
Reo2PVS: Formal Specification and Verification of
Component Connectors

M. Saqib Nawaz and Meng Sun
LMAM & Department of Informatics, School of Mathematical Sciences, Peking University, Beijing, China

{msaqibnawaz, sunm}@pku.edu.cn

Abstract—Compositional coordination models such as Reo
provide powerful support for the development of large-scale
distributed systems by allowing construction of complex con-
nectors that coordinate behavior among different components.
The reliability of such distributed systems highly depends on the
correctness of connectors. In this paper, we use the proof assistant
PVS for formal modeling, analysis and verification of component
connectors. We first present the modeling of primitive channels
and the composition operators that are used to combine channels
for building complex connectors. Furthermore, we show how to
model and analyze connector’s behavior in PVS and prove some
interesting connector properties. The model reflects the original
topological structure of connectors simply and clearly. With the
provided approach, different kinds of connector properties can
be naturally formalized and proved in PVS.

Index Terms—Reo, Connector, PVS, UTP, Design

I. INTRODUCTION

Nowadays, most modern software systems are distributed
over large networks of computing devices. However, software
components that comprise the whole system usually do not fit
together exactly and leave significant interfacing gaps among
them. Such gaps are generally filled with additional “glue
code”. Compositional coordination languages offer such a glue
code among components and facilitate the mutual interactions
between components in a distributed environment. Reo [2] and
Linda [11] are two popular examples of such compositional
coordination languages, which have played an important role
in the success of component-based systems in the past decades.

Reo is a channel-based exogenous coordination language
where complex component connectors are orchestrated from
channels via certain composition operators. Exogenous co-
ordination [1] means coordination from outside, where the
primitives that support the coordination of an entity with
others reside outside of that entity. Connectors in Reo provide
the protocols that control and organize the communication,
synchronization and cooperation among the components that
they interconnect. Despite its simplicity, Reo has been used
successfully in various application domains, such as service-
oriented computing [10], [21], [22], business processes [25]
or biological systems [8].

The reliability of component-based systems highly depend
on the correctness of connectors. Formal analysis and verifica-
tion of connectors is gaining more interest in recent years with
the evolution of software systems and advancements in Cloud

DOI reference number: 10.18293/SEKE2018-024

and Grid computing technologies. Furthermore, the increasing
growth in size and complexity of computing infrastructure has
made the modeling and verification of connector properties
a more difficult and challenging task. From the modeling
and analysis context, the formal semantics for Reo allows us
to specify and analyze the behavior of connectors precisely.
In literature, different formal semantics have been proposed
for Reo [13], such as the co-algebraic semantics in terms of
relations on infinite timed data streams [3], operational se-
mantics using constraint automata [6], the coloring semantics
by coloring a connector with possible data flows [9] in order
to resolve synchronization and exclusion constraints, and the
UTP (Unified Theories of Programming) semantics [20], [23].

In the past decade, a lot of work has been done towards
formal verification and analysis of Reo connectors. A symbolic
model checker “Vereofy” has been developed in [5] to check
the CTL-like properties of systems with exogenous coordi-
nation. Another approach is to take advantage of existing
verification tools by translating Reo model to other formal
models such as Alloy [14], mCRL2 [15], etc. Since infinite
behavior is usually taken into consideration for connectors,
the modeling and analysis of connectors are expected to be
achieved efficiently in theorem provers. In [16], a method for
formal modeling and verification of Reo connectors in Coq is
provided. Reo connectors were represented in a constructive
way and verification was based on the simulation of the
behavior and output of Reo connectors. A different modeling
and analysis framework in Coq was proposed in [24], which
adopted the UTP design model for Reo connectors developed
in [20], [23], i.e., a pair of predicates P ` Q where the
predicate P specifies what the designer can rely on when the
communicating operation is initiated by input to the connector,
and Q is the condition on output that must be true when the
communicating operation terminates. Work done in [24] was
extended in [12] to cover the modeling and verification of
timed channels and connectors in Coq.

In this paper, the aim is to provide an approach for formal
modeling and reasoning about Reo connectors constructed
from primitive (both untimed and timed) channels under the
UTP semantic framework using the proof assistant PVS [17].
We first provide the modeling for a family of primitive
channels and compositional operators in PVS. Then we show
how to model and reason about more complex connectors. The
basic idea is to model the observable behavior of a connector
as a relation on the timed data sequences being observed

at its input and output nodes. In PVS, this is achieved by
representing a connector as a logical predicate that describes
the relation among the timed data sequences on its input and
output nodes. The model makes it possible to prove complex
and generic connectors’ properties easily in PVS. The PVS
dump file for this work can be found at [19].

The rest of this paper is organized as follows: Reo and
PVS are briefly introduced in Section II. PVS specifications
for basic definitions being used in the modeling of primitive
channels are presented in Section III. In Section IV, formal
modeling of primitive channels is described, followed by the
modeling of compositional operators. Section V shows how
to verify and reason about connector properties in PVS by
several examples. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, a brief introduction to the coordination
language Reo and the PVS system is provided.

A. Reo

Reo is a channel-based exogenous coordination language
where complex connectors are compositionally constructed out
of simpler ones. Further details on Reo can be found in [2],
[6]. Connectors provide the protocol to control and organize
the communication, synchronization and cooperation among
different components. The simplest connectors are channels
with well-defined behavior. Each Reo channel has two channel
ends, which can be of type source or sink. A source channel
end accepts data into the channel and a sink channel end
dispenses data out of the channel. Few primitive channel types
in Reo are shown in Figure 1.

Sync
Channel

LossySync
Channel

FIFO1
Channel

SyncDrain
Channel

t-Timer
Channel

t

Figure 1. Some primitive channels in Reo

A synchronous (Sync) channel has one source and one sink
end. I/O operations can succeed only if the writing operation
at source end is synchronized with the read operation at
its sink end. A lossy synchronous (LossySync) channel is a
variant of synchronous channel that accepts all data through
its source end. The written data is lost immediately if no
corresponding read operation is available at its sink end. A
FIFO1 channel is an asynchronous channel with one buffer
cell, one source end and one sink end. The channel accepts
a data item whenever the buffer is empty. The data item is
kept in the buffer and dispensed to the sink end later in the
FIFO order. A synchronous drain (SyncDrain) channel has two
source ends and no sink end, which means that no data can
be obtained from such channels. The write operation on both
source ends should happen simultaneously and the data items
written to this channel are irrelevant. A t-timer channel accepts
any data item at its source end and produces a timeout signal
on its sink end after a delay of t time units.

Complex connectors are constructed by composition of
different channels with join and hiding operations. The result

can be represented visually as a graph where a node represents
a set of channel ends that are combined together through
the join operation, while the edges in the graph represent
the channels between the corresponding nodes. Nodes are
categorized into source, sink or mixed nodes, depending on
whether the node contains only source channel ends, sink
channel ends, or both. Source nodes are analogous to input
ports, sink nodes to output ports and mixed nodes are internal
details of a connector that are hidden. The internal topology
of any connector can be hidden from outside by applying the
hiding operation. The behavior of a connector can be captured
by the data-flow on its source and sink nodes. The hidden
nodes can not be accessed or observed from outside.

B. PVS

PVS (Prototype Verification System) offers a formal speci-
fication language and a mechanical theorem proving environ-
ment. The PVS system consists of a specification language,
a parser, a type-checker, a prover, specification libraries, and
various browsing tools. Specification language of PVS is build
on a higher order logic and type system of PVS supports
predicate sub-typing and other type dependencies. The type
system of PVS is not algorithmically decidable and theorem
proving may be required to establish the type-consistency of a
PVS specification. Theorems that need to be proved are called
type-correctness conditions (TCC’s). Here, we give a simple
example for factorial function that is defined recursively in
PVS.

factorial(n:nat): RECURSIVE posnat =
IF n = 0 THEN 1 ELSE factorial(n-1)*n ENDIF
MEASURE n

the: THEOREM FORALL(k:nat): factorial(k) >= k

In PVS, recursive definitions are treated as constant decla-
rations and it must be total, so that the function is defined for
every value of its domain. In order to ensure this, recursive
functions must be specified with a measure (n in the factorial
function). Theorem the in this example shows that factorial
of a number should be greater than or equal to that number.
PVS offers inference rules, proof commands and decision
procedures that can be used to prove theorems. PVS prover is
based on sequent calculus where each proof goal is a sequent
consisting of a sequence of formulas called antecedents and
a sequence of formulas called consequents. The intuitive
interpretation of a sequent is that the conjunction of the
antecedents implies the disjunction of the consequents. During
proof construction, PVS builds a graphical proof tree in which
remaining proof obligations are at the leaves of tree. If a proof
gets stuck, then this tree helps to see where the proof goes
wrong. Further details on PVS can be found in [18].

III. BASIC DEFINITIONS IN PVS

The behavior of a connector can be formalized by means of
data-flows on its sink and source nodes which are essentially
infinite sequences. In PVS, record structure is used to represent
timed data (TD) sequences on the sink and source nodes,

where time is defined as positive real numbers (R+) and data
is defined as a positive type. The advantage of using the record
structure for representing a TD sequence is that it offers names
for both time and data of the sequence, which makes the
specification more convenient and understandable.

Time: Type = posreal
Data: TYPE+
TD: TYPE = [# T: sequence[Time],

D: sequence[Data] #]
Input, Output: VAR TD

A TD is a record structure type that has two components:
T and D. The D component is a sequence of data items.
The T component is a sequence of time points being used
to represent the time when the data items in the D component
being observed. Input and Output are declared as variables
of type TD. The following predicates are used for primitive
channels specification later:

Teq(Input,Output):bool = T(Input) = T(Output)
Tle(Input,Output):bool = T(Input) < T(Output)
Tgt(Input,Output):bool = T(Input) > T(Output)
Deq(Input,Output):bool = D(Input) = D(Output)

Teq takes two TD sequences and returns true if the time of
two sequences are exactly equal to each other. Tle represents
that time of the first sequence is strictly less than the second
sequence and Tgt means that the time of the first sequence
is strictly greater than the second sequence. Deq shows the
equality of data: data sequence at Input is equal to data
sequence at Output. Teq, Tle and Tgt only checks the time
component of the record structure, whereas, Deq checks the
data field. Since the type of component T in TD is defined as
sequence[Time], we have to define the operators “<” and “>”
for sequences of times. A strict order (that is both transitive
and irreflexive) is assumed for “<” and “>”.

<: (strict_order?[sequence[Time]])
>: (strict_order?[sequence[Time]]) =

LAMBDA (s1, s2: sequence[Time]): s2 < s1

Defining "<,>" for sequence of time generated two TCC’s.
Proof steps for these two TCC’s can be found at [19].

For timed channels, three new predicate formulas are in-
troduced, which are similar as the previous definitions for
primitive untimed channels with one of the time sequences
is added by a t time delay. An extra t is appended to the
names of these new predicates to distinguish them from the
ones for untimed channels. Definitions Teq, T le and Tgt can
also be specified with the terms used in the Teqt, T ltt and
Tgtt.

Teqt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t = FrS(str_nth(n,T2))

Tltt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t < FrS(str_nth(n,T2))

Tgtt(T1,T2)(t:Time): bool = FORALL (n:nat):
FrS(str_nth(n,T1)) + t > FrS(str_nth(n,T2))

IV. REO CHANNELS AND OPERATORS

The modeling of primitive untimed / timed channels and
operators for connectors composition is presented in this
section. These channels and operators are used later in the
modeling and analysis of complex connectors.

A. Primitive Channels

For the Sync channel, the time and data of a sequence that
flows into the channel are exactly the same as those of the
sequence flowing out. The channel is modeled as follows in
PVS:

Sync(Input,Output):bool = Teq(Input,Output) &
Deq(Input,Output)

The SyncDrain channel has two source ends and no sink
end. It works as a synchronous channel that allows pairs of
write operations pending on its two ends to succeed simulta-
neously. In this channel, all written data items are consumed
and lost. Thus, this channel is used just for synchronizing two
TD sequences being observed on its two ends. This channel
is specified in PVS as follows:

SyncD(Input1,Input2):bool= Teq(Input1,Input2)

A LossySync channel is analogous to the Sync channel,
except that the write operation on the source end always
succeeds immediately. If a corresponding read operation is
already pending on the sink end, then the written data item is
transferred to the sink end and both operations succeed. Other-
wise, only the write operation on the source end succeeds and
the data item is lost. LossySnc channel is defined inductively
as follows: ∗

Lossysync(Input,Output)(n:nat):INDUCTIVE bool
= (nth(Output,n)= nth(Input,n)

& Lossysync(next(Input),next(Output))(n)
OR Lossysync(next(Input),Output)(n))

Another important channel in Reo is the asynchronous one
with buffering capacity 1, known as FIFO1 channel (−<=→).
The time when a FIFO1 channel takes a data item at its source
end is earlier than the time when the data item is delivered at
its sink end. Furthermore, the time of the next data item that
flows in at the source end should be later than the time when
the data in the buffer is delivered at the sink end. The buffer
is empty if no data item is in the buffer, and it contains a data
element d after d is written through the source end and before
d is taken out through the sink end.

Fifo1(Input,Output):bool= Tle(Input,Output) &
Tle(Output,next(Input)) & Deq(Input,Output)

A FIFO1e channel is a variant of FIFO1 where the buffer
already contains a data element “e”. The communication can
only be initiated when e is taken out through the sink end.
So the data sequence that flows out of the channel always get
an extra element e settled at the beginning of the sequence.

∗In PVS, inductive definitions are similar to recursive definitions, in that
both involve induction and must satisfy additional constraints to guarantee
that they are total.

Moreover, the time of the sequence that flows into the channel
should be earlier than time of the tail of the sequence that flows
out. As the buffer contains e, new data can be written into the
channel only after the element e has been taken. Therefore,
time of the sequence that flows out is earlier than time of the
sequence that flows in.

Fifo1e(Input,Output)(e:Data)(n:nat): bool =
Tgt(Input,Output) & Tle(Input,next(Output)

& e?(nth(Output,n))(e) &
Deq(Input,(next(Output)))

The t-timer channel accepts input data through its source
end and returns a timeout signal on its sink end exactly after
a duration of t time units. It is specified in PVS as follows:

Timert(Input,Output)(t:Time)(d:Data): bool =
FORALL(n:nat): FrS(str_nth(n,Input)) + t <

FrS(str_nth(n,(next(Input))))
& Teqt(Input,Output)(t)
& SrF(str_nth(n,Output)) = timeout(d))

The definitions of more channels can be found at [19].
Defining primitive channels by intersection and disjunction of
predicates in PVS makes the modeling of channels more con-
cise, easy to understand as each predicate describes a simple
order relation (requirement) on time or data. Furthermore, we
can easily split the predicates for proofs of different properties
which can make the reasoning and proving process simpler.

B. Operators Modeling in PVS

Three main composition operators (shown in Figure 2) are
used in Reo for connector construction, which are (i) flow-
through, (ii) replicate and (iii) merge.

Figure 2. Operators for channel composition

The flow-through operator simply allows data items to
pass the mixed node. It can be achieved explicitly without
specifying it in PVS. This is explained with the simple
example in Figure 3, which represents a flow-trough operator
that connects two channels Sync(A,B) and FIFO1(B,C)
at node B. Such a flow-through operation at node B can
be implicitly implemented by just writing the connector as
"Sync(A,B) ∧ FIFO1(B,C)".

A CB

Figure 3. A connector composed of a Sync and a FIFO1 channel

The replicate operator puts the source ends of different
channels together into one source node. Write operation on
this node succeeds only if all the channels are capable of con-
suming a copy of the written data. Similar to the flow-through
operator, it can be implicitly represented by the structure of
connectors. For example, If we put one Sync(A,B) channel

and one FIFO1(C,D) channel together, we can simply write
Sync(A,B) ∧ FIFO1(A,D) in PVS instead of defining a
recursive or inductive function, and the replicate operator is
achieved directly by renaming C with A for the FIFO1
channel. The use of conjunction and node renaming for flow-
through and replicate operator allows us to define connectors
directly in lemmas and theorems.

The modeling of merge operator is a bit more complicated.
When the merge operator acts on two channels, it leads to
a choice of taking the data item from one of them. The
merge operator is defined inductively as the intersection of
two predicates.

Merge(s1,s2,s3)(n:nat): INDUCTIVE bool =
(NOT (FrS(nth(s1,n))) = (FrS(nth(s2,n)))
AND (((FrS(nth(s1,n)) < (FrS(nth(s2,n))))

IMPLIES nth(s3,n) = nth(s1,n))
& Merge(next(s1), s2, next(s3))(n))

AND (((FrS(nth(s1,n)) > (FrS(nth(s2,n))))
IMPLIES nth(s3,n) = nth(s2,n))
& Merge(s1, next(s2), next(s3))(n)))

V. REASONING ABOUT CONNECTORS

In this section, we investigate and prove some interesting
properties for connectors in PVS.

Example 1. We first consider the connector shown in Figure 3.
Let a, b, c denote the time sequences when the corresponding
data sequence flows through nodes A, B and C. According
to the semantics of Sync and FIFO1 channels, we know
that a = b < c. Let α, β represent the data sequence
being observed at the source node (A) and the sink node (C)
respectively, we have α = β. In PVS, these results are proved
with the following theorem.

Theorem 1. Sync(A,B) ∧ Fifo1(B,C) ⇒ Tle(A,C) ∧ Teq(A,B)
∧ Deq(A,C)

Proof. When the PVS proof checker is run on this theorem,
it gives the following sequent (proof goal) which consists of
no antecedent and one consequent formula:

|-------
{1} FORALL (A,B,C:TD):

Sync(A,B) & Fifo1(B,C) => Tle(A,C)
& Teq(A,B) & Deq(A,C)

The “skolem!” command is used first that creates a fresh
free skolem variable for the universal quantifier (∀) in conse-
quent. Then the “flatten” command is used to simplify the
proof goal by removing => from consequent. This changes
the formula to:

{-1} Sync(A!1, B!1)
{-2} Fifo1(B!1, C!1)
|-------

{1} Tle(A!1,C!1) & Teq(A!1,B!1) & Deq((A!1,C!1)

It now consists of two antecedent formulas and one con-
sequent formula. In next steps, the definitions of Sync and
FIFO1 channels, as well as predicates T le, Teq, Deq and

next are expanded with the command (expand “id”). Con-
junction (&) in the antecedents are removed with the command
“flatten” . The formula now simplifies to:

{-1} T(A!1) = T(B!1)
{-2} D(A!1) = D(B!1)
{-3} T(B!1) < T(C!1)
{-4} T(C!1) < (suffix(B!1‘T, 1))
{-5} D(B!1) = D(C!1)
|-------
[1] T(A!1)<T(C!1) & T(A!1)=T(B!1) & D(A!1)=D(C!1)

The sequent is then divided (with “split” command) into
three sub-sequents (sub-goals), which are all proved with
decision procedure command “assert”. †

Example 2. We now consider the Lower Bounded FIFO1
connector as given in Figure 4. This connector has one source
node A and one sink node B. It ensures the lower bound "> t"
for the take operation on node B. Every data item received by
this connector need to stay in its buffer for more than t time
units. Let α, β represents the data sequences being observed
at nodes A and B, and a, b represents the time sequences
corresponding to α and β, i.e., the i-th element a(i) in a (and
b(i) in b) denotes exactly the time moment of the occurrence
of α(i) (and β(i)). For this connector, it is proved in theorem
2 that α = β and a+ t < b.

A BD

C E

t

Figure 4. Lower Bounded FIFO1 Connector

Theorem 2. ∀ A,B,C,D,E ∈ TD, t ∈ Time, d ∈ Data:

Timert(A,C)(t)(d) ∧ Fifo1(A,D) ∧ SyncD(D,E) ∧ Fifo1(C,E)
∧ Sync(D,B) ⇒ Deq(A,B) ∧ Tltt(A,B)(t)

Proof. After applying skolemization, expansion and
flattening, the main goal is split into two sub-goals. The
first sub-goal is for the data dimension, i.e., the data sequence
being received at A should be equal to the data sequence being
taken at B. The Fifo1(A,D) channel satisfies the predicate
Deq(A,D) and the Sync(D,B) channel satisfies Deq(D,B).
The conjunction of both predicates results in Deq(A,B).
For the time dimension, we have predicates Teqt(A,C, t),
T lt(C,E), Teq(E,D) and Teq(D,B), which can be obtained
from the definitions of Timert, Fifo1, SyncD and Sync
channels respectively. These four predicates introduce the
constraints A+ t = C, C < E, E = D, D = B for time. The
combination of these predicates results in T ltt(A,B, t), such
that A+ t < B holds for time.
Example 3. Figure 5 shows an expiring FIFO1 connector
that can be constructed with a normal FIFO1 channel and a
t-timer (and some other channels). In this connector, a data
item received through the source node A is dropped from the

†Note that a theorem in PVS can be proved in different ways that depends
on the proof commands, inference rules and decision procedures being used.

A BC D E

F G H

t

Figure 5. Expiring FIFOn channel

buffer if it is not taken out through the sink node B within t
time units.

Theorem 3. ∀ A,B,C,D,E,F,G,H ∈ TD, t ∈Time, d ∈ Data, n
∈ nat:
Sync(A,C) ∧ Sync(C,F) ∧ Fifo1(C,D) ∧ Timert(F,G)(t)(d) ∧
Lossysync(G,H)(n) ∧ SyncD(D,H) ∧ Lossysync(D,E)(n) ∧

Sync(E,H) ∧ Sync(E,B) ⇒ Teqt(A,B)(t) ∧ Tgt(B,A)

Proof. The PVS proof process of this theorem is presented as
following:
(induct “n”) (The proof starts by applying induction on n)
Main goal is split into two sub-goals. For the first sub-goal
(the base case):
(skosimp) (expand Fifo -3) (expand “Lossysync")
(expand “Sync") (expand “SyncD") (expand “Timert")
(expand “Teq") (expand “Teqt") (expand “Tgt") (assert)
(split)
The first sub-goal is split into two more sub-goals. For the
first sub-sub-goal:
(skosimp) (inst? -10) (skosimp) (assert).
This proves the first sub-sub-goal.
For the second sub-sub-goal:
(assert)(inst? -5) (skosimp) (assert).
This proves the second sub-sub-goal and the proof of the first
sub-goal is complete.
For the second sub-goal:
(skosimp∗) (inst? -1) (expand “Fifo1") (assert) (expand
"Teqt") (expand "Tgt") (skosimp) (assert) (split)
The second sub-goal is divided into two more sub-goals. For
the first sub-sub-goal:
(skosimp)(typepred “t!1") (inst? -3) (assert) (grind).
This proves the first sub-sub-goal.
For the second sub-sub-goal:
(assert) (typepred “>") (expand "strict_order") (flatten)
(expand “transitive") (assert) (grind).
This proves the second sub-sub-goal and the proof of the
second sub-goal is complete.
This completes the proof of the theorem.

A
B

G

E

F

I

C

D

C1

D1

t

t

Figure 6. 2× t Timer Connector

Example 4. A timed connector
n×t
−−•−→ can be built by using

n t-timer channels and an exclusive router (with n sink nodes).

Such a connector produces a timeout signal after a delay t
for every input it receives. The duration between the arrival
time for the i-th input and that for the (i + j)-th input for
j < n can be less than t whereas the duration between the
arrival time for the i-th input and that for the (i+n)-th input
should be at least t. Figure 6 shows the topology structure of

2×t
−−•−→.

Let a, b represent the time sequences corresponding to the
data sequences flowing into A and out of B, respectively.
Theorem 4 states the property that a + t = b for the 2 × t
timed connector.

Theorem 4. ∀ A,B,C,D,E,F,G,I,C1,D1 ∈ TD, t ∈Time, d ∈
Data, n ∈ nat:

Sync(A,G) ∧ Lossysync(G,E)(n) ∧ Lossysync(G,F)(n) ∧
Sync(E,I) ∧ Sync(F,I) ∧ SyncD(G,I) ∧ Merge(E,F,I)(n) ∧

Sync(E,C) ∧ Sync(F,D) ∧ Timert(C,C1)(t)(d) ∧
Timert(D,D1)(t)(d) ∧ Merge(C1,D1,B)(n) ⇒ Teqt(A,B)(t)

Since the Lossysync channel and the composition operator
merge are both defined inductively, this theorem is proved by
induction on the parameter n. The main goal is divided into
two sub-goals. The first sub-goal is for the base case and the
second subgoal is for the inductive step. The details of the
proof process is similar to the proofs for previous theorems in
this section, and we omit it here due to the length limitation.

VI. CONCLUSION

This paper presents a method for formal modeling of
Reo connectors and reasoning about Reo connectors in PVS.
The formalization is based on the UTP design semantics
for Reo and preserves the original structure and behavior
semantics of Reo channels and composition operators, which
makes their description in PVS reasonably readable. Connector
properties are specified with predicates which offer an ap-
propriate description of the relations between different timed
data sequences being observed on the nodes of a connector.
The proofs of connector properties are completed with the
help of PVS proof-commands, inference rules and decision
procedures. Generalized property for connectors for arbitrary
n, which cannot be verified explicitly with model checkers,
can be proved here as well.

The main problem of this approach is that the analysis
and proof process of complex connector properties in PVS
always requires heavy interactions between users and the proof
assistant, and thus consumes a lot of time. Even for simple
properties, the proof process can become hard and requires
the users to have good knowledge on PVS to make the proof
successfully. In the future, efforts will be made to encapsulate
frequently-used proof patterns as PVS strategies in order to
make the proof process easier and reduce repetitive work.
Machine learning techniques are also expected to provide some
help to automate the proof process and reduce the amount of
human efforts. On the other hand, extension of the approach
to deal with probabilistic [4] or stochastic [7] behavior of
connectors is in our plan for future work as well.

Acknowledgement. The work was partially supported by the
National Natural Science Foundation of China under grant no.
61772038, 61532019, 61202069 and 61272160.

REFERENCES

[1] F. Arbab. The IWIM Model for Coordination of Concurrent Activities.
In Proceedings of COORDINATION 1996, pages 34–56, 1996.

[2] F. Arbab. Reo: A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[3] F. Arbab and J. Rutten. A Coinductive Calculus of Component
Connectors. In Proceedings of WADT 2002, volume 2755 of LNCS,
pages 34–55. Springer-Verlag, 2002.

[4] C. Baier. Probabilistic Models for Reo Connector Circuits. Journal of
Universal Computer Science, 11(10):1718–1748, 2005.

[5] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister. Design
and Verification of Systems with Exogenous Coordination using Vereofy.
In Proceedings of ISoLA 2010, volume 6416 of LNCS, pages 97–111.
Springer, 2010.

[6] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling Component
Connectors in Reo by Constraint Automata. Science of Computer
Programming, 61:75–113, 2006.

[7] C. Baier and V. Wolf. Stochastic Reasoning about Channel-Based
Component Connectors. In Proceedings of COORDINATION 2006,
volume 4038 of LNCS, pages 1–15. Springer-Verlag, 2006.

[8] D. Clarke, D. Costa, and F. Arbab. Modelling Coordination in Biological
Systems. In Proceedings of ISoLA’04, volume 4313 of LNCS, pages 9–
25. Springer, 2004.

[9] D. Clarke, D. Costa, and F. Arbab. Connector Coloring I: Synchro-
nization and Context Dependency. Science of Computer Programming,
66(3):205–225, 2007.

[10] N. Diakov and F. Arbab. Compositional Construction of Web Services
using Reo. In Proceedings of ICEIS 2004, pages 13–14, 2004.

[11] D. Gelernter and N. Carriero. Coordination Languages and their
Significance. Communications of the ACM, 35(2):96, 1992.

[12] W. Hong, M. S. Nawaz, X. Zhang, Y. Li, and M. Sun. Using Coq for
Formal Modeling and Verification of Timed Connectors. In Proceedings
of SEFM 2017, volume 10729 of LNCS, pages 558–573. Springer, 2017.

[13] S. T. Q. Jongmans and F. Arbab. Overview of Thirty Semantic
Formalisms for Reo. Scientific Annals of Computer Science, 22(1):201–
251, 2012.

[14] R. Khosravi, M. Sirjani, N. Asoudeh, S. Sahebi, and H. Iravanchi.
Modeling and Analysis of Reo Connectors using Alloy. In Proceedings
of COORDINATION 2008, volume 5052 of LNCS, pages 169–183.
Springer, 2008.

[15] N. Kokash, C. Krause, and E. de Vink. Reo+mCRL2: A Framework for
Model-checking Dataflow in Service Compositions. Formal Aspects of
Computing, 24:187–216, 2012.

[16] Y. Li and M. Sun. Modeling and Verification of Component Connectors
in Coq. Science of Computer Programming, 113(3):285–301, 2015.

[17] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In Proceedings of CADE 1992, pages 748–752. Springer, 1992.

[18] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide, PVS Prover Guide, PVS Language Reference. Technical
report, NASA, November 2001.

[19] PVS dump files. Available at: https://github.com/saqibdola/Reo-in-PVS.
[20] M. Sun. Connectors as Designs: The Time Dimension. In Proceedings

of TASE 2012, pages 201–208. IEEE Computer Society, 2012.
[21] M. Sun and F. Arbab. Web Services Choreography and Orchestration in

Reo and Constraint Automata. In Proceedings of SAC’07, pages 346–
353. ACM, 2007.

[22] M. Sun and F. Arbab. A Model for Web Service Coordination in Long-
Running Transactions. In Proceedings of SOSE’10, pages 121–128.
IEEE Computer Society, 2010.

[23] M. Sun, F. Arbab, B. K. Aichernig, L. Astefanoaei, F. S. de Boer, and
J. Rutten. Connectors as Designs: Modeling, Refinement and Test Case
Generation. Science of Computer Programming, 77(7-8):799–822, 2012.

[24] X. Zhang, W. Hong, Y. Li, and M. Sun. Reasoning about Connectors
in Coq. In Proceedings of FACS 2016, volume 10231 of LNCS, pages
172–190. Springer, 2016.

[25] Z. Zlatev, N. Diakov, and S. Porkaev. Construction of Negotiation
Protocols for E-Commerce Applications. ACM SIGecom Exchanges,
5(2):12–22, 2004.

