
A Model-based Approach for Build Avoidance
Milena Neumann

PTV Group
Karlsruhe, Germany

milena.neumann@ptvgroup.com

Kiana Busch
Karlsruhe Institute of Technology

Karlsruhe, Germany
kiana.busch@kit.edu

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Abstract—In large software systems, we frequently encounter
change scenarios which require long build times. In many cases,
it would suffice to build only a subset of the dependent build
components to generate sound build results. Current approaches
for change-specific identification of affected build components
rely on knowledge about the language-specific propagation of
changes, which renders them inapplicable to multi-language
systems. In this paper, we present a model-based approach to
derive the affected build components for a change scenario using
an existing change propagation approach. This way, we make
the advantages of a set of change-specific dependencies also
accessible to those members of the development team who are less
knowledgeable about the build process. Our approach enables the
use of change-specific dependencies in multi-language software
systems and shortens build times. We implemented our approach
in a productive build environment to show the feasibility and
practicability in a user study.

Index Terms—software modeling, build automation, change
propagation

I. INTRODUCTION

Modern software engineering practices such as continuous
integration use builds as fast feedback mechanisms to validate
the quality of software [5]. Build systems usually face two
requirements: i) Building should be fast. ii) The build process
should yield reliable and reproducible results. Existing build
tools often allow structuring a system into build components
and defining a dependency graph on them. This enables devel-
opers to run partial builds (e.g., the modified build component
and all its dependents). However, the structural dependencies
defined by the dependency graph can differ significantly from
actual dependencies with regard to the nature of a change.

A small change to a large software system may cause long
build times, when considering only a subset of the dependent
build components may be sufficient to produce sound build
results. Making use of this knowledge and building only the
affected build components is referred to hereafter as a build
shortcut. Building only those components which are affected
by a specific change can save a lot of time. However, in
large development teams, there is often only a small number
of developers who can identify the build components that
are actually affected by a change. As the evolution of the
product affects the dependency graph, the change-specific
dependencies are also subject to change, but keeping all team
members up to date is a time-consuming task.

DOI reference number: 10.18293/SEKE2018-030

Existing build tools, like grexmk [1] or vroom [3], speed up
build times by executing build tasks in parallel, but come at
the cost of the employed hardware. Approaches such as jmake
for Java [13] allow language-specific change propagation
analysis. However, they can only be applied to a specific set
of software projects. Approaches like pluto [6] offer extensive
customization of build tasks, but at high integration costs.

In this paper we propose an approach which enables devel-
opers less-experienced with build dependencies to selectively
build those components that are affected by a specific change.
To achieve this, our approach utilizes build shortcuts. The build
experts of a development team annotate their knowledge on
change-specific dependencies in the model of the software’s
build architecture. This model and the change scenarios are
input for an existing change propagation approach for soft-
ware architectures – Karlsruhe Architecture Maintainability
Prediction (KAMP) [12]. The change propagation algorithm
of KAMP identifies the build components to be built in order
to implement the change. This way, we avoid rebuilding un-
affected build components and consequently shorten the build
times. Our model-based approach allows the formulation of
build shortcuts for multi-language projects. Due to its simple
interface, it can be used to extend an existing build system
with little effort. The content of this paper has been developed
in the context of the thesis KAMP for Build Avoidance on
Generation of Documentation [9]. We evaluated our approach
in a productive build environment by means of a user study.
Our approach produced builds that were up to 27 times faster
than building with the established build tool. The subjects of
the user study assessed the approach as practicable.

The following section illustrates the PTV xServer, where
our approach was applied. The foundations are described in
Section III. Section IV gives an overview of the related work.
We present our approach for build avoidance in Section V. In
Section VII, we describe the results of our evaluation. This
paper is concluded with a summary and an outlook on future
work in Section VIII.

II. THE PTV XSERVER

We use the PTV xServer – a product of PTV Group – as
a running example in this paper. The PTV xServer provides
logistic and geographic solutions such as geocoding and trip-
planning. PTV xServer is currently being developed by thirty
developers from Germany and France.



The Application Programming Interface (API) of the server
is described in so-called XServer Interface Description Lan-
guage (XSIDL) files, which are used for the generation of
C++ and Java source files. Furthermore, the comments in the
XSIDL files are used in front-end components of the xServer
to generate the product documentation for the customers. To
build the xServer, an in-house build tool (the so-called b-Tool)
is used, which is based on Apache Maven1. Apache Maven
utilizes a dependency graph to identify the affected build
components (called Maven projects) by a change. According
to those dependencies, a change to one of the XSIDL files
(e.g., a change the comments) requires a large part of the
product to rebuild. Currently, this build process takes around
four hours on average. However, rebuilding just the affected
front-end components would only take a few minutes.

To avoid rebuilding unaffected build components, we use
KAMP to analyze the scope of the change propagation in
the PTV xServer. For this purpose, we modeled seven build
shortcuts to consider various change scenarios. Furthermore,
we extended the b-Tool by a new build command, called
shortcut.

III. FOUNDATIONS

Our approach is based on KAMP to identify the relevant
build components affected by a specific change request. The
KAMP approach aims to ”analyse the change propagation
caused by a change request in a software system based on
the architecture model” [12]. For this purpose, KAMP uses a
change propagation algorithm, which is validated through an
empirical study [12]. Starting with the initial change request,
the change propagation algorithm calculates the affected ele-
ments in the architecture model.

To model the architecture of a component-based software
system, a Palladio Component Model (PCM) [10] can be used.
In a PCM, the parts of a software system such as interfaces,
components and their relations are modeled [10].

IV. STATE OF THE ART

The build tool grexmk [1] splits monolithic builds into
multiple sand-boxed ”mini-builds”, taking advantage of loose
coupling between system components. By executing these
mini-builds incrementally or simultaneously, overall build
times are shortened. The Vroom approach [3] analyzes the
dependencies of test cases and carries out long-running tests
in parallel. Although parallelization shows immediate results
and is scalable by increasing hardware resources, it comes at
the cost of this additional hardware. Instead of reducing time
through parallelization, our approach saves time by not build-
ing unaffected components in the first place. Subsequently, the
workload on build machines is lowered.

The build system pluto ”supports the definition of reusable,
parameterized, interconnected builders” [6]. As it abstracts
from the programming language, pluto is applicable to a wide
variety of projects. It can extract specific information from

1http://maven.apache.org

a file through domain-specific stampers. These file stampers
can be used to implement change-specific rebuild behavior.
But especially for large-scale projects, pluto would require a
lot of implementation work, which also brings in additional
risks. Our approach can coexist with a preexisting build
environment by extending it, without introducing potentially
breaking changes.

Smith describes the concept of smart dependencies [13].
This technique analyzes whether dependents need to be rebuilt
by applying knowledge of the language-specific change prop-
agation. The tool jmake [13, 8] applies smart dependencies
for Java. If it detects modifications to publicly visible parts
(e.g., method signatures), it rebuilds the dependent files. The
addition of a new method or changes to comments, private
methods, or the code within a method only requires a rebuild
of the modified file itself. A build tool based on smart de-
pendencies is language-specific, therefore it cannot be applied
to multi-language projects. Our approach views dependencies
between build artifacts on a more abstract level and is language
agnostic. This comes with the disadvantage that shortcuts for
specific change scenarios have to be defined manually and
cannot be automatically derived.

V. APPROACH FOR BUILD AVOIDANCE

Our approach allows the developers of a software system
to build only the subset of those build components which are
affected by a change. Figure 1 compares our build approach
using build shortcuts (right) and the build process by Apache
Maven (left). Apache Maven rebuilds the whole subgraph of
the dependent build components, while our approach allows
rebuilding only a specific subset of this subgraph.

The input of our approach is a PCM of the software
system’s build architecture, which contains the build shortcuts
and the initial change requests. In the next step, KAMP is
used to identify the build components which are potentially
affected by the initial change requests. The result is a set of
potentially affected build components. Deploying KAMP as
a web service allows a loosely coupled build tool to access
the build information. This way, only the model in the web
service needs to be updated in order to change a dependency
or add a new build shortcut. In the following subsections, we
discuss our approach in more detail.

Fig. 1. Comparison of build behavior without and with build shortcut [9]



A. Modeling of Build Shortcuts using Palladio Component
Model

The dependency of a build component may be change-
specific. Translated into a PCM, a component can provide
several interfaces, which are required by different subsets of its
dependent components. If a change to one of these interfaces
is made, only the components that require this interface are
potentially affected by the change (i.e., not all components
that require interfaces of a specific component) [12].

Figure 2 shows a simplified example from the PTV xServer.
The change scenarios of the component model are repre-
sented by the two interfaces model and documentation.
The model and documentation interfaces are required by
frontend component. The model interface is required by
services and runtime components. Let us assume that
documentation interface is changed. In this case, only the
frontend component is affected by the change, and will not
affect services and runtime components.

Our approach uses a PCM to model the build architecture,
which can differ from the software architecture. Originally,
PCM was designed to model component-based software ar-
chitectures. However, it can also be used to model the build
architecture, which describes relations between the build com-
ponents, thus providing a more technical view on the software
system.

A build component can contain several software compo-
nents, as illustrated in Figure 2. Although the build component
may provide more than one functionality, it cannot always
be divided into subcomponents in accordance to the change
scenarios. In the example of the model component in the
PTV xServer, the separation of the documentation from the
API model may cause the developers to neglect keeping the
documentation up to date.

B. Utilization of KAMP’s Change Propagation Analysis

As described above, the build architecture can differ from
the software architecture. The Apache Maven projects can
be mapped to components in PCM, while different types of
change scenarios for each Maven project represent different
interfaces. Based on an initial change request, KAMP uses
its change propagation algorithm to identify the affected build
components [12]. KAMP’s change propagation algorithm con-
sists of a set of change propagation rules [12]. An example of a

Fig. 2. Modeling of a build shortcut with PCM [9]

rule is the change propagation from a modified interface to all
components that provide or require this interface [12]. Applied
to the build architecture, this method allows identifying the
affected build components. By utilizing the domain knowledge
annotated in the PCM, KAMP can reduce the set of build
components that are rebuilt.

VI. PROTOTYPICAL IMPLEMENTATION

Figure 3 illustrates the deployment of our approach at PTV
Group. The components of our approach run on a server (i.e.,
the server side) in the PTV intranet and on the individual
developer workstations (i.e., the client side). On the server
side, the KAMP-WS Server is deployed together with the
PCM of the software under development (i.e. the PTV xServer
PCM) and KAMP. On the client side, the build tool (i.e.,
PTV b-Tool) is deployed. The PTV b-Tool is extended by
the command shortcut, which uses the web service.

When a build with the shortcut command is triggered,
the available change scenarios for the modified Maven project
are requested from the KAMP web service. This list is
presented to the user, who selects the appropriate scenario over
the command line interface. Then, a second request is sent to
the KAMP web service querying the dependent projects for
the selected change scenario. After shortcut receives the
response, it triggers an Apache Maven build of specifically the
dependent projects.

VII. EVALUATION

To evaluate our approach, we follow the Goal Question
Metric (GQM) [2] plan. We define two evaluation goals:

• Feasibility aims to ”validate the prediction accuracy
[...] by comparing the prediction results to reference
values” [7]. It is assumed that inputs are correct.

• Practicability aims to ”validate the practicability of a
method, when it is applied by target users, instead of
method developers” [7].

In the following, we define research questions (RQ) for
each evaluation goal. Furthermore, we propose the metrics
to evaluate the corresponding evaluation goals and research
questions.

Fig. 3. Deployment diagram of the system [9]



A. Feasibility

To evaluate the feasibility of our approach, we compare
the actual outputs of our approach to expected results. The
build experts provided reference lists for a total of seven build
shortcuts, each containing the build components that have to be
actually built to validate a change scenario. We annotated the
respective build shortcuts in the xServer PCM used by the web
service. Thus, we need to check the equality of the two sets
for each change scenario: the set of Maven projects proposed
by our approach (i.e., Pshortcut), and the set of Maven projects
in the corresponding reference list (i.e., Pref ). In other words,
the following formula should be true for each of the seven
change scenarios:

Pshortcut = Pref ⇔ Pref ⊆ Pshortcut ∧ Pshortcut ⊆ Pref

This leads to the following research questions and hypotheses:

RQ 1: Does the output of our approach include all build
components that have to be built for the respective change
scenario?

Hypothesis H1 is that the output of our approach includes
all build components that have to be built according to the
reference lists (i.e., Pref ⊆ Pshortcut). In other words, we
assume that the build components that are necessary to validate
the change scenario are included.

RQ 2: Does the output of our approach not include build
components that are unaffected by the respective change
scenario?

Hypothesis H2 is that the output of our approach does not
include build components that are not on the reference list of
the change scenario (i.e., Pshortcut ⊆ Pref ).

We designed a set of system tests to gather metrics to verify
hypotheses H1 and H2. Two types of tests exist for each
change scenario. The first test checks whether our approach
builds all build components specified in the reference lists.
The second test checks whether the build does not include
an unaffected build component. If both tests are successful,
the list of build components that are built with our approach
for a given change scenario is the same as the corresponding
reference list.

As described above, we implemented our approach as a
new build command shortcut and added it to PTV’s b-
Tool. We want to verify that building with the shortcut
command takes less time than building with down, which is
an established b-Tool command of the xServer development
team and builds a build component and its dependents.

RQ 3: Is the duration of a build process triggered with
the shortcut command shorter than the duration of a
comparable build process triggered with the down command?

Hypothesis H3 is that the duration of a build triggered with
shortcut is shorter than the duration of a comparable build
triggered with down.

To answer this research question we define the execution
time metric for both shortcut and down commands and

compare the build execution times measured by developers on
their workstations, as described in the following.

B. Practicability

Our evaluation of practicability is based on the Technology
Acceptance Model (TAM) [4]. According to TAM, the inten-
tions of a person to use a technology determines the actual
use [4, 9]. For each of TAM’s variables, a research question
and a hypothesis was formulated, taken from [9]:

RQ 4: Do the subjects find the activities provided by our
approach (i.e., shortcut command) important?

Hypothesis H4 is that the subjects find the activity pro-
vided by our approach (i.e., building only the affected Maven
projects in a change scenario) important.

RQ 5: Does our approach ease performing the activities?
Hypothesis H5 is that our approach eases performing the

activities (i.e., Perceived Usefulness [4]).

RQ 6: Is our approach easy to use in practice?
Hypothesis H6 is that our approach is easy to use in practice

(i.e, Perceived Ease of Use [4]).

RQ 7: Do the subjects have a specific intention to use our
approach?

Hypothesis H7 is that the subjects have a concrete intention
to use our approach (i.e., Behavioral Intention to Use [4]).

RQ 8: Do the subjects expect concrete consequences by using
our approach?

Hypothesis H8 is that the subjects expect concrete con-
sequences by using our approach (i.e., Attitude Toward Us-
ing [4]).

We conducted a user study to evaluate the previously de-
scribed research questions and validate the respective hypothe-
ses. The subjects of the study were the potential users of our
approach at PTV. They evaluated the usage and performance
of the shortcut command in comparison to the down
command.

C. User Study Design

The user study consisted of a task sheet and a questionnaire.
In the task sheet, the subjects were asked to run these three
different builds on the model Maven project (cf. Section II
and Figure 2):

• Trigger the build process using down command (here-
after referred to as down).

• Trigger the build process using shortcut with
the model change scenario (hereafter referred to as
shortcutmodel).

• Trigger the build process using shortcut with the
documentation change scenario (hereafter referred to as
shortcutdoc).

We chose these build scenarios because most members of the
development team are familiar with this build component and
have worked on it before. Thus, the change scenarios were
well understood by the subjects.



The subjects were asked to provide the resulting build
times in the questionnaire. Furthermore, the subjects provided
information about their usual build behavior and how they
evaluate our approach.

The questionnaires contained a set of free text questions.
Also, the subjects had to rate the following statements, taken
from [9], on a 6-point Likert scale, where 1 means ”I strongly
disagree” and 6 means ”I strongly agree”:
S1 I frequently validate changes through local builds.
S2 Building (parts of) the xServer is important for my work.
S3 I could work more efficiently if local builds were faster.
S4 Local builds take too long.
S5 I try to only build the projects that were affected by my

change.
S6 shortcut command will be useful to me.
S7 shortcut command is easy to use.
S8 I am motivated to use shortcut command for my local

builds in the future.
We aim to assess the importance of the build process to the
subjects with statements S1 and S2. Statements S3 – S5 are
included to verify that the subjects are dissatisfied with the
current build times. The remaining statements S6 – S8 aim to
evaluate RQ 5 – RQ 7.

The xServer team consists of 30 Java and C++ developers,
of which 18 participated in our study. Note that the C++ parts
of the xServer have longer build times than the Java parts. An
evaluation of the answers is presented in the following.

D. Results

System Test Results: The system tests for each of the seven
build shortcuts were successful. In other words, the statements
Pref ⊆ Pshortcut and Pshortcut ⊆ Pref hold true for each
shortcut. That confirms H1 and H2. Thus, we can conclude
Pshortcut = Pref .

User Study Builds: The subjects were asked to provide
the build times for the builds they had to trigger. Table I
gives an overview of the build times. The down build scenario
took longest (i.e., from about 1.5 hours to almost 9 hours).
The builds of the shortcutmodel scenario took between 30
minutes and almost 2.5 hours, while the builds of shortcutdoc
took only 3 to 12.5 minutes. On average, the builds of
shortcutmodel were 3.45 times faster than the builds of down,
while the builds of the shortcutdoc scenario were 27.07 times
faster than down.

The significant difference in build times for a single build
scenario can be accounted to different hardware of the devel-
oper workstations and network latency, as some subjects used
a VPN connection from France. The build execution times of

TABLE I
EVALUATED BUILD TIMES FOR THE SCENARIOS IN THE USER STUDY [9]

down shortcutmodel shortcutdoc
Max 8h 55min 2h 27min 12min 30s
Avg 3h 42min 1h 1min 30s 9min 4s
Min 1h 32min 30min 6s 2min 59s

TABLE II
DETAILED RATINGS FOR STATEMENTS S1-S8 IN THE USER STUDY [9]

1:
St

ro
ng

ly
di

sa
gr

ee

2:
D

is
ag

re
e

3:
R

at
he

r
di

sa
gr

ee

4:
R

at
he

r
ag

re
e

5:
A

gr
ee

6:
St

ro
ng

ly
ag

re
e

S1: 0 0 0 0 2 17

S2: 0 0 0 0 3 16

S3: 0 0 0 2 4 13

S4: 0 0 1 2 7 9

S5: 0 0 0 1 5 13

S6: 0 0 2 1 3 13

S7: 0 0 1 1 4 13

S8: 0 1 1 1 3 13

the shortcutmodel and shortcutdoc scenarios are lower than
the build time of down. This confirms H3.

Activity Importance: Statements S1 and S2 aim to assess
the importance of builds to the subjects, as illustrated in
Table II. All subjects rated statements S1 and S2 with 5 (i.e.,
agree) or 6 (i.e., strongly agree), which confirms H4.

Satisfaction with Builds: Table II shows how the subjects
rated statements S3–S5. Those subjects who rated statement S4
with 4 or lower contribute mainly to Java parts of the xServer,
which have lower build times in general. We conclude that
developers perceive long builds as a problem and they try to
shorten them.

Usefulness: Statement S6 aims to assess the perceived
usefulness of our approach. As seen in Table II, most subjects
rate our approach as useful. This confirms H5. Only two Java
developers specified that they rather disagree with the state-
ment. One of them noted that they work on a partial checkout
of the xServer repository. They could not use our approach,
because the utility functions used by the implementation of
shortcut work under the assumption of a full checkout.
We did not consider this requirement (i.e., working on partial
checkouts) during development of our approach, but it could
be supported in the future.

Ease of Use: Most subjects found our approach easy to
use (i.e., statement S7), as seen in Table II. This confirms H6.
Eight subjects additionally mentioned in the free text fields that
they found our approach easy and intuitive to use. One subject
rated statement S7 with 3 (i.e., rather disagree), however, gave
no further comment in the free text fields.

Intention To Use: Most subjects rated Statement S8 (i.e.,
using our approach shortcut for the local builds in the
future) with 4 or higher. That confirms H7. One subject, who
works on the Java parts of the xServer, rather disagreed with



this statement. Also, the subject who stated that they work on
partial checkouts disagreed with the statement.

Attitude Toward Using: The questionnaire contained two
free-text questions regarding the advantages and disadvantages
of our approach. We can derive from the given answers which
consequences the subjects expect by using our approach. The
following advantages were expected by the subjects, taken
from [9] (The number in parentheses states how often it was
mentioned by the subjects):

• Faster builds (10)
• Fewer unnecessary builds (6)
• Increased work efficiency (3)
• Fewer failed builds (2)
• Less knowledge about dependencies required (2)
• Conveniently trigger subtarget builds (2)
• Faster validation of code / Earlier detection of defects (2)
• Sharing of useful build shortcuts
• No more manual triggering of different artifacts

The following disadvantages were expected by the subjects,
taken from [9]:

• Maintenance cost of build shortcuts (7)
• Shortcut names may become confusing (2)
• Far-reaching consequences if a shortcut is incorrect (2)
• No batch-compatibility
• Less pressure to solve dependency problems
• Less pressure to optimize build times
• Developer’s knowledge about dependencies decreases

Each subject stated at least one expected consequence. This
confirms H8 (i.e., subjects expect concrete consequences by
using shortcut). The number of advantages mentioned
is higher than the disadvantages. In other words, subjects
expected predominantly positive consequences.

By the results of our user study, we see both the feasibility
and the practicability of our approach confirmed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to shorten the
build times, based on build shortcuts. It makes the advantages
of build shortcuts also accessible to those members of the
development team who are less knowledgeable about the build
process.

The change-specific dependencies are modeled in a PCM.
The model of the build architecture and the change requests are
used as input for the KAMP approach. The KAMP approach
uses a change propagation algorithm to identify the affected
build components for a given change scenario.

We evaluated our approach using a set of system tests and
a user study. The system tests, which checked whether the
builds produced by our approach are conform to the reference
lists created by build experts, were all successful.

In the user study, 18 developers were asked to compare the
results of three different build scenarios. The execution time
of the build process for the model scenario was on average
about 3.5 times faster than the reference build with the down
command, while the documentation build was 27 times faster.

In the questionnaires of the study, the subjects indicated that
they found the new command useful and have the intention to
use it in the future. We see both feasibility and practicability of
our approach confirmed through the results of the evaluation.

The KAMP web service continues to be used and main-
tained in the PTV xServer project. Much of the feedback
received in the user study was already incorporated (e.g., the
extension of shortcuts API to support batch-compatibility).
Furthermore, additional shortcuts were added to the model.

As future work, we plan to extend the KAMP web service to
assist development teams with other tasks such as analyzing
the change propagation of backlog items to coordinate the
work of multiple scrum teams in a scrum of scrums.

ACKNOWLEDGMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593
(RE1674/12-1).

REFERENCES

[1] Glenn Ammons. “Grexmk: speeding up scripted
builds”. In: International workshop on Dynamic systems
analysis. ACM. 2006, pp. 81–87.

[2] Victor Basili et al. “The Goal Question Metric Ap-
proach”. In: Encyclopedia of Software Engineering
2.1994 (1994), pp. 528–532.

[3] Jonathan Bell et al. “Vroom: Faster Build Processes for
Java”. In: IEEE Software 32.2 (2015), pp. 97–104.

[4] Fred Davis et al. “User acceptance of computer tech-
nology: a comparison of two theoretical models”. In:
Management science 35.8 (1989), pp. 982–1003.

[5] Paul Duvall, Stephen Matyas, and Andrew Glover. Con-
tinuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley, 2007.

[6] Sebastian Erdweg et al. “A sound and optimal incre-
mental build system with dynamic dependencies”. In:
SIGPLAN Notices. Vol. 50. ACM. 2015, pp. 89–106.

[7] Robert Heinrich. Aligning Business Processes and In-
formation Systems: New Approaches to Continuous
Quality Engineering. Springer, 2014.

[8] JMake. JMake. https : / /github.com/pantsbuild / jmake.
[Online; accessed April 2018]. 2014.

[9] Milena Neumann. “KAMP for Build Avoidance on
Generation of Documentation”. Bachelor’s thesis. Karl-
sruhe Institute of Technology, 2017.

[10] Ralf Reussner et al. Modeling and simulating software
architectures: the Palladio approach. MIT Press, 2016.

[11] Kiana Rostami et al. “Architecture-based Change Im-
pact Analysis in Information Systems and Business
Processes”. In: ICSA2017. IEEE, 2017, pp. 179–188.

[12] Kiana Rostami et al. “Architecture-based Assessment
and Planning of Change Requests”. In: 11th Interna-
tional ACM SIGSOFT Conference on Quality of Soft-
ware Architectures. ACM, 2015, pp. 21–30.

[13] Peter Smith. Software Build Systems: Principles and
Experience. First. Addison-Wesley Professional, 2011.


