
BoolMuTest: A Prototype Tool for Fault-Based
Boolean-Specification Testing

Ziyuan Wang∗ Min Yu
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

∗Corresponding: wangziyuan@njupt.edu.cn

Abstract—In order to perform mutation testing for general-
form Boolean specifications, a prototype tool called BoolMuTest
is designed for fault-based Boolean-specification testing. There
are several function modules including generating mutants for
general-form Boolean expressions, finding all possible test cases
to kill a mutant, analyzing minimal failure-causing schemas for a
mutant, calculating mutation score for a give set of mutants, and
etc. All these functions are provided via command-line programs.

Index Terms—Software testing, Boolean-specification testing,
mutation testing, fault-based testing, prototype tool.

I. INTRODUCTION

Fault-based Boolean-specification testing is one of impor-
tant weak mutation testing techniques, since the running paths
of program are usually dependent on Boolean-specifications in
predicates. People usually pay their attention on 10 mutation
types including ASF, CCF, CDF, ENF, LNF, LRF, MLF, ORF,
SA0, and SA1 in the field of Boolean-specification testing
[1]. In order to perform mutation testing for general-form
Boolean specifications, a prototype tool called BoolMuTest is
designed. It can be utilized to generate mutants for general-
form Boolean expressions, find all possible test cases to kill a
mutant, analyze minimal failure-causing schemas for a mutant,
calculate mutation score for a give set of mutants, and etc.

II. FUNCTION MODULES

A. CreateBoolMutant

CreateBoolMutant can be utilized to generate mutants for
given general-form Boolean expressions with given mutation
types. The command format is:

CreateBoolMutant origin expr file mutant type file
mutant expr file [-disp]

Where the origin expr file is an input file including original
Boolean expressions. The mutant type file is an input file
including mutation types. The mutant expr file is output file
including mutant expressions with given mutation types. And
the [-disp] is an option parameter to print all the expressions
(include original and mutant expressions) on the screen.

An example input file including original Boolean expres-
sions is shown as follow, where there are two original Boolean
expressions. To represent Boolean expressions by plain text,
operators ∧, ∨, and ¬ are replaced by *, +, and ! separately.

a*(!b+!c)*d+e
a1*!a5+(!a2+!a3+!a1)*a4+a5

An example input file including mutation types is shown
as follow, where there are two types ASF and ENF.

ASF
ENF

The output file generated by CreateBoolMutant for above
two input files should is shown as follow.

#Original Expression File: input.txt
#Original Expression 1: a*(!b+!c)*d+e
#Mutation Type: ASF
a*!b+!c*d+e
#End Mutation Type
#Mutation Type: ENF
a*!(!b+!c)*d+e
#End Mutation Type
#End Original Expression
#Original Expression 2: a1*!a5+(!a2+!a3+!a1)*a4+a5
...

B. BoolCodeTransform

BoolCodeTransform can be utilized to translate original
Boolean expressions or mutant Boolean expressions in a given
file to C language codes. The command format And is:

BoolCodeTransform expr file code file [-mu]

If [-mu] is used, mutant expressions will be translated; other-
wise, original expressions will be translated. The expr file is an
input file that includes Boolean expressions, and the code file
is a C language header file.

By assuming the name of file that contain original ex-
pressions is “input.txt”, the C code file for original Boolean
expressions in section III.A should be:

bool input1(bool a, bool b, bool c, bool d, bool e)
{
return a&&(!b||!c)&&d||e;
}
bool input2(bool a1,bool a2,bool a3,bool a4,bool a5)
{
return a1&&!a5||(!a2||!a3||!a1)&&a4||a5;
}

And the code file for first two mutant Boolean expressions
in section III.A should be:

bool input1ASF1(bool a, bool b, bool c, bool d, bool e)
{
return a&&!b||!c&&d||e;
}
bool input1ENF1(bool a, bool b, bool c, bool d, bool e)
{
return a&&!(!b||!c)&&d||e;
}

DOI reference number: 10.18293/SEKE2018-325

T
h
i
r
d
-

p
a
r
t
y

c
o
m
p
i
l
e
r

O
r
i
g
i
n
a
l

B
o
o
l
e
a
n

E
x
p
r
e
s
s
i
o
n

M
u
t
a
n
t

B
o
o
l
e
a
n

E
x
p
r
e
s
s
i
o
n

C
r
e
a
t
e
B
o
o
l
M
u
t
a
n
t

B
o
o
l
C
o
d
e

T
r
a
n
s
f
o
r
m

R
a
n
d
E
x
p
r
e
s
s
i
o
n
G
e
n

B
o
o
l
C
o
d
e

T
r
a
n
s
f
o
r
m

C

F
i
l
e

f
o
r

O
r
i
g
i
n
a
l

E
x
p
r
e
s
s
i
o
n

C

F
i
l
e

f
o
r

M
u
t
a
n
t

E
x
p
r
e
s
s
i
o
n

C
r
e
a
t
e
P
r
o
g
r
a
m
_
A
l
l
F
a
i
l
T
e
s
t
s

C

F
i
l
e

T
o

G
e
t

A
l
l

F
a
i
l

T
e
s
t
C
a
s
e
s
 E
X
E

F
i
l
e

F
a
i
l
e
d

T
e
s
t
s

P
a
s
s
e
d

T
e
s
t
s
 G
e
t
B
o
o
l
M
F
S
 M
F
S

M
u
t
a
n
t
C
o
v
e
r

T
e
s
t
R
e
p
o
r
t

(
M
u
t
a
n
t

K
i
l
l

P
e
r
c
e
n
t
)

T
h
i
r
d
-
p
a
r
t
y

T
e
s
t
s

o
p
t
i
o
n

Figure.1 Work process of BoolMuTest

C. CreateProgram AllFailTests

CreateProgram AllFailTests can be utilized to create a C++
program that finds all possible test cases to kill given mutants.
The command format is:

CreateProgram origin expr code file
mutant expr code file cpp program file
[-W]|[-WO]|[-L]|[-LO]

Where both origin expr code file and mutant expr code file
are input files generated by BoolCodeTransform. If [-W] or
[-WO] is used, the created C++ program could be compiled
and run in the Windows environment. If [-L] or [-LO] is used,
it could be compiled and run in the Linux environment.

The C++ program, we named as GetAllFailTests, could be
run as the following format on Windows/Linux console:

GetAllFailTests [-i]|[-b] target directory

Where the [-b] means that test cases are stored as binary string,
and [-i] means that test cases are stored as an integer. For each
mutant, all test cases that kill such a mutant are stored in an
independent file in the folder arget directory.

D. GetBoolMFS

The minimal failure-causing schemas reflect characteristic
of failed test cases [2]. GetBoolMFS can be utilized to find
minimal failure-causing schemas by comparing passed test
cases and failed test cases. The command format is:

GetBoolMFS expr common name min expr index -
max expr index test directory target directory
[{ASF | CCF | CDF | ENF | LNF | LRF | MLF |
ORF | SA0 | SA1 | VNF | VRF} [min mutant index
- max mutant index] | [min mutant index –] |
[mutant index]]*

Where expr common name is used to identify input files.
Parameters min expr index and max expr index indicate
the range of index of original expressions. Parameters
test directory and target directory indicate folders that
store failed test cases and final results. And parameters
min mutant index and max mutant index indicate range of
index of mutant expressions.

E. MutantCover

In mutation testing, the mutation score is used to evaluate
quality of given test cases. MutantCover can be utilized to

evaluate percent of killed mutants in Boolean-specification
testing. The command format is:

MutantCover origin expr name mutant type
all fail tests dir input tests file

Where parameter origin expr name and mutant type are used
to indicate mutations. The folder all fail tests dir store files
that contain all failed test cases for each mutant. Test cases
under evaluation are stored in input tests file.

F. RandExpressionGen

There is a program called RandExpressionGen to generate
Boolean expressions randomly according to given configura-
tions. The usage of RandExpressionGen is omitted here since
the limitation of the length of pages.

III. CONCLUSION

The work process of BoolMuTest, which is a prototype tool
for fault-based Boolean-specification testing, could be found in
Figure 1. The BoolMuTest, which provides six command-line
programs, supported many previous experimental studies in
the field of fault-based Boolean-specification testing [3][4][5].
There should be some future works of making the tool user
friendly by design graphic user interface. The current version
could be found in https://github.com/princeyuan/BoolTest/.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China (61772259).

REFERENCES

[1] Z. Chen, T. Y. Chen, B. Xu. A Revisit of Fault Class Hierarchies
in General Boolean Specifications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2011, 20(3): 13.

[2] C. Nie, H. Leung. The Minimal Failure-causing Schema of Combinatorial
Testing. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2011, 20(4): 15.

[3] Ziyuan Wang, Yuanchao Qi. Why Combinatorial Testing Works: Ana-
lyzing Minimal Failure-Causing Schemas in Logic Expressions. 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW2015): 4th International Workshop
on Combinatorial Testing (IWCT2015).

[4] Chunrong Fang, Zhenyu Chen, Baowen Xu. Comparing Logic Coverage
Criteria on Test Case Prioritization. Science China Information Science,
2012, 55(12): 2826-2840.

[5] Min Yu, Ziyuan Wang, Yuanchao Qi, Feiyan She, Weifeng Zhang.
A Revisit of Fault-Detecting Probability of Combinatorial Testing for
Boolean-Specifications. 30th International Conference on Software En-
gineering and Knowledge Engineering (SEKE2018).

