
Modeling and Verifying Leader Election Algorithm
in CSP

Yucheng Fang Huibiao Zhu∗ Huiwen Wang
Shanghai Key Laboratory of Trustworthy Computing,

School of Computer Science and Software Engineering, East China Normal University, China

Abstract—Leader election is a fundamental problem in dis-
tributed systems and has a variety of applications in wireless
networks, such as key distribution, routing coordination, and
general control. The main statement of the leader election
problem is to eventually elect a unique leader from a fixed
set of nodes. As the wireless network is becoming more and
more important in daily life, leader election algorithm plays
a vital important role in wireless network, which makes the
correctness and robustness of such algorithms become evermore
important and challenging to establish. In this paper, firstly, we
study an election algorithm LE for MANETs (Mobile Ad Hoc
Network) designed by Vasudevan et al. Then we present a formal
model for LE based on process algebra CSP (Communicating
Sequential Process). Modeling algorithm like LE sometimes pose
non-trivial challenges, time, geometry, communication delays and
failures, mobility and bi-directionality can interact in unforeseen
ways that are hard to model and analyze by automatic formal
methods, but we will take on these challenges. On that basis, we
use the model checker FDR (Failures Divergence Refinement) to
automatically simulate the developed model and verify whether
the model is consistent with the specification and exhibits relevant
secure properties. Our results show the correctness and safety of
LE in this respect.

Index Terms—leader election, formal methods, CSP, FDR

I. INTRODUCTION

In a network, leader election algorithm is to select a
unique leader of each node in a network. It is a fundamental
control problem in distributed systems and has a variety of
applications in wireless networks, such as key distribution [7],
routing coordination [2] and sensor coordination [8].

The purpose of electing a leader in an interconnected
network is to permit the control of the network by a unique
node in order to perform a specific action or activity with
the other members of the network. Several algorithms have
been proposed to solve this problem such as [5], [6]. Only a
few of the proposed algorithms can be applied to MANETs.
In this paper, we focus on the algorithm, which is called
LE, designed by Vasudevan et al. in [11]. It aims at electing
the most-valued node according to some measure, e.g., the
amount of remaining battery life in a network. In LE, several
spanning trees were established. Then, these spanning trees
were reduced to a unique spanning tree and the root to decide
which is the leader in the network. In this paper, we mainly
model LE in a context of static topology, under the assumption
that nodes with its neighbors are fixed the nodes number of the
network would not increase when LE is running. We give a

∗ Corresponding Author. Email: hbzhu@sei.ecnu.edu.cn

detailed explanation in next section. Our intention is to prove
that an abstraction of the LE works correctly.

There actually exist many research on leader election al-
gorithm [1], [13]. Most of them use model checking based
on a specific network such as ring [13] but seldom of them
consider to verify LE. In this paper we formalize LE based
on process algebra CSP and we concentrate on the status
changing of a node, modeling the operations of each node. Our
work build a baseline for verifying LE in CSP way. Based on
the formalized model, we use FDR to automatically simulate
the achieved model and verify whether it caters for some
significant properties such as deadlock freedom, divergence-
free and unique leader scheme.

CSP is a formal language for describing patterns of inter-
action in concurrent systems [9] and it has been practically
applied in industry as a tool for specifying and verifying the
concurrent aspects of a variety of different systems, such as
[12]. There are many model checkers for CSP, such as FDR
[3], Process Analysis Toolkit (PAT) [10] and so on. FDR has
the best performance among them because it includes a parallel
refinement-checking engine that achieves a linear speed-up as
the number of cores increase. It is able to check processes with
billions of states, and is able to make efficient use of on-disk
storage to complement memory.

The remainder of this paper is organized as follows. In
Section 2, we give a brief introduction to LE, and the process
algebra CSP. In Section 3, we model LE in CSP and In Section
4, we give three basic properties and verify that the LE model
respects them. In Section 5, we conclude and outline the future
work.

II. BACKGROUND

In this section, we give a brief introduction to LE algorithm
and give an example to illustrate. Further, we also present the
relevant introduction on CSP.

A. Brief Introduction to LE

When an election is triggered at a node, the node broadcasts
an election message to its immediate neighbors (one hop
neighbors). A node that receives an election message for the
first time, records the sender of the message as its parent
in the spanning tree under construction, and multicasts an
election message to its other immediate neighbors. When a
node receives an election message from a node that is not its
parent, it immediately responds with an ack message. When

DOI reference number: 10.18293/SEKE2018-067

a node has received ack messages from all of its children, it
sends an ack message to its parent. Each such ack message to a
parent includes the identity and value of the most-valued node
in the subtree rooted at the sender. Therefore, when the source
node has received an ack message from all of its children, it
can determine the most-valued node in the entire spanning
tree. The source node then broadcasts a leader message to all
of its immediate neighbors to announce a new leader. When a
node receives a leader message, it updates its own leader and
broadcasts it to its immediate neighbors.

Fig. 1 shows a run of LE under a static topology of
five nodes, with node 1 being the source and node 5 being
the most-valued node. In this figure, thin arrows indicate
the direction of flow of messages and thick arrows indicate
parent pointers. These parent pointers together represent the
constructed spanning tree. Node 1 starts its diffusing com-
putation by sending out election messages to its immediate
neighbors 2 and 3, shown in Fig. 1(a). As indicated in Fig.
1(b), nodes 2 and 3 set its parent pointer to point node 1 and
in turn propagate an election message to all their neighbors
except their parent nodes. Hence 2 and 3 send election to
each other, as we explain before, they will send ack to each
other immediately but not taken the other as its parent. In
Fig. 1(c), a complete spanning tree is built. In Fig. 1(d), nodes
4 and 5 send its value to its parent nodes, since they are
the leaves of the tree. Eventually, the source 1 hears pending
acknowledgments from both 2 and 3 in Fig. 1(e) and then
broadcasts the identity of the leader, 5, via leader message
shown in Fig. 1(f).

Multiple nodes can concurrently initiate multiple elections;
in this case, only one election should “survive”. This is done
by associating to each election a priority, so that a node
already in an election ignores incoming elections with lower
priority, but participates in an election with higher priority. In
some cases, a node maybe fail and will not send ack to its
parent. To handle the case like this, every node sets a expire
time T , when the time exceeds T , the node will be removed
from its parent’s waiting list. The report [11] gives a detailed
pseudo-code specification of LE.

B. Brief Introduction to CSP

The CSP method, abbreviation for Communicating Sequen-
tial Processes, is first proposed by C.A.R Hoare [4]. It is a
process algebra designed mainly for analyzing the behaviors of
concurrent processes. In CSP, a synchronous communication
mechanism holds when processes communicate with each
other to coordinate the parallel executions. The syntax of a
subset of the CSP language is given as follows.

P,Q =Skip | Stop | a→ P | c?x→ P | c!x→ P | P 2 Q

P‖Q | P ||| Q | Q \ M | P; Q | if b then P else Q

where:
• Stop represents that the process does nothing and its state

is deadlock.

Fig. 1. An LE run in a static topology

• Skip stands for a process which terminates successfully.
• a→ P first performs the event a then behaves like P.
• c!v → P sends message v through channel c, then

performs like P.
• c?x → P receives a message through channel c and

assigns it to a variable x, then does the subsequent
behaviors like P.

• P 2 Q acts like either P or Q and lets the environment
decide the selection.

• P‖Q shows the parallel composition between P and Q.
• Q \ M acts like Q, except all events from the set M are

hidden.
• P ||| Q indicates the process chooses to perform actions

in P and Q randomly.
• P; Q executes P and Q sequentially.
• if b then P else Q denotes the conditional choice. If the

value of b is true then it behaves like P else like Q.

III. MODELING LE

In this section, we present a CSP model of LE. The
formalization is carried out based on the introduction to LE
which has been described in Section 2. Firstly, we give the
whole structure of our model and then we model each precess
respectively.

A. Parameters in Model

To clarify the whole system, we give the channels and
messages used in LE. They are described as follows.
• election: message for a node to pass an election message
• ack: to acknowledge receipt of an election message
• leader: to announce the new leader
• probe: to determine if a node is still alive

• reply: sent in response to a probe message

In our model, every process has some variables to help
it make a decision when an action occurs. They are list as
follows.

• di: a binary variable indicating if i is currently in an
election or not

• pi: i’s parent node in the spanning tree
• Di: a binary variable indicating if i has sent an ack to pi

or not
• lidi: i’s leader
• Ni: i’s current neighbors
• Si: set of nodes from which i is yet to hear an ack from
• srci: i’s priority
• maxi: the most-valued node i has record so far

In our model the status of each node can be in one of eight
statuses: BeginElection, WaitFor, SendElection, AwaitAck,
AwaitLeader, SendInfo, SendLeader and Running. Their state
transition diagram is shown in Fig. 2. Node i can start an
election by sending message election. After sending message
to all of its immediate neighbors, it enters into state AwaitAck.
In this state, i sets a expire time T for each of node in its
waiting list. If a node has no answer in T units, i removes it
from its waiting list. After receiving all of the ack messages,
node i sends message ack to its parent and enters into state
SendInfo. In state SendInfo, if the election is start by its own,
it will enter into state SendLeader to send the leader message,
otherwise it will enter into state AwaitLeader to wait a leader
message from its parent. When a node finishes sending leader
message or receives a leader message, it will enter into state
Running. We will discuss each process respectively.

Fig. 2. State Transition Diagram

B. Modeling each Process

1) BeginElection: In process BeginElection, n denotes its
id number and N represents its neighbors.

BeginElection(n,N) =̂

SendElection(n,True, n, false,−1,N,N, n, n,N)

BeginElection starts an election by sending election messages
to its one-hop neighbors through process SendElection.

2) SendElection: Process SendElection is shown in Fig.
3. In process SendElection, n is the id number of process
SendElection. The eight variables between n and N′ have been
explained in previous section. N′ is a set that records all nodes
which have not been sent election message by the current
node. Action election.n!i : N′!src represents that node n sends
election message to its neighbor node i with election priority
src. When N′ is empty, it enters into process AwaitAck. During
its sending action, it may receive another election message
from its neighbor and it will compare the priority of these
two elections (i.e., s.p > src.p in Fig. 4) and decide which
election to take part in. If it receives an ack message from
its neighbor, it removes it from its waiting list S. The last
three statements, i.e., probe, fail and tock, describe three basic
actions of each process. A node can be tested whether it is
alive or not by its parent via channel probe. A node may fail
and enters into a state Fail or it just does nothing but wait the
time pass by via channel tock.

3) AwaitAck: Process AwaitAck, its main job is to wait ack
message from all neighbors in S. The process is shown in
Fig. 3. When it receives an ack message from its neighbor,
it removes the neighbor from its waiting list. AwaitAck tests
whether a node is still alive or not by sending message probe
and sets a expire time T then it enters into process WaitFor. If
it receives an election message, like process SendElection, it
compares the priority of these two elections and decides which
election to take part in. In our model, since every node can
start an election, so there may exist a local leader and therefore
when a node receives a leader message, it will compare the
priority of these two elections and decide to take part in which
election.

4) WaitFor: Process WaitFor will wait the reply message
from Nodepid until the time exceeds T or it receives a reply
message.

WaitFor(n, d, p,D, lid,N, S, src,max, pid,T) =̂

if T == 0

then AwaitAck(n, d, p,D, lid,N, S \ {pid}, src,max)

else tock→ WaitFor(n, d, p,D, lid,N, S, src,max, pid,T − 1)

2reply.n.pid → AwaitAck(n, d, p,D, lid,N, S, src,max)

5) SendInfo: It judges whether the election is start by its
own. If is, it enters into SendLeader. Otherwise, it sends ack

SendElection(n, d, p,D, lid,N, S, src,max,N′) =̂

if empty(N′) then AwaitAck(n, d, p,D, lid,N, S, src,max)

else election.n!i : N′!src→ SendElection(n, d, p,D, lid,N, S, src,max,N′ \ {i})
2election?c : N!n?s→ (if s.p > src.p then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c}))

else ack!n!c!max→ SendElection(n, d, p,D, lid,N, S, src,max,N′))

2ack?c : S!n?v→ SendElection(n, d, p,D, lid,N, S \ {c}, src,Max(max, v),N′)

2leader?c : N!n?s→ (if s.p > src.p then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else SendElection(n, d, p,D, lid,N, S, src,max,N′))

2probe?c ∈ N!n→ reply!c!n→ SendElection(n, d, p,D, lid,N, S, src,max,N′)

2fail.n→ Faild(n,N)

2tock→ SendElection(n, d, p,D, lid,N, S, src,max,N′)

Fig. 3. Process SendElection

AwaitAck(n, d, p,D, lid,N, S, src,max) =̂

if empty(S) then SendInfo(n, d, p,D, lid,N, S, src,max)

else tock→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2ack?c : S!n?v→ AwaitAck(n, d, p,D, lid,N, S \ {c}, src,Max(max, v))

2probe?c : N!n→ reply!c!n→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2probe!n?j : S→ WaitFor(n, d, p,D, lid,N, S, src,max, j,T)

2tock→ AwaitAck(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2election?c : N!n?s→ (ifs.p > src.p

then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else(if s == src then ack!n!c!max→ AwaitAck(n, d, p,D, lid,N,N \ {c}, src,max)

else AwaitAck(n, d, p,D, lid,N, S, src,max)))

2leader?c : N!n?s→ (if s.p > src.p

then SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else election.n!c!src→ AwaitAck(n, d, p,D, lid,N, S, src,max))

Fig. 4. Process AwaitAck

message to its parent and enters into process AwaitLeader.

SendInfo(n, d, p,D, lid,N, S, src,max) =̂

if src == n

then SendLeader(n, d, p,D,max,N, S, src,max,N)

else ack!n!p!max→
AwaitLeader(n, d, p,True,max,N, S, src,max)

2tock→ SendInfo(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe.p.n→ reply.p.n→
SendInfo(n, d, p,D, lid,N, S, src,max)

2election?c : N!n?s→ (if s.p > src.p then

SendElection(n, d, c,False,−1,N,

N \ {c}, s,max,N \ {c})
else SendInfo(n, d, p,D, lid,N, S, src,max))

6) Fail: At any time, one node may enter into state Fail. In
this process, it absorbs all messages. It is shown as follows.

Faild(n,N) =̂tock→ Faild′(n,N)

2probe?c : N!n→ Faild(n,N)

2election?c : N!n?v→ Faild(n,N)

2ack?c : N!n?v→ Faild(n,N)

2leader?c : N!n?s→ Faild(n,N)

Faild′(n,N) =̂tock→ Faild′(n,N)

2probe?c : N!n→ Faild(n,N)

2election?c : N!n?v→ Faild(n,N)

2ack?c : N!n?v→ Faild(n,N)

2leader?c : N!n?s→ Faild(n,N)

2revive.n→ BeginElection(n,N)

A process enters into Fail at least one unit then it can enter
into process Fail′. In this state, it also absorbs all the actions
but it can revive as well.

7) SendLeader: Process SendLeader sends the leader mes-
sage to all of its one-hop neighbors and then enters into process
Running. If it receives an election message, it compares the
priority of the two elections and decides whether to take part
in the new election or to ignore this the message.

SendLeader(n, d, p,D, lid,N, S, src,max,N′) =̂

if empty(N′)

then Running(n, false, n,D, lid,N, S, src,max)

else leader.n!i : N′!max→
SendLeader(n, d, p,D, lid,N, S, src,max,N′ \ {i})

2tock→ SendLeader(n, d, p,D, lid,N, S, src,max,N′)

2fail.n→ Faild(n,N)

2election?c : N!n?s→ if s.p > src.p then

SendElection(n, d, c,False,−1,N,N \ {c}, s,max,N \ {c})
else SendLeader(n, d, p,D, lid,N, S, src,max,N′)

8) AwaitLeader: Process AwaitLeader just waits for leader
message from its parent. When it receives the leader informa-
tion, it will enter into process SendLeader to pass this message
to its neighbors.

AwaitLeader(n, d, p,D, lid,N, S, src,max) =̂

leader.p.n?v→
SendLeader(n, d, p,D, v,N, S, src, v,N \ {p})

2tock→ AwaitLeader(n, d, p,True, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe.p.n→ reply.p.n→
AwaitLeader(n, d, p,D, lid,N, S, src,max)

2election?c : N!n?s→ if s.p > src.p then

SendElection(n, d, c,False,−1,N,N \ {c}), s,max,N \ {c})
else if s == src then ack!n!c!max→

AwaitLeader(n, d, p,D, lid,N, S, src,max)

else AwaitLeader(n, d, p,D, lid,N, S, src,max)

9) Running: Process Running represents a normal state of
a node. The CSP code is shown as follows.

Running(n, d, p,D, lid,N, S, src,max) =̂

2election?c : N!n?v→ (p(v) > p(lid)or ¬d)&

SendElection(n, d, c,False,−1,N,

N \ {c}, v,max,N \ {c, v}))
2tock→ Running(n, d, p,D, lid,N, S, src,max)

2fail.n→ Faild(n,N)

2probe?c : N!n→ reply!c!n→
Running(n, d, p,D, lid,N, S, src,max)

When it receives an election message, if it has no leader (it
has not taken in any election) or the priority of the node which

starts this election is greater than its leader, it will take part
in this election by entering into state SendElection.

IV. VERIFICATION

In this section, we implement CSP model and verify some
important properties in FDR. Before we do the verification,
we should construct our network. To illustrate our model is
correct. We choose a topology Fig. 1 in Section 2 to do
verification.

Proc = {1..5}
NEIGHBORS =̂ {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (4, 5)}
Neighbors(x) =̂ {k | k← Proc,member((x, k),NEIGHBORS)

or member((k, x),NEIGHBORS)}

Proc is a set which contains five numbers. We stores all the
edges in set NEIGHBORS and Neighbors(x) is a function
which returns a set of all neighbors of x. We formalize a node
as follows.

Node(x) =̂ if x == 1 then BeginElection(x,Neighbors(x)) else

Running(x, false, x, false, x,Neighbors(x),Neighbors(x), x, x)

Therefore, we build our network as follows. Alpha(n) de-
notes the synchronized action set of node n. For instance
Alpha(1) = {ack.1.2, ack.2.1, . . . , tock} where “. . .” indicates
some channels like reply, probe and actions between 1 and 3.

Network =̂‖ n : Proc • [Alpha(n)]Node(n)

(1) DeakLock Freedom
In LE, deadlock freedom means process network can move

on at any time. In FDR, we use statement below to do that.

assert Network : [deadlock free [F]]

The verification result is shown in Fig. 5. The first statement
in the Assertions block is for deadlock freedom and the green
dot on the left side shows that this assertion is passed, which
means our system is deadlock free. The block under the
Assertions is the Tasks block, in which the actual checking
steps lay here.
(2) Divergence Freedom

A divergence of a process is that any trace of the process has
a point after which the process behaves chaotically. Divergence
freedom assures our model is well-defined without ambiguous-
ness. We use statement below to complete the verification.

assert Network : [divergence free [F]]

The checking result is shown in Fig. 5., the second statement
in Assertion block.
(3) Unique Leader

The main goal of LE is that it will eventually select a unique
leader, which is the most-valued-node among the nodes in the
component. In our model, leader information is sent by leader
message, and therefore we only concentrate on message leader
and hide the other channels.

network =̂ Network \ {| probe, fail, ack,

election, tock, reply, revive |}

In the topology which we prepare to verify, we know that
the most-valued-node is 5 and its value is 5 so we formalize
the property as follows.

UniLeader =̂ leader?c : Proc?d : Proc!5→ UniLeader

Process UniLeader means if there exists a leader message the
id which it sends must be 5. Process UniLeader contains all
the traces which elect node 5 as the leader. We use refinement
to complete this check. If A[= B is true (where [= represents
refinement) then the behaviours of B are contained within the
behaviours of A. By showing UniLeader[T = network, we can
conclude that our model satisfies the unique leader scheme.
The verification result is shown in Fig. 5.

Fig. 5. Verification Results

V. CONCLUSION

In this paper, we have constructed the formal models for
LE, modeled the operations of each state of LE in CSP. We

also verified the LE model using FDR. We constructed the
specific models based on three properties including deadlock
freedom, divergence freedom and unique leader scheme. The
results show that our model satisfies all those properties,
indicating the LE get a strong robustness and consisting with
the specification.

In mobile ad hoc network, node can transfer from one
position to another which results that a node will connect to
a new network and disconnect from the old one. Therefore,
in the future, we will modify the model to fit the situation
like this and based on the new model we do other checks to
verify LE.

Acknowledgement. This work was supported by Shanghai
Collaborative Innovation Center of Trustworthy Software for
Internet of Things (No. ZF1213).

REFERENCES

[1] A. Ansari. Verification of Peterson’s Algorithm for Leader Elec-
tion in a Unidirectional Asynchronous Ring Using NuSMV. CoRR,
abs/0808.0962, 2008.

[2] S. Bhattacharya, J. Kulkarni, and V. S. Mirrokni. Coordination mecha-
nisms for selfish routing over time on a tree. In Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 186–197,
2014.

[3] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe. FDR3
— A Modern Refinement Checker for CSP. In E. Abraham and
K. Havelund, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of Lecture Notes in Computer Science,
pages 187–201, 2014.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[5] S. Kim, V. Vasireddy, and K. Harfoush. Scalable coordination for sensor
networks in challenging environments. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15,
2007, pages 214–221, 2007.

[6] A. Mazeev, A. Semenov, and A. Simonov. A Distributed Parallel Al-
gorithm for Minimum Spanning Tree Problem. CoRR, abs/1610.04660,
2016.

[7] A. Mehmood, M. M. Umar, and H. Song. ICMDS: secure inter-cluster
multiple-key distribution scheme for wireless sensor networks. Ad Hoc
Networks, 55:97–106, 2017.

[8] Y. Nakamura, M. Louvel, and H. Nishi. Coordination middleware
for secure wireless sensor networks. In IECON 2016 - 42nd Annual
Conference of the IEEE Industrial Electronics Society, Florence, Italy,
October 23-26, 2016, pages 6931–6936, 2016.

[9] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer
Science. Springer, 2010.

[10] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. In Leveraging Applications
of Formal Methods, Verification and Validation, Third International
Symposium, ISoLA 2008, Porto Sani, Greece, October 13-15, 2008.
Proceedings, pages 307–322, 2008.

[11] S. Vasudevan, J. F. Kurose, and D. F. Towsley. Design and Analysis
of a Leader Election Algorithm for Mobile Ad Hoc Networks. In 12th
IEEE International Conference on Network Protocols (ICNP 2004), 5-8
October 2004, Berlin, Germany, pages 350–360, 2004.

[12] L. Wang, F. Sui, Y. Huang, and H. Zhu. Modeling and Verifying the
Ballooning in Xen with CSP. In 16th IEEE International Symposium
on High Assurance Systems Engineering, HASE 2015, Daytona Beach,
FL, USA, January 8-10, 2015, pages 18–25, 2015.

[13] L. Xu and P. Jeavons. Simple algorithms for distributed leader election
in anonymous synchronous rings and complete networks inspired by
neural development in fruit flies. Int. J. Neural Syst., 25(7), 2015.

