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Abstract— Predicting the number of faults in software 

modules can be more helpful instead of predicting the modules 

being faulty or non-faulty. Chen et al. (SEKE 397-402, 2015) and 

Rathore et al. (Soft Computing 21: 7417-7434, 2017) empirically 

investigate the feasibility of some regression algorithms for 

predicting the number of defects. The experimental results 

showed that the decision tree regression algorithm performed 

best in terms of average absolute error (AAE), average relative 

error (ARE) and root mean square error (RMSE). However, they 

did not consider the imbalanced data distribution problem in 

defect datasets and employed improper performance measures 

for evaluating the regression models to evaluate the performance 

of models for predicting the number of defects. Hence, we revisit 

the impact of different regression algorithms for predicting the 

number of defects using Fault-Percentile-Average (FPA) as the 

performance measure. The experiments on 31 datasets from 

PROMISE repository show that the prediction performance of 

models for predicting the number of defects built by different 

regression algorithms are various, and the gradient boosting 

regression algorithm and the Bayesian ridge regression algorithm 

can achieve better performance． 

Keywords—predicting the number of defects; regression 

algorithm; data imbalance; Fault-Percentile-Average;  

 

I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. Based on the 
investigation of historical metrics, defect prediction aims to 
detect the defect proneness of new software modules. 
Therefore, defect prediction is often used to help to reasonably 
allocate limited development and maintenance resources [1]. 
So far, many efficient software defect prediction methods using 
statistical methods or machine learning techniques have been 
proposed [2-4], but they are usually confined to predicting a 
given software module being faulty or non-faulty by means of 
some binary classification techniques.1 

However, predicting the defect-prone of a given software 
module does not provide enough logistics to software testing in 
practice [5-6]. Some of the faulty software modules may have 
comparatively vast quantities of faults compared to other 
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modules and hence require some additional maintenance 
resources to fix them. So, it may result in a waste of limited 
maintenance resources if simply predicting the defect-prone of 
a given software module and allocating the limited 
maintenance resources solely based on faulty and non-faulty 
information. If we are able to predict the accurate number of 
faults, software testers will pay particular attention to those 
software modules that have more number of faults, which 
makes testing processes more efficient in the case of limited 
development and maintenance resources. Thus, predicting the 
number of faults in software modules can be more helpful 
instead of predicting the modules being faulty or non-faulty [6]. 

A. Motivation 

A number of prior studies have investigated regression 
models on predicting the number of faults. Some researchers 
[7-12] have investigated genetic programming, decision tree 
regression, and multilayer perceptron in the context of 
predicting the number of defect, and found that these models 
achieved good performance. Chen et al. [11] performed an 
empirical study on predicting the number of faults using six 
regression algorithms and found that the prediction model built 
with decision tree regression had the highest prediction 
accuracy in terms of precision and root mean square error 
(RMSE). In another similar study, Rathore et al. [12] presented 
an experimental study to evaluate and compare six regression 
algorithms for predicting the number of defects. The results 
found that decision tree regression, multilayer perceptron, and 
linear regression achieved better performance in terms of 
average absolute error (AAE) and average relative error (ARE), 
measure of completeness, and prediction at level l measures.  

However, the software defect datasets are imbalanced. In 
other words, the number of defects in the majority of modules 
is zero, and the minority of modules have one or more defects. 
Using imbalanced defect data to derive a regression model and 
then estimate the error value of the resulting learned model can 
result in misleading over-optimistic estimates due to over-
specialization of the learning algorithm to the imbalanced 
defect data [6]. Suppose that we have trained a regression 
model to predict the number of defects in the project Ant 1.3 
(see Table I), which contains 124 instances and 33 defects. An 
AAE value of, say, 0.264 (=33/124) may make the regression 
model seem quite accurate. But, an AAE value of 0.264 may 



 

not be acceptable—the regression model could predict the 
number of defects of all instances to be zero.   

In addition, Yang et al. [13] pointed out that predicting the 
precise number of defects of a module is hard to do due to the 
lack of good quality data in practice. Actually, for those 
existing approaches that tried to predict explicitly the number 
of defects in a software module, they used these predicted 
numbers to rank the modules anyway, to direct the software 
quality assurance team in targeting the most faulty modules 
first [14], [15]. Actually, for software defect prediction for the 
ranking task, models with higher prediction accuracy (smaller 
AAE or ARE) might give a worse ranking. For example, 
assuming that there are three software modules M1, M2, and M3, 
which have 2, 3, and 4 defects respectively, model A predicts 
that M1, M2, and M3 have 2, 1, and 4 defects respectively, 
while model B predicts that M1, M2, and M3 have 0, 1, and 2 
defects respectively. Although model A has a better prediction 
accuracy (according to AAE and ARE), model B gives tester 
better ranking of these three software modules and can guide 
the assignment of testing resources correctly. Hence, Weyuker 
et al. [15] proposed FPA to reflect the effectiveness of the 
different prediction models for predicting the number of 
defects.  

B. Our work 

Considering on the issue that the existing studies [11-12] 

employed improper performance measures (e.g., RMSE, AAE 

and ARE) to evaluate the performance of models for 

predicting the number of defects, thus resulting in wrong 

conclusion, we revisit the impact of seven regression 

algorithms for predicting the number of defects by using FPA 

as the performance measure. These seven regression 

algorithms are Bayesian Ridge Regression (BRR), Decision 

Tree Regression (DTR), Gradient Boosting Regression (GBR), 

Linear Regression (LR), Nearest Neighbors Regression (NNR), 

Multilayer Perceptron Regression (MPR), and Support Vector 

Regression (SVR). The experimental study is performed on 9 

software projects collected from the PROMISE repository. 

The FPA performances of the seven algorithms are analyzed 

by the one-way ANOVA test and the multiple comparison test. 

The experimental results show that the performance difference 

of seven regression algorithms for predicting the number of 

defects are statistically significant, and the model for 

predicting the number of defects built by Gradient Boosting 

Regression algorithm and Bayesian Ridge Regression 

algorithm achieve better performance．  

C. Organization 

The remainder of this paper is organized as follows. Section 
2 presents the related work. Section 3 describes the seven 
regression algorithms for predicting the number of defects. 
Section 4 introduces the experiment setup. Section 5 
demonstrates the experimental results. Finally, Section 6 
addresses the conclusion.  

II. RELATED WORK 

Many researchers have proposed various models for 
predicting the module being faulty or non-faulty. Support 
vector machine [16-17], neural networks [18], decision trees 

[19] and Bayesian methods [20] paved the way for 
classification-based methods in the flied of defect prediction. 
These methods used software metrics to properly predict 
whether a module is defect-prone or not. However, these 
methods are confined with predicting a given software module 
being faulty or non-faulty.  

A number of prior studies have investigated regression 
models on predicting the number of software faults. Graves et 
al. [21] presented a generalized linear regression based method 
for predicting the number of defects by using various change 
metrics datasets collected from a large telecommunication 
system, and found that modules age, changes made to module 
and the age of the changes were significantly correlated with 
the defect-prone.  Afzal et al. [8] used genetic programming for 
modeling software reliability growth to help in deciding project 
release time and managing project resources. Rathore et al. [7] 
proposed an approach to predict the number of faults in the 
software system and developed defect prediction model using 
neural network and genetic programming. In the subsequent 
study [9], they proposed an approach to predict the number of 
faults in the given software system using the Genetic 
Programming (GP). The results showed that GP based models 
could produce the significant results for the number of faults 
prediction. In another paper [10], they explored the capability 
of decision tree regression (DTR) for the number of faults 
prediction in two different scenarios, intra-release prediction 
and inter-releases prediction for the given software system. The 
experimental results indicated that intra-project prediction 
produced better accuracy. 

Chen et al. [11] performed an empirical study on predicting 
the number of faults using six regression algorithms and found 
that the prediction model built with decision tree regression had 
the highest prediction accuracy in terms of precision and 
RMSE in most cases. In another similar study, Rathore et al. 
[12] presented an experimental study to evaluate and compare 
six regression algorithms for the number of faults prediction. 
The results found that decision tree regression, genetic 
programming, multilayer perceptron, and linear regression 
achieved better performance in terms of AAE, ARE, measure 
of completeness, and prediction at level l measures in many 
cases. However, the two empirical studies employed improper 
performance measures (e.g., RMSE, AAE and ARE) to 
evaluate the performance of models for predicting the number 
of defects, thus resulting in wrong conclusion. 

III. REGRESSION ALGORITHMS 

Figure 1 shows a typical process of predicting the number 
of defects, which can be divided into four stages. In the first 
stage, different from labeling a module defective or not for 
predicting a given software module being faulty or non-faulty, 
the number of defects in software modules is extracted. In the 
second stage, the features for each software module are 
extracted. Common features include complexity metrics, 
changes, or structural dependencies. Therefore, we can 
construct a training dataset for predicting the number of defects. 
In the third stage, we can build a model for predicting the 
number of defects with the help of some regression algorithms. 
In the last stage, after extracting the same features from a new 



 

software module, we can use the model to predict the number 
of defects in the module. 
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Fig. 1. The flow chart of predicting the number of defects 

 In this paper, we select seven regression algorithms, i.e., 
Bayesian Ridge Regression (BRR), Decision Tree Regression 
(DTR), Gradient Boosting Regression (GBR), Linear 
Regression (LR), Nearest Neighbors Regression (NNR), 
Multilayer Perceptron Regression (MPR), and Support Vector 
Regression (SVR). We implement these regression algorithms 
based on the python machine learning library sklearn. Unless 
otherwise specified, the default parameter settings for different 
regression models used in our experiments are specified by 
sklearn. That is, we do not perform additional optimization for 
each regression model. The brief introductions of the seven 
regression algorithms are described as follows: 

 (1) Bayesian Ridge Regression (BRR). It estimates a 
probabilistic model of the regression problem by introducing 
uninformative priors over the hyper parameters of the model. 
The prior for the parameter ω is given by a spherical Gaussian: 

𝑝(𝜔|𝜆) = 𝑁(𝜔|0, 𝜆−1𝐼𝑝)                                 (1) 

The priors over α  and λ  are chosen to be gamma 
distributions, the conjugate prior for the precision of the 
Gaussian. The resulting model is called Bayesian Ridge 
Regression, and is similar to the classical Ridge. The 
parameters ω, α and λ are estimated jointly during the fit of the 
model. The remaining hyperparameters are the parameters of 
the gamma priors over α and λ. These are usually chosen to be 
non-informative. The parameters are estimated by maximizing 
the marginal log likelihood. 

(2) Decision Tree Regression (DTR). It predicts the value 
of a target variable by learning simple decision trees inferred 
from the data features. A decision tree is built top-down from a 
root node and uses a splitting criterion to partition the data into 
subsets that contain instances with similar values. The attribute 
which maximizes the expected error reduction is chosen as the 
root node. The process is run recursively on the non-leaf 
branches, until all data is processed. 

(3) Gradient Boosting Regression (GBR). It produces a 
prediction model in the form of an ensemble of weak 
prediction models, typically decision trees. It builds the model 
in a stage-wise fashion like other boosting methods do. It 
allows for the optimization of arbitrary differentiable loss 
functions. In each stage a regression tree is fit on the negative 
gradient of the given loss function.  

(4) Linear Regression (LR). It is a statistical approach for 
modeling the linear relationship between a dependent variable 
y and one or more independent variables. A linear regression 
model can be described according to Eq.(2). 

Y=b0+b1 x1+b2 x2+…+ bn xn                         (2) 

where Y is the dependent variable, x1, x2,…,and xn are the 
independent variables, b1,b2,…,and bn are the regression 
coefficients of the independent variables and b0 is the error 
term. 

(5) Nearest Neighbors Regression (NNR). It is based on the 
k-nearest neighbors algorithm, and the regression value of an 
instance is computed based the mean of the labels of its nearest 
neighbors. The basic nearest neighbors regression uses uniform 
weights: that is, each point in the local neighborhood 
contributes uniformly to the classification of a query point. 
Under some circumstances, it can be advantageous to weight 
points such that nearby points contribute more to the regression 
than faraway points. 

(6) Multilayer Perceptron Regression (MPR). It consists of 
a series of processing elements interconnected through the 
connection weights in the form of layers. A multilayer 
perceptron regression model can be described according to Eq. 
(3) and Eq. (4). 

𝑛𝑒𝑡𝑘 = 𝑤1𝑘𝑥1 + 𝑤2𝑘𝑥2 +⋯+ 𝑤𝑛𝑘𝑥𝑛 + 𝑏𝑘           (3) 

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘)                                       (4) 
where Ok is the dependent variable, x1, x2,…,xn are the 
independent variables, w1k,w2k,…,wnk are the weights 
associated with each input layer, and function f(.) is a 
activation function. 

 (7) Support Vector Regression (SVR). It uses the same 
principles as the SVM for classification, with only a few minor 
differences. The main idea is always the same: to minimize 
error, individualizing the hyperplane which maximizes the 
margin, keeping in mind that part of the error is tolerated. 

Training the original SVR means solving: 

minimize
1

2
‖𝑤‖2                                (5) 

subject to{
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

                        (6) 

where 𝑥𝑖  is a training sample with target value 𝑦𝑖 . The inner 
product plus intercept 〈𝑤, 𝑥𝑖〉 + 𝑏  is the prediction for that 
sample, and 𝜀  is a free parameter that serves as a threshold: all 
predictions have to be within an 𝜀  range of the true predictions. 
Slack variables are usually added into the above to allow for 
errors and to allow approximation in the case the above 
problem is infeasible. 

IV. EXPERIMENT SETUP 

A. Data set 

In this experiment, we employ 31 available and commonly 
used datasets which can be obtained from PROMISE [22]. 
Table I tabulates the details about the datasets. The 31 datasets 
have the same 20 features. For the complete details of the 
software features, please refer to [14]. 

B. Performance measures 

Considering k modules listed in increasing order of 
predicted defect number as f1, f2, f3 ,…, fk, and assuming that ni 
is the actual defect number in the module i, n=n1+n2+…+nk is 



 

the total number of defects, and the top predicted modules 

should have ∑ 𝑛𝑖
𝑘
𝑖=𝑘−𝑚+1  defects. The proportion of the actual 

defects in the top m predicted modules to the whole defects is 

1

𝑛
∑ 𝑛𝑖
𝑘
𝑖=𝑘−𝑚+1 .                                (7) 

Then the FPA is define as  

      
1

𝑘
∑

1

𝑛

𝑘
𝑚=1 ∑ 𝑛𝑖

𝑘
𝑖=𝑘−𝑚+1 .                         (8) 

FPA is actually the average of the proportions of actual 
defects in the top modules to the whole defects. A higher FPA 
means a better ranking, where the modules with most defects 
come first. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Release #Instance #Defects %Defects Max Avg 

Ant 

1.3 125 33 16 3 1.65 

1.4 178 47 22.5 3 1.18 
1.5 293 35 10.9 2 1.09 

1.6 351 184 26.2 10 2.00 

1.7 745 338 22.3 10 2.04 

Camel 

1.0 339 14 3.8 2 1.08 
1.2 608 522 35.5 28 2.42 

1.4 872 335 16.6 17 2.31 

1.6 965 500 19.5 28 2.66 

Forest 
0.7 29 15 17.2 8 3.0 

0.8 32 6 6.2 4 3.0 

Jedit 

3.2 272 382 33.1 45 4.24 

4.0 306 226 24.5 23 3.01 
4.1 312 217 25.3 17 2.75 

4.2 367 106 13.1 10 2.21 

4.3 492 12 2.2 2 1.09 

Log4j 
1.0 135 61 25.2 9 1.79 

1.1 109 86 33.9 9 2.32 

Prop 

1 18471 5293 14.8 37 2.01 

2 23014 4096 10.6 27 1.68 
3 10274 1640 11.5 11 1.39 

4 8718 1362 9.6 22 1.62 
5 8516 1930 15.3 19 1.49 

6 660 79 10 4 1.2 

Synaps 

1.0 157 21 10.2 4 1.31 

1.1 222 99 27 7 1.65 
1.2 256 145 33.6 9 1.69 

Xalan 
2.4 723 156 15.2 7 1.42 

2.5 803 531 48.2 9 1.37 

Xerces 
1.3 453 193 15.2 30 2.8 
1.4 588 1596 74.3 62 3.65 

C. Experimental procdure 

Tantithamthavorn et al. [23] investigated some model 

validation techniques in the domain of defect prediction and 

recommended out-of-sample bootstrap validation. Therefore, 

we employ out-of-sample bootstrap validation to perform the 

experiment. The out-of-sample bootstrap process is made up 

of two steps: 
(Step 1) A bootstrap sample of size N is randomly drawn 

with replacement from an original dataset that is also of size N.  

(Step 2) A model is trained using the bootstrap sample and 
tested using the rows of the original sample that do not appear 
in the bootstrap sample. 

We repeat the out-of-sample bootstrap 10 times and the 
average out-of-sample performance is reported as the 
performance estimate. 

D. Reasearch questions 

In order to provide the guidance for the choice of various 
regression algorithms for predicting the number of defects, we 
address the following two research questions. 

RQ1：Which regression algorithm can achieve the best 

performance for predicting the number of defects among the 
seven algorithms?  

RQ2：Are the performances of models for predicting the 

number of defects built with different regression algorithms 
different? 

V. EXPERIMENT RESULTS 

A. Results for RQ1 

The results (in terms of FPA) of the seven regression 
algorithms for each dataset are reported in Table II. 
Experimental results show that BRR and GBR produce the 
higher FPA values on most of the datasets compared to other 
considered regression algorithms for predicting the number of 
defects. GBR outperforms other regression algorithms on 9 
datasets and achieves the highest average FPA value (0.656). 
LR, NNR and DTR are the third, fourth and fifth best defect 
prediction algorithms in terms of the average FPA value, 
respectively, while MPR and SVR produce relatively lower 
FPA values compared to other regression algorithms.   

TABLE II.  FPA VALUES ON  31  DATASETS USING THE SEVEN 

REGRESSION ALGORITHMS 

Release BRR DTR GBR NNR LR MPR SVR 

Ant-1.3 0.708  0.698  0.675  0.639  0.618  0.733  0.680  
Ant-1.4 0.551  0.610  0.673  0.590  0.601  0.479  0.551  

Ant-1.5 0.742  0.543  0.580  0.656  0.684  0.366  0.440  

Ant-1.6 0.721  0.695  0.768  0.721  0.715  0.207  0.449  
Ant-1.7 0.811  0.711  0.798  0.771  0.809  0.385  0.475  

Camel-1.0 0.608  0.603  0.600  0.597  0.608  0.351  0.608  

Camel-1.2 0.645  0.571  0.602  0.574  0.642  0.533  0.570  

Camel-1.4 0.691  0.620  0.714  0.652  0.736  0.615  0.453  
Camel-1.6 0.704  0.635  0.693  0.486  0.728  0.660  0.513  

Forrest-0.7 0.801  0.468  0.718  0.827  0.801  0.641  0.494  

Forrest-0.8 0.700  0.800  0.900  0.700  0.700  0.500  0.800  

Jedit-3.2 0.846  0.562  0.853  0.789  0.835  0.383  0.503  

Jedit-4.0 0.787  0.710  0.803  0.750  0.795  0.723  0.608  

Jedit-4.1 0.738  0.619  0.689  0.628  0.738  0.469  0.463  
Jedit-4.2 0.787  0.690  0.787  0.743  0.795  0.633  0.716  

Jedit-4.3 0.286  0.267  0.267  0.286  0.286  0.955  0.286  

Log4j-1.0 0.456  0.715  0.703  0.784  0.457  0.891  0.695  

Log4j-1.1 0.735  0.659  0.640  0.642  0.472  0.722  0.547  

Prop-1.0 0.588  0.539  0.595  0.555  0.584  0.498  0.392  

Prop-2.0 0.542  0.506  0.533  0.497  0.543  0.461  0.447  

Prop-3.0 0.488  0.451  0.472  0.466  0.486  0.539  0.426  
Prop-4.0 0.631  0.566  0.618  0.597  0.632  0.609  0.508  

Prop-5.0 0.552  0.444  0.540  0.508  0.550  0.561  0.430  

Prop-6.0 0.588  0.479  0.547  0.567  0.584  0.607  0.501  

Synaps-1.0 0.282  0.517  0.562  0.311  0.266  0.271  0.282  
Synaps-1.1 0.755  0.753  0.702  0.538  0.740  0.750  0.589  

Synaps-1.2 0.648  0.535  0.596  0.650  0.623  0.428  0.567  

Xalan-2.4 0.545  0.543  0.541  0.595  0.584  0.537  0.533  
Xalan-2.5 0.631  0.597  0.658  0.615  0.616  0.442  0.556  

Xerces1-.3 0.769  0.740  0.754  0.762  0.804  0.230  0.442  

Xerces-1.4 0.724  0.655  0.752  0.680  0.720  0.689  0.632  

Average 0.647  0.597  0.656  0.619  0.637  0.544  0.521  

 



 

Figure 2 shows the box-plot diagrams of FPA measure. X-
axis indicates the regression algorithms under consideration, 
and Y-axis indicates the values of FPA measure produced by 
the used regression algorithms. The different parts of box-plot 
show the minimum, maximum, median, first quartile, and third 
quartile of the samples. The line in the middle of the box shows 
the median of the samples. SVR and MPR produce the lowest 
median value, DTR, LR and NNR produce moderate median 
FPA values, whereas BRR and GBR produce the highest 
median FPA values. MPR produces the lowest minimum FPA 
values, DTR, LR, BRR and SVR produce moderate minimum 
FPA values, GBR and NNR produce the highest minimum 
FPA values. For maximum value, SVR produces the lowest 
FPA values, DTR, NNR, LR and MPR produce moderate FPA 
values, and BRR and GBR produce the highest FPA values. 
For first quartile value, SVR produces the lowest value, DTR, 
NNR, LR and MPR produce moderate values, and BRR and 
GBR produce the highest values. For the third quartile, MPR 
and SVR produce the lowest value, DTR and NNR produce 
moderate values, and BRR, GBR and LR produce the highest 
values. 

 

 

Fig. 2. Box-plot analysis for FPA measure for all the datasets 

In total, Table II and Figure 2 illustrate that BRR and GBR 
outperform other considered regression algorithms. DTR, NNR 
and LR perform moderately, while MPR and SVR perform 
relatively poor in compared to other used regression algorithms. 
To answer the first question, Bayesian Ridge Regression and 
Gradient Boosting Regression algorithms can achieve the best 
performance for predicting the number of defects among the 
seven algorithms. 

B. Results for RQ2 

To answer the second question, we carry out one-way 
ANOVA test on the seven regression algorithms to examine if 
the algorithms are statistically different or not. Analysis of 
variance (ANOVA) is a collection of statistical models and 
their associated procedures used to analyze the differences 
among group means. Since the two-group case can be covered 
by a t-test, the main idea of one-way ANOVA is to compare 
means of two or more groups by using the F distribution. It is 
more conservative than the t-test and performs well in terms of 

comparing groups for statistical significance. The null 
hypothesis for the one-way ANOVA test is that all the group 
population means are the same, while the alternate hypothesis 
is that at least one pair of means is different. Table III shows 
the one-way ANOVA results. 

The first row of the Table III lists five parameters, i.e., 
sums of squares, degrees of freedom, mean square, F and p-
value. Since F=4.59> 3.68, the results are significant at the 5% 
significance level. In addition, it is clearly that the p-value 
(0.0002) for this test is less than the typical cutoff 0.05. We 
would reject the null hypothesis, concluding that there is strong 
evidence that at least two regression algorithms are 
significantly different from each other.  

TABLE III.  ANOVA FOR THE  DATASETS 

 

In the study, we further performed the multiple comparison 
test using Tukey’s honestly significant difference criterion. 
Figure 3 shows the multiple comparison result for the seven 
regression algorithms. The figure displays graphs with each 
group mean represented by a symbol (◦) and 95% confidence 
interval as a line around the symbol. There are two situations in 
the figure: two means are significantly different, if their 
intervals disjoint. On the contrary, two means are not 
significantly different, if their intervals overlap. From Figure 3, 
we can summarize the following points:  

(1) MPR and SVR algorithms have significantly worse 
prediction performance than other algorithms. 

(2) Although the other five algorithms show similar 
performance (no significant difference), BRR and GBR 
performs slightly better than DTR, NNR and LR. 

 

 

Fig. 3. Multiple comparison for seven algorithms 

As seen in Table III and Figure 3, we can conclude that the 
models built by different regression algorithms for predicting 
the number of defects have different performance. 

Source Sum Sq. d.f. Mean Sq. F p-value 

Approach 0.507 6 0.0845 4.59 0.0002 

Error 3.865 210 0.0184   
Total 4.37 216    



 

C. Threats to Validity 

In this subsection, we discuss several validity threats that 
may have an impact on the results of our studies. (1) Although 
the 31 datasets in our experiment have been widely used in 
many software defect prediction studies, we still cannot claim 
that our conclusion can be generalized to other datasets. (2) We 
only study the seven regression algorithms without additional 
optimization for a given dataset. (3) We only employ FPA as 
the evaluation measure. Nonetheless, other evaluation 
measures such as cost effectiveness graph [24] can also be 
considered. 

VI. CONCLUSION 

The existing studies [11-12] employed improper 
performance measures (e.g., RMSE, AAE and ARE) to 
evaluate the performance of models for predicting the number 
of defects. Therefore, in this paper, we evaluated and compared 
the performance of seven regression algorithms (i.e., BRR, 
DTR, GBR, LR, NNR, MPR, and SVR) for predicting the 
number of defects in given software modules by using FPA as 
the performance measure. The experiments were performed on 
31 datasets from the PROMISE repository. In addition, the 
one-way ANOVA test and the multiple comparison test are 
performed to assess the relative performance of the seven 
algorithms. The experimental results show that the 
performance difference of seven regression algorithms for 
predicting the number of defects are statistically significant, 
and Gradient Boosting Regression algorithm and Bayesian 
Ridge Regression algorithm achieve better performance for 

predicting the number of defects．  
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