
Towards Formal Modeling and Verification of
Probabilistic Connectors in Coq

Xiyue Zhang and Meng Sun
LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China

{zhangxiyue, sunm}@pku.edu.cn

Abstract—The coordination language Reo has played an
important role in organizing the interactions among different
components in large-scale distributed applications. A probabilistic
extension on classical Reo is necessary to deal with the uncertainty
of the real world. In this paper we developed a framework in Coq
for formalizing probabilistic connectors and reasoning about their
probabilistic properties. Different types of probabilistic channels
are characterized by the relations on their input and output timed
data distribution streams. More complex probabilistic connectors
can be further constructed based on the probabilistic channels
and composition operators. Within such a framework, properties
under analysis and refinement / equivalence relations between
probabilistic connectors can be naturally established as theorems
and proved using tactics in Coq.
Keywords: Reo, Probabilistic Connector, Coq, Modeling, Verifi-
cation

I. INTRODUCTION

The coordination of interactions among large numbers
of concurrent entities in large-scale distributed applications
cannot be easily dealt with and has become a challenge
for software technology. Coordination models and languages
provide a mechanism to meet this challenge by introducing
a formalization of connectors that integrate a number of
heterogeneous components together and organize the mutual
interaction among them in a distributed environment. There
are many coordination models and languages that have been
proposed in the past decades, such as Reo [2], Linda [21],
BIP [10], [13] and Orc [12]. Almost all of these coordination
models enhance modularity and reuse of existing components
and portability. However, they still differ in many dimensions:
the entities being coordinated, the mechanism of coordination,
the coordination medium architecture, and so on.

Reo [2], [8], as a famous coordination model, forms a
paradigm for coordination of software components based on
the concept of channel. Such channel-based models have some
inherent advantages over other coordination models, especially
when it comes to concurrent systems that are distributed,
mobile and whose communication topologies may dynamically
evolve. Channels in Reo are in fact the simplest connectors and
they can be composed to construct more complex connectors
that are used as the glue code to organize the interaction and
communication of components in distributed applications.

The reliability of large-scale distributed applications highly
depends on the correctness of coordination models, which
makes the formal analysis and verification of connectors much
more crucial. There are several works that have been done in

DOI reference number: 10.18293/SEKE2018-023.

the formalization and verification of connectors in the past
years: A coalgebraic semantics for Reo was developed in
[5] in which connectors are interpreted as relations on timed
data streams. And constraint automata (CA) was proposed
as an operational model for connectors in [8]. A scheme
to determine the behavior of connectors by resolving the
synchronization and exclusion constraints based on connector
coloring was introduced in [11]. The symbolic model checker
Vereofy was developed in [7] which can be used to verify
CTL-like properties for connectors. Kokash et al. presented a
mapping from Reo to the specification language mCRL2 based
on process algebra, where the models can be further verified
conveniently using the model checker for mCRL2 in [15].

Complex distributed applications usually involve important
features like real-time, probability, resource consumption, and
so on. Various proposals on extending Reo to deal with such
features have been reported, for example, in [3], [4], [6], [9],
[17]. In this paper, we use Coq [19] to provide a formalization
of Reo connectors with probabilistic behavior and show how
the refinement / equivalence relations and properties of such
probabilistic connectors can be further verified based on the
formalization. This is a further extension to our previous work
of the formalization of Reo and its timed extension in Coq
[14], [22] on the probabilistic dimension, which is still based
on the UTP (Unifying Theories of Programming) semantic
framework for Reo that has been developed in [1], [18].
Probabilistic connectors are constituted by channels that can
behave probabilistically, such as the probabilistic variant of
LossySync channel or randomized Sync channel.

This is certainly not the first work to investigate probabilis-
tic connectors. For example, probabilistic constraint automata
(PCA) [6], which is a variant of CA, characterize the behavior
of probabilistic connectors. However, the formalization by
means of CA (and its extensions) is generally constrained
by the memory limitation problem since infinite behavior is
usually considered for Reo connectors. Modeling and veri-
fying unbounded primitives or even bounded primitives with
unbounded data domains, which always leads to the state space
explosion problem, cannot be achieved with such finite CA-
like models. But they can be specified and verified efficiently
in theorem provers like Coq. The previous work in [22],
[14] can certainly model a wide range of scenarios, but it is
not good at dealing with the uncertainty of the real world.
With this formalization for the probabilistic extension of Reo
provided, more scenarios with uncertainty can be captured,
and various properties under analysis or relations between such
probabilistic connectors can be further verified in Coq.

The paper is organized as follows. After this general

introduction, we briefly review some main concepts of the
coordination language Reo in Section II. In Section III, we
present the basic specification for timed data distribution se-
quences and some auxiliary functions and predicates for more
concise modeling. Section IV introduces the formal modeling
of basic probabilistic channels and an adaptive deformation
of the specification for other primitive untimed and timed
channels, as well as the composition operators. Section V
shows how to reason about refinement / equivalence relations
between probabilistic connectors in our framework. Finally,
Section VI concludes the paper and discusses some future
work. The complete implementation in Coq can be found at
[20].

II. PRELIMINARY

In this section, we briefly introduce some basic concepts of
the coordination language Reo. Complex coordinators, called
connectors in Reo, are compositionally built out of simpler
ones. We only review the primary concepts of Reo here. More
details can be found in [2], [8].

Fig. 1. Basic channels in Reo

The focus in Reo is on connectors and their composition,
not the different entities being connected by the connectors. It
works very well in practice for controlling and organizing the
communication, synchronization and cooperation among the
distributed components. Each channel in Reo has exactly two
channel ends with their own identifiers. There are two types of
channel ends: source end and sink end. Data items are accepted
into a channel through its source end and dispensed out of the
channel through its sink end. It is not necessary for a channel
to have both source end and sink end, i.e., a channel can have
two source ends or two sink ends. Each channel end can be
connected to at most one component instance at any given
time. Reo allows an open-ended set of user-defined channel
types as primitives for constructing connectors. Figure 1 shows
some widely-used channel types in Reo which are interpreted
as follows:

Sync: The synchronous channel has one source end and one
sink end. A channel is called synchronous because it accepts
a data item if and only if the dispensation of the data item
through the sink end can simultaneously occur.

LossySync: The lossy synchronous channel is similar to the
Sync channel except that it always accepts all data items
through its source end, but it can only deliver some of the
data items that it accepts, and lose the rest. Data items are
transferred successfully only when the write operation on the
source end and the take operation on the sink end occur
simultaneously, otherwise the data items are lost.

FIFO1: A FIFO1 channel is an asynchronous channel with a
buffer whose capacity is bounded with 1. Initially, the buffer
is empty. After accepting a data item through the source end,
the data item will be kept in the buffer before being dispensed
out of the channel. The next data item can only be accepted
into the buffer after the data item in the buffer is dispensed.

SyncDrain: The synchronous drain has two source ends and
no sink end. The pair of write operations on its two ends to
accept data items can succeed only simultaneously, and all the
data items written to this channel are lost.

t-Timer: The t-Timer channel is used to capture more time-
related behavior. It accepts any data item through its source
end and produces a timeout signal after a delay of t time units
on its sink end.

Apart from these channel types, more well-defined exotic
channels can be found in [2], [3], [18]. Users can also define
new channels according to their own demands and interaction
policies. For example, several probabilistic and stochastic
extensions of Reo have been proposed in [6], [9], [16].

Fig. 2. Operators for channel composition

A connector is actually a set of channel ends together
with the connecting channels, organized in a graph of nodes
and edges, in which different channel ends coincide on each
node and each edge captures the type of channel linking its
two nodes. Nodes are categorized into source, sink and mixed
nodes depending on whether all channel ends that coincide on
a node are source ends, sink ends or a combination of the two
types. According to the node types, we have three types of
operators for channel / connector composition: flow-through,
replicate and merge, as shown in Figure 2.

A source node corresponds to the replicate operator. Data
items flowing through the source node are replicated and
written into all the channels /connectors that are associated
with the the source node. A sink node acts as the merge
operator. A take / read operation on the sink node succeeds
only when at least one of the channel ends coincident on
the sink node offers a data item. If more than one channel
ends offer data items, then one of them is selected non-
deterministically. The flow-through operator simply allows the
data item to flow through the mixed node without any change.
When there are more than one sink ends and source ends
coincident on the mixed node, the merge operator acts first,
takes a data item offered by one of the sink ends, and then
the selected data item flows through the mixed node, then the
data item is replicated and the copies are written into all of its
source ends.

III. BASIC DEFINITIONS

An obvious way to represent a connector is to model
it as a relation on its inputs and outputs, which take place
through the source and sink nodes of the connector. Taking
probabilistic behavior into consideration, sequences of data
distributions in which the data pass through a node together
with the moments in time when the data items are observed
emerge as the key building blocks for describing connectors.
Therefore, we can naturally specify the observations as timed
data distribution sequences on nodes, which are used to char-
acterize probabilistic connectors. Some auxiliary functions and
predicates are introduced for concise modeling and reasoning
about probabilistic connectors in Coq.

The main libraries of Coq being used here are the Stream
library, the Reals library, and the Utheory library. The Stream
library provides an appropriate co-inductive definition of infi-
nite sequences on the input and output nodes of connectors.
However, unlike the specification we used to describe the
behavior of primitive channels in [14], [22], the observation
sequences are adjusted here to timed data distribution streams
instead of timed data streams. The Reals library is mainly used
to support continuous time behavior; as a result, various oper-
ations and axioms on real numbers can be adopted directly for
the modeling and reasoning. The Utheory library axiomatizes
the properties required on the abstract type U representing
the real interval [0, 1], which facilitates the description of
probabilistic behavior. The definition of the infinite data flow
can be specified as follows, with the help of these libraries.

Definition Time := R.
Definition Data := nat.
Definition DataDist := Data * U.
Definition TDD := Time * DataDist.

In this framework, time is specified as real numbers,
which is very natural and expressive enough for the modeling
approach. Data, for simplicity, is defined as the set of natu-
ral numbers. Generally, probability functions that map from
natural numbers to the corresponding probabilities are very
common and other abstract sets of data can be processed first
by mapping them to a set of natural numbers in an appro-
priate way. Moreover, the definition of data can be expanded
easily in accordance with concrete application domains. The
representation of the data distribution, denoted as DataDist, is
the Cartesian product of the type Data and the abstract type
U, namely the real interval [0, 1]. The timed data distribution
TDD can be further defined as the Cartesian product of time
and data distribution. Stream TDD represents the timed data
distribution sequences efficiently via the Stream module.

Several auxiliary functions and predicates are used to facil-
itate the representation of channels and composition operators,
and can be exploited and extended for further reasoning.

Functions PrL and PrR take an instance (a, b) of the
Cartesian product type as the argument and return the first or
second element of the pair, respectively. If b in this instance
is still a Cartesian product (c, d), functions LPrR and DPrR
can be applied on (a, (c, d)) and return the elements c and d,
respectively.

The following axiom which specifies that the elements of
all time streams should be in a strictly monotonous increasing
order is a general requirement. More requirements that some
streams should satisfy can be specified in a similar way,
and some of them are provided in the definitions of specific
channels.

Axiom Inc_T:forall (T:Stream TDD)(n:nat),
PrL(Str_nth n T) < PrL(Str_nth n (tl T)).

Several predicates about time and data are defined for a
more clear and concise formalization of the connectors. For
example, Tlt (Tgt) represents that each element of the first time
stream is strictly less (greater) than the second stream. For the
modeling and verification of probabilistic connectors including
timer channels, some predicates about time but with an extra

parameter t are defined in a similar way. Each element of the
first time stream is added by a delay of t time units which can
be customized. Therefore, Tltt (Tgtt) represents that the time
of the first stream with an addition of t is less (greater) than
the second stream accordingly. Complete definitions of such
auxiliary functions and predicates can be found at [20].

IV. PROBABILISTIC CHANNELS AND OPERATORS

Modeling of basic probabilistic channels and composition
operators serves as the basis of the whole modeling and
reasoning framework.

A. Probabilistic Channels

Constraints on input and output timed data distribution
streams are used in Coq to specify primitive channels’ be-
havior. The specification of channels with probabilistic be-
havior can be captured by the disjunction or conjunction of
different predicates about time and data distributions as well.
In this section we consider four types of probabilistic chan-
nels: message-corrupting synchronous channel, randomized
synchronous channel, probabilistic lossy synchronous channel
and faulty FIFO1 channel. Specifications of other primitive
channels are omitted here and can be found at [20].

CptSync: The message-corrupting synchronous channel
−−p→ is a synchronous channel which has an extra parameter
p compared with the primitive synchronous channel. The
delivered message can be corrupted with probability p. Hence,
if a data item flows into the channel through the source end,
then the correct data value will be obtained at the sink end with
probability 1−p and a corrupted data value ⊥ will be obtained
with probability p. The corrupted data value is represented by
the initial letter c in the Coq specification.

Parameter CptSync:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom CptSync_coind:
forall (Input Output:Stream TDD) (p:U),
CptSync Input Output p ->
(PrL(hd Output) = PrL (hd Input)
/\

(
PrR(hd Output) =
(c, p*(DPrR(hd Input)))
\/
PrR(hd Output) =
(LPrR(hd Input),([1-]p)*(DPrR(hd Input)))
)

/\
CptSync (tl Input) (tl Output) p

).

The CptSync channel is defined recursively here. The first
predicate of the conjunction is the constraint on the equality
of time reflecting the synchronous behavior. The disjunction
formula in the middle captures the probabilistic behavior. The
data of the output can be the exact value of the input with the
updated probability, i.e., the original companied probability
multiplied by 1− p or the corrupted value with probability p.

RdmSync: The randomized synchronous channel
rand(0,1)
−−−−→ can

generate a random number b ∈ {0, 1} with equal probability

when it is activated through an arbitrary write operation on its
source end, and this random number will be taken on the sink
end synchronously.

Definition RdmSync(Input Output:Stream TDD)
:Prop :=
(forall n:nat,
PrR (Str_nth n Output)=(1%nat, [1/]1+1)
\/
PrR (Str_nth n Output)=(O, [1/]1+1))
/\ Teq Input Output.

The formula in the first disjunction branch with the uni-
versal quantifier properly describes the probabilistic behavior
observed on output streams. Each element of the output data
distribution stream can be 1 or 0 both with the probability 1

2 .
As for the constraint about time, the predicate Teq is used here
to indicate that the time dimension of input and output streams
are equal, conforming to the synchronous behavior.

ProbLossy: The message transmitted by the probabilistic
lossy synchronous channel

q
−−→ can get lost with a certain

probability q. It can also act like a Sync channel and the
message will be delivered successfully with probability 1− q.

Parameter ProbLossy:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom ProbLossy_coind:
forall (Input Output:Stream TDD) (q:U),
ProbLossy Input Output q ->
(
(PrL(hd Output) = PrL(hd Input)
/\
PrR(hd Output) =
(LPrR(hd Input), DPrR(hd Input)*([1-]q))
/\
ProbLossy (tl Input) (tl Output) q)

\/
ProbLossy (tl Input) Output q

).

The ProbLossy channel is defined recursively but may take
two different courses in each step. The data can be totally lost
when going through the channel, which leads to the recursive
behavior that the last formula reflects in the specification. If
the data item is successfully delivered, then there are three
constraints that need to be satisfied. These constraints are
represented by the conjunction of three formulas. The first
formula is specified for the equality of time in accordance
with the synchronous delivery. The second formula reflects that
the current data item is transmitted successfully with an extra
multiplication 1 − q to the original probability of the input.
The third formula is the second course that the recursion takes
when last data item has a successful transmission.

FtyFIFO1: The messages flowing into a faulty FIFO1 channel
r· · ·⊏⊐→ can get lost with probability r when it is inserted into

the buffer. In this case, the buffer remains empty. It can also
behave as a normal FIFO1 channel when the insertion of data
into the buffer is successful with probability 1− r.

Parameter FtyFIFO1:
Stream TDD -> Stream TDD -> U -> Prop.

Axiom FtyFIFO1_coind:

forall (Input Output:Stream TDD) (r:U),
FtyFIFO1 Input Output r ->
(

(PrL(hd Output) > PrL(hd Input)
/\
PrL(hd Output) < PrL(hd (tl Input))
/\
PrR(hd Output) =
(LPrR(hd Input), DPrR(hd Input)*([1-]r))
/\
FtyFIFO1 (tl Input) (tl Output) r)

\/
FtyFIFO1 (tl Input) Output r

).

The FtyFIFO1 channel is also defined recursively here
but can take two different ways of recursion in each step.
The data written into the channel on the source end can be
lost before being inserted into the buffer, which leads to the
first way of recursion represented by the last formula. If the
data item is successfully written into the buffer, then there
are four constraints that need to be satisfied, represented by
the conjunction of four formulas. The first and the second
formula are used to constrain the behavior on time dimension.
The time delay from input to output is captured by the first
formula. Since the buffer capacity is 1, next data item cannot
be written into the buffer unless the data item currently in the
buffer is taken on the sink end first, which is reflected by the
second formula. The third formula indicates that the current
data item is transmitted successfully through the buffer with an
extra 1− r being multiplied to the original probability of the
input. The fourth formula reflects the second way of recursion
when last data item is written into the buffer successfully.

Another kind of faulty FIFO1 channel −−⊏⊐ r99K works
perfectly on the insertion of data item into its buffer but may
loose messages from the buffer before being taken on the sink
end. The difference between this channel and FtyFIFO1 is that
the loss of data items happens in different steps. Loss behavior
in this channel arises in the process of being taken from the
buffer, while loss behavior in FtyFIFO1 arises in the process of
storage into the buffer. But in our modeling framework, chan-
nels are specified only by the relations between observations
on input and output channel ends. As a result, the specifications
of these two faulty FIFO1 channels in Coq are exactly same.

The specification of primitive untimed and timed channels
in [22], [14] are properly adjusted in this modeling framework.
Moreover, this new formalization is still consistent with the
untimed / timed version by means of assigning the value 1 to
the companied probability of the data in the definitions of chan-
nels with no probabilistic behavior. Hence, the observations on
input and output are all specified by timed data distribution
streams, and connectors composed by primitive untimed /
timed channels and probabilistic channels can be constructed
without a hitch. Once there is a probabilistic channel in a
connector, it will be taken as a probabilistic connector.

B. Composition Operators

Composition operators are the other essential factor for the
construction of complex connectors. As described in Section II,
there are three kinds of composition operators: flow-through,
replicate and merge.

The flow-through and replicate operators do not need to
be adjusted. The specification for these operators in [22],
[14] can be adopted here without any change, since the
behavior of these two operators are independent of the form
or content of the data flow. Both of them can still be speci-
fied implicitly by means of renaming. For example, for two
channels ProbLossy(A, B) and FIFO1(C, D), the replicate
operator has been implemented directly by renaming C with
A for the FIFO1 channel. The flow-through operator can be
implemented in a similar way. For example, when we illustrate
channels ProbLossy(A, B) and FIFO1(B, C), the flow-through
operator that acts on node B has already been implemented.

The merge operator seems to depend on the content of the
data flow. However, it is easy to understand that the comparison
of time in the original specification of the operator does not
need any change, since the time dimension is exactly same
between the timed data streams and timed data distribution
streams. As for the data dimension, the equality also does not
need to change with the aid of the Utheory library. But in
this framework, the equality relation for data is changed to
the equality relation on data distribution. Therefore, both data
items and their companied probabilities should be equal.

Parameter merge:
Stream TDD->Stream TDD->Stream TDD->Prop.
Axiom merge_coind:
forall s1 s2 s3:Stream TDD,
merge s1 s2 s3->
˜(PrL(hd s1) = PrL(hd s2)) /\
((PrL(hd s1) < PrL(hd s2)) ->
(hd s3=hd s1)/\merge (tl s1) s2 (tl s3))
/\
((PrL(hd s1) > PrL(hd s2)) ->
(hd s3=hd s2)/\merge s1 (tl s2) (tl s3)).

V. REASONING ABOUT RELATIONS

The formalization of all types of basic channels and
composition operators completes the ground modeling frame-
work, which serves well to construct different probabilistic
connectors that users are interested in. Complex connectors
can be constructed according to their topological orders. As
soon as the construction is done, connector properties and
refinement / equivalence relations between connectors can be
further specified and reasoned about in Coq.

The concept of refinement has been widely used in different
system descriptions. The refinement relation for connectors
is defined in [18], in which the refinement order over con-
nectors is established based on the implication relation of
predicates. Connector C2 is a refinement of connector C1, both
represented by a set of predicates, if and only if C2 → C1,
i.e., the behavioral properties of C1 can be derived from the
properties of C2. In this case, the properties of connector C2

are regarded as the hypothesis and the properties of connector
C1 as the conclusion. The refinement relation between C1

and C2 is denoted as C1 ⊑ C2 and the equivalence relation
is defined typically by mutual refinement, i.e., C1 ≡ C2 iff
C1 ⊑ C2 ∧ C2 ⊑ C1. Thus the equivalence relation can be
represented by the implications in both directions C2 ↔ C1.

Fig.3 shows two probabilistic connectors both are built
from the same set of five channels RdmSync, FIFO1, t-Timer,

SyncDrain and Sync, but in different topological orders. In
fact, the four channels FIFO1, t-Timer, SyncDrain and Sync
make up a timed connector tFIFO1 that we have studied in
[14]. Different from the primitive FIFO1 channel whose output
timed data distribution streams will be of the same data distri-
bution as the input, but with an arbitrary time delay, the time
delay of tFIFO1 channel is fixed by the parameter t, apart from
the same data distribution between input and output streams.
Therefore, connectors R1 and R2 are actually constituted by
the same two subconnectors RdmSync and tFIFO1 but with
interchanged positions. In general, two connectors composed
with same set of subconnectors as we call, in commutative
orders are not equivalent, i.e., the construction of connectors
does not satisfy the commutative law. But in this case R1

and R2 are equal. The equivalence relation between these two
connectors has been proved in Coq.

Fig. 3. Equivalence between connectors

The configurations of both R1 and R2 can be reduced
to the constitution of a RdmSync channel and a tFIFO1
subconnector with interchanged topological orders. Therefore,
the equivalence relations between the construction from basic
channels and the reduced method of construction from a
RdmSync channel and a tFIFO1 subconnector are proved first
as lemmas in Coq, to make the subsequent proof process
simplified and easier to understand.

Lemma RSync_tFIFO_eq:
forall (A B:Stream TDD) (t:Time),
exists E: Stream TDD,
(RdmSync A E) /\ (t_FIFO1 E B t)
<->
(RdmSync A E) /\ (exists (D C:Stream TDD),
(FIFO1 E D) /\ (SyncDrain D C)
/\ (Timert E C t) /\ (Sync D B)).

The above lemma shows the equivalence relation between
the reduced construction and the construction from basic
channels for R1. Another lemma is defined for R2 in Coq
similarly. As a result, the goal of equivalence relation between
connectors R1 and R2 boils down to the following theorem:

Theorem equivalence:
forall (A B:Stream TDD) (t:Time),
(exists E,(RdmSync A E)/\(t_FIFO1 E B t))
<->
(exists R,(t_FIFO1 A R t)/\(RdmSync R B)).

Intuitively, the core of the proof for the goal is to find
the corresponding mediated timed data distribution stream to
complete the construction, given the construction method of
the other connector. However, a matched timed data distri-
bution stream cannot be found directly. Therefore, we need
to construct two timed data distribution streams first and then
prove that they serve well as precise matches for the refinement
relations in both directions, respectively. The two streams A t
and B t are constructed to satisfy the following properties
which act as hypotheses in Coq:

Hypothesis A_R_t: Deq A A_t/\Teqt A A_t t.
Hypothesis B_R_t: Deq B_t B/\Teqt B_t B t.

There are other hypotheses being used directly in the proof,
such as transfer eqt which has been proved in [14]. Some
new properties that aid in proving the current goal but not
proved before are formalized as lemmas and get proved first.
For example, the following lemma demonstrates a property
that two streams which are both greater than a same stream
by t are equal in the time dimension. It is simple to formalize
and prove this property using some commonly-used tactics like
intro, destruct and rewrite.

Lemma trans_t_eq:
forall (s1 s2 s3:Stream TDD)(t:Time),
(Teqt s1 s2 t) /\ (Teqt s1 s3 t) ->
(Teq s2 s3).

All these lemmas and hypotheses make the main proof
more concise. The proof of the theorem actually has two
steps. The original goal is split first into two subgoals that
represent refinement relations in both directions. For the first
subgoal, the antecedent or the precondition of the implication
serves as another hypothesis. After asserting that the matched
timed data distribution stream R is A t, the current subgoal
is reduced to t FIFO1 A A t t ∧ RdmSync A t B, which
can be split again and proved using specific tactics based
on the lemmas and hypotheses, especially the fact that exists
E:Stream TDD, RdmSync A E ∧ t FIFO1 E B t. The subgoal
of the refinement relation in the other direction can be proved
similarly. A complete proof process can be found at [20].

VI. CONCLUSION

This paper proposes a method of modeling and reasoning
about probabilistic connectors in Coq, which is also compatible
with the formalization for the primitive untimed / timed
connectors. Basic probabilistic channels and composition oper-
ators are formalized as the ground framework. After adjusting
timed data streams to timed data distribution streams, all the
channels can be specified by a set of predicates capturing
the relations between inputs and outputs. The formaliza-
tion of composition operators makes it possible to construct
more complex connectors. Properties related to probability
distributions and refinement / equivalence relations between
probabilistic connectors can be specified easily and further
presented with machine-checked proofs. Compared to LTL or
CTL formulas, Coq expressions are more powerful to depict
properties and we can be free from worrying about the state
space explosion problems in other verification approaches like
model checking. Moreover, this architecture is promising to
capture the uncertainty of different applications in real world.

In the future, we plan to investigate some more scenarios
related to coordination in real world based on this architecture.
In particular, we would like to deal with more probabilistic
properties users care about among different applications or
services. The modeling and verification of hybrid behavior of
connectors in Coq is in our scope as well.

ACKNOWLEDGEMENTS

The work is partially supported by NSFC under grant no.
61772038, 61532019, 61202069 and 61272160.

REFERENCES

[1] B. K. Aichernig, F. Arbab, L. Astefanoaei, F. S. de Boer, S. Meng, and
J. Rutten. Fault-based test case generation for component connectors.
In Proceedings of TASE 2009, pages 147–154. IEEE Computer Society,
2009.

[2] F. Arbab. Reo: A Channel-based Coordination Model for Compo-
nent Composition. Mathematical Structures in Computer Science,
14(3):329–366, 2004.

[3] F. Arbab, C. Baier, F. S. de Boer, and J. J. M. M. Rutten. Models
and temporal logical specifications for timed component connectors.
Software and System Modeling, 6(1):59–82, 2007.

[4] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, and
C. Verhoef. From Coordination to Stochastic Models of QoS. In J. Field
and V. T. Vasconcelos, editors, Proceedings of Coordination’09, volume
5521 of LNCS, pages 268–287. Springer, 2009.

[5] F. Arbab and J. Rutten. A coinductive calculus of component connec-
tors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, WADT
2002, volume 2755 of LNCS, pages 34–55. Springer-Verlag, 2003.

[6] C. Baier. Probabilistic Models for Reo Connector Circuits. Journal of
Universal Computer Science, 11(10):1718–1748, 2005.

[7] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister. Design
and verification of systems with exogenous coordination using vereofy.
In Proceedings of ISoLA 2010, volume 6416 of LNCS, pages 97–111.
Springer, 2010.

[8] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component
connectors in Reo by constraint automata. Science of Computer
Programming, 61:75–113, 2006.

[9] C. Baier and V. Wolf. Stochastic Reasoning About Channel-Based
Component Connectors. In P. Ciancarini and H. Wiklicky, editor,
COORDINATION 2006, volume 4038 of LNCS, pages 1–15. Springer-
Verlag, 2006.

[10] S. Bliudze and J. Sifakis. The algebra of connectors - structuring
interaction in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

[11] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchro-
nisation and context dependency. Science of Computer Programming,
66:205–225, 2007.

[12] W. R. Cook, S. Patwardhan, and J. Misra. Workflow Patterns in Orc. In
Proceedings of COORDINATION 2006, volume 4038 of LNCS, pages
82–96. Springer, 2006.

[13] R. Edelmann, S. Bliudze, and J. Sifakis. Functional BIP: embedding
connectors in functional programming languages. Journal of Logical
and Algebraic Methods in Programming, 92:19–44, 2017.

[14] W. Hong, S. Nawaz, X. Zhang, Y. Li, and M. Sun. Using Coq for
Formal Modeling and Verification of Timed Connectors. In Software
Engineering and Formal Methods: SEFM 2017 Collocated Workshops,
Revised Selected Papers, volume 10729 of LNCS, pages 558–573.
Springer, 2018.

[15] N. Kokash, C. Krause, and E. de Vink. Reo+mCRL2: A framework
for model-checking dataflow in service compositions. Formal Aspects
of Computing, 24:187–216, 2012.

[16] Y. Li, X. Zhang, Y. Ji, and M. Sun. Capturing Stochastic and Real-time
Behavior in Reo Connectors. In Proceedings of SBMF 2017, volume
10623 of LNCS, pages 287–304. Springer, 2017.

[17] M. Sun and F. Arbab. On resource-sensitive timed component connec-
tors. In Proceedings of FMOODS 2007, volume 4468 of LNCS, pages
301–316. Springer, 2007.

[18] M. Sun, F. Arbab, B. K. Aichernig, L. Astefanoaei, F. S. de Boer, and
J. Rutten. Connectors as designs: Modeling, refinement and test case
generation. Science of Computer Programming, 77(7-8):799–822, 2012.

[19] The Coq Proof Assiatant. https://coq.inria.fr/.
[20] The source code. https://github.com/Xiyue-Selina/Prob-Reo.
[21] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: An adaptive

coordination model for mobile ad-hoc environments. In Proceedings
of COORDINATION 2012, volume 7274 of LNCS, pages 212–229.
Springer, 2012.

[22] X. Zhang, W. Hong, Y. Li, and M. Sun. Reasoning about Connectors
in Coq. In Proceedings of FACS 2016, volume 10231 of LNCS, pages
172–190. Springer, 2017.

