
Adaptive software search toward users’ customized
requirements in GitHub

Jinze Liu, Zhixing Li, Tao Wang, Yue Yu and Gang Yin
College of Computer Science

National University of Defense Technology
Changsha, Hunan, China

jinze liu@qq.com, {lizhixing,taowang2005,yueyu,yingang}@nudt.edu.cn

Abstract—Because of a tremendous growth of Open Source
Software (OSS) scale and the diversity of users’ requirements,
users now face the problem of finding OSS that meets their ex-
pectations in a huge number of OSS resources. However, current
GitHub-provided search service has a shortage in adapting to
user needs. When facing diverse users’ requirements, it cannot
always return satisfactory results. In this paper, we provide a
more efficient search service for OSS on GitHub. We first design
a multi-dimensional measurement model for OSS, which forms
a corresponding metric system and quantitative measurement
method. Then we propose a ranking algorithm based on fuzzy
synthetic evaluation in order to implement an adaptive metric
ranking method that is oriented to user requirements. We verify
that our work is useful by setting up experiments. The experiment
results show that compared with GitHub-provided search service
(searching by “Best Match” & searching by “Most Stars”), the
effectiveness of our method improved by 97.6% and 13.8%
respectively, which means our method returns search results
which meet users’ expectations more, and has high self-adaptive
ability.

Keywords-Open Source Software; Search; Multi-dimensional
Measurement; Fuzzy Synthetic Evaluation; GitHub

I. INTRODUCTION

With the rise of the open source movement, OSS has made
tremendous growth and the global OSS resources have become
an Internet-scale repository. Especially in recent years, the
rapid development of Internet technology has greatly enhanced
the influence of OSS around the world. Many well-known OSS
hosting platforms have emerged and the most successful plat-
form among them is GitHub. GitHub is a social programming
and code hosting platform [1], officially launched on April
10, 2008, after which countless open source projects began to
migrate to this platform, and the number of hosted software
showed the situation of “explosive” growth. As of December
2016, GitHub has hosted more than 35 million projects and
attracted more than 14 million developers to participate in open
source activities [2].

OSS resources are already a huge and diverse ecosystem. At
the same time, the users’ requirements of OSS is also diverse.
For example, some users like the popular OSS currently.
Some of them are more concerned about whether the authors
of OSS have high development enthusiasm and make good
maintenance of their work. And others may look for open-
source software that still maintains high activity. Therefore,

DOI reference number: 10.18293/SEKE2018-064

users now face the problem of finding OSS that suits their
diverse requirements in a huge number of OSS resources.

In a web search, as stated by studies [3] [4], people often
prefer results located on the first page, or at most, the first
three pages. Later search results people tend to no longer
be concerned about, so a good search service needs to make
more important results come in front. For this reason, GitHub
provides ranking indicators based on the text matching, pop-
ularity, etc. of OSS, but the results are not satisfactory. For
example, if the text matching degree is used as a ranking
indicator, GitHub only considers the matching between the
software name or description, and the users’ search keywords,
thus the quality of the software is not guaranteed. Due to the
low threshold of creating OSS in open source community and
the different ability of authors of OSS, there are a large number
of OSS with low quality in GitHub. So if the search service
does not consider the quality of OSS, the search results will
have very limited help to users. If we choose popularity as
the ranking indicator, GitHub ranks only by the number of
“Star” of the repository of OSS. Other attributes of OSS are
not taken into account at all, which makes the search results
still less helpful.

Although GitHub provides an advanced search service, al-
lowing users to propose multiple search criteria, from the point
of actual use, GitHub simply combines multiple search criteria
together. For example, if users choose both text matching
degree and popularity as ranking indicators, the final search
results are only based on the search results of text matching
degree, and delete the results which popularity do not meet the
requirements. So if what users want is being more interested
in the software which is more popular among all the related
software, the search results provided by GitHub still cannot
give them a satisfied answer. All in all, GitHub currently offers
a weak search service. On the one hand, it provides users with
less choice of ranking indicators. On the other hand, it cannot
adapt to complex users’ requirements. When users select an
indicator to rank, other indicators will be ignored, and this
often does not meet users’ expectations.

Therefore, we provide a more efficient search service for
OSS on GitHub by a multi-dimensional measurement model
and a ranking algorithm based on fuzzy synthetic evaluation.
In this paper, we first build a GitHub OSS information
database that contains information about the attributes of OSS



such as name, description, number of “Watch”, situation of
“Pull Request” (PR), and so on. Second, we get preliminary
search results by keywords matching. Third, we extract rank-
ing indicators and design a multi-dimensional measurement
model according to users’ requirements. Fourth, we propose
and implement a ranking algorithm based on fuzzy synthetic
evaluation. This algorithm calculates the synthetic evaluation
score of OSS according to the weight of OSS attributes, so
that we can get final search results from the order of evaluation
scores. At last, by setting up experiments with different users’
customized requirements scenarios, we compare our search
results with those of GitHub-provided search service and
verify that our method returns search results which meet users’
expectations more, and has high self-adaptive ability.

The key contributions of this study include the following:
• We analyze the key factors when users choose OSS from

four dimensions: popularity of software, collaborative de-
velopment of software, development attitude of software
author and activeness of software, and propose a detailed
quantitative measurement method.

• We allow users to set their personal search requirements
and provide users with enhanced, easier-to-use search
service.

• We propose and implement an OSS ranking algorithm
based on fuzzy synthetic evaluation, so that the OSS can
obtain the corresponding evaluation score according to
different users’ customized requirements so as to make
the search results more in line with users’ expectations,
greatly improving the self-adaptive ability of the search
service.

The rest of this paper is organized as follows. Section II
introduces related research on software ranking and fuzzy
mathematics theory. Section III elucidates the approach of
our study. Section IV elaborates our experimental process and
results. Section V concludes this paper and introduces future
work.

II. RELATED WORK

A. Software Ranking

In the field of software engineering, researchers evaluate
software quality through software evaluation models, and then
rank the software based on software quality. Researchers have
proposed Capgemini maturity model [5], Navica maturity
model [6], OpenBRR model [7], QSOS model [8], and SQO-
OSS model [9] and so on.

In the field of open source community, open source com-
munities typically use the feedback from community users
to rank the OSS. For example, GitHub provides the function
of ranking OSS according to the “Most Star” indicator. The
higher the number of “Star” of a software, the more popular it
is in the community. SourceForge uses the information which
is collected from users about the download and comment
situation of OSS to calculate the popularity of them, and then
rank the software. OpenHub has designed a button named “I
use it” for each OSS, which users can click to mark this

software was used. Then the platform ranks by the number
of users of them.

However, these ranking methods only consider a single
ranking indicator, not comprehensive enough to meet more
complex users’ customized requirements.

B. Fuzzy Synthetic Evaluation

Fuzzy synthetic evaluation is one of the most widely used
methods for multi-index synthetic evaluation [10]. With the
help of the theory of membership degree of fuzzy mathematics,
it turns qualitative evaluation into quantitative evaluation,
which can solve the problem of fuzzy and hard to quantify. The
basic steps of fuzzy synthetic evaluation shows in Table I [11].

TABLE I: Basic Steps of Fuzzy Synthetic Evaluation

1. Determine the evaluation indicator set and evaluation level set of
the evaluation target.
2. Determine the weight of each evaluation indicator and its member-
ship vector in order to get the fuzzy evaluation matrix.
3. Make fuzzy operation between the fuzzy evaluation matrix and the
weight set of evaluation indicators.
4. Normalize the calculation results in step 3 and get the evaluation
results.

III. APPROACH

The goal of our work is providing users with OSS search
service which has high self-adaptive ability. As shown in
Figure 1, we first get development history data of OSS
from GitHub to build an information database. Then we
get preliminary search results by keywords matching. Third,
we extract ranking indicators and design a multi-dimensional
measurement model according to users’ requirements. Fourth,
we get final search results by a ranking algorithm based on
fuzzy synthetic evaluation. In the following sections, we will
elaborate each step in detail.

Fig. 1: Overall Framework of Our Method



A. Database Building

Dataset collection. In this paper, we use the “GHTorrent”
project, which monitors the GitHub public event timeline,
to get GitHub open source data [2]. Whenever an event
occurs on GitHub, the project retrieves its content and all its
dependencies and stores them, then releases the data regularly
for users to download.

Dataset cleaning. GitHub allows users to “Fork” the origin
OSS project to create a new branch based on the main branch
of the project. The main branch and the “Fork” branch actually
refer to the same project. However, there are multiple records
stored in the database. Therefore, in order to avoid duplication
of processing, all “Fork” branches need to be removed and the
corresponding main branch should be reserved.

B. Preliminary Search Based on Keywords Matching

In this section, we get all OSS related to users’ search
keywords as preliminary search results by matching keywords
with the name and description of software. First, we use
WordNet to make synonym expansion of keywords in order to
improve the recall rate. Second, we set whether software name
or description contains keywords as the standard of whether
software is related to keywords.

C. Multi-dimensional Measurement Model for OSS

By collecting lots of posts of IT Q & A communities (such
as Stack Overflow etc.) and analyzing the community users’
comments on their needs for OSS, a multi-dimensional mea-
surement model is presented for OSS. As shown in Figure 2,
this model includes four dimensions, and each dimension has
one or more indicators. Each indicator is described by one or
more online attributes through the Github open source project
repository.

Popularity of software. In general, the software of higher
popularity degree often means more famous and has higher
quality. So an indicator named software popularity degree is
introduced to describe how popular is an OSS.

In GitHub, if developers in the community are interested in
an OSS project, their first choice is to “Watch” the software.
Then, whenever the software has any dynamic information,
developers can receive the corresponding data at the first time,
which like following celebrities interested in Facebook.

Therefore, the number of “Watch” of an OSS can describe
its software popularity degree, the higher the number of
“Watch”, on behalf of the developers concern more about this
software. This indicator can be calculated as Equation 1.

Ppopularity (j) = Nor (watch (j)) (1)

where Nor() is normalization and can be calculated as bellow:

Nor (watch (j)) =
watch (j)−min (watch)

max (watch)−min (watch)
(2)

Collaborative development of software. GitHub is an open
source collaborative development community. For the software
the developers are interested in, developers can work with
the related authors. Developers who involved in collaborative

development are called as contributors to this OSS. So an
indicator named software coordination degree is introduced
to describe the enthusiasm of contributors to participate in the
collaborative development of an OSS project.

In GitHub, the development mechanism based on
“Fork→Pull Request” is widely used [12]. If developers want
to participate in the collaborative development of a software,
they can clone the main branch of this software to developers’
local branch through “Fork”. After that, they can implement
some new features or fix bugs based on their personal reposi-
tory cloned from the latest version of project repository. When
their work is finished, the patches are packaged as a PR
submitted to GitHub and reviewed by software authors, which
indicates that developers request that their work be merged
into the main branch of the original project.

Therefore, the number of PR of an OSS can describe its
software coordination degree, the higher the number of PR, on
behalf of the more requests are sent and the higher enthusiasm
of contributors to participate in the collaborative development.
This indicator can be calculated as Equation 3.

Pcoordination (j) = Nor (pull request (j)) (3)

Development attitude of software author. When devel-
opers want to participate in a collaborative development of
OSS, they do not prefer those OSS developed by authors who
are indifferent to their work. When they encounter problems
during the development, the authors will not actively commu-
nicate with them and solve the problem, thus affecting the
user experience. This dimension describes how positive is an
author in his work.

The number of submitted PR per day on GitHub is enor-
mous, leading to the update iterative efficiency of OSS largely
dependents on whether PR can be reviewed in a timely manner.
Study [13] showed that the review of PR is a very important
way for distributed software development community like
GitHub to maintain the quality of code of OSS.

Therefore, two indicators including response degree of
PR (Presponse) and response speed of PR (Sresponse) are
introduced, which can be calculated as Equation 4.

Presponse (j) = Nor

(
pull requestresponse (j)

pull request (j)

)
Sresponse (j) = Nor

(
1

Tlatency (j)

)

= Nor

 1

Mid
16i6M

(
T i
closed (j)− T i

opened (j)
)

(4)

where Presponse is the ratio of the number of responded PR
to the total number of PR. Sresponse is the reciprocal of the
medium number of PR evaluation latency, which is the time
difference between the PR opened and closed.

Activeness of software. The less active OSS often means
that its author has not updated it for a long time and has even
abandoned its development. So we use the reciprocal of the



Fig. 2: Multi-dimensional Measurement Model for OSS

time difference between current time and the last updated time
of OSS to describe an indicator named software activeness
degree, which can be calculated as Equation 5.

Pactiveness (j) = Nor

(
1

Tcurrent − Tupdated (j)

)
(5)

For those dimensions above, users can choose one or more
of them and set the corresponding importance order. For
example, if users want to find OSS in great quality, they would
choose popularity of software as the first important dimension.
Then we determine the weight of dimensions according to
their requirements. After many experiments, we select a set
of weight values that have the better search performance, and
the results shows in Table II.

TABLE II: Weight of Dimensions

The order of importance

Number of dimensions First Second Third Fourth

4 0.4 0.3 0.2 0.1
3 0.5 0.3 0.2
2 0.7 0.3
1 1.0

As mentioned before, there are two indicators (response
degree of PR and response speed of PR) to describe the
dimension: development attitude of software author. So the
weight of both indicators will be the half of the weight of this
dimension.

D. Ranking Based on Fuzzy Synthetic Evaluation

We build a fuzzy synthetic evaluation model of OSS to rank
the preliminary search results by using evaluation score of
software.

Evaluation indicator set and evaluation level set. In this
paper, the evaluation indicator set U is:

U = {u1, u2, u3, u4, u5} (6)

where u1 represents software popularity degree, u2 represents
software coordination degree, u3 represents response degree
of PR, u4 represents response speed of PR and u5 represents
software activeness degree.

We choose “excellent”, “good”, “general”, “bad” and “aw-
ful” as the evaluation level set V :

V = {v1, v2, v3, v4, v5} (7)

where v1, v2, v3, v4, v5 represents “excellent”, “good”, “gen-
eral”, “bad” and “awful” respectively.

Membership function. We use the triangle func-
tion as membership function in our evaluation model.
µv1 , µv2 , µv3 , µv4 , µv5 is respectively the membership function
of “excellent”, “good”, “general”, “bad” and “awful”.

µv1 (x) =

{
4x− 3 x ∈ [0.75,1]
0 others

µv2 (x) =


4x− 2

−4x+ 4

0

x ∈ [0.5,0.75]
x ∈ (0.75,1]
others

µv3 (x) =


4x− 1

−4x+ 3

0

x ∈ [0.25,0.5]
x ∈ (0.5,0.75]
others

µv4 (x) =


4x

−4x+ 2

0

x ∈ [0,0.25]
x ∈ (0.25,5]
others

µv5 (x) =

{
−4x+ 1 x ∈ [0,0.25]
0 others

(8)

Fuzzy evaluation matrix. For each indicator, we get its
single factor evaluation according to the membership function.



Then we get the fuzzy evaluation matrix bellow:

R =


r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35
r41 r42 r43 r44 r45
r51 r52 r53 r54 r55

 (9)

where ri = (ri1, ri2, ri3, ri4, ri5) represents the single factor
evaluation of ui.

Evaluation indicator weight set. In this paper, the evalu-
ation indicator weight set W is:

W = {w1, w2, w3, w4, w5} (10)

where wi is the weight of indicator ui.
Evaluation model and evaluation score. We get the fuzzy

evaluation set S bellow:
S =W ∗R

= (w1, w2, w3, w4, w5) ∗


r11 r12 r13 r14 r15
r21 r22 r23 r24 r25
r31 r32 r33 r34 r35
r41 r42 r43 r44 r45
r51 r52 r53 r54 r55


= (s1, s2, s3, s4, s5)

(11)
where ∗ is fuzzy synthesis operator and there are four common
operators: M (∧,∨), M (•,∨), M (∧,+) and M (•,+).In this
paper, we use M (•,+): sj =

∑5
i=1 wi • rij

Finally we get the evaluation score bellow:

Scorek =

∑n
i=1 c (vi) • ski∑n

i=1 s
k
i

(12)

where c (vi) is the quantified value of each evaluation level,
and can be expressed as bellow:

{c (v1) , c (v2) , c (v3) , c (v4) , c (v5)} = {5,4,3,2,1} (13)

IV. EXPERIMENT

A. Experimental Setup

Stack Overflow is the most popular developer community
of asking and answering questions and it is a platform which
reflects the real requirements of developers. As shown in Ta-
ble III, we summarize several hot software types by analyzing
the tags in Stack Overflow.

TABLE III: Hot Software Types in Stack Overflow

Software type Number of tags

database 138070
machine learning 20603

web crawler 6560

So we choose “database”, “machine learning” and “web
crawler” as the search keywords in the experiment.

In addition, we also summarize two representative users’
customized requirements:

Requirement I. Users want to find OSS resources for
software reuse. As for software reuse, users need OSS in

better quality and more mature. When the OSS has a high de-
gree of popularity and remains active, the quality of such OSS
can be better guaranteed. Therefore, popularity of software is
the first important dimension and activeness of software is the
second important dimension.

Requirement II. Users want to find OSS which is suitable
for collaborative development. For this need, users need
OSS of which contributors participate in passionately. These
software authors communicate with contributors frequently,
timely, and actively maintain software. Therefore, collabora-
tive development of software is the first important dimension
and development attitude of software author is the second.

B. Evaluation Metrics

In user study, in order to compare the effectiveness of our
search service and GitHub-provided search service, volunteers
will be asked to evaluate whether the top 10 OSS that in the
search results offered by our method and GitHub (include
searching by “Best match” and searching by “Most stars”)
is what they are looking for. The evaluation is a Likert-type
scale with a more detailed expression for each choice [14].
The respondents are asked to choose one of three candidate
response items, that is, our evaluation process is a three-point
Likert scale. Table IV describes these three candidates.

TABLE IV: Likert Scale Response Categories

Scale Response category

3 perfect expectations
2 general expectations
1 few expectations

To do the evaluation, twenty individuals with different back-
grounds were invited to assess the result. Among them, nine
are master students, six are Ph.D. students and five engineers
with at least three years software development experience.

At last, we believe that software which is more in line with
users’ requirements should be ranked in more front. So accord-
ing to the rank of software, we use weighted Likert score
to describe the effectiveness of search results.

weighted Likert score =

10∑
i=1

scalei∗weighti (14)

For the software ranked in the first, its weight is 1.0.
For the software ranked in the second, its weight is 0.9.
And for the last, the weight is 0.1. So the full marks of
weighted Likert score is 16.5.

C. Experimental Results

Volunteers will evaluate OSS separately according to Re-
quirement I and Requirement II.

As for Requirement I, after volunteers tried out these OSS,
they evaluated whether the OSS was mature and whether the
quality reached their expectations.

As for Requirement II, after participating in the collab-
orative development of these OSS, volunteers assessed the



enthusiasm of other contributors and whether the software
authors had good communication with them.

Figure 3 shows the evaluation results of user study in
Requirement I.1

Fig. 3: Score of three search results in Requirement I

Figure 4 shows the evaluation results of user study in
Requirement II.

Fig. 4: Score of three search results in Requirement II

Through Figure 3 and Figure 4 we conclude the following
conclusions:

• Whatever users’ requirements are, searching by “Best
match” has limited help with users.

• Searching by “Most stars” has better performance in
finding software in high quality than finding suitable
software for collaborative development. Because it does
not take other attributes into account.

• Our method shows good results under different users’
customized requirements and reflects a high self-adaptive
ability.

1Complete experimental results can be found at:
https://www.trustie.net/projects/4009/boards

• Compared with searching by “Best match”, the average
score of our method increased by 97.6%.

• Compared with searching by “Most stars”, the average
score of our method increased by 13.8%.

V. CONCLUSION AND FUTURE WORK

In this paper, we first introduce a problem that users have
to find OSS that suits their diverse requirements in a huge
number of OSS resources and analyze why the current GitHub-
provided search service is weak. Then we propose our own
approach, which is providing a more efficient search service
for OSS on GitHub by a multi-dimensional measurement
model and a ranking algorithm based on fuzzy synthetic
evaluation. At last, we verify that our method returns search
results which meet users’ expectations more, and has high
self-adaptive ability.

The software data hosted on GitHub is huge today and will
continue to grow rapidly. So in the future, we plan to optimize
our algorithm and improve its efficiency.

REFERENCES

[1] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52–66, 2013.

[2] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the
10th working conference on mining software repositories. IEEE Press,
2013, pp. 233–236.

[3] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge university press Cambridge, 2008, vol. 1,
no. 1.

[4] A. Aula, P. Majaranta, and K.-J. Räihä, “Eye-tracking reveals the
personal styles for search result evaluation,” in IFIP Conference on
Human-Computer Interaction. Springer, 2005, pp. 1058–1061.

[5] F. Duijnhouwer and C. Widdows, “Open source maturity model.
capgemini expert letter,” EU QualOSS project (grant number: 033547,
IST-2005-2.5. 5), 2003.

[6] B. Golden, Succeeding with open source. Addison-Wesley Professional,
2005.

[7] A. Wasserman, M. Pal, and C. Chan, “The business readiness rating
model: an evaluation framework for open source,” in Proceedings of the
EFOSS Workshop, Como, Italy, 2006.

[8] R. Semeteys, “Method for qualification and selection of open source
software,” Open Source Business Resource, no. May 2008, 2008.

[9] B. Russo, E. Damiani, S. Hissam, B. Lundell, and G. Succi, Open Source
Development, Communities and Quality: IFIP 20th World Computer
Congress, Working Group 2.3 on Open Source Software, September 7-
10, 2008, Milano, Italy. Springer Science & Business Media, 2008,
vol. 275.

[10] U. Höhle and S. E. Rodabaugh, Mathematics of fuzzy sets: logic,
topology, and measure theory. Springer Science & Business Media,
2012, vol. 3.

[11] X. Xue and X. Yang, “Seismic liquefaction potential assessed by fuzzy
comprehensive evaluation method,” Natural hazards, vol. 71, no. 3, pp.
2101–2112, 2014.

[12] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender
of pull-requests in github,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp.
609–612.

[13] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for it:
Determinants of pull request evaluation latency on github,” in Mining
software repositories (MSR), 2015 IEEE/ACM 12th working conference
on. IEEE, 2015, pp. 367–371.

[14] S. Jamieson et al., “Likert scales: how to (ab) use them,” Medical
education, vol. 38, no. 12, pp. 1217–1218, 2004.


