
Mobile App Development Using Software Design Patterns
Nicole Barakat, Doan Nguyen

California State University, Sacramento 95819

10.18293/SEKE2018-324

I. Introduction

Computer Science (CSC) 133 course is an Object-Oriented

Computer Graphics Programming class offered at California

State University, Sacramento. This poster paper describes a

class project utilized in Spring 2018. The course materials

where this assignment was based from the pedagogical

study [2] that redesigned CSC 133 by utilizing

CodenameOne (CN1) [1], a cross-platform mobile

application development environment, to teach topics of

this course that originally utilized Java Standard Edition and

desktop application development. With the purpose of

incorporating mobile application development experience

to the existing course, this pedagogical study updated the

course content and modified the original course materials

[3] (e.g., slides, projects, and code samples) developed

mainly by colleagues who previously taught CSC 133. The

specification and design of this class project in Spring 2018

(i.e., Asteroid game) are also originated from the original

CSC 133 course materials. The work here converted the

Asteroid game from Java into CN1 by using the converted

project (Race Car game) from [2] as its model. The most

challenging aspect was to find the proper components in

CN1 which can perform the comparable functions and at the

same time preserving the core design of the system [3].

As inferred by the class title, this class focuses on the

fundamental concepts of the object-oriented (OO)

paradigm, introduction to Computer Graphics, as well as

Mobile App Development. The object-oriented paradigm

encompasses many pertinent topics such as: polymorphism,

inheritance, encapsulation, and abstraction. These concepts

are supported through formalisms such as UML diagrams

and software design patterns. Emphasis is put on

implementing event-driven systems through the study of

computer graphics.

These concepts are all tied together through the

construction of an enticing cross-platform mobile

application. CN1 is the mobile app development

environment tool chosen due to its Java focus and cross-

platform capabilities. The Java programming language

works exceptionally well for the purpose of this course,

being that it is an object-oriented, ubiquitous, and versatile

language. Many applications are limited to Android/IOS,

which makes this deployment even more salable and overall

appealing. Throughout the semester, the students are

taught how to develop a mobile application given the

knowledge of efficient structuring principles and tools.

Incentive for hard work is encouraged by the semester end

goal, the creation of an “Asteroid Game.” This paper is

organized into three parts. The first part describes the

design aspects of the application. The second part highlights

the testing areas. The paper ends with remarked conclusion

and future work.

II. Design

A specification is given for the assignment [2,3],

requirements are analyzed, then a UML class diagram is

created. This diagram gives an excellent visualization of the

organization and basic structure needed. It shows many of

the important relationships and concepts needed to

structure and execute an effective system. The underlying

structure of this application is largely inspired by, and

incorporates, many software design patterns including an

emphasis on the Model View Controller (MVC) architecture.

The MVC architecture allows for the organization and

compartmentalization of code into three main modules,

which in turn largely contributes to scalability and

maintainability. In the context of this course, an interactive

game application is created with the following modules: the

Game class is the user’s “controller”, the GameWorld class

is the “model” that holds the majority of the complex data

which is accessed and manipulated by the controller, and

the PointsView and MapView are the views through which

the game state may be conveyed to the user. Figure 1

shows a condensed UML class diagram of the overall system

architecture.

Figure 1. Condensed UML of the game’s overall architecture

This application is further coordinated using various

creational, structural, and behavioral design patterns such

as the Proxy, Composite, Command, and

Observer/Observable patterns.

Proxy Design Pattern: The Proxy structural pattern is used

as a protection proxy to protect the game’s state by

prohibiting the views from modifying the game world. This

structure defines an interface which strictly specifies what

methods and actions a client program may perform. For

example, IGameWorld contains the restricted methods

which will be implemented by both the real GameWorld

class, as well as the GameWorldProxy class.

Composite Design Pattern: The objects of the “Asteroid

Game” are organized in a hierarchical manner: a

GameObject can be a FixedObject or a MoveableObject, a

MoveableObject can then be further divided into: Ship,

Asteroid, FlyingSaucer, or Missile. As can be seen, some

objects, such as MoveableObject are groups of other

objects. Additionally, these moveable objects, which are all

moveable, are treated uniformly through inheritance and

implementation of an IMoveable interface.

Command Design Pattern: A user has a multitude of

commands available upon beginning the game.

Maintenance of state information of each command is done

by encapsulating the various commands that the player may

invoke. The constructor of the main Game class creates

strictly one instance of each command object, and reuses

that object as needed. Despite the origin of invocation of

the command, the execution of a code block is the same.

This strategy, therefore, avoids the need for multiple copies

of code that perform the same task.

Observer/Observable Design Pattern: The MapView and

PointsView classes are registered as observers of the

observable, GameWorld. Whenever any changes are made

that would affect the state of the views, GameWorld

notifies its observers of updates. This relationship allows for

proper coordination and communication between

participating classes when changes occur.

Animation, Objects Interaction, Sound

A system timer’s tick function is generated. For each tick, an

object movement is computed using its current positions,

headings, and speeds. Collisions are detected and handled

polymorphically through the use of an ICollider interface

containing collidesWith and handleCollision methods which

are implemented by all objects that have the capability of

colliding. The collidesWith method checks whether or not

two given objects are colliding or not by using either a 2D

bounding circle. If a collision is confirmed, it must be

handled appropriately in the handleCollision method; for an

example, if a missile hits an asteroid, both objects must be

deleted from the world and the user score increases.

III. Testing:

The verification and validation of this program is done using

the test cases derived from the system specification [2,3].

We are focusing on black box testing. Additionally, a few

model based models were also using to verify different

stages of the game. For an example a sequence of the

following actions: pressing pause, turning off sound, and

pressing play, should yield a result of the sound not coming

back on. A sample of Asteroid Game GUI is shown in Figure

2.

Figure 2. A sample of the Asteroid Game running under a CN1 simulator.

IV. Conclusion:

A project such as this, provides invaluable knowledge and

skills to participating students, consequently building them

up for future success. The production of a game showcases

a rich understanding of vital concepts needed for being

prosperous in the Computer Science field. No matter what

area of expertise one pursues, the lessons learned in a class

like this aids in a stronger resume, larger repertoire, and

well-rounded abilities.

References

[1] CodenameOne Guide: Build Cross Platform Apps using

Java, http://codenameone.com/manual/index.html,

Accessed May 2018.

[2] Pinar Muyan-Ozcelik, A Hands-on Cross-Platform Mobile

Programming Approach to Teaching OOP Concepts and

Design Pattern, In Proceedings of Software Engineering

Curricula for Millennials (SECM) Workshop at ACM/IEEE

39th International Conference on Software Engineering

(ICSE), May 20-28, 2017, Buenos Aires, Argentina, doi:

10.1109/SECM.2017.12.

[3] J. Clevenger and S. Gordon, “CSC 133 - Object-oriented

Computer Graphics Programming Lecture Notes and

Assignments,” Spring, 2014, California State University,

Sacramento.

