012 12th International Conference on Quality
Software. IEEE, 2012: 13-16.

[20] T. Wang, W. Li, Naive bayes software defect prediction model,
Computational Intelligence and Software Engineering (CiSE), 2010
International Conference on IEEE, 2010: 1-4.

[21] T. L. Graves, A. F. Karr, J. S. Marron, et al, Predicting fault incidence
using software change history, IEEE Transactions on software
engineering, 2000, 26(7): 653-661.

[22] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data, 2007
<http://promisedata.org/repository>.

[23] C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, et al, An Empirical
Comparison of Model Validation Techniques for Defect Prediction
Models, IEEE Transactions on Software Engineering, 2017, 43(1):1-18.

[24] T. Jiang, L. Tan, S. Kim, Personalized defect prediction, Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013.

