
A structured stochastic model for software project estimation in Waterfall models

Ildo Massitela ∗, Joaquim Assunção †, Alan R. Santos ∗, Paulo Fernandes ∗

∗ PUCRS, School of Technology, Porto Alegre, Brazil
† UFSM - Department of Applied Computing - Santa Maria, Brazil

∗ {ildo.massitela, alan.ricardo}@acad.pucrs.br, † joaquim@inf.ufsm.br, ∗paulo.fernandes@pucrs.br

Abstract
Evaluate team’s performance on long-duration projects can be a
challenge. It relies on human expertise to perform estimations,
which can generate uncertainty and dependency of experienced spe-
cialists. Statistical techniques, such as modeling and simulations,
are suitable options as tools to support projects estimations. Our
goal in this paper is a formal mapping of the main Waterfall model
characteristics to stochastic model to predict performance indices
of teams such as the real working time.

1 Introduction
Simulations of teams’ performance can help in solving a se-
ries of issues concerning software development, yet estima-
tions and analysis for non-short projects can be a challenge
[8]. Considering all the project phases, from extracting re-
quirements to deliver and maintain a product, involves care-
ful planning and resources management. Thus, estimations
for a project, play an important role in any medium or big
project [7, 10].

Traditional software development methodologies, also
known as prescriptive approaches (such as Waterfall), claim
their support to comprehensive planning, detailed documen-
tation, and expansive design. Agile approaches have gained
significant attention from the software engineering commu-
nity in the last few years. Unlike traditional methods, Agile
methodologies employ short iterative cycles and rely on tacit
knowledge within a team as opposed to documentation [1].
In this context, traditional software development approaches
will still have their need in large, long-lived projects that
have particular safety, reliability or security requirements
[1]. Also, Waterfall projects tend to have much longer re-
leases than Agile methods, which makes the estimation of
resources even more important.

Performance evaluation for software development
projects has become a challenge for both industry and
academia. Theoretical models can be adopted as a tool to
analyze and to understand different dynamics on software
development process to help project leaders to perform a
better assessment on issues related to the development con-
text [6, 11, 7].

∗DOI reference number: 10.18293/SEKE2018-033

Characteristics, such as mixed teams, different levels of
expertise, different knowledge about the project etc., make
it difficult for accurate predictions [13, 5, 3, 12]. In such
cases, we may rely on stochastic techniques to represent such
apparently random situation. More specifically, a model that
uses known data as parameters and known behavior as its
structure. Such models should be able to simulate a team’s
activity, laying on probabilities to estimate its performance.

Although our model does not intend to be a complete so-
lution, we can well cover some of these key points by achiev-
ing probabilities through a structured stochastic model. Our
model relies on stochastic methods based on a structured for-
malism, which allows us to perform simulations efficiently,
adapt its parameters and scales the model itself depending on
the number of team members. This compact and adaptable
model can be used both to estimate and evaluate teams’ per-
formance. Moreover, we demonstrate the benefits of using
the Stochastic Automata Networks (SAN) formalism for the
modeling and evaluation of Waterfall development teams.

2 Estimation through stochastic models
A stochastic model is a structure which represents a
dynamic, and non-deterministic, system or phenomenon
through the use of statistical techniques. In our case, a struc-
tured modular model, which allows us to manipulate and up-
date the model for different scenarios easily. Such models
have a low cost to gain insights compared to the cost, risk or
logistics of manipulating a real system.

Our model relies on the stochastic description of the
events. With a structure representing a given team, we use
parameters caring information concerning the time effec-
tively spent by Junior, Standard, and Senior members. SAN
is a structured formalism which describes a complete system
as a collection of subsystems that interact with each other [9].
Its behavior is similar to a Markov formalism, except that it
is internally represented by a Kronecker descriptor and it al-
lows modular representations, which can be especially use-
ful to create compact representations. SAN models can be
solved using specialized tools such as PEPS [2].



3 The Model
Our model parameters data was collected through interviews
with a project manager at an IT company, a Waterfall project,
here in this work, named as project X . We used the data col-
lected to feed our model parameters. We use the expression
team members to describe the roles of developers and testers.

The model is composed of n automata representing n
team members; also, we use an abstraction of five different
states to describe the team, Working (W), Seeking solution
(S), Collaborating (C), Helping others (H) and Reworking
(R). Table 1 describes each state.

Table 1: Model states
State Description

(W)orking Execution of a given task by each member.

(S)eeking solution A team member trying to find a solution.

(C)ollaborating A synchronous contribution between 2 team
members, a member receive help or a mutual
collaboration is established.

(H)elping A synchronous contribution with benefit
only for another member, j.

(R)eworking A given team member reworking to solve a
problem in a given task.

We assume that a team member can be working (W) and
then stop due to the need of information or some necessary
condition for a task, we call this state Seeking solution (S).
Yet, when this team member is not working, sometimes
he/she is available to help others, be helped or exchange
knowledge about the problem; thus, the states Collaborating
and Helping are used to represent synchronous task between
two team members.

Helping (H) is a state that is achieved only when a
member i is helping another member without any benefit for
its own problem. Collaborating (C) is a state that represents
a member i being helped by another team member. When an
H activity ends, a member returns to seek a solution for its
problem. A C activity ends into two different possibilities,
which are: 1, a team member i can resume working on a new
task (going to W ). 2, a team member i must return to fix an
already started task (R), i.e., to rework on a known problem.

For each automaton, five states are linked by a transition
associated with events that fire according to specific rates.
Those rates are assigned according to flexible parameters
based on the average working hours achieved, described by
the members of project X . For instance, as the event a is
related to an average rate indicating a member that stops
working to seek a solution. A frequency of once per day
is represented as 1/9, six times per day as 6/9, and so on
(Table 2). The event q is the opposite and has different taxes
due to the fact that a member can stop to seek a solution for
its problems or to help others.

Table 2: Collected average working hours per team member
Event Expertise Rate

ai

Senior τai = 1/9
Plain τai = 3/9
Junior τai = 6/9

qi

Senior τqi = 6/9
Plain τqi = 4/9
Junior τqi = 2/9

ri

Senior τri = 1/9
Plain τri = 1/9
Junior τri = 1/9

We evaluated the model using the project X data to
set the parameters, however the model parameters can be
adjusted and assigned according to different scenarios. For
instance, a Junior developer seeks a solution or support
more often than a Senior developer, and the combination of
professionals with different levels of expertise can be taken
into account to accurately describe each specific project
behavior. A team, formed by n members, is formed by a joint
network of n automata, each as illustrated on Figure 1. The
events that trigger transitions among the states are presented
in Table 3.

sij(1-γ) 

W

R S

HC

dji
sij(γ)

ri ai

qi(1-γ)

dij
sji

q(γ)

Figure 1: Automaton A(i) describing possible activities of the
ith member in a team of n members, 0 > i, j ≤ n | i 6= j.

Each automaton is described by a set of states (W, S,
C, H, R) and a set of events associated with its transitions.
For the analysis task, we focus on the state W to get
probabilities concerning the estimated useful working hours.
More clearly, we consider the probability of a state W as the
productivity of each team member.

In this sense, to determine the rate of the synchronizing
events, we started with the following functions, which is
given by the expertise of a member, in conjunction with the
level of expertise of the other member seeking collaboration
(Table 5). So, the better a member is, the fewer this member
will be available at state S. However, once in S, the more
likely this member will help the others (Event di j). Also,
these members tend to solve problems faster, i.e., they leave
the collaboration state faster than those with lower expertise



Table 3: Model events
Event Description Rate

ai Team member i is stop working to seek for
the solution for a problem.

τai

qi Team member i has found a solution by
itself and is either resume working (with
probability γ), since its problem was not an
issue, or he/she is going to re-work (with
probability 1− γ) to fix his/her problem.

τqi

di j Team member i is either going to help team
member j (di j), or he/she is going to be
helped by team member j (d ji).

τdi j

si j A collaboration between team members i
and j is ended and, since i is being helped
by j, team member i is going to work or
re-work in his/her problem (si j), while team
member j is going back to seek his/her own
solution. Probability 1−γ defines if member
i will need to re-work.

τsi j

ri A team member i going to work after re-
work on a task.

τri

(Event si j). We first use temporary variables (β ) to find the
rate set for these events:

β (si j) = τqi +(1− τq j) ... β (s ji) = τq j +(1− τqi)

β (di j) = τqi +(1− τq j) ... β (d ji) = τq j +(1− τqi)

These temporary variables are needed due to the exper-
tise level’s dependency on each team member pair of team
member concerned by each synchronous event. Imagine two
members, one that has half an hour per day to cooperate and
the other has three hours. Between these two members, the
cooperation time will be just half hour, which is the available
time concerning the busier member. Nevertheless, consider-
ing another member of the team, the odds of productive col-
laboration among members increases as the number of pos-
sible member pairs to collaborate increases. Therefore, we
use the cumulative sum of all β rates for starting these events.
Now, concerning a team with n members, and a member rep-
resented by an automaton A(i) with 0 > i, j < n | i 6= j, the
final values for the rates of synchronizing events d and s are
given by a cumulative sum of the β values:

τdi j = ∑
∀ j | j 6=i

β (di j) ... τd ji = ∑
∀ j | j 6=i

β (d ji)

τsi j = ∑
∀ j | j 6=i

β (si j) ... τs ji = ∑
∀ j | j 6=i

β (s ji)

Thus, the cumulative rate for all output events from S to-
wards C or H is given by: ∑∀ j | j 6=i τd ji . The same applies
for the synchronizing events departing from C. The cumu-
lative rate for events from C towards R and W is given by:
∑∀ j | j 6=i τsi j . Note that from H there is only one possible

transition that leads back to S. Once we have a team with n
members, we can define a model composed by n automata.
In such model, it is clear that each event with the member
indication j must represent all team members, but itself (i).
As for the probability to return to work (γ) or to re-work
(1− γ), the more senior a member is the higher will be γ .
For project X a Senior member has γ = 0.67, a Plain mem-
ber has γ = 0.44 and a Junior member has γ = 0.22.

4 Results
Our model target is the state W since it represents when
a team member is performing useful work. Thus, a total
working time, Ω, is multiplied by the probability of the
stationary probabilities of W . We previously have the real
project time and the estimated time, which were given by the
project members. Example, for the Requirements phase, the
estimated total time was 179.7 hours and the real, observed,
time was 192.8 hours. Our goal is to achieve a precision
as good as the original estimations made by the senior
members of the project. Thus, we calculate, for each phase
and for each member, the stationary probabilities; which
should retrieve a probability of a team member be effectively
working. Each of these probabilities is then used to get the
calculated working time of phase k (CWTk). The current
parameter makes a simple equation. Given:

• Ω, team members daily absolute working time;

• P(W (i)), the calculated probability of the ith team mem-
ber be actually working;

• D, the total days in the project;

• n, the total number of team members.

CWTk =
n

∑
i=1

Ω∗P(W (i))∗D

Our numerical analysis is obtained by the calculated
working time previously described. This is performed for
each project phase and for each team member. The model
results retrieves the calculated probability for each member.
The project phases are: Requirements, Prototype, Specifica-
tions, Development and Deployment.

Table 4: Probabilities achieved to the Requirements phase.
Analyst State Probability Analyst State Probability

Senior

W 66.4089

Junior

W 20.9505
S 10.6419 S 56.1932
C 2.6546 C 17.9955
H 17.9955 H 2.6546
R 2.2988 R 2.2060

Considering Table 4, the total time spent to this phase
is given by: Ω ∗P(W (i)) ∗D. Being Ω is a constant for the
project, 9 hours; and D is a constant for each phase. In the



first phase, 21 days were spent. Thus, one Senior and one
Junior Analyst is respectively:

Ω∗P(W (1))∗D = 9∗0.66∗21 = 124.7

Ω∗P(W (2))∗D = 9∗0.2∗21 = 37.8

The total time is the sum of all team members in
the phase, which makes 162.5 hours. Table 5 shows our
calculated estimations in hours compared with the actual
time and the project manager estimation.

Table 5: Project X , estimated versus calculated differences.
Project Phases Estimated Actual Calculated

Requirements 189 192.8 162.5
Prototype 63 61.5 61.1
Prog. specifications 144 138 168.4
Development 912 1069 1285.2
Documentation 171 213 213.7
Deployment 63 51 81.9

Despite a relatively poor performance for the deploy-
ment phase, we achieved a precision quite similar to the ac-
tual time, and sometimes better than the estimated values by
the project manager. These results indicate that this type of
approach can be used to support project leads and project
managers to evaluate waterfall projects before their execu-
tion.

5 Final Remarks
Given specific project data, this model can be extended to
more sites with different working hours, reworking probabil-
ities and average time spent in activities. The modeler needs
to understand more deeply the project and the participants’
profile to collect significant data from interviews, surveys or
historical data in companies databases. Indeed, we do not ex-
plore characteristics such as; the team expertise for a specific
task, the historical performance for each phase, the complex-
ity of the tasks and requirements, etc. Yet, these characteris-
tics can be added to adjust the model according to different
situations, therefore leading to constant quality and, possi-
bly, improving the accuracy. Nonetheless, the main contri-
bution of this work is a conceptual model for the analysis of
effectively working time in Waterfall software development
context.

Our model main parameter can be set according to the
scenario and previous experiences concerning the targeted
team. Despite limitations, our model is structured using
Stochastic Automata Network (SAN), which allows new
system compositions and behaviors by appending new states
and relationships among previously defined entities. As a
future work, we will identify characteristics in companies
with different sizes and different project types for tests with
our model and further research to improve it, which can lead
to a more detailed model for various projects.

References

[1] M. AWAD, A comparison between agile and traditional soft-
ware development methodologies, University of Western Aus-
tralia, (2005).

[2] L. BRENNER, P. FERNANDES, B. PLATEAU, AND I. SBE-
ITY, PEPS 2007 - Stochastic Automata Networks Software
Tool, in Proceedings of the Fourth International Conference on
Quantitative Evaluation of Systems (QEST ’07), Washington,
DC, USA, September 2007, IEEE Computer Society, pp. 163–
164.

[3] E. CARMEL, Global software teams: collaborating across
borders and time zones, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1999.

[4] R. M. CZEKSTER, P. FERNANDES, AND T. WEBBER, GTA
express - A Software Package to Handle Kronecker Descrip-
tors, in Proceedings of the 6th International Conference on
Quantitative Evaluation of SysTems (QEST 2009), Budapest,
Hungary, September 2009, IEEE Computer Society, pp. 281–
282.

[5] S. FARAJ AND L. SPROULL, Coordinating expertise in soft-
ware development teams, Management Science, 46 (2000),
pp. 1554–1568.

[6] S. FERREIRA, J. COLLOFELLO, D. SHUNK, AND G. MACK-
ULAK, Understanding the effects of requirements volatility in
software engineering by using analytical modeling and soft-
ware process simulation, Journal of Systems and Software, 82
(2009), pp. 1568 – 1577. SI: YAU.

[7] M. I. KELLNER, R. J. MADACHY, AND D. M. RAFFO,
Software process simulation modeling: why? what? how?,
The Journal of Systems & Software, 46 (1999), pp. 91–105.

[8] A. MAYRHAUSER, Experimental Software Engineering Is-
sues: Critical Assessment and Future Directions: Interna-
tional Workshop Dagstuhl Castle, Germany, September 14–
18, 1992 Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1993, ch. The role of simulation in software engi-
neering experimentation, pp. 177–179.

[9] B. PLATEAU, On the stochastic structure of parallelism and
synchronization models for distributed algorithms, SIGMET-
RICS Perform. Eval. Rev., 13 (1985), pp. 147–154.

[10] R. SANGWAN, M. BASS, N. MULLICK, D. J. PAULISH,
AND J. KAZMEIER, Global Software Development Handbook
(Auerbach Series on Applied Software Engineering Series),
Auerbach Publications, Boston, MA, USA, 2006.

[11] S. SETAMANIT, W. WAKELAND, AND D. M. RAFFO, Using
simulation to evaluate global software development task allo-
cation strategies: Research Sections, Software Process: Im-
provement and Practice, 12 (2007), pp. 491–503.

[12] C. U. SMITH AND L. G. WILLIAMS, Software performance
engineering: a case study including performance comparison
with design alternatives, Software Engineering, IEEE Trans-
actions on, 19 (1993), pp. 720–741.

[13] A. TAWEEL AND P. BRERETON, Modelling software devel-
opment across time zones, Information and Software Technol-
ogy, 48 (2006), pp. 1–11.


