
DOI reference number: 10.18293/SEKE2018-038

Model Checking Method for SPA Page Transition

Based on Component-based Framework

Naito Oshima

Graduate School of Creative Science and Engineering

Waseda University

Tokyo, Japan

always-4869@akane.waseda.jp

Tomoji Kishi

School of Creative Science and Engineering

Waseda University

Tokyo, Japan

kishi@waseda.jp

Abstract—In recent years, because web applications have been

handling increasingly important processing tasks, it is ever more

important to avoid errors. Model checking is one verification

method for detecting errors, whereby it is necessary to model the

web application in order to verify it. However, typical web

application developers may lack knowledge on creating the

verification model. Furthermore, web applications have become

increasingly diversified owing to web-browsing technological

advancements and other factors. Among these, the single-page

application (SPA) using a component-based web application

framework, such as Angular, has attracted attention because of

its excellent user experience. However, it makes modeling more

difficult since the page structure is complicated by the intricate

combination of components. In this paper, we therefore present a

method to automatically generate verification models from

source code and perform model checking. The method enables

verification of SPA page transitions using the component-based

framework. We apply our implemented automated tool to several

applications. First, we experiment using sample applications that

do not inject bugs and others that intentionally inject bugs.

Moreover, we apply the method to real applications published on

the Internet. The desired results are obtained, thereby

confirming that the proposed method is effective.

Keywords—Model Checking; Single-Page Application (SPA);

Web Application Framework; Component-based; Angular.

I. INTRODUCTION

In recent years, the number of web applications handling
important processing endeavors, such as online shopping, has
markedly increased, thus magnifying the importance of
avoiding errors. A comprehensive verification method for
detecting errors is model checking [1], whereby it is necessary
to model the target web application in order to verify it.
However, the typical web application developer may have
minimal knowledge of model checking.

Meanwhile, web applications have continued to diversify
on account of the advancement of highly functional web
browsers and web application development technology. Among
them, a new type of single-page application (SPA) has been
developed. By performing front-end processing, such as control
of page transitions, which was traditionally performed on the
back-end, it is possible to provide superior user experience
(UX) with a fast response. Moreover, front-end frameworks—
which are different from back-end frameworks, such as the

conventional Ruby on Rails—are emerging to foster front-end
development. Front-end frameworks include Backbone.js,
Vue.js, AngularJS, and others.

The recently released Angular framework has a novel
component-based architecture that is different from the
conventional one. However, in SPA, with the use of a
component-based web application framework (henceforth
“component-based framework”), the components are intricately
combined. Therefore, the framework is more complicated than
in the conventional one. For example, the page structure is
complex, and errors are easily mixed in the page control part. It
is believed that validation using model checking is effective for
such an SPA. Nevertheless, since the pages are dynamically
constructed by a combination of components, it is difficult to
apply the modeling method with the existing conventional
static page.

In this paper, we therefore propose a method to
automatically generate a verification model and formulas that
verify page transitions from SPA source code using the
component-based framework. Model checking is also
performed. We implement a tool that automates the proposed
method for SPA using the Angular component-based
framework. Experiments are conducted on several applications.
We herein use Simple Promela Interpreter (SPIN) as the model
checker. Hence, Process Meta Language (Promela) describes
the verification model, and Linear Temporal Logic (LTL)
describes the verification formula.

II. BACKGROUND

A. Single-Page Application (SPA)

In conventional web applications, each time an event
occurs, such as a user interaction, the client synchronously
requests the server (e.g., an initial request). The server responds
to the client with all HTML of the corresponding page, and the
client performs reloading and rendering processes.

In SPA, the server generally returns HTML, CSS, script
files, and so on as a response only when responding to the
initial request from the client. For subsequent requests from the
client, we process and redraw using the front-end and
asynchronously acquire data from the back-end in JSON
format when needed. Using this mechanism, the SPA redraws

only the corresponding part without reloading the entire page,
and it realizes page transitions as being controlled by the
conventional back-end [2]. Thus, similar to a native
application, the response to the user operation is fast and can
provide excellent UX. Meanwhile, to realize SPA, a
considerable amount of JavaScript code is necessary, and the
front-end implementation and structure are complicated
compared to the conventional approach [3].

B. Component-based Framework

To improve development efficiency and quality, a web
application framework is usually employed in web application
development. Owing to front-end complexities, web
application frameworks are likewise diversified, and front-end
framework development has advanced [3]. The framework
architecture has also changed, and frameworks adopting a new
component-based approach are being developed.

The component-based concept is founded on Web
Components [4], for which the World Wide Web Consortium
(W3C) developed specifications. The following Web
Component functions are the primary ones [4]:

• Custom Elements

• HTML Imports

• HTML Template

• Shadow DOM

The component-based framework usually includes these
four functions. Unlike the back-end framework based on the
model–view–controller (MVC) architecture [6] described for
each role in the component-based framework, independent
component grouping views, logic, and so on are defined for
each element constituting the page.

SPA using the component-based framework dynamically
constructs the whole page by combining those components. It
is thereby possible to improve its reusability and other aspects.
Furthermore, both page generation and page transitions are
controlled by the front-end; thus, the component-based
framework has a routing function to associate a component
with a path (URL pattern) and to control page transitions.

C. Angular

Angular [5] is a component-based framework developed by
Google. For the development language, TypeScript, a superset
of JavaScript, is recommended. It is not compatible with the
earlier version of “AngularJS” (version 1). Since version 2
(September 2016 release), Angular has been referenced as
“Angular.” In this research, an evaluation experiment is
conducted on Angular 4.0.1. Additionally, SPA using Angular
is defined as “Angular SPA.”

Basically one Angular component consists of the following:

• HTML Template, CSS Template

• TypeScript Class

• Metadata Using a Decorator

The entire page is comprised of one or more components,
including a root component, which is the first component to be
called when Angular SPA is activated.

In Angular, it is possible to dynamically replace parent
components under the root component according to a path by
RouterModule with a routing function. It is thus possible to
realize page transitions, similar to the conventional one
controlled by the back-end, without reloading the entire page.

In addition, a custom element can be created as a user-
specific non-standard HTML tag (CustomTag) using the
selector parameter of the @Component decorator describing
the meta-information of each component. By inserting the
value of the selector parameter as the tag name in the other
parent component, the content of the HTML template of the
given custom element can be displayed in the parent
component. By using the custom element, a hierarchical
structure can be composed of a parent component and a child
component. Additionally, several of them can be arranged on
one page, the components can be reused on different pages, and
one component may be used on multiple pages. Figure 1.
depicts an Angular page configuration example.

Figure 1. Example of a page structure using many components.

Thus, in general, the entire page of Angular SPA is largely
divided into three elements:

• Root component

• Parent component controlled by the router (hereafter
the “parent component”)

• Child component group to be inserted using tags of
values declared by the selector parameter of
@Component decorators as the custom element
(hereafter the “custom child component”)

III. RELATED WORK

In this section, we briefly discuss some research related to
verification for applications, focusing especially on model
checking and page transition verification.

In [7], page transition diagrams that are used during the
design phase are addressed. A method of model checking for
one aspect of the whole application, depending on the page
transition and system environment, is proposed. The approach
differs from ours in that the former handles the page transition
diagram at the design stage, not the implementation stage. In
[8], modeling is performed in the UML model and the
reachability of the page is verified. Test cases are generated;
nevertheless, verification is not performed using a formal
method.

Root component

Parent component

Child component1 Child component2

[Web Page]

Grand child component

In [12], a method using JPF-Android, an Android
application verification tool, applies Java PathFinder (JPF) to
detect errors, such as deadlocking of Android applications.
Analysis of the actual source code of the application is similar
to that in the present research. However, the authors of [13]
target native Android applications, not web applications.

In [13], the authors focus on Apache Struts of the MVC
architecture web application framework. A method, “Web
Automation by Changing View,” is proposed to model the
behavior model of the web application. It is targeted at the
implementation stage and is intended for web applications that
use the Struts web application framework. However, when
applying the model-checking method to the SPA page
transition using the component-based framework, it is difficult
to use a method of modeling one element of the MVC view as
one page. Moreover, the extraction method is based on static
page information.

In [9], [10], and [11], the authors focus on the
implementation of a web application framework using
dynamically typed languages. They respectively propose
methods for extracting symbolic models to verify the data
integrity of the model part and the access control security.
Hence, the objectives differ from those of our research.

An example of front-end operation verification is the Rich
Internet Application (RIA) (e.g., [15], [16]). The present paper
differs from those works in that test cases are generated from
execution traces of actual applications, attention is focused on
interactions by event handlers, and search is performed by
crawling. In the case of the crawling method, it cannot be
verified that the back-end implementation has not been
completed. However, our proposed approach focuses on the
page transition part of the front-end. It can thus be verified
without relying on the back-end implementation.

IV. METHODS

Our proposed method extracts necessary information from
Angular SPA code for transforming the verification model and
verification formulas for page transitions. Verification by
model checking is performed to detect errors and improve the
quality using verification models and their verification
formulas. By implementing a tool that automates our proposed
methods, ordinary web developers with minimal knowledge of
model checking can also apply this method. The flow of the
proposed method is shown as follows:

A. Extraction of information from Angular SPA

B. Construction of static page information

C. Transformation to the Promela model

D. Transformation to LTL formulas

E. Verification by SPIN

Figure 2. depicts the overall extraction input and output
processes. Meanwhile, the page transitions herein are defined
as follows: “Changing of the parent component embedded in
the router—the router-outlet tag in the root component
corresponding to a path by RouterModule—consequently

changes the rendering of the entire page, similar to the
transition of the conventional web application.”

Figure 2. Overview of our proposed flow.

The page transition information is a set of <before page,
path, after page>, and it is divided into two sets: “page
information” and “transition information.” Page information
indicates a path that can be transitioned from each page. It is a
set of combinations of <before page, path>. Transition
information indicates the transition destination page
corresponding to the path described in the routing. It is a set of
<path, after page>.

In this study, certain restrictions are placed on the Angular
SPA description, such as not using child attributes and route
parameters in routing. Since page transitions under the control
of RouterModule are targeted, changes due to links to external
web sites and data binding are not treated as page transitions.

A. Extraction of Information from Angular SPA

Transition information is included in routing defined by
RouterModule and we thus extract it. Specifically, we extract
path parameters and corresponding parent component names
controlled by RouterModule.

Page information indicates a path that can transition from
one page. In SPA, using the component-based framework, it
consists of the set of “Page information in the root component”
and “Page information in each component.” These pieces of
information are included not only in the parent component
controlled by the RouterModule, but also in the custom child
component that can be inserted using the selector element as
descendants of the parent component. Therefore, page
information is extracted from all components. Furthermore,
since information indicating the parent–child relationship of
each component is also necessary, the “Custom element
information in each component,” of which the parent
component controlled by the RouterModule contains the
descendant component, is also extracted.

B. Construction of Static Page Information

We automatically construct static page information from
the information extracted in Section IV-A. Static page
information is a set of transition-capable paths contained in
those pages. In this paper, each of their page names is defined
by the parent component name controlled by RouterModule.

Angular SPA code

A. Extraction & B. Construction Process

Transition information Static page information

C. Transformation to Promala model &

D. Transformation to LTL formulas Process

Promela Model LTL formulas

E. Verification Process

Verification results, Counterexamples

We use the information of Section IV-A from the earlier
flow outline to solve the parent-child relationships among the
root component, parent component, and custom child
component. We construct static page information representing
the page information contained in each parent component
controlled by RouterModule. It expresses the parent component
name (the key part on the left of Table I) controlled by
RouterModule, as well as the transition-capable paths (the
value part on the right of Table I). We transform the Promela
model and LTL formulas based on this static page information
and transition information extracted in Section IV-A.

TABLE I. EXAMPLE OF GENERATED STATIC PAGE INFORMATION

{

 “component1”: [“/component2”, “/component3”],

 “component2”: [“/component1”],

 “component3”: [“/component4”],

}

C. Translation to the Promela Model

Given the transition information of Section IV-A and the
static page information generated in Section IV-B, we convert
the verification model necessary for model checking. In this
paper, since SPIN is used as the model checker, we express the
verification model by Promela, the modeling language used in
SPIN.

The page transitions controlled by routing are indicated by
a set of “pages that can transition from one page and the page
to which the path transitions,” such as <page 1, path, page 2>.

An example of page information by Promela is:

state == page1 -> state = path

An example of transition information by Promela:

state == path -> state = page2

As described above, a combination of page information and
transition information expresses the Promela model of the page
transition. In this Promela model, the state changes alternately
with page, pass, page, pass... and so on. When it is possible to
transition from one page to multiple pages, it is written as if it
occurs non-deterministically using the syntax of “if...fi.” The
process is repeatedly performed using “do ... od” of the guard
command of the repeating syntax.

D. Translation to LTL Formulas

The properties that generally hold in web applications are
the following with reference to [7]:

(1) The page reachable from the top page always has a next

page in the transition (property 1).

(2) Every page is reachable from the initial page (property

2).

(3) The initial page is reachable from all pages (property 3).
(4) A page transition is triggered only after several assumed

pages (property 4).

We examine the above four properties. For property 1, we
do not generate verification formulas because we do not input a
formula. Rather, we perform verification using the default

deadlock-free of SPIN (1). For property 2, for the initial page p
and arbitrary page q, we have the following LTL formula:

¬ ◊(p & ◊q) ()
which will be verified. If a transition is possible, an error
occurs, and it is confirmed that a transition from the initial page
to any page is possible. By changing an arbitrary page q and
repeatedly verifying all pages, it can be confirmed that the
model satisfies property 2. For property 3, as with property 2,
for initial page q and any page p, we have the following LTL
formula:

¬ ◊(p & ◊q) ()
If a transition is possible, an error occurs, and it is confirmed
that a transition from an arbitrary page to an initial page is
possible. By changing arbitrary page p and repeatedly verifying
all pages, it can be confirmed that the model satisfies property
3.

As described above, in the validation of property 2 and
property 3, since formulas are necessary for input, we
automatically generate LTL formulas for all page names that
can be transitioned from all paths defined in routing using
transition information extracted by Section IV-A. This supports
the verification.

In addition to the properties referencing [7], we verify
property 4. For this property, in specifying one page q, and for
any page p, we have the following LTL formula:

¬ ◊(p & XXq) ()
To use the next operator in SPIN, we must attach “-DNXT”
option at gcc compile time. It is confirmed that p is included in
the next page that can be transitioned from page q.

As described above, in this research, we model to include
path transitions between page transitions, such as a path from a
page and another page from a path. That is why the formula
contains the two next operators (XX). By changing an arbitrary
page, p, and repeating the verification for all pages, we can
confirm that the model satisfies property 4. Specifically, it can
be checked whether the next page is directly transferred from
the unintended page to page p, and whether the next page can
be transitioned directly from the intended page to page p.

E. Verification by SPIN

We input the Promela model generated in Section IV-C and
LTL formulas generated in Section IV-D into SPIN and verify
the model for the formulas. In the automation tool, we verify
each generated LTL formula. If the verification result is false, it
automatically analyzes the trail file and automatically outputs
the verification result and counter example simulation result as
files, respectively.

V. EXPERIMENTAL RESULTS

We employed an automated tool that implements the
proposed method to conduct from the information extraction to
the verification for SPA. When inputting Angular SPA, the
automation tool can automatically perform all processes, from
information extraction to generation of the verification model,
generation of formulas, and execution of SPIN.

By applying our method to several sample applications, we
checked whether the intended model was output. We then
confirmed the feasibility of the flow of the proposed method
and the feasibility of actually verifying it. In addition, we
applied it to sample applications that intentionally incorporated
errors to make properties false. We confirmed whether they
could be verified correctly. Furthermore, to show the
effectiveness of this method, we applied it to real applications
published on the Internet.

A. Experiment 1: Sample Applications

We show the page transitions of sample application 1
(hereafter “sample app1”) in Figure 3. First, we verified
sample app1 with no errors in all properties. Next, we
experimented using three of sample app2, sample app3, and
sample app 4, in which errors for each property were injected.

Figure 3. Page transition diagram of sample app1.

1) Verification Model

We applied sample app1 to the automated tool and checked
if the validation model was correctly generated automatically to
represent the page transitions in Figure 6. As a result, the
automatically generated verification model was correctly
generated. It was generated automatically, as assumed from
extraction to the modeling. Similarly, for sample app2, 3, and 4,
the assumed verification model was correctly generated. Next,
we verified the four properties using this verification model.

2) Verification without Injecting Errors

We verified property 1 against the verification model of
sample app1 automatically generated by (1). As a result, no
error was output, and it was confirmed that there was no
problem in its properties, as expected. Likewise, we verified
property 2, property 3, and property 4.

3) Verification with Injecting Errors

We verified sample app2, which intentionally injected the
error of property 1 into sample app1. Specifically, in sample
app2, there was no transition from “Complete Page” to “Top
Page” of sample app1. We confirmed that the result was an
error. As a result of verifying that property 1 was deadlock-free,
it was possible to detect an intended error. Furthermore, a
counter example was simulated using the output trail file. As a
result, it was confirmed that the transition from “Complete
Page” to “Top Page” was not completed and it stopped at
“Complete Page,” as expected.

Similarly, we verified sample app3, which intentionally
injected the error of property 2 into sample app1. Specifically,
in sample app3, there is no transition from “Confirm Page” to
“Complete Page.” Since the verification result of that part don't
result in an error, it is observed that there was no path to reach
“Complete Page” from the initial page “Top Page,” and the
intended error can be detected. As a result of the verification,
the verification was completed without verifying the transition
as an error. Therefore, it could detect the intended error.

Next, a bug injection experiment of property 3 was
performed using sample app2 above. In sample app2, there was
no transition from “Complete Page” to “Top Page” on the
initial page. Therefore, contrary to property 3, it could not
transition from all pages to the initial page. As a result,
verification was completed without causing errors for all pages.
Therefore, it was confirmed that an intended error was detected.

Finally, we tested sample app4, which intentionally injected
the error of property 4 into sample app 1. Sample app4 added
the transition from “Product Page” to “Payment Page” to
sample app1. We confirmed the pages that could transition
directly to “Payment Page.” From the verification results,
transitions from “Delivery Page,” “Gift Page,” and the
additional “Product Page” were possible. Specifically, we
verified that it was possible to transition from “Product Page”
to the next “Payment Page.” As a verification result, an
intended error was detected. Owing to the simulation of the
counter-example, we confirmed that it was possible to
transition from “Product Page” to the next “Payment Page,” as
intended.

B. Experiment 2: Real Applications

To further demonstrate the effectiveness of our method, we
applied the experiment to two different real applications
(hereafter “Small App” and “Large App”), whose source code
is published on GitHub [17]. We examined properties 1, 2, 3,
and 4. In the case of property 4, we selected one of the parent
component names defined in each routing and conducted the
experiment. The scale of the two applications is shown below.

TABLE II. SCALE OF REAL APPLICATIONS

 LOC Number of pages

Small App 1824 6

Large App 6893 23

In this experiment, we automatically generated the
automatic verification model and formulas using the automated
tool. The verification results using the automatically generated
verification model and formulas are shown below.

TABLE III. RESULTS OF EXPERIMENTS FOR REAL APPLICATIONS

 Property 1 Property 2 Property 3 Property 4

Small No error No error No error No error

Large No error 2 errors 2 errors No error

First, as a result of verifying property 1, it was confirmed
that there was no problem in its properties because no error was

complete

Top Page[initial]

(4components)

Payment Page

(3components)

Confirm Page

(3Components)

Complete Page

(5Components)
gift

top

Gift Page[Optional]

(3components)

confirm

payment

list List Page

(3components)

Product Page

(4components)

Delivery Page

(3components)

product

delivery

payment

output in either application. Similarly, we verified property 2.
As a result, in Large App, there were two pages for which no
error was output, and bugs were detected in the transition to
two pages. We confirmed that part of the application, the
reachable transition to that page, was described in none of the
pages.

Next, we examined property 3. As a result, similar to
property 2, in Large App, there were two pages wherein no
error was output, and an error was detected in the transition
from two pages. We confirmed that aspect of the application.
Finally, we verified property 4. For each Small App and Large
App, a single subsequent page was specified and verified. We
visually checked whether the SPA could actually transition
directly to that screen for pages that were made transition-
capable by the verification result.

In property 4, it was self-evident that no bug existed.
However, when the developer actually verifies it, it can be
considered effective because it can detect whether the SPA
directly transitions to an unintended page.

C. Discussion

We conducted experiments on several applications using
automated tools that we implemented. First, in the experiment
on sample applications, it was possible to automatically
correctly from the information extraction to verification of
Angular SPA. In experiments with applications that did not
inject bugs, and with applications that intentionally injected
bugs, we obtained the desired verification results. Furthermore,
even when we applied this method to applications published on
the Internet, we could perform the task correctly. In practice,
one application could detect multiple errors. Thus, our
approach showed greater effectiveness.

Based on several experimental results, we confirmed that
the proposed method enables correct generating and verifying
of the verification model for the page transitions of Angular
SPA. Moreover, by using our automated tool, it is considered
that this method can be applied, even by ordinary developers
who have minimal knowledge of model checking. As stated
above, this study assumed certain constraints. These constraints
mainly come from the first step of our method, i.e., the
extraction of information from Angular SPA. By improving the
analysis of SPA, these constraints can be decreased.

VI. CONCLUSION

In this paper, we proposed a model checking method for
page transitions of SPA using a component-based framework.
In addition, we implemented an automated tool that applies this
method of automatically generating verification models and
formulas from extraction from source code of SPA. The tool
additionally performs the verification. By using the tool, even
typical developers with minimal model checking knowledge
can apply the proposed method. Furthermore, it was confirmed
that there was no problem in the flow of the proposed method
by using real applications intentionally mixed with errors and
those that actually showed the source code.

Focus on the front-end page without reliance on the back-
end is a strength of our proposed approach. However, the

information extraction part of our implementation tool is
directed to Angular SPA and thus assumes certain constraints.
Therefore, it may be challenging to improve the tool and
expand the application scope. Our future work will address this
issue. Additionally, we will apply the method to various more
complex Angular SPAs. Moreover, the information extraction
part of the tool depends on Angular. Thus, we will consider
implementing automation tools for SPAs using other
component-based frameworks, such as Aurelia, or component-
based libraries, such as React.

REFERENCES

[1] Edmund M. Clarke; Orna Grumberg; Doron Peled, “Model Checking,”
The MIT Press, 1999.

[2] Madhuri A. Jadhav; Balkrishna R; Sawant, Anushree Deshmukh,
“Single Page Application using AngularJS,” International Journal of
Computer Science and Information Technologies (IJCSIT), Vol.6, No.3,
pp.2876-2879, 2015.

[3] Ning Zhang; Yizhen Cao; Shengyan Zhang, “Research of web front-end
engineering solution in public cultural service project,” Computer and
Information Science (ICIS), IEEE/ACIS 16th International Conference
on, pp.623-626, 2017.

[4] Web Components, https://www.webcomponents.org/, accessed: 2018-
03-01.

[5] Angular, https://angular.io/，accessed: 2018-03-01.

[6] Glenn E. Krasner; Stephen T. Pope, “A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80,” Journal of
Object-Oriented Programming, Vol.1, No.3, pp.26-49, 1988.

[7] Kei Homma; Satoru Izumi; Kaoru Takahashi; Atsushi Togashi,
“Modeling, Verification and Testing of Web Applications Using Model
Checker,” IEICE Transactions on Information and Systems, Vol.94,
No.5, pp.989-999, 2011.

[8] Filippo Ricca; Paolo Tonella, “Analysis and testing of Web
applications,” Proceedings of the 23rd International Conference on
Software Engineering (ICSE), Vol.47, No.6, pp.25-34, 2001.

[9] Joseph P. Near; Daniel Jackson, “Rubicon: bounded verification of web
applications,” Proceedings of ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering(FSE), No.60,
pp.1-11, 2012.

[10] Joseph P. Near; Daniel Jackson, “Finding security bugs in web
applications using a catalog of access control patterns,” Proceedings of
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pp.947-958, 2016.

[11] Ivan Bocić; Tevfik Bultan, “Symbolic Model Extraction for Web
Application Verification,” Proceedings of IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp.724-734，2017.

[12] Heila van der Merwe, “Verification of android applications,”
Proceedings of the 37th International Conference on Software
Engineering (ICSE), Vol. 2, pp.931-934, 2015.

[13] Shoji Yuen; Keishi Kato; Daiju Kato; Daiju Kato; Kiyoshi Agusa, “Web
automata: A behavioral model of web applications based on the MVC
model,” Information and Media Technologies, Vol.1, No.1, pp.66-79,
2006.

[14] Alessandro Marchetto; Paolo Tonella; Filippo Ricca, “State-based
testing of Ajax web applications,” Software Testing, Verification, and
Validation (ICST), 1st International Conference on, pp. 121-130, 2008.

[15] Domenico Amalfitano; Anna Rita Fasolino; Porfirio Tramontana, “Rich
internet application testing using execution trace data,” Software
Testing, Verification, and Validation Workshops (ICSTW), Third
International Conference on, p. 274-283, 2010.

[16] Frederik Nakstad; Hironori Washizaki; Yoshiaki Fukazawa, “Finding
and Emulating Keyboard, Mouse, and Touch Interactions and Gestures
while Crawling RIAs,” International Journal of Software Engineering
and Knowledge Engineering (SEKE), Vol.25, pp.1777-1782, 2015.

[17] GitHub, https://github.com/, accessed: 2018-03-01.

	I. Introduction
	II. Background
	A. Single-Page Application (SPA)
	B. Component-based Framework
	C. Angular

	III. Related Work
	IV. Methods
	A. Extraction of Information from Angular SPA
	B. Construction of Static Page Information
	C. Translation to the Promela Model
	D. Translation to LTL Formulas
	E. Verification by SPIN

	V. Experimental Results
	A. Experiment 1: Sample Applications
	1) Verification Model
	2) Verification without Injecting Errors
	3) Verification with Injecting Errors

	B. Experiment 2: Real Applications
	C. Discussion

	VI. Conclusion
	References

