
A Heterogeneous Architecture for Integrating
Multi-Agent Systems in AmI Systems
Vinicius Souza de Jesus and

Fabian Cesar Pereira Brando Manoel
CEFET/RJ

e-mail: souza.vdj,fabiancpbm@gmail.com

Carlos Eduardo Pantoja and José Viterbo
Universidade Federal Fluminense

e-mail: pantoja@cefet-rj.br,viterbo@ic.uff.br

Abstract—Several challenges arise when applying Multi-Agent
System (MAS) in Ambient Intelligence scenarios such as the
heterogeneity of the hardware and the domain where it is
applied. There are several applications that use Agent-Oriented
approaches but they provide solutions that tie the hardware to the
software, and they do not provide generic architectures. So, in this
paper, we propose a heterogeneous architecture for applying dif-
ferent microcontrollers in the design of embedded MAS for such
kind of systems. An architecture and a small-scale prototype of a
smart home assembled with several hardware devices connected
to different ATMEGA and PIC microcontrollers are presented as
proof-of-concept. Our architecture shows to be effective in several
tests performed using different implementation strategies.

I. INTRODUCTION

Ambient Intelligence (AmI) comprises electronic and in-
telligent environments characterized by the interconnection
of different technologies with the purpose of helping users
in their daily tasks in an autonomous, proactive and perva-
sively way [1]. Multi-Agent Systems (MAS) are composed
of autonomous agents situated in an environment and have
the capacity of making decisions based on perceived stimuli
and interactions between others agents to realize common or
conflicting goals [2]. The agent-oriented paradigm is appro-
priate for implementing AmI systems because agents can be
proactive, have social abilities and autonomy, and it is capable
of learning from its past experiences [3].

In a common architectural approach to implement AmI
systems and MAS, many sensors and actuators are managed
by different microcontrollers, while in a more external layer,
generic services for accessing sensors and actuators are im-
plemented and provided for cognitive applications running on
a top layer. Thus, is important to have an architecture able of
controlling microcontrollers supported by an Agent-Oriented
Program Language (AOPL) responsible for reasoning. Partic-
ularly, Jason [4] is a framework to develop MAS widely used
in the agent community for programming cognitive systems
interfacing hardware of the same type [5].

An extension of Jason named ARGO aims to facilitate the
use of hardware devices by intelligent agents independently
of the domain of the solution [6]. It means that it is possible
to develop MAS where the software layer is not tied to the
hardware layer and it can be used in any domain. Since the

DOI reference number: 10.18293/SEKE2018-211

hardware choice in the design of the solution is limited since
it is only possible to use ATMEGA microcontrollers, ARGO
employs a generic communication interface between the AOPL
and the microcontroller [7], and nothing prevents the develop-
ment of a communication interface for other microcontrollers.

Therefore, the objective of this paper is to present a layered
architecture for designing MAS capable of adopting different
microcontrollers where all layers are independent from each
other. For this, we adopt Javino as communication interface
between microcontrollers and the software layer, and we
propose Javic for interfacing the software layer with PIC or
other C based microcontroller. The PIC was chosen since it is
often used in industrial applications because of its reliability.
Besides, the Jason framework and ARGO agents were used as
the cognitive reasoning in the software layer.

Then, we present as proof-of-concept a small-scale proto-
type of a smart home for temperature control and a doorbell
system for helping the hearing impaired to identify if there
is someone in front of the door. In order to evaluate the
MAS and the prototype, some performance tests were executed
taking into account parameters such as the number of agents
and controllers, the agent’s reasoning and the amount of
environmental perception, to explore different implementation
strategies of AmI System development supported by MAS.

Our contributions are: (i) the use of different kind of
microcontrollers in the same MAS ; and (ii) a communication
interface for working along with ARGO to program MAS for
controlling PIC microcontrollers. This paper is structured as
follows. In Section 2, we present some related work; In Section
3, the architecture is presented; In Section 4, the Smart Home
architecture and its prototype are discussed; and Conclusion
and future works are presented in Section 5.

II. RELATED WORK

Some works exploit existent architectures and middleware
to facilitate the connection between hardware and software.
Some works try to embed the MAS into hardware platforms
to provide real autonomy and other use a central processing
unit for controlling the hardware from a distance.

In [8], it is presented an unmanned ground vehicle con-
trolled by a MAS hosted in a computer and programmed in
Jason. The agents can control the vehicle using commands that
are sent to the hardware using radio transmitters on both sides



(computer and microcontroller), but the MAS only communi-
cates with a single type of microcontroller. In addition, in all
cited works, the MAS is not embedded with the hardware.

In [7], a platform for embedding MAS programmed in Jason
using a Raspberry Pi board is presented. The MAS controls the
functions of a vehicle using external actions. The agents are
not able of controlling devices directly, becoming dependent
on the simulated environment programmed in Java. Besides,
it only communicates with a single type of microcontroller.

Applying MAS in AmI is not a new topic and several
proposals integrating devices have already been presented in
simulated smart homes such as [9]. However, it does not use
AOPL, the agents do not use a cognitive model, and the
implementation is tied to the solution. In [10], it is proposed
a model for supporting residential accidents using embedded
agents and Arduino. For each Arduino, there is a specific agent
and a high-level agent replicated in case the former is not
capable of processing. In this work, an ARGO agent controls
many devices. An embedded approach in real time using Jade
for programming MAS is proposed by [11]. The architecture
maps each sensor and actuator in the high-level language, and
there are six types of generic agents. In this paper, the sensors
and actuators are connected to controllers and only ARGO
agents can manage such devices.

III. THE ARCHITECTURE

In this section, we propose a layered architecture for the
development of MAS using an AOPL (responsible for the
MAS) and a separated and heterogeneous hardware layer,
with several microcontrollers, actuators and sensors (a het-
erogeneous architecture is able of employing different types
of microcontrollers in the same solution). To establish com-
munication between both independent layers, a third layer is
used as middleware that is responsible for the exchanging data,
through serial communication, between the software and the
hardware. Using this middleware, the hardware is programmed
to send all the perception and execute requests arriving from
the MAS. Already in the software layer, agents are designed to
interact with the infrastructure available sending actions to the
hardware layer and receiving perceptions coming from sensor.
In our architecture, the MAS is independent from the hardware
and can be modified or changed if it is desirable.

So, the proposed architecture could employ microcontrollers
of different types, each of them controlling sensors and actu-
ators in the hardware layer, and a central core responsible for
the deliberation based on information perceived by sensors
in the software layer. It is used the Jason and ARGO agents
for controlling hardware devices. The use of Javino and Javic
middleware along with Jason and ARGO agents provides a
platform, which supports the developer to deploy AmI systems
without concerns about integration issues between hardware
and software because of the independence between layers.
All perceptions are directly processed by the MAS without
intervention of the designer. Besides, the capability of using
different microcontrollers in the same project controlled by a
MAS is the main contribution of using the architecture.

A. The Hardware Layer Implementation

In the hardware layer of the architecture, it can be employed
different types of microcontrollers. For this, libraries for
capturing data from sensors and sending them to the software
layer must be adopted. In this section, we discuss Javino and
present the Javic library for interfacing PIC microcontrollers.

1) The Javino [7]: Javino is a communication interface
used to exchange messages between microcontrollers and
programming languages using serial communication. Its main
benefit is to ensure that the receiver will not accept messages
with errors. The Javino consists of two libraries: one on
the hardware-side (microcontroller), and another one on the
software-side (programming language).

When using Javino, the message follows a structure with
three fields: Preamble, composed by 2 bytes of a fixed
value to identify the message; Size that has 1 byte used to
inform the size of the message sent and; the Message (up
to 256 characters) to be sent. The two firsts fields are both
used to identify errors that can occur because of information
loss during the message transmission. In this work, Javino
is used on the hardware layer for interconnecting ATMEGA
microcontrollers or any other platform that uses the Arduino
IDE such as Galileo, Galileo Gen 2, and NodeMCU. In this
case, Javino is responsible for gathering perceptions from all
sensors connected to the microcontroller, and it sends them
for the software layer. The designer of the system must be
responsible for programming the sensors and actuators stimuli
based on messages received from the communication layer.

2) The Javic: Javic implements the same protocol as
Javino. The Javic is a C-based library for PIC microcontrollers.
Depending on the type of the PIC, the amount of available
memory can interfere in the functioning of the library, because
it was developed to work in PIC with at least 256 bytes of
RAM because the size of the message is up to 256 bytes. The
methods implemented for Javic and Javino are:

• sendMsg(String msg): Sends a message to the software
layer using serial communication;

• availableMsg(): Checks if exists messages coming from
the software layer, returning a boolean value informing
whether there is a message available or not;

• getMsg(): If there is a message available, it is used to get
the request information sent by the software to perform
some action using actuators or to gather perceptions.

When the software side library needs to send a message to
the other side, it is necessary to inform the port where the
target device is connected. Including Javino and Javic, there
are 3 libraries: one for the software side that uses the Java
language, and two for the hardware side, one for ATMEGA,
and another one for PIC microcontrollers.

B. The Software Layer Implementation

In this section, we discuss the technologies used in this work
for the development of the software side of the architecture.
Jason [4] is a framework used to build cognitive MAS, and
when used together with the customized architecture of agents



named ARGO [5], it is possible to develop solutions using
actuators and sensors that can interact with the real world.

Jason is a framework that has an interpreter in Java of
AgentSpeak for the development of cognitive agents using the
BDI. The BDI contains three basic constructions: “Beliefs”
(information considered to be truth by the agent acquired in-
ternally, with other agents or with the environment), “desires”
(agent’s motivation to perform determined goal), and “inten-
tions” (actions that the agent is compromised to execute) [4].

ARGO is a customized architecture of Jason agents for
enabling the programming of agents capable of interacting
with platforms of prototyping. The ARGO allows the inter-
mediation between the cognitive agents and a real environ-
ment (using microcontrollers) through the Javino. A MAS
can be composed of traditional Jason agents and ARGO
agents working simultaneously. The Jason agents can perform
plans and actions only in software level and communicate
with other agents in the system (including ARGO agents).
An ARGO agent is a traditional agent with additional fea-
tures, such as the ability to communicate with the physical
environment, perceive it, act upon it, and filter informa-
tion perceived from sensors connected to microcontrollers.
For this, ARGO has five internal actions to be used at
runtime: (i) the action .port(Port), where the agent
chooses which device to control selecting the serial port where
the device is connected (e.g. .port (com8)); (ii) the action
.percepts (open or block), where it is defined if the
agent blocks or releases the flow of perceptions from the con-
troller; (iii) the action .limit (milliseconds), which
defines for how long the environment should be perceived;
(iv) the action .act (message), which sends a message
through the serial port to execute an action using an actuator
and; (v) the action .filter (XML), which selects the XML
file responsible for filtering perceptions.

IV. THE SMART HOME PROPOTYPE

In this section, we present a Smart Home architecture based
on the proposed architecture using the Jason and the ARGO
and containing several controllers with sensors (temperature)
and actuators (LED lights). In Figure 1, we propose one
possible architecture for a Smart Home prototype developed
in wood, which has six rooms each one controlled by a
microcontroller (three ATMEGA328 and three PIC). Four
rooms have light sensors (LDR) and LEDs; one room has
a temperature sensor (LM35), an air-conditioner(Peltier), a
heater(Peltier) and LEDs and; the last room has the bell door
button, the bell’s sound emitter (buzzer), the door motor and
a LED. For each room, an ARGO agent is responsible for the
cognitive management of sensors and actuators. The ARGO
agents have the same communication skills as a traditional
Jason agent, where an ARGO agent can communicate with
another ARGO agent or with a traditional agent.

The methodology employed in the development of the smart
home takes into account three layers where interventions
are required: the interconnection of hardware devices, where
sensors and actuators should be connected to the controllers in

the desired room; the microcontroller programming, where all
the activation functions of the actuators must be programmed
in the controllers in response to serial port stimuli, and;
the MAS’s creation, where the perceptions coming from the
sensors must be prepared to take into consideration the format
expected by the MAS. The perceptions are sent to the agent
every time an ARGO agent performs its reasoning cycle.
Finally, the MAS must be independently programmed to the
hardware, taking into account only the actions that must be
performed in hardware. If it is necessary to change the device,
there is no need to recode the MAS, but the agent should point
to the proper serial port it desires to control, and the actions
messages to be executed must be available on the new device.

Fig. 1. The Smart home architecture and prototype.

A. Performance Tests

In order to test the applicability and to identify strategies
for using ARGO agents in the AmI domain, we executed
performance tests by performing a circuit of activating and
deactivating of LEDs (the agent turns on all the LEDs from
room to room and then turn them off). In the Jason, an event is
generated for each perception received from the environment.
This feature can lead to delays in the reasoning and execution
of actions in situations that require fast responses. To deal with
this situation, an agent can vary the use of the internal action
that blocks and release the perceptual flow from sensors. Thus,
tests were performed and the execution time of the activation
circuit was measured employing from 1 to 6 microcontrollers
being controlled by 1 to 6 agents in the MAS (36 possibilities)
and using three different strategies:

1) opened: the agents open the flow of perceptions at the
beginning of the execution to continuously perceive the
environment until the end of the MAS execution without
blocks its perceptions.

2) just once: the agent opens the flow of perceptions
according to the need to execute each plain to search
sensorial information and after that, it closes it again,
acquiring just a few perceptions at the moment.

3) lazy: the agent open and close the flow of perceptions
at the beginning of the first plan, repeat the operation at
the last plan, and eventually when is necessary to modify
controllers in the middle of the execution.



For each strategy, the tests were replicated 3 times totalizing
324 tests, of which 135 resulted in conflict because of the
amount of ARGO agents was greater than microcontrollers
employed (two or more agents can not use the same serial
port at the same time). When there are conflicts by serial
port competition, one solution is to implement a negotiation
strategy to avoid that they do not use a device at the same time.
For the remaining tests, when considering only the number of
controllers managed by the MAS, it is noticed that opened
strategy is the slowest of all because the number of perceptions
processed is larger than the other strategies (this strategy never
blocks its perceptions). The lazy strategy is slightly faster than
just once strategy, but depending on the agent’s programming
or the domain, keeping the perception out of date for a period
could cause some mistaken decisions.

Analyzing the results and the number of agents, we noticed
that when one agent is responsible for controlling all devices,
the execution time increases. The opened strategy is again
the slowest due to the number of perceptions captured from
sensors (they are updated in every reasoning cycle) while the
just once and lazy strategy were faster because of the way
perceptions were blocked. It is noteworthy that for all tests,
the agent’s codes were the same, differentiating only where
the flow of perceptions was opened or closed. Figure 2 shows
the scatter plot of the tests. For the next examples we decided
that just once strategy should be used, it is slightly slower
than lazy strategy, but it guarantees that the agents will have
up-to-date perceptions of the sensors when compared with the
former one. The opened strategy was not chosen because it
was slower than the others. However, its characteristics always
keep up-to-date information from sensors.

Fig. 2. The scatter plot of the number of agents employed (left) and the
scatter plot of the number of controllers employed (right).

V. CONCLUSIONS

This work presented a layered architecture for programming
MAS which uses hardware devices, it uses Jason framework

and ARGO in the software layer, and it also uses libraries for
communication to different microcontrollers. Then, we devel-
oped a specific library for integrating PIC microcontrollers
with Jason framework allowing the design and construction of
MAS and prototypes using both PIC and ATMEGA. This het-
erogeneous characteristic is an important issue for developing
AmI systems because it is possible to use devices accordingly
to the requirements of the designed MAS. Most of the plat-
forms in the literature are directed to one kind of technology,
or it ties to a particular domain. Our proposed architecture
does not tie the design of the system to a particular domain,
and it allows the use of several types of microcontrollers.

In AmI, we aim to use this heterogeneous characteristic
of the proposed architecture to develop smart and proactive
environments. So, we presented as proof-of-concept, a smart
home example showing that is possible to use Jason to develop
such kind of solutions. Besides, an analysis of three strategies
for MAS implementation were presented to identify the best
strategy to obtain quicker and efficient responses from agents.
The results show that the delays generated are acceptable
depending on the domain and strategy applied. As future work,
it is necessary to test the approach in a real environment using
complex scenarios with a high number of sensors.

REFERENCES

[1] W. Weber, J. Rabaey, and E. Aarts, Ambient Intelligence. Springer,
2005.

[2] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley, 2009.
[3] C. Maciel, P. C. de Souza, J. Viterbo, F. F. Mendes, and A. El Fal-

lah Seghrouchni, A Multi-agent Architecture to Support Ubiquitous
Applications in Smart Environments. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 106–116.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons Ltd,
2007.

[5] C. E. Pantoja, M. F. Stabile, N. M. Lazarin, and J. S. Sichman, “Argo:
An extended jason architecture that facilitates embedded robotic agents
programming,” in Engineering Multi-Agent Systems: 4th International
Workshop, EMAS 2016, M. Baldoni, J. P. Müller, I. Nunes, and R. Zalila-
Wenkstern, Eds. Springer, 2016, pp. 136–155.

[6] C. E. Pantoja and J. Viterbo, “Prototyping ubiquitous multi-agent
systems: A generic domain approach with jason,” in Advances in
Practical Applications of Cyber-Physical Multi-Agent Systems: The
PAAMS Collection: 15th International Conference, PAAMS 2017, Porto,
Portugal, June 21-23, 2017, Proceedings, Y. Demazeau, P. Davidsson,
J. Bajo, and Z. Vale, Eds. Springer International Publishing, 2017, pp.
342–345.

[7] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” in 9th

Software Agents, Environments and Applications School, 2015.
[8] R. S. Barros, V. H. Heringer, N. M. Lazarin, C. E. Pantoja, and L. M.

Moraes, “An agent-oriented ground vehicle’s automation using Jason
framework,” in 6th International Conference on Agents and Artificial
Intelligence, 2014, pp. 261–266.

[9] K.-I. Benta, A. Hoszu, L. Văcariu, and O. Creţ, “Agent based smart
house platform with affective control,” in Proceedings of the 2009
Euro American Conference on Telematics and Information Systems: New
Opportunities to increase Digital Citizenship. ACM, 2009, p. 18.

[10] G. Villarrubia, J. F. De Paz, J. Bajo, and J. M. Corchado, “Ambient
agents: embedded agents for remote control and monitoring using the
pangea platform,” Sensors, vol. 14, no. 8, pp. 13 955–13 979, 2014.

[11] E. Kazanavicius, V. Kazanavicius, and L. Ostaseviciute, “Agent-based
framework for embedded systems development in smart environments,”
in Proceedings of International Conference on Information Technologies
(IT 2009), Kaunas, 2009.


